Science.gov

Sample records for bighorn mountains wyoming

  1. Glacial geology of the West Tensleep Drainage Basin, Bighorn Mountains, Wyoming

    SciTech Connect

    Burggraf, G.B.

    1980-08-01

    The glacial deposits of the West Tensleep Basin in the Bighorn Mountains of Wyoming are mapped and a relative chromology established. The deposits are correlated with the regional model as defined in the Wind River Mountains. A statistical analysis is performed on the density and weathering characteristics of the surficial boulders to determine their validity as indicators of relative age. (ACR)

  2. Seismicity Near the Bighorn Mountain Range, Wyoming, During the Earthscope USArray Deployment

    NASA Astrophysics Data System (ADS)

    O'Rourke, C. T.; Nakai, J.; Sheehan, A. F.; Erslev, E.

    2013-12-01

    In this study we combine a temporary seismic array with the existing USArray network in order to establish a more complete earthquake record for northern Wyoming and to better understand the current state of stress in the area. To accomplish this, we incorporate data gathered during a temporary array of 35 broadband and 156 short-period seismometers deployed across the Bighorn Mountains and flanking basins in northern Wyoming as part of the Bighorn Arch Seismic Experiment (BASE). These stations were installed in an array designed to densify the existing USArray network in the area, achieving a spatial resolution of ~30km (broadband) and ~5km spacing (short-period) vs. ~70km of a typical USArray grid. We focus on the area surrounding the Bighorn Mountains, ~250km east of Yellowstone, which is listed as a moderate seismic hazard by the USGS and has a record of several intensity-V earthquakes in the past several decades. The area is also poorly covered by the World Stress Map; to help fill this gap in data we solve for focal mechanisms and collect industry borehole breakout and fracture data to provide a better picture of the overall stress of the area. The Bighorn Mountains were created during the late Eocene and are considered to be an archetype of Laramide basement-involved foreland arches. Though the Bighorn Mountain region appears to tectonically inactive today, the USArray Array Network Facility (ANF) has identified several dozen small-magnitude earthquakes (and many mine blasts) that occurred during the USArray deployment. We believe this list can be improved by using a lower station threshold and other improved detection parameters, as well as the inclusion of the dense BASE array. We perform initial hypocenter relocation calculations using detection, association, and location algorithms that are part of the Antelope Environmental Data Collection Software, which present a simple user interface and allow for quick event identification and relocation. This study

  3. Crustal structure of the Bighorn Mountains region: Precambrian influence on Laramide shortening and uplift in north-central Wyoming

    NASA Astrophysics Data System (ADS)

    Worthington, Lindsay L.; Miller, Kate C.; Erslev, Eric A.; Anderson, Megan L.; Chamberlain, Kevin R.; Sheehan, Anne F.; Yeck, William L.; Harder, Steven H.; Siddoway, Christine S.

    2016-01-01

    The crustal structure of north-central Wyoming records a history of complex lithospheric evolution from Precambrian accretion to Cretaceous-Paleogene Laramide shortening. We present two active source P wave velocity model profiles collected as part of the Bighorn Arch Seismic Experiment in 2010. Analyses of these velocity models and single-fold reflection data, together with potential field modeling of regional gravity and magnetic signals, constrain crustal structure and thickness of the Bighorn region. We image a west dipping reflection boundary and model a sharp magnetic contact east of the Bighorn Arch that together may delineate a previously undetected Precambrian suture zone. Localized patches of a high-velocity, high-density lower crustal layer (the "7.× layer") occur across the study area but are largely absent beneath the Bighorn Arch culmination. Moho topography is relatively smooth with no large-scale offsets, with depths ranging from ~50 to 37 km, and is largely decoupled from Laramide basement topography. These observations suggest that (1) the edge of the Archean Wyoming craton lies just east of the Bighorn Mountains, approximately 300 km west of previous interpretations, and (2) Laramide deformation localized in an area with thin or absent 7.× layer, due to its relatively weak lower crust, leading to detachment faulting. Our findings show that Precambrian tectonics in northern Wyoming may be more complicated than previously determined and subsequent Laramide deformation may have been critically dependent on laterally heterogeneous crustal structure that can be linked to Precambrian origins.

  4. Influences on Wood Load in Mountain Streams of the Bighorn National Forest, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Nowakowski, Amy L.; Wohl, Ellen

    2008-10-01

    We documented valley and channel characteristics and wood loads in 19 reaches of forested headwater mountain streams in the Bighorn National Forest of northern Wyoming. Ten of these reaches were in the Upper Tongue River watershed, which has a history of management including timber harvest, tie floating, and road construction. Nine reaches were in the North Rock Creek watershed, which has little history of management activities. We used these data to test hypotheses that (i) valley geometry correlates with wood load, (ii) stream gradient correlates with wood load, and (iii) wood loads are significantly lower in managed watersheds than in otherwise similar unmanaged watersheds. Statistical analyses of the data support the first and third hypotheses. Stream reaches with steeper valley side slopes tend to have higher wood loads, and reaches in managed watersheds tend to have lower wood loads than reaches in unmanaged watersheds. Results do not support the second hypothesis. Shear stress correlated more strongly with wood load than did stream gradient, but statistical models with valley-scale variables had greater explanatory power than statistical models with channel-scale variables. Wood loads in stream reaches within managed watersheds in the Bighorn National Forest tend to be two to three times lower than wood loads in unmanaged watersheds.

  5. Influences on wood load in mountain streams of the Bighorn National Forest, Wyoming, USA.

    PubMed

    Nowakowski, Amy L; Wohl, Ellen

    2008-10-01

    We documented valley and channel characteristics and wood loads in 19 reaches of forested headwater mountain streams in the Bighorn National Forest of northern Wyoming. Ten of these reaches were in the Upper Tongue River watershed, which has a history of management including timber harvest, tie floating, and road construction. Nine reaches were in the North Rock Creek watershed, which has little history of management activities. We used these data to test hypotheses that (i) valley geometry correlates with wood load, (ii) stream gradient correlates with wood load, and (iii) wood loads are significantly lower in managed watersheds than in otherwise similar unmanaged watersheds. Statistical analyses of the data support the first and third hypotheses. Stream reaches with steeper valley side slopes tend to have higher wood loads, and reaches in managed watersheds tend to have lower wood loads than reaches in unmanaged watersheds. Results do not support the second hypothesis. Shear stress correlated more strongly with wood load than did stream gradient, but statistical models with valley-scale variables had greater explanatory power than statistical models with channel-scale variables. Wood loads in stream reaches within managed watersheds in the Bighorn National Forest tend to be two to three times lower than wood loads in unmanaged watersheds.

  6. The use of Skylab and LANDSAT in a geohydrological study of the Paleozoic section, west-central Bighorn Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Tomes, B. J.

    1975-01-01

    Sites of geologic structures were identified using Skylab and LANDSAT imagery, and their relationships to ground water recharge and discharge were studied. The study area lies along the western slope of the Bighorn Mountains. Runoff flowing from the Precambrian core of the Bighorn Mountains sinks as it flows over outcrops of the Bighorn dolomite. A comparison of photo-geologic maps prepared from Skylab and LANDSAT imagery and a geologic map compiled by Darton (1906) illustrates that photomapping, by itself, cannot supply adequate detail but can supplement reconnaissance mapping. Lineation maps were compiled from LANDSAT and Skylab images and compared to similar maps compiled by other investigators.

  7. Structural and microstructural evolution of the Rattlesnake Mountain Anticline (Wyoming, USA): New insights into the Sevier and Laramide orogenic stress build-up in the Bighorn Basin

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Leprêtre, Rémi; Bellahsen, Nicolas; Lacombe, Olivier; Amrouch, Khalid; Callot, Jean-Paul; Emmanuel, Laurent; Daniel, Jean-Marc

    2012-11-01

    The Rocky Mountains in western US provide among the best examples of thick-skinned tectonics: following a period of thin-skinned tectonics related to the Sevier orogeny, the compressional reactivation of basement faults gave birth to the so-called Laramide uplifts/arches. The Bighorn basin, located in Wyoming, is therefore a key place to study the transition from thin- to thick-skinned tectonics in orogenic forelands, especially in terms of microstructural and stress/strain evolution. Our study focuses on a classic Laramide structure: the Rattlesnake Mountain Anticline (RMA, Wyoming, USA), a basement-cored anticline located in the western part of the Bighorn basin. Stress and strain evolution analysis in folded sedimentary layers and underlying faulted basement rocks were performed on the basis of combined analyses of fractures, fault-slip data and calcite twinning paleopiezometry. Most of the fractures are related to three main tectonic events: the Sevier thin-skinned contraction, the Laramide thick-skinned contraction, and the Basin and Range extension. Serial balanced cross-sections of RMA and displacement profiles suggest that all thrust faults were coeval, evidencing strain distribution in the basement during faulting. The comparison of RMA with another structure located in the eastern edge of the Bighorn basin, i.e. the Sheep Mountain Anticline (SMA), allows to propose a conceptual model for the geometric and kinematic evolution of Laramide-related basement-cored anticlines. Finally, the stress evolution is reconstructed at both the fold scale and the basin scale. We show that the evolution of stress trends and magnitudes was quite similar in both structures (RMA and SMA) during Laramide times (thick-skinned tectonics), in spite of different stress regimes. During Sevier (thin-skinned tectonics) and post-Laramide times, stress trends and fracture patterns were different in these two structures. These results suggest that the distance to the orogenic front

  8. Expression of syndepositional tectonic uplift in Permian Goose Egg formation (Phosphoria equivalent) carbonates and red beds of Sheep Mountain anticline, Bighorn basin, Wyoming

    SciTech Connect

    Simmons, S.P.; Ulmer, D.S.; Scholle, P.A.

    1989-03-01

    Based on detailed field observations at Sheep Mountain, a doubly plunging anticline in the northeastern Bighorn basin in Wyoming, there appears to have been active tectonic uplift at this site contemporaneous with Pennsylvanian and Permian sedimentation. The Permian (Leonardian to Guadalupian) Goose Egg Formation at Sheep Mountain consists of 25-60 m of silty red beds (including minor carbonate and evaporite units) capped by 15-30 m of dominantly intertidal carbonates (the Ervay Member). A strong lateral variation of facies normal to the trend of the anticline is found within the red-bed sequence: carbonate beds on the anticline flanks are transitional with a gypsum/anhydrite facies along the crest. Similarly, shales on the anticline limbs grade into sandstones near the fold axis, indicating a paleohigh roughly coincidental with the present-day anticline crest. Ervay deposition (late Guadalupian) was marked by a more extensive uplifted structure in a marginal marine setting. On Sheep Mountain the unit is typified by intertidal fenestral carbonates, whereas outcrops to the east suggest a restricted marine facies and outcrops to the west reflect a more open marine environment. Thin sand lenses present in the Ervay are thought to represent terrigenous sediments blown onto the sometimes emergent bank which were then captured through adhesion and cementation. Anticlinal features similar to Sheep Mountain are common along the eastern margin of the Bighorn basin. When found in the subsurface, these structures are often associated with hydrocarbon production from the Ervay Member. Tectonic uplift contemporaneous with deposition of this unit may explain the localization of the productive fenestral facies on the present-day anticlines.

  9. Water resources of the Bighorn basin, northwestern Wyoming

    USGS Publications Warehouse

    Lowry, Marlin E.; Lowham, H.W.; Lines, Gregory C.

    1976-01-01

    This 2-sheet map report includes the part of the Bighorn Basin and adjacent mountains in northwestern Wyoming. Water-bearing properties of the geologic units are summarized. The hydrogeologic map illustrates the distribution of wells in the different units and gives basic data on the yields of wells, depth of wells, depth to water, and dissolved solids and conductance of the water. Aquifers capable of yielding more than 1,000 gpm (gallons per minute) underlie the area everywhere, except in the mountains on the periphery of the basin. In 1970, approximately 29,500 of the 40,475 people living in the Bighorn Basin were served by municipal water supplies. The municipal supply for about 6,300 of these people was from ground water. The natural flows of streams in the Bighorn Basin differ greatly due to a wide range in the meteorologic, topographic, and geologic conditions of the basin. The station locations and the average discharge per square mile are shown on the map and give an indication of the geographic variation of basin yields. The maximum instantaneous discharge that has occurred at each station during its period of record is shown. Most of the runoff in the basin is from snowmelt in the mountains. (Woodard-USGS)

  10. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    DOE PAGES

    Kaszuba, John P.; Sims, Kenneth W.W.; Pluda, Allison R.

    2014-06-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  11. An animal location-based habitat suitability model for bighorn sheep and wild horses in Bighorn Canyon National Recreation Area and the Pryor Mountain Wild Horse Range, Montana, and Wyoming

    USGS Publications Warehouse

    Wockner, Gary; Singer, Francis J.; Schoenecker, Kathryn A.

    2004-01-01

    The purpose of this habitat suitability model is to provide a tool that will help managers and researchers better manage bighorn sheep and wild horses in the Bighorn Canyon National Recreation Area (BICA) and Pryor Mountain Wild Horse Range (PMWHR). A concern in the management of the Pryor Mountain wild horse population is whether or not the wild horses compete with bighorn sheep for available forage or available space. Two studies have been conducted that have shown no obvious, convincing competition between the two species. A study of diets and habitat-use of both species revealed substantial diet overlap only during some seasons, but there were considerable spatial and habitat separations between wild horses and bighorns during all seasons (Kissell and others, 1996). This empirical data was then used in a modeling exercise that predicted that neither the current (about 160 horses at the time of the analysis) nor larger numbers of wild horses on the area (e.g., about 200 horses) would result in reduced numbers or condition of bighorn sheep (Coughenour 1999). But competition is a very complex biological process to document. Bighorns might have already been spatially avoiding wild horses when these studies were conducted. A second concern for managers is that earlier studies suggest both species are not using many areas of the range that appear to be suitable (Gudorf and others, 1996; Kissell and others, 1996). A primary goal for the management of both species is to increase their numbers for purposes of genetic conservation and viability. The bighorn sheep population declined during the mid-1990’s from a peak of about 211 animals to ~ 100 animals at present. Absolute minimum goals for genetic viability in the bighorn sheep herd (genetic effective population size of N >50) suggest at least 150 animals should be present, while studies of persistence suggest populations of 250+ are e more likely to recover rapidly and persist should the population experience an

  12. Experiment to evaluate feasibility of utilizing Skylab-EREP remote sensing data for tectonic analysis of the Bighorn Mountains region, Wyoming-Montana

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. S-190A color transparencies from SL-2 of the Big Horn basin region provide the best format to date for geologic study of that region; red beds are quite mappable and resistant key beds sharply outlined. An S-190B color frame from SL-3 of the Pryor-Bighorn mountains provides no indication that the Nye-Bowler lineament extends east of East Pryor Mountain. This has important implications regarding the role of this and other lineaments (which also appear to be of restricted length) in the tectonics of the region. Extensions of these lineaments for great distances does not seem warranted on the basis of surface evidence.

  13. Maps showing thermal maturity of Upper Cretaceous marine shales in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Finn, Thomas M.; Pawlewicz, Mark J.

    2014-01-01

    The Bighorn Basin is one of many structural and sedimentary basins that formed in the Rocky Mountain foreland during the Laramide orogeny, a period of crustal instability and compressional tectonics that began in latest Cretaceous time and ended in the Eocene. The basin is nearly 180 mi long, 100 mi wide, and encompasses about 10,400 mi2 in north-central Wyoming and south-central Montana. The basin is bounded on the northeast by the Pryor Mountains, on the east by the Bighorn Mountains, and on the south by the Owl Creek Mountains). The north boundary includes a zone of faulting and folding referred to as the Nye-Bowler lineament. The northwest and west margins are formed by the Beartooth Mountains and Absaroka Range, respectively. Important conventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Cambrian through Tertiary. In addition, a potential unconventional basin-centered gas accumulation may be present in Cretaceous reservoirs in the deeper parts of the basin. It has been suggested by numerous authors that various Cretaceous marine shales are the principal source rock for these accumulations. Numerous studies of various Upper Cretaceous marine shales in the Rocky Mountain region have led to the general conclusion that these rocks have generated or are capable of generating oil and (or) gas. In recent years, advances in horizontal drilling and multistage fracture stimulation have resulted in increased exploration and completion of wells in Cretaceous marine shales in other Rocky Mountain Laramide basins that were previously thought of only as hydrocarbon source rocks. Important parameters controlling hydrocarbon production from these shale reservoirs include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for selected Upper Cretaceous marine

  14. Geology of the Bighorn Mountains

    USGS Publications Warehouse

    Darton, N.H.

    1906-01-01

    There are extensive, forests in the mountains, which are now included in a Government forest reserve, but their timber is not of great value. Much of the area below timber line contains an abundance of luxuriant grasses and other plants, which afford excellent pasturage for stock, and large herds of sheep and cattle are ranged in the region during the short summer season. Game is moderately abundant, and most of the streams contain large numbers of trout. The region is one of great interest geologically on account of its variety of sedimentary rocks, interesting structure, and remarkably instructive glacial features. The central area, with its high peaks, presents alpine scenery of notable character. Doubtless in the future the region will be extensively visited by tourists, hunters, and geologists.

  15. Bighorn sheep (Ovis canadensis) survivorship and habitat studies in Bighorn Canyon National Recreation Area and surrounding lands, Wyoming and Montana, 2000–2003

    USGS Publications Warehouse

    Schoenecker, Kathryn A.; Singer, Francis J.; Grams, Kayla A.; Roelle, James E.

    2004-01-01

    In the 1850s, bighorn sheep (Ovis canadensis) were numerous and distributed throughout the Bighorn and Pryor Mountains of Montana and Wyoming. After European settlement, bighorn sheep populations declined, and local extinctions occurred in much of their historic range in the western United States. The current bighorn sheep population of Bighorn Canyon National Recreation Area (BICA) is the product of several reintroductions into BICA and surrounding lands. Following a release in 1973 and growth rates near maximum potential of 19.8% per year, the population grew to an estimated peak population of about 211 animals in 1993 and 1994 (Kissell and others, 1996). Recent counts indicate the bighorn sheep population has declined. Kissell and others (1996) reported that the population began to decline rapidly in 1995 and 1996. He noted low ewe:lamb ratios during the decline phase. Bighorn sheep numbers declined to the lowest minimum viable population size of 100 animals recommended by several bighorn sheep experts (Bailey, 1990; Berger, 1990; Smith and others, 1991). National Park Service (NPS) and Bureau of Land Management (BLM) managers were concerned about the decline and requested a study of its causes. In 2000, the U.S. Geological Survey- Biological Resources Division (USGS-BRD) received funding to start a 3-year study of survivorship, condition, and population growth rate of the BICA bighorn sheep population.Several possibilities exist for the bighorn sheep decline. The herd may have experienced a rapid population expansion, followed by a decline to stability at a lower long-term carrying capacity. This pattern of apparently overshooting carrying capacity following an initial release has been reported for a number of ungulates (Caughley, 1976). Disease may have caused the decline; predation and/or competition with wild horses (Equus caballus) may also have been factors. A spatial model of wild horse carrying capacity (Coughenour, 1999) was developed to assist managers

  16. Assessment of Undiscovered Oil and Gas Resources of the Bighorn Basin Province, Wyoming and Montana, 2008

    USGS Publications Warehouse

    ,

    2008-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a mean of 989 billion cubic feet of undiscovered natural gas, a mean of 72 million barrels of undiscovered oil, and a mean of 13 million barrels of undiscovered natural gas liquids in the Bighorn Basin Providence of Wyoming and Montana.

  17. Some aspects of geophagia in Wyoming bighorn sheep (Ovis canadensis)

    SciTech Connect

    B. J. Mincher; J. Mionczynski; P. A. Hnilicka; D. R. Ball; T. P. Houghton

    2008-05-01

    Geophagia has been commonly reported for bighorn sheep (Ovis canadensis) and other ungulates worldwide. The phenomenon is often attributed to the need to supplement animal diets with minerals available in the soil at mineral lick locations. Sodium is the mineral most frequently cited as being the specific component sought, although this has not been found universally. In this study area, bighorn sheep left normal summer range to make bimonthly 26-km, 2000-m elevation round-trip migrations, the apparent purpose of which was to visit mineral licks on normal winter-range. Lick soil and normal summer range soil were sampled for their available mineral content, and summer range forage was sampled for total mineral content and comparisons were made to determine the specific components sought at the lick by bighorn sheep consuming soil. It was concluded that bighorn sheep were attracted to the lick by a desire for sodium, but that geophagia also supplemented a diet deficient in the trace element selenium.

  18. Northeast-southwest structural transect: Rocky Mountain foreland, Wyoming

    SciTech Connect

    Stone, D.S.

    1987-08-01

    A northeast-southwest structural transect has been constructed across the Rocky Mountain foreland in Wyoming, a distance of about 400 mi. The line of transect begins in the northern Black Hills and traverses the northern Powder River basin, the Bighorn Mountains from Buffalo to Bonanza, the Big Horn basin from Worland to Hamilton dome, the Owl Creek Mountains, the northern Wind River basin at Maverick Springs, the Wind River Mountains to Pinedale in the Green River basin, the Moxa Arch at Big Piney and Riley Ridge, and into the thrust belt, ending at the Idaho border. In terms of a vertical and horizontal scale of 1 in. = 2000 ft, the section is about 90 ft long (i.e., the section is approximately 409 mi long). The data base for the transect includes published geologic maps, commercial photogeologic mapping, well data, and modern seismic data through critical parts of the basin areas. The data base provides an excellent found for analyzing structural relationships on both a regional and a local scale. Regional horizontal shortening of the foreland has occurred primarily through basement-involved displacements on basin-boundary megathrusts, which separate the mountain ranges from sedimentary basins, and on the smaller, intrabasin thrusts, which produced the anticlinal traps for Paleozoic oil accumulations.

  19. 75 FR 28642 - Limiting Mountain Lion Predation on Desert Bighorn Sheep on Kofa National Wildlife Refuge, Yuma...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... Fish and Wildlife Service Limiting Mountain Lion Predation on Desert Bighorn Sheep on Kofa National...) predation on desert bighorn sheep (Ovis canadensis mexicana) on the Kofa National Wildlife Refuge (Refuge... predation to help achieve bighorn sheep population objectives on the Refuge. ADDRESSES: You may view...

  20. An ecologic study comparing distribution of Pasteurella trehalosi and Mannheimia haemolytica between Sierra Nevada bighorn sheep, White Mountain bighorn sheep, and domestic sheep.

    PubMed

    Tomassini, Letizia; Gonzales, Ben; Weiser, Glen C; Sischo, William

    2009-10-01

    The prevalence and phenotypic variability of Pasteurella and Mannheimia isolates from Sierra Nevada bighorn sheep (Ovis canadensis sierrae), White Mountain bighorn sheep (Ovis canadensis nelsoni), and domestic sheep (Ovis aries) from California, USA, were compared. The White Mountain bighorn sheep population had a recent history of pneumonia-associated mortality, whereas the Sierra Nevada bighorn sheep population had no recent history of pneumonia-associated mortality. The domestic sheep flocks were pastured in areas geographically near both populations but were not known to have direct contact with either bighorn sheep population. Oropharyngeal swab samples were collected from healthy domestic and bighorn sheep and cultured to characterize bacterial species, hemolysis, biogroups, and biovariants. Pasteurella trehalosi and Mannheimia haemolytica were detected in all of the study populations, but the relative proportion of each bacterial species differed among sheep populations. Pasteurella trehalosi was more common than M. haemolytica in the bighorn sheep populations, whereas the opposite was true in domestic sheep. Mannheimia haemolytica was separated into 11 biogroups, and P. trehalosi was characterized into two biogroups. Biogroup distributions for M. haemolytica and P. trehalosi differed among the three populations; however, no difference was detected for the distribution of P. trehalosi biogroups between the Sierra Nevada bighorn sheep and domestic sheep. The prevalence odds ratios (pOR) for the distribution of M. haemolytica biogroups suggested little difference between White Mountain bighorn sheep and domestic sheep compared with Sierra Nevada bighorn sheep and domestic sheep, although these comparisons had relatively large confidence intervals for the point estimates. Hemolytic activity of the isolates was not different among the sheep populations for M. haemolytica but was different for P. trehalosi. No clear evidence of association was found in the

  1. 75 FR 27361 - Notice of Public Meeting, Whiskey Mountain Bighorn Sheep Range Locatable Mineral Withdrawal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Bureau of Land Management Notice of Public Meeting, Whiskey Mountain Bighorn Sheep Range Locatable... Bureau of Land Management (BLM) will hold a public meeting in conjunction with the Whiskey Mountain...). DATES: The public meeting will be held from 6 p.m. to 8 p.m. Mountain Standard Time on Tuesday, June...

  2. Depositional history of Lower Triassic Dinwoody Formation, Bighorn basin, Wyoming and Montana

    SciTech Connect

    Paull, R.A.; Paull, R.K.

    1986-08-01

    The Lower Triassic Dinwoody Formation in the Bighorn basin of Wyoming and Montana records the northeasternmost extent of the widespread and rapid Griesbachian transgression onto the Wyoming shelf. Depositional patterns document a progressive change from sparsely fossiliferous, inner-shelf marine conditions in the southwest and west to restricted, marginal-marine environments to the north and east. Characteristic lithologies include greenish-gray calcareous or dolomitic mudstone and siltstone, very thin to thick beds of gypsum, and thin-bedded, commonly laminated dolomite. A formation thickness of approximately 20 m persists throughout most of the basin but diminishes abruptly near the northern and eastern limits of deposition. The Dinwoody is disconformable on the Ervay Member of the Permian Park City Formation except in the northeasternmost part of the basin, where it locally overlies the Pennsylvanian Tensleep Sandstone. Considering the significant time interval involved, physical evidence at the Permian-Triassic boundary is generally limited to an abrupt lithologic change from light-colored shallow marine or intertidal Permian dolomite to greenish-gray Dinwoody siltstone. The Dinwoody grades vertically as well as laterally to the east and north into red beds of the Lower Triassic Red Peak Formation of the Chugwater Group. The Early Triassic depositional environment in the present-day Bighorn basin was hostile. A sparse molluscan fauna was observed at only one of the 20 sections studied, and no conodonts were recovered from Dinwoody carbonates. Significant amounts of gypsum within the Dinwoody suggest periodic high evaporation from hypersaline waters on a low-energy shallow shelf during intervals of reduced terrigenous sediment supply from the north and east. However, sufficient organic material was present to create reducing conditions, as evidenced by greenish rock color and abundant pyrite.

  3. Bighorn sheep response to road-related disturbances in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Keller, B.J.; Bender, L.C.

    2007-01-01

    Bighorn sheep (Ovis canadensis) use of Sheep Lakes mineral site, Rocky Mountain National Park, Colorado, USA, has decreased since 1996. Officials were concerned that human disturbance may have been contributing to this decline in use. We evaluated effects of vehicular traffic and other road-related disturbance on bighorn use of Sheep Lakes in the summers of 2002 and 2003. We found that the time and number of attempts required by bighorn to reach Sheep Lakes was positively related to the number of vehicles and people present at Sheep Lakes. Further, the number of bighorn individuals and groups attempting to visit Sheep Lakes were negatively affected by disturbance associated with the site. The number of vehicles recorded the hour before bighorn tried to access Sheep Lakes best predicted an animal's failure to cross Fall River Road and reach Sheep Lakes. We conclude that human and road-related disturbance at Sheep Lakes negatively affected bighorn use of the mineral site. Because Sheep Lakes may be important for bighorn sheep, especially for lamb production and survival, the negative influence of disturbance may compromise health and productivity of the Mummy Range bighorn sheep.

  4. Variability of the isotopic lapse rate across the mountain ranges in Wyoming

    NASA Astrophysics Data System (ADS)

    Brian, H.; Fan, M.

    2012-12-01

    Stable isotope based paleoaltimetry studies require knowledge of the isotope-elevation gradient during the time of interest, but this information is rarely available. As a result, many studies often apply the modern local lapse rate or a global average lapse rate and assume these values are valid for the area of interest and that they hold through time. However, natural variability in local-scale climate and mountain geometry and morphology can influence the isotope-elevation (and temperature-elevation) gradient. We evaluate the inter- and intra-mountain range variability of modern climate and isotope values of stream water for three Laramide ranges in Wyoming (Wind River Range, Bighorn and Laramie Mountains), as well as for a regional elevation transect across the central Rocky mountain front. Samples of steam water were taken from major catchments across Wyoming in 2007, 2011, and 2012. We find that the modern lapse rate for these ranges is -1.7‰/km, -2.2‰/km and -1.8‰/km respectively. Although these values are very similar to one another and to the global isotopic lapse rate (-2.1‰/km), large variation (up to 6‰/km) exists among individual small river catchments of the Bighorn Mountains. The variability in catchment-scale lapse rate does not appear to be systematically related to annual, or seasonal surface air temperature, precipitation amount, or catchment area. However, the range-scale lapse rates may yet reflect the regional climate, which is generally coolest and driest in the Wind River Range (lowest lapse rate) and warmest and wettest in the Bighorn Mountains (highest lapse rate). Similar d-excess values exist across individual mountain ranges, but inter-mountain range differences indicate that the Laramie Mountains (and regions of western Nebraska) receive evaporatively enriched rainwater compared to those in the Wind River Range and Bighorn Mountains. These differences do not necessarily require separate vapor sources as the lower d

  5. Comparison of pulmonary defense mechanisms in Rocky Mountain bighorn (Ovis canadensis canadensis) and domestic sheep.

    PubMed

    Silflow, R M; Foreyt, W J; Taylor, S M; Laegreid, W W; Liggitt, H D; Leid, R W

    1989-10-01

    Alveolar macrophages were obtained from Rocky Mountain bighorn sheep (Ovis canadensis canadensis) and domestic sheep for the purpose of comparing pulmonary host defense mechanisms in the two species. Specific variables studied included (1) characterization of the cell types present in the lung, (2) alveolar macrophage phagocytic and bactericidal functions, (3) measurement of protein levels in lavage fluid, and (4) measurement of cortisol levels in lavage fluid. While phagocytic cell populations were similar between bighorn and domestic sheep, a significantly higher percentage of lymphocytes were present in bighorns than domestics (20% in bighorn versus 6% in domestic sheep). Significant differences were not observed in the phagocytic or bactericidal functions of macrophages between the two species. Significant differences were not observed in either lavage fluid protein levels or in cortisol levels.

  6. Eustatic and tectonic control on localization of porosity and permeability, Mid-Permian, Bighorn Basin, Wyoming

    SciTech Connect

    Simmons, S.P.; Scholle, P.A. )

    1990-05-01

    The Goose Egg Formation of the northeastern Bighorn basin was deposited in an arid shoreline (sabkha) environment during a time of global cyclic sea level variations and local tectonic uplift Eustatic sea level lows are represented by terrestrial red beds (seals), whereas highs resulted in the deposition of supratidal to shallow subtidal carbonates (reservoirs). Pennsylvanian and Permian differential uplift along the present basin margin localized a broken chain of barrier islands and shoals during deposition of the Ervay and earlier carbonate members, as recognized in outcrop at Sheep and Little Sheep Mountain anticlines. The Ervay Member on these paleohighs is typified by fenestral dolomite, containing abundant tepees and pisoids. This fabric is interpreted to have folded in the highest intertidal to supratidal sabkha environment which developed on the leeward shores of these islands. The fenestral carbonates grade basinward (westward) into narrow bioclastic grainstone beach deposits and then to open-shelf fossiliferous packstones and wackestone. To the east lie laminated lagoonal micritic limestones and dolomites. Outcrop and core study has shown the fenestral facies to be limited to areas coincident with present-day basin margin anticlines. Not only are these the locations of the most porous facies, but tight Laramide folding of the Goose Egg carbonates resulted in pervasive fracturing and thus very high permeabilities in the same structures. The close association of Laramide folds and productive Permian carbonate horizons in the northeast Bighorn basin could well be characteristic for other yet to be explored structures along the basin-margin trend.

  7. Paratuberculosis (Johne's disease) in bighorn sheep and a Rocky Mountain goat in Colorado.

    PubMed

    Williams, E S; Spraker, T R; Schoonveld, G G

    1979-04-01

    Between May, 1972 and February, 1978, six cases of paratuberculosis (Johne's Disease) caused by Mycobacterium paratuberculosis were diagnosed in free-ranging Rocky Mountain bighorn sheep (Ovis canadensis) and one Rocky Mountain goat (Oreamnos americanus) on or near Mt. Evans in Colorado. Diagnosis of paratuberculosis was based on gross and histopathologic examination of the animals and by isolation of M. paratuberculosis from three sheep and the goat. The clinical signs and pathologic changes seen in the bighorn sheep resembled those described in cattle, while the lesions in the goat were similar to those described for domestic sheep and goats.

  8. SHEEP MOUNTAIN WILDERNESS STUDY AREA, WYOMING.

    USGS Publications Warehouse

    Houston, Robert S.; Patten, Lowell L.

    1984-01-01

    On the basis of a mineral survey the Sheep Mountain Wilderness study area in Wyoming was determined to offer little promise for metallic mineral resources. There is a probable potential for oil and gas resources in a small part of the study area along its northeast margin. Geophysical studies, such as reflection seismic profiling would help define the oil and gas potential in fault-controlled structures, such as those beneath the thrust fault that crops out along the east flank of Sheep Mountain.

  9. Genome-wide cross-amplification of domestic sheep microsatellites in bighorn sheep and mountain goats.

    PubMed

    Poissant, J; Shafer, A B A; Davis, C S; Mainguy, J; Hogg, J T; Côté, S D; Coltman, D W

    2009-07-01

    We tested for cross-species amplification of microsatellite loci located throughout the domestic sheep (Ovis aries) genome in two north American mountain ungulates (bighorn sheep, Ovis canadensis, and mountain goats, Oreamnos americanus). We identified 247 new polymorphic markers in bighorn sheep (≥ 3 alleles in one of two study populations) and 149 in mountain goats (≥ 2 alleles in a single study population) using 648 and 576 primer pairs, respectively. Our efforts increased the number of available polymorphic microsatellite markers to 327 for bighorn sheep and 180 for mountain goats. The average distance between successive polymorphic bighorn sheep and mountain goat markers inferred from the Australian domestic sheep genome linkage map (mean ± 1 SD) was 11.9 ± 9.2 and 15.8 ± 13.8 centimorgans, respectively. The development of genomic resources in these wildlife species enables future studies of the genetic architecture of trait variation.

  10. Middle Jurassic (Bajocian and Bathonian) dinosaur megatracksites, Bighorn Basin, Wyoming, USA

    USGS Publications Warehouse

    Kvale, E.P.; Johnson, G.D.; Mickelson, D.L.; Keller, K.; Furer, L.; Archer, A.

    2001-01-01

    Two previously unknown rare Middle Jurassic dinosaur megatracksites are reported from the Bighorn Basin of northern Wyoming in the Western Interior of the United States. These trace fossils occur in carbonate units once thought to be totally marine in origin, and constitute the two most extensive Middle Jurassic dinosaur tracksites currently known in North America. The youngest of these occurs primarily along a single horizon at or near the top of the "basal member" of the "lower" Sundance Formation, is mid-Bathonian in age, and dates to ??? 167 ma. This discovery necessitates a major change in the paleogeographic reconstructions for Wyoming for this period. The older tracksites occur at multiple horizons within a 1 m interval in the middle part of the Gypsum Spring Formation. This interval is uppermost Bajocian in age and dates to ??? 170 ma. Terrestrial tracks found, to date, have been all bipedal tridactyl dinosaur prints. At least some of these prints can be attributed to the theropods. Possible swim tracks of bipedal dinosaurs are also present in the Gypsum Spring Formation. Digitigrade prints dominate the Sundance trackways, with both plantigrade and digitigrade prints being preserved in the Gypsum Spring trackways. The Sundance track-bearing surface locally covers 7.5 square kilometers in the vicinity of Shell, Wyoming. Other tracks occur apparently on the same horizon approximately 25 kilometers to the west, north of the town of Greybull. The Gypsum Spring megatracksite is locally preserved across the same 25 kilometer east-west expanse, with the Gypsum Spring megatracksite more extensive in a north-south direction with tracks occurring locally across a 100 kilometer extent. Conservative estimates for the trackway density based on regional mapping in the Sundance tracksite discovery area near Shell suggests that over 150, 000 in situ tracks may be preserved per square kilometer in the Sundance Formation in this area. Comparable estimates have not been made

  11. Magnetostratigraphy of the Willwood Formation, Bighorn Basin, Wyoming: New constraints on the location of Paleocene/Eocene boundary

    NASA Astrophysics Data System (ADS)

    Tauxe, L.; Gee, J.; Gallet, Y.; Pick, T.; Bown, T.

    1994-07-01

    The lower Eocene Willwood Formation in the Bighorn Basin of Wyoming preserves a rich and diverse mammalian and floral record. The paleomagnetic behavior of the sequence of floodplain paleosols of varying degrees of maturation ranges from excellent to poor. We present a magnetostratigraphic section for a composite section near Worland, Wyoming, by using a set of strict criteria for interpreting the step-wise alternating field and thermal demagnetization data of 266 samples from 90 sites throughout the composite section. Correlation to the geomagnetic reversal time scale was achieved by combining magnetostratigraphic and biostratigraphic data from this section, from a section in the Clark's Fork Basin in northern Wyoming, and from Deep Sea Drilling Project (DSDP) Site 550, with the isotopic date determined on a tuff near the top of our section. Our correlation suggests that the Bighorn Basin composite section in the Worland area spans from within Chron C24r to near the top of Chron C24n, or from approximately 55 to 52 Ma. This correlation places the Paleocene/Eocene boundary within the vicinity of the base of the section. Cryptochron C24r.6 of Cande and Kent is tentatively identified some 100 m above the base of the section. The temporal framework provided here enables correlation of the mammalian biostratigraphy of the Bighorn Basin to other continental sequences as well as to marine records. It also provides independent chronological information for the calculation of sediment accumulation rates to constrain soil maturation rates. We exclude an age as young as 53 Ma for the Paleocene/Eocene boundary and support older ages, as recommended in recent time scales. The location of a tuff dated at 52.8 +/- 0.3 Ma at the older boundary C24n.1 is consistent with the age of 52.5 Ma estimated by Cande and Kent and inconsistent with that of 53.7 Ma, from Harland et al.

  12. Raman spectroscopy of carbonaceous material in PETM sediments from the Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Baczynski, A. A.; McInerney, F. A.; Jacobsen, S. D.; Blair, N. E.; Thomas, S.; Kraus, M. J.

    2009-12-01

    Raman microspectroscopy has become a widely used method in geosciences to characterize carbonaceous material (CM) because of its non-destructive nature, short aquisition times, high spatial resolution, and minimal sample preparation. Spectral parameters such as vibrational band position, peak width and peak ratios are used to characterize the CM in terms of thermal maturity. Such information is important to C-biogeochemical studies of both present and past environments because surface pools, such as soils and sediments, typically contain CM exhibiting a wide range of ages and hence thermal maturity. Resolution of those sources is critical to an accurate interpretation of the organic geochemical record. Using Raman spectroscopy, we have identified different types of CM in untreated mudstones, carbonaceous shales, and fine-grained sandstones from the Willwood and Fort Union formations of the southeastern Bighorn Basin, Wyoming. In order to systematically characterize the thermal maturity along a 64 m vertical section spanning the Paleocene-Eocene Thermal Maximum, we measured Raman spectra of the CM. The samples contain at least two different types of CM, irregularly shaped black coal-like fragments and remnants of fossil roots. The Raman spectra of the black carbon fragments consist of bands at ~1347, 1385 cm-1 (D band) and 1588 cm-1 (G band) and weak bands at 2854 cm-1 and 3172 cm-1. The fossil root fragments reveal a different vibrational signature; bands are present at ~1338, 1367 cm-1 and 1582 cm-1 and weak bands at 2778 cm-1 and 2966 cm-1. The Raman spectra indicate that the black carbonaceous material has a higher degree of aromatization than the root material. The black CM spectra are consistent with either paleocharcoal or a recycled CM from an older, more thermally mature lithology that can co-occur with the fossil root debris. Initial results indicate that Raman spectroscopy is an effective method to resolve and characterize multiple sources of CM within

  13. Tree-ring-based reconstruction of precipitation in the Bighorn Basin, Wyoming, since 1260 A.D

    USGS Publications Warehouse

    Gray, S.T.; Fastie, C.L.; Jackson, S.T.; Betancourt, J.L.

    2004-01-01

    Cores and cross sections from 79 Douglas fir (Pseudotsuga menziesii) and limber pine (Pinus flexilis) trees at four sites in the Bighorn Basin of north-central Wyoming and south-central Montana were used to develop a proxy for annual (June-June) precipitation spanning 1260-1998 A.D. The reconstruction exhibits considerable nonstationarity, and the instrumental era (post-1900) in particular fails to capture the full range of precipitation variability experienced in the past ???750 years. Both single-year and decadal-scale dry events were more severe before 1900. Dry spells in the late thirteenth and sixteenth centuries surpass both magnitude and duration of any droughts in the Bighorn Basin after 1900. Precipitation variability appears to shift to a higher-frequency mode after 1750, with 15-20-yr droughts becoming rare. Comparisons between instrumental and reconstructed values of precipitation and indices of Pacific basin variability reveal that precipitation in the Bighorn Basin generally responds to Pacific forcing in a manner similar to that of the southwestern United States (drier during La Nin??a events), but high country precipitation in areas surrounding the basin displays the opposite response (drier during El Nin??o events). ?? 2004 American Meteorological Society.

  14. Fault terminations, Seminoe Mountains, Wyoming

    SciTech Connect

    Dominic, J.B.; McConnell, D.A. . Dept. of Geology)

    1992-01-01

    Two basement-involved faults terminate in folds in the Seminoe Mountains. Mesoscopic and macroscopic structures in sedimentary rocks provide clues to the interrelationship of faults and folds in this region, and on the linkage between faulting and folding in general. The Hurt Creek fault trends 320[degree] and has maximum separation of 1.5 km measured at the basement/cover contact. Separation on the fault decreases upsection to zero within the Jurassic Sundance Formation. Unfaulted rock units form an anticline around the fault tip. The complementary syncline is angular with planar limbs and a narrow hinge zone. The syncline axial trace intersects the fault in the footwall at the basement/cover cut-off. Map patterns are interpreted to show thickening of Mesozoic units adjacent to the syncline hinge. In contrast, extensional structures are common in the faulted anticline within the Permian Goose Egg and Triassic Chugwater Formations. A hanging wall splay fault loses separation into the Goose Egg formation which is thinned by 50% at the fault tip. Mesoscopic normal faults are oriented 320--340[degree] and have an average inclination of 75[degree] SW. Megaboudins of Chugwater are present in the footwall of the Hurt Creek fault, immediately adjacent to the fault trace. The Black Canyon fault transported Precambrian-Pennsylvanian rocks over Pennsylvanian Tensleep sandstone. This fault is layer-parallel at the top of the Tensleep and loses separation along strike into an unfaulted syncline in the Goose Egg Formation. Shortening in the pre-Permian units is accommodated by slip on the basement-involved Black Canyon fault. Equivalent shortening in Permian-Cretaceous units occurs on a system of thin-skinned'' thrust faults.

  15. Deformational stress fields of Casper Mountain, Wyoming

    SciTech Connect

    Burfod, A.E.; Gable, D.J.

    1985-01-01

    Casper Mountain is an east-west-trending Laramide feature located immediately west of the north termination of the Laramie Mountains in central Wyoming. Precambrian rocks are exposed as its core; off-dipping Paleozoic and Mesozoic strata characterize the flanks and ends. The north side is abruptly downthrown along a major east-west fault or faults. A complex of stress fields of Precambrian and younger ages is indicated by high-angle shears and shear zones, steep-dip foliations, and multiple joint systems. One or more of the indicated Precambrian stress fields may be equivalent to that of the Cheyenne belt of the southern Laramie Mountains. In addition, at least two well-developed Laramide stress fields were active during the formation of the mountain structure. The principal maximum compressive stress of each was oriented north-south; the mean compressive axis of one was vertical whereas in the other the minimum compressive axis was vertical. Some structural features of Precambrian age, faulting in particular, appear to have influenced structures of younger ages. Prominent east-northeast-trending, high-angle faults lie approximately parallel to the Precambrian structural grain; they offset structural features of Laramide age and may be of late Laramide and/or post-Laramide age.

  16. Vitrinite reflectance data for Cretaceous marine shales and coals in the Bighorn Basin, north-central Wyoming and south-central Montana

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2012-01-01

    The Bighorn Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 10,400 square miles in north-central Wyoming and south-central Montana. The purpose of this report is to present new vitrinite reflectance data collected from Cretaceous marine shales and coals in the Bighorn Basin to better characterize the thermal maturity and petroleum potential of these rocks. Ninety-eight samples from Lower Cretaceous and lowermost Upper Cretaceous strata were collected from well cuttings from wells stored at the U.S. Geological Survey (USGS) Core Research Center in Lakewood, Colorado.

  17. Petroleum Systems and Geologic Assessment of Oil and Gas in the Bighorn Basin Province, Wyoming and Montana

    USGS Publications Warehouse

    ,

    2010-01-01

    The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the Bighorn Basin Province, which encompasses about 6.7 million acres in north-central Wyoming and southern Montana. The assessment is based on the geologic elements of each total petroleum system defined in the province, including petroleum source rocks (source-rock maturation, petroleum generation, and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and traps (trap formation and timing). Using this geologic framework, the USGS defined two total petroleum systems: (1) Phosphoria, and (2) Cretaceous-Tertiary Composite. Within these two systems, eight assessment units (AU) were defined, and undiscovered oil and gas resources were quantitatively estimated within each AU.

  18. Preliminary Geologic/spectral Analysis of LANDSAT-4 Thematic Mapper Data, Wind River/bighorn Basin Area, Wyoming

    NASA Technical Reports Server (NTRS)

    Lang, H. R.; Conel, J. E.; Paylor, E. D.

    1984-01-01

    A LIDQA evaluation for geologic applications of a LANDSAT TM scene covering the Wind River/Bighorn Basin area, Wyoming, is examined. This involves a quantitative assessment of data quality including spatial and spectral characteristics. Analysis is concentrated on the 6 visible, near infrared, and short wavelength infrared bands. Preliminary analysis demonstrates that: (1) principal component images derived from the correlation matrix provide the most useful geologic information. To extract surface spectral reflectance, the TM radiance data must be calibrated. Scatterplots demonstrate that TM data can be calibrated and sensor response is essentially linear. Low instrumental offset and gain settings result in spectral data that do not utilize the full dynamic range of the TM system.

  19. Enigmatic uppermost Permian-lowermost Triassic stratigraphic relations in the northern Bighorn basin of Wyoming and Montana

    SciTech Connect

    Paull, R.A.; Paull, R.K. )

    1991-06-01

    Eighteen measured sections in the northern Bighorn basin of Wyoming and Montana provide the basis for an analysis of Permian-Triassic stratigraphic relations. This boundary is well defined to the south where gray calcareous siltstones of the Lower Triassic Dinwoody disconformably overlie the Upper Permian Ervay Member of the Park City Formation with little physical evidence of a significant hiatus. The Dinwoody is gradationally overlain by red beds of the Red Peak Formation. The Dinwoody this to zero near the state line. Northward, the erathem boundary is enigmatic because fossils are absent and there is no evidence of an unconformity. Poor and discontinuous exposures contribute to the problem. Up to 20 m of Permian or Triassic rocks or both overlie the Pennsylvanian Tensleep Sandstone in the westernmost surface exposures on the eastern flank of the Bighorn basin with physical evidence of an unconformity. East of the exposed Tensleep, Ervay-like carbonates are overlain by about 15 m of Dinwoody-like siltstones interbedded with red beds and thin dolomitic limestone. In both areas, they are overlain by the Red Peak Formation. Thin carbonates within the Dinwoody are silty, coarse algal laminates with associated peloidal micrite. Carbonates north of the Dinwoody termination and above probably Ervay are peloidal algal laminates with fenestral fabric and sparse coated shell fragments with pisoids. These rocks may be Dinwoody equivalents or they may be of younger Permian age than the Ervay. Regardless, revision of stratigraphic nomenclature in this area may bed required.

  20. Bighorn Basin Coring Project: Palynofloral changes and taphonomy through the Paleocene-Eocene Thermal Maximum in the Bighorn Basin, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Harrington, G.; Jardine, P.

    2012-12-01

    The early Palaeogene hyperthermals provide an unprecedented opportunity to investigate the biotic responses to rapid and transient global warming events. As part of the Bighorn Basin Coring Project (BBCP), we have analyzed 182 sporomorph (pollen and spore) samples from three newly cored sites in the Bighorn Basin of Wyoming. Two sites, Basin Substation (121 samples) and Polecat Bench (41 samples), contain the Paleocene-Eocene Thermal Maximum (PETM, ETM1), and one early Eocene site, Gilmore Hill (20 samples), contains the ELMO (ETM2) event. We have focused initially on the Basin Substation section, because it is more organic rich, has demonstrated higher sporomorph recovery potential than the other two sites, and is the main focus of complementary geochemical analyses. Below 90 m core depth sporomorph concentrations are typically 1000 - 10 000 grains/gram, but between 90 and 60 m these decline to <100 grains/gram, before rising again to levels similar to those seen at the base of the core. Correlation between marker beds in the core and those at outcrop suggests that this zone of low recovery corresponds closely to the position of the PETM. Prior to this interval, the sporomorph assemblage is dominated by the gymnosperms Cupressacites hiatipites (cypress, Cupressaceae) and bisaccate pollen (Pinaceae and/or Podocarpaceae), and the angiosperm taxa Polyatriopollenites vermontensis (wingnut or wheel wingnut, Juglandaceae), Caryapollenites spp. (hickory, Juglandaceae), and Alnipollenites spp. (alder, Betulaceae). However, samples are heterogeneous in terms of the dominant taxon, with different taxa having the highest relative abundance in different samples. In the upper part of the core, the assemblage is similar to that in the lower part, but with a more consistent dominance of gymnosperm taxa, and with the addition of Eocene marker taxa Intratriporopollenites instructus (linden, Tilioideae) and Celtis spp. (hackberry, Cannabaceae). These both have their first

  1. Bioprospecting for podophyllotoxin in the Big Horn Mountains, Wyoming

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to evaluate variations in podophyllotoxin concentrations in Juniperus species found in the Big Horn Mountains in Wyoming. It was found that Juniperus species in the Big Horn Mountains included three species; J. communis L. (common juniper), J. horizontalis Moench. (c...

  2. Tectonic controls on deposition and preservation of Pennsylvanian Tensleep Formation, Bighorn basin, Wyoming

    SciTech Connect

    Kelly Anne, O.; Horne, J.C.; Wheeler, D.M.; Musgrave, C.E.

    1986-08-01

    During deposition of the Tensleep Formation, a shallow, semirestricted portion of a major seaway that occupied the geosynclinal area to the west extended into the area of the present-day Bighorn basin. Limiting the transgression of this sea was the Beartooth high on the north and the Bighorn high on the east and southeast. On the western side of the area, a southerly extension of the Yellowstone high restricted circulation. The lower Tensleep Formation (Desmoinesian), characterized by extensive marine influence, was deposited as coastal sand dunes and interdunes over subaerially exposed structural highs. These deposits grade basinward into shoreface sandstones, which in turn grade into sandstones and carbonates of the shelf environment. During deposition of upper Tensleep strata (Missourian through Virgilian), marine waters were less widespread. The Greybull arch, a northeast-trending feature in the northern part of the area, was uplifted, dividing the shallow sea into two parts. The upper Tensleep Formation was deposited as a terrestrial sand sea over the Bighorn high. Coastal dunes and interdunes were deposited seaward of the sand seas and over the Beartooth high, the Greybull arch, and the southerly extension of the Yellowstone high. These deposits grade basinward into clastic shoreface deposits. Following Tensleep deposition, the region underwent southward tilting, which caused exposure and erosion of the Tensleep Formation. The resulting unconformity surface was deeply incised by a dendritic drainage system that controlled the thickness of the formation. The Greybull arch and the Bighorn high acted as significant drainage divides, over which very little of the formation was preserved.

  3. Evaporite replacement within the Permian strata of the Bighorn Basin, Wyoming and the Delaware Basin, west Texas and New Mexico

    SciTech Connect

    Ulmer, D.S.; Scholle, P.A. )

    1992-01-01

    The Park City and Goose Egg Formations of the Big Horn Basin, Wyoming and the Seven Rivers, Yates and Tansill Formations of west Texas and New Mexico contain numerous examples of silicified and calcitized evaporites. Both areas show significant preserved interstitial evaporite, but on outcrop the discrete crystals and nodular evaporites have been extensively replaced. These replacements appear to be a multistage phenomenon. Field and petrographic evidence (matted fabrics in nodules; evaporite inclusions) indicate that silicification involved direct replacement of evaporites and probably occurred during earlier stages of burial. Calcitization, however, appears to be a much later phenomenon and involved precipitation of coarse crystals within evaporite molds. The calcites are typically free of evaporite inclusions. Isotopic analyses of these calcites give a wide range of values from [minus]6.04 to [minus]25.02 [per thousand] [delta][sup 18]O and +6.40 to [minus]25.26 [per thousand] [delta][sup 13]C, reflecting their complex diagenetic histories. In both localities, silicification of evaporites was completed by the end of hydrocarbon migration and emplacement. The extremely broad isotopic range of the calcites indicates that the calcitization occurred during a long period of progressive uplift and increased groundwater circulation associated with mid-Tertiary block faulting. The very light oxygen values within the Bighorn Basin were produced by thermochemical sulfate reduction during deepest burial of the region. Evaporite diagenesis in both the Bighorn and Delaware Basins is an ongoing process that started prior to hydrocarbon migration, continued over millions of years, and has the potential to do significant porosity change.

  4. Artesian pressures and water quality in Paleozoic aquifers in the Ten Sleep area of the Bighorn Basin, north-central Wyoming

    USGS Publications Warehouse

    Cooley, M.E.

    1985-01-01

    Major Paleozoic artesian aquifers in the southeastern Bighorn Basin of Wyoming area, in descending order, the Tensleep Sandstone; the Madison Limestone and Bighorn Dolomite, which together form the Madison-Bighorn aquifer; and the Flathead Sandstone. Operating yields commonly are more than 1,000 gallons per minute from flowing wells completed in the Madison-Bighorn aquifer. The initial test of one well indicated a flow of 14,000 gallons per minute. Wellhead pressures range from less than 50 to more than 400 pounds per square inch. Transmissivities are 500-1,900 feet squared per day for the Madison-Bighorn aquifer and 90-325 feet squared per day for the Tensleep and Flathead Sandstones. Despite extensive development for irrigation there have been few decreases in pressure. Some decreases in pressure have occurred in wells completed in the Flathead Sandstone. Fractures along linear structural features result in significant secondary permeability and allow upward interformational movement of water that affects the altitude of the potentiometric surfaces in the Tensleep Sandstone and Madison-Bighorn aquifer. Upward-moving water from the Tensleep and other formations discharges at the land surface as springs along or near these lineations. Water from the aquifers generally contains minimal concentrations of dissolved solids and individual constituents but has excessive hardness. The water is satisfactory for irrigation and other purposes when hardness is not a detrimental factor. Wellhead temperatures range from 11 degrees to 27.5 degrees C, giving a geothermal gradient of about 0.44 degrees C per 100 feet. (USGS)

  5. Burial History, Thermal Maturity, and Oil and Gas Generation History of Source Rocks in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Roberts, Laura N.R.; Finn, Thomas M.; Lewan, Michael D.; Kirschbaum, Mark A.

    2008-01-01

    Burial history, thermal maturity, and timing of oil and gas generation were modeled for seven key source-rock units at eight well locations throughout the Bighorn Basin in Wyoming and Montana. Also modeled was the timing of cracking to gas of Phosphoria Formation-sourced oil in the Permian Park City Formation reservoirs at two well locations. Within the basin boundary, the Phosphoria is thin and only locally rich in organic carbon; it is thought that the Phosphoria oil produced from Park City and other reservoirs migrated from the Idaho-Wyoming thrust belt. Other petroleum source rocks include the Cretaceous Thermopolis Shale, Mowry Shale, Frontier Formation, Cody Shale, Mesaverde and Meeteetse Formations, and the Tertiary (Paleocene) Fort Union Formation. Locations (wells) selected for burial history reconstructions include three in the deepest parts of the Bighorn Basin (Emblem Bench, Red Point/Husky, and Sellers Draw), three at intermediate depths (Amoco BN 1, Santa Fe Tatman, and McCulloch Peak), and two at relatively shallow locations (Dobie Creek and Doctor Ditch). The thermal maturity of source rocks is greatest in the deep central part of the basin and decreases to the south, east, and north toward the basin margins. The Thermopolis and Mowry Shales are predominantly gas-prone source rocks, containing a mix of Type-III and Type-II kerogens. The Frontier, Cody, Mesaverde, Meeteetse, and Fort Union Formations are gas-prone source rocks containing Type-III kerogen. Modeling results indicate that in the deepest areas, (1) the onset of petroleum generation from Cretaceous rocks occurred from early Paleocene through early Eocene time, (2) peak petroleum generation from Cretaceous rocks occurred during Eocene time, and (3) onset of gas generation from the Fort Union Formation occurred during early Eocene time and peak generation occurred from late Eocene to early Miocene time. Only in the deepest part of the basin did the oil generated from the Thermopolis and

  6. Outcrops, Fossils, Geophysical Logs, and Tectonic Interpretations of the Upper Cretaceous Frontier Formation and Contiguous Strata in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Merewether, E.A.; Cobban, W.A.; Tillman, R.W.

    2010-01-01

    In the Bighorn Basin of north-central Wyoming and south-central Montana, the Frontier Formation of early Late Cretaceous age consists of siliciclastic, bentonitic, and carbonaceous beds that were deposited in marine, brackish-water, and continental environments. Most lithologic units are laterally discontinuous. The Frontier Formation conformably overlies the Mowry Shale and is conformably overlain by the Cody Shale. Molluscan fossils collected from outcrops of these formations and listed in this report are mainly of marine origin and of Cenomanian, Turonian, and Coniacian ages. The lower and thicker part of the Frontier in the Bighorn Basin is of Cenomanian age and laterally equivalent to the Belle Fourche Member of the Frontier in central Wyoming. Near the west edge of the basin, these basal strata are disconformably overlain by middle Turonian beds that are the age equivalent of the Emigrant Gap Member of the Frontier in central Wyoming. The middle Turonian beds are disconformably overlain by lower Coniacian strata. Cenomanian strata along the south and east margins of the basin are disconformably overlain by upper Turonian beds in the upper part of the Frontier, as well as in the lower part of the Cody; these are, in turn, conformably overlain by lower Coniacian strata. Thicknesses and ages of Cenomanian strata in the Bighorn Basin and adjoining regions are evidence of regional differential erosion and the presence of an uplift during the early Turonian centered in northwestern Wyoming, west of the basin, probably associated with a eustatic event. The truncated Cenomanian strata were buried by lower middle Turonian beds during a marine transgression and possibly during regional subsidence and a eustatic rise. An uplift in the late middle Turonian, centered in north-central Wyoming and possibly associated with a eustatic fall, caused the erosion of lower middle Turonian beds in southern and eastern areas of the basin as well as in an adjoining region of north

  7. Bighorn sheep habitat studies, population dynamics, and population modeling in Bighorn Canyon National Recreation Area, Wyoming and Montana, 2000-2003

    USGS Publications Warehouse

    Singer, Francis J.; Schoenecker, Kathryn A.

    2004-01-01

    The bighorn sheep population of the greater Bighorn Canyon National Recreation Area (BICA) was extirpated in the 1800s, and then reintroduced in 1973. The herd increased to a peak population of about 211 animals (Kissell and others, 1996), but then declined sharply in 1995 and 1996. Causes for the decline were unknown. Numbers have remained around 100 ± 20 animals since 1998. Previous modeling efforts determined what areas were suitable bighorn sheep habitat (Gudorf and others, 1996). We tried to determine why sheep were not using areas that were modeled as suitable or acceptable habitat, and to evaluate population dynamics of the herd.

  8. Mammalian community response to the latest Paleocene thermal maximum: An isotaphonomic study in the northern Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Clyde, William C.; Gingerich, Philip D.

    1998-11-01

    New stratigraphic and paleontological information from the McCullough Peaks, northern Bighorn Basin, Wyoming, is incorporated into an isotaphonomic faunal database and used to investigate the impact of the latest Paleocene thermal maximum and coincident earliest Wasatchian immigration event on local mammalian community structure. Surface collections from Willwood Formation overbank deposits provide taphonomically consistent and stratigraphically resolved samples of the medium- to large-sized components of underlying mammalian communities. Rarefaction shows that the immigration event caused an abrupt and dramatic increase in species richness and evenness. After this initial increase, diversity tapered off to more typical Wasatchian levels that were still higher than those in the preceding Clarkforkian. Wasatchian immigrants were rapidly incorporated into the new community organization, representing ˜20% of the taxa and ˜50% of the individuals. Immigrant taxa generally had larger body sizes and more herbivorous and frugivorous dietary habits compared to endemic taxa, causing significant turnover in body-size structure and trophic structure. There was a significant short-term body-size decrease in many lineages that may have been prompted by the elevated temperatures and/or decreased latitudinal thermal gradients during the latest Paleocene thermal maximum. Rapid short-term climatic change (transient climates) and associated biotic dispersal can have abrupt and long-lasting effects on mammalian community evolution.

  9. Evolutionary relationships of a new genus and three new species of Omomyid primates (Willwood Formation, Lower Eocene, Bighorn Basin, Wyoming)

    USGS Publications Warehouse

    Bown, T.M.

    1991-01-01

    Studies of new finds of omomyid primates from the lower Eocene Willwood Formation of northwest Wyoming reveal the presence of a new genus and two new species of anaptomorphines and a new species of omomyine. All were apparently short-lived immigrants into the Bighorn Basin. The new genus and speciesTatmanius szalayi is typified by a diminutive single-rooted p3 and a bilobed-rooted p4 with a crown smaller than ml. These traits were probably derived fromPseudotetonius and parallel similar conditions inTrogolemur andNannopithex. The new speciesArapahovius advena is the first occurrence ofArapahovius outside the Washakie Basin, where it appears to have also been a vagrant species.Steinius annectens, sp. nov., is larger than the olderSteinius vespertinus and strengthens the alliance between this genus and BridgerianOraorays carteri, although which species ofSteinius is closer toOmomys is not yet clear. The available evidence suggests a derivation ofOmomys (Omomyini) fromSteinius and all Washakiini from the anaptomorphineTeilhardina, which would indicate that Omomyinae were at least diphyletic. Preliminary evidence suggests that the geographic distributions of at least some Willwood omomyids correlate with paleosol distributions.

  10. Artesian pressures and water quality in Paleozoic aquifers in the Ten Sleep area of the Bighorn Basin, north-central Wyoming

    USGS Publications Warehouse

    Cooley, Maurice E.

    1986-01-01

    The major Paleozoic artesian aquifers, the aquifers most favorable for continued development, in the Ten Sleep area of the Bighorn Basin of Wyoming are the Tensleep Sandstone, the Madison Limestone and Bighorn Dolomite (Madison-Bighorn aquifer), and the Flathead Sandstone. The minor aquifers include the Goose Egg and Park City Formations (considered in the Ten Sleep area to be the lateral equivalent of the Phosphoria Formation) and the Amsden Formation. Most wells completed in the major and minor aquifers flow at the land surface. Wellhead pressures generally are less than 50 pounds per square inch for the Tensleep Sandstone, 150-250 pounds per square inch for the Madison-Bighorn aquifer, and more than 400 pounds per square inch for the Flathead Sandstone. Flowing wells completed in the Madison-Bighorn aquifer and the Flathead Sandstone yield more than 1,000 gallons per minute. The initial test of one well completed in the Madison-Bighorn aquifer indicated a flow rate of 14,000 gallons per minute. Transmissivities range from 500 to 1,900 feet squared per day for the Madison-Bighorn aquifer and from about 90 to 325 feet squared per day for the Tensleep and Flathead Sandstones. Significant secondary permeability from fracturing in the Paleozoic aquifers allows local upward interformational movement of water, and this affects the altitude of the potentiometric surfaces of the Tensleep Sandstone and the Madison-Bighorn aquifer. Water moves upward from the Tensleep and other formations, through the Goose Egg Formation, to discharge at the land surface as springs. Much of the spring flow is diverted for irrigation or is used for rearing fish. Decreases from original well pressures were not apparent in wells completed in the Tensleep Sandstone or in the Madison-Bighorn aquifer in the study area except for a few wells in or near the town of Ten Sleep. Most wells completed in the Flathead Sandstone, which also are open to the Madison-Bighorn aquifer, show a decrease of

  11. The history of dinosaur footprint discoveries in Wyoming with emphasis on the Bighorn basin

    USGS Publications Warehouse

    Kvale, E.P.; Mickelson, D.L.; Hasiotis, S.T.; Johnson, G.D.

    2003-01-01

    Dinosaur traces are well known from the western United States in the Colorado Plateau region (Utah, Colorado, New Mexico, and Arizona). Utah contains the greatest abundance of known and documented dinosaur footprints and trackways. Far less well known, however, is the occurrence and distribution of dinosaur footprint-bearing horizons in Wyoming. Scientific studies over the past 10 years have shown that three of the four Middle and Upper Jurassic formations in northern Wyoming contain dinosaur footprints. Two of the footprint-bearing horizons are located in geologic intervals that were once thought to have been deposited in offshore to nearshore marine settings and represent rare North American examples of Middle Jurassic (Bajocian and Bathonian) dinosaur remains. Some of these new Wyoming sites can be correlated to known dinosaur footprint-bearing horizons or intervals in Utah. Wyoming has a great potential for additional discoveries of new dinosaur footprint-bearing horizons, and further prospecting and study is warranted and will ultimately lead to a much better understanding of the geographic distribution and behavior of the potential footprint-makers. ?? Taylor and Francis Inc.

  12. Stress and strain evolution in foreland basins and its relation to the structural style : insights from the Bighorn Basin (Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Beaudoin, N.; Leprêtre, R.; Bellahsen, N.; Lacombe, O.; Amrouch, K.; Callot, J.-P.; Emmanuel, L.; Daniel, J.-M.

    2012-04-01

    The Rocky Mountains in western US provide amongst the best examples of thick-skinned tectonics: following the thin-skinned Sevier orogeny, the subsequent compressional reactivation of basement faults gave birth to the so-called Laramide uplifts/arches. The Bighorn basin, located in Wyoming, is therefore a key place to study the stress evolution during the transition from thin- to thick-skinned tectonics in orogenic forelands in terms of structural, microstructural and stress/strain evolution. We report the results of the analyses of fracture populations, inversion of fault-slip data and calcite twin data for stress as well as of calcite twinning paleopiezometry performed in two famous Laramide basement-cored structures located on each side of the basin: the Rattlesnake Mountain Anticline (RMA) and the Sheep Mountain Anticline (SMA). The comparison between the stress evolution in both folds allows to unravel (i) the pattern of both paleostress orientations and magnitudes and their evolution in time and space and (ii) the tectonic history at the basin scale. Structural and microstructural analyses show that both folds share similar kinematics. Most of the fractures are related to three main events: the Sevier thin-skinned contraction, the Laramide thick-skinned contraction, and the Basin and Range extension. During the thin-skinned period, in the innermost part of the foreland, the stress regime evolved from strike-slip to reverse while it remained strike-slip in the outermost part of the basin. Moreover, some fracture sets related to layer-parallel shortening during the early Sevier contraction formed only close to the Sevier deformation front and remained poorly expressed further away. Stress attenuation toward the craton interior is thus clearly shown by the dataset and illustrates the prominent role of the distance to the front of deformation in the way fracture sets developed in orogenic forelands. Alternatively, during the thick-skinned period, the evolution of

  13. Paranasal sinus masses of Rocky Mountain bighorn sheep (Ovis canadensis canadensis).

    PubMed

    Fox, K A; Wootton, S K; Quackenbush, S L; Wolfe, L L; Levan, I K; Miller, M W; Spraker, T R

    2011-05-01

    This article describes 10 cases of paranasal sinus masses in Rocky Mountain bighorn sheep (Ovis canadensis canadensis). Among 21 bighorns that were examined from 11 herds in Colorado, 10 individuals (48%) from 4 herds (36%) had masses arising from the paranasal sinuses. Affected animals included 9 of 17 females (53%) and 1 of 4 males (25%), ranging in age from approximately 2 years to greater than 10 years. Defining gross features of these masses included unilateral or bilateral diffuse thickening of the respiratory lining of the maxillary and/or frontal sinuses, with abundant seromucinous exudate in the affected sinus cavities. Defining histologic features of these masses included chronic inflammation and proliferation of mesenchymal and epithelial cells of the mucosa and submucosa. Epithelial changes included hyperplasia of mucosal epithelium, hyperplasia of submucosal glands and ducts, and neoplasia (adenocarcinoma). Mesenchymal changes included submucosal myxedema, submucosal fibroplasia/fibrosis, bone destruction, and neoplasia (myxomatous fibroma). Specific immunohistochemistry and polymerase chain reaction for Jaagsiekte sheep retrovirus and enzootic nasal tumor virus were performed with negative results.

  14. Structural interpretations based on ERTS-1 imagery, Bighorn Region, Wyoming-Montana

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A.

    1973-01-01

    Structural analysis is being carried out on bands MSS 5 and 7 of scene 1085-17294. Geologic strucutre is primarily revealed in the topographic relief and drainage. Topographic linears are particularly well developed in the bighorn uplift. Many of these occur along known faults and shear zones in the Precambrian core; several have not been previously mapped. These linears, however, do not continue into the younger rocks of the flanks or do so in a much less marked manner than in the core. Linears are far less abundant in the basin or are manifested only in very subtle tonal contrasts and somewhat straight drainage segments. Some of the linears are aligned along trends previously postulated on the basis of surface mapping to be lineaments. The imagery reveals little or no evidence of strike-slip displacements along these lineaments.

  15. New Vitrinite Reflectance Data for the Bighorn Basin, North-Central Wyoming and South-Central Montana

    USGS Publications Warehouse

    Finn, Thomas M.; Pawlewicz, Mark J.

