Bridges, Hannah R; Sirviö, Ville A; Agip, Ahmed-Noor A; Hirst, Judy
2016-08-09
The biguanides are a family of drugs with diverse clinical applications. Metformin, a widely used anti-hyperglycemic biguanide, suppresses mitochondrial respiration by inhibiting respiratory complex I. Phenformin, a related anti-hyperglycemic biguanide, also inhibits respiration, but proguanil, which is widely used for the prevention of malaria, does not. The molecular structures of phenformin and proguanil are closely related and both inhibit isolated complex I. Proguanil does not inhibit respiration in cells and mitochondria because it is unable to access complex I. The molecular features that determine which biguanides accumulate in mitochondria, enabling them to inhibit complex I in vivo, are not known. Here, a family of seven biguanides are used to reveal the molecular features that determine why phenformin enters mitochondria and inhibits respiration whereas proguanil does not. All seven biguanides inhibit isolated complex I, but only four of them inhibit respiration in cells and mitochondria. Direct conjugation of a phenyl group and bis-substitution of the biguanide moiety prevent uptake into mitochondria, irrespective of the compound hydrophobicity. This high selectivity suggests that biguanide uptake into mitochondria is protein mediated, and is not by passive diffusion. Only those biguanides that enter mitochondria and inhibit complex I activate AMP kinase, strengthening links between complex I and the downstream effects of biguanide treatments. Biguanides inhibit mitochondrial complex I, but specific molecular features control the uptake of substituted biguanides into mitochondria, so only some biguanides inhibit mitochondrial respiration in vivo. Biguanides with restricted intracellular access may be used to determine physiologically relevant targets of biguanide action, and for the rational design of substituted biguanides for diverse clinical applications.
"What's in a structure?" The story of biguanides
NASA Astrophysics Data System (ADS)
Kathuria, Deepika; Bankar, Apoorva A.; Bharatam, Prasad V.
2018-01-01
Biguanides are a very interesting class of molecules which have been extensively studied for their medicinal applications. The structural and electronic structural aspects of biguanides have been explored in detail; however, even today, scientific literature continues to represent biguanides incorrectly as 1a. The X-ray crystal structure analysis and various spectroscopic studies such as UV, 1H and 15N NMR have confirmed that biguanide exists as tautomer 1b. Electronic structure analysis also supports the existence of 1b. This review focuses on the structure and electronic structure of biguanides and aims to emphasize the importance of the correct representation of a structure. There is a need to commence the use of 1b for the general representation of biguanides in textbooks and research articles which will ensure a correct perspective for further studies on these molecules.
Orecchioni, Stefania; Reggiani, Francesca; Talarico, Giovanna; Mancuso, Patrizia; Calleri, Angelica; Gregato, Giuliana; Labanca, Valentina; Noonan, Douglas M; Dallaglio, Katiuscia; Albini, Adriana; Bertolini, Francesco
2015-03-15
The human white adipose tissue (WAT) contains progenitors with cooperative roles in breast cancer (BC) angiogenesis, local and metastatic progression. The biguanide Metformin (Met), commonly used for Type 2 diabetes, might have activity against BC and was found to inhibit angiogenesis in vivo. We studied Met and another biguanide, phenformin (Phe), in vitro and in vivo in BC models. In vitro, biguanides activated AMPK, inhibited Complex 1 of the respiratory chain and induced apoptosis of BC and WAT endothelial cells. In coculture, biguanides inhibited the production of several angiogenic proteins. In vivo, biguanides inhibited local and metastatic growth of triple negative and HER2+ BC in immune-competent and immune-deficient mice orthotopically injected with BC. Biguanides inhibited local and metastatic BC growth in a genetically engineered murine model model of HER2+ BC. In vivo, biguanides increased pimonidazole binding (but not HIF-1 expression) of WAT progenitors, reduced tumor microvessel density and altered the vascular pericyte/endothelial cell ratio, so that cancer vessels displayed a dysplastic phenotype. Phe was significantly more active than Met both in vitro and in vivo. Considering their safety profile, biguanides deserve to be further investigated for BC prevention in high-risk subjects, in combination with chemo and/or targeted therapy and/or as post-therapy consolidation or maintenance therapy for the prevention of BC recurrence. © 2014 UICC.
Serine deprivation enhances antineoplastic activity of biguanides.
Gravel, Simon-Pierre; Hulea, Laura; Toban, Nader; Birman, Elena; Blouin, Marie-José; Zakikhani, Mahvash; Zhao, Yunhua; Topisirovic, Ivan; St-Pierre, Julie; Pollak, Michael
2014-12-15
Metformin, a biguanide widely used in the treatment of type II diabetes, clearly exhibits antineoplastic activity in experimental models and has been reported to reduce cancer incidence in diabetics. There are ongoing clinical trials to evaluate its antitumor properties, which may relate to its fundamental activity as an inhibitor of oxidative phosphorylation. Here, we show that serine withdrawal increases the antineoplastic effects of phenformin (a potent biguanide structurally related to metformin). Serine synthesis was not inhibited by biguanides. Instead, metabolic studies indicated a requirement for serine to allow cells to compensate for biguanide-induced decrease in oxidative phosphorylation by upregulating glycolysis. Furthermore, serine deprivation modified the impact of metformin on the relative abundance of metabolites within the citric acid cycle. In mice, a serine-deficient diet reduced serine levels in tumors and significantly enhanced the tumor growth-inhibitory actions of biguanide treatment. Our results define a dietary manipulation that can enhance the efficacy of biguanides as antineoplastic agents that target cancer cell energy metabolism. ©2014 American Association for Cancer Research.
Hsu, Chia-Chi; Wu, Ling-Chia; Hsia, Cheng-Yuan; Yin, Pen-Hui; Chi, Chin-Wen; Yeh, Tien-Shun; Lee, Hsin-Chen
2015-09-01
Human hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide particularly in Asia. Deregulation of cellular energetics was recently included as one of the cancer hallmarks. Compounds that target the mitochondria in cancer cells were proposed to have therapeutic potential. Biguanide drugs which inhibit mitochondrial complex I and repress mTOR signaling are clinically used to treat type 2 diabetes mellitus patients (T2DM) and were recently found to reduce the risk of HCC in T2DM patients. However, whether alteration of energy metabolism is involved in regulating the sensitivity of HCC to biguanide drugs is still unclear. In the present study, we treated four HCC cell lines with mitochondrial inhibitors (rotenone and oligomycin) and biguanide drugs (metformin and phenformin), and found that the HCC cells which had a higher mitochondrial respiration rate were more sensitive to these treatments; whereas the HCC cells which exhibited higher glycolysis were more resistant. When glucose was replaced by galactose in the medium, the altered energy metabolism from glycolysis to mitochondrial respiration in the HCC cells enhanced the cellular sensitivity to mitochondrial inhibitors and biguanides. The energy metabolism change enhanced AMP-activated protein kinase (AMPK) activation, mTOR repression and downregulation of cyclin D1 and Mcl-1 in response to the mitochondrial inhibitors and biguanides. In conclusion, our results suggest that increased mitochondrial oxidative metabolism upregulates the sensitivity of HCC to biguanide drugs. Enhancing the mitochondrial oxidative metabolism in combination with biguanide drugs may be a therapeutic strategy for HCC.
Janzer, Andreas; German, Natalie J.; Gonzalez-Herrera, Karina N.; Asara, John M.; Haigis, Marcia C.; Struhl, Kevin
2014-01-01
Metformin, a first-line diabetes drug linked to cancer prevention in retrospective clinical analyses, inhibits cellular transformation and selectively kills breast cancer stem cells (CSCs). Although a few metabolic effects of metformin and the related biguanide phenformin have been investigated in established cancer cell lines, the global metabolic impact of biguanides during the process of neoplastic transformation and in CSCs is unknown. Here, we use LC/MS/MS metabolomics (>200 metabolites) to assess metabolic changes induced by metformin and phenformin in an Src-inducible model of cellular transformation and in mammosphere-derived breast CSCs. Although phenformin is the more potent biguanide in both systems, the metabolic profiles of these drugs are remarkably similar, although not identical. During the process of cellular transformation, biguanide treatment prevents the boost in glycolytic intermediates at a specific stage of the pathway and coordinately decreases tricarboxylic acid (TCA) cycle intermediates. In contrast, in breast CSCs, biguanides have a modest effect on glycolytic and TCA cycle intermediates, but they strongly deplete nucleotide triphosphates and may impede nucleotide synthesis. These metabolic profiles are consistent with the idea that biguanides inhibit mitochondrial complex 1, but they indicate that their metabolic effects differ depending on the stage of cellular transformation. PMID:25002509
Janzer, Andreas; German, Natalie J; Gonzalez-Herrera, Karina N; Asara, John M; Haigis, Marcia C; Struhl, Kevin
2014-07-22
Metformin, a first-line diabetes drug linked to cancer prevention in retrospective clinical analyses, inhibits cellular transformation and selectively kills breast cancer stem cells (CSCs). Although a few metabolic effects of metformin and the related biguanide phenformin have been investigated in established cancer cell lines, the global metabolic impact of biguanides during the process of neoplastic transformation and in CSCs is unknown. Here, we use LC/MS/MS metabolomics (>200 metabolites) to assess metabolic changes induced by metformin and phenformin in an Src-inducible model of cellular transformation and in mammosphere-derived breast CSCs. Although phenformin is the more potent biguanide in both systems, the metabolic profiles of these drugs are remarkably similar, although not identical. During the process of cellular transformation, biguanide treatment prevents the boost in glycolytic intermediates at a specific stage of the pathway and coordinately decreases tricarboxylic acid (TCA) cycle intermediates. In contrast, in breast CSCs, biguanides have a modest effect on glycolytic and TCA cycle intermediates, but they strongly deplete nucleotide triphosphates and may impede nucleotide synthesis. These metabolic profiles are consistent with the idea that biguanides inhibit mitochondrial complex 1, but they indicate that their metabolic effects differ depending on the stage of cellular transformation.
Exceptionally High Proton and Lithium Cation Gas-Phase Basicity of the Anti-Diabetic Drug Metformin.
Raczyńska, Ewa D; Gal, Jean-François; Maria, Pierre-Charles; Michalec, Piotr; Zalewski, Marcin
2017-11-16
Substituted biguanides are known for their biological effect, and a few of them are used as drugs, the most prominent example being metformin (1,1-dimethylbiguanide, IUPAC name: N,N-dimethylimidodicarbonimidic diamide). Because of the presence of hydrogen atoms at the amino groups, biguanides exhibit a multiple tautomerism. This aspect of their structures was examined in detail for unsubstituted biguanide and metformin in the gas phase. At the density functional theory (DFT) level {essentially B3LYP/6-311+G(d,p)}, the most stable structures correspond to the conjugated, push-pull, system (NR 2 )(NH 2 )C═N-C(═NH)NH 2 (R = H, CH 3 ), further stabilized by an internal hydrogen bond. The structural and energetic aspects of protonation and lithium cation adduct formation of biguanide and metformin was examined at the same level of theory. The gas-phase protonation energetics reveal that the more stable tautomer is protonated at the terminal imino C═NH site, still with an internal hydrogen bond maintaining the structure of the neutral system. The calculated proton affinity and gas-phase basicity of the two molecules reach the domain of superbasicity. By contrast, the lithium cation prefers to bind the less stable, not fully conjugated, tautomer (NR 2 )C(═NH)-NH-C(═NH)NH 2 of biguanides, in which the two C═NH groups are separated by NH. This less stable form of biguanides binds Li + as a bidentate ligand, in agreement with what was reported in the literature for other metal cations in the solid phase. The quantitative assessment of resonance in biguanide, in metformin and in their protonated forms, using the HOMED and HOMA indices, reveals an increase in electron delocalization upon protonation. On the contrary, the most stable lithium cation adducts are less conjugated than the stable neutral biguanides, because the metal cation is better coordinated by the not-fully conjugated bidentate tautomer.
Bottermann, P; Schweigart, U; Ermler, R
1976-02-13
Intravenous glucose tolerance tests were performed and changes of blood glucose and insulin concentration were measured to examine whether the diabetogenic effect of glucocorticoides can be compensated by biguanides. Seven standard weight volunteers with a healthy metabolism were given prednisolone and buformin as well as a combination of both. In spite of the reactively higher insulin secretion after treatment with prednisolone the glucose tolerance was reduced. In contrast, treatment with biguanide improved the glucose tolerance while decreasing the insulin secretion. It was nearly possible to compensate the negative effect of prednisolone on the carbohydrate metabolism by biguanides. We, therefore, consider a preventive administration of biguanides to be effective in long term or high dosage administration of glucocorticoides.
Hattori, Toshiaki; Nakata, Yasuko; Kato, Ryo
2003-11-01
The biguanide concentration of polyhexamethylene biguanide hydrochloride (PHMB-HCl) was measured by non-aqueous titration with HClO4, argentometric titration, the Kjeldhal method, and colloidal titration. The summation value of non-aqueous titration and argentometric titration corresponded to two titrable nitrogens in five nitrogens per one unit of PHMB-HCl, and consisted with the result of the Kjeldhal method to the five nitrogens. The colloidal titration of PHMB-HCl at pH 2.05 was equal to that with the two nitrogens. The relative standard deviations of non-aqueous titration, argentometric titration, the Kjeldhal method, and colloidal titration were 0.50% for 8 runs, 0.13% for 7 runs, 3.61% for 6 runs, and 0.69% for 6 runs, respectively.
Transport of biguanides by human organic cation transporter OCT2.
Sogame, Yoshihisa; Kitamura, Atsushi; Yabuki, Masashi; Komuro, Setsuko; Takano, Mikihisa
2013-06-01
Biguanides have the severe side effect of lactic acidosis. Although both metformin and phenformin are biguanide derivatives, there is a difference in the frequency at which they induce lactic acidosis. However, the reasons for the difference are not clear. Metformin has been reported to be mainly excreted into urine by human organic cation transporter 2 (hOCT2). The present study was designed to investigate the renal transport of metformin and phenformin, focusing on hOCT2, using hOCT2-expressing oocytes. Both biguanides were found to be good substrates for hOCT2. However, phenformin exhibited a higher affinity and transport activity than metformin. The Km values for metformin and phenformin were 235 and 37.4 μM, with CL(int) (V(max)/K(m)) values of 71.9×10⁻³ μL/min per oocyte and 209×10⁻³ μL/min per oocyte, respectively. This is the first report that has compared the transport profiles of these biguanides in hOCT2-expressing oocytes. The results suggest that plasma concentration of phenformin in subjects carrying hOCT2 variant may be higher compared to reference subjects, as reported in metformin. In addition, the relationship between plasma concentration of these biguanides and blood lactate level as well as the possible reasons for the difference in the associated frequency of occurrence of lactic acidosis are discussed. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Pleiotropic Effects of Biguanides on Mitochondrial Reactive Oxygen Species Production.
Pecinova, Alena; Drahota, Zdenek; Kovalcikova, Jana; Kovarova, Nikola; Pecina, Petr; Alan, Lukas; Zima, Michal; Houstek, Josef; Mracek, Tomas
2017-01-01
Metformin is widely prescribed as a first-choice antihyperglycemic drug for treatment of type 2 diabetes mellitus, and recent epidemiological studies showed its utility also in cancer therapy. Although it is in use since the 1970s, its molecular target, either for antihyperglycemic or antineoplastic action, remains elusive. However, the body of the research on metformin effect oscillates around mitochondrial metabolism, including the function of oxidative phosphorylation (OXPHOS) apparatus. In this study, we focused on direct inhibitory mechanism of biguanides (metformin and phenformin) on OXPHOS complexes and its functional impact, using the model of isolated brown adipose tissue mitochondria. We demonstrate that biguanides nonspecifically target the activities of all respiratory chain dehydrogenases (mitochondrial NADH, succinate, and glycerophosphate dehydrogenases), but only at very high concentrations (10 -2 -10 -1 M) that highly exceed cellular concentrations observed during the treatment. In addition, these concentrations of biguanides also trigger burst of reactive oxygen species production which, in combination with pleiotropic OXPHOS inhibition, can be toxic for the organism. We conclude that the beneficial effect of biguanides should probably be associated with subtler mechanism, different from the generalized inhibition of the respiratory chain.
Lea, Michael A; Qureshi, Mehreen S; Buxhoeveden, Michael; Gengel, Nicolette; Kleinschmit, Jessica; Desbordes, Charles
2013-02-01
In previous studies performed by our group, we observed that 2-deoxyglucose blocked the acidification of the medium used for culture of colon cancer cells caused by incubation with biguanides and it had an additive inhibitory effect on growth. In the present work, we found that 3-bromopyruvate can also prevent the lowering of pH caused by biguanide treatment. 3-Bromopyruvate inhibited colonic cancer cell proliferation, but the effect was not always additive to that of biguanides and an additive effect was more notable in combined treatment with 3-bromopyruvate and 2-deoxyglucose. The induction of alkaline phosphatase activity by butyrate was not consistently affected by combination with other agents that modified glucose metabolism. The drug combinations that were examined inhibited proliferation of wild-type and p53-null cells and affected colonic cancer lines with different growth rates.
Lea, Michael A.; Qureshi, Mehreen S.; Buxhoeveden, Michael; Gengel, Nicolette; Kleinschmit, Jessica; desBordes, Charles
2013-01-01
In previous studies we observed that 2-deoxyglucose blocked the acidification of the medium used for culture of colon cancer cells caused by incubation with biguanides and had an additive inhibitory effect on growth. In the present work, we found that 3-bromopyruvate can also prevent the lowering of pH caused by biguanide treatment. 3-Bromopyruvate inhibited colonic cancer cell proliferation but the effect was not always additive to that of biguanides and an additive effect was more notable in combined treatment with 3-bromopyruvate and 2-deoxyglucose. The induction of alkaline phosphatase activity by butyrate was not consistently affected by combination with other agents that modified glucose metabolism. The drug combinations that were examined inhibited proliferation of wild-type and P53 null cells and affected colonic cancer lines with different growth rates. PMID:23393330
Ortiz, Mario I
2012-01-02
Recent evidence has shown that systemic administration of sulfonylureas and biguanides block the diclofenac-induced antinociception, but not the effect produced by indomethacin. However, there are no reports about the peripheral interaction between analgesics and the biguanides metformin and phenformin. Therefore, this work was undertaken to determine whether glibenclamide and glipizide and the biguanides metformin and phenformin have any effect on the peripheral antinociception induced by diclofenac and indomethacin. Diclofenac and indomethacin were administered locally in the formalin-injured rat paw, and the antinociceptive effect was evaluated using the 1% formalin test. To determine whether peripheral antinociception induced by diclofenac or indomethacin was mediated by either the ATP-sensitive K(+) channels or biguanides-induced mechanisms, the effect of pretreatment with the appropriates vehicles or glibenclamide, glipizide, metformin and phenformin on the antinociceptive effect induced by local peripheral diclofenac and indomethacin was assessed. Local peripheral injections of diclofenac (50-200 μg/paw) and indomethacin (200-800 μg/paw) produced a dose-dependent antinociception during the second phase of the test. Local pretreatment with glibenclamide, glipizide, metformin and phenformin blocked the diclofenac-induced antinociception. On the other hand, the pretreatment with glibenclamide and glipizide did not prevent the local antinociception produced by indomethacin. Nonetheless, metformin and phenformin reversed the local antinociception induced by indomethacin. Data suggest that diclofenac could activate the K(+) channels and biguanides-dependent mechanisms to produce its peripheral antinociceptive effects in the formalin test. Likewise, a biguanides-dependent mechanism could be activated by indomethacin consecutively to generate its peripheral antinociceptive effect. Copyright © 2011 Elsevier Inc. All rights reserved.