    2007-01-01

    Introduction The Bighorn Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 10,400 mi2 in north-central Wyoming and south-central Montana (fig. 1). Important conventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Cambrian through Tertiary (Fox and Dolton, 1989, 1996a, b; De Bruin, 1993). In addition, a potential unconventional basin-centered gas accumulation may be present in Cretaceous reservoirs (Johnson and Finn, 1998; Johnson and others, 1999). The purpose of this report is to present new vitrinite reflectance data to be used in support of the U.S Geological Survey's assessment of undiscovered oil and gas resources of the Bighorn Basin. These new data supplement previously published data by Nuccio and Finn (1998), and Yin (1997), and lead to a better understanding and characterization of the thermal maturation and burial history of potential source rocks. Eighty-nine samples of Cretaceous and Tertiary strata (fig. 2) were collected and analyzed - 15 samples were from outcrops around the margins of the basin and 74 samples were well cuttings (fig. 1). Forty-one of the samples were shale, two were carbonaceous shale, and the remainder from coal. All samples were analyzed by vitrinite reflectance to determine levels of thermal maturation. Preparation of samples for reflectance analysis required (1) crushing the larger pieces into 0.25-to 1-mm pieces, (2) casting the pieces with epoxy in pre-cut and drilled plugs, and (3) curing the samples overnight. Subsequently, a four-step grinding and polishing process was implemented that included sanding with progressively finer sandpaper (60 and 600 grit) followed with a two-step polishing process (0.3 and 0.05 micron). Vitrinite reflectance measurements were determined at 500 X magnification using plane-polarized incident white light and a 546-nm monochromatic filter in immersion oil. For samples containing

  16. Contagious ecthyma in bighorn sheep and mountain goat in western Canada.

    PubMed

    Samuel, W M; Chalmers, G A; Stelfox, J G; Loewen, A; Thomsen, J J

    1975-01-01

    Contagious ecthyma (CE) is reported in bighorn sheep (Ovis c. canadensis) from several national parks in western Canada and in moutain goat (Oreamnos americanus) from Kootenay National Park, British Columbia. (This is the first report of CE in mountain goat.) Diagnosis was based on clinical signs, histopathology, transmission experiments and the demonstration of a proxvirus with the electron microscope. The infection was transmitted from wild to domestic goat, but not to domestic sheep. Most infections, some of them severe, were found in lambs and kids. Clinical signs of disease were similar to those seen in domestic sheep and goats. General body condition was poor and animals had difficulty feeding normally. All infected herds had prolonged contact with areas where salt was provided artificially (i.e., salt blocks, highways and campgrounds). Fewer infected sheep were observed annually when salt blocks were removed from Jasper National Park.

  17. Environmental impact and magnitude of paleosol carbonate carbon isotope excursions marking five early Eocene hyperthermals in the Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Abels, Hemmo A.; Lauretano, Vittoria; van Yperen, Anna E.; Hopman, Tarek; Zachos, James C.; Lourens, Lucas J.; Gingerich, Philip D.; Bowen, Gabriel J.

    2016-05-01

    Transient greenhouse warming events in the Paleocene and Eocene were associated with the addition of isotopically light carbon to the exogenic atmosphere-ocean carbon system, leading to substantial environmental and biotic change. The magnitude of an accompanying carbon isotope excursion (CIE) can be used to constrain both the sources and amounts of carbon released during an event and also to correlate marine and terrestrial records with high precision. The Paleocene-Eocene Thermal Maximum (PETM) is well documented, but CIE records for the subsequent warming events are still rare, especially from the terrestrial realm.Here, we provide new paleosol carbonate CIE records for two of the smaller hyperthermal events, I1 and I2, as well as two additional records of Eocene Thermal Maximum 2 (ETM2) and H2 in the Bighorn Basin, Wyoming, USA. Stratigraphic comparison of this expanded, high-resolution terrestrial carbon isotope history to the deep-sea benthic foraminiferal isotope records from Ocean Drilling Program (ODP) sites 1262 and 1263, Walvis Ridge, in the southern Atlantic Ocean corroborates the idea that the Bighorn Basin fluvial sediments record global atmospheric change. The ˜ 34 m thicknesses of the eccentricity-driven hyperthermals in these archives corroborate precession forcing of the ˜ 7 m thick fluvial overbank-avulsion sedimentary cycles. Using bulk-oxide mean-annual-precipitation reconstructions, we find soil moisture contents during the four younger hyperthermals that are similar to or only slightly wetter than the background, in contrast with soil drying observed during the PETM using the same proxy, sediments, and plant fossils.The magnitude of the CIEs in soil carbonate for the four smaller, post-PETM events scale nearly linearly with the equivalent event magnitudes documented in marine records. In contrast, the magnitude of the PETM terrestrial CIE is at least 5 ‰ smaller than expected based on extrapolation of the scaling relationship established

  18. Lower Cody Shale (Niobrara equivalent) in the Bighorn Basin, Wyoming and Montana: thickness, distribution, and source rock potential

    USGS Publications Warehouse

    Finn, Thomas M.

    2014-01-01

    The lower shaly member of the Cody Shale in the Bighorn Basin, Wyoming and Montana is Coniacian to Santonian in age and is equivalent to the upper part of the Carlile Shale and basal part of the Niobrara Formation in the Powder River Basin to the east. The lower Cody ranges in thickness from 700 to 1,200 feet and underlies much of the central part of the basin. It is composed of gray to black shale, calcareous shale, bentonite, and minor amounts of siltstone and sandstone. Sixty-six samples, collected from well cuttings, from the lower Cody Shale were analyzed using Rock-Eval and total organic carbon analysis to determine the source rock potential. Total organic carbon content averages 2.28 weight percent for the Carlile equivalent interval and reaches a maximum of nearly 5 weight percent. The Niobrara equivalent interval averages about 1.5 weight percent and reaches a maximum of over 3 weight percent, indicating that both intervals are good to excellent source rocks. S2 values from pyrolysis analysis also indicate that both intervals have a good to excellent source rock potential. Plots of hydrogen index versus oxygen index, hydrogen index versus Tmax, and S2/S3 ratios indicate that organic matter contains both Type II and Type III kerogen capable of generating oil and gas. Maps showing the distribution of kerogen types and organic richness for the lower shaly member of the Cody Shale show that it is more organic-rich and more oil-prone in the eastern and southeastern parts of the basin. Thermal maturity based on vitrinite reflectance (Ro) ranges from 0.60–0.80 percent Ro around the margins of the basin, increasing to greater than 2.0 percent Ro in the deepest part of the basin, indicates that the lower Cody is mature to overmature with respect to hydrocarbon generation.

  19. Detection of hydrocarbons and hydrocarbon microseepage in the Bighorn Basin, Wyoming using isotopic, biogeochemical, and spectral reflectance techniques

    SciTech Connect

    Bammel, B.H.

    1992-01-01

    A stable isotope, biogeochemical, and gebotanical reflectance study was conducted at five areas in the Bighorn Basin of Wyoming. Three of the areas are active hydrocarbon producing fields, including Little Buffalo Basin, Bonanza, and Enigma oil fields. One area contains no surface or subsurface hydrocarbons, the Cody Base area. One area, Trapper Canyon, is a surface tar sand deposit. In each area numerous reflectance spectra were measured and leaf samples collected from sagebrush over and surrounding the fields. At Bonanza and Trapper Canyon, sagebrush plants were also growing directly in hydrocarbon impregnated formations. Unusually low [delta][sup 13]C values of calcite were found in calcite-bearing samples over the Little Buffalo Basin Field. The systematic distribution of these low [delta][sup 13]C values is correlated with the subsurface oil and gas production axis. Significant distinctions between the surface hydrocarbon occurrences at Trapper Canyon and Bonanza Seeps are highlighted by chemical differences in sagebrush leaves. At Trapper Canyon relatively high concentrations of aluminum and iron are found. Sagebrush leaves at the Bonanza Seeps contain relatively low concentrations of calcium and potassium, and a relatively high amount of organic material. Analyses from sagebrush growing over subsurface commercial hydrocarbon deposits tend to be relatively low in magnesium and relatively high in sodium. The increase in sodium may indicate subsurface reservoirs without regard to their hydrocarbon content. The results of the geobotanical reflectance study shows that a significant blue shift of the green peak and red trough positions is the most reliable indicator of hydrocarbon-induced stress in sagebrush plants, and can only be detected where the sage is actually growing in visible surface or near-surface hydrocarbons. Spectral reflectance intensity data have no significant correlation with the presence of surface or subsurface hydrocarbons.

  20. Ecological Impact of Climate Change on Leaf Economic Strategies Across the Paleocene- Eocene Thermal Maximum, Bighorn Basin, Wyoming

    NASA Astrophysics Data System (ADS)

    Royer, D. L.; Currano, E. D.; Wilf, P.; Wing, S. L.; Labandeira, C. C.; Lovelock, E. C.

    2007-12-01

    Deciphering the ecological impacts of climate change is a key priority for paleontologists and ecologists alike. An important ecological metric in vegetated settings is the leaf economics spectrum, which represents an adaptive continuum running from rapid resource acquisition to maximized resource retention. This spectrum is comprised of a large number of coordinated traits, including leaf mass per area (LMA), leaf lifespan, photosynthetic rate, nutrient concentration, and palatability to herbivores. Here we apply a recently developed technique for reconstructing LMA to a suite of four isotaphonomic fossil plant sites spanning the Paleocene-Eocene thermal maximum (PETM) in the Bighorn Basin, Wyoming, USA. This technique is based on the biomechanical scaling between petiole width and leaf mass, and it has been calibrated with 65 present-day sites from five continents and tested on two well-known Eocene fossil localities (Bonanza, Utah and Republic, Washington). There are no significant differences in LMA among plants across the PETM. This stasis is present despite a backdrop of extreme climate change during the PETM in this region, including a three-to-four-fold increase in atmospheric CO2, an ~5 °C rise in temperature, and possible drying. Moreover, quantitative measurements of insect herbivory show, on average, a two-fold increase during the PETM relative to before and after the event. We interpret our results to suggest that leaf-economic relationships can, in some situations, partially decouple. More specifically, our documented increase in insect herbivory during the PETM with no concomitant decrease in LMA implies that during this interval less carbon was being captured by plants per unit of investment. Because the rate and magnitude of climate change during the PETM is similar to present-day anthropogenic changes, our results may provide clues for predictions of ecological impacts in the near future.

  1. Characteristics of Wintertime Precipitation in Two Western Wyoming Mountainous Regions

    NASA Astrophysics Data System (ADS)

    Tessendorf, S. A.; Ikeda, K.; Weeks, C.; Rasmussen, R.; Axisa, D.; Xue, L.

    2015-12-01

    High-resolution (4 km grid spacing) climate simulations using the Weather Research and Forecasting (WRF) model have been run to study precipitation over the Colorado Headwaters region. These simulations have also been used to study the behavior of wintertime precipitation over two mountainous regions in western Wyoming: the Salt River and Wyoming Ranges, which are a set of narrow, north-south oriented mountains nearly parallel to one another, and the Wind River Range, which is oriented from the northwest to southeast extending into central Wyoming. The simulations have been compared against SNOTEL precipitation gauge measurements, which has shown that at most SNOTEL sites the WRF simulations represent the precipitation quite well. This paper will present the results of the model and SNOTEL gauge analysis, as well as compare and contrast the behavior of precipitation between the two regions. Of note are the differences in the importance of an easterly upslope precipitation wind regime between the regions, and the potential for cloud seeding in each region given the presence of supercooled liquid water in the orographic clouds.

  2. Sheep Mountain Wilderness study area, Wyoming

    SciTech Connect

    Houston, R.S.; Patten, L.L.

    1984-01-01

    On the basis of a mineral survey completed in 1975 and 1976, the Sheep Mountain Wilderness study area, was determined to offer little promise for metallic mineral resources. There is a probable potential for oil and gas resources in a small part of the study area along its northeast margin.

  3. Impact of fracture stratigraphy on the paleo-hydrogeology of the Madison Limestone in two basement-involved folds in the Bighorn basin, (Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Barbier, Mickael; Leprêtre, Rémi; Callot, Jean-Paul; Gasparrini, Marta; Daniel, Jean-Marc; Hamon, Youri; Lacombe, Olivier; Floquet, Marc

    2012-11-01

    Based on the study of the Madison Limestone at Sheep Mountain and Rattlesnake Mountain, a unique outcrop dataset including (1) facies and diagenetic analyses, (2) vertical persistence and cement stratigraphy of vein sets and (3) fluid inclusions thermometry are used to demonstrate the impact of folding and fracturing on paleo-hydrogeology. Quantification of the vertical persistence of fractures shows that Sheep Mountain and Rattlesnake Mountain differ by the vertical persistence of the pre-folding Laramide vein sets, which are strictly bed-confined in Sheep Mountain but cut across bedding at Rattlesnake Mountain, whereas the syn-folding veins are through-going in both. The emplacement chronology and the various sources of the fluids responsible for the paragenetic sequence are based on isotope chemistry and fluid inclusions analysis of the matrix and vein cements. At Sheep Mountain and Rattlesnake Mountain, the cements related to the burial are characterized by isotopic signatures of marine formation waters that were diluted during the karstification of the Madison Platform at the end of Mississippian. Meteoric fluids, presumably migrating during the Cenomanian from Wind River Range and Teton Range, recharge zones located in the south-west of the Bighorn Basin, were remobilized in the early bed-confined and through-going syn-folding veins of the Sheep Mountain Anticline. The former vein set drained only local fluids whose isotopic signature relates to an increase of temperature of the meteoric fluids during their migration, whereas the latter set allowed quick drainage of basinal fluids.

  4. Computational Modeling of Ductile Folding in Sedimentary Rocks of the Sheep Mountain Anticline, Wyoming

    NASA Astrophysics Data System (ADS)

    Borja, R. I.; Sanz, P. F.; Fiore, P. E.; Pollard, D. D.

    2005-12-01

    Folding of sedimentary rocks occurs at depths in Earth's crust where some layers respond by brittle deformation while others respond by ductile deformation. Folding results from a number of mechanisms including buckling due to lateral tectonic compression and/or slip on thrust faults in the underlying strata. Movements experienced by folded strata are typically very large (tens to hundreds of meters or more) and may include significant rigid body translation and rotation, in addition to the straining of the folded layers. More specific types of straining could include any one or a combination of the following: plate-like bending, in-plane extension, in-plane contraction, and either in-plane or out-of-plane shearing. The stress state resulting from the overburden load, slip on underlying faults, and the associated folding could induce strain localization even as the layer continues to deform plastically. In this paper we present a mathematical model for capturing isothermal ductile folding processes and the accompanying strain localization in sedimentary rocks using nonlinear continuum mechanics and finite element modeling. We use a fully Lagrangian approach along with multiplicative plasticity theory for finite deformations, considering the effects of all three invariants of the stress tensor in the constitutive description. We also simulate the rigid body translation, finite rotation, and subsequent rupturing of preexisting faults using finite deformation kinematics and stick-slip contact mechanics. We apply the technique to simulate the three-dimensional folding of selected Paleozoic and Mesozoic formations located above the Madison limestone in the Sheep Mountain anticline, formed during the Laramide orogeny in the Bighorn Basin, Wyoming. Supported by U.S. Department of Energy, Grant No. DE-FG02-03ER15454, and U.S. National Science Foundation, Grant No. CMG-0417521.

  5. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA

    NASA Astrophysics Data System (ADS)

    Lillis, Paul G.; Selby, David

    2013-10-01

    Rhenium-osmium (Re-Os) geochronometry is applied to crude oils derived from the Permian Phosphoria Formation of the Bighorn Basin in Wyoming and Montana to determine whether the radiogenic age reflects the timing of petroleum generation, timing of migration, age of the source rock, or the timing of thermochemical sulfate reduction (TSR). The oils selected for this study are interpreted to be derived from the Meade Peak Phosphatic Shale and Retort Phosphatic Shale Members of the Phosphoria Formation based on oil-oil and oil-source rock correlations utilizing bulk properties, elemental composition, δ13C and δ34S values, and biomarker distributions. The δ34S values of the oils range from -6.2‰ to +5.7‰, with oils heavier than -2‰ interpreted to be indicative of TSR. The Re and Os isotope data of the Phosphoria oils plot in two general trends: (1) the main trend (n = 15 oils) yielding a Triassic age (239 ± 43 Ma) with an initial 187Os/188Os value of 0.85 ± 0.42 and a mean square weighted deviation (MSWD) of 1596, and (2) the Torchlight trend (n = 4 oils) yielding a Miocene age (9.24 ± 0.39 Ma) with an initial 187Os/188Os value of 1.88 ± 0.01 and a MSWD of 0.05. The scatter (high MSWD) in the main-trend regression is due, in part, to TSR in reservoirs along the eastern margin of the basin. Excluding oils that have experienced TSR, the regression is significantly improved, yielding an age of 211 ± 21 Ma with a MSWD of 148. This revised age is consistent with some studies that have proposed Late Triassic as the beginning of Phosphoria oil generation and migration, and does not seem to reflect the source rock age (Permian) or the timing of re-migration (Late Cretaceous to Eocene) associated with the Laramide orogeny. The low precision of the revised regression (±21 Ma) is not unexpected for this oil family given the long duration of generation from a large geographic area of mature Phosphoria source rock, and the possible range in the initial 187Os/188Os

  6. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA

    USGS Publications Warehouse

    Lillis, Paul G.; Selby, David

    2013-01-01

    Rhenium-osmium (Re-Os) geochronometry is applied to crude oils derived from the Permian Phosphoria Formation of the Bighorn Basin in Wyoming and Montana to determine whether the radiogenic age reflects the timing of petroleum generation, timing of migration, age of the source rock, or the timing of thermochemical sulfate reduction (TSR). The oils selected for this study are interpreted to be derived from the Meade Peak Phosphatic Shale and Retort Phosphatic Shale Members of the Phosphoria Formation based on oil-oil and oil-source rock correlations utilizing bulk properties, elemental composition, δ13C and δ34S values, and biomarker distributions. The δ34S values of the oils range from -6.2‰ to +5.7‰, with oils heavier than -2‰ interpreted to be indicative of TSR. The Re and Os isotope data of the Phosphoria oils plot in two general trends: (1) the main trend (n = 15 oils) yielding a Triassic age (239 ± 43 Ma) with an initial 187Os/188Os value of 0.85 ± 0.42 and a mean square weighted deviation (MSWD) of 1596, and (2) the Torchlight trend (n = 4 oils) yielding a Miocene age (9.24 ± 0.39 Ma) with an initial 187Os/188Os value of 1.88 ± 0.01 and a MSWD of 0.05. The scatter (high MSWD) in the main-trend regression is due, in part, to TSR in reservoirs along the eastern margin of the basin. Excluding oils that have experienced TSR, the regression is significantly improved, yielding an age of 211 ± 21 Ma with a MSWD of 148. This revised age is consistent with some studies that have proposed Late Triassic as the beginning of Phosphoria oil generation and migration, and does not seem to reflect the source rock age (Permian) or the timing of re-migration (Late Cretaceous to Eocene) associated with the Laramide orogeny. The low precision of the revised regression (±21 Ma) is not unexpected for this oil family given the long duration of generation from a large geographic area of mature Phosphoria source rock, and the possible range in the initial 187Os/188Os

  7. A Synoptic Study of Fecal-Indicator Bacteria in the Wind River, Bighorn River, and Goose Creek Basins, Wyoming, June-July 2000

    USGS Publications Warehouse

    Clark, Melanie L.; Gamper, Merry E.

    2003-01-01

    A synoptic study of fecal-indicator bacteria was conducted during June and July 2000 in the Wind River, Bighorn River, and Goose Creek Basins in Wyoming as part of the U.S. Geological Survey's National Water-Quality Assessment Program for the Yellowstone River Basin. Fecal-coliform concentrations ranged from 2 to 3,000 col/100 mL (colonies per 100 milliliters) for 100 samples, and Escherichia coli concentrations ranged from 1 to 2,800 col/100 mL for 97 samples. Fecal-coliform concentrations exceeded the U.S. Environmental Protection Agency's recommended limit for a single sample for recreational contact with water in 37.0 percent of the samples. Escherichia coli concentrations exceeded the U.S. Environmental Protection Agency's recommended limit for a single sample for moderate use, full-body recreational contact with water in 38.1 percent of the samples and the recommended limit for infrequent use, full-body recreational contact with water in 24.7 percent of the samples. Fecal-indicator-bacteria concentrations varied by basin. Samples from the Bighorn River Basin had the highest median concentrations for fecal coliform of 340 col/100 mL and for Escherichia coli of 300 col/100 mL. Samples from the Wind River Basin had the lowest median concentrations for fecal coliform of 50 col/100 mL and for Escherichia coli of 62 col/100 mL. Fecal-indicator-bacteria concentrations varied by land cover. Samples from sites with an urban land cover had the highest median concentrations for fecal coliform of 540 col/100 mL and for Escherichia coli of 420 col/100 mL. Maximum concentrations for fecal coliform of 3,000 col/100 mL and for Escherichia coli of 2,800 col/100 mL were in samples from sites with an agricultural land cover. The lowest median concentrations for fecal coliform of 130 col/100 mL and for Escherichia coli of 67 col/100 mL were for samples from sites with a forested land cover. A strong and positive relation existed between fecal coliform and Escherichia coli

  8. Cataclastic flow kinematics inferred from magnetic fabrics at the Heart Mountain Detachment, Wyoming

    NASA Astrophysics Data System (ADS)

    Heij, Gerhard W.

    The Heart Mountain Detachment (HMD) in Wyoming constitutes one of the largest known rock slides (3400 km2) on Earth. This detachment took place along the stratigraphic boundary between the Bighorn Dolomite at the hanging-wall and the Snowy Range Formation at the footwall. The slide resulted in the formation of an up to 3 m-thick carbonate ultracataclasite (CUC) at the base of the slide. The origin of the CUC and the nature of the triggering mechanism responsible for the initiation of the catastrophic movement have long been controversial. The most widely accepted theory is a mid-Eocene eruption in the Absaroka volcanic province that triggered rupture and subsequent detachment of Paleozoic rocks. Rapid sliding was facilitated by basal fluidization generated by thermo-mechanical decomposition of carbonate rocks. Here I present a proof of concept study addressing the question of the consistent magnetic fabrics observed in the CUC, as well as new observations indicating the discovery of mineral grains of volcanic origin within the CUC. Additionally, some constraints are placed on the thermo-chemical conditions operating at the base of this catastrophic landslide. Overall, the CUC displays an average magnetic susceptibility one order of magnitude higher (1803 . -6 [SI]) than the overlying Bighorn Dolomite (148 . -6 [SI]) and underlying Snowy Range Fm (636 . -6 [SI]). Anisotropy of magnetic susceptibility (AMS) data, field observations and microstructural analysis suggest that ferromagnetic (s.l) minerals in the CUC originate from the Bighorn Dolomite, the Tertiary volcanics and synkinematic thermal decomposition of pyrite into pyrrhotite and magnetite. Thermomagnetic investigations revealed a Curie temperature of 525°C which suggests that magnetite is the dominant magnetic carrier mineral in the CUC. Energy Dispersive Spectroscopy analyses confirm that this magnetite has a relatively low ulvospinel content. Magnetic hysteresis properties point to an average pseudo

  9. Spatial variation in total element concentration in soil within the Northern Great Plains coal region, and regional soil chemistry in Bighorn and Wind River basins, Wyoming and Montana

    USGS Publications Warehouse

    Severson, R.C.; Tidball, R.R.

    1979-01-01

    PART A: To objectively determine the changes in chemical character of an area subjected to mining and reclamation, prior information is needed. This study represents a broadscale inventory of total chemical composition of the surficial materials of the Northern Great Plains coal region (western North and South Dakota, eastern Montana, and northeastern Wyoming); data are given for 41 elements in A and C soil horizons. An unbalanced, nested, analysis-of-variance design was used to quantify variation in total content of elements between glaciated and unglaciated terrains, for four increasingly smaller geographic scales, and to quantify variation due to sample preparation and analysis. From this statistical study, reliable maps on a regional basis (>100 km) were prepared for C, K, and Rb in A and C soil horizons; for N a, Si, Th, D, and Zn in A-horizon soil; and for As, Ca, Ge, and Mg in C-horizon soil. The distribution of variance components for the remaining 29 elements did not permit the construction of reliable maps. Therefore, a baseline value for each of these elements is given as a measure of the total element concentration in the soils of the Northern Great Plains coal region. The baseline is expressed as the 95-percent range in concentration to be expected in samples of natural soils. PART B: A reconnaissance study of total concentrations of 38 elements in samples of soils (0-40 cm deep, composite) from the Bighorn and Wind River Basins of Montana and Wyoming indicates that the geographic variation for most elements occurs locally (5 km or less). However, in the Bighorn Basin, Zn exhibits significant regional variation (between geologic units); and in the Wind River Basin, AI, Cr, K, Mn, Mo, Ni, U, and V exhibit similar variation. For the remaining elements, the lack of regional variation suggests that a single summary statistic can be used to estimate a baseline value that reflects the range in concentration to be expected in samples of soils in each basin

  10. Utilizing ERTS-A imagery for tectonic analysis through study of the Bighorn Mountains Region

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Preliminary vegetation analysis has been undertaken on MSS scene 1085-17294, Oct. 16, 1973 in the Bighorn region. Forest Service maps showing detailed distribution of dominant forest types have been compared with MSS bands 5 and 7 positive transparencies, enlarged positive prints, and color imagery produced on an Addcol viewer. Patterns on the ERTS imagery match those on the Forest Service maps quite well. A tectonic map ovearlay of MSS band 7 of the Bighorn region reveals a strong concentration of linears in the uplift as compared to basins. Folds in the Bighorn Basin are visible where not covered by post-Paleocene deposits. In regions where far less is known of the geology than in this area, it might be possible to predict the subsurface occurrence of folds and lineaments on the basis of imagery analysis and more confidently explore covered areas for concealed oil structures and mineral deposits.

  11. Free-ranging Rocky Mountain bighorn sheep and an outbreak of inflammatory bowel disease along the Clark Fork River in Plains, Montana.

    PubMed

    Pierce, Ellen S

    2012-10-01

    Nine individuals with ulcerative colitis or Crohn disease grew up or lived in Plains, Montana, a 1,200-person community adjacent to the Clark Fork River near herds of free ranging Rocky Mountain bighorn sheep. This inflammatory bowel disease outbreak is similar to others that have occurred along rivers contaminated by animal feces.

  12. Comparison of Two Bacterial Transport Media for Culture of Tonsilar Swabs from Bighorn Sheep ( Ovis canadensis ) and Mountain Goats ( Oreamnos americanus ).

    PubMed

    Roug, Annette; Diaz-Campos, Dubraska; Teitzel, Charlene; Besser, Thomas E

    2017-01-01

    Duplicate tonsilar swabs were collected from 77 bighorn sheep ( Ovis canadensis ) and 19 mountain goats ( Oreamnos americanus ) in Utah. Swabs were refrigerated in bacterial transport medium or frozen in cryopreservation medium prior to bacteriologic culture. The cryopreservation medium yielded comparable or superior bacterial growth while permitting more flexibility in specimen shipment to the laboratory.

  13. Occurrence, diagnosis, and strain typing of Mycobacterium avium subspecies paratuberculosis infection in Rocky Mountain bighorn sheep (Ovis canadensis canadensis) in southwestern Alberta.

    PubMed

    Forde, Taya; Kutz, Susan; De Buck, Jeroen; Warren, Amy; Ruckstuhl, Kathreen; Pybus, Margo; Orsel, Karin

    2012-01-01

    The role that wildlife may play in the transmission of Mycobacterium avium subspecies paratuberculosis (Map), the causative agent of Johne's disease (JD), and the potential consequences of infection in these populations are being given increasing consideration. A yearling male Rocky Mountain bighorn sheep (Ovis canadensis canadensis) from southwestern Alberta, Canada, was found infected with Map in August 2009. Clinical signs of emaciation and diarrhea and histologic findings of diffuse granulomatous enteritis of the distal ileum, lymphadenitis of the mesenteric lymph nodes, and lymphangitis of the ileum were similar to previously described cases of JD in bighorn sheep. Infection with Map was confirmed by bacterial isolation through fecal culture, acid-fast staining, and polymerase chain reaction (PCR) of IS900. The Map1506 gene was sequenced, and the isolate was identified as a Cattle (Type II) strain. In a follow-up herd-level survey, three of 44 fecal samples (7%) from individual bighorn sheep from the same herd as the index case were PCR-positive and identified as Type II Map strains. Twenty-five samples from a distant bighorn population were negative. Additional strain typing of the isolates from the index case and the positive fecal samples was done by sequencing three discriminatory short sequence repeat (SSR) regions. All four SSR profiles differed from one another, suggesting multiple introductions or a long-existing circulation of Map within this bighorn population. Detailed molecular analyses are essential for understanding and managing diseases at the wildlife-livestock interface.

  14. Mineral resource potential map of the Bighorn Mountains Wilderness Study Area (CDCA-217), San Bernardino County, California

    USGS Publications Warehouse

    Matti, Jonathan C.; Cox, Brett F.; Rodriguez, Eduardo A.; Obi, Curtis M.; Powell, Robert E.; Hinkle, Margaret E.; Griscom, Andrew; Sabine, Charles; Cwick, Gary J.

    1982-01-01

    Geological, geochemical, and geophysical evidence, together with a review of historical mining and prospecting activities, suggests that most of the Bighorn Mountains Wilderness Study Area has low potential for the discovery of all types of mineral and energy resources-including precious and base metals, building stone and aggregate, fossil fuels, radioactive-mineral resources, and geothermal resources. Low-grade mineralization has been documented in one small area near Rattlesnake Canyon, and this area has low to moderate potential for future small-scale exploration and development of precious and base metals. Thorium and uranium enrichment have been documented in two small areas in the eastern part of the wilderness study area; these two areas have low to moderate potential for future small-scale exploration and development of radioactive-mineral resources.

  15. Impact of fracture stratigraphy on the paleohydrogeology of the Madison limestone in two basement involved folds in the Bighorn Basin (Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Barbier, Mickael; Leprêtre, Rémi; Hamon, Youri; Callot, Jean-Paul; Gasparrini, Marta; Daniel, Jean-Marc; Lacombe, Olivier

    2013-04-01

    River Range and Teton Range, recharge zones located in the south-west of the Bighorn Basin, were remobilized in the early bed-confined and through-going syn-folding veins of the Sheep Mountain Anticline. The former vein set drained only local fluids whose isotopic signature relates to an increase of temperature of the meteoric fluids during their migration, whereas the latter set allowed quick drainage of basinal fluids.

  16. Effects of modified Cary and Blair medium on recovery of nonhemolytic Pasteurella haemolytica from Rocky Mountain bighorn sheep (Ovis canadensis canadensis) pharyngeal swabs.

    PubMed

    Wild, M A; Miller, M W

    1994-01-01

    Modified Cary and Blair transport medium (MCB) was evaluated for recovery of Pasteurella spp. from pharyngeal swabs of healthy Rocky Mountain bighorn sheep (Ovis canadensis canadensis). In experiment one, three pharyngeal swabs were collected from each of 25 bighorns. Pasteurella haemolytica was recovered from 21 of 25 swabs tested almost immediately and from 16 of 25 swabs held in MCB medium at about 22 C for 24 hr before testing (P > 0.10). Recovery of P. haemolytica decreased (P < 0.005) to 1 of 25 when swabs were held in MCB medium at about 22 C for 48 hr before testing. In experiment two, four pharyngeal swabs were collected from each of ten bighorns and held in MCB medium at about 5 C for < or = 5, 24, 48, or 72 hr prior to testing. Recovery was unaffected by storage at 5 C; P. haemolytica was isolated from all 40 of these samples. All Pasteurella spp. isolates were nonhemolytic P. haemolytica. In experiment one, most isolates were serotype 4; in experiment two, serotype 3 was most common. We propose that MCB medium is effective for transporting bighorn sheep pharyngeal swabs for P. haemolytica screening because it imposes minimal or no effect on recovery when held < or = 24 hr at 22 C or < or = 72 hr at 5 C.

  17. Local facies variability in the Mission Canyon Limestone, west flank, Bighorn Mountains, Wyoming

    SciTech Connect

    Vice, M.A.; Utgaard, J.E. )

    1991-06-01

    Comparison of two sections of the Mission Canyon Limestone (Madison Group, Mississippian) located approximately one-half mile (850-900 m) apart and at opposite ends of a single flatiron reveals significant lateral facies variations. The southern section, Dry Fork of Horse Creek, is 83 ft (25 m) thicker than the northern Horse Creek section. This substantial difference in thickness cannot be attributed solely to pre-Amsden erosion and solution collapse: all three members are thicker and more variable lithologically at Dry Fork. The lower (Big Goose) member is composed mostly of cherty, dolomitized lime mudstones at both locations. At Dry Fork, it contains numerous skeletal facies, particularly in the upper part. Skeletal facies are insignificant at Horse Creek. The two upper members are composed mainly of skeletal limestones; however, grain-supported facies are much more abundant at Dry Fork. Dolomitized mudstones predominate in the major breccia at the base of the middle (Little Tongue) member at Horse Creek, and lime mudstones predominate at Dry Fork. Additional breccias occur at other horizons: five at Dry Fork, four at Horse Creek. Conclusions drawn from the initial study of these two outcrops follow: (1) the local extent of grainstones and packstones suggests that the shoals were geographically less extensive than the subtidal muddy bottoms and intertidal-supratidal mud flats. (2) The limited geographic and vertical extent of some breccias suggests evaporiate deposition in localized muddy facies. (3) Conditions favoring dolomitization were limited mainly to the mudstones and occurred during and shortly after deposition of the Big Goose Member.

  18. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming)

    NASA Astrophysics Data System (ADS)

    Fricke, Henry C.; Clyde, William C.; O'Neil, James R.; Gingerich, Philip D.

    1998-07-01

    Oxygen isotope records of Cenozoic sea water temperatures indicate that a rapid warming event known as the Latest Paleocene Thermal Maximum (LPTM) occurred during the otherwise gradual increase in world temperatures during the Late Paleocene and Early Eocene. Oxygen isotope analysis of the carbonate and phosphate components of hydroxyapatite found in mammalian tooth enamel and body scales of river-dwelling fish from the Bighorn Basin in Wyoming were made to investigate corresponding changes in the terrestrial climate. A comparison of carbonate and phosphate isotope data from modern and fossil material indicates that some diagenetic alteration of the fossil material has occurred, although systematically larger intra-tooth ranges in the oxygen isotope composition of carbonate indicate that it is more likely to have been affected than phosphate. Carbonate and phosphate from the ecologically diverse mammals and fishes both record a shift to higher oxygen isotope ratios at the same time and of the same duration as the LPTM. These shifts reflect a change in the isotopic composition of regional precipitation, which in turn provides the first evidence for continental climate change during the LPTM. Assuming the present-day relation between the oxygen isotope composition of precipitation and temperature applies to conditions in the past, and that animal physiology and behavior is relatively invariant over time, the isotopic shift is equivalent to an increase of surface temperature in western North America of several degrees. This result is consistent with the magnitude of high-latitude ocean warming, and provides a basis for relating marine and terrestrial oxygen isotope records to records of terrestrial biotic change.

  19. A debris flow deposit in alluvial, coal-bearing facies, Bighorn Basin, Wyoming, USA: Evidence for catastrophic termination of a mire

    USGS Publications Warehouse

    Roberts, S.B.; Stanton, R.W.; Flores, R.M.

    1994-01-01

    Coal and clastic facies investigations of a Paleocene coal-bearing succession in the Grass Creek coal mine, southwestern Bighorn Basin, Wyoming, USA, suggest that disruption of peat accumulation in recurrent mires was caused by the repetitive progradation of crevasse splays and, ultimately, by a catastrophic mass movement. The mass movement, represented by deposits of debris flow, marked the termination of significant peat accumulation in the Grass Creek coal mine area. Megascopic and microscopic analyses of coal beds exposed along the mine highwalls suggest that these deposits developed in low-lying mires, as evidenced primarily by their ash yields and maceral composition. Disruption of peat accumulation in successive mires was caused by incursions of sediment into the mire environments. Termination by crevasse splay progradation is represented by coarsening-upward successions of mudrock and tabular, rooted sandstone, which overlie coal beds in the lower part of the coal-bearing interval. A more rapid process of mire termination by mass movement is exemplified by a debris flow deposit of diamictite, which overlies the uppermost coal bed at the top of the coal-bearing interval. The diamictite consists of a poorly sorted, unstratified mixture of quartzite cobbles and pebbles embedded in a claystone-rich or sandy mudstone matrix. Deposition of the diamictite may have taken place over a matter of weeks, days, or perhaps even hours, by catastrophic flood, thus reflecting an instantaneous process of mire termination. Coarse clastics and mud were transported from the southwest some 20-40 km as a viscous debris flow along stream courses from the ancestral Washakie Range to the Grass Creek area, where the flow overrode a low-lying mire and effectively terminated peat accumulation. ?? 1994.

  20. L tectonites in the eastern-central Laramie Mountains, Wyoming

    NASA Astrophysics Data System (ADS)

    Sullivan, W. A.

    2006-12-01

    The formation of L tectonites is little understood and scarcely studied, however, it is likely an important part of penetrative plastic deformation in the crust. To improve our understanding of this strain phenomenon, I present a detailed case study of a km-wide domain of L tectonites developed in and around the ~2.05 Ga Boy Scout Camp Granodiorite (BSCG) in the Laramie Mountains, Wyoming. Detailed mapping and structural analyses allow for the reconstruction of the structural setting of this domain of apparent constrictional strain. Elongation lineations in and around the BSCG, including the L tectonites, are S to SW-trending and moderately plunging. In compositionally heterogeneous rocks (Archean banded gneiss and gneissic granite), hinge lines of minor folds are subparallel with the elongation lineation. The regional fold axes defined by poles to compositional banding and foliation measured from these rocks lies in the center of the lineation measurements from all the rock types in the area. Poles to foliation in the compositionally homogeneous BSCG and metamorphosed diabase dikes cluster in the NW quadrant and define the axial surface of the regional folds. These data show that the elongation lineations in and around the BSCG developed parallel with the local fold hinge lines and regional axes of folds with axial surfaces that strike ENE and dip moderately to the SE. Map- scale folds in this area verge towards the NW. Incorporation of 1) the constraints imposed by the shape fabric orientation data, 2) the constraints imposed by the orientation of the local and regional fold axes and 3) the constraints developed from map patterns and observations shows that the domain of L tectonites in and around the BSCG developed in the hinge zone of a large NW-vergent synform during bulk constrictional deformation as material was extruded from between two relatively ridged blocks. Therefore, L tectonites developed in response to both internal structural heterogeneities (hinge

  1. COORDINATING ENVIRONMENTAL PUBLIC HEALTH PRACTICE WITH EPIDEMIOLOGY AND LABORATORY ANALYSIS: A WATERBORNE OUTBREAK OF SNOW MOUNTAIN VIRUS IN THE BIG HORN MOUNTAINS OF WYOMING

    EPA Science Inventory

    Background: In February 2001, the Wyoming Department of Health received reports of acute gastroenteritis among persons who had recently been on a snowmobiling vacation in the Big Horn Mountains. Initial interviews and laboratory testing suggested that exposure to a calicivirus ...

  2. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River basins, Wyoming. Annual report, September 15, 1993--September 30, 1994

    SciTech Connect

    Dunn, T.L.

    1995-07-01

    The principal focus of this project is to evaluate the importance of relative permeability anisotropy with respect to other known geologic and engineering production concepts. This research is to provide improved strategies for enhanced oil recovery from the Tensleep Sandstone oil reservoirs in the Bighorn and Wind River basins, Wyoming. The Tensleep Sandstone contains the largest potential reserves within reservoirs which are candidates for EOR processes in the State of Wyoming. Although this formation has produced billions of barrels of oil, in some fields, as little as one in seven barrels of discovered oil is recoverable by current primary and secondary techniques. Because of the great range of {degree}API gravities of the oils produced from the Tensleep Sandstone reservoirs, the proposed study concentrates on establishing an understanding of the spatial variation and anisotropy of relative permeability within the Tensleep Sandstone. This research is to associate those spatial distributions and anisotropies with the depositional subfacies and zones of diagenetic alteration found within the Tensleep Sandstone. In addition, these studies are being coupled with geochemical modeling and coreflood experiments to investigate the potential for wellbore scaling and formation damage anticipated during EOR processes (e.g., C0{sub 2} flooding). This multidisciplinary project will provide a regional basis for EOR strategies which can be clearly mapped and efficiently applied to the largest potential target reservoir in the State of Wyoming. Additionally, the results of this study have application to all eolian reservoirs through the correlations of relative permeability variation and anisotropy with eolian depositional lithofacies.

  3. Native perennial forb variation between mountain big sagebrush and Wyoming big sagebrush plant communities.

    PubMed

    Davies, Kirk W; Bates, Jon D

    2010-09-01

    Big sagebrush (Artemisia tridentata Nutt.) occupies large portions of the western United States and provides valuable wildlife habitat. However, information is lacking quantifying differences in native perennial forb characteristics between mountain big sagebrush [A. tridentata spp. vaseyana (Rydb.) Beetle] and Wyoming big sagebrush [A. tridentata spp. wyomingensis (Beetle & A. Young) S.L. Welsh] plant communities. This information is critical to accurately evaluate the quality of habitat and forage that these communities can produce because many wildlife species consume large quantities of native perennial forbs and depend on them for hiding cover. To compare native perennial forb characteristics on sites dominated by these two subspecies of big sagebrush, we sampled 106 intact big sagebrush plant communities. Mountain big sagebrush plant communities produced almost 4.5-fold more native perennial forb biomass and had greater native perennial forb species richness and diversity compared to Wyoming big sagebrush plant communities (P < 0.001). Nonmetric multidimensional scaling (NMS) and the multiple-response permutation procedure (MRPP) demonstrated that native perennial forb composition varied between these plant communities (P < 0.001). Native perennial forb composition was more similar within plant communities grouped by big sagebrush subspecies than expected by chance (A = 0.112) and composition varied between community groups (P < 0.001). Indicator analysis did not identify any perennial forbs that were completely exclusive and faithful, but did identify several perennial forbs that were relatively good indicators of either mountain big sagebrush or Wyoming big sagebrush plant communities. Our results suggest that management plans and habitat guidelines should recognize differences in native perennial forb characteristics between mountain and Wyoming big sagebrush plant communities.

  4. Mineral resources of the Prospect Mountain Wilderness Study Area, Carbon County, Wyoming

    SciTech Connect

    du Bray, E.A.; Bankey, V.; Hill, R.H.; Ryan, G.S.

    1989-01-01

    The Prospect Mountain Wilderness Study Area is about 20 mi east-southeast of Encampment in Carbon County, Wyoming. This study area is underlain by middle Proterozoic gabbro, granite, and hornblende gneiss, which is locally cut by pegmatite dikes. There are no identified resources and no potential for undiscovered energy resources in this study area. Resource potential for all undiscovered metallic commodities and for industrial mineral is low.

  5. New vitrinite reflectance data for the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range and Owl Creek and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, and the Granite Mountains on the south, and Wind River Range on the west. The purpose of this report is to present new vitrinite reflectance data collected mainly from Cretaceous marine shales in the Wind River Basin to better characterize their thermal maturity and hydrocarbon potential.

  6. Analysis of photo linear elements, Laramie Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Photo linear features in the Precambrian rocks of the Laramie Mountains are delineated, and the azimuths plotted on rose diagrams. Three strike directions are dominant, two of which are in the northeast quadrant. Laramide folds in the Laramie basin to the west of the mountains appear to have the same trend, and apparently have been controlled by response of the basement along fractures such as have been measured from the imagery.

  7. Surface and subsurface analysis of Sheep Mountain anticline, Wyoming

    SciTech Connect

    Abercrombie, S.

    1988-01-01

    The Sheep Mountain area, in the southwest Wind River Basin, is the up plunge closure of the Derby Dome-Winkleman Dome producing trend of an echelon folds which comprise the first line of folding down the northeast flank of the Wind River Mountains. The structural style exposed in the Palozoic reservoir rocks of Sheep Mountain may serve as a model for the other structural features in the Wind River Basin. As in the case of the Derby Dome and Winkleman Dome, Sheep Mountain is typically asymmetric to the southwest. Local east-directed thrusts exposed in the core of the anticline place Pennsylvania over Permian age rocks. A major change in the trend of the anticlinal crest within Sheep Mountain, suggests development of separate left-stepping en echelon closures at depth. The northwest end of Sheep Mountain also forms a left-stepping en echelon pattern with Derby Dome. The northwest plunge of Sheep Mountain is facilitated by compartmentalization across an east-northeast trending, high angle fault. North of this fault, Mesozoic rocks are thrust to the southwest along a low angle, northeast-dipping out of the basin thrust, which obscures the en echelon bypass with Derby Dome. Sheep Mountain is transected at the southeast end by the east-northeast trending Spring Creek fault which has possible left lateral offset. South of the Spring Creek Fault, the southwest vergent Beaver Creek thrust places Precambrian to Missisippian rocks over Cretaceous rocks, and may represent the fault which controls the entire fold trend at depth.

  8. Hydrology of area 51, northern Great Plains and Rocky Mountain coal provinces, Wyoming and Montana

    USGS Publications Warehouse

    Peterson, David A.; Mora, K.L.; Lowry, Marlin E.; Rankl, James G.; Wilson, James F.; Lowham, H.W.; Ringen, Bruce H.

    1987-01-01

    This report is one of a series designed to characterize the hydrology of drainage basins within coal provinces, nationwide. Area 51 (in the Rocky Mountain Coal Province) includes all or part of the Shoshone, Bighorn, Greybull, Wind, and Popo Agie River drainage basins - a total of 11,800 sq mi. Area 51 contains more than 18 million tons of strippable bituminous coal and extensive deposits of subbituminous coal, in the arid and semiarid basins. The report represents a summary of results of water resources investigations of the U.S. Geological Survey, some of which were conducted in cooperation with State and other Federal agencies. More than 30 individual topics are discussed in brief texts that are accompanied by maps, graphs, photographs , and illustrations. Primary topics in the reports are physiography, resources and economy, surface-water quantity and quality, and groundwater. (USGS)

  9. From fold-related fracture population analysis to paleofluid flow reconstruction at basin-scale : a case study in the Bighorn Basin (Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Beaudoin, N.; Bellahsen, N.; Lacombe, O.; Emmanuel, L.; Pironon, J.

    2012-04-01

    While fluid flows associated with thin-skinned folded structures have been extensively studied, reconstructions of paleofluid systems associated with thick-skinned tectonics remain scarce. In addition, major thrusts are usually considered as the preferential channels for fluids: investigating the role of diffuse fracture sets as potential drains for fluids has received poor attention. In this work, we tentatively reconstruct the paleofluid system related to the Bighorn basin (Wyoming, USA), a Sevier-Laramide foreland basin affected by large basement uplifts during the Laramide thick-skinned tectonic event. Fracture pattern and related paleofluid flow were studied in selected folds within this basin. For this purpose, Oxygen, Carbon and Strontium isotopic studies were performed on host rocks as well as on pre-folding and on fold-related calcite veins; these studies were combined to fluid inclusion chemical and microthermometric analysis. The results suggest a strong control of fluid chemistry by the tectonic style: our work evidences migration of exotic hydrothermal fluids (temperatures of homogenisation of fluid inclusion reaching 140°C) in basement-cored, thrust-related folds, while in detachment folds, only intra-formational fluids were characterized.At the scale of the entire basin, the open paleofluid system reconstructed in basement-cored folds appears to be consistent, with oxygen isotopic signature ranging from -25‰ to -5‰ PDB. Indeed, the scattering of oxygen isotopic signatures in cemented veins shows different degree of mixing between local basinal fluids and exotic hydrothermal fluids remaining unequilibrated with surrounding limestones. Strontium isotopic analyses suggest that these exotic hydrothermal fluids are a mixing of meteoric fluids and basinal fluids that havemigrated in basement rocks, likely deeper than the basement/cover interface. The timing of the fast upward flow of these fluids through the cover is given by, and related to

  10. Water-quality characteristics of quaternary unconsolidated-deposit aquifers and lower tertiary aquifers of the Bighorn Basin, Wyoming and Montana, 1999-2001

    USGS Publications Warehouse

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Norris, Jody R.; Gamper, Merry E.; Hallberg, Laura L.

    2004-01-01

    As part of the Yellowstone River Basin National Water Quality Assessment study, ground-water samples were collected from Quaternary unconsolidated-deposit and lower Tertiary aquifers in the Bighorn Basin of Wyoming and Montana from 1999 to 2001. Samples from 54 wells were analyzed for physical characteristics, major ions, trace elements, nutrients, dissolved organic carbon, radionuclides, pesticide compounds, and volatile organic compounds (VOCs) to evaluate current water-quality conditions in both aquifers. Water-quality samples indicated that waters generally were suitable for most uses, and that natural conditions, rather than the effects of human activities, were more likely to limit uses of the waters. Waters in both types of aquifers generally were highly mineralized, and total dissolved-solids concentrations frequently exceeded the U.S. Environmental Protection Agency (USEPA) Secondary Maximum Contaminant Level (SMCL) of 500 milligrams per liter (mg/L). Because of generally high mineralization, waters from nearly one-half of the samples from Quaternary aquifers and more than one-half of the samples from lower Tertiary aquifers were not classified as fresh (dissolved-solids concentration were not less than 1,000 mg/L). The anions sulfate, fluoride, and chloride were measured in some ground-water samples at concentrations greater than SMCLs. Most waters from the Quaternary aquifers were classified as very hard (hardness greater than 180 mg/L), but hardness varied much more in waters from the lower Tertiary aquifers and ranged from soft (less than 60 mg/L) to very hard (greater than 180 mg/L). Major-ion chemistry varied with dissolved-solids concentrations. In both types of aquifers, the predominant anion changes from bicarbonate to sulfate with increasing dissolved-solids concentrations. Samples from Quaternary aquifers with fresh waters generally were calcium-bicarbonate, calcium-sodium-bicarbonate, and calcium-sodium-sulfate-bicarbonate type waters, whereas

  11. Development of Archean crust in the Wind River Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Frost, C. D.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.; Koesterer, M. E.

    1986-01-01

    The Wind River Mountains are a NW-SE trending range composed almost entirely of high-grade Archean gneiss and granites which were thrust to the west over Phanerozoic sediments during the Laramide orogeny. Late Archean granites make up over 50% of the exposed crust and dominates the southern half of the range, while older orthogneisses and magnatites form most of the northen half of the range. Locally these gneisses contain enclaves of supracrustal rocks, which appear to be the oldest preserved rocks in the range. Detailed work in the Medina Mountain area of the central Wind River Mountains and reconnaissance work throughout much of the northern part of the range has allowed definition of the sequence of events which marked crustal development in this area. The sequence of events are described.

  12. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River Basins, Wyoming. Annual report, October 1, 1994-- September 30, 1995

    SciTech Connect

    Dunn, T.L.

    1996-03-01

    This research is to provide improved strategies for enhanced oil recovery from the Tensleep Sandstone oil reservoirs in the Bighorn and Wind River basins, Wyoming. Because of the great range of API gravities of the oils produced from these reservoirs, the proposed study concentrates on understanding the spatial variation and anisotropy of relative permeability within the Tensleep Sandstone. This research will associate those spatial distributions and anisotropies with the depositional subfacies and zones of diagenetic alteration found within the sandstone. The associations of the above with pore geometry will link relative permeability with the dimensions of lithofacies and authigenic mineral facies. Hence, the study is to provide criteria for scaling this parameter on a range of scales, from the laboratory to the basin-wide scale of subfacies distribution. Effects of depositional processes and burial diagenesis will be investigated. Image analysis of pore systems will be done to produce algorithms for estimating relative permeability from petrographic analyses of core and well cuttings. In addition, these studies are being coupled with geochemical modeling and coreflood experiments to investigate the potential for wellbore scaling and formation damage anticipated during EOR, eg., CO{sub 2} flooding. This will provide a regional basis for EOR strategies for the largest potential target reservoir in Wyoming; results will have application to all eolian reservoirs through correlations of relative permeability variation and anisotropy with eolian depositional lithofacies.

  13. Low-BTU gas in the Rocky Mountain region - Colorado, Wyoming, New Mexico, and Utah

    SciTech Connect

    Tremain, C.M. ); Broadhead, R.E. ); Chidsey, T.C. Jr. ); Doelger, M. ); Morgan, C.D. )

    1993-08-01

    There are over 100 reservoirs in Colorado, Wyoming, New Mexico, and Utah that produce or could produce low-BTU (heating value less than 900 BTU/ft[sup 3]) gas. Reservoirs range in age from Devonian to Cretaceous; reservoir lithologies include both carbonates and sandstones. Frequently, the low-BTU gas (CO[sub 2], N[sub 2], and He) is a byproduct of normal hydrocarbon production. CO[sub 2]-rich gas occurs in southwest to east-central Utah, in the southeastern Paradox basin (Utah and Colorado), in the North Park basin (Colorado), in southeast Colorado and northeast New Mexico, and in the Green River and Wind River basins (Wyoming). Five fields produce nearly pure (98%) CO[sub 2]. The 1990 annual CO[sub 2] production from these fields was North and South McCallum (Colorado), 1.7 bcf; McElmo (Colorado), 205 bcf; Sheep Mountain (Colorado), 70.7 bcf; and Bravo Dome (New Mexico), 119.7 bcf. Big Piney-LaBarge (Wyoming) produced 120 bcf of CO[sub 2] (at a concentration of 65%) in 1990. Most of the CO[sub 2] is used in enhanced oil recovery. Nitrogen-rich gas is found in the southern Green River basin (Utah and Wyoming), east flank of the San Rafael uplift (Utah), northern Paradox basin (Utah), Uncompahgre uplift (Utah and Colorado), Douglas Creek arch (Colorado), Hugoton embayment (Colorado), Las Animas arch (Colorado), Permian basin (New Mexico), and Four Corners platform (New Mexico). Helium is sometimes associated with the nitrogen and in concentrations of up to 8% in New Mexico and Colorado, 2.8% in Utah, and 1% in Wyoming.

  14. Interpretation of aircraft multispectral scanner images for mapping of alteration with uranium mineralization, Copper Mountain, Wyoming

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1983-01-01

    NS-001 multispectral scanner data (0.45-2.35 micron) combined as principal components were utilized to map distributions of surface oxidation/weathering in Precambrian granitic rocks at Copper Mountain, Wyoming. Intense oxidation is found over granitic outcrops in partly exhumed pediments along the southern margin of the Owl Creek uplift, and along paleodrainages higher in the range. Supergene(?) uranium mineralization in the granites is localized beneath remnant Tertiary sediments covering portions of the pediments. The patterns of mineralization and oxidation are in agreement, but the genetic connections between the two remain in doubt.

  15. Comparison of three fecal steroid metabolites for pregnancy detection used with single sampling in bighorn sheep (Ovis canadensis).

    PubMed

    Schoenecker, Kathryn A; Lyda, Robin O; Kirkpatrick, Jay

    2004-04-01

    We conpared three fecal steroid metabolite assays for their usefulness in detecting pregnalcy among free-ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis) from Bighorn Canyon National Recreation Area, Wyoming and Montana (USA) and captive bighorn ewes at ZooMontana in Billings, Montana. Fecal samples were collected from 11 free-ranging, radio-collared bighorn ewes in late January-May 2001 and from 20 free-ranging, radio-collared ewes in late March to mid-May 2002. Free-ranging ewes were monitored the following spring to determine whether or not they lambed. In addition, two captive ewes were studied at ZooMontana. With three exceptions, free-ranging bighorn ewes that produced lambs had nonspecific progesterone metabolite (iPdG) levels of >1800 ng/g feces and iPdG levels >7000 ng/gm feces when samples were collected between early March and mid-May. Samples collected earlier in the year were inconclusive. One false negative was suspected to be the result of sample collection error. Of the captive ewes, nonspecific pregnanediol-3alpha-glucuronide (PdG) and iPdG followed a predictable curve over the course of the 180-day pregnancies. We conclude that estrone conjugates are not useful in diagnosing pregnancy; however, fecal steroid analysis of PdG and iPdG can be used to accurately determine pregnancy and reproductive function in bighorn sheep. This holds great potential as a noninvasive technique for understanding the role of reproductive disease in wild bighom sheep.

  16. Reconnaissance geology and geochronology of the Precambrian of the Granite Mountains, Wyoming

    USGS Publications Warehouse

    Peterman, Zell E.; Hildreth, Robert A.

    1978-01-01

    The Precambrian of the western part of the Granite Mountains, Wyoming, contains a metamorphic complex of gneisses, schists, and amphibolites that were derived through amphibolite-grade metamorphism from a sedimentary-volcanic sequence perhaps similar to that exposed in the southeastern Wind River Mountains. Whole-rock Rb-Sr dating places the time of metamorphism at 2,860?80 million years. A high initial 87Sr/ 86 S r ratio of 0.7048 suggests that either the protoliths or the source terrane of the sedimentary component is several hundred million years older than the time of metamorphism. Following an interval of 300:t100 million years for which the geologic record is lacking or still undeciphered, the metamorphic complex was intruded by a batholith and satellite bodies of medium- to coarse-grained, generally massive biotite granite and related pegmatite and aplite. The main body of granite is dated at 2,550?60 million years by the Rb-Sr method. Limited data suggest that diabase dikes were emplaced and nephrite veins were formed only shortly after intrusion of the granite. Emplacement of the granite at about 2,550 million years ago appears to be related to a major period of regional granitic plutonism in the Precambrian of southern and western Wyoming. Granites, in the strict sense, that are dated between 2,450 and 2,600 million years occur in the Teton Range, the Sierra Madre, the Medicine Bow Mountains and the Laramie Range. This episode of granitic plutonism occured some 50 to 100 million years later than the major tonalitic to granitic plutonism in the Superior province of northern Minnesota and adjacent Ontario-the nearest exposed Precambrian W terrane that is analogous to the Wyoming province. Initial 87Sr / 86Sr ratios of some of the Wyoming granites are higher than expected if the rocks had been derived from juvenile magmas and it is likely that older crustal rocks were involved to some degree in the generation of these granites. Slightly to highly disturbed

  17. Geologic framework for the national assessment of carbon dioxide storage resources: Bighorn Basin, Wyoming and Montana: Chapter A in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Covault, Jacob A.; Buursink, Mark L.; Craddock, William H.; Merrill, Matthew D.; Blondes, Madalyn S.; Gosai, Mayur A.; Freeman, P.A.; Warwick, Peter D.; Corum, Margo D.

    2012-01-01

    This report identifies and contains geologic descriptions of twelve storage assessment units (SAUs) in six separate packages of sedimentary rocks within the Bighorn Basin of Wyoming and Montana and focuses on the particular characteristics, specified in the methodology, that influence the potential CO2 storage resource in those SAUs. Specific descriptions of the SAU boundaries as well as their sealing and reservoir units are included. Properties for each SAU such as depth to top, gross thickness, net porous thickness, porosity, permeability, groundwater quality, and structural reservoir traps are provided to illustrate geologic factors critical to the assessment. Although assessment results are not contained in this report, the geologic information included here will be employed, as specified in the methodology of earlier work, to calculate a statistical Monte Carlo-based distribution of potential storage space in the various SAUs. Figures in this report show SAU boundaries and cell maps of well penetrations through the sealing unit into the top of the storage formation. Wells sharing the same well borehole are treated as a single penetration. Cell maps show the number of penetrating wells within one square mile and are derived from interpretations of incompletely attributed well data, a digital compilation that is known not to include all drilling. The USGS does not expect to know the location of all wells and cannot guarantee the amount of drilling through specific formations in any given cell shown on cell maps.

  18. Reconnaissance and economic geology of Copper Mountain metamorphic complex, Owl Creek Mountains, Wyoming

    SciTech Connect

    Hausel, W.D.

    1983-08-01

    The Copper Mountain metamorphic complex lies within a westerly trending belt of Precambrian exposures known as the Owl Creek Mountains uplift. The metamorphic complex at Copper Mountain is part of a larger complex known as the Owl Creek Mountains greenstone belt. Until more detailed mapping and petrographic studies can be completed, the Copper Mountain area is best referred to as a complex, even though it has some characteristics of a greestone belt. At least three episodes of Precambrian deformation have affected the supracrustals, and two have disturbed the granites. The final Precambrian deformation event was preceded by a weak thermal event expressed by retrogressive metamorphism and restricted metasomatic alteration. During this event, a second phase of pegmatization was accompanied by hydrothermal solutions. During the Laramide orogeny, Copper Mountain was again modified by deformation. Laramide deformation produced complex gravity faults and keystone grabens. Uranium deposits were formed following major Laramide deformation. The genesis of these deposits is attributable to either the leaching of granites or the leaching of overlying tuffaceous sediments during the Tertiary. Production of metals and industrial minerals has been limited, although some gold, copper, silver, tungsten, beryl, feldspar, and lithium ore have been shipped from Copper Mountain. A large amount of uranium was produced from the Copper Mountain district in the 1950s.

  19. Paleomagnetism of the Wyoming Craton: A Pre-Laurentian Puzzle

    NASA Astrophysics Data System (ADS)

    Kilian, T.; Chamberlain, K.; Mitchell, R. N.; Evans, D. A.; Bleeker, W.; Lecheminant, A. N.

    2010-12-01

    The Archean Wyoming craton is mostly buried beneath Phanerozoic sediments in the Rocky Mountains of the west central United States. Exposures of the craton are entirely in thrust-bounded Laramide uplifts and contain numerous swarms of Neoarchean-Proterozoic mafic dikes. U-Pb ages from these dikes include ~2685 Ma from a dike in the Owl Creek Mountains (Frost et al., 2006) as well as another in the Bald Mountain region of the Bighorn Mountains (this study), ~2170 Ma from the Wind River Mountain quartz diorite (Harlan et al., 2003), ~2110 Ma from a dike in the Granite Mountains (Bowers and Chamberlain, 2006), ~2010 Ma from a Kennedy dike in the Laramie Range (Cox et al., 2000), and ~780 Ma for dikes in the Beartooth and Teton Mountains (Harlan et al., 1997). These possible age ranges of magmatic events will allow a detailed comparison with other cratons, especially Superior and Slave. Prior to the assembly of Laurentia, Wyoming may have been connected with Slave in supercraton Sclavia (Bleeker, 2003; Frost et al., 2007), or alternatively, Wyoming may have been attached to the present southern margin of Superior in the supercraton Superia, as judged by similarities of the thrice-glaciated Huronian and Snowy Pass sedimentary successions (Roscoe and Card, 1993). Paleomagnetic results will be presented from over 150 dikes in the Wyoming craton. All dikes were from the basement uplifts of the Beartooth Mountains, Bighorn Mountains, Owl Creek Mountains, Granite Mountains, Ferris Mountains and Laramie Range. Dikes range in widths from 1 to >100 meters, and trends vary across all orientations. Stable remanence is observed in majority of sites with at least 8 different directions from the various uplifts. Structural corrections are applied when necessary to restore shallowly dipping Cambrian strata to horizontal. The paleomagnetic study is being integrated with precise U-Pb geochronology of dikes that bear stable remanence directions. Results will eventually allow a

  20. Mineral resources of the Raymond Mountain Wilderness Study Area, Lincoln county, Wyoming

    SciTech Connect

    Lund, K.; Evans, J.P.; Hill, R.H.; Bankey, V.; Lane, E.

    1990-01-01

    The paper reports on the Raymond Mountain Wilderness Study Area which encompasses most of the Sublette Range of western Lincoln County, Wyo. The study area consists of upper Paleozoic and Mesozoic sedimentary rocks that form part of the Idaho-Wyoming-Utah overthrust belt. There are no identified mineral or energy resources in the wilderness study area. The study area has moderate energy resource potential for oil and gas. Mineral resource potential for vanadium and phosphate is low because the Phosphoria Formation is deeply buried beneath the wilderness study area and contains unweathered units having low P{sub 2}O{sub 5} values. The mineral resource potential for coal, other metals, including uranium, high-purity limestone or dolostone, and geothermal energy is low.

  1. Economic geology of the Copper Mountain Supracrustal Belt, Owl Creek Mountains, Fremont County, Wyoming

    SciTech Connect

    Hausel, W.D.; Graff, P.J.; Albert, K.G.

    1985-01-01

    The Archean stratigraphy and associated mineral deposits at Copper Mountain were investigated to determine if this supracrustal belt has potential commercial mineral deposits. It was concluded Copper Mountain lacks the stratigraphic and structural character of a classical greenstone belt, exhibits higher metamorphic grade, and may be better classified as a high-grade terrain. However, potential is noted for stratiform Au associated with iron formation, stratiform W associated with gneiss, and Cu-Au mineralization in strike veins. 63 refs., 9 figs., 3 tabs. (ACR)

  2. Hydrology of area 54, Northern Great Plains, and Rocky Mountain coal provinces, Colorado and Wyoming

    USGS Publications Warehouse

    Kuhn, Gerhard; Daddow, P.D.; Craig, G.S.; ,

    1983-01-01

    A nationwide need for information characterizing hydrologic conditions in mined and potential mine areas has become paramount with the enactment of the Surface Mining Control and Reclamation Act of 1977. This report, one in a series covering the coal provinces nationwide, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The summation of the topical discussions provides a description of the hydrology of the area. Area 54, in north-central Colorado and south-central Wyoming, is 1 of 20 hydrologic reporting areas of the Northern Great Plains and Rocky Mountain coal provinces. Part of the Southern Rocky Mountains and Wyoming Basin physiographic provinces, the 8,380-square-mile area is one of contrasting geology, topography, and climate. This results in contrasting hydrologic characteristics. The major streams, the North Platte, Laramie, and Medicine Bow Rivers, and their principal tributaries, all head in granitic mountains and flow into and through sedimentary basins between the mountain ranges. Relief averages 2,000 to 3,000 feet. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, which produces deep snowpacks. Snowmelt in spring and summer provides most streamflow. Precipitation in the basins averages 10 to 16 inches annually, insufficient for sustained streamflow; thus, streams originating in the basins are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are least. These concentrations increase as streams flow through sedimentary basins. The increases are mainly natural, but some may be due to irrigation in and adjacent to the flood plains. In the North Platte River, dissolved-solids concentrations are usually less than 300 milligrams per liter; in the Laramie and the Medicine Bow Rivers, the concentrations may average 500 to 850 milligrams per liter. However

  3. Streamflow statistics for unregulated and regulated conditions for selected locations on the Upper Yellowstone and Bighorn Rivers, Montana and Wyoming, 1928-2002

    USGS Publications Warehouse

    Chase, Katherine J.

    2014-01-01

    Major floods in 1996 and 1997 intensified public debate about the effects of human activities on the Yellowstone River. In 1999, the Yellowstone River Conservation District Council was formed to address conservation issues on the river. The Yellowstone River Conservation District Council partnered with the U.S. Army Corps of Engineers to carry out a cumulative effects study on the main stem of the Yellowstone River. The cumulative effects study is intended to provide a basis for future management decisions within the watershed. Streamflow statistics, such as flow-frequency data calculated for unregulated and regulated streamflow conditions, are a necessary component of the cumulative effects study. The U.S. Geological Survey, in cooperation with the Yellowstone River Conservation District Council and the U.S. Army Corps of Engineers, calculated low-flow frequency data and general monthly and annual statistics for unregulated and regulated streamflow conditions for the Upper Yellowstone and Bighorn Rivers for the 1928–2002 study period; these data are presented in this report. Unregulated streamflow represents flow conditions during the 1928–2002 study period if there had been no water-resources development in the Yellowstone River Basin. Regulated streamflow represents estimates of flow conditions during the 1928–2002 study period if the level of water-resources development existing in 2002 was in place during the entire study period.

  4. Proterozoic metamorphism and uplift history of the north-central Laramie Mountains, Wyoming, USA

    USGS Publications Warehouse

    Patel, S.C.; Frost, B.R.; Chamberlain, K.R.; Snyder, G.L.

    1999-01-01

    The Laramie Mountains of south-eastern Wyoming contain two metamorphic domains that are separated by the 1.76 Ga. Laramie Peak shear zone (LPSZ). South of the LPSZ lies the Palmer Canyon block, where apatite U-Pb ages are c. 1745 Ma and the rocks have undergone Proterozoic kyanite-grade Barrovian metamorphism. In contrast, in the Laramie Peak block, north of the shear zone, the U-Pb apatite ages are 2.4-2.1 Ga, the granitic rocks are unmetamorphosed and supracrustal rocks record only low-T amphibolite facies metamorphism that is Archean in age. Peak mineral assemblages in the Palmer Canyon block include (a) quartz-biotite-plagioclase-garnet-staurolite-kyanite in the pelitic schists; (b) quartz-biotite-plagioclase-low-Ca amphiboles-kyanite in Mg-Al-rich schists, and locally (c) hornblende-plagioclase-garnet in amphibolites. All rock types show abundant textural evidence of decompression and retrograde re-equilibration. Notable among the texturally late minerals are cordierite and sapphirine, which occur in coronas around kyanite in Mg-Al-rich schists. Thermobarometry from texturally early and late assemblages for samples from different areas within the Palmer Canyon block define decompression from > 7 kbar to < 3 kbar. The high-pressure regional metamorphism is interpreted to be a response to thrusting associated with the Medicine Bow orogeny at c. 1.78-1.76 Ga. At this time, the north-central Laramie Range was tectonically thickened by as much as 12 km. This crustal thickening extended for more than 60 km north of the Cheyenne belt in southern Wyoming. Late in the orogenic cycle, rocks of the Palmer Canyon block were uplifted and unroofed as the result of transpression along the Laramie Peak shear zone to produce the widespread decompression textures. The Proterozoic tectonic history of the central Laramie Range is similar to exhumation that accompanied late-orogenic oblique convergence in many Phanerozoic orogenic belts.

  5. Experimental Transmission of Bighorn Sheep Sinus Tumors to Bighorn Sheep (Ovis canadensis canadensis) and Domestic Sheep.

    PubMed

    Fox, K A; Wootton, S; Marolf, A; Rouse, N; LeVan, I; Spraker, T; Miller, M; Quackenbush, S

    2016-11-01

    Bighorn sheep sinus tumors are a recently described disease affecting the paranasal sinuses of Rocky Mountain bighorn sheep (Ovis canadensis canadensis). Several features of this disease suggest an infectious cause, although a specific etiologic agent has not been identified. To test the hypothesis that bighorn sheep sinus tumors are caused by an infectious agent, we inoculated 4 bighorn sheep lambs and 4 domestic sheep lambs intranasally with a cell-free filtrate derived from a naturally occurring bighorn sheep sinus tumor; we held 1 individual of each species as a control. Within 18 months after inoculation, all 4 inoculated domestic sheep (100%) and 1 of the 4 inoculated bighorn sheep (25%) developed tumors within the ethmoid sinuses or nasal conchae, with features similar to naturally occurring bighorn sheep sinus tumors. Neither of the uninoculated sheep developed tumors. Histologically, the experimentally transmitted tumors were composed of stellate to spindle cells embedded within a myxoid matrix, with marked bone production. Tumor cells stained positively with vimentin, S100, alpha smooth muscle actin, and osteocalcin, suggesting origin from a multipotent mesenchymal cell. A periosteal origin for these tumors is suspected. Immunohistochemical staining for the envelope protein of JSRV (with cross-reactivity to ENTV) was equivocal, and PCR assays specific for these agents were negative.

  6. Buried soils of Late Quaternary moraines of the Wind River Mountains, Wyoming

    SciTech Connect

    Dahms, D.E. . Geography Dept.)

    1992-01-01

    Buried soils occur on kettle floors of four Pinedale moraine catenas of the western Wind River Mountains of Wyoming. Radiocarbon ages from bulk samples of Ab horizons indicate the soils were buried during the mid-Holocene. Soils on kettle floors have silty A and Bw horizons that overlie buried A and B horizons that also formed in silt-rich sediments. Crests and backslope soils also have A and Bw horizons of sandy loam formed over 2BCb and 2Cb horizons of stony coarse loamy sand. Recent data show the silty textures of the A and B horizons are due to eolian silt and clay from the Green River Basin just west of the mountains. The buried soils appear to represent alternate periods of erosion and deposition on the moraines during the Holocene. The original soils developed on higher slopes of the moraines were eroded during the mid-Holocene and the 2BC and 2C horizons exposed at the surface. Eroded soil sediments were transported downslope onto the kettle floors. Following erosion, silt-rich eolian sediments accumulated on all surfaces and mixed with the BC and C horizons (the mixed loess of Shroba and Birkeland). The present surface soils developed within this silt-rich material. Stone lines often occur at the Bw-2BCb/2Cb boundary, and mark the depth to which the earlier soils were eroded. Thus, soil profiles at the four localities result from two periods of soil formation, interrupted by an interval of erosion during the mid-Holocene. Moraines of this study are adjacent to the Fremont Lake type area for the Pinedale glaciation of the Rocky Mountains. Buried soils in kettles of the moraines indicates the soil characteristics of the Pinedale type region are not necessarily due to continuous post-Pinedale development, but may result from more than one episode of soil formation.

  7. Elaeophorosis in bighorn sheep in New Mexico.

    PubMed

    Boyce, W; Fisher, A; Provencio, H; Rominger, E; Thilsted, J; Ahlm, M

    1999-10-01

    Two bighorn sheep (Ovis canadensis) in New Mexico (USA) were found to be naturally infected with Elaeophora schneideri. An adult ram examined in 1997 in the Fra Cristobal Mountains had 26 nematodes in the carotid and iliac arteries, and microfilariae were present in the skin, nasal mucosa, brain, and lungs. This ram was markedly debilitated prior to euthanasia and extensive crusty, scabby lesions were observed on its head. In 1998, a yearling ewe found dead adjacent to Watson Mountain near the Gila Wilderness area was found to have 13 nematodes present in its heart. This is the first report of E. schneideri in bighorn sheep, and we suggest that bighorn sheep are susceptible to E. schneideri infection wherever they coexist with mule deer (Odocoileus hemionus hemionus) and appropriate tabanid vectors.

  8. Hydrology of area 53, Northern Great Plains and Rocky Mountain coal provinces, Colorado, Wyoming, and Utah

    USGS Publications Warehouse

    Driver, N.E.; Norris, J.M.; Kuhn, Gerhard; ,

    1984-01-01

    Hydrologic information and analysis are needed to aid in decisions to lease Federally owned coal and for the preparation of the necessary Environmental Assessments and Impact Study Reports. This need has become even more critical with the enactment of the Surface Mining Control and Reclamation Act of 1977 (Public Law 95-87). This report, one in a series of nationwide coal province reports, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The report broadly characterizes the hydrology of Area 53 in northwestern Colorado, south-central Wyoming, and northeastern Utah. The report area, located primarily in the Wyoming Basin and Colorado Plateau physiographic provinces, consists of 14,650 square miles of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics. The two major rivers, the Yampa and the White Rivers, originate in humid granitic and basaltic mountains, then flow over sedimentary rocks underlying semiarid basins to their respective confluences with the Green River. Altitudes range from 4,800 to greater than 12,000 feet above sea level. Annual precipitation in the mountains, as much as 60 inches, is generally in the form of snow. Snowmelt produces most streamflow. Precipitation in the lower altitude sedimentary basins, ranging from 8 to 16 inches, is generally insufficient to sustain streamflow; therefore, most streams originating in the basins (where most of the streams in coal-mining areas originate) are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are small. As streams flow across the sedimentary basins, mineral dissolution from the sedimentary rocks and irrigation water with high mineral content increase the dissolved-solids concentrations in a downstream direction. Due to the semiarid climate of the basins, soils are not adequately leached

  9. Preliminary report on radioactive conglomerates of Middle Precambrian age in the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming

    USGS Publications Warehouse

    Houston, Robert Stroud; Graff, P.J.; Karlstrom, K.E.; Root, Forrest

    1977-01-01

    Middle Precambrian miogeosynclinal metasedimentary rocks o# the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming contain radioactive quartz-pebble conglomerates of possible economic interest. These conglomerates do not contain ore-grade uranium in surface outcrops, but an earlier report on the geochemistry of the Arrastre Lake area of the Medicine Bow Mountains shows that ore-grade deposits may be present in the subsurface. This report describes the stratigraphy of the host metasedimentary rocks and the stratigraphic setting of the radioactive conglomerates in both the Sierra Madre and Medicine Bow Mountains, and compares these rock units with those of the Blind River-Elliot Lake uranium district in Canada. The location of radioactive .conglomerates is given so that further exploration may be undertaken by interested parties.

  10. Clastic dikes of Heart Mountain fault breccia, northwestern Wyoming, and their significance

    USGS Publications Warehouse

    Pierce, W.G.

    1979-01-01

    Structural features in northwestern Wyoming indicate that the Heart Mountain fault movement was an extremely rapid, cataclysmic event that created a large volume of carbonate fault breccia derived entirely from the lower part of the upper plate. After fault movement had ceased, much of the carbonate fault breccia, here called calcibreccia, lay loose on the resulting surface of tectonic denudation. Before this unconsolidated calcibreccia could be removed by erosion, it was buried beneath a cover of Tertiary volcanic rocks: the Wapiti Formation, composed of volcanic breccia, poorly sorted volcanic breccia mudflows, and lava flows, and clearly shown in many places by inter lensing and intermixing of the calcibreccia with basal volcanic rocks. As the weight of volcanic overburden increased, the unstable water-saturated calcibreccia became mobile and semifluid and was injected upward as dikes into the overlying volcanic rocks and to a lesser extent into rocks of the upper plate. In some places the lowermost part of the volcanic overburden appears to have flowed with the calcibreccia to form dike like bodies of mixed volcanic rock and calcibreccia. One calcibreccia dike even contains carbonized wood, presumably incorporated into unconsolidated calcibreccia on the surface of tectonic denudation and covered by volcanic rocks before moving upward with the dike. Angular xenoliths of Precambrian rocks, enclosed in another calcibreccia dike and in an adjoining dikelike mass of volcanic rock as well, are believed to have been torn from the walls of a vent and incorporated into the basal part of the Wapiti Formation overlying the clastic carbonate rock on the fault surface. Subsequently, some of these xenoliths were incorporated into the calcibreccia during the process of dike intrusion. Throughout the Heart Mountain fault area, the basal part of the upper-plate blocks or masses are brecciated, irrespective of the size of the blocks, more intensely at the base and in places

  11. Geohydrology and water quality of the Inyan Kara, Minnelusa, and Madison aquifers of the northern Black Hills, South Dakota and Wyoming, and Bear Lodge Mountains, Wyoming

    USGS Publications Warehouse

    Kyllonen, D.P.; Peter, K.D.

    1987-01-01

    The Inyan Kara, Minnelusa, and Madison aquifers are the principal sources of ground water in the northern Black Hills, South Dakota and Wyoming, and Bear Lodge Mountains, Wyoming. The aquifers are exposed in the Bear Lodge Mountains and the Black Hills and are about 3,000 to 5,000 ft below the land surface in the northeast corner of the study area. The direction of groundwater movement is from the outcrop area toward central South Dakota. Recharge is by infiltration of precipitation and streamflow is by springs and well withdrawals. All three aquifers yield water to flowing wells in some part of the area. Measured and reported well yields in each of the three aquifers exceed 100 gal/min (gpm). A well open to the Minnelusa Formation and the upper part of the Madison Limestone yielded more than 2 ,000 gpm. Water from the Inyan Kara aquifer may require treatment for gross alpha radiation, iron, manganese, sulfate, and hardness before use in public water systems. Water from the Minnelusa aquifer in the northern one-half of the study area may require treatment for sulfate and hardness before use in public water systems. Water from the Madison aquifer in the northern one-half of the study area may require treatment of fluoride, gross alpha radiation, sulfate, and hardness before use in public water systems. Water from the Minnelusa and Madison aquifers in the southern one-half of the study area, though very hard (more than 180 mg/L hardness as calcium carbonate), is suitable for public water systems and irrigation. Flow between the Minnelusa and the Inyan Kara aquifers appears to be insignificant, based on the results of a digital model results. The model indicated there may be significant recharge to the Minnelusa and Madison aquifers by leakage between these two aquifers and perhaps deeper aquifers. (Author 's abstract)

  12. Geologic structure and altitude of the top of the Minnelusa Formation, northern Black Hills, South Dakota and Wyoming, and Bear Lodge Mountains, Wyoming

    USGS Publications Warehouse

    Peter, Kathy D.; Kyllonen, David P.; Mills, K.R.

    1987-01-01

    Beginning in 1981, a 3-yr project was conducted to determine the availability and quality of groundwater in the sedimentary bedrock aquifers in the Black Hills of South Dakota and Wyoming. The project was limited to three bedrock units in order of increasing age: the Cretaceous Inyan kara Group, Permian and Pennsylvanian Minnelusa Formation, and Mississippian Madison (or Pahasapa) Limestone. This map shows the altitude of the top of the Minnelusa Formation in the northern Black Hills, and shows the configuration of the structural features in the northern part of the Black Hills and the eastern part of the Bear Lodge Mountains. In general, the Minnelusa Formation dips away from the Black Hills uplift, either to the northeast and the Williston Basin or, south of the Bear Lodge Mountains, to the southwest and the Powder River basin, which is outside the map area. In the map area, the upper beds of the Minnelusa Formation are an aquifer and the lower beds are a confining or semi-confining unit. The upper part of the Minnelusa Formation has a greater percentage of coarse-grained sandstone beds than the lower part. Furthermore, solution and removal of anhydrite, brecciation, and solution of cement binding the sandstone grains may have increased the permeability of the upper part of the Minnelusa Formation in the Black Hills. Wells completed in the upper part of the Minnelusa have yields that exceed 100 gal/min in some areas and at least one large diameter well is reported to flow 1,000 gal/min in some areas and at least one large diameter well is reported to flow 1,000 gal/min. Flowing wells have been completed in the Minnelusa aquifer in most of the study area in South Dakota and in about the northern one-half of Crook County, Wyoming. (Lantz-PTT)

  13. Vitrinite Reflectance Data for the Wind River Basin, Central Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.; Roberts, Laura N.R.; Pawlewicz, Mark J.

    2006-01-01

    Introduction: The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 mi2 in central Wyoming. The basin boundaries are defined by fault-bounded Laramide uplifts that surround it, including the Owl Creek and Bighorn Mountains to the north, Wind River Range to the west, Granite Mountains to the south, and Casper Arch to the east. The purpose of this report is to present new vitrinite reflectance data to be used in support of the U.S Geological Survey assessment of undiscovered oil and gas resources of the Wind River Basin. One hundred and nineteen samples were collected from Jurassic through Tertiary rocks, mostly coal-bearing strata, in an effort to better understand and characterize the thermal maturation and burial history of potential source rocks.

  14. Survey of glaciers in the northern Rocky Mountains of Montana and Wyoming; Size response to climatic fluctuations 1950-1996

    SciTech Connect

    Chatelain, E.E.

    1997-09-01

    An aerial survey of Northern Rocky Mountain glaciers in Montana and Wyoming was conducted in late summer of 1996. The Flathead, Swan, Mission, and Beartooth Mountains of Montana were covered, as well as the Teton and Wind River Ranges of Wyoming. Present extent of glaciers in this study were compared to limits on recent USGS 15 and 7.5 topographic maps, and also from selected personal photos. Large cirque and hanging glaciers of the Flathead and Wind River Ranges did not display significant decrease in size or change in terminus position. Cirque glaciers in the Swan, Mission, Beartooth and Teton Ranges were markedly smaller in size; with separation of the ice body, growth of the terminus lake, or cover of the ice terminus with rockfalls. A study of annual snowfall, snowdepths, precipitation, and mean temperatures for selected stations in the Northern Rocky Mountains indicates no extreme variations in temperature or precipitation between 1950-1996, but several years of low snowfall and warmer temperatures in the 1980`s appear to have been sufficient to diminish many of the smaller cirque glaciers, many to the point of extinction. The disappearance of small cirque glaciers may indicate a greater sensitivity to overall climatic warming than the more dramatic fluctuations of larger glaciers in the same region.

  15. Large uraniferous springs and associated uranium minerals, Shirley Mountains, Carbon County, Wyoming -- A preliminary report

    USGS Publications Warehouse

    Love, J.D.

    1963-01-01

    Ten springs along the southeast flank of the Shirley Mountains, Carbon County, Wyoming, have water containing from 12 to 27 parts per billion uranium, have a total estimated flow of 3 million gallons of clear fresh water per day, and have a combined annual output that may be as much as 166 pounds of uranium. These springs emerge from Pennsylvanian, Permian, and Triassic rocks on the east flank of a faulted anticlinal fold. In the vicinity of several springs, metatyuyamunite occurs locally in crystalline calcite veins averaging 3 feet in width but reaching a maximum of 24 feet. The veins are as much as several hundred feet long-and cut vertically through sandstones of Pennsylvanian age overlying the Madison Limestone (Mississippian). This limestone is believed to be the source of the calcite. A 3-foot channel sample cross one calcite vein contains 0.089 percent uranium. Lesser amounts of uranium were obtained from other channel samples. Selected samples contain from 0.39 to 2.2 percent uranium and from 0.25 to 0.86 percent vanadium. Three possible sources of the uranium are: (1) Precambrian rocks, (2) Paleozoic rocks, (3) Pliocene(?) tuffaceous strata that were deposited unconformably across older .rocks in both the graphically high and low parts of the area, but were subsequently removed by erosion except for a few small remnants, one of which contains carnotite. There is apparently a close genetic relation between the uraniferous springs and uranium mineralization in the calcite veins. Data from this locality illustrate how uraniferous ground water can be used as a guide in the exploration for areas where uranium deposits may occur. Also demonstrated is the fact that significant quantities of uranium are present in water of some large flowing springs.

  16. A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part I: Project description

    NASA Astrophysics Data System (ADS)

    Pokharel, Binod; Geerts, Bart

    2016-12-01

    The AgI Seeding Cloud Impact Investigation (ASCII) campaign was conducted in early 2012 and 2013 over two mountain ranges in southern Wyoming to examine the impact of ground-based glaciogenic seeding on snow growth in winter orographic clouds. The campaign was supported by a network of ground-based instruments, including microwave radiometers, two profiling Ka-band Micro-Rain Radars (MRRs), a Doppler on Wheels (DOW) X-band radar, and a Parsivel disdrometer. The University of Wyoming King Air operated the profiling Wyoming Cloud Radar, the Wyoming Cloud Lidar, and in situ cloud and precipitation particle probes. The characteristics of the orographic clouds, flow field, and upstream stability profiles in 27 intensive observation periods (IOPs) are described here. A composite analysis of the impact of seeding on snow growth is presented in Part II of this study (Pokharel et al., 2017).

  17. Sympatric cattle grazing and desert bighorn sheep foraging

    USGS Publications Warehouse

    Garrison, Kyle R.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2015-01-01

    Foraging behavior affects animal fitness and is largely dictated by the resources available to an animal. Understanding factors that affect forage resources is important for conservation and management of wildlife. Cattle sympatry is proposed to limit desert bighorn population performance, but few studies have quantified the effect of cattle foraging on bighorn forage resources or foraging behavior by desert bighorn. We estimated forage biomass for desert bighorn sheep in 2 mountain ranges: the cattle-grazed Caballo Mountains and the ungrazed San Andres Mountains, New Mexico. We recorded foraging bout efficiency of adult females by recording feeding time/step while foraging, and activity budgets of 3 age-sex classes (i.e., adult males, adult females, yearlings). We also estimated forage biomass at sites where bighorn were observed foraging. We expected lower forage biomass in the cattle-grazed Caballo range than in the ungrazed San Andres range and lower biomass at cattle-accessible versus inaccessible areas within the Caballo range. We predicted bighorn would be less efficient foragers in the Caballo range. Groundcover forage biomass was low in both ranges throughout the study (Jun 2012–Nov 2013). Browse biomass, however, was 4.7 times lower in the Caballo range versus the San Andres range. Bighorn in the Caballo range exhibited greater overall daily travel time, presumably to locate areas of higher forage abundance. By selecting areas with greater forage abundance, adult females in the Caballo range exhibited foraging bout efficiency similar to their San Andres counterparts but lower overall daily browsing time. We did not find a significant reduction in forage biomass at cattle-accessible areas in the Caballo range. Only the most rugged areas in the Caballo range had abundant forage, potentially a result of intensive historical livestock use in less rugged areas. Forage conditions in the Caballo range apparently force bighorn to increase foraging effort by

  18. Airborne radioactivity survey of the Aspen Mountain area, Sweetwater county, Wyoming

    USGS Publications Warehouse

    Meuschke, J.L.; Moxham, R.M.

    1953-01-01

    The accompanying map shows the results of an airborne radioactivity survey covering 700 square miles in the Aspen Mountain area, Sweetwater county, Wyoming. The survey was made by the U.S. Geological Survey, October 22, 1952, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation-detection equipment mounted in a Douglas DC-3 aircraft. Parallel traverse lines, spaced at quarter-mile intervals, were flown approximately 500 feet above the ground. Aerial photographs were used for pilot guidance, and the flight path of the aircraft was recorded by a gyro-stabilized, continuous-strip-film camera. The distance of the aircraft from the ground was measured with a continuously recording radio altimeter. At 500 feet above the ground, the width of the zone from which anomalous radioactivity is measured varies with the intensity of radiation of the source and, for strong sources, the width would be as much as 1,400 feet. Quarter-mile spacing of the flight paths of the aircraft should be adequate to detect anomalies from strong sources of radioactivity. However, small areas of considerable radioactivity midway between flight paths may not be noted. The approximate location of each radioactivity anomaly is shown on the accompanying map. The plotted position of an anomaly may be in error by as much as a quarter of a mile owing to errors in the available base maps up to several square miles in which it is impossible to find and plot recognizable landmarks. The radioactivity anomaly that is recorded by airborne measurements at 500 feet above the ground can be caused by: 1. A moderately large area in which the rocks and soils are slightly more radioactive than the rocks and soils of the surrounding area. 2. A smaller area in which the rocks and soils are considerably more radioactive than rocks and soils in the surrounding area. 3. A very small area in which to rocks and soils are much more radioactive than the rocks and soils

  19. Hydrology of area 59, northern Great Plains and Rocky Mountain coal provinces, Colorado and Wyoming

    USGS Publications Warehouse

    Gaggiani, Neville G.; Britton, Linda J.; Minges, Donald R.; Kilpatrick, F.A.; Parker, Randolph S.; Kircher, James E.

    1987-01-01

    Hydrologic information and analysis aid in decisions to lease federally owned coal and to prepare necessary Environmental Assessments and Impact Study reports. This need has become even more critical with the enactment of Public Law 95-87, the "Surface Mining Control and Reclamation Act of 1977." This act requires an appropriate regulatory agency to issue permits, based on the review of permit-application data to assess hydrologic impacts. This report, which partially fulfills this requirement, is one in a series of nationwide coal province reports that present information thematically, through the use of a brief text and accompanying maps, graphs, charts, or other illustrations for single hydrologic topics. The report broadly characterizes the hydrology of Area 59 in north-central Colorado and southeastern Wyoming.The report area, located within the South Platte River basin, covers a 16,000-square-mile area of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics.The South Platte River, the major stream in the area, and most of its tributaries originate in granitic mountains and flow into and through the sedimentary rocks of the Great Plains. Altitudes range from less than 5,000 feet to more than 14,000 feet above sea level. Precipitation in the mountains may exceed 40 inches annually, much of it during the winter, and produces deep snowpacks. Snowmelt during the spring and summer produces most streamflow. Transmountain diversion of water from the streams on the western slope of the mountains also adds to the streamflow. Precipitation in the plains is as little as 10 inches annually. Streams that originate in the plains are ephemeral.Streamflow quality is best in the mountains, where dissolved-solids concentrations are generally small. Concentrations increase in the plains as streams flow through sedimentary basins, and as urbanization and irrigation increase. The quality of some mountain streams is affected by

  20. COORDINATING SYSTEMS-BASED ENVIRONMENTAL PUBLIC HEALTH PRACTICE WITH EPIDEMIOLOGY AND LABORATORY ANALYSIS: A WATERBORNE OUTBREAK OF NORWALK-LIKE VIRUS IN THE BIG HORN MOUNTAINS OF WYOMING

    EPA Science Inventory

    Background: In February 2001, the Wyoming Department of Health received reports of cases of gastroenteritis among persons who had been snowmobiling in the Big Horn Mountains. Laboratory testing suggested that exposure to a Norwalk-like virus was responsible for the illness.
    ...

  1. The Heart Mountain fault: Implications for the dynamics of decollement

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.

    1985-01-01

    The Hart Mountain docollement in Northwestern Wyoming originally comprised a plate of rock up to 750m thick and 1300 sq kilometers in area. This plate moved rapidly down a slope no steeper than 2 deg. during Early Eocene time, transporting some blocks at least 50m from their original positions. Sliding occurred just before a volcanic erruption and was probably accompanied by seismic events. The initial movement was along a bedding plane fault in the Bighorn Dolomite, 2 to 3 meters above its contact with the Grove Creek member of the Snowy Range formation. The major pecularity of this fault is that it lies in the strong, cliff-forming Bighorn Dolomite, rather than in the weaker underlying shales. The dynamics of decollement are discussed.

  2. Remote continental aerosol characteristics in the Rocky Mountains of Colorado and Wyoming

    NASA Astrophysics Data System (ADS)

    Levin, Ezra J. T.

    The Rocky Mountains of Colorado and Wyoming enjoy some of the cleanest air in the United States, with few local sources of particulate matter or its precursors apart from fire emissions, windblown dust, and biogenic emissions. However, anthropogenic influences are also present with sources as diverse as the populated Front Range, large isolated power plants, agricultural emissions, and more recently emissions from increased oil and gas exploration and production. While long-term data exist on the bulk composition of background fine particulate matter at remote sites in the region, few long-term observations exist of aerosol size distributions, number concentrations and size resolved composition, although these characteristics are closely tied to important water resource issues through the potential aerosol impacts on clouds and precipitation. Recent modeling work suggests sensitivity of precipitation-producing systems to the availability of aerosols capable of serving as cloud condensation nuclei (CCN); however, model inputs for these aerosols are not well constrained due to the scarcity of data. In this work I present aerosol number and volume concentrations, size distributions, chemical composition and hygroscopicity measurements from long-term field campaigns. I also explore the volatility of organic material from biomass burning and the potential impacts on aerosol loading. Relevant aerosol observations were obtained in several long-term field studies: the Rocky Mountain Atmospheric Nitrogen and Sulfur study (RoMANS, Colorado), the Grand Tetons Reactive Nitrogen Deposition Study (GrandTReNDS, Wyoming) and as part of the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen project (BEACHON, Colorado). Average number concentrations (0.04 < Dp < 20 mum) measured during the field studies ranged between 1000 -- 2000 cm-3 during the summer months and decreased to 200 -- 500 cm-3 during the winter. These seasonal changes in aerosol

  3. Response of bighorn sheep to clear-cut logging and prescribed burning

    USGS Publications Warehouse

    Smith, T.S.; Hardin, P.J.; Flinders, J.T.

    1999-01-01

    Prescribed burning and timber harvesting have been used to restore and maintain Rocky Mountain bighorn sheep (avis canadensis) ranges. Intensive study of a bighorn sheep herd in northeastern Utah indicated a need for range improvements. To evaluate the effectiveness of clear-cut logging and prescribed burning, we documented sheep responses to these treatments. Although bighorn sheep exhibited strong fidelity to pre-treatment areas (P>0.05), they significantly altered use patterns to include logged and burned areas (P<0.001). Treated habitats experienced 148% increases in bighorn sheep activity, whereas use in untreated areas declined by 45%. Bighorn sheep responded more favorably to logged units than to burned areas. We conclude that carefully planned clear-cut logging and range burning may be effective to enhance and expand bighorn sheep populations.

  4. Ural-Tweed Bighorn Sheep Investigation.

    DTIC Science & Technology

    1979-01-01

    bighcrns demonstrate a competitive inferiority when competing with sympatric ungulates for available forage. Interspecific , as well as intraspecific ...Density of Plant Fragments In Bighorn Sheep Fecal Samples Collected on a Monthly Basis for Calendar Year 1978. 76 23. Population Estirqtes for Ural... competition with domestic, as well as wild ungulates; 2) disease intro- duced by domestic livestock; 3) conversion of mountain grasslands into timber- lands

  5. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River basins, Wyoming. Quarterly report, January 1, 1996--March 31, 1996

    SciTech Connect

    Dunn, T.L.

    1996-04-26

    Work in conjunction with Marathon Oil Company in the Oregon Basin field utilizing Formation MicroImager and Formation MicroScanner logs has been completed. Tensleep outcrops on the western side of the Bighorn Basin are not of the quality necessary to do detailed study of stratification. This made the use of borehole imaging logs, in which stratification can be recognized, particularly attractive for the western side of the Bighorn Basin. The borehole imaging logs were used to determine the dip angle and dip direction of stratification as well as to distinguish different lithologies. It is also possible to recognize erosional bounding surfaces and classify them according to a process-oriented hierarchy. Foreset and bounding surface orientation data was utilized to create bedform reconstructions in order to simulate the distribution of flow-units bounded by erosional surfaces. The bedform reconstructions indicate that the bedforms on the western side of the basin are somewhat different from those on the eastern side of the Bighorn Basin. A report has been submitted to Marathon Oil Company, the principal cost-share subcontractor. Marine dolomitic units initially identified and correlated in the Bighorn Basin have been correlated into the Wind River Basin. Gross and net sand maps have been produced for the entire upper Tensleep in the Bighorn and Wind River Basins, as well as for each of the eolian units identified in the study. These maps indicate an overall thickening of the Tensleep to the west and south. This thickening is a result of both greater subsidence to the west and south and greater differential erosion to the north and east. An article documenting the North Oregon Basin field study will appear in the Gulf Coast Society of Economic Paleontologists and Mineralogists Foundation Conference volume entitled {open_quotes}Stratigraphic Analysis Utilizing Advanced Geophysical, Wireline and Borehole Technology for Petroleum Exploration and Production{close_quotes}.

  6. Conductive thermal modeling of Wyoming geothermal systems

    SciTech Connect

    Heasler, H.P.; Ruscetta, C.A.; Foley, D.

    1981-05-01

    A summary of techniques used by the Wyoming Geothermal Resource Assessment Group in defining low-temperature hydrothermal resource areas is presented. Emphasis is placed on thermal modeling techniques appropriate to Wyoming's geologic setting. Thermal parameters discussed include oil-well bottom hole temperatures, heat flow, thermal conductivity, and measured temperature-depth profiles. Examples of the use of these techniques are from the regional study of the Bighorn Basin and two site specific studies within the Basin.

  7. Mineral transformations in and chemical evolution of mobile regolith on Osborn Mountain, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Riggins, S. G.; Anderson, S. P.; Tye, A.

    2012-12-01

    There is not yet a consensus on whether reaction kinetics (precipitation & temperature) or the generation of fresh mineral surfaces are more influential in weathering bedrock. Biological, physical and chemical processes work in concert to release and alter bedrock; however, their relative importance in a locality is likely dependent upon site-specific conditions. Additionally, past climate conditions complicate field observations since soils in many landscapes predate the Holocene and evolved under conditions much colder than today. In this study, we examine the mineralogy and chemistry of granitic bedrock and mobile regolith on Osborn Mountain (OM), Wyoming, USA, to shed light on the factors controlling mineralogical and chemical transformations in mobile material. OM is a high elevation site (3,600 m), with low mean annual temperature (-5°C) and a soil residence time of 71,000 years. The jigsaw-puzzle-like boundary between bedrock and mobile regolith suggests that the physical processes that create blocks are more important than chemical transformations in generating mobile regolith. Once released, blocks appear to shatter into fine grain sizes, which then weather at rates dependent on the grain size. Within mobile regolith, chemical weathering produces secondary minerals that constitute no more than 13% of the material, and include smectite, vermiculite, and kaolinite with minor hematite and geothite. While most primary minerals are less abundant in mobile regolith than parent bedrock, plagioclase weathering is dependent upon grain size; it has not been weathered from the 63 μm - 2 mm fraction, but is depleted from the <63 μm fraction. Correspondingly, smectite is more abundant in the smaller size fraction than in the larger. K-feldspar abundances are similar (and roughly half of the amount found in parent material) across all size fractions. If this lower plagioclase abundance were simply a matter of dilution by an increase in clay-sized particles (such as

  8. Digital snow mapping technique using LANDSAT data and General Electric IMAGE 100 system. [Dinwoody Creek in Wind River Mountains, Wyoming

    NASA Technical Reports Server (NTRS)

    Dallam, W. C.; Foster, J. L.

    1975-01-01

    In this study, a technique and procedures using General Electric IMAGE 100 system were derived for performing a snow cover analysis of small watersheds for quasi-operational application. The study area was the Wind River Mountains of west central Wyoming. A small watershed, namely, Dinwoody Creek was selected as a test site. LANDSAT data and U-2 imagery were used in the analysis. From a minimal snowcover LANDSAT scene, multispectral analysis was performed yielding the distribution of forest, bare rock, grassland, water, and snow within the watershed. The forest and bare rock themes were saved and registered with other scenes containing greater snow cover. Likewise, elevation contours from a digitized map were stored and superimposed over the snowpack areas.

  9. Geological and geochemical investigations of uranium occurrences in the Arrastre Lake area of the Medicine Bow Mountains, Wyoming

    USGS Publications Warehouse

    Miller, W. Roger; Houston, R.S.; Karlstrom, K.E.; Hopkins, D.M.; Ficklin, W.H.

    1977-01-01

    Metasedimentary rocks of Precambrian X age in and near the Snowy Range wilderness study area of southeastern Wyoming are lithologically and chronologically similar to those on the north shore of Lake Huron in Canada. The rocks in Canada contain major deposits of uranium in quartz-pebble conglomerates near the base of the metasedimentary sequence. Similar conglomerates in the Deep Lake Formation in the Medicine Bow Mountains of southeastern Wyoming are slightly radioactive and may contain deposits of uranium and other valuable heavy metals. During the summer of 1976, a geological and geochemical pilot study was conducted in the vicinity of Arrastre Lake in the Medicine Bow Mountains to determine the most effective exploration methods for evaluating the uranium potential of the Snowy Range wilderness study area. The area around Arrastre Lake was selected because of the presence of a radioactive lens within a quartz-pebble conglomerate of the Deep Lake Formation. The results of the survey indicate possible uranium mineralization in the subsurface rocks of this formation. The radon content of the dilute waters of the area is much higher than can be accounted for by the uranium content of the surface rocks. Two sources for the high content of the radon are possible. In either case, the high values of radon obtained in this study are a positive indication of uranium mineralization in the subsurface rocks. The determination of the radon content of water samples is the recommended geochemical technique for uranium exploration in the area. The determination of uranium in water and in organic-rich bog material is also recommended.

  10. Subsurface stratigraphic cross sections of cretaceous and lower tertiary rocks in the Wind River Basin, central Wyoming: Chapter 9 in Petroleum systems and geologic assessment of oil and gas resources in the Wind River Basin Province, Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.

    2007-01-01

    The stratigraphic cross sections presented in this report were constructed as part of a project conducted by the U.S. Geological Survey to characterize and evaluate the undiscovered oil and gas resources of the Wind River Basin (WRB) in central Wyoming. The primary purpose of the cross sections is to show the stratigraphic framework and facies relations of Cretaceous and lower Tertiary rocks in this large, intermontane structural and sedimentary basin, which formed in the Rocky Mountain foreland during the Laramide orogeny (Late Cretaceous through early Eocene time). The WRB is nearly 200 miles (mi) long, 70 mi wide, and encompasses about 7,400 square miles (mi2) (fig. 1). The basin is structurally bounded by the Owl Creek and Bighorn Mountains on the north, the Casper arch on the east, the Granite Mountains on the south, and the Wind River Range on the west.

  11. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Geochronology of an Archean granite, Owl Creek Mountains, Wyoming

    SciTech Connect

    Hedge, C.E.; Simmons, K.R.; Stuckless, J.S.

    1986-01-01

    Rubidium-strontium analyses of whole-rock samples of an Archean granite from the Owl Creek Mountains, Wyo., indicate an intrusive age of 2640 {plus minus} 125 Ma. Muscovite-bearing samples give results suggesting that these samples were altered about 2300 Ma. This event may have caused extensive strontium loss from the rocks as potassium feldspar was altered to muscovite. Alteration was highly localized in nature as evidence by unaffected rubidium-strontium mineral ages in the Owl Creek Mountains area. Furthermore, the event probably involved a small volume of fluid relative to the volume of rock because whole-rock {delta}{sup 18}O values of altered rocks are not distinct from those of unaltered rocks. In contrast to the rubidium-strontium whole-rock system, zircons from the granite have been so severely affected by the alteration event, and possibly by a late-Precambrian uplift event, that the zircon system yields little usable age information. The average initial {sup 87}Sr/{sup 86}Sr (0.7033 {plus minus} 0.0042) calculated from the isochron intercept varies significantly. Calculated initial {sup 87}Sr/{sup 86}Sr ratios for nine apparently unaltered samples yield a range of 0.7025 to 0.7047. These calculated initial ratios correlate positively with whole-rock {delta}{sup 18}O values; and, therefore, the granite was probably derived from an isotopically heterogeneous source. The highest initial {sup 87}Sr/{sup 86}Sr ratio is lower than the lowest reported for the metamorphic rocks intruded by the granite as it would have existed at 2640 Ma. Thus, the metamorphic sequence, at its current level of exposure, can represent no more than a part of the protolith for the granite.

  12. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Uranium-thorium-lead systematics of an Archean granite from the Owl Creek Mountains, Wyoming

    SciTech Connect

    Stuckless, J.S.; Nkomo, I.T.; Butt, K.A.

    1986-01-01

    Isotopic analyses of apparently unaltered whole-rock samples of a granite from the Owl Creek Mountains, Wyo., yield a lead-lead isochron age of 2730 {plus minus} 35 Ma, which is somewhat older than the age obtained by the rubidium-strontium whole-rock method. Thorium-lead data for the same samples deviate markedly from an isochronal relation; however, calculated initial {sup 208}Pb/{sup 204}Pb ratios correlate with whole-rock {delta}{sup 18}O values and lead to the conclusion that the {sup 232}Th-{sup 208}Pb data are not colinear because of an originally heterogeneous granitic magma. Relationships in the {sup 207}Pb/{sup 235}U-{sup 206}Pb/{sup 238}U system show that uranium was mobilized during early Laramide time or shortly before, such that most surface and shallow drill-core samples lost 60-80 percent of their uranium, and some fractured, deeper drill-core samples gained from 50 to 10,000 percent uranium. Fission-track maps show that much uranium is located along edges and cleavages of biotite and magnetic where it is readily accessible to oxidizing ground water. Furthermore, qualitative comparisons of uranium distribution in samples with excess radiogenic lead and in samples with approximately equilibrium amounts of uranium and lead suggest that the latter contain more uranium in these readily accessible sites. Unlike other granites that have uranium distributions and isotopic systematics similar to those observed in this study, the granite of the Owl Creek Mountains is not associated with economic uranium deposits.

  13. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    SciTech Connect

    Not Available

    1994-02-01

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  14. Multidisciplinary study of Wyoming test sites. [hydrology, biology, geology, lithology, geothermal, and land use

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.; Agard, S. S.; Downing, K. G.; Earle, J. L.; Froman, N. L.; Gordon, R.; Kolm, K. E.; Tomes, B.; Vietti, J.

    1974-01-01

    The author has identified the following significant results. Investigation of a variety of applications of EREP photographic data demonstrated that EREP S-190 data offer a unique combination of synoptic coverage and image detail. The broad coverage is ideal for regional geologic mapping and tectonic analysis while the detail is adequate for mapping of crops, mines, urban areas, and other relatively small features. The investigative team at the University of Wyoming has applied the EREP S-190 data to: (1) analysis of photolinear elements of the Powder River Basin, southern Montana, and the Wind River Mountains; (2) drainage analysis of the Powder River Basin and Beartooth Mountains; (3) lithologic and geologic mapping in the Powder River Basin, Black Hills, Green River Basin, Bighorn Basin and Southern Bighorn Mountains; (4) location of possible mineralization in the Absaroka Range; and (5) land use mapping near Riverton and Gillette. All of these applications were successful to some degree. Image enhancement procedures were useful in some efforts requiring distinction of small objects or subtle contrasts.

  15. Epidemic pasteurellosis in a bighorn sheep population coinciding with the appearance of a domestic sheep.

    PubMed

    George, Janet L; Martin, Daniel J; Lukacs, Paul M; Miller, Michael W

    2008-04-01

    A pneumonia epidemic reduced bighorn sheep (Ovis canadensis) survival and recruitment during 1997-2000 in a population comprised of three interconnected wintering herds (Kenosha Mountains, Sugarloaf Mountain, Twin Eagles) that inhabited the Kenosha and Tarryall Mountain ranges in central Colorado, USA. The onset of this epidemic coincided temporally and spatially with the appearance of a single domestic sheep (Ovis aires) on the Sugarloaf Mountain herd's winter range in December 1997. Although only bighorns in the Sugarloaf Mountain herd were affected in 1997-98, cases also occurred during 1998-99 in the other two wintering herds, likely after the epidemic spread via established seasonal movements of male bighorns. In all, we located 86 bighorn carcasses during 1997-2000. Three species of Pasteurella were isolated in various combinations from affected lung tissues from 20 bighorn carcasses where tissues were available and suitable for diagnostic evaluation; with one exception, beta-hemolytic mannheimia (Pasteurella) haemolytica (primarily reported as biogroup 1(G) or 1(alphaG)) was isolated from lung tissues of cases evaluated during winter 1997-98. The epidemic dramatically lowered adult bighorn monthly survival in all three herds; a model that included an acute epidemic effect, differing between sexes and with vaccination status, that diminished linearly over the next 12 mo best represented field data. In addition to the direct mortality associated with epidemics in these three herds, lamb recruitment in years following the pneumonia epidemic also was depressed as compared to years prior to the epidemic. Based on observations presented here, pasteurellosis epidemics in free-ranging bighorn sheep can arise through incursion of domestic sheep onto native ranges, and thus minimizing contact between domestic and bighorn sheep appears to be a logical principle for bighorn sheep conservation.

  16. Uranium-lead isotope systematics and apparent ages of zircons and other minerals in precambrian granitic rocks, Granite Mountains, Wyoming

    USGS Publications Warehouse

    Ludwig, K. R.; Stuckless, J.S.

    1978-01-01

    Zircon suites from the two main types of granite in the Granite Mountains, Wyoming, yielded concordia-intercept ages of 2,640??20 m.y. for a red, foliated granite (granite of Long Creek Mountain) and 2,595??40 m.y. for the much larger mass of the granite of Lankin Dome. These ages are statistically distinct (40??20 m.y. difference) and are consistent with observed chemical and textural differences. The lower intercepts of the zircon chords of 50??40 and 100+ 75 m.y. for the granite of Long Creek Mountain and granite of Lankin Dome, respectively, are not consistent with reasonable continuous diffusion lead-loss curves but do correspond well with the known (Laramide) time of uplift of the rocks. Epidote, zircon, and apatite from silicified and epidotized zones in the granites all record at least one postcrystallization disturbance in addition to the Laramide event and do not define a unique age of silicification and epidotization. The lower limit of ???2,500 m.y. provided by the least disturbed epidote, however, suggests that these rocks were probably formed by deuteric processes shortly after emplacement of the granite of the Lankin Dome. The earlier of the two disturbances that affected the minerals of the silicified-epidotized rock can be bracketed between 1,350 and 2,240 m.y. ago and is probably the same event that lowered mineral K-Ar and ages in the region. Zircon suites from both types of granite show well-defined linear correlations among U content, common-Pb content, and degree of discordance. One of the zircon suites has an extremely high common-Pb content (up to 180 ppm) and exhibits a component of radiogenic-Pb loss that is apparently unrelated to radiation damage. ?? 1978 Springer-Verlag.

  17. Climate Variability and Ponderosa Pine Colonizations in Central Wyoming: Integrating Dendroecology and Dendroclimatology

    NASA Astrophysics Data System (ADS)

    Lesser, M.; Wentzel, C.; Gray, S.; Jackson, S.

    2007-12-01

    Many tree species are predicted to expand into new territory over the coming decades in response to changing climate. By studying tree expansions over the last several centuries we can begin to understand the mechanisms underlying these changes and anticipate their consequences for forest management. Woody-plant demographics and decadal to multidecadal climate variability are often closely linked in semi-arid regions. Integrated tree-ring analysis, combining dendroecology and dendroclimatology to document, respectively, the demographic history of the population and the climatic history of the region, can reveal ecological dynamics in response to climate variability. We studied four small, disjunct populations of Pinus ponderosa in the Bighorn Basin of north-central Wyoming. These populations are located 30 to 100 kilometers from the nearest core populations of ponderosa pine in the western Bighorn Mountains. Packrat midden studies have shown that ponderosa pine colonized the western slopes of the Bighorn Range 1500 years ago, so the disjunct populations in the basin must be younger. All trees (living and dead) at each of the four disjunct populations were mapped, cored, and then aged using tree-ring based techniques. We obtained records of hydroclimatic variability from the Bighorn Basin using four tree-ring series from Pinus flexilis (3 sites) and Pseudotsuga menziesii (1 site). The four disjunct populations were all established within the past 500 years. Initially, the populations grew slowly with low recruitment rates until the early 19th century, when they experienced one or more large recruitment pulses. These pulses coincided with extended wet periods in the climate reconstruction. However, similar wet periods before the 19th Century were not accompanied by recruitment pulses, indicating that other factors (e.g., population density, genetic variability) are also important in colonization and expansion. We are currently obtaining genetic data and carrying out

  18. Fracture-controlled paleohydrogeology in a basement-cored, fault-related fold: Sheep Mountain Anticline, Wyoming, United States

    NASA Astrophysics Data System (ADS)

    Beaudoin, Nicolas; Bellahsen, Nicolas; Lacombe, Olivier; Emmanuel, Laurent

    2011-06-01

    New geochemical and microstructural data constrain the origins and pathways of paleofluids during the growth of Sheep Mountain Anticline, Wyoming, United States. Oxygen, carbon, and strontium isotope studies were performed on prefolding and fold-related calcite veins and their sedimentary host rocks and combined to fluid inclusion microthermometry results. We show that most of the cements precipitated from Paleogene meteoric fluid. Stable isotopes and fluid inclusion homogenization temperatures further indicate that most veins were mineralized from upward moving fluids after these fluids were heated at depth (T > 110°C). This implies that fluids migrated along the basement thrust underlying the fold and/or at the base of the cover. Above the fault tip, the fluids circulated rapidly in the diffuse synfolding (and early folding) fracture network. The zone of preferential migration of the warm fluids is currently located in the backlimb of the fold, which supports some of the previously published structural interpretation of the subsurface. This study also highlights the potential of combined fracture analysis and geochemical analyses of paleofluid flows in fractures to constrain both the deformation history and the fluid flow during basement-involved shortening in Laramide-style forelands.

  19. Effect of simulated stress on susceptibility of bighorn sheep neutrophils to Pasteurella haemolytica leukotoxin.

    PubMed

    Kraabel, B J; Miller, M W

    1997-07-01

    We examined the effects of simulated stress on susceptibility of Rocky Mountain bighorn sheep (Ovis canadensis canadensis) neutrophils to Pasteurella haemolytica leukotoxin in a blocked, crossover experiment. Ten captive-raised bighorn sheep were sampled 10 hr after separate administrations of long-acting adrenocorticotrophic hormone (ACTH) gel and normal saline (control). We then compared in vitro leukotoxin-dependent neutrophil death rates after exposure to culture supernatants from four unique P. haemolytica isolates (one from domestic and three from bighorn sheep). Simulated stress effects were evidenced by elevated (P = 0.002) mean plasma cortisol concentrations, more neutrophils (P = 0.037), and fewer lymphocytes and eosinophils (P < or = 0.043) in ACTH-treated bighorn sheep. Maximum leukotoxin-dependent neutrophil death rates were > or = 61% for three of four P. haemolytica isolates tested. For all three cytotoxic isolates, neutrophil death rates at 150 micrograms/50 microliters supernatant were about 1.13 times higher (P = 0.0001) after bighorns received ACTH; for two of these, overall neutrophil death rates were higher (P < or = 0.001) in ACTH-treated bighorn sheep. Although variable leukotoxin production among P. haemolytica strains appeared principally responsible for differences in leukotoxin-dependent neutrophil death rates, susceptibility of bighorn sheep neutrophils to leukotoxin was increased by prior exposure to elevated plasma cortisol concentrations. It follows that if similar processes occur in neutrophils and alveolar macrophages in vivo, they could contribute to greater susceptibility of stressed bighorn sheep to pneumonic pasteurellosis.

  20. Transmission of lungworms (Muellerius capillaris) from domestic goats to bighorn sheep on common pasture.

    PubMed

    Foreyt, William J; Jenkins, E J; Appleyard, G D

    2009-04-01

    Four domestic goats (Capra hircus) that were passing first-stage dorsal-spined larvae of Muellerius capillaris were copastured on a 0.82-ha pasture for 11 mo from May 2003 to April 2004 with seven Rocky Mountain bighorn sheep (Ovis canadensis) that were not passing dorsal-spined larvae. During the 11-mo experiment, two bighorn sheep died from pneumonia caused by Mannheimia (Pasteurella) haemolytica biotype A, serotype 2. The remaining five bighorn sheep and the four domestic goats remained healthy throughout the experiment. Muellerius larvae were detected from all domestic goats on a monthly basis throughout the experiment and were first detected from all five surviving bighorn sheep approximately 5 mo after the copasturing began. Once the bighorn sheep began passing Muellerius larvae, larvae were detected in low numbers from all bighorn sheep every month thereafter for the 6 mo the goats were still in the enclosure and continued to pass larvae for more than 3 yr after the goats were removed from the experiment. Six bighorn sheep in two similar enclosures that did not contain goats did not pass Muellerius larvae before, during, or after the experimental period. Results of this experiment indicate that M. capillaris from domestic goats is capable of infecting bighorn sheep when animals are copastured together on a common range.

  1. Hydrology of area 50, Northern Great Plains and Rocky Mountain coal provinces, Wyoming and Montana

    USGS Publications Warehouse

    Lowry, Marlin E.; Wilson, James F.; ,

    1983-01-01

    This report is one of a series designed to characterize the hydrology of drainage basins within coal provinces, nationwide. Area 50 includes all of the Powder River Basin, Wyoming and Montana and the upstream parts of the Cheyenne and Belle Fourche River Basins - a total of 20,676 sq mi. The area has abundant coal (81.2 million tons mined in 1982), but scarce water. The information in the report is intended to describe the hydrology of the ' general area ' of any proposed mine. The report represents a summary of results of the water resources investigations of the U.S. Geological Survey, carried out in cooperation with State and other Federal agencies. Each of more than 50 topics is discussed in a brief text that is accompanied by maps, graphs, and other illustrations. Primary topics in the report are: physiography, economic development, surface-water data networks, surface water quantity and quality, and groundwater. The report also contains an extensive description of sources of additional information. (USGS)

  2. Experiment to evaluate feasibility of utilizing Skylab-EREP remote sensing data for tectonic analysis of the Bighorn Mountains region, Wyoming-Montana

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Analysis of SL-3, S-190A, and S-190B color frames indicates two sets of linears obliquely cutting across the east-west trending Owl Creek-Bridger uplifts. A northwest set of faults and folds has been mapped previously but the imagery indicates some changes and addition of detail can be made. A less pronounced east-northeast set of linear alignments (drainage segments, lithologic contacts, possible faults) extends into the southeast part of the Big Horn Basin.

  3. Cambrian pisolites as paleoenvironment and paleotectonic stress indicators, Rattlesnake Mountain, Wyoming

    SciTech Connect

    Neese, D.G.; Vernon, J.H.

    1987-05-01

    Pisolitic-rich carbonates occur within the uppermost 0.5 m of the Meagher Limestone member of the lower Gros Ventre formation in exposures near Cody, Wyoming. The Meagher Limestone is overlain by 51 m, and underlain by 63 m of dark gray Gros Ventre shale. Pisolites range in size from 2.0 to 18 mm in diameter and occur in lime grainstones associated with trilobite fragments, peloids, glauconite, fine-grained subangular quartz, and minor oolites. Girvanella grainstones 15-20 cm thick directly underlie the pisolite strata and have contributed to some of the carbonate material within pisolite nuclei. Dolomite and ankerite may occur within pisolitic rocks as finely crystalline irregular patches. Pisoliths commonly show an oblate ellipsoid shape, with maximum flattening perpendicular to bedding. Long-axis to short-axis ratios of these grains in fracture planes perpendicular to bedding average between 2.5 to 3.5, with the long axis parallel or subparallel to bedding. Grains observed in bedding planes have ratios averaging between 1.5 to 2.0. A paleostress state has produced a strain ellipsoid with long-axis ratios ranging from 1.7 to over 3.0. There appears to be little or no tectonic strain on the bedding plane, so the strain can be described as uniaxial, with maximum compression perpendicular to bedding. The majority of carbonate rocks in the Meagher Limestone were deposited in a normal marine subtidal setting, while ooid and pisolitic grain types are suggestive of subtidal-peritidal conditions. Because of the strain deformed pisoliths, a subaqueous versus subaerial environment of pisolite genesis is difficult to assess. A siliciclastic sandstone, 0.6 m thick with low-angle tabular crossbedding, is present immediately beneath the Meagher Limestone. The sandstone is composed of 94% fine to medium sand-size subangular quartz grains and is associated with glauconite, minor biotite, zircon, and ilmenite.

  4. Multidisciplinary study on Wyoming test sites

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.; Borgman, L. E.

    1975-01-01

    The author has identified the following significant results. Ten EREP data passes over the Wyoming test site provided excellent S190A and S190B coverage and some useful S192 imagery. These data were employed in an evaluation of the EREP imaging sensors in several earth resources applications. Boysen Reservoir and Hyattsville were test areas for band to band comparison of the S190 and S192 sensors and for evaluation of the image data for geologic mapping. Contrast measurements were made from the S192 image data for typical sequence of sedimentary rocks. Histograms compiled from these measurements show that near infrared S192 bands provide the greatest amount of contrast between geologic units. Comparison was also made between LANDSAT imagery and S190B and aerial photography for regional land use mapping. The S190B photography was found far superior to the color composite LANDSAT imagery and was almost as effective as the 1:120,000 scale aerial photography. A map of linear elements prepared from LANDSAT and EREP imagery of the southwestern Bighorn Mountains provided an important aid in defining the relationship between fracture and ground water movement through the Madison aquifer.

  5. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    USGS Publications Warehouse

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the

  6. Geologic map and coal stratigraphy of the Doty Mountain quadrangle, eastern Washakie basin, Carbon County, Wyoming

    USGS Publications Warehouse

    Hettinger, R.D.; Honey, J.G.

    2006-01-01

    This report provides a geologic map of the Doty Mountain 7.5-minute quadrangle, located along the eastern flank of the Washakie Basin, Wyo. Geologic formations and individual coal beds were mapped at a scale of 1:24,000; surface stratigraphic sections were measured and described; and well logs were examined to determine coal correlations and thicknesses in the subsurface. Detailed measured sections are provided for the type sections of the Red Rim Member of the Upper Cretaceous Lance Formation and China Butte and Overland Members of the Paleocene Fort Union Formation. The data set was collected as part of a larger effort to acquire data on Upper Cretaceous and Tertiary coal-bearing rocks in the eastern Washakie Basin and southeastern Great Divide Basin. Regions in the eastern Washakie Basin and southeastern Great Divide Basin have potential for coal development and were considered previously for coal leasing by the U.S. Bureau of Land Management.

  7. Hydrology of area 52, Rocky Mountain coal province Wyoming, Colorado, Idaho, and Utah

    USGS Publications Warehouse

    Lowham, H.W.; Peterson, D.A.; Larson, L.R.; Zimmerman, E.A.; Ringen, B.H.; Mora, K.L.

    1985-01-01

    This report is one of a series designed to characterize the hydrology of drainage basins within coal provinces, nationwide. Area 52 (in the Rocky Mountain Coal Province) includes the Green River Basin upstream from the Yampa River, and the Bear River upstream from the Bear Lake - a total of 23,870 sq mi. Area 52 contains over 3 billion tons of strippable coal, most of which is located in the arid and semiarid plains. The report represents a summary of results of the water resources investigations of the U.S. Geological Survey, carried out in cooperation with State and other Federal agencies. More than 40 individual topics are discussed in a brief text that is accompanied by maps, graphs, photographs, and other illustrations. Primary topics in the report are: general features, resources and economy, surface-water quantity and quality, and groundwater. (USGS)

  8. Petrogenetic modeling of a potential uranium source rock, Granite Mountains, Wyoming

    USGS Publications Warehouse

    Stuckless, J.S.; Miesch, A.T.

    1981-01-01

    Previous studies of the granite of Lankin Dome have led to the conclusion that this granite was a source for the sandstone-type uranium deposits in the basins that surround the Granite Mountains, Wyo. Q-mode factor analysis of 29 samples of this granite shows that five bulk compositions are required to explain the observed variances of 33 constituents in these samples. Models presented in this paper show that the origin of the granite can be accounted for by the mixing of a starting liquid with two ranges of solid compositions such that all five compositions are granitic. There are several features of the granite of Lankin Dome that suggest derivation by partial melting and, because the proposed source region was inhomogeneous, that more than one of the five end members may have been a liquid. Data for the granite are compatible with derivation from rocks similar to those of the metamorphic complex that the granite intrudes. Evidence for crustal derivation by partial melting includes a strongly peraluminous nature, extremely high differentiation indices, high contents of incompatible elements, generally large negative Eu anomalies, and high initial lead and strontium isotopic ratios. If the granite of Lankin Dome originated by partial melting of a heterogeneous metamorphic complex, the initial magma could reasonably have been composed of a range of granitic liquids. Five variables were not well accounted for by a five-end-member model. Water, CO 2 , and U0 2 contents and the oxidation state of iron are all subject to variations caused by near-surface processes. The Q-mode factor analysis suggests that these four variables have a distribution determined by postmagmatic processes. The reason for failure of Cs0 2 to vary systematically with the other 33 variables is not known. Other granites that have lost large amounts of uranium possibly can be identified by Q-mode factor analysis.

  9. Drill-hole data, drill-site geology, and geochemical data from the study of Precambrian uraniferous conglomerates of the Medicine Bow Mountains and Sierra Madre of southeastern Wyoming

    SciTech Connect

    Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.; Inlow, D.; Flurkey, A.J.; Kratochvil, A.L.; Coolidge, C.M.; Sever, C.K.; Quimby, W.F.

    1981-02-01

    This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre, and drill site geologic maps and cross-sections from most of the holes.

  10. Cataclastic flow kinematics inferred from magnetic fabrics at the Heart Mountain Detachment, Wyoming

    NASA Astrophysics Data System (ADS)

    Heij, G. W.; Ferre, E. C.; Friedman, S. A.

    2013-12-01

    The Heart Mountain Detachment (HMD) constitutes one of the largest known rock slides (3400 km2) on Earth. This detachment occurred along the stratigraphic boundary between the Big Horn Dolomite at the hanging-wall and the Snowy Range Formation at the footwall. The bedding plane contact between these two carbonate formations dipped >2 deg. at the time of slide. The slide resulted in the formation of an up to 3 m-thick carbonate ultracataclasite (CUC) at the base of the slide. The origin of the CUC and the nature of the triggering mechanism responsible for the initiation of the catastrophic movement have long been a subject of controversy. Absoroka volcanics could have provided the trigger for the catastrophic slide. Here we present a proof of concept study addressing the question of the consistent magnetic fabrics observed in the CUC as well as new observations indicating presence of volcanic solid material within the CUC. The magnetic susceptibility (Klf) ranges narrowly from 1062. [10]^(-6) to 1115 . [10]^(-6) [SI]. Thermomagnetic investigations revealed a Curie temperature of 525C which suggests that magnetite is most likely the dominant magnetic carrier mineral. Energy Dispersive Spectroscopy analyses confirm that this magnetite has a relatively low Ti content. The CUC magnetic hysteresis properties point to an average pseudo-single domain magnetic grain size or, alternatively, a mixture of single domain and multi-domain grains. The average degree of magnetic anisotropy (P' = 1.062) is relatively high and is consistent with a magnetostatic origin for the AMS. The shape parameter T is mostly oblate (average T=0.175). The anisotropy of magnetic susceptibility (AMS) directional data is surprisingly consistent within each specimen and between specimens collected within a few tens of meters of each other with an overall NNE-SSW. The consistency of this magnetic fabric suggests that cataclastic flow corresponded to a dominantly simple shear regime. Generally

  11. Test of a modified habitat suitability model for bighorn sheep

    USGS Publications Warehouse

    Zeigenfuss, L.C.; Singer, F.J.; Gudorf, M.A.

    2000-01-01

    Translocation of bighorn sheep (Ovis canadensis) is time, labor, and cost intensive and, therefore, high levels of success are desirable. We tested a widely used habitat suitability model against translocation success and then modified it to include additional factors which improved its usefulness in predicting appropriate translocation sites. The modified Smith habitat suitability model for bighorn sheep was 64% accurate in predicting success or failure of 32 translocations of bighorn sheep into the Rocky Mountains, Colorado Plateau desert, and prairie-badlands of six states. We had sheep location data for 13 populations, and the modified habitat model predicted the areas used by bighorn sheep with greater than 905 accuracy in eight populations, greater than 55% accuracy in four populations, and less than 55% accuracy in one population. Translocations were more successful when sheep were placed into discrete habitat patches containing a high proportion of lambing period habitat (>10% of suitable habitat, p = 0.05), where animals had a migratory tendency (p = 0.02), no contact with domestic sheep (p = 0.02), or greater distance to domestic sheep (>23 km, p = 0.02). Rate of population growth was best predicted by area of lambing period habitat, potential area of winter range, and distance to domestic sheep. We retested the model using these refined criteria and the refined model then predicted success or failure of these 32 translocated populations with 82% accuracy.

  12. Preliminary report on the geology and gold mineralization of the South Pass granite-greenstone terrain, Wind River Mountains, western Wyoming (US)

    NASA Technical Reports Server (NTRS)

    Hausel, W. D.

    1986-01-01

    The South Pass granite-greenstone terrain lies near the southern tip of the Wind River Mountains of western Wyoming. This Archean supracrustal pile has been Wyoming's most prolific source of gold and iron ore. From 1962 to 1983, more than 90 million tons of iron ore were recovered from oxide-facies banded iron formation, and an estimated 325,000 ounces of gold were mined from metagreywacke-hosted shears and associated placers. Precambrian rocks at South Pass are unconformably overlain by Paleozoic sediments along the northeast flank, and a Tertiary pediment buries Archean supracrustals on the west and south. To the northwest, the supracrustals terminate against granodiorite of the Louis Lake batholith; to the east, the supracrustals terminate against granite of the Granite Mountains batholith. The Louis Lake granodiorite is approximately 2,630 + or - 20 m.y. old, and the Granite Mountains granite averages 2,600 m.y. old. The geometry of the greenstone belt is best expressed as a synform that has been modified by complex faulting and folding. Metamorphism is amphibolite grade surrounding a small island of greenschist facies rocks. The younger of the Archean supracrustal successions is the Miners Delight Formation. This unit yielded a Rb-Sr isochron of 2,800 m.y. A sample of galena from the Snowbird Mine within the Miners Delight Formation yielded a model age averaging 2,750 m.y. The Snowbird mineralization appears to be syngenetic and is hosted by metavolcanics of calc-alkaline affinity. Discussion follows.

  13. Petroleum exploration in Absaroka basin of northwestern Wyoming

    SciTech Connect

    Sundell, K.A.

    1986-08-01

    A new, virtually unexplored petroleum province with large potential resources can be defined in northwestern Wyoming. Structurally, the Absaroka basin is bounded on the north by the Beartooth uplift, to the west by the Gallatin and Washakie uplifts, to the south by the Washakie and Owl Creek uplifts, and to the east by the Cody arch. The Cody arch connects the southern Beartooth uplift with the northwesternmost Owl Creek uplift and separates the Bighorn basin to the east from the Absaroka basin to the west. The eastern flank of the cody arch is bounded by a major west-dipping thrust fault. The western flank is locally a subhorizontal shelf but overall gently dips to the west-southwest into deeper parts of the Absaroka basin. In contrast to most petroleum basins, the Absaroka basin is topographically a rugged mountain range, created by erosion of a thick sequence of Eocene volcanic rocks that fill the center of the basin and lap onto the adjacent uplifts. Mesozoic and Paleozoic rocks that have produced several billion barrels of oil from the adjacent Bighorn and Wind River basins are probably present within the Absaroka basin and should have similar production capabilities. The Absaroka basin may have greater potential than adjacent basins because the volcanics provide additional traps and reservoirs. Domes in Mesozoic and Paleozoic rocks beneath the volcanics and stratigraphic traps at the angular unconformity between the volcanics and underlying reservoirs are primary exploration targets. Unique geologic, geophysical, permitting, access, and drilling problems are encountered in all aspects of exploration.

  14. Maps showing thermal maturity of Upper Cretaceous marine shales in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.; Pawlewicz, Mark J.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range, Owl Creek, and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, the Granite Mountains on the south, and the Wind River Range on the west. Important conventional and unconventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Mississippian through Tertiary. It has been suggested that various Upper Cretaceous marine shales are the principal hydrocarbon source rocks for many of these accumulations. Numerous source rock studies of various Upper Cretaceous marine shales throughout the Rocky Mountain region have led to the conclusion that these rocks have generated, or are capable of generating, oil and (or) gas. With recent advances and success in horizontal drilling and multistage fracture stimulation there has been an increase in exploration and completion of wells in these marine shales in other Rocky Mountain Laramide basins that were traditionally thought of only as hydrocarbon source rocks. Important parameters that control hydrocarbon production from shales include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a structural cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for Upper Cretaceous marine shales in the Wind River Basin.

  15. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River basins, Wyoming. Final technical report, September 15, 1993--October 31, 1996

    SciTech Connect

    Dunn, T.L.

    1996-10-01

    This multidisciplinary study was designed to provide improvements in advanced reservoir characterization techniques. This goal was accomplished through: (1) an examination of the spatial variation and anisotropy of relative permeability in the Tensleep Sandstone reservoirs of Wyoming; (2) the placement of that variation and anisotropy into paleogeographic, and depositional regional frameworks; (3) the development of pore-system imagery techniques for the calculation of relative permeability; and (4) reservoir simulations testing the impact of relative permeability anisotropy and spatial variation on Tensleep Sandstone reservoir enhanced oil recovery. Concurrent efforts were aimed at understanding the spatial and dynamic alteration in sandstone reservoirs that is caused by rock-fluid interaction during CO{sub 2} enhanced oil recovery processes. The work focused on quantifying the interrelationship of fluid-rock interaction with lithologic characterization and with fluid characterization in terms of changes in chemical composition and fluid properties. This work establishes new criteria for the susceptibility of Tensleep Sandstone reservoirs to formation alteration that results in wellbore scale damage. This task was accomplished by flow experiments using core material; examination of regional trends in water chemistry; examination of local water chemistry trends the at field scale; and chemical modeling of both the experimental and reservoir systems.

  16. Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River basins, Wyoming. First quarterly technical progress report, September 15, 1993--December 14, 1993

    SciTech Connect

    Dunn, T.L.

    1993-12-14

    This multidisciplinary study is designed to provide improvements in advanced reservoir characterization techniques. This goal is to be accomplished through: (1) an examination of the spatial variation and anisotropy of relative permeability in the Tensleep Sandstone reservoirs of Wyoming; (2) the placement of that variation and anisotropy into paleogeographic, depositional, and diagenetic frameworks; (3) the development of pore-system imagery techniques for the calculation of relative permeability; and (4) reservoir simulations testing the impact of relative permeability anisotropy and spatial variation on Tensleep Sandstone reservoir enhanced oil recovery. Concurrent efforts are aimed at understanding the spatial and dynamic alteration in sandstone reservoirs that is caused by rock-fluid interaction during CO{sub 2} enhanced oil recovery processes. The work focuses on quantifying the interrelationship of fluid-rock interaction with lithologic characterization in terms of changes in relative permeability, wettability, and pore structure, and with fluid characterization in terms of changes in chemical composition and fluid properties. This work will establish new criteria for the susceptibility of Tensleep Sandstone reservoirs to formation alteration that results in a change in relative permeability and wellbore scale damage. This task will be accomplished by flow experiments using core material; examination of regional trends in water chemistry; examination of local water chemistry trends on the scale of a field; and chemical modeling of the reservoir and experimental systems in order to scale-up the experiments to reservoir conditions.

  17. Geology and description of thorium and rare-earth deposits in the southern Bear Lodge Mountains, northeastern Wyoming

    USGS Publications Warehouse

    Staatz, M.H.

    1983-01-01

    The Bear Lodge Mountains are a small northerly trending range approximately 16 km northwest of the Black Hills in the northeast corner of Wyoming. Thorium and rare-earth deposits occur over an area of 16 km 2 in the southern part of these mountains. These deposits occur in the core of the Bear Lodge dome in a large multiple intrusive body made up principally of trachyte and phonolite. Two types of deposits are recognized: disseminated deposits and veins. The disseminated deposits are made up of altered igneous rocks cut by numerous crisscrossing veinlets. The disseminated deposits contain thorium and rare-earth minerals in a matrix consisting principally of potassium feldspar, quartz, and iron and manganese oxides. Total rare-earth content of these deposits is about 27 times that of the thorium content. The general size and shape of the disseminated deposits were outlined by making a radiometric map using a scintillation counter of the entire Bear Lodge core, an area of approximately 30 km 2 . The most favorable part of this area, which was outlined by the 40 countJs (count-per-second) isograd on the radiometric map, was sampled in detail. A total of 341 samples were taken over an area of 10.6 km 2 and analyzed for as many as 60 elements. Rare earths and thorium are the principal commodities of interest in these deposits. Total rare-earth content of these samples ranged from 47 to 27,145 ppm (parts per million), and the thorium content from 9.3 to 990 ppm. The amount of total rare earths of individual samples shows little correlation with that of thorium. Contour maps were constructed using the analytical data for total rare earths, thorium, uranium, and potassium. The total rare-earth and thorium maps can be used to define the size of the deposits based on what cut-off grade may be needed during mining. The size is large as the 2,000 ppm total rare-earth isograd encloses several areas that total 3.22 km 2 in size, and the 200 ppm thorium isograd encloses several

  18. Use of dye tracing in water-resources investigations in Wyoming, 1967-94

    USGS Publications Warehouse

    Wilson, J.F.; Rankl, J.G.

    1996-01-01

    During 1967-94, the U.S. Geological Survey made numerous applications of dye tracing for water-resources investigations in Wyoming. Many of the dye tests were done in cooperation with other agencies. Results of all applications, including some previously unpublished, are described. A chronology of past applications in Wyoming and a discussion of potential future applications are included. Time-of-travel and dispersion measurements were made in a 113-mile reach of the Wind/Bighorn River below Boysen Dam; a 117-mile reach of the Green River upstream from Fontenelle Reservoir and a 70-mile reach downstream; parts of four tributaries to the Green (East Fork River, 39 miles; Big Sandy River, 112 miles; Horse Creek, 14 miles; and Blacks Fork, 14 miles); a 75-mile reach of the Little Snake River along the Wyoming-Colorado State line; and a 95-mile reach of the North Platte River downstream from Casper. Reaeration measurements were made during one of the time-of-travel measurements in the North Platte River. Sixty-eight dye-dilution measurements of stream discharge were made at 22 different sites. These included 17 measurements for verifying the stage-discharge relations for streamflow-gaging stations on North and South Brush Creeks near Saratoga, and total of 29 discharge measurements at 12 new stations at remote sites on steep, rough mountain streams crossing limestone outcrops in northeastern Wyoming. The largest discharge measured by dye tracing was 2,300 cubic feet per second. In karst terrane, four losing streams-North Fork Powder River, North Fork Crazy Woman Creek, Little Tongue River, and Smith Creek-were dye-tested. In the Middle Popo Agie River, a sinking stream in Sinks Canyon State Park, a dye test verified the connection of the sink (Sinks of Lander Cave) to the rise, where flow in the stream resumes.

  19. A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part II: Seeding impact analysis

    NASA Astrophysics Data System (ADS)

    Pokharel, Binod; Geerts, Bart; Jing, Xiaoqin; Friedrich, Katja; Ikeda, Kyoko; Rasmussen, Roy

    2017-01-01

    The AgI Seeding Cloud Impact Investigation (ASCII) campaign, conducted in early 2012 and 2013 over two mountain ranges in southern Wyoming, was designed to examine the impact of ground-based glaciogenic seeding on snow growth in winter orographic clouds. Part I of this study (Pokharel and Geerts, 2016) describes the project design, instrumentation, as well as the ambient atmospheric conditions and macrophysical and microphysical properties of the clouds sampled in ASCII. This paper (Part II) explores how the silver iodide (AgI) seeding affects snow growth in these orographic clouds in up to 27 intensive operation periods (IOPs), depending on the instrument used. In most cases, 2 h without seeding (NOSEED) were followed by 2 h of seeding (SEED). In situ data at flight level (2D-probes) indicate higher concentrations of small snow particles during SEED in convective clouds. The double difference of radar reflectivity Z (SEED - NOSEED in the target region, compared to the same trend in the control region) indicates an increase in Z for the composite of ASCII cases, over either mountain range, and for any of the three radar systems (WCR, MRR, and DOW), each with their own control and target regions, and for an array of snow gauges. But this double difference varies significantly from case to case, which is attributed to uncertainties related to sampling representativeness and to differences in natural trends between control and target regions. We conclude that a sample much larger than ASCII's sample is needed for clear observational evidence regarding the sensitivity of seeding efficacy to atmospheric and cloud conditions. Shallow orographic clouds were glaciogenically seeded in Wyoming, USA. Three different radar systems including an airborne cloud radar were deployed. These radars reveal an increase in low level reflectivity. The concentration of ice crystals increased at flight level in the target region.

  20. Ecotypic variation in recruitment of reintroduced bighorn sheep: implications for translocation

    USGS Publications Warehouse

    Wiedmann, Brett P.; Sargeant, Glen A.

    2014-01-01

    European settlement led to extirpation of native Audubon's bighorn sheep (formerly Ovis canadensis auduboni) from North Dakota during the early 20th century. The North Dakota Game and Fish Department subsequently introduced California bighorn sheep (formerly O. c. californiana) that were indigenous to the Williams Lake region of British Columbia, Canada, and Rocky Mountain bighorn sheep (O. c. canadensis) that were indigenous to the Sun River region of Montana. Although California bighorn sheep are no longer recognized as a distinct subspecies, they are smaller and adapted to a milder climate than either the native bighorn sheep of North Dakota or introduced bighorn sheep from Montana. Because reintroductions still play a key role in the management of bighorn sheep and because local adaptation may have substantial demographic consequences, we evaluated causes of variation in recruitment of bighorn sheep reintroduced in North Dakota. During 2006–2011, Montana stock recruited 0.54 juveniles/adult female (n = 113), whereas British Columbia stock recruited 0.24 juveniles/adult female (n = 562). Our most plausible mixed-effects logistic regression model (53% of model weight) attributed variation in recruitment to differences between source populations (odds ratio = 4.5; 90% CI = 1.5, 15.3). Greater recruitment of Montana stock (fitted mean = 0.56 juveniles/adult female; 90% CI = 0.41, 0.70) contributed to a net gain in abundance (r = 0.15), whereas abundance of British Columbia stock declined (fitted mean = 0.24 juveniles/adult female; 90% CI = 0.09, 0.41; r = − 0.04). Translocations have been the primary tool used to augment and restore populations of wild sheep but often have failed to achieve objectives. Our results show that ecotypic differences among source stocks may have long-term implications for recruitment and demographic performance of reintroduced populations.