Selective inhibition of deactivated mitochondrial complex I by biguanides.
Matsuzaki, Satoshi; Humphries, Kenneth M
2015-03-24
Biguanides are widely used antihyperglycemic agents for diabetes mellitus and prediabetes treatment. Complex I is the rate-limiting step of the mitochondrial electron transport chain (ETC), a major source of mitochondrial free radical production, and a known target of biguanides. Complex I has two reversible conformational states, active and de-active. The deactivated state is promoted in the absence of substrates but is rapidly and fully reversed to the active state in the presence of NADH. The objective of this study was to determine the relative sensitivity of active/de-active complex I to biguanide-mediated inhibition and resulting superoxide radical (O₂(•⁻)) production. Using isolated rat heart mitochondria, we show that deactivation of complex I sensitizes it to metformin and phenformin (4- and 3-fold, respectively), but not to other known complex I inhibitors, such as rotenone. Mitochondrial O₂(•⁻) production by deactivated complex I was measured fluorescently by NADH-dependent 2-hydroxyethidium formation at alkaline pH to impede reactivation. Superoxide production was 260.4% higher than in active complex I at pH 9.4. However, phenformin treatment of de-active complex I decreased O₂(•⁻) production by 14.9%, while rotenone increased production by 42.9%. Mitochondria isolated from rat hearts subjected to cardiac ischemia, a condition known to induce complex I deactivation, were sensitized to phenformin-mediated complex I inhibition. This supports the idea that the effects of biguanides are likely to be influenced by the complex I state in vivo. These results demonstrate that the complex I active and de-active states are a determinant in biguanide-mediated inhibition.
Comparison of gene expression changes induced by biguanides in db/db mice liver.
Heishi, Masayuki; Hayashi, Koji; Ichihara, Junji; Ishikawa, Hironori; Kawamura, Takao; Kanaoka, Masaharu; Taiji, Mutsuo; Kimura, Toru
2008-08-01
Large-scale clinical studies have shown that the biguanide drug metformin, widely used for type 2 diabetes, to be very safe. By contrast, another biguanide, phenformin, has been withdrawn from major markets because of a high incidence of serious adverse effects. The difference in mode of action between the two biguanides remains unclear. To gain insight into the different modes of action of the two drugs, we performed global gene expression profiling using the livers of obese diabetic db/db mice after a single administration of phenformin or metformin at levels sufficient to cause a significant reduction in blood glucose level. Metformin induced modest expression changes, including G6pc in the liver as previously reported. By contrast, phenformin caused changes in expression level of many additional genes. We used a knowledge-based bioinformatic analysis to study the effects of phenformin. Differentially expressed genes identified in this study constitute a large gene network, which may be related to cell death, inflammation or wound response. Our results suggest that the two biguanides show a similar hypoglycemic effect in db/db mice, but phenformin induces a greater stress on the liver even a short time after a single administration. These findings provide a novel insight into the cause of the relatively high occurrence of serious adverse effect after phenformin treatment.
Selective Inhibition of Deactivated Mitochondrial Complex I by Biguanides †
Matsuzaki, Satoshi; Humphries, Kenneth M.
2015-01-01
Biguanides are widely used antihyperglycemic agents for diabetes mellitus and prediabetes treatment. Complex I is the rate limiting step of the mitochondrial electron transport chain (ETC), a major source of mitochondrial free radical production, and a known target of biguanides. Complex I has two reversible conformational states, active and de-active. The deactivated state is promoted in the absence of substrates, but is rapidly and fully reversed to the active state in the presence of NADH. The objective of this study was to determine the relative sensitivity of active/de-active complex I to biguanide-mediated inhibition and resulting superoxide radical (O2•−) production. Using isolated rat heart mitochondria, we show that deactivation of complex I sensitizes it to metformin and phenformin (4- and 3-fold, respectively), but not to other known complex I inhibitors, such as rotenone. Mitochondrial O2•− production by deactivated complex I was measured fluorescently by the NADH-dependent 2-hydroxyethidium formation at alkaline pH to impede reactivation. Superoxide production was 260.4% higher than in active complex I at pH 9.4. However, phenformin treatment of de-active complex I decreased O2•− production by 14.9% while rotenone increased production by 42.9%. Mitochondria isolated from rat hearts subjected to cardiac ischemia, a condition known to induce complex I deactivation, were sensitized to phenformin:mediated complex I inhibition. This supports that the effects of biguanides are likely to be influenced by the complex I state in vivo. These results demonstrate that the complex I active/de-active states are a determinant in biguanide-mediated inhibition. PMID:25719498
Safonova, O A; Popova, T N; Kryl'skii, D V
2016-01-01
It was studied the total antioxidant activity, content of primary lipid peroxidation (LPO) products and reduced glutathione, and the activity of glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase, and NADP-isocitrate dehydrogenase in rat tissues under phenylethyl biguanide (phenfor- min) action on the background of experimental brain ischemia/reperfusion development. It is stablished the analyzed parameters, increasing under ischemia/reperfusion conditions in the brain and blood serum of animals, exhibit a decrease upon the introduction of this biguanide derivative. The obtained data can be explained by a decrease in degree of mobilization of the antioxidant system--in particular, of its glutathione chain--in the pathologic state. Hence, there is a need in NADPH supply for the system functioning compared with the pathology. Thus, phenylethyl biguanide demonstrates its antioxidant and protective properties under oxidative stress development that is accompanied by accumulation of the products of free radical oxidation of biomolecules during the ischemic brain injury.
Relevance of the OCT1 transporter to the antineoplastic effect of biguanides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segal, Eric D.; Yasmeen, Amber; Beauchamp, Marie-Claude
2011-11-04
Highlights: Black-Right-Pointing-Pointer siRNA knockdown of OCT1 reduced sensitivity of EOC cells to metformin, but not to another biguanide, phenformin. Black-Right-Pointing-Pointer Suppression of OCT1 also affects the activation of AMP kinase in response to metformin, but not to phenformin. Black-Right-Pointing-Pointer Direct actions of metformin may be limited by low OCT1 expression in EOC tumors. Black-Right-Pointing-Pointer Phenformin could be used as an alternative biguanide. -- Abstract: Epidemiologic and laboratory data suggesting that metformin has antineoplastic activity have led to ongoing clinical trials. However, pharmacokinetic issues that may influence metformin activity have not been studied in detail. The organic cation transporter 1 (OCT1)more » is known to play an important role in cellular uptake of metformin in the liver. We show that siRNA knockdown of OCT1 reduced sensitivity of epithelial ovarian cancer cells to metformin, but interestingly not to another biguanide, phenformin, with respect to both activation of AMP kinase and inhibition of proliferation. We observed that there is heterogeneity between primary human tumors with respect to OCT1 expression. These results suggest that there may be settings where drug uptake limits direct action of metformin on neoplastic cells, raising the possibility that metformin may not be the optimal biguanide for clinical investigation.« less
Bernauer, Ulrike
2015-12-01
Conclusion of the opinion: On the basis of the data available, the SCCS concludes that Polyaminopropyl Biguanide (PHMB) is not safe for consumers when used as a preservative in cosmetic spray formulations and in all cosmetic products up to the maximum concentration of 0.3%. The safe use could be based on a lower use concentration and/or restrictions with regard to cosmetic products' categories. Dermal absorption studies on additional representative cosmetic formulations are needed. PHMB is used in a variety of applications other than cosmetics. General exposure data from sources others than cosmetics should be submitted for the assessment of the aggregate exposure of PHMB. Copyright © 2015. Published by Elsevier Inc.
Targeting Metabolic Survival Pathways in Lung Cancer via Combination Therapy
2014-06-01
B1, non-small cell lung cancer, glutamine metabolism, biguanides 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18 . NUMBER OF...combination therapy (months 15-16) Task 5. In vivo testing of biguanide and glutamine metabolism inhibitors in xenograft models of LKB1-proficient and...combination therapies in xenograft mice (months 12-15) IACUC and ACURO approval have been granted for in vivo xenograft studies, which will commence in
Drahota, Z; Palenickova, E; Endlicher, R; Milerova, M; Brejchova, J; Vosahlikova, M; Svoboda, P; Kazdova, L; Kalous, M; Cervinkova, Z; Cahova, M
2014-01-01
In this study, we focused on an analysis of biguanides effects on mitochondrial enzyme activities, mitochondrial membrane potential and membrane permeability transition pore function. We used phenformin, which is more efficient than metformin, and evaluated its effect on rat liver mitochondria and isolated hepatocytes. In contrast to previously published data, we found that phenformin, after a 5 min pre-incubation, dose-dependently inhibits not only mitochondrial complex I but also complex II and IV activity in isolated mitochondria. The enzymes complexes inhibition is paralleled by the decreased respiratory control index and mitochondrial membrane potential. Direct measurements of mitochondrial swelling revealed that phenformin increases the resistance of the permeability transition pore to Ca(2+) ions. Our data might be in agreement with the hypothesis of Schäfer (1976) that binding of biguanides to membrane phospholipids alters membrane properties in a non-specific manner and, subsequently, different enzyme activities are modified via lipid phase. However, our measurements of anisotropy of fluorescence of hydrophobic membrane probe diphenylhexatriene have not shown a measurable effect of membrane fluidity with the 1 mM concentration of phenformin that strongly inhibited complex I activity. Our data therefore suggest that biguanides could be considered as agents with high efficacy but low specifity.
Langmaier, Jan; Pižl, Martin; Samec, Zdeněk; Záliš, Stanislav
2016-09-22
Ion transfer voltammetry is used to estimate the acid dissociation constants Ka1 and Ka2 of the mono- and diprotonated forms of the biguanide drugs metformin (MF), phenformin (PF), and 1-phenylbiguanide (PB) in an aqueous solution. Measurements gave the pKa1 values for MFH(+), PFH(+), and PBH(+) characterizing the basicity of MF, PF, and PB, which are significantly higher than those reported in the literature. As a result, the monoprotonated forms of these biguanides should prevail in a considerably broader range of pH 1-15 (MFH(+), PFH(+)) and 2-13 (PBH(+)). DFT calculations with solvent correction were performed for possible tautomeric forms of neutral, monoprotonated, and diprotonated species. Extreme basicity of all drugs is confirmed by DFT calculations of pKa1 for the most stable tautomers of the neutral and protonated forms with explicit water molecules in the first solvation sphere included.
Rohrer, Nadine; Widmer, Andreas F; Waltimo, Tuomas; Kulik, Eva M; Weiger, Roland; Filipuzzi-Jenny, Elisabeth; Walter, Clemens
2010-07-01
Use of oral antiseptics decreases the bacterial load in the oral cavity. To compare the antimicrobial activity of 3 novel oral antiseptics with that of chlorhexidine, which is considered the "gold standard" of oral hygiene. Comparative in vitro study. Four common oral microorganisms (Streptococcus sanguinis, Streptococcus mutans, Candida albicans, and Fusobacterium nucleatum) were tested under standard conditions and at different concentrations, by use of a broth dilution assay and an agar diffusion assay and by calculating the log10 reduction factor (RF). The antimicrobial activity of each antiseptic was assessed by counting the difference in bacterial densities (ie, the log10 number of colony-forming units of bacteria) before and after the disinfection process. The oral antiseptics containing octenidine (with an RF in the range of 7.1-8.24 CFU/mL) and polyhexamethylene biguanide (with an RF in the range of 7.1-8.24 CFU/mL) demonstrated antimicrobial activity comparable to that of chlorhexidine (with an RF in the range of 1.03-8.24 CFU/mL), whereas the mouth rinse containing Citroxx (Citroxx Biosciences; with an RF in the range of 0.22-1.36 CFU/mL) showed significantly weaker antimicrobial efficacy. Overall, octenidine and polyhexamethylene biguanide were more active at lower concentrations.conclusion. Oral antiseptics containing the antimicrobial agent octenidine or polyhexamethylene biguanide may be considered as potent alternatives to chlorhexidine-based preparations.
Zhu, Zongjian; Jiang, Weiqin; Thompson, Matthew D.; Echeverria, Dimas; McGinley, John N.; Thompson, Henry J.
2015-01-01
Metformin is a widely prescribed drug for the treatment of type-2 diabetes. Although epidemiological data have provided a strong rationale for investigating the potential of this biguanide for use in cancer prevention and control, uncertainty exists whether metformin should be expected to have an impact in non-diabetic patients. Furthermore, little attention has been given to the possibility that other biguanides may have anticancer activity. In this study, the effects of clinically relevant doses of metformin (9.3mmol/kg diet), buformin (7.6 mmol/kg diet), and phenformin (5.0 mmol/kg diet) were compared to rats fed control diet (AIN93-G) during the post initiation stage of 1-methyl-1-nitrosourea-induced (50 mg/kg body weight) mammary carcinogenesis (n = 30/group). Plasma, liver, skeletal muscle, visceral fat, mammary gland, and mammary carcinoma concentrations of the biguanides were determined. In comparison to the control group, buformin decreased cancer incidence, multiplicity, and burden; whereas, metformin and phenformin had no statistically significant effect on the carcinogenic process relative to the control group. Buformin did not alter fasting plasma glucose or insulin. Within mammary carcinomas, evidence was obtained that buformin treatment perturbed signaling pathways related to energy sensing. However, further investigation is needed to determine the relative contributions of host systemic and cell autonomous mechanisms to the anticancer activity of biguanides such as buformin. PMID:25804611
A comparison of uptake of metformin and phenformin mediated by hOCT1 in human hepatocytes.
Sogame, Yoshihisa; Kitamura, Atsushi; Yabuki, Masashi; Komuro, Setsuko
2009-11-01
Metformin, a biguanide that has been used to treat type 2 diabetes mellitus, is reportedly transported into human hepatocytes by human organic cation transporter 1 (hOCT1). The objective of this study was to investigate differences in the hepatic uptake of metformin and phenformin, a biguanide derivative similar to metformin. Special focus was on the role of active transport into cells. Experiments were therefore performed using human cryopreserved hepatocytes and hOCT1 expressing oocytes. Both biguanides proved to be good substrates for hOCT1. However, phenformin exhibited a much higher affinity and transport activity, with a marked difference in uptake kinetics compared with metformin. Both biguanides were transported actively by hOCT1, with the active transport components much greater than passive transport components in both cases, suggesting that functional changes in hOCT1 might affect the transport of both compounds to the same degree. This study for the first time produced detailed comparative findings for uptake profiles of metformin and phenformin in human hepatocytes and hOCT1 expressing oocytes. It is considered that hOCT1 may not be the only key factor that determines the frequency of metformin and phenformin toxicity, considering the major contribution of this transporter to the total hepatic uptake and comparable width of their therapeutic concentrations.
Turban, Sophie; Stretton, Clare; Drouin, Olivier; Green, Charlotte J.; Watson, Maria L.; Gray, Alexander; Ross, Fiona; Lantier, Louise; Viollet, Benoit; Hardie, D. Grahame; Marette, Andre; Hundal, Harinder S.
2012-01-01
The importance of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) as effectors of metformin (Met) action on glucose uptake (GU) in skeletal muscle cells was investigated. GU in L6 myotubes was stimulated 2-fold following 16 h of Met treatment and acutely enhanced by insulin in an additive fashion. Insulin-stimulated GU was sensitive to PI3K inhibition, whereas that induced by Met was not. Met and its related biguanide, phenformin, stimulated AMPK activation/phosphorylation to a level comparable with that induced by the AMPK activator, 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR). However, the increase in GU elicited by AICAR was significantly lower than that induced by either biguanide. Expression of a constitutively active AMPK mimicked the effects of AICAR on GU, whereas a dominant interfering AMPK or shRNA silencing of AMPK prevented AICAR-stimulated GU and Met-induced AMPK signaling but only repressed biguanide-stimulated GU by ∼20%. Consistent with this, analysis of GU in muscle cells from α1−/−/α2−/− AMPK-deficient mice revealed a significant retention of Met-stimulated GU, being reduced by ∼35% compared with that of wild type cells. Atypical PKCs (aPKCs) have been implicated in Met-stimulated GU, and in line with this, Met and phenformin induced activation/phosphorylation of aPKC in L6 myotubes. However, although cellular depletion of aPKC (>90%) led to loss in biguanide-induced aPKC phosphorylation, it had no effect on Met-stimulated GU, whereas inhibitors targeting novel/conventional PKCs caused a significant reduction in biguanide-induced GU. Our findings indicate that although Met activates AMPK, a significant component of Met-stimulated GU in muscle cells is mediated via an AMPK-independent mechanism that involves novel/conventional PKCs. PMID:22511782
Han, Ye Eon; Hwang, Sena; Kim, Jin Hee; Byun, Jung Woo; Yoon, Jin Sook; Lee, Eun Jig
2018-04-01
It was hypothesized that the biguanides metformin and phenformin, which are anti-hyperglycemic drugs used for diabetes mellitus, would have therapeutic effects in an in vitro model of Graves' orbitopathy (GO). Because adipogenesis, hyaluronan production, and inflammation are considered important in the pathogenesis of GO, this study aimed to determine the therapeutic effects and underlying mechanisms of biguanides on these parameters. In vitro experiments were performed using primary cultured orbital fibroblasts from patients with GO. Orbital preadipocyte fibroblasts were allowed to differentiate into adipocytes and were treated with various concentrations of metformin or phenformin. Oil Red O staining was performed to evaluate lipid accumulation within the cells. Western blot analysis was used to measure the expression of adipogenic transcription factors and the phosphorylation of AMP-activated protein kinase and mitogen-activated protein kinase signaling proteins. Hyaluronan production was measured using enzyme-linked immunosorbent assay, and mRNA levels of proinflammatory molecules were determined using real-time polymerase chain reaction after interleukin (IL)-1β stimulation with or without biguanide treatment. Lipid accumulation during adipogenesis in GO orbital fibroblasts was dose-dependently suppressed by both metformin and phenformin. Adipocyte differentiation was attenuated, and the adipogenic transcription factors peroxisome proliferator-activated receptor γ and CCAAT-enhancer-binding proteins-α/β were downregulated. Furthermore, metformin and phenformin increased the phosphorylation of AMP-activated protein kinase and suppressed extracellular-regulated kinase activation. The IL-1β-induced hyaluronan production and mRNA expression of IL-6, cyclooxygenase-2, and intercellular adhesion molecule-1 were also significantly suppressed after metformin or phenformin co-treatment. The present study indicates that the biguanides metformin and phenformin exert an anti-adipogenic and inhibitory effect on hyaluronan production and expression of pro-inflammatory molecules in GO orbital fibroblasts, suggesting that they could potentially be used for the treatment of GO.