  1. Oblique convergence during northeast-southwest Laramide compression along the east-west Owl Creek and Casper Mountain arches, central Wyoming

    SciTech Connect

    Molzer, P.C.; Erslev, E.A.

    1995-09-01

    Understanding the diversity of structural trends in the Laramide foreland of the conterminous Unite States is important to understanding the location, geometry, and fracturing of hydrocarbon reservoirs. East-west basement-cored arches in central Wyoming are oblique to the average northwesterly trend of foreland faults and folds. Tectonic models predict that these arches formed by one of the following mechanisms: north-south-directed thrust faulting; sinistral strike-slip thrust faulting. In the eastern Owl Creek Mountains, average slip directions give by slickenline directions trend from N37{degrees}E to N57{degrees}E. Geometric analysis of conjugate faults and stress inversion of minor fault data indicate nearly horizontal compression trending between N48{degrees}E and N65{degrees}E. In the east-west Casper Mountain structure, more limited minor fault data are consistent with the northeast-southwest compression seen in the eastern Owl Creek arch and indicate an additional stage of extension by normal faulting. The northeast-southwest compression documented by minor fault data indicate nearly horizontal compression trending between N48{degrees}E and N65{degrees}E. In the east-west Casper Mountain structure, more limited minor fault data are consistent with the northeast-southwest compression seen in the eastern Owl Creek arch and indicate an additional stage of extension by normal faulting. The northwest-southwest compression documented by minor faults suggests oblique thrusting with a component of sinistral strike-slip on the underlying east-west-striking Owl Creek and Casper Mountain thrusts. In this area of the Laramide foreland, east-west arches probably formed during a single stage of oblique slip on thrust ramps connecting northwest-trending arch culminations. This conclusion indicates that trap geometries and reservoir characteristics of foreland hydrocarbon accumulations are dependent on their obliquity to the regional stress field.

  2. Behavioural and physiological response of trout to winter habitat in tailwaters in Wyoming, USA

    USGS Publications Warehouse

    Annear, T.C.; Hubert, W.; Simpkins, D.; Hebdon, L.

    2002-01-01

    Fisheries managers have often suggested that survival of trout during the winter is a major factor affecting population densities in many stream ecosystems in the Rocky Mountains. In Wyoming, trout population reductions from fall to spring in excess of 90% have been documented in some reservoir tailwaters. Though biologists have surmised that these reductions were the result of either mortality or emigration from some river sections, the specific mechanisms have not been defined and the factors leading to the trout loss are unknown. This is a review of four studies that were conducted or funded between 1991 and 1998 by the Wyoming Game and Fish Department to understand the extent of overwinter losses, identify some of the mechanisms leading to those conditions and develop management strategies to help avoid those impacts. Winter studies were conducted on tailwater fisheries in the Green, North Platte, Bighorn and Shoshone rivers to document trout population dynamics, assess physical habitat availability, evaluate trout movement and habitat selection, and understand the relationships between food availability and bioenergetic relationships. Results indicate that winter trout losses are extreme in some years, that trout movement and habitat selection are affected by supercooled flows, and that mortality is probably not directly due to starvation. The combination of physiological impairment with frequently altered habitat availability probably leads to indirect mortality from predators and other factors. Copyright ?? 2002 John Wiley & Sons, Ltd.

  3. Relations of the Embar and Chugwater formations in central Wyoming

    USGS Publications Warehouse

    Condit, D. Dale

    1917-01-01

    The information set forth in this chapter was obtained in field work during the seasons of 1913 and 1915. During 1913 the writer was engaged in the detailed mapping of the phosphate beds of the Ember formation on the northeast slope of the Wind River Mountains and in the Owl Creek Mountains as far east as Bighorn River canyon. In 1915 the mapping was continued eastward as far as Holt, from which a reconnaissance examination was made east and north along both flanks of the Bighorn Range as far as the latitude of Tensleep. A visit was also made to the west end of the Rattlesnake Mountains and neighboring points in Natrona County, to the Conant Creek anticline, in the eastern part of Fremont County, and to the Sheep Mountain anticline, in the Bighorn Basin.

  4. Paleoecology of Early eocene strata near Buffalo, Wyoming

    SciTech Connect

    Durkin, T.V.; Rich, F.J.

    1986-08-01

    Palynological investigation has helped illustrate the paleoecology of a vertical section of strata from the Wasatch Formation between the Healy and Walters coal burns near Buffalo, Wyoming. Numerous silicified logs and stumps of cypress and sequoia have been preserved at the site and drew initial attention to it. Flood-basin deposits enclose the trees and include sandstones, siltstones, shale, and coal beds that accumulated as channel, levee, crevasse-splay, and swamp/marsh sediments. Detrital sediments were probably derived from the Bighorn Mountains and accumulated as they were carried into the Powder River basin fluvial system. One hundred five polynomorph taxa have been distinguished, as well as 10 types of fungal spores. Platycarya, Tilia, Sparganium, and Platanus pollen indicate an early Eocene age for the strata. Other pollen, as well as the genera of trees and megafossil remains from a clinker bed several miles from the study area, reinforce the interpretation of a warm-temperature or subtropical climate at the time of deposition. The megafossil assemblage includes pinnae of the aquatic fern Marsilea, never before described from the fossil record. Variations in the species composition of the polynomorph assemblages show that several plant communities existed in succession at the site. These varied from pond or marsh types to mature forests.

  5. A postglacial chronology for some alluvial valleys in Wyoming

    USGS Publications Warehouse

    Leopold, Luna Bergere; Miller, John P.

    1954-01-01

    Alluvial terraces were studied in several major river basins in eastern Wyoming. Three terraces are present along nearly all the streams and large tributaries. There are several extensive dissected erosion surfaces in the area, but these are much older than, and stand well above, the recent alluvial terraces with which this report is concerned.The three alluvial terraces stand respectively about 40, 10, and 5 feet above the present streams. The uppermost and oldest is a fill terrace comprised of three stratigraphic units of varying age. The oldest unit is Pleistocene and the youngest unit postdates the development of a soil zone, or paleosol, which is characterized by strong accumulation of calcium carbonate and gypsum. This paleosol is an important stratigraphic marker. The middle terrace is generally a cut terrace and is developed on the material making up the youngest alluvium of the high terrace. The lowest is a fill terrace, the surface of which is only slightly higher than the present flood plain.The oldest terrace can tentatively be traced into mountain valleys of the Bighorn Range on the basis of discontinuous remnants. The terrace remnants occur far upstream from the youngest moraine in the valleys studied. On this basis, the terrace sequence is considered to postdate the last Wisconsin ice in the Bighorn Mountains. The paleosol is tentatively correlated with Altithermal time, called in Europe the Climatic Optimum. The terrace sequence is very similar to that suggested by various workers in the southwestern United States.Two streams, Clear Creek and the Powder River, deposited comparable silty alluvium, the surface of which now comprises the highest alluvial terrace. The gradients of these former flood plains differed markedly between the two streams despite the comparability in size of material deposited. This difference in gradient is believed to have required different relative contributions of water from mountain and plain areas than now exist

  6. Local Extinction and Unintentional Rewilding of Bighorn Sheep (Ovis canadensis) on a Desert Island

    PubMed Central

    Wilder, Benjamin T.; Betancourt, Julio L.; Epps, Clinton W.; Crowhurst, Rachel S.; Mead, Jim I.; Ezcurra, Exequiel

    2014-01-01

    Bighorn sheep (Ovis canadensis) were not known to live on Tiburón Island, the largest island in the Gulf of California and Mexico, prior to the surprisingly successful introduction of 20 individuals as a conservation measure in 1975. Today, a stable island population of ∼500 sheep supports limited big game hunting and restocking of depleted areas on the Mexican mainland. We discovered fossil dung morphologically similar to that of bighorn sheep in a dung mat deposit from Mojet Cave, in the mountains of Tiburón Island. To determine the origin of this cave deposit we compared pellet shape to fecal pellets of other large mammals, and extracted DNA to sequence mitochondrial DNA fragments at the 12S ribosomal RNA and control regions. The fossil dung was 14C-dated to 1476–1632 calendar years before present and was confirmed as bighorn sheep by morphological and ancient DNA (aDNA) analysis. 12S sequences closely or exactly matched known bighorn sheep sequences; control region sequences exactly matched a haplotype described in desert bighorn sheep populations in southwest Arizona and southern California and showed subtle differentiation from the extant Tiburón population. Native desert bighorn sheep previously colonized this land-bridge island, most likely during the Pleistocene, when lower sea levels connected Tiburón to the mainland. They were extirpated sometime in the last ∼1500 years, probably due to inherent dynamics of isolated populations, prolonged drought, and (or) human overkill. The reintroduced population is vulnerable to similar extinction risks. The discovery presented here refutes conventional wisdom that bighorn sheep are not native to Tiburón Island, and establishes its recent introduction as an example of unintentional rewilding, defined here as the introduction of a species without knowledge that it was once native and has since gone locally extinct. PMID:24646515

  7. Local extinction and unintentional rewilding of bighorn sheep (Ovis canadensis) on a desert island

    USGS Publications Warehouse

    Wilder, Benjamin T.; Betancourt, Julio L.; Epps, Clinton W.; Crowhurst, Rachel S.; Mead, Jim I.; Ezcurra, Exequiel

    2014-01-01

    Bighorn sheep (Ovis canadensis) were not known to live on Tiburón Island, the largest island in the Gulf of California and Mexico, prior to the surprisingly successful introduction of 20 individuals as a conservation measure in 1975. Today, a stable island population of ~500 sheep supports limited big game hunting and restocking of depleted areas on the Mexican mainland. We discovered fossil dung morphologically similar to that of bighorn sheep in a dung mat deposit from Mojet Cave, in the mountains of Tiburón Island. To determine the origin of this cave deposit we compared pellet shape to fecal pellets of other large mammals, and extracted DNA to sequence mitochondrial DNA fragments at the 12S ribosomal RNA and control regions. The fossil dung was 14C-dated to 1476–1632 calendar years before present and was confirmed as bighorn sheep by morphological and ancient DNA (aDNA) analysis. 12S sequences closely or exactly matched known bighorn sheep sequences; control region sequences exactly matched a haplotype described in desert bighorn sheep populations in southwest Arizona and southern California and showed subtle differentiation from the extant Tiburón population. Native desert bighorn sheep previously colonized this land-bridge island, most likely during the Pleistocene, when lower sea levels connected Tiburón to the mainland. They were extirpated sometime in the last ~1500 years, probably due to inherent dynamics of isolated populations, prolonged drought, and (or) human overkill. The reintroduced population is vulnerable to similar extinction risks. The discovery presented here refutes conventional wisdom that bighorn sheep are not native to Tiburón Island, and establishes its recent introduction as an example of unintentional rewilding, defined here as the introduction of a species without knowledge that it was once native and has since gone locally extinct.

  8. Local extinction and unintentional rewilding of bighorn sheep (Ovis canadensis) on a desert island.

    PubMed

    Wilder, Benjamin T; Betancourt, Julio L; Epps, Clinton W; Crowhurst, Rachel S; Mead, Jim I; Ezcurra, Exequiel

    2014-01-01

    Bighorn sheep (Ovis canadensis) were not known to live on Tiburón Island, the largest island in the Gulf of California and Mexico, prior to the surprisingly successful introduction of 20 individuals as a conservation measure in 1975. Today, a stable island population of ∼500 sheep supports limited big game hunting and restocking of depleted areas on the Mexican mainland. We discovered fossil dung morphologically similar to that of bighorn sheep in a dung mat deposit from Mojet Cave, in the mountains of Tiburón Island. To determine the origin of this cave deposit we compared pellet shape to fecal pellets of other large mammals, and extracted DNA to sequence mitochondrial DNA fragments at the 12S ribosomal RNA and control regions. The fossil dung was 14C-dated to 1476-1632 calendar years before present and was confirmed as bighorn sheep by morphological and ancient DNA (aDNA) analysis. 12S sequences closely or exactly matched known bighorn sheep sequences; control region sequences exactly matched a haplotype described in desert bighorn sheep populations in southwest Arizona and southern California and showed subtle differentiation from the extant Tiburón population. Native desert bighorn sheep previously colonized this land-bridge island, most likely during the Pleistocene, when lower sea levels connected Tiburón to the mainland. They were extirpated sometime in the last ∼1500 years, probably due to inherent dynamics of isolated populations, prolonged drought, and (or) human overkill. The reintroduced population is vulnerable to similar extinction risks. The discovery presented here refutes conventional wisdom that bighorn sheep are not native to Tiburón Island, and establishes its recent introduction as an example of unintentional rewilding, defined here as the introduction of a species without knowledge that it was once native and has since gone locally extinct.

  9. Determination of critical habitat for the endangered Nelson's bighorn sheep in southern California

    USGS Publications Warehouse

    Turner, J.C.; Douglas, C.L.; Hallum, C.R.; Krausman, P.R.; Ramey, R.R.

    2004-01-01

    The United States Fish and Wildlife Service's (USFWS) designation of critical habitat for the endangered Nelson's bighorn sheep (Ovis canadensis nelsoni) in the Peninsular Ranges of southern California has been controversial because of an absence of a quantitative, repeatable scientific approach to the designation of critical habitat. We used 12,411 locations of Nelson's bighorn sheep collected from 1984-1998 to evaluate habitat use within 398 km2 of the USFWS-designated critical habitat in the northern Santa Rosa Mountains, Riverside County, California. We developed a multiple logistic regression model to evaluate and predict the probability of bighorn use versus non-use of native landscapes. Habitat predictor variables included elevation, slope, ruggedness, slope aspect, proximity to water, and distance from minimum expanses of escape habitat. We used Earth Resources Data Analysis System Geographic Information System (ERDAS-GIS) software to view, retrieve, and format predictor values for input to the Statistical Analysis Systems (SAS) software. To adequately account for habitat landscape diversity, we carried out an unsupervised classification at the outset of data inquiry using a maximum-likelihood clustering scheme implemented in ERDAS. We used the strata resulting from the unsupervised classification in a stratified random sampling scheme to minimize data loads required for model development. Based on 5 predictor variables, the habitat model correctly classified >96% of observed bighorn sheep locations. Proximity to perennial water was the best predictor variable. Ninety-seven percent of the observations were within 3 km of perennial water. Exercising the model over the northern Santa Rosa Mountain study area provided probabilities of bighorn use at a 30 x 30-m2 pixel level. Within the 398 km 2 of USFWS-designated critical habitat, only 34% had a graded probability of bighorn use to non-use ranging from ???1:1 to 6,044:1. The remaining 66% of the study area

  10. Wind-Snow Interactions and Treeline Advance in the Medicine Bow Mountains, Wyoming: A Coupled Examination Using Dendroecology and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Elliott, G.; Crawford, C. J.

    2014-12-01

    Research suggests that broad-scale increases in temperature facilitated an abrupt initiation of upper treeline advance beginning in the 1950s at climatic treelines throughout a large portion of the southern and central Rocky Mountains. Despite this regional trend, patterns of finer scale variability often imply the likely influence of both wind-snow interactions and temperature on driving regeneration dynamics in these climatically-sensitive ecotones. This is particularly true for mountain ranges subject to consistently strong winds, such as the Medicine Bow Mountains of southeast Wyoming. A rich history of treeline work exists for this area, yet questions remain regarding how influential wind and snowpack variability are in governing climate-vegetation interactions within upper treeline ecotones and whether this varies according to the level of wind exposure. Here we present a coupled examination using dendroecology and remote sensing to test the hypothesis that sufficient snow cover is required in order for the ecological manifestation of increasing temperatures to appear at upper treeline; namely treeline advance. We used dendroecological methods to reconstruct the history of colonization on the two highest peaks in the range (Medicine Bow Peak Massif and Kannaday Peak). We sampled a total of six sites by placing nested-belt transects on two south-facing and one north-facing site for each peak. To gauge the influence of wind-snow interactions at each site, we analyzed remotely-sensed images. We selected three sets of LANDSAT images for each mountain peak based on years with maximum, minimum, and mean snowfall conditions to capture the entire range of variability. Results demonstrate that snow cover can be a critical modifier of treeline advance, especially on wind-exposed slopes and on mountain peaks with a relatively dry hydroclimatology, where a protective snow layer is only evident during high snow years. Overall, this research suggests that the role of wind

  11. Discharge forecasts in mountain basins based on satellite snow cover mapping. [Dinwoody Creek Basin, Wyoming and the Dischma Basin, Switzerland

    NASA Technical Reports Server (NTRS)

    Martinec, J.; Rango, A. (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. A snow runoff model developed for European mountain basins was used with LANDSAT imagery and air temperature data to simulate runoff in the Rocky Mountains under conditions of large elevation range and moderate cloud cover (cloud cover of 40% or less during LANDSAT passes 70% of the time during a snowmelt season). Favorable results were obtained for basins with area not exceeding serval hundred square kilometers and with a significant component of subsurface runoff.

  12. Detecting short-term responses to weekend recreation activity: desert bighorn sheep avoidance of hiking trails

    USGS Publications Warehouse

    Longshore, Kathleen; Lowrey, Chris; Thompson, Daniel B.

    2013-01-01

    To study potential effects of recreation activity on habitat use of desert bighorn sheep (Ovis canadensis nelsoni), we placed Global Positioning System collars on 10 female bighorn sheep within the Wonderland of Rocks–Queen Mountain region of Joshua Tree National Park (JOTR), California, USA, from 2002 to 2004. Recreation use was highest from March to April and during weekends throughout the year. Daily use of recreation trails was highest during midday. By comparing habitat use (slope, ruggedness, distance to water, and distance to recreation trails) of female bighorn sheep on weekdays versus weekends, we were able to detect short-term shifts in behavior in response to recreation. In a logistic regression of bighorn sheep locations versus random locations for March and April, female locations at midday (1200 hours) were significantly more distant from recreation trails on weekends compared with weekdays. Our results indicate that within this region of JOTR, moderate to high levels of human recreation activity may temporarily exclude bighorn females from their preferred habitat. However, the relative proximity of females to recreation trails during the weekdays before and after such habitat shifts indicates that these anthropogenic impacts were short-lived. Our results have implications for management of wildlife on public lands where the co-existence of wildlife and recreational use is a major goal.

  13. An assessment of low flows in streams in northeastern Wyoming

    USGS Publications Warehouse

    Armentrout, G.W.; Wilson, J.F.

    1987-01-01

    Low flows were assessed and summarized in the following basins in northeastern Wyoming: Little Bighorn, Tongue, Powder, Little Missouri, Belle Fourche, Cheyenne, and Niobrara River, and about 200 river miles of the North Platte River and its tributaries. Only existing data from streamflow stations and miscellaneous observation sites during the period, 1930-80, were used. Data for a few stations in Montana and South Dakota were used in the analysis. Data were available for 56 perennial streams, 38 intermittent streams, and 34 ephemeral streams. The distribution of minimum observed flows of record at all stations and sites and the 7-day, 10-year low flows at mountain stations and main-stem plains stations are shown on a map. Seven day low flows were determined by fitting the log Pearsons Type III distribution to the data; results are tabulated only for the stations with at least 10 years of record that included at least one major drought. Most streams that originate in the foothills and plains have no flow during part of every year, and are typical of much of the study area. For stations on these streams , the frequency of the annual maximum number of consecutive days of no flow was determined, as an indicator of the likelihood of extended periods of no flow or drought. For estimates at ungaged sites on streams in the Bighorn Mountains only, a simple regression of 7-day, 10-year low flow on drainage area has a standard error of 64%, based on 19 stations with drainage areas of 2 to 200 sq mi. The 7-day, 10-year low flow in main-stem streams can be interpolated from graphs of 7-day, 10-year low flow versus distance along the main channel. Additional studies of low flow are needed. The data base, particularly synoptic baseflow information, needs considerable expansion. Also, the use of storage-analysis procedures should be considered as a means of assessing the availability of water in streams that otherwise are fully appropriated or that are ephemeral. (Author 's

  14. Influence of tectonic terranes adjacent to Precambrian Wyoming province of petroleum source and reservoir rock stratigraphy in northern Rocky Mountain region

    SciTech Connect

    Tonnsen, J.J.

    1984-07-01

    The perimeter of the Archean Precambrian Wyoming province can be generally defined. A Proterozoic suture belt separates the province from the Archean Superior province to the east. The western margin of the Precambrian rocks lies under the western Overthrust belt, but the Precambrian province extends at least as far west as southwest Montana and southeast Idaho. The province is bounded on the north and south by more regionally extensive Proterozoic mobile belts. In the northern belt, Archean rocks have been remobilized by Proterozoic tectonic events, but the southern belt does not appear to contain rocks as old as Archean. The tectonic response of these Precambrian terranes to cratonic and continental margin vertical and horizontal forces has exerted a profound influence on Phanerozoic sedimentation and stratigraphic facies distributions. Petroleum source rock and reservoir rock stratigraphy of the Northern Rocky Mountain region has been correlated with this structural history. In particular, the Devonian, Permian, and Jurassic sedimentation patterns can be shown to have been influenced by articulation among the different terranes comprising the ancient substructure. Depositional patterns in the Chester-Morrow carbonate and clastic sequence in the Central Montana trough are also related to this substructure. Further, a correlation between these tectonic terranes and the localization of regional hydrocarbon accumulations has been observed and has been useful in basin analyses for exploration planning.

  15. Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming - A review and new analysis of past study results

    USGS Publications Warehouse

    Burns, Douglas A.

    2003-01-01

    The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7kgha-1yr-1 of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but data from the National Atmospheric Deposition Program and Clean Air Status and Trends Network show no region-wide increase during the past 2 decades. Nitrogen loads in atmospheric wet deposition have increased since the mid-1980s, however, at three high elevation (>3000m) sites east of the Continental Divide in the Front Range. Much of this increase is the result of increased ammonium (NH4+) concentrations in wet deposition. This suggests an increase in contributions from agricultural areas or from vehicles east of the Rocky Mountains and is consistent with the results of previous studies that have suggested a significant eastern source for atmospheric N deposition to the Front Range. The four sites with the highest NH4+ concentrations in wet deposition were among the six easternmost NADP sites, which is also consistent with a source to the east of the Rockies. This analysis found an increase in N loads in wet deposition at Niwot Ridge of only 0.013kgha-1yr-1, more than an order of magnitude less than previously reported for this site. This lower rate of increase results from application of the non-parametric Seasonal Kendall trend test to mean monthly data, which failed a test for normality, in contrast to linear regression, which was applied to mean annual data in a previous study. Current upward trends in population growth and energy use in Colorado and throughout the west suggest a need for continued monitoring of atmospheric deposition of N, and may reveal more widespread trends in N deposition in the future.

  16. Heat flow studies in Wyoming: 1979 to 1981

    SciTech Connect

    Heasler, H.P.; Decker, E.R.; Buelow, K.L.; Ruscetta, C.A.

    1982-05-01

    Heat flow values and updated maps of flux in Wyoming, northern Colorado, and southern Montana are presented. It is concluded that most of the heat flow values in the Wyoming Basin-Southern Rocky Mountains region in Southern Wyoming are low or normal, excluding the Saratoga Valley; that the regional flux in the Owl Creek Mountains area is above normal; and that the Meadow Creek Basin area is in a zone of high flux. (MJF)

  17. A computational approach to Quaternary lake-level reconstruction applied in the central Rocky Mountains, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Pribyl, Paul; Shuman, Bryan N.

    2014-07-01

    Sediment-based reconstructions of late-Quaternary lake levels provide direct evidence of hydrologic responses to climate change, but many studies only provide approximate lake-elevation curves. Here, we demonstrate a new method for producing quantitative time series of lake elevation based on the facies and elevations of multiple cores collected from a lake's margin. The approach determines the facies represented in each core using diagnostic data, such as sand content, and then compares the results across cores to determine the elevation of the littoral zone over time. By applying the approach computationally, decisions are made systematically and iteratively using different facies classification schemes to evaluate the associated uncertainty. After evaluating our assumptions using ground-penetrating radar (GPR), we quantify past lake-elevation changes, precipitation minus evapotranspiration (ΔP-ET), and uncertainty in both at Lake of the Woods and Little Windy Hill Pond, Wyoming. The well-correlated (r = 0.802 ± 0.002) reconstructions indicate that water levels at both lakes fell at > 11,300, 8000-5500, and 4700-1600 cal yr BP when ΔP - ET decreased to - 50 to - 250 mm/yr. Differences between the reconstructions are typically small (10 ± 24 mm/yr since 7000 cal yr BP), and the similarity indicates that our reconstruction method can produce statistically comparable paleohydrologic datasets across networks of sites.

  18. Late Paleocene high Laramide ranges in northeast Wyoming: Oxygen isotope study of ancient river water

    NASA Astrophysics Data System (ADS)

    Fan, Majie; Dettman, David L.

    2009-08-01

    The distribution and initial timing of the establishment of high surface elevations in the Rocky Mountains during the Early Cenozoic remain controversial despite the importance of these data in testing tectonic models for this region. We track the timing and distribution of high elevation in the Rocky Mountains during the Late Cretaceous-Early Eocene by examining annual and seasonal δ18O values of the ancient river water, which are calculated from the δ18O values of well-preserved freshwater bivalve shells. In the Powder River basin of the eastern Laramide province, the δ18O values of the ancient river water vary between - 23.0‰ and - 8.0‰ SMOW in both seasonal and annual records in the Late Paleocene-Early Eocene. The large variation suggests that the ancient rivers were fed yearly or seasonally by snowmelt from highlands of 4.5 ± 1.3 km. This can be explained by the existence of the Bighorn Mountains and Black Hills with a drainage pattern similar to the present in northeast Wyoming. The δ18O values of ancient river water along the front of the Sevier thrust belt generally follow a trend from lower values in north, - 14.2 ± 1.4‰ in the Early Paleocene Crazy Mountains basin, to higher values in south, - 11.1 ± 0.8‰ in the Late Paleocene Bighorn basin, and - 7.1 ± 1.6‰ in the Early Eocene Washakie basin. The variations within each basin are relatively small. These rivers most likely rise in the Sevier thrust belt, and may reflect highland elevation of 1-2 km. The δ18O values in the Alberta foreland and Williston basin are very low (- 20.5‰) in the Late Cretaceous, indicating the rivers were fed by snowmelt from the Canadian Rocky Mountains of 4.3 ± 1.0 km high. The attainment of high elevation in the eastern Laramide province prior to the western province could be explained by southwestward progression of back-thrusts soled into an earlier east-directed master detachment, which may be formed by the westward rollback of subducted shallow slab.

  19. Evaluation of Cottonwood Creek field complex, Bighorn basin, Wyoming

    SciTech Connect

    Inden, R.; Anderson, R.

    1986-08-01

    Most of the 83 million bbl of oil produced from Cottonwood Creek and associated fields (Worland, Rattlesnake, South Frisby) is from a suite of peritidal dolomite facies that were deposited in and on the flanks of an ancient estuarine system. Isopach and facies maps suggest that the Tensleep fault and related northwest-southeast-oriented basement fault blocks, controlled the formation of this estuary during Late Pennsylvanian/Early Permian time and the pattern of late Ervay deposition within the estuary. Upper Ervay pisolitic and algal-laminated units, along with intraclast grainstones, map as thick (40 to 90 ft), 1 to 2-mi wide and 2 to 5-mi long pods that represent a northwest-southeast peninsular system of islands. The thickest (i.e., central and highest) portions of these islands are made up of extensively altered pisolitic, brecciated units whose porosity systems were destroyed by aragonite and calcite cementation during periodically low sea level stands. The thinner margins of these island pods are made up of reservoir-quality peritidal fenestral fabric, algal-laminated units, and intraclast grainstones that were subjected to significantly less cementation because of less-frequent exposure. Permeability in these units may be enhanced by preferential fracturing because they were deposited along paleostructural zones of weakness. As a result of these depositional, diagenetic, and fracture patterns, cumulative production is commonly much higher (> 200,000 bbl/well) from the flank positions of these pods. Lagoonal dolomite mudstones and red-bed/evaporite sequences were deposited between and behind these islands, respectively, and form the major updip hydrocarbon seals.

  20. Deep crustal imaging of thick-skinned foreland fold and thrust belts: The Rocky Mountains and the Sierras Pampeanas

    NASA Astrophysics Data System (ADS)

    Sheehan, A.; Anderson, M. L.; Alvarado, P. M.; Beck, S. L.; Erslev, E.; Gilbert, H. J.; Miller, K. C.; Ridgway, K. D.; Worthington, L. L.; Yeck, W. L.; Zandt, G.

    2013-05-01

    Foreland mountain belts consisting of basement-involved arches are major features of many modern and ancient contractional orogens. They occur most prominently during low-angle subduction (e.g., the Rocky Mountains of North America and Sierras Pampeanas of South America) and continental collision. The dissimilarity between thick-skinned, arch-dominated and more thin-skinned fold and thrust belts as well as their placement far from active tectonic boundaries prompts the following question: do these arches form due to the lithospheric rheology inherent to the zone between mobile belts and cratons, or are they driven by deeper processes such as low-angle subduction? Previous geologic studies have shown that the upper crustal geometries bounding these arches are broadly similar, however the manifestation of shortening at depth and the rheology of the lower crust and upper mantle has been uncertain due to the absence of detailed geophysical imaging. This situation is changing rapidly, as foreland arches are the target of deep seismological investigations in both North and South America. In this presentation we will compare and contrast recent results from seismological experiments in the Sierras Pampeanas of Argentina and the Bighorn Mountains in Wyoming, USA. Late Cretaceous to Early Eocene Laramide orogenesis produced the Bighorn arch, deforming a sequence of platformal sediments which can be used as stratigraphic markers in tectonic reconstructions. The Bighorn Arch Seismic Experiment (BASE) took place in 2009-10 and included a passive-source seismic experiment, a crustal-scale active-source seismic experiment, a hybrid active-passive experiment, and kinematic investigations. The Pampean flat-slab region of Argentina and Chile is considered a modern analogue for Laramide flat-slab subduction of North America. The Sierras de Cordoba is one of the largest arches comprising the Sierras Pampeanas, lacks much platformal sediment to define deformation geometries, and is

  1. Mountains

    SciTech Connect

    Fuller, M.

    1989-01-01

    This book covers the following topics: Above the forest: the alpine tundra; Solar energy, water, wind and soil in mountains; Mountain weather; Mountain building and plate tectonics; Mountain walls: forming, changing, and disappearing; Living high: mountain ecosystems; Distribution of mountain plants and animals; On foot in the mountains: how to hike and backpack; Ranges and peaks of the world. Map and guidebook sources, natural history and mountain adventure trips, mountain environmental education centers and programs, and sources of information on trails for the handicapped are included.

  2. Effects of urban development on stream ecosystems alongthe Front Range of the Rocky Mountains, Colorado and Wyoming

    USGS Publications Warehouse

    Sprague, Lori A.; Zuellig, Robert E.; Dupree, Jean A.

    2006-01-01

    The U.S. Geological Survey (USGS) conducted a study from 2002 through 2003 through its National Water-Quality Assessment (NAWQA) Program to determine the effects of urbanization on the physical, chemical, and biological characteristics of stream ecosystems along the Front Range of the Rocky Mountains. The objectives of the study were to (1) examine physical, chemical, and biological responses at sites ranging from minimally to highly developed; (2) determine the major physical, chemical, and landscape variables affecting aquatic communities at these sites; and (3) evaluate the relevance of the results to the management of water resources in the South Platte River Basin.

  3. Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: Evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton

    USGS Publications Warehouse

    Downes, H.; Macdonald, R.; Upton, B.G.J.; Cox, K.G.; Bodinier, J.-L.; Mason, P.R.D.; James, D.; Hill, P.G.; Hearn, B.C.

    2004-01-01

    Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountains volcanic field (Montana, USA), derived from the lower lithosphere of the Wyoming craton, can be divided based on textural criteria into tectonite and cumulate groups. The tectonites consist of strongly depleted spinel lherzolites, harzbugites and dunites. Although their mineralogical compositions are generally similar to those of spinel peridotites in off-craton settings, some contain pyroxenes and spinels that have unusually low Al2O3 contents more akin to those found in cratonic spinel peridotites. Furthermore, the tectonite peridotites have whole-rock major element compositions that tend to be significantly more depleted than non-cratonic mantle spinel peridotites (high MgO, low CaO, Al2O3 and TiO2) and resemble those of cratonic mantle. These compositions could have been generated by up to 30% partial melting of an undepleted mantle source. Petrographic evidence suggests that the mantle beneath the Wyoming craton was re-enriched in three ways: (1) by silicate melts that formed mica websterite and clinopyroxenite veins; (2) by growth of phlogopite from K-rich hydrous fluids; (3) by interaction with aqueous fluids to form orthopyroxene porphyroblasts and orthopyroxenite veins. In contrast to their depleted major element compositions, the tectonite peridotites are mostly light rare earth element (LREE)-enriched and show enrichment in fluid-mobile elements such as Cs, Rb, U and Pb on mantle-normalized diagrams. Lack of enrichment in high field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf) suggests that the tectonite peridotites have been metasomatized by a subduction-related fluid. Clinopyroxenes from the tectonite peridotites have distinct U-shaped REE patterns with strong LREE enrichment. They have 143Nd/144Nd values that range from 0??5121 (close to the host minette values) to 0??5107, similar to those of xenoliths from the nearby Highwood Mountains. Foliated mica websterites also have low 143Nd

  4. Mineral weathering experiments to explore the effects of vegetation shifts in high mountain region (Wind River Range, Wyoming, USA)

    NASA Astrophysics Data System (ADS)

    Mavris, Christian; Furrer, Gerhard; Dahms, Dennis; Anderson, Suzanne P.; Blum, Alex; Goetze, Jens; Wells, Aaron; Egli, Markus

    2015-04-01

    Climate change influences the evolution of soil and landscape. With changing climate, both flora and fauna must adapt to new conditions. It is unknown in many respects to what extent soils will react to warming and vegetation change. The aim of this study was to identify possible consequences for soils in a dry-alpine region with respect to weathering of primary minerals and leaching of elements under expected warming climate conditions due to shifts in vegetation. To achieve this, a field empirical approach was used in combination with laboratory weathering experiments simulating several scenarios. Study sites located in Sinks Canyon and in Stough Basin of the Wind River Range, Wyoming, USA, encompass ecotones that consist of tundra, forest, or sagebrush (from moist to dry, with increasing temperature, respectively). All soils are developed on granitoid moraines. The mineralogy of the soils along the altitudinal sequence was analysed using cathodoluminescence and X-ray diffraction, and revealed clear mineral transformations: biotite and plagioclase were both weathered to smectite while plagioclase also weathered to kaolinite. Cooler, wetter, altitude-dependent conditions seemed to promote weathering of these primary minerals. To test the impact of soil solutions from different ecotones on mineral weathering, aqueous extracts from topsoils (A horizons) were reacted with subsoils (B horizons) in batch experiments. Aqueous extracts of topsoil samples were generated for all three ecotones, and these solutions were characterized. For the batch experiments, the topsoil extracts were reacted for 1800 hours with the subsoil samples of the same ecotone, or with the subsoil samples from higher altitude ecotones. Solutions collected periodically during the experiments were measured using ICP-OES and ion chromatography. Dissolved Ca, Mg and K were mainly controlled by the chemical weathering of oligoclase, K-feldspar and biotite. With increasing altitude (and consequently

  5. Controls on the deposition and preservation of the Cretaceous Mowry Shale and Frontier Formation and equivalents, Rocky Mountain region, Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Kirschbaum, Mark A.; Mercier, Tracey J.

    2013-01-01

    Regional variations in thickness and facies of clastic sediments are controlled by geographic location within a foreland basin. Preservation of facies is dependent on the original accommodation space available during deposition and ultimately by tectonic modification of the foreland in its postthrusting stages. The preservation of facies within the foreland basin and during the modification stage affects the kinds of hydrocarbon reservoirs that are present. This is the case for the Cretaceous Mowry Shale and Frontier Formation and equivalent strata in the Rocky Mountain region of Colorado, Utah, and Wyoming. Biostratigraphically constrained isopach maps of three intervals within these formations provide a control on eustatic variations in sea level, which allow depositional patterns across dip and along strike to be interpreted in terms of relationship to thrust progression and depositional topography. The most highly subsiding parts of the Rocky Mountain foreland basin, near the fold and thrust belt to the west, typically contain a low number of coarse-grained sandstone channels but limited sandstone reservoirs. However, where subsidence is greater than sediment supply, the foredeep contains stacked deltaic sandstones, coal, and preserved transgressive marine shales in mainly conformable successions. The main exploration play in this area is currently coalbed gas, but the enhanced coal thickness combined with a Mowry marine shale source rock indicates that a low-permeability, basin-centered play may exist somewhere along strike in a deep part of the basin. In the slower subsiding parts of the foreland basin, marginal marine and fluvial sandstones are amalgamated and compartmentalized by unconformities, providing conditions for the development of stratigraphic and combination traps, especially in areas of repeated reactivation. Areas of medium accommodation in the most distal parts of the foreland contain isolated marginal marine shoreface and deltaic sandstones

  6. Ground-water resources of Sheridan County, Wyoming

    USGS Publications Warehouse

    Lowry, Marlin E.; Cummings, T. Ray

    1966-01-01

    Sheridan County is in the north-central part of Wyoming and is an area of about 2,500 square miles. The western part of the county is in the Bighorn Mountains, and the eastern part is in the Powder River structural basin. Principal streams are the Powder and Tongue Rivers, which are part of the Yellowstone River system. The climate is semiarid, and the mean annual precipitation at Sheridan is about 16 inches. Rocks of Precambrian age are exposed in the central part of the Bighorn Mountains, and successively younger rocks are exposed eastward. Rocks of Tertiary age, which are the most widespread, are exposed throughout a large part of the Powder River structural basin. Deposits of Quaternary age underlie the flood plains and terraces along the larger streams, particularly in the western part of the basin. Aquifers of pre-Tertiary age are exposed in the western part of the county, but they dip steeply and are deeply buried just a few miles east of their outcrop. Aquifers that might yield large supplies of water include the Bighorn Dolomite, Madison Limestone, Amsden Formation, and Tensleep Sandstone. The Flathead Sandstone, Sundance Formation, Morrison Formation, Cloverly Formation,. Newcastle Sandstone, Frontier Formation, Parkman Sandstone, Bearpaw Shale, .and Lance Formation may yield small or, under favorable conditions, moderate supplies of water. Few wells tap aquifers of pre-Tertiary age, and these are restricted to the outcrop area. The meager data available indicate that the water from the Lance Formation, Bearpaw Shale, Parkman Sandstone, Tensleep Sandstone and Amsden Formation, and Flathead Standstone is of suitable quality for domestic or stock purposes, and that water from the Tensleep Sandstone and Amsden Formation and the Flathead Sandstone is of good quality for irrigation. Samples could not be obtained from other aquifers of pre-Tertiary age; so the quality of water in these aquifers could not be determined. Adequate supplies of ground water for

  7. The effects of atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming -- a synthesis and critical assessment of published results

    USGS Publications Warehouse

    Burns, Douglas A.

    2002-01-01

    The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7 kilograms per hectare per year ((kg/ha)/yr) of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. The Rocky Mountain National Park, in its role of protecting air-quality related values under provisions of the Clean Air Act Amendments of 1977, has provided support for this synthesis and critical assessment of published literature on the effects of atmospheric N deposition. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but no region-wide increase during the past 2 decades, although the rate of atmospheric N deposition has increased at three sites east of the Continental Divide in the Front Range region since the mid-1980s. Much of the increase in atmospheric N deposition at all three sites has resulted from an increase in the ammonium concentrations of wet deposition; this suggests an increase in contributions from agricultural areas or from vehicle traffic east of the Rocky Mountains. Lakes at two study sites in the Front Range (Loch Vale and Green Lakes Valley) had NO3- concentrations of 30 to 40 micromoles per liter (?mol/L) during early spring snowmelt and remained at 5 to 10 ?mol/L during summer. Retention of N in atmospheric wet deposition in some sub-catchments of these lakes was less than 50 percent, which reflects an advanced stage of N saturation. Nitrate concentrations in surface waters west of the Continental Divide were lower -- often less than 10 ?mol/L during snowmelt and less than 2 ?mol/L during summer -- than surface waters east of the Divide, except in areas such as the Mt. Zirkel Wilderness that receive elevated amounts of atmospheric N deposition of 4 to 5 (kg/ha)/yr. Atmospheric N deposition in the Front Range east of the Divide may have altered the composition of alpine tundra-plant communities

  8. Demography, not inheritance, drives phenotypic change in hunted bighorn sheep

    PubMed Central

    Traill, Lochran W.; Schindler, Susanne; Coulson, Tim

    2014-01-01

    Selective harvest, such as trophy hunting, can shift the distribution of a quantitative character such as body size. If the targeted character is heritable, then there will be an evolutionary response to selection, and where the trait is not, then any response will be plastic or demographic. Identifying the relative contributions of these different mechanisms is a major challenge in wildlife conservation. New mathematical approaches can provide insight not previously available. Here we develop a size- and age-based two-sex integral projection model based on individual-based data from a long-term study of hunted bighorn sheep (Ovis canadensis) at Ram Mountain, Canada. We simulate the effect of trophy hunting on body size and find that the inheritance of body mass is weak and that any perceived decline in body mass of the bighorn population is largely attributable to demographic change and environmental factors. To our knowledge, this work provides the first use of two-sex integral projection models to investigate the potential eco-evolutionary consequences of selective harvest. PMID:25114219

  9. Results of Phase 1 postburn drilling and coring, Rocky Mountain 1 Underground Coal Gasification Site, Hanna Basin, Wyoming

    SciTech Connect

    Lindblom, S.R.; Covell, J.R.; Oliver, R.L.

    1990-09-01

    The Rocky Mountain 1 (RM1) Underground Coal Gasification (UCG) test consisted of two different module configurations: the controlled retracting injection point (CRIP) and elongated linked well (ELW) configurations. The postburn coring of the RM1 UCG site was designed in two phases to fulfill seven objectives outlined in the Western Research Institute's (WRI) annual project plan for 1988--1989. The seven objectives were to (1) delineate the areal extent of the cavities, (2) identify the extent of roof collapse, (3) obtain samples of all major cavity rock types, (4) characterize outflow channels and cavity stratigraphy, (5) characterize the area near CRIP points and ignition points, (6) further define the structural geology of the site, and (7) identify the vertical positioning of the horizontal process wells within the coal seam. Phase 1 of the coring was completed in the summer of 1989 and served to partially accomplish all seven objectives. In relation to the seven objectives, WRI determined that (1) the ELW cavity extends farther to the west and the CRIP cavity was located 5--10 feet farther to the south than anticipated; (2) roof collapse was contained within unit A in both modules; (3) samples of all major rock types were recovered; (4) insufficient data were obtained to characterize the outflow channels, but cavity stratigraphy was well defined; (5) bore holes near the CRIP points and ignition point did not exhibit characteristics significantly different from other bore holes in the cavities; (6) a fault zone was detected between VIW=1 and VIW-2 that stepped down to the east; and (7) PW-1 was only 7--12 feet below the top of the coal seam in the eastern part of the ELW module area; and CIW-1 was located 18--20 feet below the top of the coal seam in the CRIP module area. 7 refs., 7 figs., 1 tab.

  10. Cross folding in southern Bighorn basin

    SciTech Connect

    Gubbels, T.L.

    1986-08-01

    Analysis of Landsat Thematic Mapper imagery coupled with surface structural investigations of well-exposed folds in the southern Bighorn basin have revealed two northwest-trending folds that have been refolded. The eastern boundary of the Owl Creek Mountains is characterized by a well-defined alignment of folds that extend north-northwest from the Owl Creek thrust front. Bridger monocline, Wildhorse Butte anticline, and Red Hole anticline lie along this trend. Initial Laramide folding, probably during latest Cretaceous time, resulted in a single, continuous, north-northwest-trending anticline with a southwestward vergence. This anticline was progressively unfolded from south to north as the Owl Creek Range was thrust southward over the Wind River basin in earliest Eocene time; scissors-like vertical motion along this flexure rotated the axial surface of the early formed Bridger anticline, resulting in a monocline with a reversed vergence (northeastward). Formation of the Thermopolis/East Warm Springs anticline parallel to the north flank of the range accompanied thrusting and effectively refolded the northern end of the Wildhorse Butte anticline along an east-west axis. Faulting of the oversteepened south limb of the Red Hole cross fold was contemporaneous with folding. Cross-cutting fold axes in this area and the Mud Creek area to the west are best explained by a counterclockwise change in stress direction during the latest phase of the Laramide orogeny. Vertical movement along the eastern side of the Owl Creek Range results from differential motion in the hanging wall of the crystalline thrust sheet.

  11. Net ecosystem exchange of carbon dioxide and evapotranspiration response of a high elevation Rocky Mountain (Wyoming, USA) forest to a bark beetle epidemic

    NASA Astrophysics Data System (ADS)

    Frank, J. M.; Massman, W. J.; Ewers, B. E.

    2011-12-01

    Bark beetle epidemics have caused major disturbance in the forests of western North America where significant tree mortality alters the balance of ecosystem photosynthesis, carbon balance, and water exchange. In this study we investigate the change in the growing-season light-response of net ecosystem exchange of carbon dioxide (NEE) and evapotranspiration (ET) in a high elevation Rocky Mountain forest over the three years preceding and three years following a bark beetle outbreak. The GLEES AmeriFlux site (southeastern Wyoming, USA) is located in a high elevation subalpine forest dominated by Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) and recently experienced an epidemic of spruce beetle (Dendroctonus rufipennis). The peak beetle outbreak occurred in 2008, and has impacted 35% of the stems and 90% of the basal area of Engelmann spruce, which accounts for 30% of the trees and 70% of the basal area of the forest. Two semi-empirical light response curves for eddy-covariance carbon flux were compared, with a logistic sigmoid performing better because of residual bias than a rectangular hyperbola (Michaelis-Menten) at estimating the quantum yield of photosynthesis. In the first two years after the peak beetle outbreak the original quantum yield of 0.015 mol mol-1 was reduced by 25%. By the third year it was reduced by a half, which was composed of declines of 45% in the ecosystem's responses to diffuse radiation and 60% to direct radiation. The light-saturated rate of photosynthesis decreased by 10% in the first two years post outbreak, and fell by 40% in the third year. After the peak outbreak, the cumulative NEE over the growing season was reduced by over a half from a sink of 185 gC m-2 to 80 gC m-2, and by the third year it was reduced to near zero, or carbon neutral. The change in the ET response to light was similar in all years after the peak outbreak where the slope of the response curve was decreased by 25%. This led to a

  12. Haemophilus somnus (Histophilus somni) in bighorn sheep

    PubMed Central

    2006-01-01

    Abstract Respiratory disease and poor lamb recruitment have been identified as limiting factors for bighorn-sheep populations. Haemophilus somnus (recently reclassified as Histophilus somni) is associated with respiratory disease in American bison, domestic sheep, and cattle. It is also harbored in their reproductive tracts and has been associated with reproductive failure in domestic sheep and cattle. Therefore, reproductive tract and lung samples from bighorn sheep were evaluated for the presence of this organism. Organisms identified as H. somnus were isolated from 6 of 62 vaginal but none of 12 preputial swab samples. Antigen specific to H. somnus was detected by immunohistochemical study in 4 of 12 formalin-fixed lung tissue samples of bighorn sheep that died with evidence of pneumonia. Notably, H. somnus was found in alveolar debris in areas of inflammation. The 6 vaginal isolates and 2 H. somnus isolates previously cultured from pneumonic lungs of bighorn sheep were compared with 3 representative isolates from domestic sheep and 2 from cattle. The profiles of major outer membrane proteins and antigens for all of the isolates were predominantly similar, although differences that may be associated with the host–parasite relationship and virulence were detected. The DNA restriction fragment length profiles of the bighorn-sheep isolates had similarities not shared with the other isolates, suggesting distinct phylogenetic lines. All of the isolates had similar antimicrobial profiles, but the isolates from the bighorn sheep produced less pigment than those from the domestic livestock, and growth of the former was not enhanced by CO2. Wildlife biologists and diagnosticians should be aware of the potential of these organisms to cause disease in bighorn sheep and of growth characteristics that may hinder laboratory detection. PMID:16548330

  13. Workforce: Wyoming

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    From 2002 to 2012, the economy in Wyoming and the nation will continue generating jobs for workers at all levels of education and training, but there will be an increasing demand for employees with at least some postsecondary education, preferably a bachelor's degree. Nationwide, during a decade that will witness large numbers of baby boomers…

  14. Proterozoic evolution of the western margin of the Wyoming craton: Implications for the tectonic and magmatic evolution of the northern Rocky Mountains

    USGS Publications Warehouse

    Foster, D.A.; Mueller, P.A.; Mogk, D.W.; Wooden, J.L.; Vogl, J.J.

    2006-01-01

    Defining the extent and age of basement provinces west of the exposed western margin of the Archean Wyoming craton has been elusive because of thick sedimentary cover and voluminous Cretaceous-Tertiary magmatism. U-Pb zircon geochronological data from small exposures of pre-Belt supergroup basement along the western side of the Wyoming craton, in southwestern Montana, reveal crystallization ages ranging from ???2.4 to ???1.8 Ga. Rock-forming events in the area as young as ???1.6 Ga are also indicated by isotopic (Nd, Pb, Sr) signatures and xenocrystic zircon populations in Cretaceous-Eocene granitoids. Most of this lithosphere is primitive, gives ages ???1.7-1.86 Ga, and occurs in a zone that extends west to the Neoproterozoic rifted margin of Laurentia. These data suggest that the basement west of the exposed Archean Wyoming craton contains accreted juvenile Paleoproterozoic arc-like terranes, along with a possible mafic underplate of similar age. This area is largely under the Mesoproterozoic Belt basin and intruded by the Idaho batholith. We refer to this Paleoproterozoic crust herein as the Selway terrane. The Selway terrane has been more easily reactivated and much more fertile for magma production and mineralization than the thick lithosphere of the Wyoming craton, and is of prime importance for evaluating Neoproterozoic continental reconstructions. ?? 2006 NRC Canada.

  15. Uranium assessment for the Precambrian pebble conglomerates in southeastern Wyoming

    SciTech Connect

    Borgman, L.E.; Sever, C.; Quimby, W.F.; Andrew, M.E.; Karlstrom, K.E.; Houston, R.S.

    1981-03-01

    This volume is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates, and is a companion to Volume 1: The Geology and Uranium Potential to Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 2: Drill-Hole Data, Drill-Site Geology, and Geochemical Data from the Study of Precambrian Uraniferous Conglomerates of the Medicine Bow Mountains and the Sierra Madre of Southeastern Wyoming.

  16. Distinguishing major lithologic types in rocks of precambrian age in central Wyoming using multilevel sensing, with a chapter on possible economic significance of iron formation discovered by use of aircraft images in the Granite Mountains of Wyoming

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Information obtained by remote sensing from three altitude levels: ERTS-1 (565 miles), U-2 (60,000 feet), and C-130 aircraft (15,000 feet) illustrates the possible application of multilevel sensing in mineral exploration. Distinction can be made between rocks of greenstone belts and rocks of granite-granite gneiss areas by using ERTS-1 imagery in portions of the Precambrian of central Wyoming. Study of low altitude color and color infrared photographs of the mafic terrain revealed the presence of metasedimentary rocks with distinct layers that were interpreted as amphibolite by photogeologic techniques. Some of the amphibolite layers were found to be iron formation when examined in the field. To our knowledge this occurrence of iron formation has not been previously reported in the literature.

  17. Mountain Goats (Oreamnos americanum) at the livestock/wildlife interface: A susceptible species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mountain goats (Oreamnos americanum) were first introduced into the East Humboldt and Ruby Mountains of Elko County, Nevada in the 1960’s. These contiguous mountain ranges are also home to introduced Rocky Mountain bighorn sheep and native mule deer and are surrounded by both public and private rang...

  18. Map Showing Principal Coal Beds and Bedrock Geology of the Ucross-Arvada Area, Central Powder River Basin, Wyoming

    USGS Publications Warehouse

    Molnia, Carol L.

    2013-01-01

    The Ucross-Arvada area is part of the Powder River Basin, a large, north-trending structural depression between the Black Hills on the east and the Bighorn Mountains on the west. Almost all of the study area is within Sheridan and Johnson Counties, Wyoming. Most of the Ucross-Arvada area lies within the outcrop of the Wasatch Formation of Eocene age; the extreme northeast corner falls within the outcrop of the Tongue River Member of the Fort Union Formation of Paleocene age. Within the Powder River Basin, both the Wasatch Formation and the Tongue River Member of the Fort Union Formation contain significant coal resources. The map includes locations and elevations of coal beds at 1:50,000 scale for an area that includes ten 7½-minute quadrangles covering some 500 square miles. The Wasatch Formation coal beds shown (in descending order) are Monument Peak, Walters (also called Ulm 1), Healy (also called Ulm 2), Truman, Felix, and Arvada. The Fort Union Formation coal beds shown (in descending order) are Roland (of Baker, 1929) and Smith.

  19. Stratigraphic cross sections of the Niobrara interval of the Cody Shale and associated rocks in the Wind River Basin, central Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.

    2017-02-07

    The Wind River Basin in Wyoming is one of many structural and sedimentary basins that formed in the Rocky Mountain foreland during the Laramide orogeny. The basin is nearly 200 miles long, 70 miles wide, and encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range, Owl Creek uplift, and southern Bighorn Mountains on the north, the Casper arch on the east, the Granite Mountains on the south, and Wind River Range on the west.Many important conventional oil and gas fields producing from reservoirs ranging in age from Mississippian through Tertiary have been discovered in this basin. In addition, an extensive unconventional overpressured basin-centered gas accumulation has been identified in Cretaceous and Tertiary strata in the deeper parts of the basin. It has long been suggested that various Upper Cretaceous marine shales, including the Cody Shale, are the principal hydrocarbon source rocks for many of these accumulations. With recent advances and success in horizontal drilling and multistage fracture stimulation, there has been an increase in exploration and completion of wells in these marine shales in other Rocky Mountain Laramide basins that were traditionally thought of only as hydrocarbon source rocks.The two stratigraphic cross sections presented in this report were constructed as part of a project carried out by the U.S. Geological Survey to characterize and evaluate the undiscovered continuous (unconventional) oil and gas resources of the Niobrara interval of the Upper Cretaceous Cody Shale in the Wind River Basin in central Wyoming. The primary purpose of the cross sections is to show the stratigraphic relationship of the Niobrara equivalent strata and associated rocks in the lower part of the Cody Shale in the Wind River Basin. These two cross sections were constructed using borehole geophysical logs from 37 wells drilled for oil and gas exploration and production, and one surface section along East Sheep Creek

  20. Heritability of body mass varies with age and season in wild bighorn sheep

    PubMed

    Reale; Festa-Bianchet; Jorgenson

    1999-11-01

    Heritabilities (h2) of body mass at different ages and seasons were estimated using offspring-mother regression and restricted maximum likelihood (REML) methods for bighorn sheep on Ram Mountain, Alberta. Both methods resulted in similar estimates of h2 for adults, but for lambs and yearlings heritability was underestimated by offspring-mother regression relative to REML, possibly because of higher maternal-effects bias for offspring-mother regression. Heritabilities of body mass in bighorn were similar to published estimates for domestic sheep. Heritability estimated by offspring-mother regression increased after 2 years of age. The REML method suggested that heritability was moderate for lambs and yearlings, very low at 2 years of age, and increased afterwards. The increase in heritability with age was attributed to declining negative maternal effects. Very low h2 estimates at 2 years of age, obtained with both methods, appeared to be caused by a combination of high environmental variance and very low genetic variance. Body mass of bighorn sheep has a pronounced seasonal cycle, and h2 was lower in June than in September for 2-year-olds and older sheep, and associated with both lower VA and higher VE in spring.

  1. Restoration of bighorn sheep metapopulations in and near 15 national parks: Conservation of a severely fragmented species; Volume I, Planning, problem definition, findings, and restoration

    USGS Publications Warehouse

    Singer, Francis J.; Gudorf, Michelle A.

    1999-01-01

    This report details the 7-year restoration of bighorn sheep to all currently suitable historic habitats in the national parks of the former Rocky Mountain Region (now the Intermountain and Midwest regions of the National Park Service). The purpose of the first phase of the restoration during 1991-93 was to conduct research and population surveys and to formulate the restoration plans. The purpose of the second phase of the initiative during 1994-97 was to conduct GIS-based habitat and biological assessments of prospective restoration sites, write restoration plans, and restore and monitor the released bighorn sheep.

  2. How Respiratory Pathogens Contribute to Lamb Mortality in a Poorly Performing Bighorn Sheep ( Ovis canadensis ) Herd.

    PubMed

    Wood, Mary E; Fox, Karen A; Jennings-Gaines, Jessica; Killion, Halcyon J; Amundson, Sierra; Miller, Michael W; Edwards, William H

    2017-01-01

    We evaluated bighorn sheep ( Ovis canadensis ) ewes and their lambs in captivity to examine the sources and roles of respiratory pathogens causing lamb mortality in a poorly performing herd. After seven consecutive years of observed December recruitments of <10%, 13 adult female bighorn sheep from the remnant Gribbles Park herd in Colorado, US were captured and transported to the Thorne-Williams Wildlife Research Center in Wyoming in March 2013. Ewes were sampled repeatedly over 16 mo. In April 2014, ewes were separated into individual pens prior to lambing. Upon death, lambs were necropsied and tested for respiratory pathogens. Six lambs developed clinical respiratory disease and one lamb was abandoned. Pathology from an additional six lambs born in 2013 was also evaluated. Mycoplasma ovipneumoniae , leukotoxigenic Mannheimia spp., leukotoxigenic Bibersteinia trehalosi , and Pasteurella multocida all contributed to lamb pneumonia. Histopathology suggested a continuum of disease, with lesions typical of pasteurellosis predominating in younger lambs and lesions typical of mycoplasmosis predominating in older lambs. Mixed pathology was observed in lambs dying between these timeframes. We suspected that all the ewes in our study were persistently infected and chronically shedding the bacteria that contributed to summer lamb mortality.

  3. Wyoming Strategic Plan, 2005

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2005

    2005-01-01

    Wyoming's colleges offer much more than academic and occupational technical degrees and certificates. In 2000, 27,703 Wyoming citizens, age 25 years and older, did not have a high school diploma. For this 12.14% of Wyoming's population, the Adult Basic Education (ABE) program at each of the colleges is designed to equip these adults with the…

  4. Managers' summary - ecological studies of the Pryor Mountain Wild Horse Range, 1992-1997

    USGS Publications Warehouse

    Singer, F.J.; Schoenecker, K.A.

    2000-01-01

    Ecological Studies of the Pryor Mountain Wild Horse Range, 1992-1997 provides a synthesis of key findings of landscape-scale, interdisciplinary studies of the effects of wild horses and native ungulates on a rugged, mountain ecosystem. This is perhaps the most comprehensive study of a wild horse herd conducted. This was a complex study and one involving a truly interagency approach. Six agencies either provided input to research priority setting, funding, or both. The agencies included the Bureau of Land Management, National Park Service, U.S. Geological Survey, Montana Department of Fish, Wildlife and Parks, Wyoming Game and Fish Department, and U.S. Forest Service. The major research direction and effort came from the U.S. Geological Survey and Natural Resources Ecology Lab, Colorado State University with Montana State University and the University of Kentucky also participating. Ungulate monitoring was conducted by the U.S. Geological Survey, Biological Resources Division, Bureau of Land Management, Billings Field Office and the Montana Fish and Wildlife Parks, with funding by Bighorn Canyon National Recreation Area. Many other individuals and groups were involved and deserve credit. The report printing was made possible with funds from the Bureau of Land Management, Wild Horse and Burro Program, Washington Office. This report was prepared by the Information Management Project, Midcontinent Ecological Science Center, U.S. Geological Survey.

  5. Experiment to Evaluate the Feasibility of Utilizing Skylab-EREP Remote Sensing Data for Tectonic Analysis Through a Study of the Big Horn Mountain Region, Wyoming, South Dakota and Wyoming

    NASA Technical Reports Server (NTRS)

    Hoppin, R. A. (Principal Investigator); Caldwell, J.; Lehman, D.; Palmer, S.; Pan, K. L.; Swenson, A.

    1976-01-01

    The author has identified the following significant results. S190B imagery was the best single product from which fairly detailed structural and some lithologic mapping could be accomplished in the Big Horn basin, the Owl Creek Mountains, and the northern Big Horn Mountains. The Nye-Bowler lineament could not be extended east of its presently mapped location although a linear (fault or monocline) was noted that may be part of the lineament, but north of postulated extensions. Much more structure was discernible in the Big Horn basin than could be seen on LANDSAT-1 imagery; RB-57 color IR photography, in turn, revealed additional folds and faults. A number of linears, several of which could be identified as faults and one a monocline, cut obliquely the east-west trending Owl Creek uplift. The heavy forest cover of the Black Hills makes direct lithologic delineation impossible. However, drainage and linear overlays revealed differences in pattern between the areas of exposed Precambrian crystalline core and the flanking Paleozoic rocks. S192 data, even precision corrected segments, were not of much use.

  6. The impact of seasonality and elevation on dissolved greenhouse gas concentrations in a northeastern Wyoming watershed

    NASA Astrophysics Data System (ADS)

    Kuhn, C.; Bettigole, C.; Raymond, P. A.; Glick, H.; Seegmiller, L.; Oliver, C.; Khadka, A.; Routh, D.

    2014-12-01

    Quantification of river and stream contributions to global carbon emission budgets using field-based measurements is key to understanding how freshwater streams act as conduits between terrestrial and atmospheric carbon pools. In order to better characterize drivers of this process, this study quantifies: a) emissions of carbon dioxide and methane from a semi-arid, high plains riverine system with montaine headwaters in order to establish baseline data for the watershed; b) the impact of stream order, seasonality and elevation on dissolved gas concentrations to better understand the spatial and temporal heterogeneity of dissolved carbon gases. To achieve the latter objective, we conducted field surveys in first and second order streams in the Clear Creek drainage of the Powder River Basin watershed. We took direct measurements of stream gases using headspace sampling at thirty sites along an elevation gradient ranging from 1,203-3,346 meters. We also intensely monitored five transects throughout the descending limb of spring runoff (June 8th-August 12th) to investigate how temperature and discharge volume impact greenhouse gas concentrations. Clear Creek, located in northeastern Wyoming, is approximately 118.4 km long with a drainage area of 2,968 km2. The creek flows east out of Bighorn National Forest where it turns northeast to converge with the Powder River about ten miles before the Montana border. The stream straddles the Middle Rockies and Northwestern Great Plains ecoregions and experiences an abrupt shift in soil type, riparian vegetation, underlying geology and stream geometry as the stream exits the mountains and enters the agricultural alluvial floodplain. These site specific biological and physical changes along the elevation gradient affect dissolved greenhouse gas concentrations.

  7. Selection and genetic (co)variance in bighorn sheep.

    PubMed

    Coltman, David W; O'Donoghue, Paul; Hogg, John T; Festa-Bianchet, Marco

    2005-06-01

    Genetic theory predicts that directional selection should deplete additive genetic variance for traits closely related to fitness, and may favor the maintenance of alleles with antagonistically pleiotropic effects on fitness-related traits. Trait heritability is therefore expected to decline with the degree of association with fitness, and some genetic correlations between selected traits are expected to be negative. Here we demonstrate a negative relationship between trait heritability and association with lifetime reproductive success in a wild population of bighorn sheep (Ovis canadensis) at Ram Mountain, Alberta, Canada. Lower heritability for fitness-related traits, however, was not wholly a consequence of declining genetic variance, because those traits showed high levels of residual variance. Genetic correlations estimated between pairs of traits with significant heritability were positive. Principal component analyses suggest that positive relationships between morphometric traits constitute the main axis of genetic variation. Trade-offs in the form of negative genetic or phenotypic correlations among the traits we have measured do not appear to constrain the potential for evolution in this population.

  8. Techniques for capturing bighorn sheep lambs

    USGS Publications Warehouse

    Smith, Joshua B.; Walsh, Daniel P.; Goldstein, Elise J.; Parsons, Zachary D.; Karsch, Rebekah C.; Stiver, Julie R.; Cain, James W.; Raedeke, Kenneth J.; Jenks, Jonathan A.

    2014-01-01

    Low lamb recruitment is a major challenge facing managers attempting to mitigate the decline of bighorn sheep (Ovis canadensis), and investigations into the underlying mechanisms are limited because of the inability to readily capture and monitor bighorn sheep lambs. We evaluated 4 capture techniques for bighorn sheep lambs: 1) hand-capture of lambs from radiocollared adult females fitted with vaginal implant transmitters (VITs), 2) hand-capture of lambs of intensively monitored radiocollared adult females, 3) helicopter net-gunning, and 4) hand-capture of lambs from helicopters. During 2010–2012, we successfully captured 90% of lambs from females that retained VITs to ≤1 day of parturition, although we noted differences in capture rates between an area of high road density in the Black Hills (92–100%) of South Dakota, USA, and less accessible areas of New Mexico (71%), USA. Retention of VITs was 78% with pre-partum expulsion the main cause of failure. We were less likely to capture lambs from females that expelled VITs ≥1 day of parturition (range = 80–83%) or females that were collared without VITs (range = 60–78%). We used helicopter net-gunning at several sites in 1999, 2001–2002, and 2011, and it proved a useful technique; however, at one site, attempts to capture lambs led to lamb predation by golden eagles (Aquila chrysaetos). We attempted helicopter hand-captures at one site in 1999, and they also were successful in certain circumstances and avoided risk of physical trauma from net-gunning; however, application was limited. In areas of low accessibility or if personnel lack the ability to monitor females and/or VITs for extended periods, helicopter capture may provide a viable option for lamb capture.

  9. Low-Temperature Thermochronology of Laramide Ranges in Montana and Wyoming Provides Information on Exhumation and Tectonics Associated with Flat-Slab Subduction

    NASA Astrophysics Data System (ADS)

    Armenta, M.; Carrapa, B.; DeCelles, P. G.

    2014-12-01

    Timing of exhumation of Laramide basement uplifts can be used as a proxy for tectonic processes associated with thick-skinned deformation resulting from flat-slab subduction. Despite its significance, the timing and pattern of Laramide deformation remains poorly constrained in Montana. Thermochronological data from Wyoming indicate exhumation of Laramide ranges during the late Cretaceous and Paleogene. Whereas a few data exist for the Bearthooth Range in Montana; the exhumation history of most of the Montana ranges remains unexplored preventing testing of current tectonic models. We report apatite fission track thermochronologic (AFT) data from modern river sands derived from Laramide ranges, bedrock basement samples, and synorogenic conglomerate clasts to determine the regional exhumation history of the Beartooth, Gravelly, Tobacco Root, Ruby, the Highland Mountains, and the Wind River Range. AFT permits reconstruction of thermal histories and rates of erosion of the upper few kilometers of the crust. In particular detrital AFT of river sands provides information on regional exhumation of the drainage area. AFT detrital ages derived from the southern end of the Beartooth Range are dominated by a 60-80 Ma signal, consistent with ages reported for bedrock basement samples in the Beartooth Range. A Cenozoic synorogenic conglomerate clast was obtained from the Highland Mountains, AFT results show a 69.56 +/- 5.45 Ma cooling age. In the Wind River Range, Wyoming AFT data from a Cenozoic synorogenic conglomerate clast from the Wind River Formation indicates a 59.32 +/- 4.83 Ma cooling age. This age is consistent with AFT ages from Gannett Peak indicating rapid cooling at ~60 Ma and ~50 Ma (Fan and Carrapa, 2014). Overall, samples from the easternmost ranges, the Beartooth and Bighorn, clearly preserve a Cretaceous signal; samples from Wind River Range and the rest of southwest Montana mainly record a Cenozoic signal. This suggests deeper and younger exhumation to the

  10. Analysis of ERTS-1 imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.

    1973-01-01

    The author has identified the following significant results. Significant results of the Wyoming investigation during the first six months include: (1) successful segregation of Precambrian metasedimentary/metavolcanic rocks from igneous rocks; (2) discovery of iron formation within the metasedimentary sequence; (3) mapping of previously unreported tectonic elements of major significance; (4) successful mapping of large scale fractures of the Wind River Mountains; (5) sucessful distinction of some metamorphic, igneous, and sedimentary lithologies by color-additive viewing of ERTS images; (6) mapping and interpretation of glacial features in western Wyoming; and (7) development of techniques for mapping small urban areas.

  11. Whole-genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep.

    PubMed

    Kardos, Marty; Luikart, Gordon; Bunch, Rowan; Dewey, Sarah; Edwards, William; McWilliam, Sean; Stephenson, John; Allendorf, Fred W; Hogg, John T; Kijas, James

    2015-11-01

    The identification of genes influencing fitness is central to our understanding of the genetic basis of adaptation and how it shapes phenotypic variation in wild populations. Here, we used whole-genome resequencing of wild Rocky Mountain bighorn sheep (Ovis canadensis) to >50-fold coverage to identify 2.8 million single nucleotide polymorphisms (SNPs) and genomic regions bearing signatures of directional selection (i.e. selective sweeps). A comparison of SNP diversity between the X chromosome and the autosomes indicated that bighorn males had a dramatically reduced long-term effective population size compared to females. This probably reflects a long history of intense sexual selection mediated by male-male competition for mates. Selective sweep scans based on heterozygosity and nucleotide diversity revealed evidence for a selective sweep shared across multiple populations at RXFP2, a gene that strongly affects horn size in domestic ungulates. The massive horns carried by bighorn rams appear to have evolved in part via strong positive selection at RXFP2. We identified evidence for selection within individual populations at genes affecting early body growth and cellular response to hypoxia; however, these must be interpreted more cautiously as genetic drift is strong within local populations and may have caused false positives. These results represent a rare example of strong genomic signatures of selection identified at genes with known function in wild populations of a nonmodel species. Our results also showcase the value of reference genome assemblies from agricultural or model species for studies of the genomic basis of adaptation in closely related wild taxa.

  12. 75 FR 5074 - Wyoming Interstate Company, Ltd.; Notice of Availability of the Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... Environmental Assessment for the Proposed Diamond Mountain Compressor Station Project January 25, 2010. The... assessment (EA) for the Diamond Mountain Compressor Station Project proposed by Wyoming Interstate Company... maintain the Diamond Mountain Compressor Station in Uintah County, Utah. The EA assesses the...

  13. 36 CFR 7.92 - Bighorn Canyon National Recreation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... under applicable State law is allowed. (d) Personal Watercraft (PWC). (1) PWC use is allowed in Bighorn... posted. (v) At the Ok-A-Beh gas dock, except for customers. (vi) From Yellowtail Dam upstream to the...

  14. Digital Archives - Thomas M. Bown's Bighorn Basin Maps: The Suite of Forty-Four Office Master Copies

    USGS Publications Warehouse

    McKinney, Kevin C.

    2001-01-01

    This CD-ROM is a digitally scanned suite of master 'locality' maps produced by Dr. Thomas M. Bown. The maps are archived in the US Geological Survey Field Records. The maps feature annual compilations of newly established fossil (nineteen 7.5 degree maps) of central basin data collections. This master suite of forty-four maps represents a considerably broader geographic range within the basin. Additionally, three field seasons of data were compiled into the master suite of maps after the final editing of the Professional Paper. These maps are the culmination of Dr. Bown's Bighorn Basin research as a vertebrate paleontologist for the USGS. Data include Yale, Wyoming, Duke, Michigan and USGS localities. Practical topographic features are also indicated, such as jeep=trail access, new reservoirs, rerouted roadbeds, measured sections, fossil reconnaissance evaluations (G=good, NG=no good and H=hideous), faults, palcosol stages, and occasionally 'camp' vernacular for locality names.

  15. Prevalence of Mycoplasma ovipneumoniae in desert bighorn sheep in Arizona

    USGS Publications Warehouse

    Justice-Allen, Anne E.; Luedtke, Clint J.; Overstreet, Matthew; Cain, James W.; Stephenson, Thomas R.

    2011-01-01

    To assess the potential for an epizootic of pneumonia to result from either natural immigration or translocation, we compared the seroprevalence to Mycoplasma ovipneumoniae in several populations of desert bighorn sheep in Arizona. We collected blood samples and nasal or oropharyngeal swabs from 124 desert bighorn sheep (Ovis canadensis nelsoni) from 6 populations in Arizona in 2009 and 2010. M. ovipneumoniae organisms were detected by PCR in 22%, whereas antibodies to M. ovipneumoniae were detected in 47% of tested bighorn sheep. Mycoplasma antibodies were not found in 2 of 6 populations, indicating some bighorn sheep populations in Arizona are naïve to this bacterium. In contrast, others had seroprevalence rates up to 80%. We were able to compare seroprevalence rates and titers over time in 9 individuals (7 individuals included in the 124 bighorn sheep sampled in 2009 and 2010, and 2 individuals originally captured in 2006). Antibody titers persisted for 12 months in individuals from the Kofa National Wildlife Refuge (n = 7) while antibody titers appeared to decline in the Kanab Creek population (n = 2). M. ovipneumoniae is present or has been present in several, but not all, populations of bighorn sheep in Arizona. The results demonstrate the importance of routine health testing for future translocation efforts to reduce disease risk for naive populations.

  16. Reported Historic Asbestos Mines, Historic Asbestos Prospects, and Natural Asbestos Occurrences in the Rocky Mountain States of the United States (Colorado, Idaho, Montana, New Mexico, and Wyoming)

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2007-01-01

    This map and its accompanying dataset provide information for 48 natural asbestos occurrences in the Rocky Mountain States of the United States (U.S.), using descriptions found in the geologic literature. Data on location, mineralogy, geology, and relevant literature for each asbestos site are provided. Using the map and digital data in this report, the user can examine the distribution of previously reported asbestos occurrences and their geological characteristics in the Rocky Mountain States. This report is part of an ongoing study by the U.S. Geological Survey to identify and map reported natural asbestos occurrences in the U.S., which thus far includes similar maps and datasets of natural asbestos occurrences within the Eastern U.S. (http://pubs.usgs.gov/of/2005/1189/) and the Central U.S. (http://pubs.usgs.gov/of/2006/1211/). These reports are intended to provide State and local government agencies and other stakeholders with geologic information on natural occurrences of asbestos in the U.S.

  17. Mineral resources of the Bobcat Draw Badlands Wilderness Study Area, Bir Horn and Washakie Counties, Wyoming

    SciTech Connect

    Gibbons, A.B.; Carlson, R.R.; Kulik, D.M.; Lundby, W.

    1989-01-01

    The Bobcat Draw Wilderness Study Area is in the Bighorn Basin about 45 mi west of Worland, Wyoming, and is underlain by early Tertiary sedimentary rocks. No resources were identified in this study area, which lacks mines or prospects, but is mostly under lease for oil and gas. This study area has a high potential for oil and gas and for subeconomic resources of coal and a moderate potential for a deep-seated geothermal energy resource. The resource potential for oil shale and metals, including uranium, is low.

  18. Climatic and floral change during the Paleocene-Eocene Thermal Maximum in the Bighorn Basin (Invited)

    NASA Astrophysics Data System (ADS)

    Wing, S. L.

    2009-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) is an interval of global warming lasting ~150 ka that occurred at the start of the Eocene, ~55.8 Ma. Globally, temperature rose 4-8 °C in association with carbon cycle changes attributed to the release of >5,000 Pg of C into the ocean-atmosphere system. Fossil plants from the PETM in the Bighorn Basin, northwestern Wyoming, show that latest Paleocene forests contained palms, deciduous taxodiaceous conifers, and a variety of deciduous and evergreen angiosperms, many belonging to lineages with north temperate distributions. Mean annual temperature (MAT) for the latest Paleocene inferred from leaf margin analysis is ~18 °C. Early and mid-PETM floras have a completely different composition. They lack conifers and broad-leaved deciduous taxa with north temperate distributions, and are dominated by palms, legumes, and other angiosperm taxa with living relatives in the dry tropical forests of Central and South America. Leaf margin analysis gives an MAT of ~23 °C. Floras of this type are known from a stratigraphic interval ~30 m thick that also produces geochemical and mammalian faunal indicators of the PETM. Floras from late PETM or earliest post-PETM time are composed largely of species that had been present in the latest Paleocene, with a few new species that are common in the early Eocene. The inferred MAT is ~18 °C. Leaf size data suggest that the PETM was drier than the immediately preceding and following times. Floral data from the Bighorn Basin indicate that the magnitude of temperature change in this mid-latitude continental interior was similar to that inferred for the surface ocean. Evidence for dryness or seasonal dryness during the PETM has been observed in sections in northern Spain as well as in Wyoming, raising the possibility of widespread water stress in the middle northern latitudes. Change in floral composition during the PETM is consistent with regional extinction in mid-latitude populations of plants

  19. Sedimentologic and stratigraphic framework of the upper part of the Fort Union Formation, western Powder River basin, Wyoming

    USGS Publications Warehouse

    Weaver, J.N.; Flores, R.M.

    1987-01-01

    The purpose of this study is to describe the stratigraphy and interpret the environments of deposition in the upper part of the Paleocene Fort Union Formation. Of all the lithofacies present within the study area, sandstone is the most dominant and makes up most of the upper part of the Fort Union Formation along the western edge of the Powder River basin, Wyoming. This sandstone lithofacies occurs in three forms: 1) pink conglomeratic sandstone, 2) coarse-grained sandstone, and 3) fine-grained sandstone. The pink conglomeratic sandstone lithofacies forms a series of Stacked channel bodies in which the clasts are as much as 1 3/4 in. in diameter. The coarse-grained sandstone lithofacies is laterally equivalent to the pink conglomeratic sandstone sequence, but contains smaller clasts; it is arranged en echelon (offset) to the north. The fine-grained sandstone lithofacies, limited to the northern part of the study area, is not as laterally continuous as the pink conglomeratic sandstone lithofacies to the south. Basal lag conglomerate underlies both the conglomeratic sandstone and coarse-grained sandstone lithofacies, but not the fine-grained sandstone. The presence of a fine-grained sandstone lithofacies lateral to the conglomeratic sandstone and coarse-grained sandstone lithofacies suggests the presence of a coarse-grained braided and meandering fluvial system coeval with a fine-grained meandering fluvial system.. The meandering fluvial systems drained the alluvial plain flanking the Bighorn Mountains on the west and the Casper arch on the southwest, and flowed north-northeastward within the Powder River basin.

  20. Southwestward weakening of Wyoming lithosphere during the Laramide orogeny

    NASA Astrophysics Data System (ADS)

    Gao, Min; Fan, Majie; Moucha, Robert

    2016-08-01

    The mechanism of Laramide deformation in the central Rocky Mountains remains enigmatic. It is generally agreed that the deformation resulted from low-angle subduction of the Farallon plate beneath the North American plate during the latest Cretaceous-early Eocene; however, recent studies have suggested the importance of slab removal or slab rollback in causing this deformation. Here we infer Wyoming lithosphere structure and surface deformation pattern by conducting 2-D flexural subsidence modeling in order to provide constraints on the mechanism of Laramide deformation. We assume that Wyoming lithosphere behaved as an infinite elastic plate subject to tectonic loading of mountain ranges and conduct 2-D flexural subsidence modeling to major Laramide basins to document lithospheric stiffness and mountain load height. Our results show that the stiffness of Wyoming lithosphere varied slightly in each basin during the ~30 Myr duration of the Laramide deformation and decreased from northeastern Wyoming (Te = 32-46 km) to southwestern Wyoming (Te = 6-9 km). Our results also imply that the increase of equivalent load height of major Laramide ranges accelerated during the early Eocene. We propose that the bending stresses induced by the topographic load of the Sevier fold-and-thrust belt combined with crust-mantle decoupling initiated by the overthickened Sevier hinterland and the end loads due to the low-angle subduction at the western edge of the thick Wyoming craton have caused the southwestward decrease of lithospheric stiffness in Wyoming. Moreover, we attribute the accelerated load height gain during the early Eocene to both dynamic and isostatic effects associated with slab rollback.

  1. Drainage and Landscape Evolution in the Bighorn Basin Accompanying Advection of the Yellowstone Hotspot Swell Through North America

    NASA Astrophysics Data System (ADS)

    Guerrero, E. F.; Meigs, A.

    2012-12-01

    Mantle plumes have been recognized to express themselves on the surface as long wavelength and low amplitude topographic swells. These swells are measured as positive geoid anomalies and include shorter wavelength topographic features such as volcanic edifices and pre-exisitng topography. Advection of the topographic swell is expected as the lithosphere passes over the plume uplift source. The hot spot swell occurs in the landscape as transient signal that is expressed with waxing and waning topography. Waxing topography occurs at the leading edge of the swell and is expressed as an increase in rock uplift that is preserved by rivers and landscapes. Advection of topography predicts a shift in a basin from deposition to incision, an increase in convexity of a transverse river's long profile and a lateral river migration in the direction of advection. The Yellowstone region has a strong positive geoid anomaly and the volcanic signal, which have been interpreted as the longer and shorter wavelength topographic expressions of the hot spot. These expressions of the hot spot developed in a part of North America with a compounded deformation and topographic history. Previous studies of the Yellowstone topographic swell have concentrated on the waning or trailing signal preserved in the Snake River Plain. Our project revisits the classic geomorphology study area in the Bighorn Basin of Wyoming and Montana, which is in leading edge of the swell. Present models identify the swell as having a 400 km in diameter and that it is centered on the Yellowstone caldera. If we assume advection to occur in concert with the caldera eruptive track, the Yellowstone swell has migrated to the northeast at a rate of 3 cm yr-1 and began acting on the Bighorn Basin's landscape between 3 and 2 Ma. The Bighorn Basin has an established history of a basin-wide switch from deposition to incision during the late Pliocene, yet the age control on the erosional evolution of the region is relative. This

  2. Analysis of ERTS imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.

    1972-01-01

    The author has identified the following significant results. The Wyoming ERTS investigation has been hindered only slightly by incomplete ERTS data sets and lack of coverage. Efforts to map cultural development, vegetation distributions, and various geomorphologic features are underway. Tectonic analysis of the Rock Springs area has isolated two linear features that may be very significant with regard to the regional structure of central Wyoming. Studies of the fracture systems of the Wind River Mountains are being completed. The fracture map, constructed from ERTS-1 interpretations, contains a great deal of structural information which was previously unavailable. Mapping of the Precambrian metasedimentary and metavolcanic terrain of the Granite Mountains is nearing completion, and interpretation of ERTS supporting aircraft data has revealed deposits of iron formation.

  3. POPO AGIE PRIMITIVE AREA, WYOMING.

    USGS Publications Warehouse

    Pearson, Robert C.; Patten, L.L.

    1984-01-01

    A mineral-resource appraisal was made of the Popo Agie Primitive Area and some adjoining lands. This scenic mountainous region of the Wind River Range in west-central Wyoming is composed largely of ancient granitic rocks in which virtually no evidence of mineral deposits was found. Deep crustal seismic-reflection profiles obtained across the southern Wind River Range suggest the possibility that young sedimentary rocks, similar to those at the surface along the northeast flank of the range, are present at depth beneath the granite in the Popo Agie primitive Area. If present, such buried sedimentary rocks could be petroleum bearing. Additional seismic and gravity studies would probably add valuable information, but ultimately very expensive, very deep drilling will be necessary to test this possibility.

  4. Coal-bed gas resources of the Rocky Mountain region

    USGS Publications Warehouse

    Schenk, C.J.; Nuccio, V.F.; Flores, R.M.; Johnson, R.C.; Roberts, S.B.; Collett, T.S.

    2001-01-01

    The Rocky Mountain region contains several sedimentary provinces with extensive coal deposits and significant accumulations of coal-bed gas. This summary includes coal-bed gas resources in the Powder River Basin (Wyoming and Montana), Wind River Basin (Wyoming), Southwest Wyoming (Greater Green River Basin of Wyoming, Colorado, and Utah), Uinta-Piceance Basin (Colorado and Utah), Raton Basin (Colorado and New Mexico), and San Juan Basin (Colorado and New Mexico). Other provinces in the Rocky Mountain region may contain significant coal-bed gas resources, but these resource estimates are not available at this time.

  5. Contribution to CCN Workshop report from University of Wyoming group

    NASA Technical Reports Server (NTRS)

    Rogers, D. C.; Politovich, M. K.

    1981-01-01

    The group's CCN counter is described. It is a static, horizontal, parallel plate thermal gradient diffusion chamber. Examples of the application of the CCN are presented and include the CCN spectra measured during the winter of 1978-79 near Elk Mountain, Wyoming. Comparisons of droplet concentrations derived from upwind CCN spectra are covered.

  6. Behavioral connectivity among bighorn sheep suggests potential for disease spread

    USGS Publications Warehouse

    Borg, Nathan J.; Mitchell, Michael S.; Lukacs, Paul M.; Mack, Curt M.; Waits, Lisette P.; Krausman, Paul R.

    2017-01-01

    Connectivity is important for population persistence and can reduce the potential for inbreeding depression. Connectivity between populations can also facilitate disease transmission; respiratory diseases are one of the most important factors affecting populations of bighorn sheep (Ovis canadensis). The mechanisms of connectivity in populations of bighorn sheep likely have implications for spread of disease, but the behaviors leading to connectivity between bighorn sheep groups are not well understood. From 2007–2012, we radio-collared and monitored 56 bighorn sheep in the Salmon River canyon in central Idaho. We used cluster analysis to define social groups of bighorn sheep and then estimated connectivity between these groups using a multi-state mark-recapture model. Social groups of bighorn sheep were spatially segregated and linearly distributed along the Salmon River canyon. Monthly probabilities of movement between adjacent male and female groups ranged from 0.08 (±0.004 SE) to 0.76 (±0.068) for males and 0.05 (±0.132) to 0.24 (±0.034) for females. Movements of males were extensive and probabilities of movement were considerably higher during the rut. Probabilities of movement for females were typically smaller than those of males and did not change seasonally. Whereas adjacent groups of bighorn sheep along the Salmon River canyon were well connected, connectivity between groups north and south of the Salmon River was limited. The novel application of a multi-state model to a population of bighorn sheep allowed us to estimate the probability of movement between adjacent social groups and approximate the level of connectivity across the population. Our results suggest high movement rates of males during the rut are the most likely to result in transmission of pathogens among both male and female groups. Potential for disease spread among female groups was smaller but non-trivial. Land managers can plan grazing of domestic sheep for spring and summer

  7. Wyoming Kids Count in Wyoming Factbook, 1999.

    ERIC Educational Resources Information Center

    Wyoming Children's Action Alliance, Cheyenne.

    This Kids Count factbook details statewide trends in the well-being of Wyoming's children. Following an overview of key indicators and data sources, the factbook documents trends by county for 20 indicators, including the following: (1) poverty and population; (2) welfare reform; (3) certified day care facilities; (4) births; (5) infant deaths;…

  8. 76 FR 61781 - Endangered and Threatened Wildlife and Plants; Removal of the Gray Wolf in Wyoming From the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ...We, the U.S. Fish and Wildlife Service (Service or USFWS), are proposing to remove the gray wolf (Canis lupus) in Wyoming from the List of Endangered and Threatened Wildlife. This rule focuses on the Wyoming portion of the Northern Rocky Mountain (NRM) Distinct Population Segment (DPS), except where discussion of the larger Greater Yellowstone Area (GYA) or NRM metapopulation (a population......

  9. Wyoming Snowmelt 2013

    NASA Video Gallery

    Images from NASA/USGS Landsat satellites show the snow cover in Wyoming's Fremont Lake Basin throughout 2013. NASA scientists have used Landsat data from 1972-2013 to determine that the snow is mel...

  10. Einstein in Wyoming.

    ERIC Educational Resources Information Center

    Elliot, Ian

    1996-01-01

    Describes "Einstein's Adventurarium," a science center housed in an empty shopping mall in Gillette, Wyoming, created through school, business, and city-county government partnership. Describes how interactive exhibits allow exploration of life sciences, physics, and paleontology. (KDFB)

  11. Ecological Status of Wyoming Streams, 2000-2003

    USGS Publications Warehouse

    Peterson, David A.; Hargett, Eric G.; Wright, Peter R.; Zumberge, Jeremy R.

    2007-01-01

    The ecological status of perennial streams in Wyoming was determined and compared with the status of perennial streams throughout 12 States in the western United States, using data collected as part of the Western Pilot Environmental Monitoring and Assessment Program (EMAP-West). Results for Wyoming are compared and contrasted in the context of the entire EMAP-West study area (west-wide) and climatic regions (based on aggregated ecoregions) within Wyoming. In Wyoming, ecological status, estimated as the proportion of the perennial stream length in least disturbed, most disturbed, and intermediate disturbance condition, based on ecological indicators of vertebrate and invertebrate assemblages was similar, in many cases, to the status of those assemblages determined for EMAP-West. Ecological status based on chemical and physical habitat stressors also was similar in Wyoming to west-wide proportions in many cases. Riparian disturbance was one of the most common physical stressors west-wide and in Wyoming. The estimates of riparian disturbance indicated about 90 percent of the stream length in the xeric climatic region in Wyoming was rated most disturbed, compared to about 30 percent rated most disturbed in the mountain climatic region in Wyoming. Results from analyses using a macroinvertebrate multi-metric index (MMI) and macroinvertebrate ratio of observed to expected taxa (O/E) developed specifically for the west-wide EMAP study were compared to results using a macroinvertebrate MMI and O/E developed for Wyoming. Proportions of perennial stream length in various condition categories determined from macroinvertebrate MMIs often were similar in Wyoming to proportions observed west-wide. Differences were larger, but not extreme, between west-wide and Wyoming O/E models. An aquatic life use support decision matrix developed for interpreting the Wyoming MMI and O/E model data indicated about one-half of the stream length statewide achieves the State's narrative aquatic

  12. Lower Eocene alluvial paleosols (Willwood Formation, Northwest Wyoming, U.S.A.) and their significance for paleoecology, paleoclimatology, and basin analysis

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1981-01-01

    The lower Eocene Willwood Formation of northwest Wyoming is a 700 m thick accumulation of alluvial floodplain and channel mudstones and sandstones, nearly all of which show paleopedogenic modifications. Pedogenesis of Willwood sandstones is indicated by taproot and vertebrate and invertebrate bioturbation, early local cementation by calcium carbonate, and thin illuviation cutans on clastic grains. Pedogenesis in Willwood mudstones is indicated by plant bioturbation, insect and other invertebrate burrow casts and lebensspuren; free iron, aluminum, and manganese mobilization, including hydromorphic gleying; sesquioxide and calcareous glaebule formation in lower parts of the solum; presence of clay-rich and organic carbon-rich zones; and well differentiated epipedons and albic and spodic horizons. Probable A horizons are also locally well developed. Occurrence of variegated paleosol units in thick floodplain mudstone deposits and their association with thin, lenticular, and unconnected fluvial sandstones in the Willwood Formation of the central and southeast Bighorn Basin suggest that these soils formed during times of rapid sediment accumulation. The tabular geometry and lateral persistence of soil units as well as the absence of catenization indicate that Willwood floodplains were broad and essentially featureless. All Willwood paleosols were developed on alluvial parent materials and are complex in that B horizons of younger paleosols were commonly superimposed upon and mask properties of suspected A and B horizons of the next older paleosols. The soils appear to be wet varieties of the Spodosol and Entisol groups (aquods and ferrods, and aquents, respectively), though thick, superposed and less mottled red, purple, and yellow paleosols resemble some ultisols. Most Willwood paleosols resemble warm temperate to subtropical alluvial soils that form today under alternating wet and dry conditions and (or) fluctuating water tables. The up-section decrease in frequency

  13. Quantifying landscape ruggedness for animal habitat analysis: A case study using bighorn sheep in the Mojave Desert

    USGS Publications Warehouse

    Sappington, J.M.; Longshore, K.M.; Thompson, D.B.

    2007-01-01

    Terrain ruggedness is often an important variable in wildlife habitat models. Most methods used to quantify ruggedness are indices derived from measures of slope and, as a result, are strongly correlated with slope. Using a Geographic Information System, we developed a vector ruggedness measure (VRM) of terrain based on a geomorphological method for measuring vector dispersion that is less correlated with slope. We examined the relationship of VRM to slope and to 2 commonly used indices of ruggedness in 3 physiographically different mountain ranges within the Mojave Desert of the southwestern United States. We used VRM, slope, distance to water, and springtime bighorn sheep (Ovis canadensis nelsoni) adult female locations to model sheep habitat in the 3 ranges. Using logistic regression, we determined that the importance of ruggedness in habitat selection remained consistent across mountain ranges, whereas the relative importance of slope varied according to the characteristic physiography of each range. Our results indicate that the VRM quantifies local variation in terrain more independently of slope than other methods tested, and that VRM and slope distinguish 2 different components of bighorn sheep habitat.

  14. GROS VENTRE WILDERNESS STUDY AREA, WYOMING.

    USGS Publications Warehouse

    Simons, Frank S.; Bieniewski, Carl L.

    1984-01-01

    A mineral-resource survey of the Gros Ventre Wilderness study area in the Gros Ventre Mountains of northwestern Wyoming was carried out. The area was found to have demonstrated phosphate resources in areas of substantiated phosphate resource potential. A probable oil and gas resource potential in the southwestern part of the study area was also identified. Oil and gas may occur in various possible reservoir rocks beneath the Cache Creek thrust fault, which is believed to extend beneath this part of the study area. There is little promise for the occurrence of other mineral or energy resources in the area.

  15. Gros Ventre Wilderness study area, Wyoming

    SciTech Connect

    Simons, F.S.; Bieniewski, C.L.

    1984-01-01

    A mineral-resource survey of the Gros Ventre Wilderness study area in the Gros Ventre Mountains of northwestern Wyoming was carried out in 1976. The area was found to have demonstrated phosphate resources in areas of substantiated phosphate resource potential. A probable oil and gas resource potential in the southwestern part of the study area was also identified. Oil and gas may occur in various possible reservoir rocks beneath the Cache Creek thrust fault, which is believed to extend beneath this part of the study area. There is little promise for the occurrence of other mineral of energy resources in the area.

  16. Tectonically induced climate and its control on the distribution of depositional systems in a continental foreland basin, Cloverly and Lakota Formations (Lower Cretaceous) of Wyoming, U.S.A.

    NASA Astrophysics Data System (ADS)

    Elliott, William S.; Suttner, Lee J.; Pratt, Lisa M.

    2007-12-01

    that existed 300 to 1000 km east of the Sevier fold-and-thrust belt. Proximal to the Sevier fold-and-thrust belt, the A-interval of the Cloverly Formation and upper Ephraim Formation of the Gannett Group are typified by deposits of intermittent to ephemeral rivers and their associated floodplains. In the middle part (B-interval) of the Cloverly Formation, intermittent to ephemeral alluvial systems expand to 600 km into the basin. The upper part (C-interval) of the Cloverly Formation is characterized by playa deposits in the Bighorn and Wind River Basins and intermittent to ephemeral alluvial deposits along the front of the ancestral Sevier Mountains. Deposits of perennial to intermittent alluvial systems in the C-interval of the Cloverly and Lakota Formations are restricted to the Black Hills region, almost 900 km to the east of the Sevier Mountains. The change in the areal distribution of depositional systems through time within this continental foreland basin may be attributed to the development of a rain shadow associated with the uplift of the Sevier Mountains in the Early Cretaceous.

  17. MHC class II DR allelic diversity in bighorn sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that decreased diversity and/or unique polymorphisms in MHC class II alleles of bighorn sheep (BHS, Ovis canadensis) are responsible for lower titer of antibodies against Mannheimia haemolytica leukotoxin, in comparison to domestic sheep (DS, Ovis aries). To test this hypothesis, DRA...

  18. Energy Development Opportunities for Wyoming

    SciTech Connect

    Larry Demick

    2012-11-01

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  19. Uranium in the Mayoworth area, Johnson County, Wyoming - a preliminary report

    USGS Publications Warehouse

    Love, J.D.

    1954-01-01

    The uranium mineral, metatyuyamunite, occurs in the basal limestone of the Sundance formation of late Jurassic age along the east flank of the Bighorn Mountains, about 2 miles southwest of the abandoned Mayoworth post office. This occurrence is of particular interest because it is the first uranium mineralization reported from a marine limestone in Wyoming. The discovery uranium claims were filed in July 1953, by J.S. Masek, Dan Oglesby, and Jack Emery of Casper, Wyo. Subsequent reconnaissance investigations have been made by private individuals and geologists of the U.S. Geological Survey and Atomic Energy Commission. The metatyuyamunite is concentrated in a hard gray oolitic limestone that forms the basal bed of the Sundance formation. A selected sample of limestone from a fresh face in the northernmost deposit known at the time of the field examination contained 0.70 percent equivalent uranium and 0.71 percent uranium. Eight samples of the limestone taken at the sample place by the Atomic Energy Commission contained from 0.007 to 0.22 percent uranium. A chip sample from the weathered outcrop at the top of this limestone half a mile to the southeast contained 0.17 percent equivalent uranium and 0.030 percent uranium. A dinosaur bone from the middle part of the Morrison formation contained 0.044 percent equivalent uranium and 0.004 percent uranium. metatyuyamunite forms a conspicuous yellow coating along fracture planes cutting the oolitic limestone and has also replaced many of the oolites within the solid limestone and has also replaced many of the oolites within the solid limestone even where fractures are not present. Many radioactive spots in the basal limestone of the Sundance formation were examined in a reconnaissance fashion along the outcrop for a distance of half a mile south of the initial discovery. Samples were taken for analysis only at the northern and southern margins of this interval. Outcrops farther north and south were not studied. There are

  20. Ichnofossils of the alluvial Willwood Formation (lower Eocene), Bighorn Basin, northwest Wyoming, U.S.A

    USGS Publications Warehouse

    Bown, T.M.; Kraus, M.J.

    1983-01-01

    The ichnofossil assemblage of the lower Eocene Willwood Formation consists of at least nine distinct endichnia that are preserved in full relief. Four forms (three ichnogenera and four ichnospecies) are new and represent fodinichnia and domichnia of oligochaete worms, an insect or spider, an unknown vertebrate (probably a mammal), and domichnia of an unidentified organism. Other potential trace makers of the ichnofauna include insects, mollusks, and decapods. In contrast to an Egyptian Oligocene fluvial ichnofauna produced largely by animals that burrowed in stream channel deposits, the Willwood assemblage is principally of flood-plain origin. Though the ichnofauna occurs in a variety of paleosol types, most of the fossils are restricted in distribution to specific sediment and soil types and, within paleosols, to specific identifiable horizons. This attribute will make them valuable indiced of paleoenvironment once they are better known in other ancient alluvial sequences. The environment suggested by the Willwood trace fossils (damp, but not wet soils with fluctuating water tables) is consistent with the warm temperate to subtropical (possibly monsoonal) conditions that are interpreted for the Willwood Formation by independent evidence of body fossils and paleopedology. ?? 1983.

  1. Geology of the Powder River Basin, Wyoming and Montana, with reference to subsurface disposal of radioactive wastes

    USGS Publications Warehouse

    Beikman, Helen M.

    1962-01-01

    The Powder River Basin is a structural and topographic basin occupying an area of about 20,000 square miles in northeastern Wyoming arid southeastern Montana. The Basin is about 230 miles long in a northwest-southeast direction and is about 100 miles wide. It is bounded on three sides by mountains in which rocks of Precambrian age are exposed. The Basin is asymmetrical with a steep west limb adjacent to the Bighorn Mountains and a gentle east limb adjacent to the Black Hills. Sedimentary rocks within the Basin have a maximum thickness of about 18,000 feet and rocks of every geologic period are represented. Paleozoic rocks are about 2,500 feet thick and consist of marine bonate rocks and sandstone; Mesozoic rocks are about 9,500 feet thick and consist of both marine and nonmarine siltstone and sandstone; and Cenozoic rocks are from 4,000 to 6,000 feet thick and consist of coal-bearing sandstone and shale. Radioactive waste could be stored in the pore space of permeable sandstone or in shale where space could be developed. Many such rock units that could be used for storing radioactive wastes are present within the Powder River Basin. Permeable sandstone beds that may be possible reservoirs for storage of radioactive waste are present throughout the Powder River Basin. These include sandstone beds in the Flathead Sandstone and equivalent strata in the Deadwood Formation, the Tensleep Sandstone and equivalent strata in the Minnelusa Formation and the Sundance Formation in rocks of pre-Cretaceous age. However, most of the possible sandstone reservoirs are in rocks of Cretaceous age and include sandstone beds in the Fall River, Lakota, Newcastle, Frontier, Cody, and Mesaverde Formations. Problems of containment of waste such as clogging of pore space and chemical incompatibility would have to be solved before a particular sandstone unit could be selected for waste disposal. Several thick sequences of impermeable shale such as those in the Skull Creek, Mowry, Frontier

  2. Estimation of Growing Season ET using Wyoming ET Calculator

    NASA Astrophysics Data System (ADS)

    Rasmussen, R. W.; Park, G.

    2011-12-01

    Accurate estimations of Evapotranspiration (ET) and Consumptive Irrigation Requirement (CIR) are essential for water resources planning and management. The Wyoming State Engineer's Office currently determines monthly reference evapotranspiration (ET) with an Excel Spreadsheet ET model using average monthly data from a nearby weather station (usually an airport weather station) for the irrigated area of interest, and interpolates them into daily reference ET using either linear or cubic functions. The purpose of this project is to replace the current Excel model with a GIS-based ET calculator. Our approach uses daily weather data to calculate daily reference and actual ET, and then aggregate actual ET into monthly and seasonal ET. Among many reference ET equations available, the ASCE Standardized Reference Evapotranspiration Equation (ASCE-ET) and the Hargreaves-Samani equations were selected to calculate daily reference ET. Wyoming ET Calculator, a GIS-based ET tool, was developed to calculate daily potential ET, CIR, and actual ET, using daily reference ET, crop coefficients, effective precipitation ratios, and water stress factors. Total monthly and growing season ET and CIR were determined over the Upper Green River Basin in Wyoming. The long term trends of these totals from 1960-2009 were analyzed and compared to trends in weather data (minimum and maximum temperatures, wind speed, and dew point temperature). We also evaluated the total monthly and growing season ET from Wyoming ET Calculator against satellite-based ET (METRIC ET) estimations for June, July, and August of 2009 around an irrigated area near the Wind River Mountain Range in Wyoming. The total monthly ET from Wyoming ET Calculator agrees very well with total monthly ET from METRIC for well-watered crop areas. For other areas, the Wyoming ET Calculator tends to overestimate total monthly ET values than METRIC, because the tool assumes all NLCD crop area are being irrigated.

  3. Folding above faults, Rocky Mountains

    SciTech Connect

    McConnell, D.A. . Dept. of Geology)

    1992-01-01

    Asymmetric folds formed above basement faults can be observed throughout the Rocky Mountains. Several previous interpretations of the folding process made the implicit assumption that one or both fold hinges migrated or rolled'' through the steep forelimb of the fold as the structure evolved (rolling hinge model). Results of mapping in the Bighorn and Seminoe Mountains, WY, and Sangre de Cristo Range, CO, do not support this hypothesis. An alternative interpretation is presented in which fold hinges remained fixed in position during folding (fixed hinge model). Mapped folds share common characteristics: (1) axial traces of the folds intersect faults at or near the basement/cover interface, and diverge from faults upsection; (2) fold hinges are narrow and interlimb angles cluster around 80--100[degree] regardless of fold location; (3) fold shape is typically angular, despite published cross sections that show concentric folds; and, (4) beds within the folds show thickening and/or thinning, most commonly adjacent to fold hinges. The rolling hinge model requires that rocks in the fold forelimbs bend through narrow fold hinges as deformation progressed. Examination of massive, competent rock units such as the Ord. Bighorn Dolomite, Miss. Madison Limestone, and, Penn. Tensleep Sandstone reveals no evidence of the extensive internal deformation that would be expected if hinges rolled through rocks of the forelimb. The hinges of some folds (e.g. Golf Creek anticline, Bighorn Mountains) are offset by secondary faults, effectively preventing the passage of rocks from backlimb to forelimb. The fixed hinge model proposes that the fold hinges were defined early in fold evolution, and beds were progressively rotated and steepened as the structure grew.

  4. A spatial risk assessment of bighorn sheep extirpation by grazing domestic sheep on public lands.

    PubMed

    Carpenter, Tim E; Coggins, Victor L; McCarthy, Clinton; O'Brien, Chans S; O'Brien, Joshua M; Schommer, Timothy J

    2014-04-01

    Bighorn sheep currently occupy just 30% of their historic distribution, and persist in populations less than 5% as abundant overall as their early 19th century counterparts. Present-day recovery of bighorn sheep populations is in large part limited by periodic outbreaks of respiratory disease, which can be transmitted to bighorn sheep via contact with domestic sheep grazing in their vicinity. In order to assess the viability of bighorn sheep populations on the Payette National Forest (PNF) under several alternative proposals for domestic sheep grazing, we developed a series of interlinked models. Using telemetry and habitat data, we characterized herd home ranges and foray movements of bighorn sheep from their home ranges. Combining foray model movement estimates with known domestic sheep grazing areas (allotments), a Risk of Contact Model estimated bighorn sheep contact rates with domestic sheep allotments. Finally, we used demographic and epidemiologic data to construct population and disease transmission models (Disease Model), which we used to estimate bighorn sheep persistence under each alternative grazing scenario. Depending on the probability of disease transmission following interspecies contact, extirpation probabilities for the seven bighorn sheep herds examined here ranged from 20% to 100%. The Disease Model allowed us to assess the probabilities that varied domestic sheep management scenarios would support persistent populations of free-ranging bighorn sheep.

  5. Wyoming Children's Factbook 1996.

    ERIC Educational Resources Information Center

    Wyoming P.A.R.E.N.T., Laramie.

    This Kids Count report details statewide trends in the well-being of Wyoming's children. The first part of the report provides a statistical portrait based on seven indicators of well-being for the year 1994: (1) prenatal care; (2) percent low birth-weight babies; (3) births to teens; (4) infant mortality rate; (5) child death rate; (6) teen…

  6. Wyoming Indians, Unit II.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on Wyoming Indians provides concepts, activities, Indian stories, and resources for elementary school students. Indian values and contributions are summarized. Concepts include the incorrectness of the term "Indian," the Indians' democratic society and sophisticated culture, historical events, and conflicts with whites over the…

  7. Paleohydrologic change across the Paleocene-Eocene Thermal Maximum, Bighorn Basin, WY

    NASA Astrophysics Data System (ADS)

    Baczynski, A. A.; McInerney, F. A.; Wing, S. L.; Kraus, M. J.

    2013-12-01

    One of the uncertainties in accurately predicting future climate change involves how the hydrologic cycle will respond to increasing pCO2 and temperature. Quantifying the relationship between carbon cycle perturbations and the hydrologic cycle in the geologic past is crucial to understanding and accurately modeling how anthropogenic carbon emissions will affect future changes in the hydrologic cycle. Records of paleohydrologic response to global warming in the geologic past are rare, particularly for continental interiors, where climate model projections of precipitation are highly uncertain. Here we examine hydrogen isotope ratios of leaf waxes as a tool for reconstructing paleohydrologic change in the continental interior of North America across the Paleocene-Eocene Thermal Maximum (PETM), an abrupt, transient episode of extreme global warming ~56 Ma. New hydrogen isotope measurements of leaf-wax n-alkanes from the southeastern Bighorn Basin, Wyoming record two positive shifts during the PETM. n-Alkane δD values first shift to more positive values just after the onset of the carbon isotope excursion and then again higher up in the body of the carbon isotope excursion, with a return to slightly more negative δD values in between. Paleobotanical, paleopedologic, and isotope data from the same field area have suggested that the Bighorn Basin may have experienced a drier or more seasonally dry climate during the PETM. Mean annual precipitation estimates based on paleosol major oxides, soil wetness assessed using the soil morphology index, and an aridity proxy based on differences in δ18O values of tooth enamel in aridity-sensitive and aridity-insensitive mammals each independently suggest a potential two-phase drying within the PETM interval. Similarly, the hydrogen isotope record could reflect two periods of drying, with a return to slightly wetter conditions in between. However, leaf-wax hydrogen isotope ratios reflect not only source water hydrogen isotope

  8. Ground-water resources and geology of northern and central Johnson County, Wyoming

    USGS Publications Warehouse

    Whitcomb, Harold A.; Cummings, T. Ray; McCullough, Richard A.

    1966-01-01

    Northern and central Johnson County, Wyo., is an area of about 2,600 square miles that lies principally in the western part of the Powder River structural basin but also includes the east flank of the Bighorn Mountains. Sedimentary rocks exposed range in age from Cambrian to Recent and have an average total thickness of about 16,000 feet. Igneous and metamorphic rocks of Precambrian age crop out in the Bighorn Mountains. Rocks of pre-Tertiary age, exposed on the flanks and in the foothills of the Bighorns, dip steeply eastward and lie at great depth in the Powder River basin. The rest of the project area is underlain by a thick sequence of interbedded sandstone, siltstone, and shale of Paleocene and Eocene age. Owing to the regional structure, most aquifers in Johnson County contain water under artesian pressure. The Madison Limestone had not been tapped for water in Johnson County at the time of the present investigation (1963), but several wells in eastern Big Horn and Washakie Counties, on the west flank of the Bighorn Mountains, reportedly have flows ranging from 1,100 to 2,800 gallons per minute. Comparable yields can probably be obtained from the Madison in Johnson County in those areas where the limestone is fractured or cavernous. The Tensleep Sandstone reportedly yields 600 gallons per minute to a pumped irrigation well near its outcrop in the southwestern part of the project area. Several flowing wells tap the formation on the west flank of the Bighorn Mountains. The Madison Limestone and the Tensleep Sandstone have limited potential as sources of water because they can be developed economically only in a narrow band paralleling the Bighorn Mountain front in the southwestern part of the project area. Overlying the Tensleep Sandstone is about 6,000 feet of shale, siltstone, and fine-grained sandstone that, with a few exceptions, normally yields only small quantities of water to wells. The Cloverly Formation and the Newcastle Sandstone may yield moderate

  9. The bats of Wyoming

    USGS Publications Warehouse

    Bogan, Michael A.; Cryan, Paul M.; Choate, Jerry R.

    2000-01-01

    We examined 1280 bats of 12 species submitted to the Wyoming State Veterinary Laboratory (WSVL) for ra­bies testing between 1981 and 1992. The most abundant species in the sample was Myotis lucifugus, followed by Epte­sicus fuscus, Lasionycteris noetivagans, M. ciliolabrum, and M. volans. Using the WSVL sample and additional museum specimens, we summarized available records and knowledge for 17 species of bats in Wyoming, Records of the WSVL show that, between 1981 and 1992, 113 bats actually tested positive for rabies. We examined 45 of those rabies­ positive bats; E. fuscus had the highest incidence (60%) in the sample, followed by L. noctivagans (11 %) and L. cinereus (9%).

  10. Susceptibility of phagocytes from elk, deer, bighorn sheep, and domestic sheep to Pasteurella haemolytica cytotoxins.

    PubMed

    Silflow, R M; Foreyt, W J

    1994-10-01

    Alveolar macrophages and peripheral blood neutrophils from elk (Cervus elaphus), bighorn sheep (Ovis canadensis canadensis), and domestic sheep were exposed to culture supernatants from Pasteurella haemolytica isolated from bighorn sheep and domestic sheep. In a second experiment, peripheral blood neutrophils from mule deer (Odocoileus hemionus), elk, and bighorn sheep were exposed to culture supernatants from P. haemolytica isolated from elk, bighorn sheep and domestic sheep. Alveolar macrophages from elk, bighorn sheep and domestic sheep were resistant to killing by P. haemolytica supernatants from bighorn sheep and domestic sheep; susceptibility of neutrophils to cell death, as measured by release of lactate dehydrogenase, differed significantly (P < 0.05) between the four species tested. Bighorn sheep and domestic sheep neutrophils were susceptible to cytotoxin damage by the P. haemolytica isolates used; bighorn sheep neutrophils were four- to eight-fold more susceptible to cytotoxin damage than domestic sheep neutrophils. Neutrophils from deer and elk were resistant to killing by P. haemolytica cytotoxins from any species tested.

  11. Muellerius capillaris dominates the lungworm community of Bighorn Sheep at the National Bison Range, Montana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lungworm infections are common among bighorn sheep (Ovis canadensis) in North America, and the predominant species reported are Protostrongylus stilesi and P. rushi. Currently, the only records of another lungworm species, Muellerius capillaris, infecting bighorns come from South Dakota. At the Nati...

  12. Potential disease agents in domestic goats and relevance to bighorn sheep (Ovis canadensis) management.

    PubMed

    Drew, Mark L; Weiser, Glen C

    2017-01-01

    Domestic goats are raised for meat, milk and hair production, in herds for rangeland weed control, and as pack animals. Domestic sheep, goats and wild bighorn sheep are all susceptible to a multifactorial pneumonia. We sampled 43 herd goats from 7 herds and 48 pack goats from 11 herds for viral and bacterial serology, parasitology, and Pasteurellaceae microbiology. The goats in this study were in generally good health, although most goats did harbor various pathogens and parasites including several bacteria, specifically Pasteurellaceae, which have been associated with pneumonia in free-ranging bighorn sheep. It is not known if domestic goats can transmit the Pasteurellaceae or other pathogens found in this study readily to wild bighorn sheep. However, due the possibility of transmission, domestic goats in areas in or near bighorn sheep habitat should be managed to minimize the risk of spreading disease agents to bighorn sheep.

  13. Potential disease agents in domestic goats and relevance to bighorn sheep (Ovis canadensis) management

    PubMed Central

    Weiser, Glen C.

    2017-01-01

    Domestic goats are raised for meat, milk and hair production, in herds for rangeland weed control, and as pack animals. Domestic sheep, goats and wild bighorn sheep are all susceptible to a multifactorial pneumonia. We sampled 43 herd goats from 7 herds and 48 pack goats from 11 herds for viral and bacterial serology, parasitology, and Pasteurellaceae microbiology. The goats in this study were in generally good health, although most goats did harbor various pathogens and parasites including several bacteria, specifically Pasteurellaceae, which have been associated with pneumonia in free-ranging bighorn sheep. It is not known if domestic goats can transmit the Pasteurellaceae or other pathogens found in this study readily to wild bighorn sheep. However, due the possibility of transmission, domestic goats in areas in or near bighorn sheep habitat should be managed to minimize the risk of spreading disease agents to bighorn sheep. PMID:28282407

  14. Muellerius capillaris dominates the lungworm community of bighorn sheep at the National Bison Range, Montana.

    PubMed

    Ezenwa, Vanessa O; Hines, Alicia M; Archie, Elizabeth A; Hoberg, Eric P; Asmundsson, Ingrid M; Hogg, John T

    2010-07-01

    Lungworm infections are common among bighorn sheep (Ovis canadensis) in North America, and the predominant species reported are Protostrongylus stilesi and P. rushi. The only records of another lungworm species, Muellerius capillaris, infecting bighorns come from South Dakota, USA. At the National Bison Range (NBR), Montana, USA we found that across six sampling periods, 100% of wild bighorn sheep surveyed were passing first-stage dorsal-spined larvae (DSL) which appeared to be consistent with M. capillaris. By contrast, only 39% or fewer sheep were passing Protostrongylus larvae. Using molecular techniques, we positively identified the DSL from the NBR bighorns as M. capillaris. This is the first definitive record of M. capillaris infection in a free-ranging bighorn sheep population outside of South Dakota.

  15. Wyoming Community College Commission Annual Report, 2010

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2010

    2010-01-01

    The Wyoming Community College Commission (WCCC) serves the system of Wyoming's seven community colleges. Wyoming's seven community colleges provide affordable, accessible and lifelong education. The Wyoming Community College Commission supports the colleges through advocacy, coordination and collaboration. In partnership with the colleges, the…

  16. Use of DNA analysis of Pasteurella haemolytica biotype T isolates to monitor transmission in bighorn sheep (Ovis canadensis canadensis).

    PubMed Central

    Jaworski, M D; Ward, A C; Hunter, D L; Wesley, I V

    1993-01-01

    Pneumonia has been identified as a major cause of poor lamb survival in indigenous herds of Rocky Mountain bighorn sheep (Ovis canadensis canadensis) in central Idaho. Pasteurella haemolytica was isolated from five adult Rocky Mountain bighorn ewes captured from a free-ranging herd in central Idaho. The lambs from two of these ewes delivered by cesarean section were free of P. haemolytica until 40 days of age and after repeated contact with their dams. The lambs subsequently developed signs of pneumonia, and P. haemolytica was isolated from nasal, pharyngeal, and transtracheal wash samples from each lamb. All P. haemolytica biotype T isolates from the ewes and lambs, as well as those from a 9-month-old lamb of the same herd from which samples for culture were obtained 2 years earlier, were subjected to HaeIII restriction enzyme analysis (REA) and ribotyping. Two ribotypes and seven REA patterns were visually distinguishable by these procedures. Similarity coefficients (SAB) of 0.09 to 0.95 were calculated for the seven REA patterns. The REA patterns of the isolates from the lambs were identical (SAB = 1.0). The isolates from the lambs also had SAB values of 1.0, which was indicative of identity with one of the seven isolates cultured from the ewes at the time of capture and with the organism isolated from the 9-month-old lamb. These procedures have the discriminatory capabilities necessary to monitor the transmission of specific strains of bacteria within and between animal populations. Images PMID:8385150

  17. Graphically characterizing the movement of a rabid striped skunk epizootic across the landscape in northwestern Wyoming.

    PubMed

    Ramey, Craig A; Mills, Kenneth W; Fischer, Justin W; McLean, Robert G; Fagerstone, Kathleen A; Engeman, Richard M

    2013-09-01

    A striped skunk (Mephitis mephitis) rabies epizootic in northwestern Wyoming was studied from the Index Case in 1988 to the last case in 1993, and possibly is the first rabies epizootic in a previously rabies-free zone monitored from beginning to end. The 843 km(2) study area comprised skunk habitat along 90 km of Shoshone River's floodplain from Bighorn Lake upstream to Cody. Of 1,015 skunks tested, 215 were rabies-positive. Integrating spatial and temporal data from positive cases, we analyzed the epizootic's movements and dynamics at 6-month intervals using multivariate movement maps, a new multivariate descriptive methodology presented here to demonstrate the epizootic's directional flow, while illustrating areas with higher case densities (i.e., wave crests). This approach should help epidemiologists and public health officials to better understand future rabies epizootics.

  18. Restoration of bighorn sheep metapopulations in and near 15 national parks: Conservation of severely fragmented species; Volume II, Synopsis of research findings

    USGS Publications Warehouse

    Singer, Francis J.; Gudorf, Michelle A.

    1999-01-01

    The research studies were conducted by scientists from the Biological Resources Division of the USGS (fonnerly NBS) (11 research studies), university-based scientists (Univ. of Wyoming- 2 studies, University of Colorado- 1, Colorado State University- 2, University of California, White Mountain Center- 1, Northern Arizona University - 1, Montana State University - 1) and by state agency veterinarians: Drs. Beth Williams of Wyoming, Mike Miller of Colorado, and Terry Spraker of Colorado State University. Only the highlights of these research studies are presented below. Full research reports are available in Volume III of this series.

  19. Assessing Timing and Causes of Neonatal Lamb Losses in a Bighorn Sheep Ovis canadensis canadensis Herd via Use of Vaginal Implant Transmitters.

    PubMed

    Grigg, Jamin L; Wolfe, Lisa L; Fox, Karen A; Killion, Halcyon J; Jennings-Gaines, Jessica; Miller, Michael W; P Dreher, Brian

    2017-02-13

    We evaluated the use of vaginal implant transmitters (VITs) as a means of detecting, capturing, and radio collaring Rocky Mountain bighorn sheep ( Ovis canadensis canadensis) lambs to estimate survival and to facilitate carcass recovery to assess causes of mortality. We focused on one of several bighorn herds in Colorado, USA, suffering from depressed recruitment that was not preceded by a classic all-age die-off. We captured, radio-collared, diagnosed pregnancy by ultrasound examination, and inserted VITs into 15 pregnant ewes from a herd residing near Granite, Colorado. We were subsequently able to collar a lamb from each of 13 VITs, and two additional lambs opportunistically from ewes without transmitters. As lambs died, we recovered and submitted carcasses for necropsy and laboratory assessment. All lambs captured and one additional lamb (carcass found opportunistically) were dead by about 130 d of age: 11 died of apparent pneumonia (all within 8-10 wk of age), one died from trauma after being kicked or trampled, one was killed by a mountain lion ( Puma concolor ), and three died of starvation likely caused by abandonment after capture. Pneumonic lambs had involvement of Mycoplasma ovipneumoniae and leukotoxigenic Bibersteinia trehalosi . The use of VITs and lamb collars enabled us to efficiently identify pneumonia as the predominant cause of depressed lamb recruitment in this herd; however, we urge care in neonatal lamb handling to minimize abandonment.

  20. Eolian sandstone unit of Morrison Formation, central Wyoming

    SciTech Connect

    Uhlir, D.M.

    1986-08-01

    The fine-grained quartzarenite that overlies the Sundance Formation in the southwestern Powder River basin, Wind River basin, and southern Bighorn basin is interpreted as being primarily the result of eolian deposition. This unit, often more than 20 m (65.6 ft) thick, is the probable correlative of the Unkpapa Sandstone member of the Morrison Formation of the southeastern Black Hills region. An eolian interpretation is based on the presence of large-scale sets of high-angle, planar cross-stratification. Observed considerable variation in the thickness of the unit is likely to be an expression of the depositional (dune-form) topography rather than the result of later erosion. Discrete dunes are exposed near Thermopolis along the northern margin of the unit: the transitional marine deposits of the uppermost Sundance formation are the most likely source of the wind-transported sand. Stratigraphic and facies relationships and lithologic similarity support correlation of the eolian unit with the Unkpapa Sandstone. Together, the units represent regions of significant eolian deposition within the predominantly fluvial Morrison depositional environment. The properties of the eolian sandstone, its thickness, its superposition above the marine Sundance Formation, and the possibility of its persistence in the subsurface of the southern Powder River basin give it potential as a petroleum reservoir. These anomalous eolian deposits may record the positions of gentle structures developed in central Wyoming and western South Dakota at the onset of, and in association with, Sevier compression.

  1. Longwall in Wyoming

    SciTech Connect

    Buchsbaum, L.

    2007-05-15

    The article describes development of a longwall operation at Pacific Corp's Jim Bridger mine in Wyoming, USA. The lease acquisition and permitting process began in late 2003 and the longwall operations began on 5 March 2007. The quality is between sub and bituminous coal. The mine is shallow and the surrounding rock is weaker than longwall mines in Colorado or Utah. DBT supplied the longwall system comprising 1.75 m shields, a 1 m wide face conveyor and a DBT EL200 shear with a 1-m web. The mine also operates a highwall unit and two draglines. 4 photos.

  2. Desert bighorn sheep lambing habitat: Parturition, nursery, and predation sites

    USGS Publications Warehouse

    Karsch, Rebekah C.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2016-01-01

    Fitness of female ungulates is determined by neonate survival and lifetime reproductive success. Therefore, adult female ungulates should adopt behaviors and habitat selection patterns that enhance survival of neonates during parturition and lactation. Parturition site location may play an important role in neonatal mortality of desert bighorn sheep (Ovis canadensis mexicana) when lambs are especially vulnerable to predation, but parturition sites are rarely documented for this species. Our objectives were to assess environmental characteristics at desert bighorn parturition, lamb nursery, and predation sites and to assess differences in habitat characteristics between parturition sites and nursery group sites, and predation sites and nursery group sites. We used vaginal implant transmitters (VITs) to identify parturition sites and capture neonates. We then compared elevation, slope, terrain ruggedness, and visibility at parturition, nursery, and lamb predation sites with paired random sites and compared characteristics of parturition sites and lamb predation sites to those of nursery sites. When compared to random sites, odds of a site being a parturition site were highest at intermediate slopes and decreased with increasing female visibility. Odds of a site being a predation site increased with decreasing visibility. When compared to nursery group sites, odds of a site being a parturition site had a quadratic relationship with elevation and slope, with odds being highest at intermediate elevations and intermediate slopes. When we compared predation sites to nursery sites, odds of a site being a predation were highest at low elevation areas with high visibility and high elevation areas with low visibility likely because of differences in hunting strategies of coyote (Canis latrans) and puma (Puma concolor). Parturition sites were lower in elevation and slope than nursery sites. Understanding selection of parturition sites by adult females and how habitat

  3. Spatio-temporal dynamics of pneumonia in bighorn sheep

    USGS Publications Warehouse

    Cassirer, E. Frances; Plowright, Raina K.; Manlove, Kezia R.; Cross, Paul C.; Dobson, Andrew P.; Potter, Kathleen A.; Hudson, Peter J.

    2013-01-01

    Bighorn sheep mortality related to pneumonia is a primary factor limiting population recovery across western North America, but management has been constrained by an incomplete understanding of the disease. We analysed patterns of pneumonia-caused mortality over 14 years in 16 interconnected bighorn sheep populations to gain insights into underlying disease processes. 2. We observed four age-structured classes of annual pneumonia mortality patterns: all-age, lamb-only, secondary all-age and adult-only. Although there was considerable variability within classes, overall they differed in persistence within and impact on populations. Years with pneumonia-induced mortality occurring simultaneously across age classes (i.e. all-age) appeared to be a consequence of pathogen invasion into a naïve population and resulted in immediate population declines. Subsequently, low recruitment due to frequent high mortality outbreaks in lambs, probably due to association with chronically infected ewes, posed a significant obstacle to population recovery. Secondary all-age events occurred in previously exposed populations when outbreaks in lambs were followed by lower rates of pneumonia-induced mortality in adults. Infrequent pneumonia events restricted to adults were usually of short duration with low mortality. 3. Acute pneumonia-induced mortality in adults was concentrated in fall and early winter around the breeding season when rams are more mobile and the sexes commingle. In contrast, mortality restricted to lambs peaked in summer when ewes and lambs were concentrated in nursery groups. 4. We detected weak synchrony in adult pneumonia between adjacent populations, but found no evidence for landscape-scale extrinsic variables as drivers of disease. 5. We demonstrate that there was a >60% probability of a disease event each year following pneumonia invasion into bighorn sheep populations. Healthy years also occurred periodically, and understanding the factors driving these

  4. 75 FR 5944 - Agenda and Notice of Public Meeting of the Wyoming Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... professor in the education department of the University of Wyoming and the president of the NAACP-Cheyenne... Mountain Regional Office by March 27, 2010. The address is 1961 Stout Street, Suite 240, Denver, CO 80294... meeting. Records generated from this meeting may be inspected and reproduced at the Rocky...

  5. Land and federal mineral ownership coverage for southern Wyoming

    USGS Publications Warehouse

    Biewick, L.H.; Mercier, T.J.; Saber, T.T.; Urbanowski, S.R.; Neasloney, Larry

    1999-01-01

    This Arc/Info coverage contains land status and Federal mineral ownership for approximately 37,800 square miles in southern Wyoming. The polygon coverage (which is also provided here as a shapefile) contains two attributes of ownership information for each polygon. One attribute indicates where the surface is State owned, privately owned, or, if Federally owned, which Federal agency manages the land surface. The other attribute indicates which minerals, if any, are owned by the Federal govenment. This coverage is based on land status and Federal mineral ownership data compiled by the U.S. Geological Survey (USGS) and the Wyoming State Bureau of Land Management (BLM) at a scale of 1:24,000. This coverage was compiled primarily to serve the USGS National Oil and Gas Resource Assessment and National Coal Resource Assessment Projects in the Northern Rocky Mountains/Great Plains Region.

  6. Dynamic weakening and thermal decomposition during the Heart Mountain mega-landslide

    NASA Astrophysics Data System (ADS)

    Mitchell, T. M.; Smith, S. A.; Anders, M. H.; Di Toro, G.

    2012-12-01

    The 3400-km2 Heart Mountain landslide of northwestern Wyoming and southwestern Montana is the largest subaerial landslide known. This Eocene age slide slid ˜50 km on a carbonate rich basal layer ranging in thickness from a few tens of centimeters to several meters, along a shallow 2° slope, posing a long-standing question regarding its emplacement mechanism. It has recently been suggested that such large displacement was aided by strong dynamic weakening mechanism, thermal pressurization due to shear heating and thermal decomposition in the basal layer slip zone, with theoretical simulations suggesting slip velocities ranging between tens of meters per second to more than 100 ms-1. In this study, we present the results of a suite of high velocity friction experiments in a rotary shear configuration on initially intact carbonates collected from the Heart Mountain region, in attempt to reproduce conditions experienced in the slip zone of the basal section during emplacement of the landslide. Gouges were prepared from initially intact hostrocks of Madison limestone and Bighorn dolomite, and were sheared for a range of displacements up to 6 metres at normal stresses up to 25 MPa at slip rates up to 2 m/s. Mechanical results generally show strong dynamic weakening with peak friction dropping from 0.7 to a steady state friction as low as 0.1. Microstructural observations of the highly polished slip surfaces produced show localization of the principal slip surface to less than 100 microns thick. Thermal decomposition is evidenced by degassing bubbles in the rims of dolomite clasts, and the release of CO2 as measured by mass spectrometer during experiments, indicating that temperatures in the slip zone quickly reached the decomposition temperature of carbonates (at least 700 degrees) within just a few metres of slip. These results compare favorably with theoretical calculations and ample field evidence for carbonate decomposition during the emplacement. Independent

  7. 76 FR 32225 - Notice of Public Meeting; Wyoming Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... Yellowstone, Cheyenne, Wyoming. FOR FURTHER INFORMATON CONTACT: Cindy Wertz, Wyoming Resource Advisory Council Coordinator, Wyoming State Office, 5353 Yellowstone, Cheyenne, Wyoming, 82009, telephone 307-775-6014....

  8. Evaluation of experimental genetic management in reintroduced bighorn sheep

    PubMed Central

    Olson, Zachary H; Whittaker, Donald G; Rhodes, Olin E

    2012-01-01

    Positive demographic responses have been reported in several species where the immigration or supplementation of genetically distinct individuals into wild populations has resulted in a genetic rescue effect. However, rarely have researchers incorporated what could be considerable risk of outbreeding depression into planning for genetic management programs. We assess the genetic effects of an experiment in genetic management involving replicate populations of California bighorn sheep (Ovis canadensis californiana) in Oregon, USA, which previously experienced poor productivity and numerical declines. In the experiment, two declining populations were supplemented with ewes from a more genetically diverse population of California bighorn sheep in Nevada. We incorporated analysis of genetic samples representing both experimental populations prior to supplementation, samples from the supplemented individuals, and samples collected from both experimental populations approximately one generation after supplementation. We used genetic analyses to assess the integration of supplemented and resident populations by identifying interpopulation hybrids. Further, we incorporated demographic simulations to assess the risk of outbreeding depression as a result of the experimental augmentation. Finally, we used data from microsatellites and mitochondrial sequences to determine if genetic management increased genetic diversity in the experimental populations. Our analyses demonstrated the success of genetic management by documenting interpopulation hybrids, identifying no evidence for outbreeding depression as a result of contact between the genetically distinct supplemented and resident populations, and by identifying increased population-level metrics of genetic diversity in postsupplementation populations compared with presupplementation levels. PMID:22423334

  9. Paleoproterozoic metamorphism in the northern Wyoming province: Implications for the assembly of Laurentia

    USGS Publications Warehouse

    Mueller, P.A.; Burger, H.R.; Wooden, J.L.; Brady, J.B.; Cheney, J.T.; Hamrs, T.A.; Heatherington, A.L.; Mogk, D.W.

    2005-01-01

    U-Pb ages measured on zircons from the Tobacco Root Mountains and monazite from the Highland Mountains indicate that the northwestern Wyoming province experienced an episode of high-grade metamorphism at ???1.77 Ga. Leucosome emplaced in Archean gneisses from the Tobacco Root Mountains contains a distinctive population of zircons with an age of 1.77 Ga but also contains zircons to ???3.5 Ga; it is interpreted to have been derived primarily by anatexis of nearby Archean schist. A granulite facies mafic dike that cuts across Archean gneissic banding in the Tobacco Root Mountains contains two distinct populations of zircons. A group of small (<50 ??m) nonprismatic grains is interpreted to be metamorphic and yields an age of 1.76 Ga; a group of slightly larger prismatic grains yields an age of 2.06 Ga, which is interpreted to be the time of crystallization of the dike. Monazite from a leucogranite from the Highland Mountains yields a well-defined age of 1.77 Ga, which is interpreted as the time of partial melting and emplacement of the leucogranite. These results suggest that the northwestern Wyoming province, which largely lies within the western part of the Great Falls tectonic zone, experienced a metamorphic maximum at 1.77 Ga. This age is ???100 m.yr. younger than the proposed time of Wyoming-Hearne collision in the central Great Falls tectonic zone (1.86 Ga) and suggests that the northwestern Wyoming province may have been involved in a separate, younger collisional event at ???1.77 Ga. An event at this time is essentially coeval with collisions proposed for the eastern and southeastern margins of the province and suggests a multiepisodic model for the incorporation of the Wyoming craton into Laurentia. ?? 2005 by The University of Chicago. All rights reserved.

  10. Foraging at the wildland–urban interface decouples weather as a driver of recruitment for desert bighorn sheep

    USGS Publications Warehouse

    Longshore, Kathleen; Lowrey, Chris E.; Cummings, Patrick

    2016-01-01

    A growing number of ungulate populations are living within or near the wildland–urban interface. When resources at the interface are of greater quality than that of adjacent natural habitat, wildlife can be attracted to these developed areas. Little is known about how use of the wildland–urban interface by wildlife may affect vital rates. Under natural conditions, recruitment by desert bighorn sheep (Ovis canadensis nelsoni) correlates with variation in the timing and amount of rainfall that initiates and enhances growth of annual plant species. However, for populations that forage in developed areas, this relationship may become decoupled. In the River Mountains of Nevada, USA, desert bighorn sheep have been feeding in a municipal park at the wildland–urban interface since its establishment in 1985. Approximately one-third of the population now uses the park during summer months when nutritional content of natural forage is low. We hypothesized that use of this municipal area, with its abundant vegetation and water resources, may have decoupled the previous relationship between precipitation and lamb recruitment. We assessed variables known to affect lamb recruitment before (1971–1986) and after (1987–2006) establishment of the park using linear regression models. Our top candidate model for the pre-park period indicated that total November precipitation was the greatest driver of lamb recruitment in this population. After park establishment, this relationship became decoupled because lamb recruitment was no longer driven by weather variables. These results raise questions about the effects of decoupling drivers of population growth and maintaining natural populations near urban areas.

  11. Coals and coal-bearing rocks of the Hanna Coal Field, Wyoming

    SciTech Connect

    Glass, G.B.; Roberts, J.T.

    1980-01-01

    Renewed interest in Wyoming's vast coal deposits began in the late 1960's as power plant demands for inexpensive, low sulfur coals increased. Because of this demand, Wyoming's coal companies have set new production records every year since 1972. Table 1 summarizes annual production for the last 19 years on a county basis. Wyoming's 1978 tonnage set yet another record at 58.2 million tons. With this tonnage, Wyoming remains the largest coal-producing state in the Rocky Mountains and the fourth largest in the nation. Coal production in Wyoming was dominated by underground mining until 1954. In that year, strip mining tonnage barely exceeded that of the underground mines. Since then, however, strip mining has become the dominant mining method and now accounts for about 99 percent of Wyoming's annual production. Conversely, underground mining has slipped to approximately one percent of the annual tonnage mined. In 1978, twenty-one coal mining companies produced 58.2 million tons of coal. These companies operated 22 strip mines and 3 underground mines.

  12. 75 FR 19886 - Approval and Promulgation of Air Quality Implementation Plans; Wyoming; Revisions to the Wyoming...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Wyoming; Revisions to the Wyoming Air Quality Standards and Regulations AGENCY: Environmental Protection Agency (EPA... the State of Wyoming on September 11, 2008. Wyoming has revised its Air Quality Standards...

  13. 75 FR 19920 - Approval and Promulgation of Air Quality Implementation Plans; Wyoming; Revisions to the Wyoming...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-16

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Wyoming; Revisions to the Wyoming Air Quality Standards and Regulations AGENCY: Environmental Protection Agency (EPA...) revisions submitted by the State of Wyoming on September 11, 2008. Wyoming has revised its Air...

  14. Chlamydial-caused infectious keratoconjunctivitis in bighorn sheep of Yellowstone National Park

    USGS Publications Warehouse

    Meagher, Mary; Quinn, William J.; Stackhouse, Larry

    1992-01-01

    An epizootic of infectious keratoconjuctivitis occurred in bighorn sheep (Ovis canadensis) in Yellowstone National Park during the winter of 1981-82. The causative organism was identified as Chlamydia sp. Mortality related to the epizootic was approximately 60% of an estimated 500 bighorn sheep in the northern range population. The infection probably affected all sex and age classes, but field surveys of live animals and mortality suggested that mature rams died disproportionately. Limited field observations the following winter on individuals having both normal and cloudy-appearing eyes suggested that half of the bighorns then present on the core units of winter range had contracted the disease and survived. By 1988, there were about 300 bighorn sheep in the population.

  15. SAVAGE RUN WILDERNESS, WYOMING.

    USGS Publications Warehouse

    McCallum, M.E.; Kluender, Steven E.

    1984-01-01

    Mineral evaluation and related surveys were conducted in the Savage Run Wilderness in Wyoming and results of these studies indicate probable mineral-resource potential in four areas. Gold and (or) silver mineralization in veins associated with faults was found in two areas; all known occurrences inside the wilderness are very small in size. Slightly anomalous values of platinum, palladium, and nickel were recorded from rock-chip and stream- sediment samples from the southeast portion of the wilderness where layered mafic rocks predominate, and a probable resource potential exists for platinum, palladium, and nickel. An area of sheared rocks in the northeastern corner of the wilderness has a probable resource potential for copper. The nature of the geologic terrane precludes the occurrence of organic fuels.

  16. GLACIER PRIMITIVE AREA, WYOMING.

    USGS Publications Warehouse

    Granger, Harry C.; Patten, Lowell L.

    1984-01-01

    A mineral survey of the Glacier Primitive Area, Wyoming and an adjoining area to the northeast was made. The study area was mapped geologically, an aeromagnetic survey was made, a geochemical study was done, and known mineralized occurrences and claims were examined. Two localities were found to contain small concentrations of uranium and several samples displayed minor anomalies in base and precious metals. A probable resource potential for lead, molybdenum, arsenic, barium, fluorite, and uranium exists in the area near the Ross Lakes shear zone and a small area of probable uranium resource potential exists around the Dubois claims. The study area, in general, is believed to have little promise for the occurrence of additional mineral or energy resources.

  17. Survival of bighorn sheep (Ovis canadensis) commingled with domestic sheep (Ovis aries) in the absence of Mycoplasma ovipneumoniae.

    PubMed

    Besser, Thomas E; Cassirer, E Frances; Yamada, Catherine; Potter, Kathleen A; Herndon, Caroline; Foreyt, William J; Knowles, Donald P; Srikumaran, Subramaniam

    2012-01-01

    To test the hypothesis that Mycoplasma ovipneumoniae is an important agent of the bighorn sheep (Ovis canadensis) pneumonia that has previously inevitably followed experimental commingling with domestic sheep (Ovis aries), we commingled M. ovipneumoniae-free domestic and bighorn sheep (n=4 each). One bighorn sheep died with acute pneumonia 90 days after commingling, but the other three remained healthy for >100 days. This unprecedented survival rate is significantly different (P=0.002) from that of previous bighorn-domestic sheep contact studies but similar to (P>0.05) bighorn sheep survival following commingling with other ungulates. The absence of epizootic respiratory disease in this experiment supports the hypothesized role of M. ovipneumoniae as a key pathogen of epizootic pneumonia in bighorn sheep commingled with domestic sheep.

  18. Changes in alluvial architecture associated with Eocene hyperthermals: Preliminary results from the Bighorn Basin Coring Project

    NASA Astrophysics Data System (ADS)

    Acks, R.; Kraus, M. J.

    2012-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) was followed by two lesser hyperthermal events: ETM2 and H2 both at ~53.7 Ma. The carbon isotope excursion for ETM2 was approximately half that of the PETM and the H2 excursion even smaller, indicating lower increases in temperature than during the PETM. The paleohydrologic responses to these events are less well understood than the response to PETM warming. Although the ETM2 and H2 events are better known from marine than continental strata, both events have been identified from outcrops of the alluvial Willwood Formation from the Deer Creek and Gilmore Hill areas of the Bighorn Basin, Wyoming (Abels et al., 2012). Here, we analyze two cores drilled from stratigraphically equivalent Willwood strata from Gilmore Hill. The cores provide an opportunity to examine the impact of these events on the architecture of fluvial strata. Willwood strata are composed largely of channel sandstones, heterolithic deposits generated by channel avulsion, and paleosols that formed on overbank deposits. The paleosols provide qualitative and quantitative information on changes in soil moisture and precipitation through this interval. The cores also show a distinct change in the stacking of paleosols The core is subdivided into three parts: (1) the lowest ~third has thinner, more densely spaced paleosols, (2) the middle has thicker paleosols that are more widely spaced, and (3) the upper third has thicker and more common channel sandstones interspersed with avulsion deposits and fewer red paleosols; this corresponds to the hyperthermal interval. In particular, a ~20 m thick sandstone complex caps the section and appears to truncate part of the hyperthermal interval. Although vertical variations in alluvial architecture can reflect tectonic or climatic change, the correspondence of the sandstone-rich part of the cores with the hyperthermals suggests climate was the major control on their formation. Thick purple paleosols associated with the

  19. Libraries in Wyoming: MedlinePlus

    MedlinePlus

    ... this page: https://medlineplus.gov/libraries/wyoming.html Libraries in Wyoming To use the sharing features on ... please enable JavaScript. Gillette Campbell County Health Medical Library 501 S. Burma Ave. PO Box 3011 Gillette, WY ...

  20. Desert bighorn sheep mortality due to presumptive type C botulism in California

    USGS Publications Warehouse

    Swift, P.K.; Wehausen, J.D.; Ernest, H.B.; Singer, R.S.; Pauli, A.M.; Kinde, H.; Rocke, T.E.; Bleich, V.C.