Turban, Sophie; Stretton, Clare; Drouin, Olivier; Green, Charlotte J; Watson, Maria L; Gray, Alexander; Ross, Fiona; Lantier, Louise; Viollet, Benoit; Hardie, D Grahame; Marette, Andre; Hundal, Harinder S
2012-06-08
The importance of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) as effectors of metformin (Met) action on glucose uptake (GU) in skeletal muscle cells was investigated. GU in L6 myotubes was stimulated 2-fold following 16 h of Met treatment and acutely enhanced by insulin in an additive fashion. Insulin-stimulated GU was sensitive to PI3K inhibition, whereas that induced by Met was not. Met and its related biguanide, phenformin, stimulated AMPK activation/phosphorylation to a level comparable with that induced by the AMPK activator, 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (AICAR). However, the increase in GU elicited by AICAR was significantly lower than that induced by either biguanide. Expression of a constitutively active AMPK mimicked the effects of AICAR on GU, whereas a dominant interfering AMPK or shRNA silencing of AMPK prevented AICAR-stimulated GU and Met-induced AMPK signaling but only repressed biguanide-stimulated GU by ∼20%. Consistent with this, analysis of GU in muscle cells from α1(-/-)/α2(-/-) AMPK-deficient mice revealed a significant retention of Met-stimulated GU, being reduced by ∼35% compared with that of wild type cells. Atypical PKCs (aPKCs) have been implicated in Met-stimulated GU, and in line with this, Met and phenformin induced activation/phosphorylation of aPKC in L6 myotubes. However, although cellular depletion of aPKC (>90%) led to loss in biguanide-induced aPKC phosphorylation, it had no effect on Met-stimulated GU, whereas inhibitors targeting novel/conventional PKCs caused a significant reduction in biguanide-induced GU. Our findings indicate that although Met activates AMPK, a significant component of Met-stimulated GU in muscle cells is mediated via an AMPK-independent mechanism that involves novel/conventional PKCs.
Velez, Juliana; Pan, Rongqing; Lee, Jason T.C.; Enciso, Leonardo; Suarez, Marta; Duque, Jorge Eduardo; Jaramillo, Daniel; Lopez, Catalina; Morales, Ludis; Bornmann, William; Konopleva, Marina; Krystal, Gerald; Andreeff, Michael; Samudio, Ismael
2016-01-01
Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax. PMID:27283492
Velez, Juliana; Pan, Rongqing; Lee, Jason T C; Enciso, Leonardo; Suarez, Marta; Duque, Jorge Eduardo; Jaramillo, Daniel; Lopez, Catalina; Morales, Ludis; Bornmann, William; Konopleva, Marina; Krystal, Gerald; Andreeff, Michael; Samudio, Ismael
2016-08-09
Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax.
Zhu, Zongjian; Jiang, Weiqin; Thompson, Matthew D; Echeverria, Dimas; McGinley, John N; Thompson, Henry J
2015-06-01
Metformin is a widely prescribed drug for the treatment of type II diabetes. Although epidemiologic data have provided a strong rationale for investigating the potential of this biguanide for use in cancer prevention and control, uncertainty exists whether metformin should be expected to have an impact in nondiabetic patients. Furthermore, little attention has been given to the possibility that other biguanides may have anticancer activity. In this study, the effects of clinically relevant doses of metformin (9.3 mmol/kg diet), buformin (7.6 mmol/kg diet), and phenformin (5.0 mmol/kg diet) were compared with rats fed control diet (AIN93-G) during the post-initiation stage of 1-methyl-1-nitrosourea-induced (50 mg/kg body weight) mammary carcinogenesis (n = 30/group). Plasma, liver, skeletal muscle, visceral fat, mammary gland, and mammary carcinoma concentrations of the biguanides were determined. In comparison with the control group, buformin decreased cancer incidence, multiplicity, and burden, whereas metformin and phenformin had no statistically significant effect on the carcinogenic process relative to the control group. Buformin did not alter fasting plasma glucose or insulin. Within mammary carcinomas, evidence was obtained that buformin treatment perturbed signaling pathways related to energy sensing. However, further investigation is needed to determine the relative contributions of host systemic and cell autonomous mechanisms to the anticancer activity of biguanides such as buformin. ©2015 American Association for Cancer Research.
Oxygen consumption is depressed in patients with lactic acidosis due to biguanide intoxication.
Protti, Alessandro; Russo, Riccarda; Tagliabue, Paola; Vecchio, Sarah; Singer, Mervyn; Rudiger, Alain; Foti, Giuseppe; Rossi, Anna; Mistraletti, Giovanni; Gattinoni, Luciano
2010-01-01
Lactic acidosis can develop during biguanide (metformin and phenformin) intoxication, possibly as a consequence of mitochondrial dysfunction. To verify this hypothesis, we investigated whether body oxygen consumption (VO2), that primarily depends on mitochondrial respiration, is depressed in patients with biguanide intoxication. Multicentre retrospective analysis of data collected from 24 patients with lactic acidosis (pH 6.93 +/- 0.20; lactate 18 +/- 6 mM at hospital admission) due to metformin (n = 23) or phenformin (n = 1) intoxication. In 11 patients, VO2 was computed as the product of simultaneously recorded arterio-venous difference in O2 content [C(a-v)O2] and cardiac index (CI). In 13 additional cases, C(a-v)O2, but not CI, was available. On day 1, VO2 was markedly depressed (67 +/- 28 ml/min/m2) despite a normal CI (3.4 +/- 1.2 L/min/m2). C(a-v)O2 was abnormally low in both patients either with (2.0 +/- 1.0 ml O2/100 ml) or without (2.5 +/- 1.1 ml O2/100 ml) CI (and VO2) monitoring. Clearance of the accumulated drug was associated with the resolution of lactic acidosis and a parallel increase in VO2 (P < 0.001) and C(a-v)O2 (P < 0.05). Plasma lactate and VO2 were inversely correlated (R2 0.43; P < 0.001, n = 32). VO2 is abnormally low in patients with lactic acidosis due to biguanide intoxication. This finding is in line with the hypothesis of inhibited mitochondrial respiration and consequent hyperlactatemia.
NASA Astrophysics Data System (ADS)
Tepanov, A. A.; Nechaeva, N. L.; Prokopkina, T. A.; Kudrinskiy, A. A.; Kurochkin, I. N.; Lisichkin, G. V.
2015-11-01
The detection of thiocholine is one of the most widespread techniques for estimation of the cholinesterase activity - acetylcholinesterase and butyrylcholinesterase. Both cholinesterases can be inhibited by organophosphates and carbamates and accordingly can be considered for estimation of these pollutants in the environment. In the current work, SERS spectroscopy was applied for the thiocholine detection. The Ag electrodes modified with silver nanoparticles stabilized by polyhexamethylene biguanide were for the first time suggested as SERS-substrates for that purpose. Such electrodes can be applicable for SERS detection of submicromolar concentrations of thiocholine.
Dykens, James A; Jamieson, Joseph; Marroquin, Lisa; Nadanaciva, Sashi; Billis, Puja A; Will, Yvonne
2008-12-01
As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanide toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction.
Steinbach, William J.; Schell, Wiley A.; Miller, Jackie L.; Perfect, John R.
2003-01-01
Scedosporium species are increasingly isolated from immunocompromised and immunocompetent patients. Unfortunately, Scedosporium infections are generally resistant to amphotericin B, and Scedosporium prolificans strains are particularly resistant to the antifungal agents now in use. We report here on an immunocompetent child with S. prolificans-associated osteomyelitis successfully treated with debridement, local irrigation with polyhexamethylene biguanide, and the systemic administration of voriconazole and caspofungin despite poor in vitro activity of voriconazole alone against the isolate. We also review the treatments and outcomes of 28 reported cases of osteomyelitis or septic arthritis caused by Scedosporium species in immunocompetent patients. PMID:12904435
Wang, Zhi Dong; Wei, Sheng Quan; Wang, Qin Yi
2015-01-01
Tumors require a vascular supply to grow and can achieve this via the expression of pro-angiogenic growth factors. Many potential oncogenic mutations have been identified in tumor angiogenesis. Somatic mutations in the small GTPase KRAS are the most common activating lesions found in human cancer, and are generally associated with poor response to standard therapies. Biguanides, such as the diabetes therapeutics metformin and phenformin, have demonstrated anti-tumor activity both in vitro and in vivo. The extracellular regulated protein kinases (ERK) signaling is known to be a major cellular target of biguanides. Based on KRAS activates several down-stream effectors leading to the stimulation of the RAF/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAF/MEK/ERK) and phosphatidylinositol-3-kinase (PI3K) pathways, we investigated the anti-tumor effects of biguanides on the proliferation of KRAS-mutated tumor cells in vitro and on KRAS-driven tumor growth in vivo. In cancer cells harboring oncogenic KRAS, phenformin switches off the ERK pathway and inhibit the expression of pro-angiogenic molecules. In tumor xenografts harboring the KRAS mutation, phenformin extensively modifies the tumor growth causing abrogation of angiogenesis. These results strongly suggest that significant therapeutic advantage may be achieved by phenformin anti-angiogenesis for the treatment of tumor.
Comparison of potential risks of lactic acidosis induction by biguanides in rats.
Bando, Kiyoko; Ochiai, Shoko; Kunimatsu, Takeshi; Deguchi, Jiro; Kimura, Juki; Funabashi, Hitoshi; Seki, Takaki
2010-10-01
Lactic acidosis has been considered to be a side effect of some biguanides, after phenformin was withdrawn from the market because of its association with lactic acidosis. The potential of lactic acidosis induced by biguanides at human therapeutic exposure levels, however, has not been examined. Then, we compared the risk of lactic acid at doses providing exposure levels comparable to human therapeutic doses. Metformin and phenformin were orally administered to rats for up to 28 days, and plasma drug concentrations and blood lactic acid levels were examined. Metformin did not elevate lactic acid levels at the dose corresponding to higher systemic drug exposure than human therapeutic level, even for repeated doses. In contrast, phenformin elevated lactic acid levels at the dose corresponding to lower exposure than human therapeutic level, and sustained high levels were observed up to 24h post-dose; furthermore, these changes were enhanced by repeated doses. Direct comparison at each rat equivalent dose clearly indicated that lactic acid levels of phenformin were higher than those of metformin. These non-clinical findings suggest that metformin dose not increase lactic acid levels like phenformin does, and therefore may not increase the risk for lactic acidosis at human therapeutic exposure level. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Ohnishi, Shiho; Mizutani, Hideki; Kawanishi, Shosuke
2016-08-01
Metformin (N,N-dimethylbiguanide), buformin (1-butylbiguanide), and phenformin (1-phenethylbiguanide) are anti-diabetic biguanide drugs, expected to having anti-cancer effect. The mechanism of anti-cancer effect by these drugs is not completely understood. In this study, we demonstrated that these drugs dramatically enhanced oxidative DNA damage under oxidative condition. Metformin, buformin, and phenformin enhanced generation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in isolated DNA reacted with hydrogen peroxide (H2O2) and Cu(II), although these drugs did not form 8-oxodG in the absence of H2O2 or Cu(II). An electron paramagnetic resonance (EPR) study, utilizing alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone and 3,3,5,5-tetramethyl-1-pyrroline-N-oxide as spin trapping agents, showed that nitrogen-centered radicals were generated from biguanides in the presence of Cu(II) and H2O2, and that these radicals were decreased by the addition of DNA. These results suggest that biguanides enhance Cu(II)/H2O2-mediated 8-oxodG generation via nitrogen-centered radical formation. The enhancing effect on oxidative DNA damage may play a role on anti-cancer activity.
lncRNA NBR2 modulates cancer cell sensitivity to phenformin through GLUT1.
Liu, Xiaowen; Gan, Boyi
2016-12-16
Biguanides, including metformin (widely used in diabetes treatment) and phenformin, are AMP-activated protein kinase (AMPK) activators and potential drugs for cancer treatment. A more in-depth understanding of how cancer cells adapt to biguanide treatment may provide important therapeutic implications to achieve more effective and rational cancer therapies. NBR2 is a glucose starvation-induced long non-coding RNA (lncRNA) that interacts with AMPK and regulates AMPK activity upon glucose starvation. Here we show that phenformin treatment induces NBR2 expression, and NBR2 deficiency sensitizes cancer cells to phenformin-induced cell death. Surprisingly, unlike glucose starvation, phenformin does not induce NBR2 interaction with AMPK, and correspondingly, NBR2 deficiency does not affect phenformin-induced AMPK activation. We further reveal that NBR2 depletion attenuates phenformin-induced glucose transporter GLUT1 expression and glucose uptake. GLUT1 deficiency sensitizes cancer cells to phenformin-induced cell death, whereas GLUT1 restoration in NBR2 deficient cells rescues the increased cell death upon phenformin treatment. Together, the results of our study reveal that NBR2-GLUT1 axis may serve as an adaptive response in cancer cells to survive in response to phenformin treatment, and identify a novel mechanism coupling lncRNA to biguanide-mediated biology.
lncRNA NBR2 modulates cancer cell sensitivity to phenformin through GLUT1
Liu, Xiaowen; Gan, Boyi
2016-01-01
ABSTRACT Biguanides, including metformin (widely used in diabetes treatment) and phenformin, are AMP-activated protein kinase (AMPK) activators and potential drugs for cancer treatment. A more in-depth understanding of how cancer cells adapt to biguanide treatment may provide important therapeutic implications to achieve more effective and rational cancer therapies. NBR2 is a glucose starvation-induced long non-coding RNA (lncRNA) that interacts with AMPK and regulates AMPK activity upon glucose starvation. Here we show that phenformin treatment induces NBR2 expression, and NBR2 deficiency sensitizes cancer cells to phenformin-induced cell death. Surprisingly, unlike glucose starvation, phenformin does not induce NBR2 interaction with AMPK, and correspondingly, NBR2 deficiency does not affect phenformin-induced AMPK activation. We further reveal that NBR2 depletion attenuates phenformin-induced glucose transporter GLUT1 expression and glucose uptake. GLUT1 deficiency sensitizes cancer cells to phenformin-induced cell death, whereas GLUT1 restoration in NBR2 deficient cells rescues the increased cell death upon phenformin treatment. Together, the results of our study reveal that NBR2-GLUT1 axis may serve as an adaptive response in cancer cells to survive in response to phenformin treatment, and identify a novel mechanism coupling lncRNA to biguanide-mediated biology. PMID:27792451
Cabeça, Tatiane Karen; Pizzolitto, Antonio Carlos; Pizzolitto, Elisabeth Loshchagin
2012-01-01
The purpose of this study was to investigate and compare the efficacy of various disinfectants on planktonic cells and biofilm cells of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli. Numbers of viable biofilm cells decreased after treatment with all tested disinfectants (iodine, biguanide, quaternary ammonium compounds, peracetic acid and sodium hypochlorite). Sodium hypochlorite was the most effective disinfectant against biofilm cells, while biguanide was the least effective. Scanning electron microscopy observations revealed that cells adhered on stainless steel surface after treatment with the disinfectants. No viable planktonic cells were observed after treatment with the same disinfectants. Based on our findings, we concluded that biofilm cells might be more resistant to disinfectants than plancktonic cells. PMID:24031935
Liver uptake of biguanides in rats.
Sogame, Yoshihisa; Kitamura, Atsushi; Yabuki, Masashi; Komuro, Setsuko
2011-09-01
Metformin is an oral antihyperglycaemic agent widely used in the management of non-insulin-dependent diabetes mellitus. The liver is the primary target, metformin being taken up into human and rat hepatocytes via an active transport mechanism. The present study was designed to compare hepatic uptake of two biguanides, metformin and phenformin, in vitro and in vivo. In in vitro experiments, performed using rat cryopreserved hepatocytes, phenformin exhibited a much higher affinity and transport than metformin, with marked differences in kinetics. The K(m) values for metformin and phenformin were 404 and 5.17μM, respectively, with CLint (V(max)/K(m)) values 1.58μl/min per 10(6) cells and 34.7μl/min per 10(6) cells. In in vivo experiments, when (14)C-metformin and (14)C-phenformin were given orally to male rats at a dose of 50mg/kg, the liver concentrations of radioactivity at 0.5 hour after dosing were 21.5μg eq./g with metformin but 147.1μg eq./g for phenformin, ratios of liver to plasma concentrations being 4.2 and 61.3, respectively. In conclusion, the results suggest that uptake of biguanides by rat hepatocytes is in line with the liver distribution found in vivo, phenformin being more efficiently taken up by liver than metformin after oral administration. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Berstein, Lev M
2010-08-01
Comparing the experience accumulated for more than 40 years in the Laboratory of Endocrinology of Petrov Institute of Oncology (St Petersburg, Russia) with similar approaches practiced elsewhere, evidence supports the reasonability of metabolic rehabilitation of patients suffering from breast cancer or other hormone-dependent malignancies. The primary objective of such approaches is to improve treatment results by ameliorating hormonal-metabolic disturbances, including excess body fat, glucose intolerance, insulin resistance and manifestations of endocrine-genotoxic switchings, and modify tissue and cellular targets or mechanisms related or nondirectly related to the aforementioned disturbances. The relevant measures may be categorized as pharmacological (antidiabetic biguanides exemplified with metformin being most popular but not exclusive) and nonpharmacological (rational nutrition, moderate physical activity and so forth) and used separately or in different combinations.
Phenformin and lactic acidosis: a case report and review.
Kwong, S C; Brubacher, J
1998-01-01
Phenformin was removed from the U.S. market 20 years ago because of a high incidence of lactic acidosis. Unfortunately, this medication is still available from foreign sources. Another biguanide, metformin, was reintroduced to the United States market for the treatment of diabetes. Biguanide-induced lactic acidosis should be included in the differential diagnosis of elevated anion gap metabolic acidosis. We present a case of phenformin-induced lactic acidosis in which we were consulted at the local poison control center. We also review its pathophysiology, presentation, and treatment. A review of the actions of phenformin illustrates the mechanism of pathology that may also occur with metformin. Risk factors for the development of lactic acidosis include renal deficiency, hepatic disease, cardiac disease, and drug interaction such as cimetidine.
... normally and therefore cannot control the amount of sugar in the blood) in people whose diabetes cannot ... class of drugs called biguanides. Glyburide lowers blood sugar by causing the pancreas to produce insulin (a ...
Thevis, Mario; Geyer, Hans; Thomas, Andreas; Tretzel, Laura; Bailloux, Isabelle; Buisson, Corinne; Lasne, Francoise; Schaefer, Maximilian S; Kienbaum, Peter; Mueller-Stoever, Irmela; Schänzer, Wilhelm
2015-11-10
Chlorazanil (Ordipan, N-(4-chlorophenyl)-1,3,5-triazine-2,4-diamine) is a diuretic agent and as such prohibited in sport according to the regulations of the World Anti-Doping Agency (WADA). Despite its introduction into clinical practice in the late 1950s, the worldwide very first two adverse analytical findings were registered only in 2014, being motive for an in-depth investigation of these cases. Both individuals denied the intake of the drug; however, the athletes did declare the use of the antimalarial prophylactic agent proguanil due to temporary residences in African countries. A structural similarity between chlorazanil and proguanil is given but no direct metabolic relation has been reported in the scientific literature. Moreover, chlorazanil has not been confirmed as a drug impurity of proguanil. Proguanil however is metabolized in humans to N-(4-chlorophenyl)-biguanide, which represents a chemical precursor in the synthesis of chlorazanil. In the presence of formic acid, formaldehyde, or formic acid esters, N-(4-chlorophenyl)-biguanide converts to chlorazanil. In order to probe for potential sources of the chlorazanil detected in the doping control samples, drug formulations containing proguanil and urine samples of individuals using proguanil as antimalarial drug were subjected to liquid chromatography-high resolution/high accuracy mass spectrometry. In addition, in vitro simulations with 4-chlorophenyl-biguanide and respective reactants were conducted in urine and resulting specimens analyzed for the presence of chlorazanil. While no chlorazanil was found in drug formulations, the urine samples of 2 out of 4 proguanil users returned findings for chlorazanil at low ng/mL levels, similar to the adverse analytical findings in the doping control samples. Further, in the presence of formaldehyde, formic acid and related esters, 4-chlorophenyl-biguanide was found to produce chlorazanil in human urine, suggesting that the detection of the obsolete diuretic agent was indeed the result of artefact formation and not of the illicit use of a prohibited substance. Copyright © 2015 Elsevier B.V. All rights reserved.
Goonesekera, Sunali D; Yang, May H; Hall, Susan A; Fang, Shona C; Piccolo, Rebecca S; McKinlay, John B
2015-01-01
Objectives Numerous studies continue to report poorer glycaemic control, and a higher incidence of diabetes-related complications among African–Americans and Hispanic–Americans as compared with non-Hispanic Caucasians with type 2 diabetes. We examined racial/ethnic differences in receipt of hypoglycaemic medications and glycaemic control in a highly insured Massachusetts community sample of individuals with type 2 diabetes. Setting Community-based sample from Boston, Massachusetts, USA. Participants 682 patients with physician-diagnosed diabetes from the third wave of the Boston Area Community Health Survey (2010–2012). The study included approximately equal proportions of African–Americans, Hispanics and Caucasians. Methods We examined racial/ethnic disparities in diabetes treatment by comparing proportions of individuals on mutually exclusive diabetes treatment regimens across racial/ethnic subgroups. Using multivariable linear and logistic regression, we also examined associations between race/ethnicity and glycaemic control in the overall population, and within treatment regimens, adjusting for age, gender, income, education, health insurance, health literacy, disease duration, diet and physical activity. Results Among those treated (82%), the most commonly prescribed antidiabetic regimens were biguanides only (31%), insulin only (23%), and biguanides and insulin (16%). No overall racial/ethnic differences in treatment or glycaemic control (per cent difference for African–Americans: 6.18, 95% CI −1.00 to 13.88; for Hispanic–Americans: 1.01, 95% CI −10.42 to 12.75) were observed. Within regimens, we did not observe poorer glycaemic control for African–Americans prescribed biguanides only, insulin only or biguanides combined with insulin/sulfonylureas. However, African–Americans prescribed miscellaneous regimens had higher risk of poorer glycaemic control (per cent difference=23.37, 95% CI 7.25 to 43.33). There were no associations between glycaemic levels and Hispanic ethnicity overall, or within treatment regimens. Conclusions Findings suggest a lack of racial/ethnic disparities in diabetes treatment patterns and glycaemic control in this highly insured Massachusetts study population. Future studies are needed to understand impacts of increasing insurance coverage on racial/ethnic disparities in treatment patterns and related outcomes. PMID:25967997
Behrens-Baumann, Wolfgang J; Hofmüller, Wolfram; Tammer, Ina; Tintelnot, Kathrin
2018-04-28
To report on a wearer of rigid gas-permeable contact lenses with a keratomycosis due to Tintelnotia-a new genus of Phaeosphaeriaceae-treated with terbinafine and polyhexamethylene biguanide. Chart review of a patient with fungal keratitis treated additionally with systemic and topical terbinafine 0.25% after symptoms increased under conventional antimycotic therapy with voriconazole. Antifungal susceptibility had been tested in vitro. After starting an additional treatment with systemic and topical terbinafine, the severe corneal infection was sufficiently resolved. The drug was well tolerated without any neurological, dermatological or gastroenterological problems. Terbinafine revealed a marked in vitro antifungal activity of 0.12 µg/ml. The fungus was identified as Tintelnotia destructans. Terbinafine might be considered as a therapeutic option in severe cases of fungal keratitis refractory to common antifungal therapy.
Asao, Keiko; Kaminski, James; McEwen, Laura N.; Wu, Xiejian; Lee, Joyce M.; Herman, William H.
2014-01-01
Objective To evaluate the performance of three alternative methods to identify diabetes in patients visiting Emergency Departments (EDs), and to describe the characteristics of patients with diabetes who are not identified when the alternative methods are used. Research Design and Methods We used data from the National Hospital Ambulatory Medical Care Survey (NHAMCS) 2009 and 2010. We assessed the sensitivity and specificity of using providers’ diagnoses and diabetes medications (both excluding and including biguanides) to identify diabetes compared to using the checkbox for diabetes as the gold standard. We examined the characteristics of patients whose diabetes was missed using multivariate Poisson regression models. Results The checkbox identified 5,567 ED visits by adult patients with diabetes. Compared to the checkbox, the sensitivity was 12.5% for providers’ diagnoses alone, 20.5% for providers’ diagnoses and diabetes medications excluding biguanides, and 21.5% for providers’ diagnoses and diabetes medications including biguanides. The specificity of all three of the alternative methods was >99%. Older patients were more likely to have diabetes not identified. Patients with self-payment, those who had glucose measured or received IV fluids in the ED, and those with more diagnosis codes and medications, were more likely to have diabetes identified. Conclusions NHAMCS's providers’ diagnosis codes and medication lists do not identify the majority of patients with diabetes visiting EDs. The newly introduced checkbox is helpful in measuring ED resource utilization by patients with diabetes. PMID:24680472
Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides
NASA Astrophysics Data System (ADS)
Birsoy, Kıvanç; Possemato, Richard; Lorbeer, Franziska K.; Bayraktar, Erol C.; Thiru, Prathapan; Yucel, Burcu; Wang, Tim; Chen, Walter W.; Clish, Clary B.; Sabatini, David M.
2014-04-01
As the concentrations of highly consumed nutrients, particularly glucose, are generally lower in tumours than in normal tissues, cancer cells must adapt their metabolism to the tumour microenvironment. A better understanding of these adaptations might reveal cancer cell liabilities that can be exploited for therapeutic benefit. Here we developed a continuous-flow culture apparatus (Nutrostat) for maintaining proliferating cells in low-nutrient media for long periods of time, and used it to undertake competitive proliferation assays on a pooled collection of barcoded cancer cell lines cultured in low-glucose conditions. Sensitivity to low glucose varies amongst cell lines, and an RNA interference (RNAi) screen pinpointed mitochondrial oxidative phosphorylation (OXPHOS) as the major pathway required for optimal proliferation in low glucose. We found that cell lines most sensitive to low glucose are defective in the OXPHOS upregulation that is normally caused by glucose limitation as a result of either mitochondrial DNA (mtDNA) mutations in complex I genes or impaired glucose utilization. These defects predict sensitivity to biguanides, antidiabetic drugs that inhibit OXPHOS, when cancer cells are grown in low glucose or as tumour xenografts. Notably, the biguanide sensitivity of cancer cells with mtDNA mutations was reversed by ectopic expression of yeast NDI1, a ubiquinone oxidoreductase that allows bypass of complex I function. Thus, we conclude that mtDNA mutations and impaired glucose utilization are potential biomarkers for identifying tumours with increased sensitivity to OXPHOS inhibitors.
Polyhexamethyl biguanide can eliminate contaminant yeasts from fuel-ethanol fermentation process.
Elsztein, Carolina; de Menezes, João Assis Scavuzzi; de Morais, Marcos Antonio
2008-09-01
Industrial ethanol fermentation is a non-sterile process and contaminant microorganisms can lead to a decrease in industrial productivity and significant economic loss. Nowadays, some distilleries in Northeastern Brazil deal with bacterial contamination by decreasing must pH and adding bactericides. Alternatively, contamination can be challenged by adding a pure batch of Saccharomyces cerevisiae-a time-consuming and costly process. A better strategy might involve the development of a fungicide that kills contaminant yeasts while preserving S. cerevisiae cells. Here, we show that polyhexamethyl biguanide (PHMB) inhibits and kills the most important contaminant yeasts detected in the distilleries of Northeastern Brazil without affecting the cell viability and fermentation capacity of S. cerevisiae. Moreover, some physiological data suggest that PHMB acts through interaction with the yeast membrane. These results support the development of a new strategy for controlling contaminant yeast population whilst keeping industrial yields high.
Goonesekera, Sunali D; Yang, May H; Hall, Susan A; Fang, Shona C; Piccolo, Rebecca S; McKinlay, John B
2015-05-12
Numerous studies continue to report poorer glycaemic control, and a higher incidence of diabetes-related complications among African-Americans and Hispanic-Americans as compared with non-Hispanic Caucasians with type 2 diabetes. We examined racial/ethnic differences in receipt of hypoglycaemic medications and glycaemic control in a highly insured Massachusetts community sample of individuals with type 2 diabetes. Community-based sample from Boston, Massachusetts, USA. 682 patients with physician-diagnosed diabetes from the third wave of the Boston Area Community Health Survey (2010-2012). The study included approximately equal proportions of African-Americans, Hispanics and Caucasians. We examined racial/ethnic disparities in diabetes treatment by comparing proportions of individuals on mutually exclusive diabetes treatment regimens across racial/ethnic subgroups. Using multivariable linear and logistic regression, we also examined associations between race/ethnicity and glycaemic control in the overall population, and within treatment regimens, adjusting for age, gender, income, education, health insurance, health literacy, disease duration, diet and physical activity. Among those treated (82%), the most commonly prescribed antidiabetic regimens were biguanides only (31%), insulin only (23%), and biguanides and insulin (16%). No overall racial/ethnic differences in treatment or glycaemic control (per cent difference for African-Americans: 6.18, 95% CI -1.00 to 13.88; for Hispanic-Americans: 1.01, 95% CI -10.42 to 12.75) were observed. Within regimens, we did not observe poorer glycaemic control for African-Americans prescribed biguanides only, insulin only or biguanides combined with insulin/sulfonylureas. However, African-Americans prescribed miscellaneous regimens had higher risk of poorer glycaemic control (per cent difference=23.37, 95% CI 7.25 to 43.33). There were no associations between glycaemic levels and Hispanic ethnicity overall, or within treatment regimens. Findings suggest a lack of racial/ethnic disparities in diabetes treatment patterns and glycaemic control in this highly insured Massachusetts study population. Future studies are needed to understand impacts of increasing insurance coverage on racial/ethnic disparities in treatment patterns and related outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Gender-specific effects of oral hypoglycaemic agents on cancer risk in type 2 diabetes mellitus.
Sun, G E C; Wells, B J; Yip, K; Zimmerman, R; Raghavan, D; Kattan, M W; Kashyap, S R
2014-03-01
To analyse the association between cancer incidence and oral diabetes therapy (biguanide, sulphonylurea, thiazolidinedione and meglitinide) in men and women with type 2 diabetes mellitus. A retrospective analysis of the electronic health record-based Cleveland Clinic Diabetes Registry (25 613 patients) was cross-indexed with the histology-based tumour registry (48 051 cancer occurrences) over an 8-year period (1998-2006). Multiple imputations were used to account for missing data. Cox regression with propensity scores was used to model time for the development of incident cancer in each of the imputed datasets and the results were pooled. During 51 994 person follow-up years, 892 incident cancer cases were identified; prostate (14.5%) and breast (11.7%) malignancies were most frequent. In women, thiazolidinedione use was associated with a 32% decreased cancer risk compared with sulphonylurea use [hazard ratio (HR) 0.68; 95% confidence interval (CI) 0.48-0.97, in the adjusted analysis]. Comparison of insulin secretagogues (sulphonylurea and meglitinide) versus insulin sensitizers (biguanide and thiazolidinedione) demonstrated a 21% decreased cancer risk in insulin sensitizers [HR 0.79 (95% CI 0.64-0.98) in the adjusted analysis]. Oral diabetes therapy showed no significant difference in men. Adjustments were made for age, body mass index (BMI), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides, coronary heart disease (CHD), diabetes oral monotherapy, race, gender, haemoglobin A1c, statin use, income, insulin use, glomerular filtration rate (GFR), new diabetes status, prior cancer, prior cerebrovascular accident (stroke or transient ischaemic event), systolic/diastolic blood pressure, tobacco use (ever/never) and the propensity score for receiving a biguanide. Oral insulin sensitizers, particularly thiazolidinedione, are associated with decreased malignancy risk in women with type 2 diabetes mellitus. © 2013 John Wiley & Sons Ltd.
Alshishani, Anas; Salhimi, Salizawati Muhamad; Saad, Bahruddin
2018-01-15
A new salting-out assisted liquid-liquid extraction (SALLE) sample preparation method for the determination of the polar anti-diabetic biguanide drugs (metformin, buformin and phenformin) in blood plasma, urine and lake water samples were developed. The SALLE was performed by mixing samples (plasma (0.2mL), urine or lake water (1.0mL)) with acetonitrile (0.4mL for plasma, 0.5mL for urine or lake water), sodium hydroxide powder was then added for the phase separation. The effects of type of salting-out reagent, type of extraction solvent, volumes of acetonitrile and sample, amount of sodium hydroxide, vortexing and centrifugation times on the extraction efficiency were investigated. The upper layer, containing the biguanides, was directly injected into a HPLC unit using ZIC-HILIC column (150mm×2.1mm×3.5μm) and was detected at 236nm. The method was validated and calibration curves were linear with r 2 >0.99 over the range of 20-2000μgL -1 for plasma and 5-2000μgL -1 for urine and lake water samples. The limits of detection were in the range (3.8-5.6)μgL -1 , (0.8-1.5)μgL -1 and (0.3-0.8)μgL -1 for plasma, urine and lake water, respectively. The accuracies in the three matrices were within 87.3-103%, 87.4-109%, 82.2-109% of the nominal concentration for metformin, buformin and phenformin, respectively. The relative standard deviation for inter- and intra -day precision were in the range of 1.0-17% for all analytes in the three matrices. Copyright © 2017 Elsevier B.V. All rights reserved.
Tanabe, Makito; Motonaga, Ryoko; Terawaki, Yuichi; Nomiyama, Takashi; Yanase, Toshihiko
2017-03-01
In treatment algorithms of type 2 diabetes mellitus in Western countries, biguanides are recommended as first-line agents. In Japan, various oral hypoglycemic agents (OHAs) are available, but prescription patterns are unclear. Data of 7,108 and 2,655 type 2 diabetes mellitus patients in study 1 and study 2, respectively, were extracted from the Medical Data Vision database (2008-2013). Cardiovascular disease history was not considered in study 1, but was in study 2. Initial choice of OHA, adherence to its use, effect on glycated hemoglobin levels for 2 years and the second choice of OHA were investigated. In study 1, α-glucosidase inhibitor, glinide and thiazolidinedione were preferentially medicated in relatively lower glycated hemoglobin cases compared with other OHAs. The two most prevalent first prescriptions of OHAs were biguanides and dipeptidyl peptidase-4 inhibitors, and the greatest adherence was for α-glucosidase inhibitors. In patients treated continuously with a single OHA for 2 years, improvement in glycated hemoglobin levels was greatest for dipeptidyl peptidase-4 inhibitors. As a second OHA added to the first OHA during the first 2 years, dipeptidyl peptidase-4 inhibitors were chosen most often, especially if a biguanide was the first OHA. In study 2, targeting patients with a cardiovascular disease history, a similar tendency to study 1 was observed in the first choice of OHA, adherence and the second choice of OHA. Even in Japanese type 2 diabetes mellitus patients, a Western algorithm seems to be respected to some degree. The OHA choice does not seem to be affected by a cardiovascular disease history. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykens, James A.; Jamieson, Joseph; Marroquin, Lisa
2008-12-01
As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanidemore » toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction.« less
Recycled PET Nanofibers for Water Filtration Applications
Zander, Nicole E.; Gillan, Margaret; Sweetser, Daniel
2016-01-01
Water shortage is an immediate and serious threat to our world population. Inexpensive and scalable methods to clean freshwater and wastewater are in high demand. Nanofiber filtration membranes represent a next generation nonwoven filter media due to their unique properties. Polyethlyene terephthalate (PET) is often used in the packaging of water and other commonly used materials, leading to a large amount of plastic waste often with limited incentive for recycling (few value-added uses). Here, we present work in the generation of nanofiber liquid filtration membranes from PET plastic bottles and demonstrate their use in microfiltration. PET nanofiber membranes were formed via solution electrospinning with fiber diameters as low as ca. 100 nm. Filtration efficiency was tested with latex beads with sizes ranging from 30 to 2000 nm. Greater than 99% of the beads as small as 500 nm were removed using gravity filtration. To reduce biofouling, the mats were functionalized with quaternary ammonium and biguanide biocides. The biguanide functionalized mats achieved 6 log reduction for both gram negative and gram positive bacteria. PMID:28773380
Blackburn, Richard S; Harvey, Anna; Kettle, Lorna L; Payne, John D; Russell, Stephen J
2006-06-20
Antimicrobial agents such as poly(hexamethylene biguanide) (PHMB) find application in medical, apparel, and household textile sectors; although it is understood that certain concentrations need to be applied to achieve suitable performance, there has been very little work published concerning the interactions of the polymer and its adsorption mechanism on cellulose. In this paper, such physical chemistry parameters are examined and related to computational chemistry studies. Adsorption isotherms were constructed: at low concentrations, these were typical Langmuir isotherms; at higher concentrations, they were more indicative of Freundlich isotherms, attributed to a combination of electrostatic and hydrogen-bonding forces, which endorsed computational chemistry proposals. At lower concentrations, electrostatic interactions between PHMB and carboxylic acid groups in the cellulose dominate with a contribution to binding through hydrogen bonding; as the concentration of PHMB increases, hydrogen bonding with cellulose becomes increasingly dominant. At high PHMB concentrations, observations of increasing PHMB adsorption are attributed to monolayer aggregation and multilayer stacking of PHMB through electrostatic interactions with counterions and hydrogen bonding of biguanide groups.