    2000-01-01

    During a routine telemetry flight of the Mojave Desert (California, USA) in August 1995, mortality signals were detected from two of 12 radio-collared female desert bighorn sheep (Ovis canadensis) in the vicinity of Old Dad Peak in San Bernardino County (California). A series of field investigations determined that at least 45 bighorn sheep had died near two artificial water catchments (guzzlers), including 13 bighorn sheep which had presumably drowned in a guzzler tank. Samples from water contaminated by decomposing bighorn sheep carcasses and hemolyzed blood from a fresh bighorn sheep carcass were tested for the presence of pesticides, heavy metals, strychnine, blue-green algae, Clostridium botulinum toxin, ethylene glycol, nitrates, nitrites, sodium, and salts. Mouse bioassay and enzyme-linked immunosorbent assay detected type C botulinum toxin in the hemolyzed blood and in fly larvae and pupae. This, coupled with negative results from other analyses, led us to conclude that type C botulinum poisoning was most likely responsible for the mortality of bighorn sheep outside the guzzler tank.

  1. Blood group comparisons between European mouflon sheep and north American desert bighorn sheep.

    PubMed

    Bunch, T D; Nguyen, T C

    1982-01-01

    Blood group systems in true sheep (Ovis) provide an additional method by which phylogenetic relationships can be measured. Of the eight genetic systems of blood groups identified in domestic sheep, all appeared to have their homologue in European mouflons and at least six might have their equivalent in North American desert bighorns. The red cells of the European mouflon, which is believed to be ancestral to domestic sheep, cross-reacted with domestic sheep blood-group typing reagents much more strongly and extensively than did the red cells of desert bighorn sheep. It also was noted that all the Mexican desert bighorns tested were Da positive, but their blood factor was not observed in the Nelson desert bighorns sampled. This observation indicated that the two subspecies might differ from each other with respect to the D blood group system. Transferrin type D was observed in the mouflons, while Tfs D and E were in the desert bighorns. Hemoglobins B and AB were observed in the mouflons but only Hb B occurred in the desert bighorns. The systematic implications of blood group polymorphisms are discussed.

  2. 36 CFR 7.92 - Bighorn Canyon National Recreation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Wyoming Game and Fish Department Residence on the Pond 5 road northeast to the Kane Cemetery. North along the main traveled road past Mormon Point, Jim Creek, along the Big Fork Canal, crossing said canal and... description R94W, T57N at the SE corner of Section 6, the SW corner of Section 5, the NE corner of Section...

  3. Cloning and comparison of bighorn sheep CD18 with that of domestic sheep, goats, cattle, humans and mice.

    PubMed

    Liu, Weiguo; Brayton, Kelly A; Lagerquist, John; Foreyt, William J; Srikumaran, Subramaniam

    2006-03-15

    Previously, we have shown that CD18, the beta-subunit of beta(2)-integrins, serves as a receptor for leukotoxin (Lkt) secreted by Mannheimia (Pasteurella) haemolytica on bovine leukocytes. Anti-CD18 monoclonal antibodies (mAbs) inhibit Lkt-induced cytolysis of bighorn sheep (Ovis canadensis) leukocytes suggesting that CD18 may serve as a receptor for Lkt on the leukocytes of this species as well. Confirmation of bighorn sheep CD18 as a receptor for Lkt, and elucidation of the enhanced Lkt-susceptibility of bighorn sheep polymorphonuclear leukocytes (PMNs), necessitates the cloning and sequencing of cDNA encoding bighorn sheep CD18. Hence, in this study we cloned and sequenced the cDNA encoding CD18 of bighorn sheep, and compared with that of other animal species. The cDNA of bighorn sheep CD18 has an open reading frame (ORF) of 2310bp. CD18 sequences obtained individually from peripheral blood mononuclear cells (PBMCs) and PMNs were identical to each other. Comparison of the deduced 770-amino acid sequence of CD18 of bighorn sheep with that of domestic sheep, goats, cattle, humans and mice revealed 99, 98, 95, 82 and 80% identity, respectively. Availability of cloned bighorn sheep CD18 cDNA should allow the molecular characterization of M. haemolytica Lkt-receptor interactions in bighorn sheep and other ruminants that are susceptible to this disease.

  4. Wyoming: Territory to Statehood, Unit VI.

    ERIC Educational Resources Information Center

    Robinson, Terry

    Designed for elementary school students, this unit on the Wyoming evolution from territory to statehood provides concepts, activities, stories, resources, and maps. Concepts stress the five national flags which have flown over Wyoming, several other territories Wyoming was a part of, construction of the Union Pacific railroad, problems of the new…

  5. Redescription of Bellerophon bittneri (Gastropoda: Triassic) from Wyoming.

    USGS Publications Warehouse

    Yochelson, E.L.; Boyd, D.W.; Wardlaw, B.

    1985-01-01

    Bellerophon bittneri Newell and Kummel is an Early Triassic bellerophontacean from the Dinwoody Formation in the Wind River Mountains. The available type material consists of one fair, but incomplete, external mold, which resembles a Bellerophon but is actually a Retispira. After repeated search, additional specimens were found at one locality in the southern Wind River Range of Wyoming; Retispira bittneri is redescribed from this new material. Like other Triassic bellerophontaceans, there is nothing unusual about the species apart from occurrence in the Mesozoic; it is clearly congeneric with Permian Retispira from underlying rocks. -Authors

  6. Bathymetry and temperature of some glacial lakes in Wyoming

    PubMed Central

    Leopold, Luna B.

    1980-01-01

    On the west flank of the Wind River Mountains, Wyoming, are several large lakes occupying glacially scoured depressions dammed by terminal moraines. Fremont, Willow, and New Fork Lakes, having maximal depths of 185, 85, and 62 m, respectively, are not only deep, but in 1970-1978 they had no measurable coliform. They have exceptionally low values of total dissolved solids; Fremont Lake has only 12.8 mg/liter, probably the second most dilute large lake in coterminus United States. Summer mixing is restricted to the uppermost 10 m, below which the lakes are essentially isothermal at the maximum density temperature, about 3.9°C. PMID:16592797

  7. Bathymetry and temperature of some glacial lakes in Wyoming.

    PubMed

    Leopold, L B

    1980-04-01

    On the west flank of the Wind River Mountains, Wyoming, are several large lakes occupying glacially scoured depressions dammed by terminal moraines. Fremont, Willow, and New Fork Lakes, having maximal depths of 185, 85, and 62 m, respectively, are not only deep, but in 1970-1978 they had no measurable coliform. They have exceptionally low values of total dissolved solids; Fremont Lake has only 12.8 mg/liter, probably the second most dilute large lake in coterminus United States. Summer mixing is restricted to the uppermost 10 m, below which the lakes are essentially isothermal at the maximum density temperature, about 3.9 degrees C.

  8. Hydrologic properties and ground-water flow systems of the Paleozoic rocks in the upper Colorado River basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin

    USGS Publications Warehouse

    Geldon, Arthur L.

    2003-01-01

    The hydrologic properties and ground-water flow systems of Paleozoic sedimentary rocks in the Upper Colorado River Basin were investigated under the Regional Aquifer-System Analysis (RASA) program of the U.S. Geological Survey in anticipation of the development of water supplies from bedrock aquifers to fulfill the region's growing water demands. The study area, in parts of Arizona, Colorado, New Mexico, Utah, and Wyoming, covers about 100,000 square miles. It includes parts of four physiographic provinces--the Middle Rocky Mountains, Wyoming Basin, Southern Rocky Mountains, and Colorado Plateaus. A variety of landforms, including mountains, plateaus, mesas, cuestas, plains, badlands, and canyons, are present. Altitudes range from 3,100 to 14,500 feet. Precipitation is distributed orographically and ranges from less than 6 inches per year at lower altitudes to more than 60 inches per year in some mountainous areas. Most of the infrequent precipitation at altitudes of less than 6,000 feet is consumed by evapotranspiration. The Colorado and Green Rivers are the principal streams: the 1964-82 average discharge of the Colorado River where it leaves the Upper Colorado River Basin is 12,170 cubic feet per second (a decrease of 5,680 cubic feet per second since construction of Glen Canyon Dam in 1963). On the basis of their predominant lithologic and hydrologic properties, the Paleozoic rocks are classified into four aquifers and three confining units. The Flathead aquifer, Gros Ventre confining unit, Bighorn aquifer, Elbert-Parting confining unit, and Madison aquifer (Redwall-Leadville and Darwin-Humbug zones) make up the Four Corners aquifer system. A thick sequence, composed mostly of Mississippian and Pennsylvanian shale, anhydrite, halite, and carbonate rocks--the Four Corners confining unit (Belden-Molas and Paradox-Eagle Valley subunits)--overlies the Four Corners aquifer system in most areas and inhibits vertical ground-water flow between the Four Corners aquifer

  9. Geology and mineral resources of the Sheldon-Hart Mountain National Wildlife Refuge Complex (Oregon and Nevada), the Southeastern Oregon and North-Central Nevada, and the Southern Idaho and Northern Nevada (and Utah) Sagebrush Focal Areas: Chapter B in Mineral resources of the Sagebrush Focal Areas of Idaho, Montana, Nevada, Oregon, Utah, and Wyoming

    USGS Publications Warehouse

    Vikre, Peter G.; Benson, Mary Ellen; Bleiwas, Donald I.; Colgan, Joseph P.; Cossette, Pamela M.; DeAngelo, Jacob; Dicken, Connie L.; Drake, Ronald M.; du Bray, Edward A.; Fernette, Gregory L.; Glen, Jonathan M.G.; Haacke, Jon E.; Hall, Susan M.; Hofstra, Albert H.; John, David A.; Ludington, Stephen; Mihalasky, Mark J.; Rytuba, James J.; Shaffer, Brian N.; Stillings, Lisa L.; Wallis, John C.; Williams, Colin F.; Yager, Douglas B.; Zürcher, Lukas

    2016-10-04

    SummaryThe U.S. Department of the Interior has proposed to withdraw approximately 10 million acres of Federal lands from mineral entry (subject to valid existing rights) from 12 million acres of lands defined as Sagebrush Focal Areas (SFAs) in Idaho, Montana, Nevada, Oregon, Utah, and Wyoming (for further discussion on the lands involved see Scientific Investigations Report 2016–5089–A). The purpose of the proposed action is to protect the greater sage-grouse (Centrocercus urophasianus) and its habitat from potential adverse effects of locatable mineral exploration and mining. The U.S. Geological Survey Sagebrush Mineral-Resource Assessment (SaMiRA) project was initiated in November 2015 and supported by the Bureau of Land Management to (1) assess locatable mineral-resource potential and (2) to describe leasable and salable mineral resources for the seven SFAs and Nevada additions.This chapter summarizes the current status of locatable, leasable, and salable mineral commodities and assesses the potential of selected locatable minerals in lands proposed for withdrawal that span the Nevada, Oregon, Idaho, and Utah borders. In this report, the four study areas evaluated were (1) the Sheldon-Hart Mountain National Wildlife Refuge Complex SFA in Washoe County, Nevada, and Harney and Lake Counties, Oregon; (2) the Southeastern Oregon and North-Central Nevada SFA in Humboldt County, Nevada, and Harney and Malheur Counties, Oregon; (3) the Southern Idaho and Northern Nevada SFA in Cassia, Owyhee, and Twin Falls Counties, Idaho, Elko County, Nevada, and Box Elder County, Utah; and (4) the Nevada additions in Humboldt and Elko Counties, Nevada.

  10. Survival of bighorn sheep (Ovis canadensis) commingled with domestic sheep (Ovis aries) in the absence of mycoplasma ovipneumoniae.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To test the hypothesis that Mycoplasma ovipneumoniae is an important agent of the bighorn sheep (Ovis canadensis) pneumonia that has previously inevitably followed experimental commingling with domestic sheep (Ovis aries), we commingled M. ovipneumoniae–free domestic and bighorn sheep (n=4 each). On...

  11. A summary of the U.S. Geological Survey 1999 resource assessment of selected coal zones in the Northern Rocky Mountains and Great Plains region, Wyoming, Montana, and North Dakota

    USGS Publications Warehouse

    Ellis, M.S.; Nichols, D.J.

    2002-01-01

    In 1999, 1,100 million short tons of coal were produced in the United States, 38 percent from the Northern Rocky Mountains and Great Plains region. This coal has low ash content, and sulfur content is in compliance with Clean Air Act standards (U.S. Statutes at Large, 1990).The National Coal Resource Assessment for this region includes geologic, stratigraphic, palynologic, and geochemical studies and resource calculations for 18 major coal zones in the Powder River, Williston, Green River, Hanna, and Carbon Basins. Calculated resources are 660,000 million short tons. Results of the study are available in U.S. Geological Survey Professional Paper 1625?A (Fort Union Coal Assess-ment Team, 1999) and Open-File Report 99-376 (Flores and others, 1999) in CD-ROM format.

  12. Genetic characterization of Anaplasma ovis strains from bighorn sheep in Montana.

    PubMed

    de la Fuente, José; Atkinson, Mark W; Hogg, John T; Miller, David S; Naranjo, Victoria; Almazán, Consuelo; Anderson, Neil; Kocan, Katherine M

    2006-04-01

    Wildlife reservoir species and genetic diversity of Anaplasma ovis (Rickettsiales: Anaplasmataceae) have been poorly characterized. Bighorn sheep (Ovis canadensis), captured in Montana from December 2004 to January 2005, were tested for antibodies to Anaplasma spp.; the presence of A. ovis was determined by the characterization of major surface protein msp4 sequences. Anaplasma antibodies were detected in 25/180 (14%) sampled bighorn sheep and A. ovis msp4 sequences were amplified by polymerase chain reaction (PCR) and sequenced from 9/23 (39%) of seropositive animals. All animals were negative by PCR for the related pathogens, Anaplasma phagocytophilum and Anaplasma marginale. All msp4 sequences identified in the bighorn sheep were identical and corresponded to a single A. ovis genotype that was identical to a sheep isolate reported previously from Idaho. The finding of a single genotype of A. ovis in this wild herd of bighorn sheep was in contrast to the genetic diversity reported for A. marginale in cattle herds in the western United States and worldwide. These results demonstrated that bighorn sheep may be a wildlife reservoir of A. ovis in Montana.

  13. Wyoming Kids Count Factbook, 1997.

    ERIC Educational Resources Information Center

    Wyoming Kids Count, Cheyenne.

    This Kids Count factbook details statewide trends in the well-being of Wyoming's children. The 1997 report has been expanded to include detailed information on the status of children by categories of welfare, health, and education. The first part of the factbook documents trends by county for 15 indicators: (1) poverty and population; (2)…

  14. MAP OF ECOREGIONS OF WYOMING

    EPA Science Inventory

    The ecoregions of Wyoming have been identified, mapped, and described and provide a geographic structure for environmental resources research, assessment, monitoring, and management. This project is part of a larger effort by the U.S. EPA to create a national, hierarchical ecore...

  15. Wyoming Early Childhood Readiness Standards.

    ERIC Educational Resources Information Center

    Wyoming State Dept. of Education, Cheyenne.

    Because children entering kindergarten come with a variety of preschool and home experiences, and accordingly, with varying levels of school readiness, the Wyoming Early Childhood Readiness Standards have been developed to provide a more consistent definition of school readiness. The goal for the Standards is to provide early childhood educators…

  16. Educational Finance Reform in Wyoming.

    ERIC Educational Resources Information Center

    Neely, Robert O.; Basom, Margaret R.

    This paper provides a history and analysis of educational finance in Wyoming. It offers a summary of the funding model that is currently in place and that has been challenged in court--the fourth such challenge in the past 30 years. The article focuses on the current litigation. It discusses the funding formula that was adopted by the state…

  17. Influence of climate and eolian dust on the major-element chemistry and clay mineralogy of soils in the northern Bighorn basin, U.S.A.

    USGS Publications Warehouse

    Reheis, M.C.

    1990-01-01

    Soil chronosequences in the northern Bighorn basin permit the study of chronologic changes in the major-element chemistry and clay mineralogy of soils formed in different climates. Two chronosequences along Rock Creek in south-central Montana formed on granitic alluvium in humid and semiarid climates over the past two million years. A chronosequence at the Kane fans in north-central Wyoming formed on calcareous alluvium in an arid climate over the past 600,000 years. Detailed analyses of elemental chemistry indicate that the soils in all three areas gradually incorporated eolian dust that contained less zirconium, considered to be chemically immobile during weathering, than did the alluvium. B and C horizons of soils in the wettest of the chronosequences developed mainly at logarithmic rates, suggesting that leaching, initially rapid but decelerating, dominated the dust additions. In contrast, soils in the most arid of the chronosequences developed at linear rates that reflect progressive dust additions that were little affected by leaching. Both weathering and erosion may cause changes with time to appear logarithmic in A horizons of soils under the moist and semiarid climatic regimes. Clay minerals form with time in the basal B and C horizons and reflect climatic differences in the three areas. Vermiculite, mixed-layer illite-smectite, and smectite form in the soils of the moist-climate chronosequence; smectite forms in the semiarid-climate chronosequence; and smectite and palygorskite form in the arid-climate chronosequence. ?? 1990.

  18. Modeling risk of pneumonia epizootics in bighorn sheep

    USGS Publications Warehouse

    Sells, Sarah N.; Mitchell, Michael S.; Nowak, J. Joshua; Lukacs, Paul M.; Anderson, Neil J.; Ramsey, Jennifer M.; Gude, Justin A.; Krausman, Paul R.

    2015-01-01

    Pneumonia epizootics are a major challenge for management of bighorn sheep (Ovis canadensis) affecting persistence of herds, satisfaction of stakeholders, and allocations of resources by management agencies. Risk factors associated with the disease are poorly understood, making pneumonia epizootics hard to predict; such epizootics are thus managed reactively rather than proactively. We developed a model for herds in Montana that identifies risk factors and addresses biological questions about risk. Using Bayesian logistic regression with repeated measures, we found that private land, weed control using domestic sheep or goats, pneumonia history, and herd density were positively associated with risk of pneumonia epizootics in 43 herds that experienced 22 epizootics out of 637 herd-years from 1979–2013. We defined an area of high risk for pathogen exposure as the area of each herd distribution plus a 14.5-km buffer from that boundary. Within this area, the odds of a pneumonia epizootic increased by >1.5 times per additional unit of private land (unit is the standardized % of private land where global  = 25.58% and SD = 14.53%). Odds were >3.3 times greater if domestic sheep or goats were used for weed control in a herd's area of high risk. If a herd or its neighbors within the area of high risk had a history of a pneumonia epizootic, odds of a subsequent pneumonia epizootic were >10 times greater. Risk greatly increased when herds were at high density, with nearly 15 times greater odds of a pneumonia epizootic compared to when herds were at low density. Odds of a pneumonia epizootic also appeared to decrease following increased spring precipitation (odds = 0.41 per unit increase, global  = 100.18% and SD = 26.97%). Risk was not associated with number of federal sheep and goat allotments, proximity to nearest herds of bighorn sheep, ratio of rams to ewes, percentage of average winter precipitation, or whether herds were of native versus mixed

  19. Fluvial response to the Paleocene-Eocene Thermal Maximum in northwest Wyoming and western Colorado, USA

    NASA Astrophysics Data System (ADS)

    Foreman, B. Z.; Heller, P.; Clementz, M. T.

    2011-12-01

    The Willwood and Wasatch formations of northwest Wyoming and western Colorado record alluvial deposition within the intermontane Bighorn and Piceance Creek basins, respectively. Both display substantial shifts in the character of fluvial sand-bodies coincident with an abrupt negative carbon isotope excursion linked to the Paleocene Eocene Thermal Maximum (PETM) climate change event at ~55 Ma. In the northern Bighorn Basin, an anomalously thick and laterally persistent multi-story fluvial sand-body crops out within the main body of the PETM isotopic excursion. The internal architecture and lithofacies within the sand-body are similar to pre- and post-PETM sand-bodies, and mean paleo-flow depths do not appear to change substantially. The most significant change is the increase in vertical and lateral amalgamation within the PETM sand-body. Long-term basin sedimentation rates are constant spanning the event implying a transient increase in channel mobility via avulsion and meandering processes during the PETM, which preferentially evacuated fine-grained overbank material out of the basin to the north. Similarly, fluvial sand-bodies are more laterally and vertically amalgamated during the PETM in the Piceance Creek Basin. Yet here the sand-bodies are a recurrent phenomenon throughout the PETM, persist after the PETM, and show dramatic internal architectural changes. Flow depths increase by ~50% and are twice as variable during the PETM, lithofacies are dominated by upper flow regime structures, and crevasse splay deposits are ubiquitous in the associated floodplain strata. In both basins enhanced channel mobility was likely facilitated by a combination of vegetation overturn and alteration of precipitation patterns. Sediment stored higher in the catchment and on related hill-slopes was released, choked basin river systems, instigated greater in-channel deposition, and caused more rapid avulsions. Introduction of coarser sediment loads and vegetation change would have

  20. Analysis of ERTS-1 imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Blackstone, D. L., Jr.

    1972-01-01

    The author has identified the following significant results. Structurally linear elements in the vicinity of the Rock Springs Uplift, Sweetwater County, Wyoming are reported for the first time. One element trends N 40 deg W near Farson, Wyoming and the other N 65 deg E from Rock Springs. These elements confirm the block-like or mosaic pattern of major structural elements in Wyoming.

  1. Unraveling the multiple origins of heterogeneity within Lower Mississippian Madison reservoirs: Bighorn Basin, Wyoming and Montana, USA

    SciTech Connect

    Sonnenfeld, M.D.

    1995-08-01

    {open_quotes}Fracture-controlled{close_quotes} and {open_quotes}karst-controlled{close_quotes} contributions to reservoir heterogeneity tend to be viewed as non-fabric selective in nature. Given such an outlook, predictions of fracture and karst overprints depend on an awareness of extrinsic controls such as past and present stress-fields, structural curvature, fault proximity, and the positions and movements of paleo-water tables. The hierarchical sequence stratigraphy of the 300 m Madison provides the stratigraphic framework necessary to characterize the vertical distribution of early, fabric-selective platformal dolomite; additionally, this framework assists in discriminating between fabric-selective and non-fabric-selective styles of karst and fracturing. In the case of Madison karst, early meteoric lithification and subtle Mississippian tectonics resulted in a vertically oriented fracture-controlled karst on top of the Madison, yet this non fabric-selective system channeled waters into several fabric-selective, regionally widespread solution collapse zones and cave systems. The horizontally oriented regional dissolution was stratigraphically controlled by soluble evaporitic zones and/or argillaceous aquitards overlying intra-Madison sequence boundaries rather than occurring at various unconfined water-table stillstands. Evaporite solution collapse breccias presently form partial to complete barriers to vertical fluid flow depending on thickness and degree of associated argillaceous influx, while cave-roof {open_quotes}fracture breccias{close_quotes} were preferential sites of late dolomitization within the giant Elk Basin Madison reservoir. In the case of Madison fracturing, stratigraphic cycles of several scales provide effective scales of analysis in the quest for true mechanical stratigraphic units defined by common fracture styles.

  2. Remote Stratigraphic Analysis: Combined TM and AIS Results in the Wind River/bighorn Basin Area, Wyoming

    NASA Technical Reports Server (NTRS)

    Lang, H. R.; Paylor, E. D.; Adams, S.

    1985-01-01

    An in-progress study demonstrates the utility of airborne imaging spectrometer (AIS) data for unraveling the stratigraphic evolution of a North American, western interior foreland basin. AIS data are used to determine the stratigraphic distribution of mineralogical facies that are diagnostic of specific depositional environments. After wavelength and amplitude calibration using natural ground targets with known spectral characteristics, AIS data identify calcite, dolomite, gypsum and montmorillonite-bearing strata in the Permian-Cretaceous sequence. Combined AIS and TM results illustrate the feasibility of spectral stratigraphy, remote analysis of stratigraphic sequences.

  3. 76 FR 34815 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ...We are issuing a final decision on an amendment to the Wyoming regulatory program (the ``Wyoming program'') under the Surface Mining Control and Reclamation Act of 1977 (``SMCRA'' or ``the Act''). Our decision approves in part, disapproves in part and defers in part the amendment. Wyoming proposed to amend Chapters 1, 2, 4, 5, and Appendix A of the Land Quality Division (LQD) Coal Rules and......

  4. Fusobacterium necrophorum in North American Bighorn Sheep ( Ovis canadensis ) Pneumonia.

    PubMed

    Shanthalingam, Sudarvili; Narayanan, Sanjeevkumar; Batra, Sai Arun; Jegarubee, Bavananthasivam; Srikumaran, Subramaniam

    2016-07-01

    Fusobacterium necrophorum has been detected in pneumonic bighorn sheep (BHS; Ovis canadensis ) lungs, in addition to the aerobic respiratory pathogens Mannheimia haemolytica , Bibersteinia trehalosi , Pasteurella multocida , and Mycoplasma ovipneumoniae . Similar to M. haemolytica , F. necrophorum produces a leukotoxin. Leukotoxin-induced lysis and degranulation of polymorphonuclear leukocytes (PMNs) and macrophages are responsible for acute inflammation and lung tissue damage characteristic of M. haemolytica -caused pneumonia. As one approach in elucidating the role of F. necrophorum in BHS pneumonia, we determined the frequency of the presence of F. necrophorum in archived pneumonic BHS lung tissues, and susceptibility of BHS leukocytes to F. necrophorum leukotoxin. A species-specific PCR assay detected F. necrophorum in 37% of pneumonic BHS lung tissues (total tested n=70). Sequences of PCR amplicons were similar to the less virulent F. necrophorum subsp. funduliforme. Fusobacterium necrophorum leukotoxin exhibited cytotoxicity to BHS PMNs and peripheral blood mononuclear cells. As with the M. haemolytica leukotoxin, F. necrophorum leukotoxin was more toxic to BHS PMNs than domestic sheep PMNs. It is likely that F. necrophorum enters the lungs after M. haemolytica and other aerobic respiratory pathogens enter the lungs and initiate tissue damage, thereby creating a microenvironment that is conducive for anaerobic bacterial growth. In summary, Fusobacterium leukotoxin is highly toxic for BHS leukocytes; however, based on the PCR findings, it is unlikely to play a direct role in the development of BHS pneumonia.

  5. New interpretation of Clarks Fork field, northern Bighorn basin, Montana

    SciTech Connect

    Johnson, J.S.; Lindsley-Griffin, N.

    1986-08-01

    Clarks Fork field is located at the northern edge of the Bighorn basin (T9S, R22E) in Carbon County, Montana. Production was first established in 1944 by General Petroleum Corporation in the Cretaceous Peay Sandstone (basal Frontier) and was later extended to the Cretaceous Greybull (1949) and Lakota (1956) sandstones by British American. Total cumulative hydrocarbons from this field are 1,1789,193 bbl of oil and 3,061,522 mcf of gas, with Lakota sandstones being most productive. Lakota production occurs from a structural-stratigraphic trap in an east-west-trending channel on the axis of Clarks Fork anticline, geographically near the center of the township. Our structural reinterpretation of Clarks Fork field suggests that Elk Basin anticline is a northwest extension of the Elk Basin field anticline. The Elk Basin thrust truncates the north limb of the fold and does not strike to the northwest, as shown by earlier interpretations. They interpret a northwest-striking thrust in the center of the township as a splay off the Elk Basin thrust, and have named it the Clarks Fork thrust. The Clarks Fork anticline is located on the hanging wall of Clarks Fork thrust. Subsurface maps indicate the Clarks Fork area has not been fully developed. Stratigraphic traps in the Lakota and Greybull sandstones are present in several areas of the township. Structural traps in the center and northwest portions of the township may also exist.

  6. Stochastic predation events and population persistence in bighorn sheep

    PubMed Central

    Festa-Bianchet, Marco; Coulson, Tim; Gaillard, Jean-Michel; Hogg, John T; Pelletier, Fanie

    2006-01-01

    Many studies have reported temporal changes in the relative importance of density-dependence and environmental stochasticity in affecting population growth rates, but they typically assume that the predominant factor limiting growth remains constant over long periods of time. Stochastic switches in limiting factors that persist for multiple time-steps have received little attention, but most wild populations may periodically experience such switches. Here, we consider the dynamics of three populations of individually marked bighorn sheep (Ovis canadensis) monitored for 24–28 years. Each population experienced one or two distinct cougar (Puma concolor) predation events leading to population declines. The onset and duration of predation events were stochastic and consistent with predation by specialist individuals. A realistic Markov chain model confirms that predation by specialist cougars can cause extinction of isolated populations. We suggest that such processes may be common. In such cases, predator–prey equilibria may only occur at large geographical and temporal scales, and are unlikely with increasing habitat fragmentation. PMID:16777749

  7. Heat flow, radioactivity, gravity, and geothermal resources in northern Colorado and southern Wyoming

    SciTech Connect

    Decker, E.R.; Buelow, K.L.

    1981-12-01

    The surface heat flow values in the Sierra Madre-Medicine Bow-Laramie Mountains region are in the range 0.6 to 1.5 HFU. When the heat from local bedrock radioactivity is considered, the reduced flux in these mountains is low to normal (0.6 to 1.2 HFU). These data and the low to normal gradients (10 to 25/sup 0/C/km) in the studied drill holes strongly suggest that the resource potential of the Southern Rockies in Wyoming is low. The geothermal resource potential of the sedimentary basins in Wyoming that border these mountains also appears to be low because preliminary estimates for the flux in these areas are less than or equal to 1.5 HFU and the average gradients in analyzed drill holes are generally less than or equal to 30/sup 0/C/km. In contrast to southern Wyoming, the high surface and reduced heat flows strongly suggest that the Park areas and other parts of the Southern Rockies in northern Colorado are potentially valuable geothermal resource areas. The narrow northerly borders (less than or equal to 50 km) of these positive anomalies suggest that some of the resources could be shallow, as does the evidence for regional igneous and tectonic activity in the late Cenozoic. The small number of combined heat flow and radioactivity stations precludes detailed site-specific evaluations in these regions, but a few generalizations are made.

  8. Low-temperature thermochronology of the Laramide Ranges and eastward translation of shortening in the Sevier Belt, Wyoming, Utah and Montana

    NASA Astrophysics Data System (ADS)

    Peyton, Sara Lynn

    Mountain foreland (Wind River, Beartooth, Bighorn and Laramie Ranges) and the Uncompahgre Uplift using the apatite (U-Th)/He system. Apatite (U-Th)/He ages generally decrease with increasing subsurface depth (decreasing elevation) and most samples show age dispersion ranging from tens to hundreds of Myr. Additionally, several samples show correlations between apatite (U-Th)/He age and effective U concentration (eU = [U] + 0.235[Th]) of the crystal, indicating that radiation damage has affected He diffusivity, and hence (U-Th)/ He age. Many surface and near-surface samples have apatite (U-Th)/He ages that are older than corresponding apatite fission-track ages. Forward modeling of Laramide-type thermal histories using a radiation damage diffusion model showed that (U-Th)/He ages may be widely dispersed, and may be older than corresponding apatite fission-track ages within a fossil He partial retention zone. Most of our samples, however, do not show the correlation between (U-Th)/He age and eU predicted by radiation damage diffusion models. We investigated the influence of both grain size and eU content and show that the effects of grain size can obscure (U-Th)/ He age-eU correlations and, similarly, the effect of eU variation can obscure (U-Th)/ He age-grain size correlations. (U-Th)/He ages that are older than fission-track ages from high peaks in the Wind River Range, and from some samples from the Beartooth Range, are most likely the result of He implantation from high eU phases. Best-fit thermal histories from the inversion of age-eU pairs were extrapolated to other elevations to create model age-elevation profiles for a range of eU concentrations. These model profiles approximate our real data. Inverse modeling of (U-Th)/He age data suggests that rapid exhumation within the Laramide province likely began earlier in the Bighorn Mountains (before ˜71 Ma) than the Beartooth Range (before ˜58 Ma), and that the borehole at the northern end of the Laramie Range penetrated

  9. Wyoming DOE EPSCoR

    SciTech Connect

    Gern, W.A.

    2004-01-15

    All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

  10. Smoke over Montana and Wyoming

    NASA Technical Reports Server (NTRS)

    2002-01-01

    California was not the only western state affected by fire during the last weekend of July. Parts of Montana and Wyoming were covered by a thick pall of smoke on July 30, 2000. This true-color image was captured by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). It is much easier to distinguish smoke from cloud in the color SeaWiFS imagery than the black and white Geostationary Operational Environmental Satellite (GOES) imagery. However, GOES provides almost continuous coverage (animation of Sequoia National Forest fire) and has thermal infrared bands (Extensive Fires in the Western U.S.) which detect the heat from fires. On Monday July 31, 2000, eight fires covering 105,000 acres were burning in Montana, and three fires covering 12,000 acres were burning in Wyoming. Image provided by the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  11. Acid precipitation in southeastern Wyoming

    SciTech Connect

    Ahern, J.; Baird, C.

    1983-09-01

    Snowfall, snowpack, and rainfall samples were collected in Laramie, Wyoming and in the Snowy Range west of Laramie from March to June 1981 to determine the occurrence and sources of acid precipitation in southeast Wyoming. Electrodes measured different pH values in the samples; however, fast-response electrodes yielded higher and apparently more accurate pH measurements. The pH values in the Laramie precipitation and snowpack were typically greater than 5.0, but all the Snowy Range snowpack pH values were less than 5.0. The lower pH values in the Snowy Range snowpack were caused by higher concentrations of the acid-forming nitrate and lower concentrations of the neutralizing calcium. Two organic species, formate and acetate, were detected in the Laramie samples, but had no significant influence on the acidity of the samples. 33 references, 3 figures, 17 tables.

  12. Pesticides in Wyoming Groundwater, 2008-10

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Bartos, Timothy T.; Taylor, Michelle L.

    2013-01-01

    Groundwater samples were collected from 296 wells during 1995-2006 as part of a baseline study of pesticides in Wyoming groundwater. In 2009, a previous report summarized the results of the baseline sampling and the statistical evaluation of the occurrence of pesticides in relation to selected natural and anthropogenic (human-related) characteristics. During 2008-10, the U.S. Geological Survey, in cooperation with the Wyoming Department of Agriculture, resampled a subset (52) of the 296 wells sampled during 1995-2006 baseline study in order to compare detected compounds and respective concentrations between the two sampling periods and to evaluate the detections of new compounds. The 52 wells were distributed similarly to sites used in the 1995-2006 baseline study with respect to geographic area and land use within the geographic area of interest. Because of the use of different types of reporting levels and variability in reporting-level values during both the 1995-2006 baseline study and the 2008-10 resampling study, analytical results received from the laboratory were recensored. Two levels of recensoring were used to compare pesticides—a compound-specific assessment level (CSAL) that differed by compound and a common assessment level (CAL) of 0.07 microgram per liter. The recensoring techniques and values used for both studies, with the exception of the pesticide 2,4-D methyl ester, were the same. Twenty-eight different pesticides were detected in samples from the 52 wells during the 2008-10 resampling study. Pesticide concentrations were compared with several U.S. Environmental Protection Agency drinking-water standards or health advisories for finished (treated) water established under the Safe Drinking Water Act. All detected pesticides were measured at concentrations smaller than U.S. Environmental Protection Agency drinking-water standards or health advisories where applicable (many pesticides did not have standards or advisories). One or more pesticides

  13. Water resources of Carbon County, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.; Mason, Jon P.; Norris, Jodi R.; Miller, Kirk A.

    2006-01-01

    Carbon County is located in the south-central part of Wyoming and is the third largest county in the State. A study to describe the physical and chemical characteristics of surface-water and ground-water resources in Carbon County was conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office. Evaluations of streamflow and stream-water quality were limited to analyses of historical data and descriptions of previous investigations. Surface-water data were not collected as part of the study. Forty-five ground-water-quality samples were collected as part of the study and the results from an additional 618 historical ground-water-quality samples were reviewed. Available hydrogeologic characteristics for various aquifers in hydrogeologic units throughout the county also are described. Flow characteristics of streams in Carbon County vary substantially depending on regional and local basin char-acteristics and anthropogenic factors. Precipitation in the county is variable with high mountainous areas receiving several times the annual precipitation of basin lowland areas. For this reason, streams with headwaters in mountainous areas generally are perennial, whereas most streams in the county with headwaters in basin lowland areas are ephemeral, flowing only as a result of regional or local rainfall or snowmelt runoff. Flow characteristics of most perennial streams are altered substantially by diversions and regulation. Water-quality characteristics of selected streams in and near Carbon County during water years 1966 through 1986 varied. Concentrations of dissolved constituents and suspended sediment were smallest at sites on streams with headwaters in mountainous areas because of resistant geologic units, large diluting streamflows, and increased vegetative cover compared to sites on streams with headwaters in basin lowlands. Both water-table and artesian conditions occur in aquifers within the county. Shallow ground water is

  14. Political mobilization, venue change, and the coal bed methane conflict in Montana and Wyoming

    SciTech Connect

    Duffy, R.J.

    2005-03-31

    The emerging conflict over coal bed methane (CBM) exploration and development in the mountain west offers a classic example of what Baumgartner and Jones call a 'wave of criticism.' The cozy subgovernments that have dominated energy exploration and development in the mountain states are now under attack and are struggling to maintain their autonomy. Energy exploration, which was once perceived to have only positive consequences, is now the focus of an intense debate that has managed to unite previously warring factions. This article utilizes a comparative assessment of CBM politics in Montana and Wyoming to explain the connection between changing popular and elite perceptions of the issue, institutional change, and policy change.

  15. Structured decision making for managing pneumonia epizootics in bighorn sheep

    USGS Publications Warehouse

    Sells, Sarah N.; Mitchell, Michael S.; Edwards, Victoria L.; Gude, Justin A.; Anderson, Neil J.

    2016-01-01

    Good decision-making is essential to conserving wildlife populations. Although there may be multiple ways to address a problem, perfect solutions rarely exist. Managers are therefore tasked with identifying decisions that will best achieve desired outcomes. Structured decision making (SDM) is a method of decision analysis used to identify the most effective, efficient, and realistic decisions while accounting for values and priorities of the decision maker. The stepwise process includes identifying the management problem, defining objectives for solving the problem, developing alternative approaches to achieve the objectives, and formally evaluating which alternative is most likely to accomplish the objectives. The SDM process can be more effective than informal decision-making because it provides a transparent way to quantitatively evaluate decisions for addressing multiple management objectives while incorporating science, uncertainty, and risk tolerance. To illustrate the application of this process to a management need, we present an SDM-based decision tool developed to identify optimal decisions for proactively managing risk of pneumonia epizootics in bighorn sheep (Ovis canadensis) in Montana. Pneumonia epizootics are a major challenge for managers due to long-term impacts to herds, epistemic uncertainty in timing and location of future epizootics, and consequent difficulty knowing how or when to manage risk. The decision tool facilitates analysis of alternative decisions for how to manage herds based on predictions from a risk model, herd-specific objectives, and predicted costs and benefits of each alternative. Decision analyses for 2 example herds revealed that meeting management objectives necessitates specific approaches unique to each herd. The analyses showed how and under what circumstances the alternatives are optimal compared to other approaches and current management. Managers can be confident that these decisions are effective, efficient, and

  16. Concordance in diagnostic testing for respiratory pathogens of bighorn sheep

    USGS Publications Warehouse

    Walsh, Daniel P.; Cassirer, E. Frances; Bonds, Michael D.; Brown, Daniel R.; Edwards, William H.; Weiser, Glen C.; Drew, Mark L.; Briggs, Robert E.; Fox, Karen A.; Miller, Michael W.; Shanthalingam, Sudarvili; Srikumaran, Subramaniam; Besser, Thomas E.

    2016-01-01

    Reliable diagnostic tests are essential for disease investigation and management. This is particularly true for diseases of free-ranging wildlife where sampling is logistically difficult precluding retesting. Clinical assays for wildlife diseases frequently vary among laboratories because of lack of appropriate standardized commercial kits. Results of diagnostic testing may also be called into question when investigators report different etiologies for disease outbreaks, despite similar clinical and pathologic findings. To evaluate reliability of diagnostic testing for respiratory pathogens of bighorn sheep (Ovis canadensis), we conducted a series of ring tests across 6 laboratories routinely involved in detection of Mycoplasma ovipneumoniae, Pasteurellaceae, lktA (the Pasteurellaceae gene encoding leukotoxin), and 3 reference laboratories. Consistency of results for replicate samples within laboratories was high (median agreement = 1.0). Agreement between laboratories was high for polymerase chain reaction (PCR) detection of M. ovipneumoniae and culture isolation of Mannheimia spp. and Bibersteinia trehalosi(median agreement = 0.89–0.95, Kappa = 0.65–0.74), and lower for PCR detection of Mannheimiaspp. lktA (median agreement = 0.58, Kappa = 0.12). Most errors on defined status samples were false negatives, suggesting test sensitivity was a greater problem than specificity. However, tests for M. haemolytica and lktA yielded some false positive results. Despite differences in testing protocols, median agreement among laboratories and correct classification of controls for most agents was ≥0.80, meeting or exceeding the standard required by federal proficiency testing programs. This information is valuable for interpreting test results, laboratory quality assessments, and advancing diagnosis of respiratory disease in wild sheep. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  17. Immunization of bighorn sheep against mannheimia haemolytica with a bovine herpesvirus 1-vectored vaccine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pneumonia has significantly contributed to the drastic decline of bighorn sheep (BHS, Ovis canadensis) population in North America. Pneumonia outbreaks in BHS herds can incur mortalities up to 90%. Transplantation of healthy BHS into habitats that suffered pneumonia outbreaks has failed to restore B...

  18. Role of bibersteinia trehalosi, respiratory syncytial virus, and parainfluenza-3 virus in bighorn sheep pneumonia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pneumonic bighorn sheep (BHS) have been found to be culture- and/or sero-positive for Bibersteinia trehalosi, respiratory syncytial virus (RSV), and parainfluenza-3 virus (PI-3). The objective of this study was to determine whether these pathogens can cause fatal pneumonia in BHS. In the first study...

  19. Timing and synchrony of births in bighorn sheep: implications for reintroduction and conservation

    USGS Publications Warehouse

    Whiting, Jericho C.; Olson, Daniel D.; Shannon, Justin M.; Bowyer, R. Terry; Klaver, Robert W.; Flinders, Jerran T.

    2012-01-01

    Implications: Consideration should be given to the adjustment of timing and synchrony of births when reintroducing bighorns, especially when animals are released into different ecoregions. Also, biologists should select release sites that are ecologically similar to source areas, thereby reducing potential negative effects of animals adjusting timing and synchrony of births to environmental conditions of restoration areas.

  20. Use of exposure history to identify patterns of immunity to pneumonia in bighorn sheep (Ovis canadensis)

    USGS Publications Warehouse

    Plowright, Raina K.; Manlove, Kezia; Cassirer, E. Frances; Besser, Thomas H.; Hudson, Peter J.

    2013-01-01

    Individual host immune responses to infectious agents drive epidemic behavior and are therefore central to understanding and controlling infectious diseases. However, important features of individual immune responses, such as the strength and longevity of immunity, can be challenging to characterize, particularly if they cannot be replicated or controlled in captive environments. Our research on bighorn sheep pneumonia elucidates how individual bighorn sheep respond to infection with pneumonia pathogens by examining the relationship between exposure history and survival in situ. Pneumonia is a poorly understood disease that has impeded the recovery of bighorn sheep (Ovis canadensis) following their widespread extirpation in the 1900s. We analyzed the effects of pneumonia-exposure history on survival of 388 radio-collared adults and 753 ewe-lamb pairs. Results from Cox proportional hazards models suggested that surviving ewes develop protective immunity after exposure, but previous exposure in ewes does not protect their lambs during pneumonia outbreaks. Paradoxically, multiple exposures of ewes to pneumonia were associated with diminished survival of their offspring during pneumonia outbreaks. Although there was support for waning and boosting immunity in ewes, models with consistent immunizing exposure were similarly supported. Translocated animals that had not previously been exposed were more likely to die of pneumonia than residents. These results suggest that pneumonia in bighorn sheep can lead to aging populations of immune adults with limited recruitment. Recovery is unlikely to be enhanced by translocating nai¨ve healthy animals into or near populations infected with pneumonia pathogens.

  1. Bighorn sheep pneumonia: Sorting out the cause of a polymicrobial disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pneumonia of bighorn sheep (Ovis canadensis) is a dramatic disease of high morbidity and mortality first described more than 80 years ago. The etiology of the disease has been debated since its initial discovery, and at various times lungworms, Mannheimia haemolytica and other Pasteurellaceae, and M...

  2. 40 CFR 81.436 - Wyoming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Wyoming. 81.436 Section 81.436 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF... Visibility Is an Important Value § 81.436 Wyoming. Area name Acreage Public Law establishing Federal...

  3. Wyoming Geology and Geography, Unit I.

    ERIC Educational Resources Information Center

    Robinson, Terry

    This unit on the geology and geography of Wyoming for elementary school students provides activities for map and globe skills. Goals include reading and interpreting maps and globes, interpreting map symbols, comparing maps and drawing inferences, and understanding time and chronology. Outlines and charts are provided for Wyoming geology and…

  4. Subgroup Achievement and Gap Trends: Wyoming, 2010

    ERIC Educational Resources Information Center

    Center on Education Policy, 2010

    2010-01-01

    This paper profiles the student subgroup achievement and gap trends in Wyoming for 2010. Wyoming's demographic profile is such that achievement trends could only be determined for white, Latino, male and female, and low-income student subgroups. In grade 8 (the only grade in which subgroup trends were analyzed by achievement level), the white,…

  5. 78 FR 16204 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950 Wyoming Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment... Surface Mining Control and Reclamation Act of 1977 (``SMCRA'' or ``the Act''). Wyoming proposes...

  6. 78 FR 10512 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950 Wyoming Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Final rule; approval of amendment... regulatory program (the ``Wyoming program'') under the Surface Mining Control and Reclamation Act of...

  7. Plant-derived terpenoids as paleovegetation proxies: evaluation of the proxy with Paleocene and Eocene megafloras and plant biomarkers in the Bighorn Basin, USA

    NASA Astrophysics Data System (ADS)

    Diefendorf, A. F.; Freeman, K. H.; Wing, S. L.

    2012-12-01

    Plant terpenoids (defense compounds synthesized from the 5-carbon building block isoprene) have a long history of use as geochemical plant biomarkers, and potentially can be used to reconstruct changes in the abundances of major land plant groups in rocks and sediments that do not preserve plant megafossils or pollen. Pentacyclic triterpenoids are synthesized almost exclusively by angiosperms whereas conifers produce the tricyclic diterpenoids. Many previous studies have focused on the use of di- to triterpenoid ratios to reconstruct floral changes in the geologic past, however few studies have compared terpenoid-based paleoflora proxies to pollen or megafossils. Prior reconstructions also did not take into account differences in biomarker production between plant functional types, such as deciduous and evergreen plants, which can be quite large. To investigate the use of terpenoids as paleoflora proxies, we examined sediments from the Bighorn Basin (Wyoming, USA) where ancient megafloras have been studied in detail. We analyzed di- and triterpenoid abundances as well as plant leaf waxes (n-alkanes) and other biomarkers in a total of 75 samples from 15 stratigraphic horizons from the late Paleocene (62 Ma) to early Eocene (52.5 Ma). By comparing terpenoid ratios with abundances estimated from plant megafossils, we can evaluate the utility of terpenoids as paleovegetation proxies. In nearly all samples, angiosperm triterpenoids are significantly lower in abundance than conifer diterpenoids. This contrasts with leaf fossil data that indicate paleofloras were dominated by angiosperms in both abundance and diversity. Traditional use of terpenoid paleovegetation proxies would therefore significantly overestimate the abundance of conifers, even when accounting for plant production differences. To determine if this overestimate is related to the loss of angiosperm triterpenoids (rather than enhanced production of diterpenoids in the geologic past), we compared angiosperm

  8. An individual-based modelling approach to estimate landscape connectivity for bighorn sheep (Ovis canadensis)

    PubMed Central

    Allen, Corrie H.; Kyle, Catherine

    2016-01-01

    Background. Preserving connectivity, or the ability of a landscape to support species movement, is among the most commonly recommended strategies to reduce the negative effects of climate change and human land use development on species. Connectivity analyses have traditionally used a corridor-based approach and rely heavily on least cost path modeling and circuit theory to delineate corridors. Individual-based models are gaining popularity as a potentially more ecologically realistic method of estimating landscape connectivity. However, this remains a relatively unexplored approach. We sought to explore the utility of a simple, individual-based model as a land-use management support tool in identifying and implementing landscape connectivity. Methods. We created an individual-based model of bighorn sheep (Ovis canadensis) that simulates a bighorn sheep traversing a landscape by following simple movement rules. The model was calibrated for bighorn sheep in the Okanagan Valley, British Columbia, Canada, a region containing isolated herds that are vital to conservation of the species in its northern range. Simulations were run to determine baseline connectivity between subpopulations in the study area. We then applied the model to explore two land management scenarios on simulated connectivity: restoring natural fire regimes and identifying appropriate sites for interventions that would increase road permeability for bighorn sheep. Results. This model suggests there are no continuous areas of good habitat between current subpopulations of sheep in the study area; however, a series of stepping-stones or circuitous routes could facilitate movement between subpopulations and into currently unoccupied, yet suitable, bighorn habitat. Restoring natural fire regimes or mimicking fire with prescribed burns and tree removal could considerably increase bighorn connectivity in this area. Moreover, several key road crossing sites that could benefit from wildlife overpasses were

  9. Wyoming groundwater-quality monitoring network

    USGS Publications Warehouse

    Boughton, Gregory K.

    2011-01-01

    A wide variety of human activities have the potential to contaminate groundwater. In addition, naturally occurring constituents can limit the suitability of groundwater for some uses. The State of Wyoming has established rules and programs to evaluate and protect groundwater quality based on identified uses. The Wyoming Groundwater-Quality Monitoring Network (WGQMN) is a cooperative program between the U.S. Geological Survey (USGS) and the Wyoming Department of Environmental Quality (WDEQ) and was implemented in 2009 to evaluate the water-quality characteristics of the State's groundwater. Representatives from USGS, WDEQ, U.S. Environmental Protection Agency (USEPA), Wyoming Water Development Office, and Wyoming State Engineer's Office formed a steering committee, which meets periodically to evaluate progress and consider modifications to strengthen program objectives. The purpose of this fact sheet is to describe the WGQMN design and objectives, field procedures, and water-quality analyses. USGS groundwater activities in the Greater Green River Basin also are described.

  10. Early Campanian coastal progradational systems and their coal-forming environments, Wyoming to New Mexico

    SciTech Connect

    Marley, W.E.; Flores, R.M.; Ethridge, F.G.; Cavaroc, V.V.

    1985-05-01

    Ammonite zones (Baculites obtusus-Scaphites hippocrepis) in the marine facies associated with the Mesaverde Formation in the Bighorn basin, Wyoming, Star Point Sandstone and Blackhawk Formation in the Wasatch Plateau, Utah, and the Point Lookout Sandstone, Menefee Formation, and Crevasse Canyon Formation in the Gallup coalfield, New Mexico, indicate that these formations were deposited during early Campanian time (80-84 Ma). The coal-forming environments of these early Campanian formations were located landward of wave-reworked coastal sand complexes of progradational systems along the western margin of the Cretaceous seaway from Wyoming to New Mexico. The Mesaverde coals accumulated in swamps of the lower delta plain and coeval interdeltaic strandplain environments. The Star Point-Blackhawk coals accumulated in swamps of the lower delta plains of laterally shifting, prograding deltas and associated barrier ridge plains. The Point Lookout, Menefee, and Crevasse canyon coals formed in swamps of the lower delta plain and infilled lagoons behind barrier islands. Although the common coal-forming environments of these progradational systems are back barrier and delta plain, the former setting was the more conducive for accumulation of thick, laterally extensive coals. Economic coal deposits formed in swamps built on abandoned back-barrier platforms that were free of detrital influx and marine influence. Delta-plain coals tend to be lenticular and laterally discontinuous and thus uneconomic. The early Campanian coal-forming coastal-plain environments are analogous to modern peat-forming environments along the coast of Belize, Central America. Deltaic sediments deposited along the Belize coast by short-headed streams are reworked by waves into coastal barrier systems.

  11. Provenance of the Tullock Member of the Fort Union Formation, Powder River Basin, Wyoming and Montana: evidence for early Paleocene Laramide uplift

    USGS Publications Warehouse

    Hansley, P.L.; Brown, J.L.

    1993-01-01

    A petrologic and provenance study indicates that Laramide uplifts to the west and south of the Powder River Basin (PRB) were emergent and shedding detritus by early Paleocene time. This conclusion is based largely on the presence of abundant first-cycle carbonate clasts in the northwestern PRB, and metamorphic and igneous clasts and labile heavy-mineral grains in the Tullock throughout the basin. The proximity and composition of the north end of the Bighorn uplift strongly suggest that it was the source for carbonate, igneous, and metamorphic rock fragments in northwestern Tullock outcrops. The conclusions are supported by recent fission-track, palynological, and sedimentological studies that indicate that Laramide-style foreland deformation in southwestern Montana began in late Cenomanian to Turonian time and migrated through central Wyoming to the Colorado Front Range by late Maastrichtian time. -from Authors

  12. Relationship of floodplain ichnocoenoses to paleopedology, paleohydrology, and paleoclimate in the Willwood Formation, Wyoming, during the Paleocene-Eocene Thermal Maximum

    USGS Publications Warehouse

    Smith, J.J.; Hasiotis, S.T.; Kraus, M.J.; Woody, D.T.

    2008-01-01

    Vertical changes in distribution, abundance, and ichnodiversity of ichnocoenoses in alluvial deposits of the Willwood Formation suggest significantly drier moisture regimes in the Bighorn Basin, Wyoming, during the Paleocene-Eocene Thermal Maximum (PETM), a transient period of global warming. The Willwood Formation at Polecat Bench contains an abundant assemblage of ichnofossils, including various types of rhizoliths and invertebrate trace fossils, such as Naktodemasis bowni, Camborygma litonomos, Edaphichnium lumbricatum, cf. Cylindricum isp., cf. Planolites isp., cf. Steinichnus, and cocoon traces. These comprise six distinct ichnocoenoses, which are categorized as dominantly terraphilic, hygrophilic, or hydrophilic based on the inferred moisture regimes of their most abundant ichnofossil morphotypes and associated pedogenic features, including other trace fossils and rhizoliths. The interpreted moisture regimes correlate well with the paleoenvironments of their host lithofacies, as inferred from sedimentology and paleopedology. Outside the PETM interval at Polecat Bench, abundant avulsion deposits and thin, compound paleosols containing hygrophilic and hydrophilic ichnocoenoses suggest frequent depositional events and predominantly poor to imperfect soil-drainage conditions. Within the PETM interval, thick, cumulative paleosol profiles with abundant terraphilic to hygrophilic ichnocoenoses suggest significantly improved drainage conditions. Lithofacies and ichnocoenoses above the PETM interval are not significantly different from those below the interval, indicating a return to pre-PETM moisture regimes. These conclusions support previous studies that suggest the Bighorn Basin experienced transient drying during this interval. This study demonstrates that ichnocoenoses and their ichnopedologic associations can be used to refine paleohydrologic and paleoclimatic generalizations inferred from paleoclimate models. Copyright ?? 2008, SEPM (Society for Sedimentary

  13. Immobilization of mountain goats with xylazine and reversal with idazoxan.

    PubMed

    Haviernick, M; Côté, S D; Festa-Bianchet, M

    1998-04-01

    Mountain goats (Oreamnos americanus) were captured in traps and immobilized with xylazine, later reversed with idazoxan. One hundred and forty-one goats were immobilized, 94 with a single injection and 47 with multiple injections. Dosage (mg/kg of body weight) of xylazine received, induction time, and recovery time after handling did not differ among sex-age classes. Increasing the dosage did not shorten induction time. The first injection of xylazine in multiple-injection captures was lower than the dose given in single-injection captures, suggesting that insufficient initial doses of xylazine made multiple injections necessary. Xylazine is an effective drug for immobilization of mountain goats captured in traps, at dosages of about 4.9 mg/kg. The dosage of xylazine required to immobilize mountain goats is higher than that reported for bighorn sheep and white-tailed deer.

  14. Comparison of arachidonate metabolism by alveolar macrophages from bighorn and domestic sheep.

    PubMed

    Silflow, R M; Foreyt, W J; Taylor, S M; Laegreid, W W; Liggitt, H D; Leid, R W

    1991-02-01

    We have defined the metabolites of arachidonic acid (AA) secreted by alveolar macrophages (AMs) of bighorn sheep and domestic sheep in response to three agents: calcium ionophore A23187, phorbol myristate acetate (PMA), and opsonized zymosan. Cells were labeled with [3H]AA prior to stimulation and 11 tritiated metabolites, including prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and hydroxyeicosatetraenoic acids (HETEs), were detected and quantitated by high-performance liquid chromotography and radiometry. Zymosan stimulation resulted in the release of significantly elevated quantities (P less than 0.05), of LTB4, [5(S), 12(R)-dihydroxy-6,14-cis-8,10-trans-eicosatetraenoic acid], 5-HETE, [5(S)-hydroxyeicosatetraenoic acid], and the nonenzymatic isomers of LTB4, [LTB I, 5(S),12(R)-6-trans-LTB4] and LTB II, [5(S), 12(S)-6-trans-LTB4], from domestic sheep AM when compared to bighorn sheep AM. Phorbol myristate acetate (PMA) stimulation released significantly elevated quantities (P less than 0.04), of TXB2, (thromboxane B2), HHT, [12(S)-12-hydroxy-5,8,10-heptadecaenoic acid], LTB I, LTB II, and 15-HETE, [15(S)-hydroxyeicosatetraenoic acid] from domestic sheep AMs when compared to bighorn sheep AMs. However, after A23187 challenge, only 15-HETE was significantly elevated (P less than 0.04) in domestic sheep AMs when compared to bighorn sheep AMs. These clear differences in AA metabolism of AMs obtained from bighorn and domestic sheep in response to three different agonists suggest not only different control mechanisms for lung metabolism of AA in the two species, but also suggest that differences in the metabolites released may lead to quite different regulation of lung defense mechanisms in the two sheep species.

  15. Sarcoptic mange found in wolves in the Rocky Mountains in western United States.

    PubMed

    Jimenez, Michael D; Bangs, Edward E; Sime, Carolyn; Asher, Valpa J

    2010-10-01

    We documented sarcoptic mange caused by mites (Sarcoptes scabiei) in 22 gray wolves (Canis lupus) in the northern Rocky Mountain states of Montana (n=16) and Wyoming (n=6), from 2002 through 2008. To our knowledge, this is the first report of sarcoptic mange in wolves in Montana or Wyoming in recent times. In addition to confirming sarcoptic mange, we recorded field observations of 40 wolves in Montana and 30 wolves in Wyoming displaying clinical signs of mange (i.e., alopecia, hyperkeratosis, and seborrhea). Therefore, we suspect sarcoptic mange may be more prevalent than we were able to confirm.

  16. Geochemical And Petrological Investigations Of The Representative Cretaceous Bentonite Beds, Wyoming : Tectonic Implications

    NASA Astrophysics Data System (ADS)

    Khandaker, N. I.

    2004-12-01

    Representative bentonite samples were collected from the exposed Cretaceous siliciclastics in Bighorn Basin, north-central Wyoming. Bentonite beds constitute a significant stratigraphic importance with respect to local and regional correlation tool and are associated with the Thermopolis Shale (Lower Cretaceous), Mowry Shale (Lower Cretaceous), and Frontier Formation (Upper Cretaceous). These beds range in thickness from few inches to ten feet and are interbedded with thick cross-bedded sandstone, pebbly sandstone, polymictic conglomerate, siliceous-rippled shale, and lignitic shale. Preliminary petrological and geochemical investigations were carried out to establish a distinctive geochemical signature for each bed. Emphasis was given on the overall distribution of the immobile traces, high refractory elements, and ultrastable heavy mineral components among the selective bentonite beds. The outcome of petrological, bulk, and trace element studies involving multiple bentonite beds indicated a subtle difference in terms of abundance of trace-element and detrital components among the studied samples and can be attributed to the source region characteristics, distinctive diagenetic pathways, and depositional setting. Furthermore, geochemical analyses involving multi-element plots suggest to an evolving source terrain located in close proximity to the bentonite depositional basin.

  17. Transmission of Mannheimia haemolytica from domestic sheep (Ovis aries) to bighorn sheep (Ovis canadensis): unequivocal demonstration with green fluorescent protein-tagged organisms.

    PubMed

    Lawrence, Paulraj K; Shanthalingam, Sudarvili; Dassanayake, Rohana P; Subramaniam, Renuka; Herndon, Caroline N; Knowles, Donald P; Rurangirwa, Fred R; Foreyt, William J; Wayman, Gary; Marciel, Ann Marie; Highlander, Sarah K; Srikumaran, Subramaniam

    2010-07-01

    Previous studies demonstrated that bighorn sheep (Ovis canadensis) died of pneumonia when commingled with domestic sheep (Ovis aries) but did not conclusively prove that the responsible pathogens were transmitted from domestic to bighorn sheep. The objective of this study was to determine, unambiguously, whether Mannheimia haemolytica can be transmitted from domestic to bighorn sheep when they commingle. Four isolates of M. haemolytica were obtained from the pharynx of two of four domestic sheep and tagged with a plasmid carrying the genes for green fluorescent protein (GFP) and ampicillin resistance (AP(R)). Four domestic sheep, colonized with the tagged bacteria, were kept about 10 m apart from four bighorn sheep for 1 mo with no clinical signs of pneumonia observed in the bighorn sheep during that period. The domestic and bighorn sheep were then allowed to have fence-line contact for 2 mo. During that period, three bighorn sheep acquired the tagged bacteria from the domestic sheep. At the end of the 2 mo of fence-line contact, the animals were allowed to commingle. All four bighorn sheep died 2 days to 9 days following commingling. The lungs from all four bighorn sheep showed gross and histopathologic lesions characteristic of M. haemolytica pneumonia. Tagged M. haemolytica were isolated from all four bighorn sheep, as confirmed by growth in ampicillin-containing culture medium, PCR-amplification of genes encoding GFP and Ap(R), and immunofluorescent staining of GFP. These results unequivocally demonstrate transmission of M. haemolytica from domestic to bighorn sheep, resulting in pneumonia and death of bighorn sheep.

  18. View of north central Wyoming and southern Montana

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A view of approximately 3,600 square miles of north central Wyoming and southern Montana as seen in this Skylab 3 Earth Resources Experiments Package S190-B (five-inch earth terrain camera) photograph taken from the Skylab space station in Earth orbit. The Big Horn River flowing northward crosses between the northwest trending Big Horn Mountains and the Pryor Mountains. Yellowtail Reservoir, in the center of the picture, is impounded by a dam across the Big Horn River. A sharp contrast is clearly evident between the small rectangular crop areas along the Big Horn River (upper right) and the strip farming (yellow) practiced on the rolling hill along the Big Horn River and its tributaries (upper left corner and right edge). The low sun angle enhances the structural features of the mountains as well as the drainage patterns in the adjacent basins. Rock formations appear in this color photograph as they would to the eye from this altitude. The distinctive redbeds can be traced along the fr

  19. BEARTOOTH PRIMITIVE AREA AND VICINITY, MONTANA AND WYOMING.

    USGS Publications Warehouse

    Simons, Frank S.; Van Noy, Ronald M.

    1984-01-01

    The Beartooth area comprises about 600 sq mi in the central part of the Beartooth Mountains in South-central Montana and northwestern Wyoming just northeast of Yellowstone National Park. A mineral-resource survey concluded that one area of probable and one of substantiated mineral-resource potential are present in the Beartooth area. Three small mining districts (Red Lodge, Stillwater, and Independence) and one possibly major district (Cooke City) adjoin the Beartooth area but lie almost entirely outside it; the northern part of the Cooke City mining district, around Goose Lake, is within the area. This area has substantiated resource potential for copper, silver, gold, and platinum-group elements. The Red Lodge mining district extends into the eastern part of the area and has a probable chrome resource potential. There is little promise for the discovery of energy resources in the area.

  20. National uranium resource evaluation, Rawlins quadrangle, Wyoming and Colorado

    SciTech Connect

    Dribus, J.R.; Nanna, R.F.

    1982-06-01

    The Rawlins Quadrangle (2/sup 0/), Wyoming and Colorado, was evaluated to identify areas that contain environments favorable for the occurrence of uranium deposits. Data from reconnaissance and detailed surface studies, aerial radiometric surveys, hydrogeochemical and stream-sediment reconnaissance surveys, and subsurface drill-hole log studies were collected and compared to favorability criteria developed for the National Uranium Resource Evaluation program. The authors delineated 15 areas containing 10 favorable environments as the result of the evaluation. Sandstone uranium environments occur in 11 areas. Two areas contain favorable carbonate uranium environments, and one is favorable for uraniferous lignites. Favorable plutonic environments occur in two areas, and favorable quartz-pebble conglomerates occur in two areas. Unevaluated environments include the Baggot Rocks Granite, the Frontier Formation, the Hanna Formation east of Elk Mountain, and the Medicine Bow and Mesaverde Formations in the Laramie Basin. All remaining areas in the quadrangle are considered unfavorable.

  1. The copper deposits of the Encampment District, Wyoming

    USGS Publications Warehouse

    Spencer, A.C.

    1904-01-01

    During the last few years prospecting in the Medicine Bow and Park ranges in northern Colorado and southern Wyoming has proved that copper-bearing minerals occur frequently and are very generally distributed over a wide region in this portion of the Rocky Mountains. This has gradually become known through the discovery of several more or less promising copper deposits and also through the exploitation of a few properties which have produced ore on a commercial scale. The increase in the number of prospectors has kept pace with the increasing interest in the region, until now every part of it has been at least cursorily examined. In spite of this activity and of a considerable amount of development work at several localities, the productive mines in actual operation are few, but the search for valuable deposits continues, and it is to be expected that other mines will eventually be discovered. 

  2. Correlates to colonizations of new patches by translocated populations of bighorn sheep

    USGS Publications Warehouse

    Singer, F.J.; Moses, M.E.; Bellew, S.; Sloan, W.

    2000-01-01

    By 1950, bighorn sheep were extirpated from large areas of their range. Most extant populations of bighorn sheep (Ovis canadensis) in the Intermountain West consist of <100 individuals occurring in a fragmented distribution across the landscape. Dispersal and successful colonizations of unoccupied habitat patches has been rarely reported, and, in particular, translocated populations have been characterized by limited population growth and limited dispersal rates. Restoration of the species is greatly assisted by dispersal and successful colonization of new patches within a metapopulation structure versus the existing scenario of negligible dispersal and fragmented, small populations. We investigated the correlates for the rate of colonizations of 79 suitable, but unoccupied, patches by 31 translocated populations of bighorn sheep released into nearby patches of habitat. Population growth rates of bighorn sheep in the release patches were correlated to Ne of the founder group, and early contact with a second released population in a nearby release patch (logistic regression, p = 0.08). Largest population size of all extant released populations in 1994 was correlated to potential Ne of the founder group, the number of different source populations represented in the founder, and early contact with a second released population (p = 0.016). Dispersal rates were 100% higher in rams than ewes (p = 0.001). Successful colonizations of unoccupied patches (n = 24 of 79 were colonized) were associated with rapid growth rates in the released population, years since release, larger area of suitable habitat in the release patch, larger population sizes, and a seasonal migratory tendency in the released population (p = 0.05). Fewer water barriers, more open vegetation and more rugged, broken terrain in the intervening habitat were also associated with colonizations (p = <0.05). We concluded that high dispersal rates and rapid reoccupation of large areas could occur if bighorn

  3. Wyoming Basin Rapid Ecoregional Assessment

    USGS Publications Warehouse

    Carr, Natasha B.; Means, Robert E.

    2013-01-01

    The overall goal of the Wyoming Basin Rapid Ecoregional Assessment (REA) is to provide information that supports regional planning and analysis for the management of ecological resources. The REA provides an assessment of baseline ecological conditions, an evaluation of current risks from drivers of ecosystem change (including energy development, fire, and invasive species), and a predictive capacity for evaluating future risks (including climate change). Additionally, the REA may be used for identifying priority areas for conservation or restoration and for assessing cumulative effects of multiple land uses. The Wyoming Basin REA will address Management Questions developed by the Bureau of Land Management and other agency partners for 8 major biomes and 19 species or species assemblages. The maps developed for addressing Management Questions will be integrated into overall maps of landscape-level ecological values and risks. The maps can be used to address the goals of the REA at a number of levels: for individual species, species assemblages, aquatic and terrestrial systems, and for the entire ecoregion. This allows flexibility in how the products of the REA are compiled to inform planning and management actions across a broad range of spatial scales.

  4. Ground-water resources of Natrona County, Wyoming

    USGS Publications Warehouse

    Crist, Marvin A.; Lowry, Marlin E.

    1972-01-01

    Natrona County covers an area of 5.369 square miles in central Wyoming. The climate is arid except in the mountainous areas. The county includes parts of the Great Plains, Middle Rocky Mountains, Wyoming Basin, and Southern Rocky Mountains physiographic provinces. There is wide variation of topography. More than 30 geologic formations are exposed in the county, 28 of which are known to yield water to wells and springs. The formations range in age from Precambrian to Holocene. Ground water in approximately 40 percent of the county contains more than 1.000 mg/l (milligrams per liter) of dissolved solids. Water chemically suitable for livestock can be developed at depths of less than 1,000 feet throughout most of the area. Many of the geologic formations were deposited under similar conditions and have similar water-bearing properties; also. water from these rocks deposited under similar conditions tends to have similar chemical characteristics. For this report, the stratigraphic section has been arbitrarily divided into six rock units based on similarity of deposition. The igneous and metamorphic rock unit includes rocks of Precambrian age and igneous intrusives and extrusives of Tertiary age. These rocks probably would not yield more than about 5 gpm (gallons per minute) to wells. The water is usually calcium bicarbonate type and contains less than 500 mg/l of dissolved solids. The marine rock unit includes formations of Cambrian, Mississippian, and Pennsylvanian and Permian age, having a maximum total thickness of about 1,900 feet. The Madison Limestone of Mississippian age and the Tensleep Sandstone and the Casper Formation of Pennsylvanian and Permian age supply the largest yields to wells and springs in the county. In the northeastern part of the county, flow from each of three wells in the Madison reportedly is more than 4.000 gpm. Each of three wells in the Tensleep in the same area flows more than 400 gpm. Yields of springs in the Casper Formation near Casper

  5. 78 FR 13004 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... Office, Office of Surface Mining Reclamation and Enforcement, Dick Cheney Federal Building, POB 11018... Enforcement, Dick Cheney Federal Building, POB 11018, 150 East B Street, Casper, Wyoming 82601-1018, (307)...

  6. 76 FR 80310 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ..., Dick Cheney Federal Building, POB 11018, 150 East B Street, Casper, Wyoming 82601-1018. For detailed... Mining Reclamation and Enforcement, Dick Cheney Federal Building, POB 11018, 150 East B Street,...