Enterobacteriaceae and Salmonella recovered from non-sanitized and sanitized broiler hatching eggs
USDA-ARS?s Scientific Manuscript database
Sanitizing hatching eggs may reduce the chances that a flock will become colonized with Salmonella and reduce the numbers of other microorganisms, such as Enterobacteriaceae, that can depress hatchability. An experiment was conducted to determine if a quaternary-biguanide sanitizer applied as foam ...
Enterobacteriaceae and salmonella recovered from non-sanitized and sanitized broiler hatching eggs
USDA-ARS?s Scientific Manuscript database
Inhibiting Salmonella contamination of hatching eggs could reduce the chance of broiler chicks becoming colonized during incubation and hatching. An experiment was conducted to determine the efficacy of a sanitizer (1,200 ppm quaternary ammonium- biguanide compound) applied as foam or spray in redu...
Brief Report: Metformin for Antipsychotic-Induced Weight Gain in Youth with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Wink, Logan K.; Adams, Ryan; Pedapati, Ernest V.; Dominick, Kelli C.; Fox, Emma; Buck, Catherine; Erickson, Craig A.
2017-01-01
Antipsychotic treatment in youth with autism spectrum disorder (ASD) is becoming increasingly common, placing individuals at risk for antipsychotic-induced weight gain and associated complications. Metformin hydrochloride, a biguanide medication FDA-approved for treatment of type-2 diabetes in youth, may hold promise for treatment of…
Elsztein, Carolina; de Lima, Rita de Cássia Pereira; de Barros Pita, Will; de Morais, Marcos Antonio
2016-09-01
In the present work, we provide biological evidences supporting the participation of NCW2 gene in the mechanism responsible for cell tolerance to polyhexamethylene biguanide (PHMB), an antifungal agent. The growth rate of yeast cells exposed to this agent was significantly reduced in ∆ncw2 strain and the mRNA levels of NCW2 gene in the presence of PHMB showed a 7-fold up-regulation. Moreover, lack of NCW2 gene turns yeast cell more resistant to zymolyase treatment, indicating that alterations in the β-glucan network do occur when Ncw2p is absent. Computational analysis of the translated protein indicated neither catalytic nor transmembrane sites and reinforced the hypothesis of secretion and anchoring to cell surface. Altogether, these results indicated that NCW2 gene codes for a protein which participates in the cell wall biogenesis in yeasts and that Ncw2p might play a role in the organisation of the β-glucan assembly.
Synergistic Anti-Cancer Effect of Phenformin and Oxamate
Miskimins, W. Keith; Ahn, Hyun Joo; Kim, Ji Yeon; Ryu, Sun; Jung, Yuh-Seog; Choi, Joon Young
2014-01-01
Phenformin (phenethylbiguanide; an anti-diabetic agent) plus oxamate [lactate dehydrogenase (LDH) inhibitor] was tested as a potential anti-cancer therapeutic combination. In in vitro studies, phenformin was more potent than metformin, another biguanide, recently recognized to have anti-cancer effects, in promoting cancer cell death in the range of 25 times to 15 million times in various cancer cell lines. The anti-cancer effect of phenformin was related to complex I inhibition in the mitochondria and subsequent overproduction of reactive oxygen species (ROS). Addition of oxamate inhibited LDH activity and lactate production by cells, which is a major side effect of biguanides, and induced more rapid cancer cell death by decreasing ATP production and accelerating ROS production. Phenformin plus oxamate was more effective than phenformin combined with LDH knockdown. In a syngeneic mouse model, phenformin with oxamate increased tumor apoptosis, reduced tumor size and 18F-fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography compared to control. We conclude that phenformin is more cytotoxic towards cancer cells than metformin. Furthermore, phenformin and oxamate have synergistic anti-cancer effects through simultaneous inhibition of complex I in the mitochondria and LDH in the cytosol, respectively. PMID:24465604
Phenformin as prophylaxis and therapy in breast cancer xenografts.
Appleyard, M V C L; Murray, K E; Coates, P J; Wullschleger, S; Bray, S E; Kernohan, N M; Fleming, S; Alessi, D R; Thompson, A M
2012-03-13
Observations that diabetics treated with biguanide drugs have a reduced risk of developing cancer have prompted an enthusiasm for these agents as anti-cancer therapies. We sought to determine the efficacy of the biguanide phenformin in the chemoprophylaxis and in the treatment of oestrogen receptor (ER)-positive MCF7 and receptor triple-negative MDAMB231 xenografts in immunocompromised mice. We also compared the efficacy of phenformin and metformin in the treatment of MDAMB231. Immunocompromised mice were divided into groups: (1) phenformin administered for 2 weeks prior to cell injection; (2) established tumours treated with phenformin; (3) established tumours treated with metformin (only for MDAMB231 tumours); (4) untreated controls. Post-treatment tumours, liver and spleen were harvested for further analysis. Phenformin significantly inhibited both the development and growth of MCF7 and MDAMB231 tumours, and for MDAMB231 at greater efficacy than metformin without murine toxicity. The number of mitotic figures was significantly fewer in xenografts treated with phenformin compared with controls. Results suggested that the mechanism of action of phenformin in vivo is consistent with AMPK activation. Phenformin has clinical potential as an antineoplastic agent and should be considered for clinical trials both in ER-positive and triple-negative breast cancer.
Synergistic anti-cancer effect of phenformin and oxamate.
Miskimins, W Keith; Ahn, Hyun Joo; Kim, Ji Yeon; Ryu, Sun; Jung, Yuh-Seog; Choi, Joon Young
2014-01-01
Phenformin (phenethylbiguanide; an anti-diabetic agent) plus oxamate [lactate dehydrogenase (LDH) inhibitor] was tested as a potential anti-cancer therapeutic combination. In in vitro studies, phenformin was more potent than metformin, another biguanide, recently recognized to have anti-cancer effects, in promoting cancer cell death in the range of 25 times to 15 million times in various cancer cell lines. The anti-cancer effect of phenformin was related to complex I inhibition in the mitochondria and subsequent overproduction of reactive oxygen species (ROS). Addition of oxamate inhibited LDH activity and lactate production by cells, which is a major side effect of biguanides, and induced more rapid cancer cell death by decreasing ATP production and accelerating ROS production. Phenformin plus oxamate was more effective than phenformin combined with LDH knockdown. In a syngeneic mouse model, phenformin with oxamate increased tumor apoptosis, reduced tumor size and (18)F-fluorodeoxyglucose (FDG) uptake on positron emission tomography/computed tomography compared to control. We conclude that phenformin is more cytotoxic towards cancer cells than metformin. Furthermore, phenformin and oxamate have synergistic anti-cancer effects through simultaneous inhibition of complex I in the mitochondria and LDH in the cytosol, respectively.
Markowicz-Piasecka, Magdalena; Sikora, Joanna; Mateusiak, Łukasz; Mikiciuk-Olasik, Elżbieta; Huttunen, Kristiina M
2017-09-15
Although metformin, an oral anti-diabetic drug, has been found to have multidirectional effects over the past decade, it is characterised by unfavourable pharmacokinetic properties. This study discusses the effects of metformin, phenformin and three prodrugs of metformin on the haemostasis and integrity of Red Blood Cells (RBCs). The influence of examined biguanide derivatives on haemostasis was evaluated spectrophotometrically by clot formation and lysis test (CL-test) at 405nm. The extrinsic and intrinsic coagulation pathway were examined by measuring the PT (Prothrombin Time) and aPTT (Activated Partial Tromboplastin Time). Haemolysis assay, microscopy and flow cytometry studies were used to assess the effect of the tested compounds on RBCs. Although none of the tested biguanide derivatives significantly influenced the overall potential of clot formation and fibrinolysis (CL AUC constants), statistically significant changes were seen in the values of the kinetic parameters of fibrinolysis. Furthermore, only prodrug 2, with an 8-carbon alkyl chain, unfavourably affected RBCs by interaction with the erythrocyte membrane leading to significant haemolysis. Our results provide a further insight into the effects of metformin and its prodrugs on haemostasis and RBCs and underscore the necessity for further research. Copyright © 2017 Elsevier B.V. All rights reserved.
Masadome, Takashi; Miyanishi, Takaaki; Watanabe, Keita; Ueda, Hiroshi; Hattori, Toshiaki
2011-01-01
A solution of polyhexamethylene biguanide hydrochloride (PHMB-HCl) was titrated with a standard solution of potassium poly(vinyl sulfate) (PVSK) using crystal violet (CV) as an photometric indicator cation. The end point was detected by a sharp absorbance change due to an abrupt decrease in the concentration of CV. A linear relationship between the concentration of PHMB-HCl and the end-point volume of the titrant existed in the concentration range from 2 to 10 × 10(-6) eq mol L(-1). Back-titration was based on adding an excess amount of PVSK to a sample solution containing CV, which was titrated with a standard solution of poly(diallyldimethylammonium chloride) (PDADMAC). The calibration curve of the PHMB-HCl concentration to the end point volume of the titrant was also linear in the concentration range from 2 to 8 × 10(-6) eq mol L(-1). Both photometric titrations were applied to the determination of PHMB-HCl in a few contact-lens detergents. Back-titration showed a clear end point, but direct titration showed an unclear end point. The results of the back-titration of PHMB-HCl were compared with the content registered in its labels. 2011 © The Japan Society for Analytical Chemistry
Phenformin as prophylaxis and therapy in breast cancer xenografts
Appleyard, M V C L; Murray, K E; Coates, P J; Wullschleger, S; Bray, S E; Kernohan, N M; Fleming, S; Alessi, D R; Thompson, A M
2012-01-01
Background: Observations that diabetics treated with biguanide drugs have a reduced risk of developing cancer have prompted an enthusiasm for these agents as anti-cancer therapies. We sought to determine the efficacy of the biguanide phenformin in the chemoprophylaxis and in the treatment of oestrogen receptor (ER)-positive MCF7 and receptor triple-negative MDAMB231 xenografts in immunocompromised mice. We also compared the efficacy of phenformin and metformin in the treatment of MDAMB231. Methods: Immunocompromised mice were divided into groups: (1) phenformin administered for 2 weeks prior to cell injection; (2) established tumours treated with phenformin; (3) established tumours treated with metformin (only for MDAMB231 tumours); (4) untreated controls. Post-treatment tumours, liver and spleen were harvested for further analysis. Results: Phenformin significantly inhibited both the development and growth of MCF7 and MDAMB231 tumours, and for MDAMB231 at greater efficacy than metformin without murine toxicity. The number of mitotic figures was significantly fewer in xenografts treated with phenformin compared with controls. Results suggested that the mechanism of action of phenformin in vivo is consistent with AMPK activation. Conclusion: Phenformin has clinical potential as an antineoplastic agent and should be considered for clinical trials both in ER-positive and triple-negative breast cancer. PMID:22361631
Masadome, Takashi; Yamagishi, Yuichi; Takano, Masaki; Hattori, Toshiaki
2008-03-01
A potentiometric titration method using a cationic surfactant as an indicator cation and a plasticized poly(vinyl chloride) membrane electrode sensitive to the cationic surfactant is proposed for the determination of polyhexamethylene biguanide hydrochloride (PHMB-HCl), which is a cationic polyelectrolyte. A sample solution of PHMB-HCl containing an indicator cation (hexadecyltrimethylammonium ion, HTA) was titrated with a standard solution of an anionic polyelectrolyte, potassium poly(vinyl sulfate) (PVSK). The end-point was detected as a sharp potential change due to an abrupt decrease in the concentration of the indicator cation, HTA, which is caused by its association with PVSK. The effects of the concentrations of HTA ion and coexisting electrolytes in the sample solution on the degree of the potential change at the end-point were examined. A linear relationship between the concentration of PHMB-HCl and the end-point volume of the titrant exists in the concentration range from 2.0 x 10(-5) to 4.0 x 10(-4) M in the case that the concentration of HTA is 1.0 x 10(-5) M, and that from 1.0 x 10(-6) to 1.2 x 10(-5) M in the case that the concentration of HTA is 5.0 x 10(-6) M, respectively. The proposed method was applied to the determination of PHMB-HCl in some contact-lens detergents.
Metformin selectively targets redox control of complex I energy transduction.
Cameron, Amy R; Logie, Lisa; Patel, Kashyap; Erhardt, Stefan; Bacon, Sandra; Middleton, Paul; Harthill, Jean; Forteath, Calum; Coats, Josh T; Kerr, Calum; Curry, Heather; Stewart, Derek; Sakamoto, Kei; Repiščák, Peter; Paterson, Martin J; Hassinen, Ilmo; McDougall, Gordon; Rena, Graham
2018-04-01
Many guanide-containing drugs are antihyperglycaemic but most exhibit toxicity, to the extent that only the biguanide metformin has enjoyed sustained clinical use. Here, we have isolated unique mitochondrial redox control properties of metformin that are likely to account for this difference. In primary hepatocytes and H4IIE hepatoma cells we found that antihyperglycaemic diguanides DG5-DG10 and the biguanide phenformin were up to 1000-fold more potent than metformin on cell signalling responses, gluconeogenic promoter expression and hepatocyte glucose production. Each drug inhibited cellular oxygen consumption similarly but there were marked differences in other respects. All diguanides and phenformin but not metformin inhibited NADH oxidation in submitochondrial particles, indicative of complex I inhibition, which also corresponded closely with dehydrogenase activity in living cells measured by WST-1. Consistent with these findings, in isolated mitochondria, DG8 but not metformin caused the NADH/NAD + couple to become more reduced over time and mitochondrial deterioration ensued, suggesting direct inhibition of complex I and mitochondrial toxicity of DG8. In contrast, metformin exerted a selective oxidation of the mitochondrial NADH/NAD + couple, without triggering mitochondrial deterioration. Together, our results suggest that metformin suppresses energy transduction by selectively inducing a state in complex I where redox and proton transfer domains are no longer efficiently coupled. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Granja, Sara; Marchiq, Ibtissam; Le Floch, Renaud; Moura, Conceição Souto; Baltazar, Fátima; Pouysségur, Jacques
2015-03-30
Most cancers rely on aerobic glycolysis to generate energy and metabolic intermediates. To maintain a high glycolytic rate, cells must efficiently export lactic acid through the proton-coupled monocarboxylate transporters (MCT1/4). These transporters require a chaperone, CD147/BASIGIN (BSG) for trafficking to the plasma membrane and function.To validate the key role of these transporters in lung cancer, we first analysed the expression of MCT1/4 and BSG in 50 non-small lung cancer (NSCLC) cases. These proteins were specifically upregulated in tumour tissues. We then disrupted BSG in three NSCLC cell lines (A549, H1975 and H292) via 'Zinc-Finger Nucleases'. The three homozygous BSG-/- cell lines displayed a low MCT activity (10- to 5-fold reduction, for MCT1 and MCT4, respectively) compared to wild-type cells. Consequently, the rate of glycolysis, compared to the wild-type counterpart, was reduced by 2.0- to 3.5-fold, whereas the rate of respiration was stimulated in BSG-/- cell lines. Both wild-type and BSG-null cells were extremely sensitive to the mitochondria inhibitor metformin/phenformin in normoxia. However, only BSG-null cells, independently of their LKB1 status, remained sensitive to biguanides in hypoxia in vitro and tumour growth in nude mice. Our results demonstrate that inhibiting glycolysis by targeting lactic acid export sensitizes NSCLC to phenformin.
Sanada, Hiromi; Nakagami, Gojiro; Takehara, Kimie; Goto, Taichi; Ishii, Nanase; Yoshida, Satoshi; Ryu, Mizuyuki; Tsunemi, Yuichiro
2014-01-01
Tinea pedis is a preventable skin disease common in elderly or diabetic patients. Daily foot washing is effective for prevention, but can be difficult for many patients. Additionally, conventional methods cannot eliminate fungi within the stratum corneum, a common site for fungal invasion. This study investigates the antifungal effects, cytotoxicity, permeability, and efficacy of non-woven textiles containing polyhexamethylene biguanide (PHMB) mixed with sophorolipid. Permeability of PHMB with varying concentrations of sophorolipid was assessed via a cultured skin model. Stratum corneum PHMB concentration was quantified by polyvinylsulphuric acid potassium salt titration and cytotoxicity was assayed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Antifungal effects were evaluated via a new cultured skin/Trichophyton mentagrophytes model, with varying PHMB exposure duration. Clinically-isolated Trichophyton were applied to the feet of four healthy volunteers and then immediately treated with the following methods: washing with soap, a non-woven textile with PHMB, the textile without PHMB, or without washing. Fungal colony forming units (CFUs) were evaluated after one of these treatments were performed. Sophorolipid with various concentrations significantly facilitated PHMB permeation into the stratum corneum, which was not in a dose-dependent manner. Significant PHMB antifungal effects were achieved at 30 min, with low cytotoxicity. Textiles containing PHMB significantly reduced CFU of fungi in healthy volunteers to levels comparable to soap washing. Our results indicate the utility of this product for tinea pedis prevention in clinical settings. PMID:27429269
Sanada, Hiromi; Nakagami, Gojiro; Takehara, Kimie; Goto, Taichi; Ishii, Nanase; Yoshida, Satoshi; Ryu, Mizuyuki; Tsunemi, Yuichiro
2014-04-08
Tinea pedis is a preventable skin disease common in elderly or diabetic patients. Daily foot washing is effective for prevention, but can be difficult for many patients. Additionally, conventional methods cannot eliminate fungi within the stratum corneum, a common site for fungal invasion. This study investigates the antifungal effects, cytotoxicity, permeability, and efficacy of non-woven textiles containing polyhexamethylene biguanide (PHMB) mixed with sophorolipid. Permeability of PHMB with varying concentrations of sophorolipid was assessed via a cultured skin model. Stratum corneum PHMB concentration was quantified by polyvinylsulphuric acid potassium salt titration and cytotoxicity was assayed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Antifungal effects were evaluated via a new cultured skin/Trichophyton mentagrophytes model, with varying PHMB exposure duration. Clinically-isolated Trichophyton were applied to the feet of four healthy volunteers and then immediately treated with the following methods: washing with soap, a non-woven textile with PHMB, the textile without PHMB, or without washing. Fungal colony forming units (CFUs) were evaluated after one of these treatments were performed. Sophorolipid with various concentrations significantly facilitated PHMB permeation into the stratum corneum, which was not in a dose-dependent manner. Significant PHMB antifungal effects were achieved at 30 min, with low cytotoxicity. Textiles containing PHMB significantly reduced CFU of fungi in healthy volunteers to levels comparable to soap washing. Our results indicate the utility of this product for tinea pedis prevention in clinical settings.