  7. Early Mesozoic history and petroleum potential of formations in Wyoming and northern Utah

    SciTech Connect

    Picard, M.D. )

    1993-08-01

    During the Triassic and Jurassic, over what is now Wyoming and northern Utah, roughly equal amounts of sediment were being deposited in continental settings-lake, stream, and eolian-and in shallow-marine or deltaic-plain settings-delta, beach, marsh, tidal flat, and shallow shelf. Clastic rocks dominate. In order of decreasing abundance, the rocks are fine-grained clastics (siltstone, claystone, mudstone), sandstone, carbonates, evaporites, and claystone- and carbonate-pebble conglomerate. Approximately four-fifths of the succession contains red beds or variegated layers-purple, maroon, lavender, olive, green. Unconformities bound Jurassic formations in Wyoming-Nugget, Gypsum Spring, Sundance, and Morrison. Unconformities also bound the continental Upper Triassic section-unnamed red bed unit, Jelm, Popo Agie-separating it from the underlying shallow-marine formations-Dinwoody, Red Peak, Alcova, Crow Mountain. Within the marine sequence, an unconformity occurs at the top of the Alcova and, quite likely, shorter periods of erosion took place at the top and below the base of the sandy faces that underlies the Alcova. The postulate duration of the principal unconformities totals about 18 m.y., at least one-sixth of early Mesozoic time. The bulk of the remaining 80-100 m.y. may be represented by a large number of smaller unconformities. For the lower Mesozoic, as for most stratigraphic intervals, a few beds contain the story of what has taken place during the abyss of geologic time. Like other places in the world where evaporites occur in the Triassic, the Wyoming section produces little crude oil. No significant sequence in the early Mesozoic shows source-bed characteristics. The Crow Mountain Sandstone contains the best reservoirs. The Lower( ) Jurassic Nugget Sandstone produces the most oil and gas in the thrust belt of southwestern Wyoming and northern Utah. Cretaceous claystones below the thrusts contain the source beds.

  8. Translating effects of inbreeding depression on component vital rates to overall population growth in endangered bighorn sheep.

    PubMed

    Johnson, Heather E; Mills, L Scott; Wehausen, John D; Stephenson, Thomas R; Luikart, Gordon

    2011-12-01

    Evidence of inbreeding depression is commonly detected from the fitness traits of animals, yet its effects on population growth rates of endangered species are rarely assessed. We examined whether inbreeding depression was affecting Sierra Nevada bighorn sheep (Ovis canadensis sierrae), a subspecies listed as endangered under the U.S. Endangered Species Act. Our objectives were to characterize genetic variation in this subspecies; test whether inbreeding depression affects bighorn sheep vital rates (adult survival and female fecundity); evaluate whether inbreeding depression may limit subspecies recovery; and examine the potential for genetic management to increase population growth rates. Genetic variation in 4 populations of Sierra Nevada bighorn sheep was among the lowest reported for any wild bighorn sheep population, and our results suggest that inbreeding depression has reduced adult female fecundity. Despite this population sizes and growth rates predicted from matrix-based projection models demonstrated that inbreeding depression would not substantially inhibit the recovery of Sierra Nevada bighorn sheep populations in the next approximately 8 bighorn sheep generations (48 years). Furthermore, simulations of genetic rescue within the subspecies did not suggest that such activities would appreciably increase population sizes or growth rates during the period we modeled (10 bighorn sheep generations, 60 years). Only simulations that augmented the Mono Basin population with genetic variation from other subspecies, which is not currently a management option, predicted significant increases in population size. Although we recommend that recovery activities should minimize future losses of genetic variation, genetic effects within these endangered populations-either negative (inbreeding depression) or positive (within subspecies genetic rescue)-appear unlikely to dramatically compromise or stimulate short-term conservation efforts. The distinction between

  9. Is the decline of desert bighorn sheep from infectious disease the result of low MHC variation?

    PubMed

    Gutierrez-Espeleta, G A; Hedrick, P W; Kalinowski, S T; Garrigan, D; Boyce, W M

    2001-04-01

    Bighorn sheep populations have greatly declined in numbers and distribution since European settlement, primarily because of high susceptibility to infectious diseases transmitted to them from domestic livestock. It has been suggested that low variation at major histocompatibility complex (MHC) genes, the most important genetic aspect of the vertebrate immune system, may result in high susceptibility to infectious disease. Therefore, we examined genetic polymorphism at a MHC gene (Ovca-DRB) in a large sample, both numerically and geographically, of bighorn sheep. Strikingly, there were 21 different alleles that showed extensive nucleotide and amino acid sequence divergence. In other words, low MHC variation does not appear to be the basis of the high disease susceptibility and decline in bighorn sheep. On the other hand, analysis of the pattern of the MHC polymorphism suggested that nonsynonymous substitutions predominated, especially at amino acids in the antigen-binding site. The average overall heterozygosity for the 16 amino acid positions that are part of the antigen binding site is 0.389 whereas that for the 67 amino acid positions not involved with antigen binding is 0.076. These findings imply that the diversity present in this gene is functionally significant and is, or has been, maintained by balancing selection. To examine the evolution of DRB alleles in related species, a phylogenetic analysis including other published ruminant (Bovidae and Cervidae) species, was carried out. An intermixture of sequences from bighorn sheep, domestic sheep, goats, cattle, bison, and musk ox was observed supporting trans-species polymorphism for these species. To reconcile the species and gene trees for the 104 sequences examined, 95 'deep coalescent' events were necessary, illustrating the importance of balancing selection maintaining variation over speciation events.

  10. Laramide tectonics and humid alluvial fan sedimentation, Ne Uinta uplift, Utah and Wyoming

    SciTech Connect

    Crews, S.G.; Ethridge, F.G. )

    1993-05-01

    This paper describes and interprets a sequence of syntectonic conglomerates and sandstones shed from the northeast flank of the Uinta Mountains during an early Eocene phase of the Laramide orogeny. The study area centers around a cuesta 10 km long known as Richards Mountain located on the Utah-Wyoming border about 3 km north of the Uinta fault zone. Conglomerates and sandstones of the basal Wasatch Formation that crop out on Richards Mountain constitute an exhumed, strike-parallel deposit of carose sediments that formed adjacent to the rising Uinta Mountains uplift. These rocks are an example of sedimentation in a proximal, humid piedmont setting and provide clues to the relative rate and timing of a major cycle of uplift and erosion of the Uinta Mountains. Topics specifically addressed in this study include: (1) sedimentary facies, fluvial architecture, depositional processes, paleocurrents, and grain-size trends at Richards Mountain, based on detailed measured sections; (2) tectonic significance of the richards Mountain sequence, including tectonic and geomorphic explanations for several scales of cyclicity within the sequence; and (3) Early Paleogene tectonic and depositional history of the northeastern flank of the Uinta Uplift and the southern Green River Basin.

  11. Water resources of Sweetwater County, Wyoming

    USGS Publications Warehouse

    Mason, Jon P.; Miller, Kirk A.

    2004-01-01

    Sweetwater County is located in the southwestern part of Wyoming and is the largest county in the State. A study to quantify the availability and describe the chemical quality of surface-water and ground-water resources in Sweetwater County was conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineers Office. Most of the county has an arid climate. For this reason a large amount of the flow in perennial streams within the county is derived from outside the county. Likewise, much of the ground-water recharge to aquifers within the county is from flows into the county, and occurs slowly. Surface-water data were not collected as part of the study. Evaluations of streamflow and stream-water quality were limited to analyses of historical data and descriptions of previous investigations. Forty-six new ground-water-quality samples were collected as part of the study and the results from an additional 782 historical ground-water-quality samples were reviewed. Available hydrogeologic characteristics for various aquifers throughout the county also are described. Flow characteristics of streams in Sweetwater County vary substantially depending on regional and local basin characteristics and anthropogenic factors. Because precipitation amounts in the county are small, most streams in the county are ephemeral, flowing only as a result of regional or local rainfall or snowmelt runoff. Flows in perennial streams in the county generally are a result of snowmelt runoff in the mountainous headwater areas to the north, west, and south of the county. Flow characteristics of most perennial streams are altered substantially by diversions and regulation. Water-quality characteristics of selected streams in and near Sweetwater County during water years 1974 through 1983 were variable. Concentrations of dissolved constituents, suspended sediment, and bacteria generally were smallest at sites on the Green River because of resistant geologic units, increased

  12. Wyoming Basin Rapid Ecoregional Assessment

    USGS Publications Warehouse

    Carr, Natasha B.; Melcher, Cynthia P.

    2015-08-28

    We evaluated Management Questions (Core and Integrated) for each species and community for the Wyoming Basin REA. Core Management Questions address primary management issues, including (1) where is the Conservation Element, and what are its key ecological attributes (characteristics of species and communities that may affect their long-term persistence or viability); (2) what and where are the Change Agents; and (3) how do the Change Agents affect the key ecological attributes? Integrated Management Questions synthesize the Core Management Questions as follows: (1) where are the areas with high landscape-level ecological values; (2) where are the areas with high landscape-level risks; and (3) where are the potential areas for conservation, restoration, and development? The associated maps and key findings for each Management Question are summarized for each Conservation Element in individual chapters. Additional chapters on landscape intactness and an REA synthesis are included.

  13. Groundwater quality of southeastern Wyoming

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Blain, Liberty

    2011-01-01

    Groundwater is an important resource for domestic, municipal, stock, and irrigation uses in southeastern Wyoming. Thirty-seven percent of water used in the tri-County area, which includes Laramie, Platte, and Goshen Counties, is from groundwater. Most groundwater use in the tri-County area is withdrawn from three primary aquifer groups: Quaternary-age unconsolidated-deposit aquifers, Tertiary-age units of the High Plains aquifer system, and Upper Cretaceous bedrock aquifers (Lance Formation and Fox Hills Sandstone). Authors include selected physical properties and chemicals found in water samples, describe sources and importance, and report maximum levels established by the U.S. Environmental Protection Agency. They also show concentration ranges for selected physical properties and chemicals in samples collected from the three primary aquifer groups in the tri-County area.

  14. Differential Susceptibility of Bighorn Sheep (Ovis Canadensis) and Domestic Sheep (Ovis Aries) Neutrophils to Mannheimia Haemolytica Leukotoxin is not due to Differential Expression of Cell Surface CD18.

    PubMed

    Dassanayake, Rohana P; Shanthalingam, Sudarvili; Liu, Weiguo; Casas, Eduardo; Srikumaran, Subramaniam

    2017-03-21

    Bighorn sheep ( Ovis canadensis ) are more susceptible to pneumonia caused by Mannheimia haemolytica than are domestic sheep ( Ovis aries ). Leukotoxin produced by M. haemolytica is the principal virulence factor involved in pneumonia pathogenesis. Although leukotoxin is cytolytic to all subsets of ruminant leukocytes, neutrophils are the most susceptible subset. Bighorn sheep neutrophils are 4- to 8-fold more susceptible to leukotoxin-induced cytolysis than are domestic sheep neutrophils. We hypothesized that the higher susceptibility of bighorn sheep neutrophils, in comparison to domestic sheep neutrophils, is due to higher expression of CD18, the receptor for leukotoxin on leukocytes. Our objective was to quantify CD18 expression on neutrophils of bighorn sheep and domestic sheep. Cell-surface CD18 expression on bighorn sheep and domestic sheep neutrophils was measured as antibody binding capacity of cells by flow cytometric analysis with two fluorochrome-conjugated anti-CD18 monoclonal antibodies (BAQ30A and HUH82A) and microspheres. Contrary to our expectations, CD18 expression was higher (P=0.000) with monoclonal antibody BAQ30A and was higher (P=0.000) as well with monoclonal antibody HUH80A on domestic sheep neutrophils in comparison to bighorn sheep neutrophils. These findings suggest that the higher in vitro susceptibility to leukotoxin of bighorn sheep neutrophils compared to domestic sheep neutrophils is not due to higher expression of the leukotoxin receptor CD18 on bighorn sheep neutrophils.

  15. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  16. Occurrence of Pesticides in Ground Water of Wyoming, 1995-2006

    USGS Publications Warehouse

    Bartos, Timothy T.; Eddy-Miller, Cheryl A.; Hallberg, Laura L.

    2009-01-01

    . Considering only detections using the CAL, triazine pesticides were detected much more frequently than all other pesticide classes, and the number of different pesticides classified as triazines was the largest of all classes. More pesticides were detected at concentrations greater than the CSALs in water from wells sampled in the fall (28 different pesticides) than in the spring (21 different pesticides). Many pesticides were detected infrequently as nearly one-half of pesticides detected in the fall and spring at concentrations greater than the CSALs were detected only in one well. Using the CSALs for pesticides analyzed for in 11 or more wells, only five pesticides (atrazine, prometon, tebuthiuron, picloram, and 3,4-dichloroaniline, listed in order of decreasing detection frequency) were each detected in water from more than 5 percent of sampled wells. Atrazine was the pesticide detected most frequently at concentrations greater than the CSAL. Concentrations of detected pesticides generally were small (less than 1 microgram per liter), although many infrequent detections at larger concentrations were noted. All detected pesticide concentrations were smaller than U.S. Environmental Protection Agency (USEPA) drinking-water standards or applicable health advisories. Most concentrations were at least an order of magnitude smaller; however, many pesticides did not have standards or advisories. The largest percentage of pesticide detections and the largest number of different pesticides detected were in samples from wells located in the Bighorn Basin and High Plains/ Casper Arch geographic areas of north-central and southeastern Wyoming. Prometon was the only pesticide detected in all eight geographic areas of the State. Pesticides were detected much more frequently in samples from wells located in predominantly urban areas than in samples from wells located in predominantly agricultural or mixed areas. Pesticides were detected distinctly less often in sa

  17. Hydrology of Park County, Wyoming, exclusive of Yellowstone National Park

    USGS Publications Warehouse

    Lowry, M.E.; Smalley, M.L.; Mora, K.L.; Stockdale, R.G.; Martin, M.W.

    1993-01-01

    The climate of Park County, Wyoming, ranges from desert to alpine tundra. Average annual precipitation ranges from 6 to 40 inches. Ground water is present throughout most of the county, but supplies adequate for stock or domestic use are not readily available in areas of greatest need. The chemical quality of most of the water sampled was of suitable quality for livestock, but most of the water was not suitable for drinking, and the water from bedrock aquifers generally was not suitable for irrigation. Unconsolidated deposits are a principal source of ground water in the county. However, ground water is found in deposits topographically higher than stream level only where surface water has been applied for irrigation; those unconsolidated deposits beneath areas that are not irrigated, such as Polecat Bench, are dry. The conversion of irrigated land to urban development poses problems in some areas because yields of water-supply wells will be adversely affected by reduced recharge. The trend toward urban development also increases the risk of contamination of the ground water by septic tanks, petroleum products, and toxic and hazardous wastes. Perennial streams originate in the mountains and in areas where drainage from irrigated land is adequate to sustain flow. The average annual runoff from streams originating in the mountains is as large as 598 acre-feet per square mile, and the average annual runoff from streams originating in badlands and plains is as low as 14.8 acre-feet per square mile.

  18. An Analysis of Employee Skills Required by Employers in Wyoming.

    ERIC Educational Resources Information Center

    Baird, Mary; And Others

    A survey of 177 employers of Wyoming vocational education graduates sought to identify skills and competencies the graduates needed. A random sample of 525 businesses both Wyoming-based and foreign (home-based outside of Wyoming) were mailed surveys; 267 survey forms were returned, but only 177 provided data for analysis. Findings indicated that…

  19. Analysis of ERTS-1 imagery and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Houston, R. S. (Principal Investigator); Marrs, R. W.

    1973-01-01

    The author has identified the following significant results. Significant results of the Wyoming ERTS-1 investigation during the first six months (July-December 1972) included: (1) successful segregation of Precambrian metasedimentary/metavolcanic rocks from igneous rocks, (2) discovery of iron formation within the metasedimentary sequence, (3) mapping of previously unreported tectonic elements of major significance, (4) successful mapping of large scale fracture systems of the Wind River Mountains, (5) successful distinction of some metamorphic, igneous, and sedimentary lithologies by color additive viewing, (6) mapping of large scale glacial features, and (7) development of techniques for mapping small urban areas.

  20. Late glacial aridity in southern Rocky Mountains

    SciTech Connect

    Davis, O.K.; Pitblado, B.L.

    1995-09-01

    While the slopes of the present-day Colorado Rocky Mountains are characterized by large stands of subalpine and montane conifers, the Rockies of the late glacial looked dramatically different. Specifically, pollen records suggest that during the late glacial, Artemisia and Gramineae predominated throughout the mountains of Colorado. At some point between 11,000 and 10,000 B.P., however, both Artemisia and grasses underwent a dramatic decline, which can be identified in virtually every pollen diagram produced for Colorado mountain sites, including Como Lake (Sangre de Cristo Mountains), Copley Lake and Splains; Gulch (near Crested Butte), Molas Lake (San Juan Mountains), and Redrock Lake (Boulder County). Moreover, the same pattern seems to hold for pollen spectra derived for areas adjacent to Colorado, including at sites in the Chuska Mountains of New Mexico and in eastern Wyoming. The implications of this consistent finding are compelling. The closest modem analogues to the Artemisia- and Gramineae-dominated late-glacial Colorado Rockies are found in the relatively arid northern Great Basin, which suggests that annual precipitation was much lower in the late-glacial southern Rocky Mountains than it was throughout the Holocene.

  1. Reference intervals for mineral concentrations in whole blood and serum of bighorn sheep (Ovis canadensis) in California.

    PubMed

    Poppenga, Robert H; Ramsey, Jennifer; Gonzales, Ben J; Johnson, Christine K

    2012-05-01

    Whole blood and serum mineral concentrations were measured in diverse bighorn sheep (Ovis canadensis) metapopulations in California, and 90% reference intervals were determined. While there were some statistical differences between median concentrations among the different metapopulations, detected values were generally in good agreement with concentrations reported for other bighorn sheep populations and with reference ranges widely accepted for domestic sheep (Ovis aries). Although median whole blood selenium and serum copper concentrations were within adequate ranges reported for domestic sheep, some metapopulations had substantial numbers of individuals whose concentrations would be considered suboptimal for domestic sheep. There are a number of factors that can influence mineral concentrations in wildlife species such as bighorn sheep and that make the establishment of reference ranges challenging. However, the establishment of mineral reference ranges is important for such species, as their health and productivity are increasingly scrutinized and actively managed.

  2. The Cretaceous record in a northeast-trending transect, northern Utah to east-central Wyoming

    SciTech Connect

    Merewether, E.A. )

    1991-03-01

    Cretaceous sedimentary rocks in the Laramide basins of the middle Rocky Mountains include 16,600 ft (5060 m) of predominantly siliciclastic strata in the thrust-belt of northern Utah and 7800 ft (2380 m) of mainly siliciclastic and calcareous strata near the craton in east central Wyoming. Regional changes in the thickness of the strata indicate that crustal subsidence during the Cretaceous was generally greatest in northern Utah and western Wyoming where it was associated with tectonic and sediment loading. However, the considerable thickness of uppermost Cretaceous nonmarine beds in several other areas reflects pronounced basin subsidence during early stages of the Laramide orogeny. In a transect from northern Utah to east-central Wyoming, based on outcrop sections, borehole logs, and chronostratigraphic data, Cretaceous rocks grade northeastward from mainly fluvial and nearshore marine synorogenic conglomerate, sandstone, mudstone, coal, and bentonite to mostly nearshore and offshore marine sandstone, mudstone, calcareous shale, and bentonite. Lateral changes in the lithofacies and in the extent of enclosed unconformities indicate marine transgressions and regressions that were effected by structural deformation, sedimentation, and eustatic events. Significant unconformities have been found at the base of the Cretaceous strata, at two horizons within beds of Albian age, at two horizons within rocks of Cenomanian and Turonian ages, at one horizon within Coniacian strata, and at two horizons within Campanian beds. Most of these unconformities are either flooding surfaces or sequence boundaries.

  3. Trona resources in southwest Wyoming

    USGS Publications Warehouse

    Dyni, J.R.; Wiig, S.V.; Grundy, W.D.

    1995-01-01

    Bedded trona (Na2CO3??NaHCO3??2H2O) in the lacustrine Green River Formation of Eocene age in the Green River Basin, southwest Wyoming, constitutes the largest known resource of natural sodium carbonate in the world. In this study, 116 gigatons (Gt) of trona ore are estimated to be present in 22 beds, ranging from 1.2 to 11 meters (m) in thickness. Of this total, 69 Gt of trona ore are estimated to be in beds containing less than 2 percent halite and 47 Gt in beds containing 2 or more percent halite. These 22 beds underlie areas of about 130 to more than 2,000 km2 at depths ranging from about 200 m to more than 900 m below the surface. The total resource of trona ore in the basin for which drilling information is available is estimated to be about 135 Gt. Underveloped trona beds in the deeper southern part of the basin may be best developed by solution mining. Additional unevaluated sodium carbonate resources are present in disseminated shortite (Na2CO3??2CaCO3) in strata interbedded with the trona and in shallow sodium carbonate brines in the northeast part of the basin. Estimates of the shortite and brine resources were not made. ?? 1995 Oxford University Press.

  4. Suckers in headwater tributaries, Wyoming

    USGS Publications Warehouse

    Sweet, D.E.; Compton, R.I.; Hubert, W.A.

    2009-01-01

    Bluehead sucker (Catostomus discobolus) and flannelmouth sucker (Catostomus latipinnis) populations are declining throughout these species' native ranges in the Upper Colorado River Basin. In order to conserve these populations, an understanding of population dynamics is needed. Using age estimates from pectoral fin rays, we describe age and growth of these 2 species in 3 Wyoming stream systems: Muddy Creek, the Little Sandy River, and the Big Sandy River. Within all 3 stream systems, flannelmouth suckers were longer-lived than bluehead suckers, with maximum estimated ages of 16 years in Muddy Creek, 18 years in Little Sandy Creek, and 26 years in the Big Sandy River. Bluehead suckers had maximum estimated ages of 8 years in Muddy Creek, 10 years in Little Sandy Creek, and 18 years in the Big Sandy River. These maximum estimated ages were substantially greater than in other systems where scales have been used to estimate ages. Mean lengths at estimated ages were greater for flannelmouth suckers than for bluehead suckers in all 3 streams and generally less than values published from other systems where scales were used to estimate ages. Our observations of long life spans and slow growth rates among bluehead suckers and flannelmouth suckers were probably associated with our use of fin rays to estimate ages as well as the populations being in headwater tributaries near the northern edges of these species' ranges.

  5. Precipitation, density, and population dynamics of desert bighorn sheep on San Andres National Wildlife Refuge, New Mexico

    USGS Publications Warehouse

    Bender, L.C.; Weisenberger, M.E.

    2005-01-01

    Understanding the determinants of population size and performance for desert bighorn sheep (Ovis canadensis mexicana) is critical to develop effective recovery and management strategies. In arid environments, plant communities and consequently herbivore populations are strongly dependent upon precipitation, which is highly variable seasonally and annually. We conducted a retrospective exploratory analysis of desert bighorn sheep population dynamics on San Andres National Wildlife Refuge (SANWR), New Mexico, 1941-1976, by modeling sheep population size as a function of previous population sizes and precipitation. Population size and trend of desert bighorn were best and well described (R 2=0.89) by a model that included only total annual precipitation as a covariate. Models incorporating density-dependence, delayed density-dependence, and combinations of density and precipitation were less informative than the model containing precipitation alone (??AlCc=8.5-22.5). Lamb:female ratios were positively related to precipitation (current year: F1,34=7.09, P=0.012; previous year: F1,33=3.37, P=0.075) but were unrelated to population size (current year. F1,34=0.04, P=0.843; previous year: F1,33 =0.14, P=0.715). Instantaneous population rate of increase (r) was related to population size (F1,33=5.55; P=0.025). Precipitation limited populations of desert bighorn sheep on SANWR primarily in a density-independent manner by affecting production or survival of lambs, likely through influences on forage quantity and quality. Habitat evaluations and recovery plans for desert bighorn sheep need to consider fundamental influences on desert bighorn populations such as precipitation and food, rather than focus solely on proximate issues such as security cover, predation, and disease. Moreover, the concept of carrying capacity for desert bighorn sheep may need re-evaluation in respect to highly variable (CV =35.6%) localized precipitation patterns. On SANWR carrying capacity for desert

  6. BigHorn Home Improvement Center: Proof that a Retail Building Can Be a Low Energy Building: Preprint

    SciTech Connect

    Deru, M.; Torcellini, P.; Judkoff, R.

    2004-07-01

    The BigHorn Home Improvement Center in Silverthorne, Colorado was one of the first commercial buildings in the United States to integrate extensive high-performance design into a retail space. After monitoring and evaluation by NREL, the BigHorn Center was found to consume 54% less source energy and have 53% lower energy costs than typical retail buildings of similar size. The extensive use of daylighting to replace electric lighting reduced lighting energy requirements by 80% and significantly contributed to the reduced energy loads in the building.

  7. The Geologic Story of the Uinta Mountains

    USGS Publications Warehouse

    Hansen, Wallace R.

    1969-01-01

    The opening of the West after the Civil War greatly stimulated early geologic exploration west of the 100th Meridian. One of the areas first studied, the Uinta Mountains region, gained wide attention as a result of the explorations of three Territorial Surveys, one headed by John Wesley Powell, one by Clarence King, and one by Ferdinand V. Hayden. Completion of the Union Pacific Railroad across southern Wyoming 100 years ago, in 1869, materially assisted geologic exploration, and the railheads at Green River and Rock Springs greatly simplified the outfitting of expeditions into the mountains. The overlap of the Powell, King, and Hayden surveys in the Uinta Mountains led to efforts that were less concerted than competitive and not without acrimony. Many parts of the area were seen by all three parties at almost the same time. Duplication was inevitable, of course, but all three surveys contributed vast quantities of new knowledge to the storehouse of geology, and many now-basic concepts arose from their observations. Powell's area of interest extended mainly southward from the Uinta Mountains to the Grand Canyon, including the boundless plateaus and canyons of southern Utah and northern Arizona. King's survey extended eastward from the High Sierra in California to Cheyenne, Wyoming, and encompassed a swath of country more than 100 miles wide. Hayden's explorations covered an immense region of mountains and basins from Yellowstone Park in Wyoming southeast throughout most of Colorado. Powell first entered the Uinta Mountains in the fall of 1868, having traveled north around the east end of the range from the White River country to Green River, Wyoming, then south over a circuitous route to Flaming Gorge and Browns Park, and finally back to the White River, where he spent the winter. In 1869, after reexamining much of the area visited the previous season, Powell embarked on his famous 'first boat trip' down the Green and Colorado Rivers. This trip was more exploratory

  8. Algal and Water-Quality Data for the Yellowstone River and Tributaries, Montana and Wyoming, 1999-2000

    USGS Publications Warehouse

    Peterson, David A.

    2009-01-01

    Streams of the Yellowstone River Basin in Montana and Wyoming were sampled as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Algal communities were sampled in 1999 in conjunction with other ecological sampling and in 2000 during synoptic sampling. Water-quality measurements related to the algal sampling included light attenuation and dissolved-oxygen concentrations. Sites were sampled on the main-stem Yellowstone River, major tributaries such as the Clarks Fork Yellowstone River and the Bighorn River, and selected minor tributaries. Some of the data collected, such as the phytoplankton chlorophyll-a data, were referenced or summarized in previous U.S. Geological Survey reports but were not previously published in tabular form, and therefore are presented in this report, prepared in cooperation with the Montana Department of Environmental Quality. Data presented in this report include chlorophyll-a concentrations in phytoplankton and periphyton samples, as well as light attenuation and dissolved-oxygen production data from 1999-2000.

  9. Contact and contagion: Bighorn sheep demographic states vary in probability of transmission given contact.

    PubMed

    Manlove, Kezia R; Cassirer, E Frances; Plowright, Raina K; Cross, Paul C; Hudson, Peter J

    2017-03-20

    1.Understanding both contact and probability of transmission given contact are key to managing wildlife disease. However, wildlife disease research tends to focus on contact heterogeneity, in part because probability of transmission given contact is notoriously difficult to measure. Here we present a first step toward empirically investigating probability of transmission given contact in free-ranging wildlife. 2.We used measured contact networks to test whether bighorn sheep demographic states vary systematically in infectiousness or susceptibility to Mycoplasma ovipneumoniae, an agent responsible for bighorn sheep pneumonia. 3.We built covariates using contact network metrics, demographic information, and infection status, and used logistic regression to relate those covariates to lamb survival. The covariate set contained degree, a classic network metric describing node centrality, but also included covariates breaking the network metrics into subsets that differentiated between contacts with yearlings, ewes with lambs, and ewes without lambs, and animals with and without active infections. 4.Yearlings, ewes with lambs, and ewes without lambs showed similar group membership patterns, but direct interactions involving touch occurred at a rate two orders of magnitude higher between lambs and reproductive ewes than between any classes of adults or yearlings, and one order of magnitude higher than direct interactions between lambs. 5.Although yearlings and non-reproductive bighorn ewes regularly carried Mycoplasma ovipneumoniae, our models suggest that a contact with an infected reproductive ewe had approximately five times the odds of producing a lamb mortality event of an identical contact with an infected dry ewe or yearling. Consequently, management actions targeting infected animals might lead to unnecessary removal of young animals who carry pathogens but rarely transmit. 6.This analysis demonstrates a simple logistic regression approach for testing a priori

  10. Analysis of ERTS-1 imagery of Wyoming and its application to evaluation of Wyoming's natural resources

    NASA Technical Reports Server (NTRS)

    Marrs, R. W.; Breckenridge, R. M.

    1973-01-01

    The author has identified the following significant results. The Wyoming investigation has progressed according to schedule during the Jan. - Feb., 1973 report period. A map of the maximum extent of Pleistocene glaciation was compiled for northwest Wyoming from interpretations of glacial features seen on ERTS-1 imagery. Using isodensitometry as a tool for image enhancement, techniques were developed which allowed accurate delineation of small urban areas and provided distinction of broad classifications within these small urban centers.

  11. Ural-Tweed Bighorn Sheep Wildlife Mitigation Project, 1984-1990 Final Report.

    SciTech Connect

    Young, Lewis R.; Yde, Chris A.

    1990-06-01

    The results of habitat improvement project activities accomplished under contract No.84-38 for bighorn sheep mitigation along Koocanusa Reservoir from September 1, 1984, through June 30, 1990, are reported here. Habitat treatments were applied to ten areas and covered 1100 acres. Treatments used were prescribed fire, slashing combined with prescribed fire, and fertilization. Several variations in season or intensity were used within the slashing and prescribed fire treatments. This project was coordinated with and complemented concurrent Kootenai National Forest habitat improvement activities.

  12. The nature of Archean terrane boundaries: an example from the northern Wyoming Province

    USGS Publications Warehouse

    Mogk, D.W.; Mueller, P.A.; Wooden, J.L.

    1992-01-01

    The Archean northern Wyoming Province can be subdivided into two geologically distinct terranes, the Beartooth-Bighorn magmatic terrane (BBMT) and the Montana metasedimentary terrane (MMT). The BBMT is characterized by voluminous Late Archean (2.90-2.74 Ga) magmatic rocks (primarily tonalite, trondhjemite, and granite); metasedimentary rocks are preserved only as small, rare enclaves in this magmatic terrane. The magmatic rocks typically have geochemical and isotopic signatures that suggest petrogenesis in a continental magmatic arc environment. The MMT, as exposed in the northern Gallatin and Madison Ranges, is dominated by Middle Archean trondhjemitic gneisses (3.2-3.0 Ga); metasedimentary rocks, however, are significantly more abundant than in the BBMT. Each terrane has experienced a separate and distinct geologic history since at least 3.6 Ga ago based on differences in metamorphic and structural styles, composition of magmatic and metasupracrustal rocks, and isotopic ages; consequently, these may be described as discrete terranes in the Cordilleran sense. Nonetheless, highly radiogenic and distinctive Pb-Pb isotopic signatures in rocks of all ages in both terranes indicate that the two terranes share a significant aspect of their history. This suggests that these two Early to Middle Archean crustal blocks, that initially evolved as part of a larger crustal province, experienced different geologic histories from at least 3.6 Ga until their juxtaposition in the Late Archean (between 2.75 to 2.55 Ga ago). Consequently, the boundary between the BBMT and MMT appears to separate terranes that are not likely to be exotic in the sense of their Phanerozoic counterparts. Other Archean provinces do appear to contain crustal blocks with different isotopic signatures (e.g. West Greenland, India, South Africa). The use of the term exotic, therefore, must be cautious in situations where geographic indicators such as paleontologic and/or paleomagnetic data are not available

  13. Wyoming Community Colleges Annual Partnership Report, 2014

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2014

    2014-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships…

  14. Wyoming Community Colleges Annual Partnership Report, 2008

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2009

    2009-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships…

  15. Wyoming Community Colleges Annual Partnership Report, 2009

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2009

    2009-01-01

    The "Annual Partnership Report" catalogs partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These partnerships…

  16. Wyoming: The State and Its Educational System.

    ERIC Educational Resources Information Center

    Hodgkinson, Harold L.

    Wyoming is a state of great natural beauty with only five people per square mile and a unique way of life that deserves to be preserved. The economy, though, is almost totally dependent on energy extraction, an area that has not done well of late. The state's small population makes "boutique" products and services not very profitable,…

  17. 77 FR 34894 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950 Wyoming Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; withdrawal. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM), are announcing the...

  18. 77 FR 40796 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950 Wyoming Regulatory Program AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Final rule. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM), are removing a disapproval codified in...

  19. Wyoming Community College Commission Agency Annual Report.

    ERIC Educational Resources Information Center

    Wyoming Community Coll. Commission, Cheyenne.

    This paper reports on outcomes of community college programs monitored by the Wyoming Community College Commission (WCCC). The document covers the following WCCC objectives: (1) Study of tuition rates for the community colleges; (2) Negotiation of contracts and provision of financial support for administrative computing system components and…

  20. Wyoming: Open Range for Library Technology.

    ERIC Educational Resources Information Center

    Maul, Helen Meadors

    1996-01-01

    Describes the development of library technology and the need for telecommunications in a state with a lack of population density. Topics include the state library's role; shared library resources and library networks; government information; the Wyoming State Home Page on the World Wide Web; Ariel software; network coordinating; and central…

  1. Paleotectonics of Frontier Formation in Wyoming

    SciTech Connect

    Curry, W.H. III

    1983-08-01

    The most intense and widespread pre-Laramide structural deformation of Cretaceous sedimentary rocks in Wyoming is associated with the Wall Creek sandstone of the Frontier Formation. Most of the evidence of structural deformation is found immediately below the regional unconformity at the base of this sandstone. Regionally, an isopach map from the top of the Frontier Formation to the top of the Mowry Formation shows strong and persistent thinning onto a north-trending arch in western Wyoming and thickening into a northwest trending basin in eastern Wyoming. Part of the thinning onto the western arch is caused by progressively deeper erosion of a regional unconformity at the base of the Wall Creek sandstone, and regional onlap of the Wall Creek sandstone above the unconformity. There is also some westward thinning of the lower Frontier interval, however, which is not related to the Wall Creek unconformity. Of the more specific paleostructures discussed, the north-trending anticlines in the vicinity of the Moxa arch in southwestern Wyoming are particularly well developed. An east-west anticline in the Bison basin area appears to have been faulted on the south flank, and a broad arch on the west side of the Powder River basin may have influenced paleocurrents and sandstone depositional trends of the productive First Frontier Sandstone of that area.

  2. Wyoming Community Colleges Annual Partnership Report, 2006

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2007

    2007-01-01

    The "Annual Partnership Report" catalogs all partnerships that Wyoming community colleges established and maintained for each fiscal year. Each community college maintains numerous partnerships for the development and provision of academic, occupational-technical, workforce development, and enrichment educational programs. These…

  3. Subsurface geology and porosity distribution, Madison Limestone and underlying formations, Powder River basin, northeastern Wyoming and southeastern Montana and adjacent areas

    USGS Publications Warehouse

    Peterson, James A.

    1978-01-01

    To evaluate the Madison Limestone and associated rocks as potential sources for water supplies in the Powder River Basin and adjacent areas, an understanding of the geologic framework of these units, their lithologic facies patterns, the distribution of porosity zones, and the relation between porosity development and stratigraphic facies is necessary. Regionally the Madison is mainly a fossiliferous limestone. However, in broad areas of the eastern Rocky Mountains and western Great Plains, dolomite is a dominant constituent and in places the Madison is almost entirely dolomite. Within these areas maximum porosity development is found and it seems to be related to the coarser crystalline dolomite facies. The porosity development is associated with tabular and fairly continuous crystalline dolomite beds separated by non-porous limestones. The maximum porosity development in the Bighorn Dolomite, as in the Madison, is directly associated with the occurrence of a more coarsely crystalline sucrosic dolomite facies. Well data indicate, however, that where the Bighorn is present in the deeper parts of the Powder River Basin, it may be dominated by a finer crystalline dolomite facies of low porosity. The 'Winnipeg Sandstone' is a clean, generally well-sorted, medium-grained sandstone. It shows good porosity development in parts of the northern Powder River Basin and northwestern South Dakota. Because the sandstone is silica-cemented and quartzitic in areas of deep burial, good porosity is expected only where it is no deeper than a few thousand feet. The Flathead Sandstone is a predominantly quartzose, slightly feldspathic sandstone, commonly cemented with iron oxide. Like the 'Winnipeg Sandstone,' it too is silica-cemented and quartzitic in many places so that its porosity is poor in areas of deep burial. Illustrations in this report show the thickness, percent dolomite, and porosity-feet for the Bighorn Dolomite and the Madison Limestone and its subdivisions. The

  4. 75 FR 5108 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-01

    ... National Park Service Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human... possession and control of the University of Wyoming, Anthropology Department, Human Remains Repository... notice. A detailed assessment of the human remains was made by University of Wyoming,...

  5. Quaternary history of the northeastern Bighorn Basin based on a climatically-controlled process-response model

    SciTech Connect

    Birdseye, R.U.

    1985-01-01

    The highest surfaces and oldest Pleistocene sediments in the northeastern Bighorn Basin are associated with the 600 kya North Kane Ash. Subsequent climatically-induced periods of aggradation and incision produced the remaining geomorphic elements. Processes associated with a typical interglacial-glacial cycle include: (1) interglacial stability with Bighorn River alluviation, pedimentation, and eolian deposition; (2) late-interglacial to early-glacial incision; (3) alluvial fan extension and increased landslide development during glacial intervals; and (4) an early-interglacial return to more stable conditions. Frequent stream captures during interglacial times were caused by the out-of-phase relationships between the Bighorn River and its tributaries. Quaternary climates of a given type have not been of equal magnitude or duration in the northeastern Bighorn Basin. The most intense glacial climates from which sediments are preserved are believed to have occurred ca. 600 kya, 440 kya an d140 kya. An abnormally dry climate existed between 400 kya and 275 kya, while extremely wet interglacial conditions prevailed about 100 kya. The last complete climatic cycle was the Bull Lake. The subsequent Holocene interglacial has been unusually dry. Thus not all Pleistocene climates have been capable of generating terraces of extensive alluvial fans.

  6. Defective bacterial clearance is responsible for the enhanced lung pathology characteristic of Mannheimia haemolytica pneumonia in bighorn sheep

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The molecular and cellular basis for the enhanced lung pathology and mortality caused by Mannheimia haemolytica in bighorn sheep (BHS, Ovis canadenesis), in comparison to domestic sheep (DS, Ovis aries), is not clear. Polymorphonuclear leukocytes (PMNs) of BHS are four- to eight-fold more susceptibl...

  7. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties

    DOE PAGES

    Johnson, K. L.; Trim, M. W.; Francis, D. K.; ...

    2016-10-01

    Our paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. We tested samples in the rehydrated (35 wt.% water) and ambient dry (10 wt.% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. Furthermore, the horn keratinmore » demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. Finally, the structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram’s impacting each other as well as being useful for other analysis regarding horn keratin on other animals.« less

  8. Role of carriers in the transmission of pneumonia in bighorn sheep (Ovis canadensis)

    PubMed Central

    Raghavan, Bindu; Erickson, Kayla; Kugadas, Abirami; Batra, Sai A.; Call, Douglas R.; Davis, Margaret A.; Foreyt, William J.

    2016-01-01

    ABSTRACT In the absence of livestock contact, recurring lamb mortality in bighorn sheep (Ovis canadensis) populations previously exposed to pneumonia indicates the likely presence of carriers of pneumonia-causing pathogens, and possibly inadequate maternally derived immunity. To investigate this problem we commingled naïve, pregnant ewes (n=3) with previously exposed rams (n=2). Post-commingling, all ewes and lambs born to them acquired pneumonia-causing pathogens (leukotoxin-producing Pasteurellaceae and Mycoplasma ovipneumoniae), with subsequent lamb mortality between 4-9 weeks of age. Infected ewes became carriers for two subsequent years and lambs born to them succumbed to pneumonia. In another experiment, we attempted to suppress the carriage of leukotoxin-producing Pasteurellaceae by administering an antibiotic to carrier ewes, and evaluated lamb survival. Lambs born to both treatment and control ewes (n=4 each) acquired pneumonia and died. Antibody titers against leukotoxin-producing Pasteurellaceae in all eight ewes were ‘protective’ (>1:800 and no apparent respiratory disease); however their lambs were either born with comparatively low titers, or with high (but non-protective) titers that declined rapidly within 2-8 weeks of age, rendering them susceptible to fatal disease. Thus, exposure to pneumonia-causing pathogens from carrier ewes, and inadequate titers of maternally derived protective antibodies, are likely to render bighorn lambs susceptible to fatal pneumonia. PMID:27185269

  9. Moisture, anisotropy, stress state, and strain rate effects on bighorn sheep horn keratin mechanical properties

    SciTech Connect

    Johnson, K. L.; Trim, M. W.; Francis, D. K.; Whittington, W. R.; Miller, J. A.; Bennett, C. E.; Horstemeyer, M. F.

    2016-10-01

    Our paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. We tested samples in the rehydrated (35 wt.% water) and ambient dry (10 wt.% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. Furthermore, the horn keratin demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. Finally, the structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram’s impacting each other as well as being useful for other analysis regarding horn keratin on other animals.

  10. Ural-Tweed Bighorn Sheep Wildlife Mitigation Project, 1986 Annual Report.

    SciTech Connect

    Yde, Chris A.; Summerfield, Bob; Young, Lewis

    1987-02-01

    This report summarizes the results of the project activities from September 1, 1984 to December 31, 1986. To date, habitat treatments have been initiated on eight areas. The treatments include selective slash and burn, prescribed fire and fertilization. Inclement weather precluded the completion of the prescribed burns scheduled during fall 1985 and fall 1986. The lower Stonehill prescribed fire was rescheduled from fall 1985 to spring 1986 with the burn accomplished, producing varied results. Extensive pretreatment vegetative information has been collected from all units scheduled for habitat manipulations. Additionally, future projects have been delineated for other areas frequented by bighorn sheep. Ten adult bighorn sheep (5 ewes and 5 rams) have been fitted with radio transmitters. Systematic aerial and ground surveys were utilized to monitor the movements and seasonal habitat preferences of the instrumented sheep. Age and sex information was gathered whenever possible to aid in the development of a population model, Monthly pallet group collections were initiated in May 1985 to provide samples for 2.6 diaminopimetic acid (DAPA), food habits and lungworm larvae analysis. The majority of the data analysis is ongoing and will be presented in later reports.

  11. Reconnaissance during 1952 for uranium-bearing carbonaceous rocks in parts of Colorado, Utah, Idaho, and Wyoming

    USGS Publications Warehouse

    Vine, James D.; Flege, Robert F.

    1953-01-01

    A reconnaissance for uranium-bearing carbonaceous rocks was made during the 1952 field season in 23 areas in Colorado, Utah, Idaho, and Wyoming. Uranium in small amounts occurs in several of the areas examined, but no deposits were found that might have commercial possibilities. As much as 0.03 percent uranium is in the ash of coal in the Caribou Mountain area in southwestern Idaho; 0.012 percent in the ash of coal in the Burnt Fork area of southwestern Wyoming; and 0.009 percent in the ash of coal from near Driggs in eastern Idaho. Seven additional areas were examined in which beds of coal or carbonaceous shale contained more than 0.002 but less than 0.007 percent uranium in the ash. Unweathered samples of bituminous sandstone from the Vernal area, Utah, contain minor quantities of uranium.ilities.

  12. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    article title:  Appalachian Mountains     View Larger Image Multi-angle views of the Appalachian Mountains, March 6, 2000 . The true-color image at left is a ... location:  United States region:  Eastern United States Order:  3 ...

  13. Appalachian Mountains

    Atmospheric Science Data Center

    2014-05-15

    article title:  Aerosols over the Appalachian Mountains     View ... Imaging SpectroRadiometer (MISR) acquired these views of the Appalachian Mountains on March 6, 2000. The image at left is a downward-looking ... location:  United States region:  Eastern United States Order:  2 ...

  14. Shared Bacterial and Viral Respiratory Agents in Bighorn Sheep (Ovis canadensis), Domestic Sheep (Ovis aries), and Goats (Capra hircus) in Montana

    PubMed Central

    Miller, David S.; Weiser, Glen C.; Aune, Keith; Roeder, Brent; Atkinson, Mark; Anderson, Neil; Roffe, Thomas J.; Keating, Kim A.; Chapman, Phillip L.; Kimberling, Cleon; Rhyan, Jack; Clarke, P. Ryan

    2011-01-01

    Transmission of infectious agents from livestock reservoirs has been hypothesized to cause respiratory disease outbreaks in bighorn sheep (Ovis canadensis), and land management policies intended to limit this transmission have proven controversial. This cross-sectional study compares the infectious agents present in multiple populations of bighorn sheep near to and distant from their interface with domestic sheep (O. aries) and domestic goat (Capra hircus) and provides critical baseline information needed for interpretations of cross-species transmission risks. Bighorn sheep and livestock shared exposure to Pasteurellaceae, viral, and endoparasite agents. In contrast, although the impact is uncertain, Mycoplasma sp. was isolated from livestock but not bighorn sheep. These results may be the result of historic cross-species transmission of agents that has resulted in a mosaic of endemic and exotic agents. Future work using longitudinal and multiple population comparisons is needed to rigorously establish the risk of outbreaks from cross-species transmission of infectious agents. PMID:22195293

  15. Shared bacterial and viral respiratory agents in bighorn sheep (Ovis canadensis), domestic sheep (Ovis aries), and goats (Capra hircus) in Montana

    USGS Publications Warehouse

    Miller, David S.; Weiser, Glen C.; Aune, Keith; Roeder, Brent; Atkinson, Mark; Anderson, Neil; Roffe, Thomas J.; Keating, Kim A.; Chapman, Phillip L.; Kimberling, Cleon; Rhyan, Jack C.; Clarke, P. Ryan

    2011-01-01

    Transmission of infectious agents from livestock reservoirs has been hypothesized to cause respiratory disease outbreaks in bighorn sheep (Ovis canadensis), and land management policies intended to limit this transmission have proven controversial. This cross-sectional study compares the infectious agents present in multiple populations of bighorn sheep near to and distant from their interface with domestic sheep (O. aries) and domestic goat (Capra hircus) and provides critical baseline information needed for interpretations of cross-species transmission risks. Bighorn sheep and livestock shared exposure to Pasteurellaceae, viral, and endoparasite agents. In contrast, although the impact is uncertain, Mycoplasma sp. was isolated from livestock but not bighorn sheep. These results may be the result of historic cross-species transmission of agents that has resulted in a mosaic of endemic and exotic agents. Future work using longitudinal and multiple population comparisons is needed to rigorously establish the risk of outbreaks from cross-species transmission of infectious agents.

  16. Shared Bacterial and Viral Respiratory Agents in Bighorn Sheep (Ovis canadensis), Domestic Sheep (Ovis aries), and Goats (Capra hircus) in Montana.

    PubMed

    Miller, David S; Weiser, Glen C; Aune, Keith; Roeder, Brent; Atkinson, Mark; Anderson, Neil; Roffe, Thomas J; Keating, Kim A; Chapman, Phillip L; Kimberling, Cleon; Rhyan, Jack; Clarke, P Ryan

    2011-01-01

    Transmission of infectious agents from livestock reservoirs has been hypothesized to cause respiratory disease outbreaks in bighorn sheep (Ovis canadensis), and land management policies intended to limit this transmission have proven controversial. This cross-sectional study compares the infectious agents present in multiple populations of bighorn sheep near to and distant from their interface with domestic sheep (O. aries) and domestic goat (Capra hircus) and provides critical baseline information needed for interpretations of cross-species transmission risks. Bighorn sheep and livestock shared exposure to Pasteurellaceae, viral, and endoparasite agents. In contrast, although the impact is uncertain, Mycoplasma sp. was isolated from livestock but not bighorn sheep. These results may be the result of historic cross-species transmission of agents that has resulted in a mosaic of endemic and exotic agents. Future work using longitudinal and multiple population comparisons is needed to rigorously establish the risk of outbreaks from cross-species transmission of infectious agents.

  17. National Uranium Resource Evaluation: Torrington Quadrangle, Wyoming and Nebraska

    SciTech Connect

    Seeland, D

    1982-09-01

    The Torrington 1/sup 0/ x 2/sup 0/ Quadrangle in southeastern Wyoming and western Nebraska was evaluated to identify areas favorable for the occurrence of uranium deposits likely to contain 100 tons of uranium with an average grade of not less than 100 ppM (0.01 percent) U/sub 3/O/sub 8/. Almost all uranium occurrences reported in the literature were visited and sampled. Geochemical analyses of rock samples collected during the study were used in the evaluation. Hydrogeochemical and stream-sediment analyses were not available. Aerial-radiometric, and helium soil-gas surveys were analyzed. Much of the quadrangle is covered by Tertiary rocks. To assess the uranium potential of the Tertiary and pre-Tertiary rocks 270 well logs were studied and both contour and geologic maps made of the pre-Oligocene surface east and north of the Laramie Mountains. Five environments favorable for uranium deposits were outlined. The first is in the coarse-grained arkosic sandstone facies of the Wasatch Formation and the Lebo Member of the Fort Union Formation in the southern Powder River Basin. The second is in the Wind River Formation in the Shirley Basin, a stratigraphic and lithologic equivalent of the Wasatch. The third is the Lower Cretaceous Cloverly Formation in the northeastern part of the quadrangle. The fourth is in the Upper Cretaceous Lance (Laramie) Formation and the Fox Hills Sandstone in the southeastern corner of the quadrangle. The fifth favorable environment is in Precambrian rocks in the Laramie Mountains and Hartville uplift.

  18. Patterns of megafloral change across the Cretaceous-Tertiary boundary in the Northern Great Plains and Rocky Mountains

    NASA Technical Reports Server (NTRS)

    Johnson, Kirk R.; Hickey, Leo J.

    1988-01-01

    The spatial and temporal distribution of vegetation in the terminal Cretaceous of Western Interior North America was a complex mosaic resulting from the interaction of factors including a shifting coastline, tectonic activity, a mild, possibly deteriorating climate, dinosaur herbivory, local facies effects, and a hypothesized bolide impact. In order to achieve sufficient resolution to analyze this vegetational pattern, over 100 megafloral collecting sites were established, yielding approximately 15,000 specimens, in Upper Cretaceous and lower Paleocene strata in the Williston, Powder River, and Bighorn basins in North Dakota, Montana, and Wyoming. These localities were integrated into a lithostratigraphic framework that is based on detailed local reference sections and constrained by vertebrate and palynomorph biostratigraphy, magnetostratigraphy, and sedimentary facies analysis. A regional biostratigraphy based on well located and identified plant megafossils that can be used to address patterns of floral evolution, ecology, and extinction is the goal of this research. Results of the analyses are discussed.

  19. University of Wyoming, College of Engineering, undergraduate design projects to aid Wyoming persons with disabilities.

    PubMed

    Barrett, Steven F; Laurin, Kathy M; Bloom, Janet K Chidester

    2003-01-01

    In Spring 2002 the University of Wyoming received NSF funding from the Division of Bioengineering and Environmental Systems to provide a meaningful design experience for University of Wyoming, College of Engineering students that will directly aid individuals with disabilities within the state of Wyoming. Other universities have participated in this very worthwhile program [1, 2, 3]. To achieve the program purpose, the following objectives were established: Provide engineering students multi-disciplinary, meaningful, community service design projects, Provide persons with disabilities assistive devices to empower them to achieve the maximum individual growth and development and afford them the opportunity to participate in all aspects of life as they choose, Provide engineering students education and awareness on the special needs and challenges of persons with disabilities, and Provide undergraduate engineering students exposure to the biomedical field of engineering. To accomplish these objectives the College of Engineering partnered with three organizations that provide education and service related to disability. Specifically, the college has joined with the Wyoming Institute for Disabilities (WIND) assistive technology program, Wyoming New Options in Technology (WYNOT) and their Sports and Outdoor Assistive Recreation (SOAR) project along with the university's Special Education program. In this paper we will describe how the program was created, developed, and its current status.

  20. Procedure for evaluating observation-well networks in Wyoming, and application to northeastern Wyoming, 1986

    USGS Publications Warehouse

    Wallace, J.C.; Crist, M.A.

    1989-01-01

    A sequence of steps was developed for evaluating and modifying the existing, long-term, observation-well network in any part of Wyoming. The State was subdivided geographically into nine groundwater areas, including the northeastern Wyoming groundwater area, based on major structural features. Northeastern Wyoming was the first of the nine areas to be evaluated using these procedures. The stratigraphic units of Wyoming were grouped into five rock units on the basis of age, similar depositional environments, and water-yielding properties. Activities likely to affect groundwater in northeastern Wyoming were evaluated. The most important monitoring needs in the area are related to: (1) Oil-field waterflooding; (2) surface mining of coal; (3) increasing municipal use of groundwater, and (4) need for general resource information. The 18 observation wells in the existing (1986) network meet most of the needs identified. Seven additional wells need to be added to the network, whereas four wells in the network can be discontinued. Water level data from the 18 observation wells are presented by county. Maps and hydrographs are accompanied by brief discussions of information related to the records obtained. (USGS)

  1. Geology and mineralization of the Wyoming Province

    USGS Publications Warehouse

    Hausel, W.D.; Edwards, B.R.; Graff, P.J.; ,

    1991-01-01

    The Wyoming Province is an Archean craton which underlies portions of Idaho, Montana, Nevada, Utah, and much of Wyoming. The cratonic block consists of Archean age granite-gneiss with interspersed greenstone belts and related supracrustal terranes exposed in the cores of several Laramide uplifts. Resources found in the Province and in the adjacent accreted Proterozoic terrane include banded iron formation, Au, Pt, Pd, W, Sn, Cr, Ni, Zn, Cu, and diamonds. The Province shows many similarities to the mineral-rich cratons of the Canadian shield, the Rhodesian and Transvaal cratons of southern Africa, and the Pilbara and Yilgarn blocks of Western Australia, where much of the world's precious and strategic metal and gemstone resources are located.

  2. Measured and Estimated Sodium-Adsorption Ratios for Tongue River and its Tributaries, Montana and Wyoming, 2004-06

    USGS Publications Warehouse

    Cannon, M.R.; Nimick, David A.; Cleasby, Thomas E.; Kinsey, Stacy M.; Lambing, John H.

    2007-01-01

    The Tongue River drains an area of about 5,400 square miles and flows northward from its headwaters in the Bighorn National Forest of northeastern Wyoming to join the Yellowstone River at Miles City, Montana. Water from the Tongue River and its tributaries is extensively used for irrigation in both Wyoming and Montana. The Tongue River watershed contains vast coal deposits that are extracted at several surface mines. In some areas of the watershed, the coal beds also contain methane gas (coal-bed methane or natural gas), which has become the focus of intense exploration and development. Production of coal-bed methane requires the pumping of large volumes of ground water from the coal beds to reduce water pressure within the formation and release the stored gas. Water from the coal beds typically is high in sodium and low in calcium and magnesium, resulting in a high sodium-adsorption ratio (SAR). Disposal of ground water with high sodium concentrations into the Tongue River has the potential to increase salinity and SAR of water in the river, and potentially reduce the quality of water for irrigation purposes. This report documents SAR values measured in water samples collected at 12 monitoring sites in the Tongue River watershed and presents regression relations between specific conductance (SC) and SAR at each site for the years 2004-06. SAR in water samples was determined from laboratory-measured concentrations of sodium, calcium, and magnesium. The results of regression analysis indicated that SC and SAR were significantly related (p-values < 0.05) at most sites. The regression relations developed for most monitoring sites in the Tongue River watershed were used with continuous SC data to estimate daily SAR during the 2004 and 2005 irrigation seasons and to estimate 2006 provisional SAR values, which were displayed on the Web in real-time. Water samples were collected and analyzed from seven sites on the main stem of the Tongue River located at: (1) Monarch

  3. Bedload measurements, East Fork River, Wyoming.

    PubMed

    Leopold, L B; Emmett, W W

    1976-04-01

    A bedload trap in the riverbed provided direct quantitative measurement of debris-transport rate in the East Fork River, Wyoming, a basin of 466 km(2) drainage area. Traction load moves only during the spring snow melt season. Data collected in three spring runoff seasons during which a peak flow of 45 m(3)/s occurred showed that transport rate is correlated with power expenditure of the flowing water and at high flows becomes directly proportional to power as suggested by Bagnold.

  4. Stone Mountain

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This color image taken by the panoramic camera onboard the Mars Exploration Rover Opportunity shows the part of the rock outcrop dubbed Stone Mountain at Meridiani Planum, Mars. Scientists are examining Stone Mountain with the instruments on the rover's instrument deployment device, or 'arm,' in search of clues about the composition of the rock outcrop. [figure removed for brevity, see original site] A Patch of Stone (Figure credit: NASA/JPL/Cornell/USGS)

    The colorless square in this color image of the martian rock formation called Stone Mountain is one portion of the rock being analyzed with tools on the Mars Exploration Rover Opportunity's instrument deployment device, or 'arm.' The square area is approximately 3 centimeters (1.2 inches) across. Stone Mountain is located within the rock outcrop on Meridiani Planum, Mars. The image was taken by the rover's panoramic camera.

  5. Rocky Mountain evolution: Tying Continental Dynamics of the Rocky Mountains and Deep Probe seismic experiments with receiver functions

    USGS Publications Warehouse

    Rumpfhuber, E.-M.; Keller, Gordon R.; Sandvol, E.; Velasco, A.A.; Wilson, D.C.

    2009-01-01

    In this study, we have determined the crustal structure using three different receiver function methods using data collected from the northern transect of the Continental Dynamics of the Rocky Mountains (CD-ROM) experiment. The resulting migrated image and crustal thickness determinations confirm and refine prior crustal thickness measurements based on the CD-ROM and Deep Probe experiment data sets. The new results show a very distinct and thick lower crustal layer beneath the Archean Wyoming province. In addition, we are able to show its termination at 42??N latitude, which provides a seismic tie between the CD-ROM and Deep Probe seismic experiments and thus completes a continuous north-south transect extending from New Mexico into Alberta, Canada. This new tie is particularly important because it occurs close to a major tectonic boundary, the Cheyenne belt, between an Archean craton and a Proterozoic terrane. We used two different stacking techniques, based on a similar concept but using two different ways to estimate uncertainties. Furthermore, we used receiver function migration and common conversion point (CCP) stacking techniques. The combined interpretation of all our results shows (1) crustal thinning in southern Wyoming, (2) strong northward crustal thickening beginning in central Wyoming, (3) the presence of an unusually thick and high-velocity lower crust beneath the Wyoming province, and (4) the abrupt termination of this lower crustal layer north of the Cheyenne belt at 42??N latitude. Copyright 2009 by the American Geophysical Union.

  6. REGIONAL ANALYSIS OF INORGANIC NITROGEN YIELD AND RETENTION IN HIGH-ELEVATION ECOSYSTEMS OF THE SIERRA NEVADA AND ROCKY MOUNTAINS

    EPA Science Inventory

    Yields and retention of inorganic nitrogen (DIN) and nitrate concentrations in surface runoff are summarized for 28 high elevation watersheds in the Sierra Nevada, California and Rocky Mountains of Wyoming and Colorado. Catchments ranged in elevation from 2475 to 3603 m and from...

  7. Identification of the Skills Needed by Workers in Various Segments of the Mountain States Graphic Communications Industry.

    ERIC Educational Resources Information Center

    Dharavath, H. Naik

    The skills needed now and 5 years from now by workers in the graphic communications industry in New Mexico, Colorado, and Wyoming were identified through a mail survey of mountain states printing companies. Of the 478 companies to which surveys were mailed, 64 were returned (response rate, 13.40%). A paired t-test was conducted to identify…

  8. A Review of Hypothesized Determinants Associated with Bighorn Sheep (Ovis canadensis) Die-Offs

    PubMed Central

    Miller, David S.; Hoberg, Eric; Weiser, Glen; Aune, Keith; Atkinson, Mark; Kimberling, Cleon

    2012-01-01

    Multiple determinants have been hypothesized to cause or favor disease outbreaks among free-ranging bighorn sheep (Ovis canadensis) populations. This paper considered direct and indirect causes of mortality, as well as potential interactions among proposed environmental, host, and agent determinants of disease. A clear, invariant relationship between a single agent and field outbreaks has not yet been documented, in part due to methodological limitations and practical challenges associated with developing rigorous study designs. Therefore, although there is a need to develop predictive models for outbreaks and validated mitigation strategies, uncertainty remains as to whether outbreaks are due to endemic or recently introduced agents. Consequently, absence of established and universal explanations for outbreaks contributes to conflict among wildlife and livestock stakeholders over land use and management practices. This example illustrates the challenge of developing comprehensive models for understanding and managing wildlife diseases in complex biological and sociological environments. PMID:22567546

  9. Genetic Variation of Major Histocompatibility Complex and Microsatellite Loci: A Comparison in Bighorn Sheep

    PubMed Central

    Boyce, W. M.; Hedrick, P. W.; Muggli-Cockett, N. E.; Kalinowski, S.; Penedo, MCT.; Ramey-II, R. R.

    1997-01-01

    Examining and comparing genetic variation for major histocompatibility complex (MHC) and microsatellite (MS) loci in the same individuals provides an opportunity to understand the forces influencing genetic variation. We examined five MHC and three MS loci in 235 bighorn sheep (Ovis canadensis) from 14 populations and found that both types of loci were highly variable and were in Hardy-Weinberg proportions. Mean F(ST) values for both markers were very similar and MHC and MS genetic variability was predominantly distributed within rather than among populations. However, analyses of genetic distances and tree topologies revealed different spatial patterns of variation for the two types of loci. Collectively, these results indicated that neutral forces substantially influenced MS and MHC variation, and they provided limited evidence for selection acting on the MHC. PMID:9071595

  10. Genetic variation of major histocompatibility complex and microsatellite loci: a comparison in bighorn sheep.

    PubMed

    Boyce, W M; Hedrick, P W; Muggli-Cockett, N E; Kalinowski, S; Penedo, M C; Ramey, R R

    1997-02-01

    Examining and comparing genetic variation for major histocompatibility complex (MHC) and micro-satellite (MS) loci in the same individuals provides an opportunity to understand the forces influencing genetic variation. We examined five MHC and three MS loci in 235 bighorn sheep (Ovis canadensis) from 14 populations and found that both types of loci were highly variable and were in Hardy-Weinberg proportions. Mean FST values for both markers were very similar and MHC and MS genetic variability was predominantly distributed within rather than among populations. However, analyses of genetic distances and tree topologies revealed different spatial patterns of variation for the two types of loci. Collectively, these results indicated that neutral forces substantially influenced MS and MHC variation, and they provided limited evidence for selection acting on the MHC.

  11. Ground-water in the upper Star Valley, Wyoming

    USGS Publications Warehouse

    Walker, Eugene H.

    1965-01-01

    The upper Star Valley covers about 55 square miles of lowland in the westernmost part of Wyoming. The altitude of the floor of the valley is 6,000-6,700 feet. The climate is cool; the growing season, short. Annual precipitation averages about 18 inches, and total precipitation in July and August averages 2.2 inches. Additional supplies of water are needed for irrigation of pasture and hay. The principal water-bearing formation is a thick body of gravel of Pleistocene age. Consolidated to semiconsolidated sedimentary formations of Paleozoic to Tertiary age form the surrounding mountains and underlie the gravel. These bedrock formations yield small amounts of water to wells on the margins of the valley. Most of the recharge to the gravel aquifer is received at the heads of alluvial fans by infiltration from tributaries that drain the surrounding mountains. Snow upon the valley floor provides a significant amount of recharge. Water moves toward the Salt River, which flows northward through the valley and which has large gains due to ground-water inflow. On the east side of the valley, the water table is 100-200 feet below land surface at a distance of half a mile from the mountain front. On the west side of the valley, the depth to water is rarely more than 30 feet. Depth to water decreases toward the center of the valley. The gravel aquifer can provide sufficient water for supplemental irrigation. Irrigation supplies of several hundreds of gallons per minute have been developed at two localities on the west side of the valley. Two pumping tests showed values for transmissibility of 82,500 and 370,000 gallons per day per foot in the vicinity of a well on the east side of the valley and a well on the west side, respectively. The ground water is of good quality for irrigation usage through most of the valley. Hardness of the water exceeds 200 parts per million, however, and this characteristic makes the water somewhat undesirable for domestic and industrial use. Water

  12. Wyoming Community Colleges Partnership Report, July 1, 2002-June 30, 2003.

    ERIC Educational Resources Information Center

    Wyoming Community Coll. Commission, Cheyenne.

    This document offers individual institution reports for partnership programs in Wyoming's seven community colleges. The colleges are: (1) Casper College; (2) Central Wyoming College; (3) Eastern Wyoming College; (4) Laramie County Community College; (5) Northwest College; (6) Sheridan College; and (7) Western Wyoming Community College. Wyoming…

  13. Wyoming Community Colleges Partnership Report, July 1, 2001-June 30, 2002.

    ERIC Educational Resources Information Center

    Wyoming Community Coll. Commission, Cheyenne.

    This document offers individual institution reports for partnership programs in Wyoming's seven community colleges. The colleges are: (1) Casper College; (2) Central Wyoming College; (3) Eastern Wyoming College; (4) Laramie County Community College; (5) Northwest College; (6) Sheridan College; and (7) Western Wyoming Community College. Wyoming…

  14. 77 FR 60719 - Filing of Plats of Survey, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... Bureau of Land Management Filing of Plats of Survey, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: The Bureau of Land Management (BLM) is scheduled to file the plats of survey of... Yellowstone Road, P.O. Box 1828, Cheyenne, Wyoming 82003. SUPPLEMENTARY INFORMATION: This survey was...

  15. 78 FR 49286 - Filing of Plats of Survey, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... Bureau of Land Management Filing of Plats of Survey, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. ] SUMMARY: The Bureau of Land Management (BLM) is scheduled to file the plats of survey... Yellowstone Road, P.O. Box 1828, Cheyenne, Wyoming 82003. SUPPLEMENTARY INFORMATION: The following...

  16. The Impact of New Informational Technology on Education in Wyoming.

    ERIC Educational Resources Information Center

    Dolly, John; And Others

    Educational changes in Wyoming that are linked to the emergence of new informational technologies are considered. Attention is directed to the following topics: assumptions for Wyoming educators as they plan to respond to the impact of technology on teacher education; the importance of educational goals and objectives; the national climate…

  17. Wyoming Community College System Spring 2004 Enrollment Report

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2004

    2004-01-01

    This document contains enrollment information in tabular form from the Wyoming Community College System for the Spring of 2004. Enrollment information on each of the counties in Wyoming can be found in this document. Data is broken down by: college; full-time, part-time, total, and percent credit headcount (includes on-campus, distance education,…

  18. 76 FR 28063 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice. SUMMARY: Notice is hereby given that certain coal resources in the Belle Ayr North Coal Tract described below in Campbell County, Wyoming, will be offered for...

  19. 76 FR 35465 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Bureau of Land Management Notice of Competitive Coal Lease Sale, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of competitive coal lease sale. SUMMARY: Notice is hereby given that certain coal resources in the Caballo West Coal Tract described below in Campbell County, Wyoming, will...

  20. Annotated bibliography of selected references on shoreline barrier island deposits with emphasis on Patrick Draw Field, Sweetwater County, Wyoming

    SciTech Connect

    Rawn-Schatzinger, V.; Schatzinger, R.A.

    1993-07-01

    This bibliography contains 290 annotated references on barrier island and associated depositional environments and reservoirs. It is not an exhaustive compilation of all references on the subject, but rather selected papers on barrier islands, and the depositional processes of formation. Papers that examine the morphology and internal architecture of barrier island deposits, exploration and development technologies are emphasized. Papers were selected that aid in understanding reservoir architecture and engineering technologies to help maximize recovery efficiency from barrier island oil reservoirs. Barrier islands from Wyoming, Montana and the Rocky Mountains basins are extensively covered.

  1. Sampling and analyses report for December 1992 semiannual postburn sampling at the RMI UCG Site, Hanna, Wyoming

    SciTech Connect

    Lindblom, S.R.

    1993-03-01

    During December 1992, groundwater was sampled at the site of the November 1987--February 1988 Rocky Mountain 1 underground coal gasification test near Hanna, Wyoming. The groundwater in near baseline condition. Data from the field measurements and analyzes of samples are presented. Benzene concentrations in the groundwater are below analytical detection limits (<0.01 mg/L) for all wells, except concentrations of 0.016 mg/L and 0.013 mg/L in coal seam wells EMW-3 and EMW-1, respectively.

  2. Healthy Wyoming: Start with Youth Today. Results of the 1991 Wyoming Youth Risk Behavior and School Health Education Survey.

    ERIC Educational Resources Information Center

    Utah Univ., Salt Lake City. Health Behavior Lab.

    This report presents results of the 1991 Wyoming Youth Risk Behavior Survey (YRBS) and the 1991 Wyoming School Health Education Survey (SHES). Thirty-five schools participated in the YRBS, with 3,513 students in grades 9-12; 92 public schools with students in grades 7-12 participated in the SHES. Statistical data from the YRBS are provided in the…

  3. What Does Energy Development Mean for Wyoming? A Community Study at Hanna, Wyoming.

    ERIC Educational Resources Information Center

    Nellis, Lee

    The enormous but often overlooked impact of energy resource development on small Western United States communities can be illustrated by the experiences of the traditional coal mining town of Hanna, Wyoming. Coal development doubled the population between 1970 and 1972, and required the addition of a sewer system and a police force, plus the…

  4. Ground Water Atlas of the United States: Segment 8, Montana, North Dakota, South Dakota, Wyoming

    USGS Publications Warehouse

    Whitehead, R.L.