Jones, Lyndon; MacDougall, Nancy; Sorbara, L Gina
2002-12-01
To compare subjective symptoms and signs in a group of individuals who wear silicone-hydrogel lenses on a daily wear basis while they sequentially used two differing care regimens. Fifty adapted soft-lens wearers were fitted with a silicone-hydrogel lens material (PureVision, Bausch & Lomb). The lenses were worn on a daily wear basis for two consecutive 1-month periods, during which the subjects used either a Polyquad (polyquaternium-1) -based system or a polyaminopropyl biguanide (PHMB) -based system, using a double-masked, randomized, crossover experimental design. Significant levels of relatively asymptomatic corneal staining were observed when subjects used the PHMB-based system, with 37% of subjects demonstrating a level of staining consistent with a classical solution-based toxicity reaction. Only 2% of the subjects exhibited such staining when using the Polyquad-based system. These results were significantly different (p < 0.001). Significant symptoms were not correlated with the degree of staining, with no differences in lens comfort or overall preference being reported between the regimens (p = NS). The only statistically significant difference in symptoms related to minor differences in stinging after lens insertion being reported, with the Polyquad-based system demonstrating less stinging (p < 0.008). Practitioners who fit silicone-hydrogel contact lenses on a daily wear basis should be wary of the potential for certain PHMB-containing multipurpose care systems to invoke corneal staining. Switching to non-PHMB based regimens will eliminate this complication in most instances.
Yabes, Joseph M.; White, Brian K.; Murray, Clinton K.; Sanchez, Carlos J.; Mende, Katrin; Beckius, Miriam L.; Zera, Wendy C.; Wenke, Joseph C.; Akers, Kevin S.
2016-01-01
Soft-tissue invasive fungal infections are increasingly recognized as significant entities directly contributing to morbidity and mortality. They complicate clinical care, requiring aggressive surgical debridement and systemic antifungal therapy. To evaluate new topical approaches to therapy, we examined the antifungal activity and cytotoxicity of Manuka Honey (MH) and polyhexamethylene biguanide (PHMB). The activities of multiple concentrations of MH (40%, 60%, 80%) and PHMB (0.01%, 0.04%, 0.1%) against 13 clinical mold isolates were evaluated using a time-kill assay between 5 min and 24 h. Concentrations were selected to represent current clinical use. Cell viability was examined in parallel for human epidermal keratinocytes, dermal fibroblasts and osteoblasts, allowing determination of the 50% viability (LD50) concentration. Antifungal activity of both agents correlated more closely with exposure time than concentration. Exophiala and Fusarium growth was completely suppressed at 5 min for all PHMB concentrations, and at 12 and 6 h, respectively, for all MH concentrations. Only Lichtheimia had persistent growth to both agents at 24 h. Viability assays displayed concentration-and time-dependent toxicity for PHMB. For MH, exposure time predicted cytotoxicity only when all cell types were analyzed in aggregate. This study demonstrates that MH and PHMB possess primarily time-dependent antifungal activity, but also exert in vitro toxicity on human cells which may limit clinical use. Further research is needed to determine ideal treatment strategies to optimize antifungal activity against molds while limiting cytotoxicity against host tissues in vivo. PMID:27601610
Guo, Zhiying; Zhao, Ming; Howard, Erin W; Zhao, Qingxia; Parris, Amanda B; Ma, Zhikun; Yang, Xiaohe
2017-09-01
Reports suggest that metformin, a popular anti-diabetes drug, prevents breast cancer through various systemic effects, including insulin-like growth factor receptor (IGFR) regulation. Although the anti-cancer properties of metformin have been well-studied, reports on a more bioavailable/potent biguanide, phenformin, remain sparse. Phenformin exerts similar functional activity to metformin and has been reported to impede mammary carcinogenesis in rats. Since the effects of phenformin on specific breast cancer subtypes have not been fully explored, we used ErbB2-overexpressing breast cancer cell and animal models to test the anti-cancer potential of phenformin. We report that phenformin (25-75 μM) decreased cell proliferation and impaired cell cycle progression in SKBR3 and 78617 breast cancer cells. Reduced tumor size after phenformin treatment (30 mg/kg/day) was demonstrated in an MMTV-ErbB2 transgenic mouse syngeneic tumor model. Phenformin also blocked epithelial-mesenchymal transition, decreased the invasive phenotype, and suppressed receptor tyrosine kinase signaling, including insulin receptor substrate 1 and IGF1R, in ErbB2-overexpressing breast cancer cells and mouse mammary tumor-derived tissues. Moreover, phenformin suppressed IGF1-stimulated proliferation, receptor tyrosine kinase signaling, and epithelial-mesenchymal transition markers in vitro . Together, our study implicates phenformin-mediated IGF1/IGF1R regulation as a potential anti-cancer mechanism and supports the development of phenformin and other biguanides as breast cancer therapeutics.
Floch, Renaud Le; Moura, Conceição Souto
2015-01-01
Most cancers rely on aerobic glycolysis to generate energy and metabolic intermediates. To maintain a high glycolytic rate, cells must efficiently export lactic acid through the proton-coupled monocarboxylate transporters (MCT1/4). These transporters require a chaperone, CD147/BASIGIN (BSG) for trafficking to the plasma membrane and function. To validate the key role of these transporters in lung cancer, we first analysed the expression of MCT1/4 and BSG in 50 non-small lung cancer (NSCLC) cases. These proteins were specifically upregulated in tumour tissues. We then disrupted BSG in three NSCLC cell lines (A549, H1975 and H292) via ‘Zinc-Finger Nucleases’. The three homozygous BSG−/− cell lines displayed a low MCT activity (10- to 5-fold reduction, for MCT1 and MCT4, respectively) compared to wild-type cells. Consequently, the rate of glycolysis, compared to the wild-type counterpart, was reduced by 2.0- to 3.5-fold, whereas the rate of respiration was stimulated in BSG−/− cell lines. Both wild-type and BSG-null cells were extremely sensitive to the mitochondria inhibitor metformin/phenformin in normoxia. However, only BSG-null cells, independently of their LKB1 status, remained sensitive to biguanides in hypoxia in vitro and tumour growth in nude mice. Our results demonstrate that inhibiting glycolysis by targeting lactic acid export sensitizes NSCLC to phenformin. PMID:25894929
Guo, Zhiying; Zhao, Ming; Howard, Erin W.; Zhao, Qingxia; Parris, Amanda B.; Ma, Zhikun; Yang, Xiaohe
2017-01-01
Reports suggest that metformin, a popular anti-diabetes drug, prevents breast cancer through various systemic effects, including insulin-like growth factor receptor (IGFR) regulation. Although the anti-cancer properties of metformin have been well-studied, reports on a more bioavailable/potent biguanide, phenformin, remain sparse. Phenformin exerts similar functional activity to metformin and has been reported to impede mammary carcinogenesis in rats. Since the effects of phenformin on specific breast cancer subtypes have not been fully explored, we used ErbB2-overexpressing breast cancer cell and animal models to test the anti-cancer potential of phenformin. We report that phenformin (25–75 μM) decreased cell proliferation and impaired cell cycle progression in SKBR3 and 78617 breast cancer cells. Reduced tumor size after phenformin treatment (30 mg/kg/day) was demonstrated in an MMTV-ErbB2 transgenic mouse syngeneic tumor model. Phenformin also blocked epithelial-mesenchymal transition, decreased the invasive phenotype, and suppressed receptor tyrosine kinase signaling, including insulin receptor substrate 1 and IGF1R, in ErbB2-overexpressing breast cancer cells and mouse mammary tumor-derived tissues. Moreover, phenformin suppressed IGF1-stimulated proliferation, receptor tyrosine kinase signaling, and epithelial-mesenchymal transition markers in vitro. Together, our study implicates phenformin-mediated IGF1/IGF1R regulation as a potential anti-cancer mechanism and supports the development of phenformin and other biguanides as breast cancer therapeutics. PMID:28947975
[POLYHEXAMETHYLENE BIGUANID HYDROCHLORIDE (BIGUANELLE) THERAPY OF BACTERIAL VAGINOSIS].
Kovachev, S; Ganovska, A; Sultanov, E; Ivanova, S; Gizdov, N; Nikolova, L; Iliev, V
2016-01-01
The aim of our study was to determine the efficacy and tolerability of local therapy with polyhexamethylene biguanid hydrochloride (BIGUANELLE) in women with anaerobic vaginal infection. We include in our study 23 women (18-50) with established by AMSEL criteria bacterial vaginosis. In all of the women at the beginning and at the end of the survey was performed gynecological examination and microbiological research (AMSEL). The therapeutic scheme at all women is with a single vaginal application of gynecological solution BIGUANELLE. Effectiveness of the treatment was evaluated according to clinical complaints and microbiological research (Amsel criteria: Ph 4.5 >; KOH (+); "clue cells"; specific vaginal fluorine). Tolerability of patients to treatment was assessed by questionnaire. Clinical complaints of patients after the therapy decreased as follows: vaginal fluorine with 73.9%; odor--75%; pruritus--50%; discomfort--90%. Microbiological research and their evaluation by AMSEL, showed the therapeutic efficacy of the therapy in 16 (69.6%) of all (n-23) patients. At 7 (30.4%) women, the treatment remained without effect. At questionnaire answers, 73.9% patients were satisfied with the application of BIGUANELLE, 95.6% of them have implemented it easily, 95.6% of women believe that BIGUANELLE is more convenient to use in comparison with similar products which have a daily application, and none of the patients (100%) have any complaints in applying this gynecological solution. BIGUANELLE showed good clinical efficacy in the treatment of bacterial vaginosis. It is easily applied and well tolerated by the patients.
Ampawong, Sumate; Aramwit, Pornanong
2017-09-01
In this study, three kinds of antiseptics which were 0.05% chlorhexidine, 0.2% polyhexamethylene biguanide (PHMB), or 200 ppm silver nanoparticle was introduced to incorporate in the sericin-based scaffold to produce the antimicrobial dressing for the treatment of infected chronic wound. The effects of antiseptic incorporation on the stability, release of sericin, and short-term and long-term (6 months) antimicrobial activity of the sericin dressing against gram-negative and gram-positive bacteria were investigated. We showed that the incorporation of each antiseptic did not have significant effect on the internal morphology (pore size ~ 73-105 μm), elasticity (Young's modulus ~ 200-500 kPa), and the sericin release behavior of the sericin-based dressing. The release of sericin from the dressing was prolonged over 120 h and thereafter. Comparing among three antiseptics, 0.05% chlorhexidine incorporated in the sericin dressing showed the highest immediate and long-term (6 months) antimicrobial effect (largest inhibition zone) against most bacteria either gram-positive or gram-negative bacteria. The in vivo safety test following ISO10993 standard (Biological evaluation of medical devices - Part 6: Tests for local effects after implantation) confirmed that the sericin dressing incorporating 0.05% chlorhexidine did not irritate to tissue, comparing with the commercial material used generally in clinic (Allevyn®, Smith & Nephew). We suggested the sericin dressing incorporating 0.05% chlorhexidine for the treatment of infected chronic wound. Chlorhexidine would reduce the risk of infection while the sericin may promote wound healing.
Phenformin enhances the therapeutic benefit of BRAFV600E inhibition in melanoma
Yuan, Ping; Ito, Koichi; Perez-Lorenzo, Rolando; Del Guzzo, Christina; Lee, Jung Hyun; Shen, Che-Hung; Bosenberg, Marcus W.; McMahon, Martin; Cantley, Lewis C.; Zheng, Bin
2013-01-01
Biguanides, such as the diabetes therapeutics metformin and phenformin, have demonstrated antitumor activity both in vitro and in vivo. The energy-sensing AMP-activated protein kinase (AMPK) is known to be a major cellular target of biguanides. Based on our discovery of cross-talk between the AMPK and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) signaling pathways, we investigated the antitumor effects of combining phenformin with a BRAF inhibitor PLX4720 on the proliferation of BRAF-mutated melanoma cells in vitro and on BRAF-driven tumor growth in vivo. Cotreatment of BRAF-mutated melanoma cell lines with phenformin and PLX4720 resulted in synergistic inhibition of cell viability, compared with the effects of the single agent alone. Moreover, treatment with phenformin significantly delayed the development of resistance to PLX4720 in cultured melanoma cells. Biochemical analyses showed that phenformin and PLX4720 exerted cooperative effects on inhibiting mTOR signaling and inducing apoptosis. Noticeably, phenformin selectively targeted subpopulations of cells expressing JARID1B, a marker for slow cycling melanoma cells, whereas PLX4720 selectively targeted JARID1B-negative cells. Finally, in contrast to their use as single agents, the combination of phenformin and PLX4720 induced tumor regression in both nude mice bearing melanoma xenografts and in a genetically engineered BRAFV600E/PTENnull-driven mouse model of melanoma. These results strongly suggest that significant therapeutic advantage may be achieved by combining AMPK activators such as phenformin with BRAF inhbitors for the treatment of melanoma. PMID:24145418
Jackson, Amanda L; Sun, Wenchuan; Kilgore, Joshua; Guo, Hui; Fang, Ziwei; Yin, Yajie; Jones, Hannah M; Gilliam, Timothy P; Zhou, Chunxiao; Bae-Jump, Victoria L
2017-11-21
Obesity and diabetes have been associated with increased risk and worse outcomes in ovarian cancer (OC). The biguanide metformin is used in the treatment of type 2 diabetes and is also believed to have anti-tumorigenic benefits. Metformin is highly hydrophilic and requires organic cation transporters (OCTs) for entry into human cells. Phenformin, another biguanide, was taken off the market due to an increased risk of lactic acidosis over metformin. However, phenformin is not reliant on transporters for cell entry; and thus, may have increased potency as both an anti-diabetic and anti-tumorigenic agent than metformin. Thus, our goal was to evaluate the effect of phenformin on established OC cell lines, primary cultures of human OC cells and in an orthotopic mouse model of high grade serous OC. In three OC cell lines, phenformin significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, caused cellular stress, inhibited adhesion and invasion, and activation of AMPK and inhibition of the mTOR pathway. Phenformin also exerted anti-proliferative effects in seven primary cell cultures of human OC. Lastly, phenformin inhibited tumor growth in an orthotopic mouse model of serous OC, coincident with decreased Ki-67 staining and phosphorylated-S6 expression and increased expression of caspase 3 and phosphorylated-AMPK. Our findings demonstrate that phenformin has anti-tumorigenic effects in OC as previously demonstrated by metformin but it is yet to be determined if it is superior to metformin for the potential treatment of this disease.
Jackson, Amanda L.; Sun, Wenchuan; Kilgore, Joshua; Guo, Hui; Fang, Ziwei; Yin, Yajie; Jones, Hannah M.; Gilliam, Timothy P.; Zhou, Chunxiao; Bae-Jump, Victoria L.
2017-01-01
Obesity and diabetes have been associated with increased risk and worse outcomes in ovarian cancer (OC). The biguanide metformin is used in the treatment of type 2 diabetes and is also believed to have anti-tumorigenic benefits. Metformin is highly hydrophilic and requires organic cation transporters (OCTs) for entry into human cells. Phenformin, another biguanide, was taken off the market due to an increased risk of lactic acidosis over metformin. However, phenformin is not reliant on transporters for cell entry; and thus, may have increased potency as both an anti-diabetic and anti-tumorigenic agent than metformin. Thus, our goal was to evaluate the effect of phenformin on established OC cell lines, primary cultures of human OC cells and in an orthotopic mouse model of high grade serous OC. In three OC cell lines, phenformin significantly inhibited cellular proliferation, induced cell cycle G1 arrest and apoptosis, caused cellular stress, inhibited adhesion and invasion, and activation of AMPK and inhibition of the mTOR pathway. Phenformin also exerted anti-proliferative effects in seven primary cell cultures of human OC. Lastly, phenformin inhibited tumor growth in an orthotopic mouse model of serous OC, coincident with decreased Ki-67 staining and phosphorylated-S6 expression and increased expression of caspase 3 and phosphorylated-AMPK. Our findings demonstrate that phenformin has anti-tumorigenic effects in OC as previously demonstrated by metformin but it is yet to be determined if it is superior to metformin for the potential treatment of this disease. PMID:29245964
Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma.
Yuan, Ping; Ito, Koichi; Perez-Lorenzo, Rolando; Del Guzzo, Christina; Lee, Jung Hyun; Shen, Che-Hung; Bosenberg, Marcus W; McMahon, Martin; Cantley, Lewis C; Zheng, Bin
2013-11-05
Biguanides, such as the diabetes therapeutics metformin and phenformin, have demonstrated antitumor activity both in vitro and in vivo. The energy-sensing AMP-activated protein kinase (AMPK) is known to be a major cellular target of biguanides. Based on our discovery of cross-talk between the AMPK and v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) signaling pathways, we investigated the antitumor effects of combining phenformin with a BRAF inhibitor PLX4720 on the proliferation of BRAF-mutated melanoma cells in vitro and on BRAF-driven tumor growth in vivo. Cotreatment of BRAF-mutated melanoma cell lines with phenformin and PLX4720 resulted in synergistic inhibition of cell viability, compared with the effects of the single agent alone. Moreover, treatment with phenformin significantly delayed the development of resistance to PLX4720 in cultured melanoma cells. Biochemical analyses showed that phenformin and PLX4720 exerted cooperative effects on inhibiting mTOR signaling and inducing apoptosis. Noticeably, phenformin selectively targeted subpopulations of cells expressing JARID1B, a marker for slow cycling melanoma cells, whereas PLX4720 selectively targeted JARID1B-negative cells. Finally, in contrast to their use as single agents, the combination of phenformin and PLX4720 induced tumor regression in both nude mice bearing melanoma xenografts and in a genetically engineered BRAF(V600E)/PTEN(null)-driven mouse model of melanoma. These results strongly suggest that significant therapeutic advantage may be achieved by combining AMPK activators such as phenformin with BRAF inhbitors for the treatment of melanoma.