    1996-01-01

    The States of Montana, North Dakota, South Dakota, and Wyoming compose the 392,764-square-mile area of Segment 8, which is in the north-central part of the continental United States. The area varies topographically from the high rugged mountain ranges of the Rocky Mountains in western Montana and Wyoming to the gently undulating surface of the Central Lowland in eastern North Dakota and South Dakota (fig. 1). The Black Hills in southwestern South Dakota and northeastern Wyoming interrupt the uniformity of the intervening Great Plains. Segment 8 spans the Continental Divide, which is the drainage divide that separates streams that generally flow westward from those that generally flow eastward. The area of Segment 8 is drained by the following major rivers or river systems: the Green River drains southward to join the Colorado River, which ultimately discharges to the Gulf of California; the Clark Fork and the Kootenai Rivers drain generally westward by way of the Columbia River to discharge to the Pacific Ocean; the Missouri River system and the North Platte River drain eastward and southeastward to the Mississippi River, which discharges to the Gulf of Mexico; and the Red River of the North and the Souris River drain northward through Lake Winnipeg to ultimately discharge to Hudson Bay in Canada. These rivers and their tributaries are an important source of water for public-supply, domestic and commercial, agricultural, and industrial uses. Much of the surface water has long been appropriated for agricultural use, primarily irrigation, and for compliance with downstream water pacts. Reservoirs store some of the surface water for flood control, irrigation, power generation, and recreational purposes. Surface water is not always available when and where it is needed, and ground water is the only other source of supply. Ground water is obtained primarily from wells completed in unconsolidated-deposit aquifers that consist mostly of sand and gravel, and from wells

  5. Early onset of vegetation growth vs. rapid green-up: impacts on juvenile mountain ungulates.

    PubMed

    Pettorelli, Nathalie; Pelletier, Fanie; Von Hardenberg, Achaz; Festa-Bianchet, Marco; Côté, Steeve D

    2007-02-01

    Seasonal patterns of climate and vegetation growth are expected to be altered by global warming. In alpine environments, the reproduction of birds and mammals is tightly linked to seasonality; therefore such alterations may have strong repercussions on recruitment. We used the normalized difference vegetation index (NDVI), a satellite-based measurement that correlates strongly with aboveground net primary productivity, to explore how annual variations in the timing of vegetation onset and in the rate of change in primary production during green-up affected juvenile growth and survival of bighorn sheep (Ovis canadensis), Alpine ibex (Capra ibex), and mountain goats (Oreamnos americanus) in four different populations in two continents. We indexed timing of onset of vegetation growth by the integrated NDVI (INDVI) in May. The rate of change in primary production during green-up (early May to early July) was estimated as (1) the maximal slope between any two successive bimonthly NDVI values during this period and (2) the slope in NDVI between early May and early July. The maximal slope in NDVI was negatively correlated with lamb growth and survival in both populations of bighorn sheep, growth of mountain goat kids, and survival of Alpine ibex kids, but not with survival of mountain goat kids. There was no effect of INDVI in May and of the slope in NDVI between early May and early July on juvenile growth and survival for any species. Although rapid changes in NDVI during the green-up period could translate into higher plant productivity, they may also lead to a shorter period of availability of high-quality forage over a large spatial scale, decreasing the opportunity for mountain ungulates to exploit high-quality forage. Our results suggest that attempts to forecast how warmer winters and springs will affect animal population dynamics and life histories in alpine environments should consider factors influencing the rate of changes in primary production during green

  6. Depositional history of the Lower Triassic Dinwoody Formation in the Wind River basin area, Wyoming

    SciTech Connect

    Paul, R.K.; Paull, R.A. )

    1993-04-01

    Thirty-three measured sections of the Dinwoody Formation, including five from the literature, provide information on thickness, lithology, paleontology, and stratigraphic relations within the Wind River basin and immediately adjacent areas of Wyoming. Most of these sections are in Fremont County, and some lie within the Wind River Indian Reservation. The Dinwoody becomes progressively thinner eastward, from a maximum thickness of 54.6 m in the northwestern Wind River Mountains to zero near the Natrona County line. The formation is characterized by yellowish-weathering, gray siltstone and silty shale. Variable amounts of limestone, sandstone, gypsum, and claystone are also present. Marine bivalves, gastropods, brachiopods (Lingula), and conodonts are common in the western part of the study area, but are absent to the northeast in gypsiferous strata, and near the eastern limit of Dinwoody deposition. The Dinwoody in the Wind River Basin area was deposited unconformably on the Upper Permian Ervary Member of the Park City Formation during the initial Mesozoic flood onto the Wyoming shelf during the Griesbachian, and represents the first of three Lower Triassic transgressive sequences in the western miogeocline. Conodonts of the Isarcica Chronozone document the rapid nature of this eastward transgression. The Permian surface underlying the Dinwoody rarely shows evidence of the long hiatus separating rocks of this age and earliest Triassic deposits. The Dinwoody transgression was followed by westward progradation of the Red Peak Formation of the Chugwater Group across the study area.

  7. Undrilled Muddy formation (Lower Cretaceous) paleodrainage basin, southwestern Wyoming and northwestern Colorado

    SciTech Connect

    Dolson, J.; Leighton, V.

    1989-03-01

    The Muddy formation (Lower Cretaceous) of the central and northern Rocky Mountains has produced over 1.5 billion bbl of oil equivalent hydrocarbons. Traps are developed in buried hills, valley fills, and onlapping marine sands associated with subaerial unconformities formed during a sea level drop. At least 10 paleodrainage basins developed at maximum lowstand. Of these, production has been established in seven. One such paleodrainage, herein designated the Washakie/Sand Wash basin (WSW) drainage, is only drilled peripherally and remains essentially untested over nearly 20,000 km/sup 2/. The WSW paleodrainage is productive in Wyoming from local tributary sandstones at Sugar Creek field (Sierra Madre uplift) and Lost Soldier field (Sweetwater uplift). A major through-going trunk drainage network is productive at Brady field (Rock Springs uplift) and in numerous pools on the Axial and Douglas Creek arches of northwestern Colorado. A recent deep wildcat in northwestern Colorado has confirmed subsurface existence of additional valley networks. Ten to fourteen percent porosity at 5800 m and recent deep Muddy equivalent valley fill discoveries on the southern Moxa arch (Wyoming) demonstrate reservoir potential throughout this trend. Future drilling successes will require 3400 to 6000-m deep tests but should result in significant deep gas and condensate production.

  8. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These two radar images show the majestic Yellowstone National Park, Wyoming, the oldest national park in the United States and home to the world's most spectacular geysers and hot springs. The region supports large populations of grizzly bears, elk and bison. In 1988, the park was burned by one of the most widespread fires to occur in the northern Rocky Mountains in the last 50 years. Surveys indicated that 793,880 acres of land burned. Of that, 41 percent was burned forest, with tree canopies totally consumed by the fire; 35 percent was a combination of unburned, scorched and blackened trees; 13 percent was surface burn under an unburned canopy; 6 percent was non-forest burn; and 5 percent was undifferentiated burn. Six years later, the burned areas are still clearly visible in these false-color radar images obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at the left was obtained using the L-band radar channel, horizontally received and vertically transmitted, on the shuttle's 39th orbit on October 2, 1994. The area shown is 45 kilometers by 71 kilometers (28 miles by 44 miles) in size and centered at 44.6 degrees north latitude, 110.7 degrees west longitude. North is toward the top of the image (to the right). Most trees in this area are lodge pole pines at different stages of fire succession. Yellowstone Lake appears as a large dark feature at the bottom of the scene. At right is a map of the forest crown, showing its biomass, or amount of vegetation, which includes foliage and branches. The map was created by inverting SIR-C data and using in situ estimates of crown biomass gathered by the Yellowstone National Biological Survey. The map is displayed on a color scale from blue (rivers and lakes with no biomass) to brown (non-forest areas with crown biomass of less than 4 tons per hectare) to light brown (areas of canopy burn with biomass of between 4 and 12 tons per hectare). Yellow

  9. Space Radar Image of Yellowstone Park, Wyoming

    NASA Technical Reports Server (NTRS)

    1994-01-01

    These two radar images show the majestic Yellowstone National Park, Wyoming, the oldest national park in the United States and home to the world's most spectacular geysers and hot springs. The region supports large populations of grizzly bears, elk and bison. In 1988, the park was burned by one of the most widespread fires to occur in the northern Rocky Mountains in the last 50 years. Surveys indicated that 793,880 acres of land burned. Of that, 41 percent was burned forest, with tree canopies totally consumed by the fire; 35 percent was a combination of unburned, scorched and blackened trees; 13 percent was surface burn under an unburned canopy; 6 percent was non-forest burn; and 5 percent was undifferentiated burn. Six years later, the burned areas are still clearly visible in these false-color radar images obtained by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar on board the space shuttle Endeavour. The image at the left was obtained using the L-band radar channel, horizontally received and vertically transmitted, on the shuttle's 39th orbit on October 2, 1994. The area shown is 45 kilometers by 71 kilometers (28 miles by 44 miles) in size and centered at 44.6 degrees north latitude, 110.7 degrees west longitude. North is toward the top of the image (to the right). Most trees in this area are lodge pole pines at different stages of fire succession. Yellowstone Lake appears as a large dark feature at the bottom of the scene. At right is a map of the forest crown, showing its biomass, or amount of vegetation, which includes foliage and branches. The map was created by inverting SIR-C data and using in situ estimates of crown biomass gathered by the Yellowstone National Biological Survey. The map is displayed on a color scale from blue (rivers and lakes with no biomass) to brown (non-forest areas with crown biomass of less than 4 tons per hectare) to light brown (areas of canopy burn with biomass of between 4 and 12 tons per hectare). Yellow

  10. Observing team from the University of Wyoming

    NASA Technical Reports Server (NTRS)

    2002-01-01

    July 19, 1994An observing team from the University of Wyoming , the University of Rochester, and the University of Minnesota is obtaining infrared images of the recent comet impacts on Jupiter. The observations are being made with the Wyoming Infrared Observatory 2.3-meter telescope near Laramie, using an infrared camera developed at Rochester. The accompanying image of Jupiter, obtained on the evening of Sunday July 17, shows three bright spots near the lower left. These are the impact sites of (from left to right) fragments C, A, and E. The other features visible are the bright polar and equatorial regions, and also the Great Red Spot, located below the equator and somewhat to the right.At this relatively short infrared wavelength (2.2 micrometers) the planet it mostly dark because the methane in the Jupiter atmosphere absorbs any sunlight which passes through a significant depth of that atmosphere. Bright regions usually correspond to high altitude clouds which reflect the sunlight before it can penetrate the deeper atmosphere and be absorbed. The bright nature of the impact spots therefore indicates the presence of high altitude haze or clouds -- material carried up from the lower atmosphere by the fireball and plume from the comet impact. More detailed measurements at a variety of wavelengths should reveal the chemical composition of the haze material. The observing team will be continuing their work throughout the comet impact period and expect to obtain images of the plumes from the other comet fragments which will be striking Jupiter later this week.Co ntact: Robert R. Howell Department of Physics and Astronomy University of Wyoming Laramie, WY 82070 307-766-6150

  11. Wyoming Carbon Capture and Storage Institute

    SciTech Connect

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  12. Bedload measurements, East Fork River, Wyoming

    PubMed Central

    Leopold, Luna B.; Emmett, William W.

    1976-01-01

    A bedload trap in the riverbed provided direct quantitative measurement of debris-transport rate in the East Fork River, Wyoming, a basin of 466 km2 drainage area. Traction load moves only during the spring snow melt season. Data collected in three spring runoff seasons during which a peak flow of 45 m3/s occurred showed that transport rate is correlated with power expenditure of the flowing water and at high flows becomes directly proportional to power as suggested by Bagnold. PMID:16592302

  13. WEST SLOPE TETONS ROADLESS AREA, WYOMING.

    USGS Publications Warehouse

    Myers, W. Bradley; Kluender, Steven E.

    1984-01-01

    On the basis of geologic, geochemical, and mines and prospects surveys, the West Slope Tetons Roadless Area, Wyoming, offers little or no promise for the occurrence of metallic mineral resources. A block estimated to contain about 2. 5 million short tons of high-grade phosphate rock, lies along the western boundary; about 430,000 tons of this resource lie in an area of substantiated phosphate potential within the roadless area. Although adjacent to the Overthrust Belt, reassessment of the structural setting suggests that the roadless area has little promise for the occurrence of oil and gas resources.

  14. Behavioral and catastrophic drift of invertebrates in two streams in northeastern Wyoming

    USGS Publications Warehouse

    Wangsness, David J.; Peterson, David A.

    1980-01-01

    Invertebrate drift samples were collected in August 1977 from two streams in the Powder River structural basin in northeastern Wyoming. The streams are Clear Creek, a mountain stream, and the Little Powder River, a plains stream. Two major patterns of drift were recognized. Clear Creek was sampled during a period of normal seasonal conditions. High drift rates occurred during the night indicating a behavioral drift pattern that is related to the benthic invertebrate density and carrying capacity of the stream substrates. The mayfly genes Baetis, a common drift organism, dominated the peak periods of drift in Clear Creek. The Little Powder River has a high discharge during the study period. Midge larvae of the families Chironomidae and Ceratopogonidae, ususally not common in drift, dominated the drift community. The dominance of midge larvae, the presence of several other organisms not common in drift, and the high discharge during the study period caused a catastrophic drift pattern. (USGS)

  15. Geochemical maps of stream sediments in central Colorado, from New Mexico to Wyoming

    USGS Publications Warehouse

    Eppinger, Robert G.; Giles, Stuart A.; Klein, Terry L.

    2015-01-01

    The U.S. Geological Survey has completed a series of geologic, mineral resource, and environmental assessment studies in the Rocky Mountains of central Colorado, from Leadville eastward to the range front and from New Mexico to the Wyoming border. Regional stream-sediment geochemical maps, useful for assessing mineral resources and environmental effects of historical mining activities, were produced as part of the study. The data portrayed in this 56-parameter portfolio of landscape geochemical maps serve as a geochemical baseline for the region, indicate element abundances characteristic of various lithologic terranes, and identify gross anthropogenic effects of historical mining. However, although reanalyzed in this study by modern, sensitive methods, the majority of the stream-sediment samples were collected in the 1970s. Thus, metal concentrations portrayed in these maps represent stream-sediment geochemistry at the time of collection.

  16. Vegetation analysis in the Laramie Basin, Wyoming from ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Evans, M. A.; Redfern, F. R.

    1973-01-01

    The author has identified the following significant results. The application of ERTS-1 imagery to vegetation mapping and identification was tested and confirmed by field checking. ERTS-1 imagery interpretation and density contour mapping allows definition of minute vegetation features and estimation of vegetative biomass and species composition. Large- and small-scale vegetation maps were constructed for test areas in the Laramie Basin and Laramie mountains of Wyoming. Vegetative features reflecting grazing intensity, moisture availability, changes within the growing season, cutting of hay crops, and plant community constituents in forest and grassland are discussed and illustrated. Theoretical considerations of scattering, sun angle, slope, and instrument aperture upon image and map resolution were investigated. Future suggestions for applications of ERTS-1 data to vegetative analysis are included.

  17. U.S. Geological Survey science for the Wyoming Landscape Conservation Initiative: 2013 annual report

    USGS Publications Warehouse

    Bowen, Zachary H.; Aldridge, Cameron L.; Anderson, Patrick J.; Assal, Timothy J.; Bern, Carleton R.; Biewick, Laura R. H.; Boughton, Gregory K.; Chalfoun, Anna D.; Chong, Geneva W.; Dematatis, Marie K.; Fedy, Bradley C.; Garman, Steven L.; Germaine, Stephen S.; Hethcoat, Matthew G.; Homer, Collin G.; Huber, Christopher; Kauffman, Matthew J.; Latysh, Natalie; Manier, Daniel; Melcher, Cynthia P.; Miller, Kirk A.; Potter, Christopher J.; Schell, Spencer; Sweat, Michael J.; Walters, Annika W.; Wilson, Anna B.

    2014-01-01

    Milestone FY2013 accomplishments included completing the development of a WLCI inventory and monitoring framework and the associated monitoring strategies, protocols, and analytics; and initial development of an Interagency Inventory and Monitoring Database, which will be accessible through the Monitoring page of the WLCI Web site at http://www.wlci.gov/monitoring. We also completed the initial phase of the mountain shrub-mapping project in the Big Piney-La Barge mule deer winter range. Finally, a 3-year survey of pygmy rabbits in four major gas-field areas was completed and used to validate the pygmy rabbit habitat model/map developed earlier in the project. Important products that became available for use by WLCI partners included publication of USGS Data Series report (http://pubs.usgs.gov/ds/800/pdf/ds800.pdf) that compiles our WLCI land cover and land use data, which depict current and historical patterns of sage-grouse habitat in relation to energy development and will be used to pose “what-if” scenarios to evaluate possible outcomes of alternative land-use strategies and practices on habitat and wildlife. Another important FY2013 product was a journal article (http://aapgbull.geoscienceworld.org/content/97/6/899.full) that describes the Mowry Shale and Frontier formation, which harbors coalbed methane and shale gas resources in Wyoming, Colorado, and Utah, for use in future scenario-building work. We also produced maps and databases that depict the structure and condition of aspen stands in the Little Mountain Ecosystem, and then presented this information to the Bureau of Land Management, Wyoming Game and Fish Department, and other interested entities for supporting aspen-management objectives.

  18. Employment of satellite snowcover observations for improving seasonal runoff estimates. [Indus River and Wind River Range, Wyoming

    NASA Technical Reports Server (NTRS)

    Rango, A.; Salomonson, V. V.; Foster, J. L.

    1975-01-01

    Low resolution meteorological satellite and high resolution earth resources satellite data were used to map snowcovered area over the upper Indus River and the Wind River Mountains of Wyoming, respectively. For the Indus River, early Spring snowcovered area was extracted and related to April through June streamflow from 1967-1971 using a regression equation. Composited results from two years of data over seven Wind River Mountain watersheds indicated that LANDSAT-1 snowcover observations, separated on the basis of watershed elevation, could also be related to runoff in significant regression equations. It appears that earth resources satellite data will be useful in assisting in the prediction of seasonal streamflow for various water resources applications, nonhazardous collection of snow data from restricted-access areas, and in hydrologic modeling of snowmelt runoff.

  19. Ground-water levels in Wyoming, 1976 through 1985

    USGS Publications Warehouse

    Kennedy, H.I.; Oberender, C.B.

    1987-01-01

    Groundwater levels are measured periodically in a network of 84 observation wells in Wyoming, mostly in areas where groundwater is used in large quantities for irrigation or municipal purposes. The program is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the Wyoming Economic Development and Stabilization Board. This report contains hydrographs for 84 observation wells showing water-level fluctuations from 1976 through 1985. Also included in the report are maps showing locations of observation wells and tables listing well depths, use of water, geologic source, records available, and highest and lowest water levels for the period of record. (USGS)

  20. Ground-water levels in Wyoming, 1978 through September 1987

    USGS Publications Warehouse

    Kennedy, H.I.; Green, S.L.

    1988-01-01

    Groundwater levels are measured periodically in a network of 95 observation wells in Wyoming, mostly in areas where groundwater is used in large quantities for irrigation or municipal purposes. The program is conducted by the U.S. Geological Survey in cooperation with the Wyoming State Engineer and the Wyoming Economic Development and Stabilization Board. This report contains hydrographs for 95 observation wells showing water level fluctuations from 1978 through September 1987. Also included in the report are maps showing locations of observation wells and tables listing well depths, use of water, geologic source, records available, and highest and lowest water levels for the period of record. (USGS)

  1. Ground-water levels in Wyoming, 1974 through 1983

    USGS Publications Warehouse

    Ragsdale, J.O.; Oberender, C.B.

    1985-01-01

    Ground-water levels are measured periodically in a network of about 270 observation wells in Wyoming, mostly in areas where ground water is used in large quantities for irrigation or municipal purposes. The program is conducted by the U.S. Geological Survey in cooperation with the Wyoming State engineer and the Wyoming Department of Economic Planning and Development. This report contains hydrographs for most observation wells showing water-level fluctuations from 1974 through 1983. Also included in the report are maps showing locations of observation wells and tabulations of well depths, use of water, geologic source, records available, and highest and lowest water levels for the period of record. (USGS)

  2. Ground-water quality in Wyoming

    USGS Publications Warehouse

    Larson, L.R.

    1984-01-01

    This report graphically summarizes ground-water quality from selected chemical-quality data for about 2,300 ground-water sites in Wyoming. Dissolved-solids, nitrate, fluoride, arsenic, barium, cadmium, chromium, lead, mercury, selenium, iron, and manganese concentrations are summarized on a statewide basis. The major chemical-quality problem that limits the use of Wyoming ground-water is excessive dissolved-solids concentrations. The aquifers with the best quality water, based on the lowest median dissolved-solids concentration of water in aquifers with 20 or more sampled sites, are Holocene lacustrine deposits, the upper Testiary Ogallala Formation and Arikaree Formation, and the Mississippian Madison Limestone. The counties with the best quality water, based on the lowest median dissolved-solids concentrations are Teton County and Laramie County. Hot Springs County and Natrona County have the highest median dissolved-solids concentrations. About 3 percent of the nitrate concentrations of ground-water samples exceeded the national primary drinking-water standard of 10 milligrams per liter. Fluoride concentrations exceeded the national primary drinking-water standard in 14 percent of the ground-water samples. Except for selenium, toxic trace elements generally have not been found in concentrations in excess of the drinking-water standards. About 19 percent of the iron and about 30 percent of the manganese concentrations in ground-water samples exceeded the national secondary drinking-water standards. (USGS)

  3. Disease and Predation: Sorting out Causes of a Bighorn Sheep (Ovis canadensis) Decline

    PubMed Central

    Smith, Joshua B.; Jenks, Jonathan A.; Grovenburg, Troy W.; Klaver, Robert W.

    2014-01-01

    Estimating survival and documenting causes and timing of mortality events in neonate bighorn sheep (Ovis canadensis) improves understanding of population ecology and factors influencing recruitment. During 2010–2012, we captured and radiocollared 74 neonates in the Black Hills, South Dakota, of which 95% (70) died before 52 weeks of age. Pneumonia (36%) was the leading cause of mortality followed by predation (30%). We used known fate analysis in Program MARK to estimate weekly survival rates and investigate the influence of intrinsic variables on 52-week survival. Model {S1 wk, 2–8 wks, >8 wks} had the lowest AICc (Akaike’s Information Criterion corrected for small sample size) value, indicating that age (3-stage age-interval: 1 week, 2–8 weeks, and >8 weeks) best explained survival. Weekly survival estimates for 1 week, 2–8 weeks, and >8 weeks were 0.81 (95% CI = 0.70–0.88), 0.86 (95% CI = 0.81–0.90), and 0.94 (95% CI = 0.91–0.96), respectively. Overall probability of surviving 52 weeks was 0.02 (95% CI = 0.01–0.07). Of 70 documented mortalities, 21% occurred during the first week, 55% during weeks 2–8, and 23% occurred >8 weeks of age. We found pneumonia and predation were temporally heterogeneous with lambs most susceptible to predation during the first 2–3 weeks of life, while the greatest risk from pneumonia occurred from weeks 4–8. Our results indicated pneumonia was the major factor limiting recruitment followed by predation. Mortality from predation may have been partly compensatory to pneumonia and its effects were less pronounced as alternative prey became available. Given the high rates of pneumonia-caused mortality we observed, and the apparent lack of pneumonia-causing pathogens in bighorn populations in the western Black Hills, management activities should be geared towards eliminating contact between diseased and healthy populations. PMID:24516623

  4. Geochemical constraints on Cenozoic intraplate magmatism in the Upper Wind River Basin, Wyoming (USA)

    NASA Astrophysics Data System (ADS)

    Downey, A. C.; Dodd, Z. C.; Brueseke, M. E.; Adams, D. C.

    2014-12-01

    The Upper Wind River Basin is located in north-central Wyoming (USA). At the northwestern edge of the basin, preliminary work by others has identified <4 Ma igneous rocks (lavas and shallow intrusives in low volumes) that are exposed southeast of the Yellowstone Plateau volcanic field. Virtually no literature exists on these rocks aside from a few K-Ar ages. Pilot Knob is an augite-rich intrusive body that yields a 3.4 ± 0.06 Ma K-Ar age. Lava Mountain, which lies ~ 4 km south of Pilot Knob, is a shield volcano where ~25 lavas are exposed in what appear to be glacially truncated cliffs. At the summit, a small capping cinder cone overlies lavas; one of the youngest lavas yields a K-Ar age of 0.48 ± 0.06 Ma. Crescent Mountain lies ~6 miles northeast of Lava Mountain and one Crescent Mountain lava yielded an ~3.6 Ma K-Ar age. At Spring Mountain, ~14 km north of Dubois, WY, local eruptions of at least one thin basaltic lava occurred from fissures that cut Paleozoic and Eocene sedimentary strata. Materials sampled from all locations range from basalt to dacite and define a primarily calc-alkaline differentiation array. Pilot Knob and one Crescent Mountain sample have wt. % K2O values between 2.7 to 3.8 at ~53 to 56 wt. % SiO2, which are much more K-rich than any other sample. These samples are also characterized by enrichments in LILE (e.g., >2000 ppm Ba, >1500 ppm Sr), LREE (>100 ppm La, >250 ppm Ce), Zr, Pb, and HREE depletions, relative to the other samples. The least evolved basalts from Spring Mountain are primitive with Mg # ~70 and Cr >900 ppm. Preliminary field constraints and satellite imagery indicates that regional fault zones control the location of individual eruptive loci/intrusives. For example, Pilot Knob and Lava Mountain lie along the projection of a normal fault zone that extends southeast from the Yellowstone Plateau volcanic field. Work is ongoing to further physically, geochemically, and isotopically characterize these igneous rocks with the goal

  5. Rare, large earthquakes at the laramide deformation front - Colorado (1882) and Wyoming (1984)

    USGS Publications Warehouse

    Spence, W.; Langer, C.J.; Choy, G.L.

    1996-01-01

    The largest historical earthquake known in Colorado occurred on 7 November 1882. Knowledge of its size, location, and specific tectonic environment is important for the design of critical structures in the rapidly growing region of the Southern Rocky Mountains. More than one century later, on 18 October 1984, an mb 5.3 earthquake occurred in the Laramie Mountains, Wyoming. By studying the 1984 earthquake, we are able to provide constraints on the location and size of the 1882 earthquake. Analysis of broadband seismic data shows the 1984 mainshock to have nucleated at a depth of 27.5 ?? 1.0 km and to have ruptured ???2.7 km updip, with a corresponding average displacement of about 48 cm and average stress drop of about 180 bars. This high stress drop may explain why the earthquake was felt over an area about 3.5 times that expected for a shallow earthquake of the same magnitude in this region. A microearthquake survey shows aftershocks to be just above the mainshock's rupture, mostly in a volume measuring 3 to 4 km across. Focal mechanisms for the mainshock and aftershocks have NE-SW-trending T axes, a feature shared by most earthquakes in western Colorado and by the induced Denver earthquakes of 1967. The only data for the 1882 earthquake were intensity reports from a heterogeneously distributed population. Interpretation of these reports also might be affected by ground-motion amplification from fluvial deposits and possible significant focal depth for the mainshock. The primary aftershock of the 1882 earthquake was felt most strongly in the northern Front Range, leading Kirkham and Rogers (1985) to locate the epicenters of the aftershock and mainshock there. The Front Range is a geomorphic extension of the Laramie Mountains. Both features are part of the eastern deformation front of the Laramide orogeny. Based on knowledge of regional tectonics and using intensity maps for the 1984 and the 1967 Denver earthquakes, we reinterpret prior intensity maps for the 1882

  6. Surface owner's estate becomes dominant: Wyoming's surface owner consent statute

    SciTech Connect

    Reese, T.

    1981-01-01

    This comment discusses the constitutionality of Wyoming's surface owner consent law in three areas. The first is whether Wyoming's statute is an unconstitutional taking without compensation of the dominant position of the mineral estate holder. The second theory will be that the federal government has preempted the area of mineral lands regulation and therefore Wyoming's statute is void. The third theory is that Wyoming's statute is unconstitutional because it denies equal protection of the law under the fourteenth amendment to the US Constitution. This comment will deal primarily with the reservations of mineral rights under lands the federal government disposed of to private interests. It will not deal with reservations of mineral estates by private parties.

  7. 15. CLOSEUP OF THE SWITCHGEAR, LOOKING SOUTHEAST. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. CLOSEUP OF THE SWITCHGEAR, LOOKING SOUTHEAST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  8. 77 FR 31385 - Notice of Competitive Coal Lease Sale, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... railroad, and adjacent to the western and northern lease boundary of the North Antelope Rochelle Mine... well as a State of Wyoming lease to the north, all controlled by the North Antelope Rochelle Mine....

  9. Geology of photo linear elements, Great Divide Basin, Wyoming

    NASA Technical Reports Server (NTRS)

    Blackstone, D. L., Jr.

    1973-01-01

    The author has identified the following significant results. Ground examination of photo linear elements in the Great Divide Basin, Wyoming indicates little if any tectonic control. Aeolian aspects are more widespread and pervasive than previously considered.

  10. Disease introduction is associated with a phase transition in bighorn sheep demographics

    USGS Publications Warehouse

    Manlove, Kezia; Cassirer, E. Frances; Cross, Paul C.; Plowright, Raina K.; Hudson, Peter J.

    2016-01-01

    Ecological theory suggests that pathogens are capable of regulating or limiting host population dynamics, and this relationship has been empirically established in several settings. However, although studies of childhood diseases were integral to the development of disease ecology, few studies show population limitation by a disease affecting juveniles. Here, we present empirical evidence that disease in lambs constrains population growth in bighorn sheep (Ovis canadensis) based on 45 years of population-level and 18 years of individual-level monitoring across 12 populations. While populations generally increased (λ = 1.11) prior to disease introduction, most of these same populations experienced an abrupt change in trajectory at the time of disease invasion, usually followed by stagnant-to-declining growth rates (λ = 0.98) over the next 20 years. Disease-induced juvenile mortality imposed strong constraints on population growth that were not observed prior to disease introduction, even as adult survival returned to pre-invasion levels. Simulations suggested that models including persistent disease-induced mortality in juveniles qualitatively matched observed population trajectories, whereas models that only incorporated all-age disease events did not. We use these results to argue that pathogen persistence may pose a lasting, but under-recognized, threat to host populations, particularly in cases where clinical disease manifests primarily in juveniles.

  11. Genomic consequences of genetic rescue in an insular population of bighorn sheep (Ovis canadensis).

    PubMed

    Miller, J M; Poissant, J; Hogg, J T; Coltman, D W

    2012-04-01

    Genetic rescue is a management intervention whereby a small population is supplemented with individuals from other populations in an attempt to reverse the effects of inbreeding and increased genetic load. One such rescue was recently documented in the population of bighorn sheep (Ovis canadensis) within the National Bison Range wildlife refuge (Montana, USA). Here, we examine the locus-specific effects of rescue in this population using a newly developed genome-wide set of 195 microsatellite loci and first-generation linkage map. We found that the rate of introgression varied among loci and that 111 loci, 57% of those examined, deviated from patterns of neutral inheritance. The most common deviation was an excess of homozygous genotypes relative to neutral expectations, indicative of directional selection. As in previous study of this rescue, individuals with more introduced alleles had higher reproductive success and longevity. In addition, we found 30 loci, distributed throughout the genome, which seem to have individual effects on these life history traits. Although the potential for outbreeding depression is a major concern when translocating individuals between populations, we found no evidence of such effects in this population.

  12. Bighorns Arch Seismic Experiment (BASE): Amplitude Response to Different Seismic Charge Configurations

    SciTech Connect

    Harder, S. H., Killer, K. C., Worthington, L. L., Snelson, C. M.

    2010-09-02

    Contrary to popular belief, charge weight is not the most important engineering parameter determining the seismic amplitudes generated by a shot. The scientific literature has long claimed that the relationship, A ~R2L1/2, where A is the seismic amplitude generated by a shot, R is the radius of the seismic charge and L is the length of that charge, holds. Assuming the coupling to the formation and the pressure generated by the explosive are constants, this relationship implies that the one should be able to increase the charge radius while decreasing the charge length and obtain more seismic amplitude with less charge weight. This has significant implications for the economics of lithospheric seismic shots, because shallower holes and small charge sizes decrease cost. During the Bighorns Array Seismic Experiment (BASE) conducted in the summer of 2010, 24 shots with charge sizes ranging from 110 to 900 kg and drill hole diameters of 300 and 450 mm were detonated and recorded by an array of up to 2000 single-channel Texan seismographs. Maximum source-receiver offset of 300 km. Five of these shots were located within a one-acre square in an effort to eliminate coupling effects due to differing geological formations. We present a quantitative comparison of the data from these five shots to experimentally test the equation above.

  13. Geothermal resources of the Washakie and Great Divide basins, Wyoming

    SciTech Connect

    Heasler, H.P.; Buelow, K.L.

    1985-01-01

    The geothermal resources of the Great Divide and Washakie Basins of southern Wyoming are described. Oil well bottomhole temperatures, thermal logs of wells, and heat flow data were interpreted within a framework of geologic and hydrologic constraints. It was concluded large areas in Wyoming are underlain by water hotter than 120{sup 0}F. Isolated areas with high temperature gradients exist within each basin. 68 refs., 8 figs., 7 tabs. (ACR)

  14. Expansion and Enhacement of the Wyoming Coalbed Methane Clearinghouse Website to the Wyoming Energy Resources Information Clearinghouse.

    SciTech Connect

    Hulme, Diana; Hamerlinck, Jeffrey; Bergman, Harold; Oakleaf, Jim

    2010-03-25

    Energy development is expanding across the United States, particularly in western states like Wyoming. Federal and state land management agencies, local governments, industry and non-governmental organizations have realized the need to access spatially-referenced data and other non-spatial information to determine the geographical extent and cumulative impacts of expanding energy development. The Wyoming Energy Resources Information Clearinghouse (WERIC) is a web-based portal which centralizes access to news, data, maps, reports and other information related to the development, management and conservation of Wyoming's diverse energy resources. WERIC was established in 2006 by the University of Wyoming's Ruckelshaus Institute of Environment and Natural Resources (ENR) and the Wyoming Geographic Information Science Center (WyGISC) with funding from the US Department of Energy (DOE) and the US Bureau of Land Management (BLM). The WERIC web portal originated in concept from a more specifically focused website, the Coalbed Methane (CBM) Clearinghouse. The CBM Clearinghouse effort focused only on coalbed methane production within the Powder River Basin of northeast Wyoming. The CBM Clearinghouse demonstrated a need to expand the effort statewide with a comprehensive energy focus, including fossil fuels and renewable and alternative energy resources produced and/or developed in Wyoming. WERIC serves spatial data to the greater Wyoming geospatial community through the Wyoming GeoLibrary, the WyGISC Data Server and the Wyoming Energy Map. These applications are critical components that support the Wyoming Energy Resources Information Clearinghouse (WERIC). The Wyoming GeoLibrary is a tool for searching and browsing a central repository for metadata. It provides the ability to publish and maintain metadata and geospatial data in a distributed environment. The WyGISC Data Server is an internet mapping application that provides traditional GIS mapping and analysis

  15. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  16. Generalized potentiometric surface, estimated depth to water, and estimated saturated thickness of the High Plains aquifer system, March–June 2009, Laramie County, Wyoming

    USGS Publications Warehouse

    Bartos, Timothy T.; Hallberg, Laura L.

    2011-01-01

    The High Plains aquifer system, commonly called the High Plains aquifer in many publications, is a nationally important water resource that underlies a 111-million-acre area (173,000 square miles) in parts of eight States including Wyoming. Through irrigation of crops with groundwater from the High Plains aquifer system, the area that overlies the aquifer system has become one of the major agricultural regions in the world. In addition, the aquifer system also serves as the primary source of drinking water for most residents of the region. The High Plains aquifer system is one of the largest aquifers or aquifer systems in the world. The High Plains aquifer system underlies an area of 8,190 square miles in southeastern Wyoming. Including Laramie County, the High Plains aquifer system is present in parts of five counties in southeastern Wyoming. The High Plains aquifer system underlies 8 percent of Wyoming, and 5 percent of the aquifer system is located within the State. Based on withdrawals for irrigation, public supply, and industrial use in 2000, the High Plains aquifer system is the most utilized source of groundwater in Wyoming. With the exception of the Laramie Mountains in western Laramie County, the High Plains aquifer system is present throughout Laramie County. In Laramie County, the High Plains aquifer system is the predominant groundwater resource for agricultural (irrigation), municipal, industrial, and domestic uses. Withdrawal of groundwater for irrigation (primarily in the eastern part of the county) is the largest use of water from the High Plains aquifer system in Laramie County and southeastern Wyoming. Continued interest in groundwater levels in the High Plains aquifer system in Laramie County prompted a study by the U.S. Geological Survey in cooperation with the Wyoming State Engineer's Office to update the potentiometric-surface map of the aquifer system in Laramie County. Groundwater levels were measured in wells completed in the High Plains

  17. Newcastle folio, Wyoming-South Dakota

    USGS Publications Warehouse

    Darton, N. H.

    1904-01-01

    The Newcastle quadrangle embraces the quarter of a square degree which lies between parallels 43° 30' and 44° north latitude and meridians 104° and 104° 30' west longitude.  It measures approximately 34 1/2 miles from north to south and 25 1/8 from east to west, and its area is 863 4/5 square miles.  It lies mainly in the eastern portion of Weston County, Wyo., but includes also a narrow area of western Custer and Pennington counties, S. Dak.  The northeastern portion of the quadrangle lies on the slopes of the Black Hills, but the larger part of it belongs to the Great Plains, although these plains are lower here than in the greater part of adjoining portions of Nebraska and Wyoming.  The district is drained by branches of the South Branch of Cheyenne River.

  18. Overview of Energy Development Opportunities for Wyoming

    SciTech Connect

    Larry Demick

    2012-11-01

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  19. US hydropower resource assessment for Wyoming

    SciTech Connect

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Wyoming.

  20. Preliminary results of wildcat drilling in Absaroka volcanic rocks, Hot Springs County, Wyoming

    SciTech Connect

    Bailey, M.H.; Sundell, K.A.

    1986-08-01

    Recent drilling of three remote, high-elevation wildcat wells has proven that excellent Paleozoic reservoirs are present at shallow depths beneath Eocene volcaniclastic rocks. The Tensleep and Madison Formations are fluid filled above an elevation of 8000 ft, and all Paleozoic formations exhibit shows of oil and gas. These prolific reservoir rocks have produced billions of barrels of oil from the adjacent Bighorn and Wind river basins, and they pinch out with angular unconformity against the base of the volcanics, providing enormous potential for stratigraphic oil accumulations. Vibroseis and portable seismic data have confirmed and further delineate large anticlines of Paleozoic rocks, which were originally discovered by detailed surface geologic mapping. These structures can be projected along anticlinal trends from the western Owl Creek Mountains to beneath the volcanics as well. The overlying volcanics are generally soft, reworked sediments. However, large, hard boulders and blocks of andesite-dacite, which were previously mapped as intrusives, are present and are the result of catastrophic landslide/debris flow. The volcanics locally contain highly porous and permeable sandstones and abundant bentonite stringers. Oil and gas shows were observed throughout a 2400-ft thick interval of the Eocene Tepee Trail and Aycross Formations. Shows were recorded 9100 ft above sea level in the volcanic rocks. A minimum of 10 million bbl of oil (asphaltum) and an undetermined amount of gases and lighter oils have accumulated within the basal volcanic sequence, based on the evaluation of data from two drill sites. Significant amounts of hydrocarbons have migrated since the volcanics were deposited 50 Ma. Large Laramide anticlines were partially eroded and breached into the Paleozoic formations and resealed by overlying volcanics with subsequent development of a massive tar seal.

  1. Rocky Mountain Snowpack Chemistry at Selected Sites, 2002

    USGS Publications Warehouse

    Ingersoll, George P.; Mast, M. Alisa; Nanus, Leora; Manthorne, David J.; Clow, David W.; Handran, Heather M.; Winterringer, Jesse A.; Campbell, Donald H.

    2004-01-01

    During spring 2002, the chemical composition of annual snowpacks in the Rocky Mountain region of the Western United States was analyzed. Snow samples were collected at 75 geographically distributed sites extending from New Mexico to Montana. Near the end of the 2002 snowfall season, the snow-water equivalent (SWE) in annual snowpacks sampled generally was below average in most of the region. Regional patterns in the concentrations of major ions (including ammonium, nitrate, and sulfate), mercury, and stable sulfur isotope ratios are presented. The 2002 snowpack chemistry in the region differed from the previous year. Snowpack ammonium concentrations were higher at 66 percent of sites in Montana compared to concentrations in the 2001 snowpack but were lower at 74 percent of sites in Wyoming, Colorado, and New Mexico. Nitrate was lower at all Montana sites and lower at all but one Wyoming site; nitrate was higher at all but two Colorado sites and higher at all New Mexico sites. Sulfate was lower across the region at 77 percent of sites. The range of mercury concentrations for the region was similar to those of 2001 but showed more variability than ammonium, nitrate, and sulfate concentrations. Concentrations of stable sulfur isotope ratios exhibited a strong regional pattern with values increasing northward from southern Colorado to northern Colorado and Wyoming.

  2. Oil and Gas Development in Southwestern Wyoming - Energy Data and Services for the Wyoming Landscape Conservation Initiative (WLCI)

    USGS Publications Warehouse

    Biewick, Laura R.H.

    2009-01-01

    The purpose of this report is to explore current oil and gas energy development in the area encompassing the Wyoming Landscape Conservation Initiative. The Wyoming Landscape Conservation Initiative is a long-term science-based effort to ensure southwestern Wyoming's wildlife and habitat remain viable in areas facing development pressure. Wyoming encompasses some of the highest quality wildlife habitats in the Intermountain West. At the same time, this region is an important source of natural gas. Using Geographic Information System technology, energy data pertinent to the conservation decision-making process have been assembled to show historical oil and gas exploration and production in southwestern Wyoming. In addition to historical data, estimates of undiscovered oil and gas are included from the 2002 U.S. Geological Survey National Assessment of Oil and Gas in the Southwestern Wyoming Province. This report is meant to facilitate the integration of existing data with new knowledge and technologies to analyze energy resources development and to assist in habitat conservation planning. The well and assessment data can be accessed and shared among many different clients including, but not limited to, an online web-service for scientists and resource managers engaged in the Initiative.

  3. Cost-Effectiveness Analysis of the Residential Provisions of the 2015 IECC for Wyoming

    SciTech Connect

    Mendon, Vrushali V.; Zhao, Mingjie; Taylor, Zachary T.; Poehlman, Eric A.

    2016-02-15

    The 2015 IECC provides cost-effective savings for residential buildings in Wyoming. Moving to the 2015 IECC from the 2009 IECC base code is cost-effective for residential buildings in all climate zones in Wyoming.

  4. 76 FR 14058 - Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human Remains...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-15

    ... National Park Service Notice of Inventory Completion: University of Wyoming, Anthropology Department, Human... University of Wyoming Anthropology Department, Human Remains Repository, Laramie, WY. The human remains were..., Anthropology Department, Human Remains Repository, professional staff in consultation with representatives...

  5. 2. EAGLE MOUNTAIN SWITCHYARD. EAGLE MOUNTAIN PUMP PLANT CAN BE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAGLE MOUNTAIN SWITCHYARD. EAGLE MOUNTAIN PUMP PLANT CAN BE SEEN THROUGH SWITCHYARD IN BACKGROUND. 165MM LENS. - Eagle Mountain Pump Plant, Ten miles north of Route 10, southeast of Eagle Mountain, Eagle Mountain, Riverside County, CA

  6. The deep Madden Field, a super-deep Madison gas reservoir, Wind River Basin, Wyoming

    SciTech Connect

    Moore, C.H.; Hawkins, C.

    1996-12-31

    Madison dolomites form the reservoir of a super deep, potential giant sour gas field developed on the Madden Anticline immediately in front of the Owl Creek Thrust along the northern rim of the Wind River Basin, central Wyoming. The Madison reservoir dolomites are presently buried to some 25,000 feet at Madden Field and exhibit porosity in excess of 15%. An equivalent dolomitized Madison sequence is exposed in outcrop only 5 miles to the north on the hanging wall of the Owl Creek thrust at Lysite Mountain. Preliminary comparative stratigraphic, geochemical and petrologic data, between outcrop and available cores and logs at Deep Madden suggests: (1) early, sea level-controlled, evaporite-related dolomitization of the reservoir and outcrop prior to significant burial; (2) both outcrop and deep reservoir dolomites underwent significant recrystallization during a common burial history until their connection was severed during Laramide faulting in the Eocene; (3) While the dolomite reservoir at Madden suffered additional diagenesis during an additional 7-10 thousand feet of burial, the pore systems between outcrop and deep reservoir are remarkably similar. The two existing deep Madison wells at Madden are on stream, with a third deep Madison well currently drilling. The sequence stratigraphic framework and the diagenetic history of the Madison strongly suggests that outcrops and surface cores of the Madison in the Owl Creek Mountains will be useful in further development and detailed reservoir modeling of the Madden Deep Field.

  7. The deep Madden Field, a super-deep Madison gas reservoir, Wind River Basin, Wyoming

    SciTech Connect

    Moore, C.H. ); Hawkins, C. )

    1996-01-01

    Madison dolomites form the reservoir of a super deep, potential giant sour gas field developed on the Madden Anticline immediately in front of the Owl Creek Thrust along the northern rim of the Wind River Basin, central Wyoming. The Madison reservoir dolomites are presently buried to some 25,000 feet at Madden Field and exhibit porosity in excess of 15%. An equivalent dolomitized Madison sequence is exposed in outcrop only 5 miles to the north on the hanging wall of the Owl Creek thrust at Lysite Mountain. Preliminary comparative stratigraphic, geochemical and petrologic data, between outcrop and available cores and logs at Deep Madden suggests: (1) early, sea level-controlled, evaporite-related dolomitization of the reservoir and outcrop prior to significant burial; (2) both outcrop and deep reservoir dolomites underwent significant recrystallization during a common burial history until their connection was severed during Laramide faulting in the Eocene; (3) While the dolomite reservoir at Madden suffered additional diagenesis during an additional 7-10 thousand feet of burial, the pore systems between outcrop and deep reservoir are remarkably similar. The two existing deep Madison wells at Madden are on stream, with a third deep Madison well currently drilling. The sequence stratigraphic framework and the diagenetic history of the Madison strongly suggests that outcrops and surface cores of the Madison in the Owl Creek Mountains will be useful in further development and detailed reservoir modeling of the Madden Deep Field.

  8. 78 FR 63243 - Notice of Public Meeting; Wyoming Resource Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Reclamation Center, participation in the University of Wyoming's ``A Landscape Discussion on Energy Law in.... at the Holiday Inn Laramie. On Wednesday, November 13, ``A Landscape Discussion on Energy Law in... Wyoming Energy Innovation Center, 1020 East Lewis Street, Laramie, Wyoming. The public may attend the...

  9. Wyoming Community Colleges. Annual Performance Report: Core Indicators of Effectiveness 2006-2007

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2008

    2008-01-01

    The "Core Indicators of Effectiveness Report" delineates the performance of Wyoming's community colleges as measured by the 14 indicators set forth by the American Association of Community Colleges (AACC) and adopted by the seven Wyoming community colleges and the Wyoming Community College Commission. These indicators, while providing…

  10. Wyoming Community Colleges. Annual Performance Report: Core Indicators of Effectiveness 2008-2009

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2010

    2010-01-01

    The "Core Indicators of Effectiveness Report" delineates the performance of Wyoming's community colleges as measured by the 14 indicators set forth by the American Association of Community Colleges (AACC) and adopted by the seven Wyoming community colleges and the Wyoming Community College Commission in 2002. These indicators, while…

  11. Wyoming Community Colleges. Annual Performance Report: Core Indicators of Effectiveness 2009-2010

    ERIC Educational Resources Information Center

    Wyoming Community College Commission, 2011

    2011-01-01

    The "Core Indicators of Effectiveness Report" delineates the performance of Wyoming's community colleges as measured by the 14 indicators set forth by the American Association of Community Colleges (AACC) and adopted by the seven Wyoming community colleges and the Wyoming Community College Commission in 2002. These indicators, while…

  12. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  13. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  14. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  15. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  16. 30 CFR 825.2 - Special bituminous coal mines in Wyoming.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Special bituminous coal mines in Wyoming. 825.2 Section 825.2 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE... BITUMINOUS COAL MINES IN WYOMING § 825.2 Special bituminous coal mines in Wyoming. Special bituminous...

  17. Bighorn sheep × domestic sheep hybrids survive Mannheimia haemolytica challenge in the absence of vaccination.

    PubMed

    Subramaniam, R; Shanthalingam, S; Bavananthasivam, J; Kugadas, A; Raghavan, B; Batra, S A; Herndon, C N; Rodriguez, J; Tibary, A; Nelson, D; Potter, K A; Foreyt, W J; Srikumaran, S

    2014-06-04

    Bighorn sheep (BHS, Ovis canadensis) are much more susceptible than domestic sheep (DS, Ovis aries) to pneumonia caused by leukotoxin (Lkt)-producing members of the Family Pasteurellaceae, particularly Mannheimia haemolytica and Bibersteinia trehalosi. Leukotoxin is widely accepted as the critical virulence factor of these bacteria since Lkt-negative mutants do not cause death of BHS. Typically, DS carry Lkt-positive M. haemolytica and/or B. trehalosi as commensal bacteria in their nasopharynx. In contrast, most BHS do not carry Lkt-positive M. haemolytica or B. trehalosi, or carry Lkt-negative strains in their nasopharynx. In previous studies, we demonstrated that unimmunized DS resist M. haemolytica challenge while BHS succumb to it. We hypothesized that Lkt-neutralizing antibodies, induced by Lkt-positive M. haemolytica and/or B. trehalosi innately carried by DS in their nasopharynx, render them less susceptible to infection by these bacteria. In this study we developed BHS×DS F1 hybrids by artificial insemination of domestic ewes with BHS semen. F1 hybrids were fertile, and produced F2 hybrids and back-crosses. The F1, F2, and back-crosses were raised together with domestic ewes. All these animals acquired Lkt-positive M. haemolytica and/or B. trehalosi, and developed high titers of Lkt-neutralizing antibodies in the absence of vaccination. Furthermore, all of these animals resisted challenge with lethal dose of M. haemolytica. These results suggest that lack of previous exposure to Lkt is at least partially responsible for fatal pneumonia in BHS when they acquire Lkt-positive M. haemolytica and/or B. trehalosi from DS when the two species commingle.

  18. Role of Bibersteinia trehalosi, respiratory syncytial virus, and parainfluenza-3 virus in bighorn sheep pneumonia.

    PubMed

    Dassanayake, Rohana P; Shanthalingam, Sudarvili; Subramaniam, Renuka; Herndon, Caroline N; Bavananthasivam, Jegarubee; Haldorson, Gary J; Foreyt, William J; Evermann, James F; Herrmann-Hoesing, Lynn M; Knowles, Donald P; Srikumaran, Subramaniam

    2013-02-22

    Pneumonic bighorn sheep (BHS) have been found to be culture- and/or sero-positive for Bibersteinia trehalosi, respiratory syncytial virus (RSV), and parainfluenza-3 virus (PI-3). The objective of this study was to determine whether these pathogens can cause fatal pneumonia in BHS. In the first study, two groups of four BHS each were intra-tracheally administered with leukotoxin-positive (Group I) or leukotoxin-negative (Group II) B. trehalosi. All four animals in Group I developed severe pneumonia, and two of them died within 3 days. The other two animals showed severe pneumonic lesions on euthanasia and necropsy. Animals in Group II neither died nor showed gross pneumonic lesions on necropsy, suggesting that leukotoxin-positive, but not leukotoxin-negative, B. trehalosi can cause fatal pneumonia in BHS. In the second study, two other groups of four BHS (Groups III and IV) were intra-nasally administered with a mixture of RSV and PI-3. Four days later, RSV/PI-3-inoculated Group IV and another group of four BHS (Group V, positive control) were intra-nasally administered with Mannheimia haemolytica, the pathogen that consistently causes fatal pneumonia in BHS. All four animals in group III developed pneumonia, but did not die during the study period. However all four animals in Group IV, and three animals in Group V developed severe pneumonia and died within two days of M. haemolytica inoculation. The fourth animal in Group V showed severe pneumonic lesions on euthanasia and necropsy. These findings suggest that RSV/PI-3 can cause non-fatal pneumonia, but are not necessary predisposing agents for M. haemolytica-caused pneumonia of BHS.

  19. Differences in leukocyte differentiation molecule abundances on domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) neutrophils identified by flow cytometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although both domestic sheep (DS) and bighorn sheep (BHS) are affected by similar respiratory bacterial pathogens, experimental and field data indicate BHS are more susceptible to pneumonia. Cross-reactive monoclonal antibodies (mAbs) for use in flow cytometry (FC) are valuable reagents for interspe...

  20. Molecular cloning, characterization and in vitro expression of SERPIN B1 of bighorn sheep (Ovis canadensis) and domestic sheep (Ovis aries), and comparison with that of other species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mannheimia haemolytica infection results in enhanced PMN-mediated tissue damage in the lungs of bighorn sheep (BHS) compared to that of domestic sheep (DS). SERPIN B1 is an inhibitor of PMN-derived serine proteases. It prevents lung tissue injury by inhibiting the serine proteases released as a resu...

  1. Differential susceptibility of bighorn sheep and domestic sheep neutrophils to Mannheimia haemolytica leukotoxin is not due to differential expression of cell surface CD18

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bighorn sheep (BHS) are more susceptible to pneumonia caused by Mannheimia haemolytica (M. haemolytica) than are domestic sheep (DS). Leukotoxin produced by M. haemolytica is accepted as the critical virulence factor for BHS, based on the fact that Lkt-deletion mutants do not cause death of BHS. Al...

  2. Sheep-associated malignant catarrhal fever-like skin disease in a free-ranging bighorn sheep (Ovis canadensis), Alberta, Canada

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malignant catarrhal fever (MCF)-like clinical disease was diagnosed in a free-ranging bighorn sheep (Ovis canadensis) in Alberta, Canada. Ante-mortem observations and gross pathology included muscle atrophy, marked weight loss and focally extensive alopecia with chronic crusting hyperkeratotosis and...

  3. Impact of Surficial Weathering on the Magnetic Properties of Paleosols: a Core to Outcrop Comparison from the Bighorn Basin, WY

    NASA Astrophysics Data System (ADS)

    Maxbauer, D.; Fox, D. L.; Feinberg, J. M.; Clyde, W.

    2014-12-01

    Environmental magnetic studies of soils have generally focused on providing insights into the climate and environmental conditions that produce modern soils and geologically young paleosols (<5 Ma), but environmental magnetic analysis of more ancient paleosols has been limited. The Bighorn Basin Coring Project (BBCP) recently recovered ~300 m of sediment core spanning the Paleocene-Eocene boundary from the Polecat Bench locality in the Bighorn Basin, WY. Core scan images show that oxidative weathering extends some 20-30 m below the surface, suggesting that recent surficial weathering could have significantly altered the magnetic signals preserved in paleosols that crop out in this region. This study presents the first detailed core to outcrop comparison of paleosol magnetism of which we are aware. Nine paleosols from Polecat Bench, spanning the Paleocene-Eocene Thermal Maximum (PETM), have been sampled at high-resolution from outcrop trenches and core sediments. Importantly, these paleosols are stratigraphically below the weathering front in the core sediments, suggesting that they preserve an unweathered magnetic signature. We present results of preliminary comparison between the magnetic signals preserved in core sediments and the same sediments exposed as outcrops using detailed measurements of low-field magnetic susceptibility, frequency dependence of susceptibility, isothermal remanent magnetization (IRM), and anhysteretic remanent magnetization (ARM). We explore the implications of surficial weathering for environmental magnetism, including the application of magnetic paleoprecipitation proxies calibrated using modern soils to more ancient paleosols.

  4. Compensating for diminishing natural water: Predicting the impacts of water development on summer habitat of desert bighorn sheep

    USGS Publications Warehouse

    Longshore, K.M.; Lowrey, C.; Thompson, D.B.

    2009-01-01

    Artificial water sources have been used for decades to enhance and restore wildlife habitat but the benefits of their use have been subject to debate. During the past century, the number of natural springs in Joshua Tree National Park, California, USA, has declined. In response to concerns about the viability of the bighorn sheep (Ovis canadensis nelsoni) population, a number of water developments were constructed throughout the park. We modeled potential historical and present-day summer habitat of female bighorn sheep to evaluate the effectiveness of the artificial and remaining natural water sources in maintaining habitat and to determine how loss of artificial sources might affect future habitat availability. Prior to 1950, 583.5 km2 of summer habitat was potentially available. Presently, only 170.6 km2 of habitat is available around natural water sources and 153.5 km2 is available around guzzlers. When all perennial water sources are included in the habitat model (minus overlap), 302.3 km2 of summer habitat is potentially available. This represents only 51.7% of summer habitat available prior to 1950. Without artificial water developments, 47.7% of present-day summer habitat would be lost, which raises important management questions regarding the debate about what is natural or artificial within otherwise protected areas.

  5. Costs and benefits of group living with disease: a case study of pneumonia in bighorn lambs (Ovis canadensis)

    USGS Publications Warehouse

    Manlove, Kezia R.; Cassirer, E. Frances; Cross, Paul C.; Plowright, Raina K.; Hudson, Peter J.

    2014-01-01

    Group living facilitates pathogen transmission among social hosts, yet temporally stable host social organizations can actually limit transmission of some pathogens. When there are few between-subpopulation contacts for the duration of a disease event, transmission becomes localized to subpopulations. The number of per capita infectious contacts approaches the subpopulation size as pathogen infectiousness increases. Here, we illustrate that this is the case during epidemics of highly infectious pneumonia in bighorn lambs (Ovis canadensis). We classified individually marked bighorn ewes into disjoint seasonal subpopulations, and decomposed the variance in lamb survival to weaning into components associated with individual ewes, subpopulations, populations and years. During epidemics, lamb survival varied substantially more between ewe-subpopulations than across populations or years, suggesting localized pathogen transmission. This pattern of lamb survival was not observed during years when disease was absent. Additionally, group sizes in ewe-subpopulations were independent of population size, but the number of ewe-subpopulations increased with population size. Consequently, although one might reasonably assume that force of infection for this highly communicable disease scales with population size, in fact, host social behaviour modulates transmission such that disease is frequency-dependent within populations, and some groups remain protected during epidemic events.

  6. 77 FR 25664 - Endangered and Threatened Wildlife and Plants; Removal of the Gray Wolf in Wyoming From the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... Wyoming's 2011 wolf management plan (Wyoming Game and Fish Commission (WGFC) 2011) and noted that... Game and Fish Department's approach to managing wolves. On March 5, 2012, Wyoming released the addendum for public review and comment. The Wyoming Game and Fish Commission approved a final version of...

  7. Viability of underground coal gasification in the 'deep coals' of the Powder River Basin, Wyoming

    SciTech Connect

    2007-06-15

    The objective of this work is to evaluate the PRB coal geology, hydrology, infrastructure, environmental and permitting requirements and to analyze the possible UCG projects which could be developed in the PRB. Project economics on the possible UCG configurations are presented to evaluate the viability of UCG. There are an estimated 510 billion tons of sub-bituminous coal in the Powder River Basin (PRB) of Wyoming. These coals are found in extremely thick seams that are up to 200 feet thick. The total deep coal resource in the PRB has a contained energy content in excess of twenty times the total world energy consumption in 2002. However, only approximately five percent of the coal resource is at depths less than 500 feet and of adequate thickness to be extracted by open pit mining. The balance is at depths between 500 and 2,000 feet below the surface. These are the PRB 'deep coals' evaluated for UCG in this report. The coal deposits in the Powder River Basin of Wyoming are thick, laterally continuous, and nearly flat lying. These deposits are ideal for development by Underground Coal Gasification. The thick deep coal seams of the PRB can be harvested using UCG and be protective of groundwater, air resources, and with minimum subsidence. Protection of these environmental values requires correct site selection, site characterization, impact definition, and impact mitigation. The operating 'lessons learned' of previous UCG operations, especially the 'Clean Cavity' concepts developed at Rocky Mountain 1, should be incorporated into the future UCG operations. UCG can be conducted in the PRB with acceptable environmental consequences. The report gives the recommended development components for UCG commercialization. 97 refs., 31 figs., 57 tabs., 1 app.

  8. Structure contour map of the greater Green River basin, Wyoming, Colorado, and Utah

    USGS Publications Warehouse

    Lickus, M.R.; Law, B.E.

    1988-01-01

    The Greater Green River basin of Wyoming, Colorado, and Utah contains five basins and associated major uplifts (fig. 1). Published structure maps of the region have commonly used the top of the Lower Cretaceous Dakota Sandstone as a structural datum (Petroleum Ownership Map Company (POMCO), 1984; Rocky Mountain Association of Geologists, 1972). However, because relatively few wells in this area penetrate the Dakota, the Dakota structural datum has to be constructed by projecting down from shallower wells. Extrapolating in this manner may produce errors in the map. The primary purpose of this report is to present a more reliable structure contour map of the Greater Green River basin based on datums that are penetrated by many wells. The final map shows the large- to small-scale structures present in the Greater Green River basin. The availability of subsurface control and the map scale determined whether or not a structural feature was included on the map. In general, large structures such as the Moxa arch, Pinedale anticline, and other large folds were placed on the map based solely on the structure contours. In comparison, smaller folds and some faults were placed on the map based on structure contours and other reports (Bader 1987; Bradley 1961; Love and Christiansen, 1985; McDonald, 1975; Roehler, 1979; Wyoming Geological Association Oil and Gas Symposium Committee, 1979). State geologic maps and other reports were used to position basin margin faults (Bryant, 1985; Gries, 1983a, b; Hansen 1986; Hintze, 1980; Love and Christiansen, 1985; Tweto, 1979, 1983). In addition, an interpreted east-west-trending regional seismic line by Garing and Tainter (1985), which shows the basin configuration in cross-section, was helpful in locating buried faults, such as the high-angle reverse or thrust fault along the west flank of the Rock Springs uplift.

  9. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    USGS Publications Warehouse

    ,

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  10. Mountains: An Overview.

    ERIC Educational Resources Information Center

    Byers, Alton; Gilligan, Nancy; Golston, Syd; Linville, Rex

    1999-01-01

    Introduces the lessons from "Mountain: A Global Resource" that were developed by the National Council for the Social Studies (NCSS) and The Mountain Institute for use by NCSS members and their students. Provides an overview that introduces the mountains, mountain cultures, historical perceptions, and the geographical importance of…

  11. Wasatch and Uinta Mountains Ecoregion: Chapter 9 in Status and trends of land change in the Western United States--1973 to 2000

    USGS Publications Warehouse

    Brooks, Mark S.

    2012-01-01

    The Wasatch and Uinta Mountains Ecoregion covers approximately 44,176 km2 (17, 057 mi2) (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). With the exception of a small part of the ecoregion extending into southern Wyoming and southern Idaho, the vast majority of the ecoregion is located along the eastern mountain ranges of Utah. The ecoregion is situated between the Wyoming Basin and Colorado Plateaus Ecoregions to the east and south and the Central Basin and Range Ecoregion to the west; in addition, the Middle Rockies, Snake River Basin, and Northern Basin and Range Ecoregions are nearby to the north. Considered the western front of the Rocky Mountains, the two major mountain ranges that define the Wasatch and Uinta Mountains Ecoregion include the north-south-trending Wasatch Range and east-west- trending Uinta Mountains. Both mountain ranges have been altered by multiple mountain building and burial cycles since the Precambrian era 2.6 billion years ago, and they have been shaped by glacial processes as early as 1.6 million years ago. The terrain is defined by sharp ridgelines, glacial lakes, and narrow canyons, with elevations ranging from 1,829 m in the lower canyons to 4,123 m at Kings Peak, the highest point in Utah (Milligan, 2010).

  12. Wyoming Landscape Conservation Initiative Science and Management Workshop Proceedings, May 12-14, 2009, Laramie, Wyoming

    USGS Publications Warehouse

    Nuccio, Vito F.; D'Erchia, Frank D.; Parady, K.(compiler); Mellinger, A.

    2010-01-01

    The U.S. Geological Survey (USGS) hosted the second Wyoming Landscape Conservation Initiative (WLCI) Science and Management Workshop at the University of Wyoming Conference Center and Hilton Garden Inn on May 12, 13, and 14, 2009, in Laramie, Wyo. The workshop focused on six topics seen as relevant to ongoing WLCI science and management activities: mapping and modeling resources for decisionmaking; data information and management; fish and wildlife research; changing landscapes; monitoring; and reclamation and offsite mitigation. Panelists gave presentations on ongoing research in these six areas during plenary sessions followed by audience discussions. Three breakout groups focused on discussing wildlife, reclamation, and monitoring. Throughout the plenary sessions, audience discussions, and breakout groups, several needs were repeatedly emphasized by panelists and workshop participants: developing a conservation plan and identifying priority areas and species for conservation actions; gaining a deeper understanding of sagebrush ecology; identifying thresholds for wildlife that can be used to create an 'early warning system' for managers; continuing to collect basic data across the landscape; facilitating even greater communication and partnership across agencies and between scientists and land managers; and engaging proactively in understanding new changes on the landscape such as wind energy development and climate change. Detailed proceedings from the workshop are captured and summarized in this report.

  13. Headcut Erosion in Wyoming's Sweetwater Subbasin

    NASA Astrophysics Data System (ADS)

    Cox, Samuel E.; Booth, D. Terrance; Likins, John C.

    2016-02-01

    Increasing human population and intensive land use combined with a warming climate and chronically diminished snowpacks are putting more strain on water resources in the western United States. Properly functioning riparian systems slow runoff and store water, thus regulating extreme flows; however, riparian areas across the west are in a degraded condition with a majority of riparian systems not in proper functioning condition, and with widespread catastrophic erosion of water-storing peat and organic soils. Headcuts are the leading edge of catastrophic channel erosion. We used aerial imagery (1.4-3.3-cm pixel) to locate 163 headcuts in riparian areas in the Sweetwater subbasin of central Wyoming. We found 1-m—the generally available standard resolution for land management—and 30-cm pixel imagery to be inadequate for headcut identification. We also used Structure-from-Motion models built from ground-acquired imagery to model 18 headcuts from which we measured soil loss of 425-720 m3. Normalized by channel length, this represents a loss of 1.1-1.8 m3 m-1 channel. Monitoring headcuts, either from ground or aerial imagery, provides an objective indicator of sustainable riparian land management and identifies priority disturbance-mitigation areas. Image-based headcut monitoring must use data on the order of 3.3 cm ground sample distance, or greater resolution, to effectively capture the information needed for accurate assessments of riparian conditions.

  14. Water resources of Weston County, Wyoming

    USGS Publications Warehouse

    Lowry, M.E.; Head, W.J.; Rankl, J.G.; Busby, J.F.

    1986-01-01

    Surface water is scarce in Weston County, Wyoming. Groundwater has been developed from rocks ranging in age from Mississippian to Holocene. Adequate supplies for domestic or stock use can be developed from wells generally less than 1,000 ft deep, except in the area underlain by a thick sequence of predominantly marine shale that will yield only small quantities of very mineralized water. In the early 1960 's decreases in artesian pressures occurred in some wells completed in the Lakota Formation of Early Cretaceous age and Pahasapa Limestone of Early Mississippian age. Only the decrease in the Lakota was attributed to development of water from the formation. Extensive development of either of these aquifers, however, may result in significant interference between nearby wells completed within the same aquifer. There are other aquifers within a few hundred feet of the overlying Lakota Formation that could be developed as an alternative to the Lakota to help limit the loss of pressure. The much deeper Pahasapa Limestone generally is developed because of the large supplies that are possible. Because there are no other large yield aquifers, there are no alternatives to limit the loss of pressure of the Pahasapa in the event of increased development. (USGS)

  15. Wyoming Basin Rapid Ecoregional Assessment: Work Plan

    USGS Publications Warehouse

    Carr, Natasha B.; Garman, Steven L.; Walters, Annika; Ray, Andrea; Melcher, Cynthia P.; Wesner, Jeff S.; O’Donnell, Michael S.; Sherrill, Kirk R.; Babel, Nils C.; Bowen, Zachary H.

    2013-01-01

    The overall goal of the Rapid Ecoregional Assessments (REAs) being conducted for the Bureau of Land Management (BLM) is to provide information that supports regional planning and analysis for the management of ecological resources. The REA provides an assessment of baseline ecological conditions, an evaluation of current risks from drivers of ecosystem change, and a predictive capacity for evaluating future risks. The REA also may be used for identifying priority areas for conservation or restoration and for assessing the cumulative effects of a variety of land uses. There are several components of the REAs. Management Questions, developed by the BLM and partners for the ecoregion, identify the information needed for addressing land-management responsibilities. Conservation Elements represent regionally significant aquatic and terrestrial species and communities that are to be conserved and (or) restored. The REA also will evaluate major drivers of ecosystem change (Change Agents) currently affecting or likely to affect the status of Conservation Elements. We selected 8 major biomes and 19 species or species assemblages to be included as Conservation Elements. We will address the four primary Change Agents—development, fire, invasive species, and climate change—required for the REA. The purpose of the work plan for the Wyoming Basin REA is to document the selection process for, and final list of, Management Questions, Conservation Elements, and Change Agents. The work plan also presents the overall assessment framework that will be used to assess the status of Conservation Elements and answer Management Questions.

  16. Stratigraphic sections of the Phosphoria formation in Wyoming, 1952

    USGS Publications Warehouse

    Sheldon, R.P.; Cressman, E.R.; Carswell, L.D.; Smart, R.A.

    1953-01-01

    The U.S. Geological Survey has measured and sampled the Phosphoria formation of Permian age at many localities in Wyoming and adjacent states. These data will not be fully synthesized for many years, but segments of the data, accompanied by little or no interpretation, are published as preliminary reports as they are assembled. This report, which contains abstracts of the sections measured in western Wyoming (fig. 1), during 1952, is the fourth Wyoming report of this series. The field and laboratory procedures adopted in these investigations are described rather fully in a previous report (McKelvey and others, 1953a). Many people have taken part in this investigation. T. M. Cheney participated in the description of strata and the collection of samples referred to in this report and T. K. Rigby assisted in the collection of samples. The laboratory preparation of samples for chemical analysis was done in Denver, Colo., under the direction of W. P. Huleatt.

  17. Stratigraphic sections of the Phosphoria formation in Wyoming, 1951

    USGS Publications Warehouse

    Cheney, Thomas McGriffin; Sheldon, Richard Porter; Waring, R.G.; Warner, M.A.

    1953-01-01

    The U.S. Geological Survey has recently measured and sampled the Phosphoria formation at many localities in Wyoming and adjacent states. These data will not be fully synthesized for many years, but segments of the data, accompanied by little or no interpretation, are published as preliminary reports as they are assembled. This report, which contains abstracts of the sections measured in western Wyoming (fig. 1) during 1951, is the third Wyoming report of this series. The field and laboratory procedures adopted in these investigations are described rather fully in a previous report (McKelvey and others, 1953b). Many people have taken part in this investigation. J. W. Hill, H. W. Peirce, J. A. Peterson, and R. A. Smart participated in the description of strata and the collection of samples referred to in this report. The laboratory preparation of samples for chemical analysis was done in Denver, Colo., under the direction of W. P. Huleatt.

  18. Case studies on direct liquefaction of low rank Wyoming coal

    SciTech Connect

    Adler, P.; Kramer, S.J.; Poddar, S.K.

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  19. Pesticides in Ground Water - Sublette County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Sublette County. This fact sheet describes and summarizes results of the baseline monitoring in Sublette County.

  20. Pesticides in Ground Water - Carbon County, Wyoming, 2004-2005

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Remley, Kendra J.

    2006-01-01

    In 1991, members of local, State, and Federal governments, as well as industry and interest groups, formed the Ground-water and Pesticide Strategy Committee to prepare the State of Wyoming's generic Management Plan for Pesticides in Ground Water. Part of this management plan is to sample and analyze Wyoming's ground water for pesticides. In 1995, the U.S. Geological Survey, in cooperation with the Ground-water and Pesticide Strategy Committee, began statewide implementation of the sampling component of the State of Wyoming's generic Management Plan for Pesticides in Ground Water. During 2004-2005, baseline monitoring was conducted in Carbon County. This fact sheet describes and summarizes results of the baseline monitoring in Carbon County.