[Trichological examinations in women suffering from diabetes mellitus].
Brzezińska-Wcisło, L; Bogdanowski, T; Koślacz, E; Hawrot, A
2000-01-01
The lack of data on the process of alopecia in women suffering from diabetes mellitus made us undertake research in this area. The aim of this paper was the assessment of the state of head hair in trichological and clinical examinations, and on the basis of questionnaire. 50 women (age 44-82 years) were included in the study. Alopecia in women with diabetes mellitus is diffuse, located on the apex of the head and basic hair loss lies in telogenic pathomechanism. The highest percentage of telogenic hair is found in women treated with biguanides, and the lowest one in female patients taking insulin.
Mitchell, Mark A; Adamson, Trinka W; Singleton, Charles B; Roundtree, Marlana K; Bauer, Rudy W; Acierno, Mark J
2007-02-01
To evaluate a combination of 2 nonantibiotic microbicide compounds, sodium hypochlorite (NaOCl) and polyhexamethylene biguanide (PHMB), as a treatment to suppress or eliminate Salmonella spp from red-eared slider (RES) turtle (Trachemys scripta elegans) eggs and hatchlings. 2,738 eggs from 8 turtle farms in Louisiana. Eggs were randomly sorted into 3 or, when sufficient eggs were available, 4 treatment groups as follows: control, pressure-differential egg treatment with NaOCl and gentamicin, NaOCl and PHMB bath treatment, and pressure-differential egg treatment with NaOCl and PHMB. Bacterial cultures were performed from specimens of eggs and hatchlings and evaluated for Salmonella spp. RES turtle eggs treated with NaOCl and PHMB as a bath (odds ratio [OR], 0.2 [95% confidence interval (CI), 0.1 to 0.3]) or as a pressure-differential dip (OR, 0.01 [95% CI, 0.001 to 0.07]) or with gentamicin as a pressure-differential dip (OR, 0.1 [95% CI, 0.06 to 0.2]) were significantly less likely to have Salmonella-positive culture results than control-group eggs. Concern over reptile-associated salmonellosis in children in the United States is so great that federal regulations prohibit the sale of turtles that are < 10.2 cm in length. Currently, turtle farms treat eggs with gentamicin solution. Although this has reduced Salmonella shedding, it has also resulted in antimicrobial resistance. Results of our study indicate that a combination of NaOCl and PHMB may be used to suppress or eliminate Salmonella spp on RES turtle eggs and in hatchlings.
Correa, Priscila C; Lui, Aline C F; Silva, Cely B; Gracitelli, Carolina P B; Mimica, Lycia M; Sasagawa, Suzethe M; Netto, Adamo L
2017-10-12
To assess the antimicrobial effectiveness of multipurpose solutions in regard to the disinfection of silicone hydrogel contact lenses (CL) using a study of clinical bacterial isolates from ocular material. Three multipurpose solutions (solution A: polyhexamethylene biguanide 0.00025 g/100 mL; solution B: polyquaternary-1 0.001% and myristamidopropyl dimethylamine 0.0006%; and solution C: polyaminopropyl biguanide 0.00013% and polyquaternary 0.0001%) were used as a 3-phase disinfection on silicone hydrogel CL contaminated with bacteria from clinical isolates that were divided into five groups (group 1: Pseudomonas aeruginosa; group 2: Staphylococcus aureus; group 3: Staphylococcus epidermidis; group 4: Streptococcus spp; and group 5: enterobacteria). No differences were observed between the 24- and 48-hr measurements in any of the samples, and the positivity of microorganisms in T0 was 100% for all solutions; it was 0% in T3. Therefore, only steps T1 (rubbing followed by rinsing) and T2 (rubbing followed by rinsing and immersion of CL into solution) were considered for analysis at the 24-hr measurement time. Throughout the phases, a decrease in the number of bacteria was observed, culminating in the elimination (no recovery) of all microorganisms in the three solutions. At the end of the proposed process, the tested solutions were effective.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Zaugg, Lucia K; Zitzmann, Nicola U; Hauser-Gerspach, Irmgard; Waltimo, Tuomas; Weiger, Roland; Krastl, Gabriel
2014-08-01
To compare the antimicrobial activity of polyhexamethylene biguanide (Prontosan wound gel, Pr) and chlorhexidine digluconate (CHX) after short- and medium-term application with the disinfection ability of calcium hydroxide (Ca) in a model using immature bovine teeth. Sixty immature bovine roots were infected with Enterococcus faecalis and randomly assigned to six groups (n = 10). Disinfectants were applied into the root canal for 10 min (CHX-10 min and Pr-10 min) or 7 days (CHX-7d, Pr-7d and Ca-7d(g) ). In the negative control group (Co-n), no disinfectant was used. Dentine samples were collected, and the total count of bacteria and colony-forming units were determined. The log10 -transformed Colony-forming units (CFU) data were analysed using a Kruskal-Wallis test with post hoc Wilcoxon multiple-comparison tests. The application of disinfectants led to a significant reduction in CFUs in all groups compared with group Co-n. When compared to Ca-7d(g) , CHX-7d (P = 0.290), CHX-10 min (P = 0.963) and Pr-7d (P = 0.095) revealed no significant differences. Pr-10 min had a significantly higher CFU value than Ca-7d(g) (P = 0.0004), CHX-10 min (P = 0.0009) and Pr-7d (P = 0.0006). Within the limitations of this study, sufficient antimicrobial effect may be reached by a short-term application of CHX. For the application of 1% Prontosan wound gel, a medium-term use (7 day) is required, while short-term use (10 min) is less effective. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kamaruzzaman, Nor F.; Chong, Stacy Q. Y.; Edmondson-Brown, Kamina M.; Ntow-Boahene, Winnie; Bardiau, Marjorie; Good, Liam
2017-01-01
Staphylococcus aureus infection is a common cause of mastitis, reducing milk yield, affecting animal welfare and causing huge economic losses within the dairy industry. In addition to the problem of acquired drug resistance, bacterial invasion into udder cells and the formation of surface biofilms are believed to reduce antibiotic efficacy, leading to treatment failure. Here, we investigated the antimicrobial activities of enrofloxacin, an antibiotic that is commonly used in mastitis therapy and polyhexamethylene biguanide (PHMB), an antimicrobial polymer. The antimicrobial activities were tested against intracellular S. aureus in infected Mac-T cells (host cells). Also, fluorescein-tagged PHMB was used to study PHMB uptake and localization with S. aureus within the infected Mac-T cells. Anti-biofilm activities were tested by treating S. aureus biofilms and measuring effects on biofilm mass in vitro. Enrofloxacin and PHMB at 15 mg/L killed between 42 to 92 and 99.9% of intracellular S. aureus, respectively. PHMB-FITC entered and colocalized with the intracellular S. aureus, suggesting direct interaction of the drug with the bacteria inside the host cells. Enrofloxacin and PHMB at 15 mg/L reduced between 10 to 27% and 28 to 37% of biofilms’ mass, respectively. The half-maximal inhibitory concentrations (IC50) obtained from a cytotoxicity assay were 345 ± 91 and 21 ± 2 mg/L for enrofloxacin and PHMB, respectively; therefore, both compounds were tolerated by the host cells at high concentrations. These findings suggest that both antimicrobials are effective against intracellular S. aureus and can disrupt biofilm structures, with PHMB being more potent against intracellular S. aureus, highlighting the potential application of PHMB in mastitis therapy. PMID:28848527
Zhang, Li; He, Huamei; Balschi, James A
2007-07-01
AMP-activated protein kinase (AMPK) acts as a cellular energy sensor: it responds to an increase in AMP concentration ([AMP]) or the AMP-to-ATP ratio (AMP/ATP). Metformin and phenformin, which are biguanides, have been reported to increase AMPK activity without increasing AMP/ATP. This study tests the hypothesis that these biguanides increase AMPK activity in the heart by increasing cytosolic [AMP]. Groups of isolated rat hearts (n = 5-7 each) were perfused with Krebs-Henseleit buffer with or without 0.2 mM phenformin or 10 mM metformin, and (31)P-NMR-measured phosphocreatine, ATP, and intracellular pH were used to calculate cytosolic [AMP]. At various times, hearts were freeze-clamped and assayed for AMPK activity, phosphorylation of Thr(172) on AMPK-alpha, and phosphorylation of Ser(79) on acetyl-CoA carboxylase, an AMPK target. In hearts treated with phenformin for 18 min and then perfused for 20 min with Krebs-Henseleit buffer, [AMP] began to increase at 26 min and AMPK activity was elevated at 36 min. In hearts treated with metformin, [AMP] was increased at 50 min and AMPK activity, phosphorylated AMPK, and phosphorylated acetyl-CoA carboxylase were elevated at 61 min. In metformin-treated hearts, HPLC-measured total AMP content and total AMP/ATP did not increase. In summary, phenformin and metformin increase AMPK activity and phosphorylation in the isolated heart. The increase in AMPK activity was always preceded by and correlated with increased cytosolic [AMP]. Total AMP content and total AMP/ATP did not change. Cytosolic [AMP] reported metabolically active AMP, which triggered increased AMPK activity, but measures of total AMP did not.
The inhibition of monoamine oxidase by phenformin and pentamidine.
Barkhuizen, M; Petzer, A; Petzer, J P
2014-09-01
A computational study has suggested that phenformin, an oral hypoglycaemic drug, may bind to the active sites of the monoamine oxidase (MAO) A and B enzymes. The present study therefore investigates the MAO inhibitory properties of phenformin. Pentamidine, a structurally related diamidine compound, has previously been reported to be a MAO inhibitor and was included in this study as a reference compound. Using recombinant human MAO-A and MAO-B, this study finds that phenformin acts as a moderately potent MAO-A selective inhibitor with an IC50 value of 41 µM. Pentamidine, on the other hand, potently inhibits both MAO-A and MAO-B with IC50 values of 0.61 μM and 0.22 μM, respectively. An examination of the recoveries of the enzymatic activities after dilution and dialysis of the enzyme-inhibitor complexes shows that both compounds interact reversibly with the MAO enzymes. A kinetic analysis suggests that pentamidine acts as a competitive inhibitor with estimated Ki values of 0.41 μM and 0.22 μM for the inhibition of MAO-A and MAO-B, respectively. Phenformin also exhibited a competitive mode of MAO-A inhibition with an estimated Ki value of 65 µM. This study concludes that biguanide and amidine functional groups are most likely important structural features for the inhibition of the MAOs by phenformin and pentamidine, and compounds containing these and closely related functional groups should be considered as potential MAO inhibitors. Furthermore, the biguanide and amidine functional groups may act as useful moieties in the future design of MAO inhibitors. © Georg Thieme Verlag KG Stuttgart · New York.
Demodex folliculitis presenting as periocular vesiculopustular rash.
Yun, Samuel H; Levin, Flora; Servat, Javier
2013-12-01
To report an unusual case of Demodex folliculitis presenting as periocular vesiculopustular rash. Case report. A 68 year-old woman presented with a unilateral periocular rash that was initially treated by her primary ophthalmologist with topical steroids and antivirals. Slit-lamp examination revealed severe bilateral blepharitis, right greater than left, with waxy sleeves around the eyelashes. The diagnosis of Demodex infestation was considered. Treatment with daily lid scrub with polyhexamethylene biguanide (PHMB), 1,2-hexanediol and 1,2-octanediol (OCuSOFT PLUS) and erythromycin ointment twice a day resulted in complete resolution of the symptoms after 4 weeks. Ophthalmologists should be aware of Demodex and consider it in the differential diagnosis of periocular skin lesions.
Napavichayanun, Supamas; Yamdech, Rungnapha; Aramwit, Pornanong
2016-03-01
In our previous work, we have attempted to develop a novel bacterial nanocellulose wound dressing which composed of both polyhexamethylene biguanide (PHMB) as an antimicrobial agent and sericin as an accelerative wound healing component. The loading sequence and concentration of PHMB and sericin were optimized to provide the wound dressing with the most effective antimicrobial activity and enhanced collagen production. In this study, further in vitro, in vivo, and clinical studies of this novel wound dressing were performed to evaluate its safety, efficacy, and applicability. For the in vitro cytotoxic test with L929 mouse fibroblast cells, our novel dressing was not toxic to the cells and also promoted cell migration as good as the commercially available dressing, possibly due to the component of sericin released. When implanted subcutaneously in rats, the lower inflammation response was observed for the novel dressing implanted, comparing to the commercially available dressing. This might be that the antimicrobial PHMB component of the novel dressing played a role to reduce infection and inflammation reaction. The clinical trial patch test was performed on the normal skin of healthy volunteers to evaluate the irritation effect of the dressing. Our novel dressing did not irritate the skin of any volunteers, as characterized by the normal levels of erythema and melanin and the absence of edema, papule, vesicle, and bullae. Then, the novel dressing was applied for the treatment of full-thickness wounds in rats. The wounds treated with our novel dressing showed significantly lower percentage of wound size and higher extent of collagen formation mainly due to the activity of sericin. We concluded that our novel bacterial nanocellulose incorporating PHMB and sericin was a safe and efficient wound dressing material for further investigation in the wound healing efficacy in clinic.
Toxicological assessment of polyhexamethylene biguanide for water treatment
Mahmood, Abdulai Seidu; Awortwe, Charles; Nyarko, Alexander K.
2015-01-01
Polyhexamethylene biguanide (PHMB) is an antiseptic with antiviral and antibacterial properties used in a variety of products including wound care dressings, contact lens cleaning solutions, perioperative cleansing products, and swimming pool cleaners. There are regulatory concerns with regard to its safety in humans for water treatment. We decided to assess the safety of this chemical in Sprague-Dawley rats. PHMB was administered in a single dose by gavage via a stomach tube as per the manufacturer's instruction within a dose range of 2 mg/kg to 40 mg/kg. Subchronic toxicity studies were also conducted at doses of 2 mg/kg, 8 mg/kg and 32 mg/kg body weight and hematological, biochemical and histopathological findings of the major organs were assessed. Administration of a dose of 25.6 mg/kg, i.e. 1.6 mL of 0.4% PHMB solution (equivalent to 6.4x103 mg/L of 0.1% solution) resulted in 50% mortality. Histopathological analysis in the acute toxicity studies showed that no histopathological lesions were observed in the heart and kidney samples but 30% of the animals had mild hydropic changes in zone 1 of their liver samples, while at a dosage of 32 mg/kg in the subchronic toxicity studies, 50% of the animals showed either mild hepatocyte cytolysis with or without lymphocyte infiltration and feathery degeneration. Lymphocyte infiltration was, for the first time, observed in one heart sample, whereas one kidney sample showed mild tubular damage. The acute studies showed that the median lethal dose (LD50) is 25.6 mg/kg (LC50 of 1.6 mL of 0.4% PHMB. Subchronic toxicological studies also revealed few deleterious effects on the internal organs examined, as seen from the results of the biochemical parameters evaluated. These results have implications for the use of PHMB to make water potable. PMID:27486381
Elsztein, Carolina; de Lucena, Rodrigo M; de Morais, Marcos A
2011-08-19
Polyhexamethylene biguanide (PHMB) is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Cell Wall integrity (CWI) genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC) regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI) pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes.
Inagaki, Nobuya; Sano, Hiroki; Seki, Yoshifumi; Kuroda, Shingo; Kaku, Kohei
2016-09-01
Trelagliptin is a novel once-weekly oral dipeptidyl peptidase-4 inhibitor for type 2 diabetes mellitus that was first approved in Japan. We evaluated long-term safety and efficacy of trelagliptin in Japanese patients with type 2 diabetes mellitus. This was a phase 3, multicenter, open-label study to evaluate long-term safety and efficacy of trelagliptin. Patients with type 2 diabetes mellitus inadequately controlled despite diet/exercise or treatment with one of the existing oral antidiabetic drugs along with diet/exercise received trelagliptin 100 mg orally once weekly for 52 weeks as monotherapy or combination therapies. The primary end-points were the safety variables, and the secondary end-points were glycosylated hemoglobin and fasting plasma glucose. A total of 680 patients received the following antidiabetic therapies: trelagliptin monotherapy (n = 248), combination with a sulfonylurea (n = 158), a glinide (n = 67), an α-glucosidase inhibitor (n = 65), a biguanide (n = 70), or a thiazolidinedione (n = 72). During the study, 79.8% of the patients experienced at least one adverse event for monotherapy, 87.3% for combination with a sulfonylurea, 77.6% for a glinide, 81.5% for an α-glucosidase inhibitor, 64.3% for a biguanide, and 84.7% for a thiazolidinedione, respectively. Most of the adverse events were mild or moderate. The change in glycosylated hemoglobin from baseline at the end of the treatment period was -0.74 to -0.25% for each therapy. Once-weekly oral trelagliptin provides well-tolerated long-term safety and efficacy in both monotherapy and combination therapies in Japanese patients with type 2 diabetes mellitus. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.
Geraldo, Ingrid M; Gilman, Allan; Shintre, Milind S; Modak, Shanta M
2008-08-01
To evaluate the antimicrobial efficacy of and risk of organisms developing resistance to 2 novel hand soaps: (1) a soap containing triclosan, polyhexamethylene biguanide, and benzethonium chloride added to a soap base (TPB soap); and (2) a soap containing farnesol, polyhexamethylene biguanide, and benzethonium chloride added to a soap base (FPB soap). Tests also included soaps containing only triclosan. The risk of emergence of resistant bacterial mutants was investigated by determining the susceptibility changes after repeated exposure of bacteria to the drugs and soaps in vitro. The effectiveness of the soaps was evaluated using an in vitro tube dilution method, a volunteer method (the ASTM standard), and 2 pig skin methods. The minimum inhibitory concentration and minimum bactericidal concentration of triclosan against Staphylococcus aureus increased 8- to 62.5-fold, whereas those of TPB and FPB (both alone and in soap) were unchanged. In vitro, TPB and FPB soaps produced higher log(10) reductions in colony-forming units of all tested organisms (4.95-8.58) than did soaps containing triclosan alone (0.29-4.86). In the test using the pig skin and volunteer methods, TPB soap produced a higher log(10) reduction in colony-forming units (3.1-3.3) than did the soap containing triclosan alone (2.6-2.8). The results indicate that TPB and FPB soaps may provide superior rapid and broad-spectrum efficacy with a lower risk of organisms developing resistance than do soaps containing triclosan alone. Pig skin methods may be used to predict the efficacy of antibacterial soaps in the rapid disinfection of contaminated hands. Hand washing with TPB and FPB soaps by healthcare workers and the general population may reduce the transmission of pathogens, with a lower risk of promoting the emergence of resistant organisms.
Oncometabolic mutation IDH1 R132H confers a metformin-hypersensitive phenotype.
Cuyàs, Elisabet; Fernández-Arroyo, Salvador; Corominas-Faja, Bruna; Rodríguez-Gallego, Esther; Bosch-Barrera, Joaquim; Martin-Castillo, Begoña; De Llorens, Rafael; Joven, Jorge; Menendez, Javier A
2015-05-20
Metabolic flexibility might be particularly constrained in tumors bearing mutations in isocitrate dehydrogenase 1 (IDH1) leading to the production of the oncometabolite 2-hydroxygluratate (2HG). To test the hypothesis that IDH1 mutations could generate metabolic vulnerabilities for therapeutic intervention, we utilized an MCF10A cell line engineered with an arginine-to-histidine conversion at position 132 (R132H) in the catalytic site of IDH1, which equips the enzyme with a neomorphic α-ketoglutarate to 2HG reducing activity in an otherwise isogenic background. IDH1 R132H/+ and isogenic IDH1 +/+ parental cells were screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput Phenotype MicroArrayplatform comprising >300 nutrients. A radical remodeling of the metabotype occurred in cells carrying the R132H mutation since they presented a markedly altered ability to utilize numerous carbon catabolic fuels. A mitochondria toxicity-screening modality confirmed a severe inability of IDH1-mutated cells to use various carbon substrates that are fed into the electron transport chain at different points. The mitochondrial biguanide poisons, metformin and phenformin, further impaired the intrinsic weakness of IDH1-mutant cells to use certain carbon-energy sources. Additionally, metabolic reprogramming of IDH1-mutant cells increased their sensitivity to metformin in assays of cell proliferation, clonogenic potential, and mammosphere formation. Targeted metabolomics studies revealed that the ability of metformin to interfere with the anaplerotic entry of glutamine into the tricarboxylic acid cycle could explain the hypersensitivity of IDH1-mutant cells to biguanides. Moreover, synergistic interactions occurred when metformin treatment was combined with the selective R132H-IDH1 inhibitor AGI-5198. Together, these results suggest that therapy involving the simultaneous targeting of metabolic vulnerabilities with metformin, and 2HG overproduction with mutant-selective inhibitors (AGI-5198-related AG-120 [Agios]), might represent a worthwhile avenue of exploration in the treatment of IDH1-mutated tumors.
Oncometabolic mutation IDH1 R132H confers a metformin-hypersensitive phenotype
Cuyàs, Elisabet; Fernández-Arroyo, Salvador; Corominas-Faja, Bruna; Rodríguez-Gallego, Esther; Bosch-Barrera, Joaquim; Martin-Castillo, Begoña; De Llorens, Rafael; Joven, Jorge; Menendez, Javier A.
2015-01-01
Metabolic flexibility might be particularly constrained in tumors bearing mutations in isocitrate dehydrogenase 1 (IDH1) leading to the production of the oncometabolite 2-hydroxygluratate (2HG). To test the hypothesis that IDH1 mutations could generate metabolic vulnerabilities for therapeutic intervention, we utilized an MCF10A cell line engineered with an arginine-to-histidine conversion at position 132 (R132H) in the catalytic site of IDH1, which equips the enzyme with a neomorphic α-ketoglutarate to 2HG reducing activity in an otherwise isogenic background. IDH1 R132H/+ and isogenic IDH1 +/+ parental cells were screened for their ability to generate energy-rich NADH when cultured in a standardized high-throughput Phenotype MicroArrayplatform comprising >300 nutrients. A radical remodeling of the metabotype occurred in cells carrying the R132H mutation since they presented a markedly altered ability to utilize numerous carbon catabolic fuels. A mitochondria toxicity-screening modality confirmed a severe inability of IDH1-mutated cells to use various carbon substrates that are fed into the electron transport chain at different points. The mitochondrial biguanide poisons, metformin and phenformin, further impaired the intrinsic weakness of IDH1-mutant cells to use certain carbon-energy sources. Additionally, metabolic reprogramming of IDH1-mutant cells increased their sensitivity to metformin in assays of cell proliferation, clonogenic potential, and mammosphere formation. Targeted metabolomics studies revealed that the ability of metformin to interfere with the anaplerotic entry of glutamine into the tricarboxylic acid cycle could explain the hypersensitivity of IDH1-mutant cells to biguanides. Moreover, synergistic interactions occurred when metformin treatment was combined with the selective R132H-IDH1 inhibitor AGI-5198. Together, these results suggest that therapy involving the simultaneous targeting of metabolic vulnerabilities with metformin, and 2HG overproduction with mutant-selective inhibitors (AGI-5198-related AG-120 [Agios]), might represent a worthwhile avenue of exploration in the treatment of IDH1-mutated tumors. PMID:25980580
Metformin: A Hopeful Promise in Aging Research
Novelle, Marta G.; Ali, Ahmed; Diéguez, Carlos; Bernier, Michel; de Cabo, Rafael
2016-01-01
Even though the inevitable process of aging by itself cannot be considered a disease, it is directly linked to life span and is the driving force behind all age-related diseases. It is an undisputable fact that age-associated diseases are among the leading causes of death in the world, primarily in industrialized countries. During the last several years, an intensive search of antiaging treatments has led to the discovery of a variety of drugs that promote health span and/or life extension. The biguanide compound metformin is widely used for treating people with type 2 diabetes and appears to show protection against cancer, inflammation, and age-related pathologies. Here, we summarize the recent developments about metformin use in translational aging research and discuss its role as a potential geroprotector. PMID:26931809
Effect of hypolipidemic drugs on basal and stimulated adenylate cyclase activity in tumor cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bershtein, L.M.; Kovaleva, I.G.; Rozenberg, O.A.
1986-02-01
This paper studies adenylate cyclase acticvity in Ehrlich's ascites carcinoma (EAC) cells during administration of drugs with a hypolipidemic action. Seven to eight days before they were killed, male mice ingested the antidiabetic biguanide phenformin, and the phospholipid-containing preparation Essentiale in drinking water. The cAMP formed was isolated by chromatography on Silufol plates after incubation of the enzyme preparation with tritium-ATP, or was determined by the competitive binding method with protein. It is shown that despite the possible differences in the concrete mechanism of action of the hypolipidemic agents chosen for study on the cyclase system, the use of suchmore » agents, offers definite prospects for oriented modification of the hormone sensitivity of tumor cells.« less
Lui, Aline Cristina Fioravanti; Netto, Adamo Lui; Silva, Cely Barreto da; Hida, Richard; Mendes, Thais Sousa; Lui, Giovana Arlene Fioravanti; Gemperli, Daniela Barbosa; Vital, Enderson Dantas
2009-01-01
To evaluate the efficacy of disinfecting solutions in hydrophilic contact lenses (CL). Two multi-use solutions denominated solution A (0.001% polyquaternium-1 and 0.0005% myristamidopropyl dimethylamine) and solution B (0.0001% polyaminopropyl biguanide) were used. The solutions were tested in hydrophilic contact lenses infected with Pseudomonas aeruginosa (ATCC27583), Staphylococcus epidermidis (ATCC1226), Klebsiella pneumoniae (ATCC13883), Staphylococcus aureus (ATCC25923) and Candida albicans (ATCC 10231) and the decrease in microorganisms growth after the hydrophilic contact lenses were cleaned with the respective solutions was verified. The manufacture's instructions were followed. A decrease of 90% of Pseudomonas aeruginosa, Staphylococcus epidermidis, Staphylococcus aureus, Candida albicans and a decrease 100% of Klebsiella pneumoniae was observed. The solutions decreased the amount of microorganisms tested.
2011-01-01
Background Polyhexamethylene biguanide (PHMB) is an antiseptic polymer that is mainly used for cleaning hospitals and pools and combating Acantamoeba infection. Its fungicide activity was recently shown by its lethal effect on yeasts that contaminate the industrial ethanol process, and on the PE-2 strain of Saccharomyces cerevisiae, one of the main fermenting yeasts in Brazil. This pointed to the need to know the molecular mechanism that lay behind the cell resistance to this compound. In this study, we examined the factors involved in PHMB-cell interaction and the mechanisms that respond to the damage caused by this interaction. To achieve this, two research strategies were employed: the expression of some genes by RT-qPCR and the analysis of mutant strains. Results Cell Wall integrity (CWI) genes were induced in the PHMB-resistant Saccharomyces cerevisiae strain JP-1, although they are poorly expressed in the PHMB-sensitive Saccharomyces cerevisiae PE2 strain. This suggested that PHMB damages the glucan structure on the yeast cell wall. It was also confirmed by the observed sensitivity of the yeast deletion strains, Δslg1, Δrom2, Δmkk2, Δslt2, Δknr4, Δswi4 and Δswi4, which showed that the protein kinase C (PKC) regulatory mechanism is involved in the response and resistance to PHMB. The sensitivity of the Δhog1 mutant was also observed. Furthermore, the cytotoxicity assay and gene expression analysis showed that the part played by YAP1 and CTT1 genes in cell resistance to PHMB is unrelated to oxidative stress response. Thus, we suggested that Yap1p can play a role in cell wall maintenance by controlling the expression of the CWI genes. Conclusion The PHMB treatment of the yeast cells activates the PKC1/Slt2 (CWI) pathway. In addition, it is suggested that HOG1 and YAP1 can play a role in the regulation of CWI genes. PMID:21854579
Sharma, Sudhaa; Tandon, Vishal R; Roshi; Mahajan, Annil
2016-01-01
Oral antihyperglycaemic prescription trends keep on changing and thus the drug prescription trend study may prove to be powerful exploratory tool for health care providers. To investigate trends in prescriptions of oral antihyperglycaemic drugs (OHDs) among postmenopausal women suffering from T2DM in India and evaluate the rationality and adherence to ADA treatment guidelines. An observational, cross-sectional descriptive prescription audit (n=500) was carried. Postmenopausal women were interviewed in their local language using pre-tested pre validated questionnaire after verbal informed consent at a teaching tertiary care hospital of north India. Oral antihyperglycaemic drugs (OHDs) drugs were categorized as per the pharmacological classification. Adherence to available clinical practice guidelines/recommendations issued under American Diabetes Association (ADA) 2015 Guidelines as well as rationality of these prescriptions were assessed using WHO Guide to Good Prescribing. Mean age of the study population was 58.14±12.86. Mean duration since menopause was 5.3 years and of T2DM was 9.5 years. A 93.4% of the prescriptions had only OHDs whereas 6.6% of the prescriptions had various insulin preprations + OHDs (p<0.0001). Biguanides followed by sulfonylureas, thiazolidinediones, DPP-inhibitors and alpha-glucosidases inhibitor were prescribed in 85.6%, 59.8%, 26.6%, 26% and 12.2% respectively as monotherapy or in combination. Among biguanides, metformin was the most frequently prescribed OHDs. In spite of black box warning on pioglitazone, it was prescribed in 26.6% as FDC. However, clear increase use of vidagliptine was noticed upto 26%. Among combinations most frequent was metformin plus glimipride followed by voglibose plus metformin, whereas, among FDC, metformin plus glimipride followed by metformin plus vidagliptine were most frequently prescribed. Metformin was the most common OHDs to be prescribed followed by glimepiride. Although pioglitazone still continues to be prescribed after safety alert but apparently it appears that the share of pioglitazone has been shifted to vidagliptin or combinations like metformin plus glimipride. Polypharmacy, high use of FDC, & prescription by brand names were some of the irrationalities. Relatively low adherence to ADA treatment guidelines was observed.
Metformin: A Hopeful Promise in Aging Research.
Novelle, Marta G; Ali, Ahmed; Diéguez, Carlos; Bernier, Michel; de Cabo, Rafael
2016-03-01
Even though the inevitable process of aging by itself cannot be considered a disease, it is directly linked to life span and is the driving force behind all age-related diseases. It is an undisputable fact that age-associated diseases are among the leading causes of death in the world, primarily in industrialized countries. During the last several years, an intensive search of antiaging treatments has led to the discovery of a variety of drugs that promote health span and/or life extension. The biguanide compound metformin is widely used for treating people with type 2 diabetes and appears to show protection against cancer, inflammation, and age-related pathologies. Here, we summarize the recent developments about metformin use in translational aging research and discuss its role as a potential geroprotector. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.
Anti-bacterial treatment of polyethylene by cold plasma for medical purposes.
Popelka, Anton; Novák, Igor; Lehocký, Marián; Chodák, Ivan; Sedliačik, Ján; Gajtanska, Milada; Sedliačiková, Mariana; Vesel, Alenka; Junkar, Ita; Kleinová, Angela; Spírková, Milena; Bílek, František
2012-01-13
Polyethylene (PE) is one of the most widely used polymers in many industrial applications. Biomedical uses seem to be attractive, with increasing interest. However, PE it prone to infections and its additional surface treatment is indispensable. An increase in resistance to infections can be achieved by treating PE surfaces with substances containing antibacterial groups such as triclosan (5-Chloro-2-(2,4-dichlorophenoxy)phenol) and chlorhexidine (1,1'-Hexamethylenebis[5-(4-chlorophenyl)biguanide]). This work has examined the impact of selected antibacterial substances immobilized on low-density polyethylene (LDPE) via polyacrylic acid (PAA) grafted on LDPE by low-temperature barrier discharge plasma. This LDPE surface treatment led to inhibition of Escherichia coli and Staphylococcus aureus adhesion; the first causes intestinal disease, peritonitis, mastitis, pneumonia, septicemia, the latter is the reason for wound and urinary tract infections.
AMP-activated protein kinase and metabolic control
Viollet, Benoit; Andreelli, Fabrizio
2011-01-01
AMP-activated protein kinase (AMPK), a phylogenetically conserved serine/threonine protein kinase, is a major regulator of cellular and whole-body energy homeostasis that coordinates metabolic pathways in order to balance nutrient supply with energy demand. It is now recognized that pharmacological activation of AMPK improves blood glucose homeostasis, lipid profile and blood pressure in insulin-resistant rodents. Indeed, AMPK activation mimics the beneficial effects of physical activity or those of calorie restriction by acting on multiple cellular targets. In addition it is now demonstrated that AMPK is one of the probable (albeit indirect) targets of major antidiabetic drugs including, the biguanides (metformin) and thiazolidinediones, as well as of insulin sensitizing adipokines (e.g., adiponectin). Taken together, such findings highlight the logic underlying the concept of targeting the AMPK pathway for the treatment of metabolic syndrome and type 2 diabetes. PMID:21484577
Gestational Diabetes Mellitus Management with Oral Hypoglycemic Agents
Ryu, Rachel J.; Hays, Karen E.; Hebert, Mary F.
2014-01-01
Oral hypoglycemic agents such as glyburide (second generation sulfonylurea) and metformin (biguanide) are attractive alternatives to insulin due to lower cost, ease of administration, and better patient adherence. The majority of evidence from retrospective and prospective studies suggests comparable efficacy and safety of oral hypoglycemic agents such as glyburide and metformin as compared to insulin when used in the treatment of women with gestational diabetes mellitus (GDM). Glyburide and metformin have altered pharmacokinetics during pregnancy and both agents cross the placenta. In this article, we review the efficacy, safety and dosage of oral hypoglycemic agents for the treatment of gestational diabetes mellitus. Additional research is needed to evaluate optimal dosage for glyburide and metformin during pregnancy. Comparative studies evaluating the effects of glyburide and metformin on long-term maternal and fetal outcomes are also needed. PMID:25315294
Skliarova, E I; Popova, T N; Shulgin, K K
2016-06-01
Effects of a synthetic biguanide derivative N-[imino(1-piperidinyl)methyl] guanidine (NIPMG) on free radical homeostasis, aconitase activity, and citrate concentration were studied in the liver and blood serum of rats with type 2 diabetes mellitus. Analysis of biochemiluminescence parameters showed that administration of this agent (10 mg/kg body weight) to animals with diabetes reduced the intensity of free radical processes in study tissues relative to the increased values in untreated diabetic animals. Under these conditions, aconitase activity, a principal target of ROS effects, and citrate level in the liver and blood serum of rats approached the control levels. The results show that NIPMG can positively regulate free radical homeostasis and reduce the intensity of oxidative stress in type 2 diabetes mellitus, which was accompanied by normalization of the studied parameters.
Silicon photonic dual-gas sensor for H2 and CO2 detection.
Mi, Guangcan; Horvath, Cameron; Van, Vien
2017-07-10
We report a silicon photonic dual-gas sensor based on a wavelength-multiplexed microring resonator array for simultaneous detection of H 2 and CO 2 gases. The sensor uses Pd as the sensing layer for H 2 gas and a novel functional material based on the Polyhexamethylene Biguanide (PHMB) polymer for CO 2 gas sensing. Gas sensing experiments showed that the PHMB-functionalized microring exhibited high sensitivity to CO 2 gas and excellent selectivity against H 2 . However, the Pd-functionalized microring was found to exhibit sensitivity to both H 2 and CO 2 gases, rendering it ineffective for detecting H 2 in a gas mixture containing CO 2 . We show that the dual-gas sensing scheme can allow for accurate measurement of H 2 concentration in the presence of CO 2 by accounting for the cross-sensitivity of Pd to the latter.
El-Fiky, F K; Abou-Karam, M A; Afify, E A
1996-01-01
The present study investigates the effect of oral administration of the ethanolic extracts of Luffa aegyptiaca (seeds) and Carissa edulis (leaves) on blood glucose levels both in normal and streptozotocin (STZ) diabetic rats. Treatment with both extracts significantly reduced the blood glucose level in STZ diabetic rats during the first three hours of treatment. L. aegyptiaca extract decreased blood glucose level with a potency similar to that of the biguanide, metformin. The total glycaemic areas were 589.61 +/- 45.62 mg/dl/3 h and 660.38 +/- 64.44 mg/dl/3 h for L. aegyptiaca and metformin, respectively, vs. 816.73 +/- 43.21 mg/dl/3 h for the control (P < 0.05). On the other hand, in normal rats, both treatments produced insignificant changes in blood glucose levels compared to glibenclamide treatment.
McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.
2005-09-06
A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.
Synergistic effect of phenformin in non-small cell lung cancer (NSCLC) ionizing radiation treatment.
Wang, Jia; Xia, Shi'an; Zhu, Zhizhen
2015-03-01
Biguanides, used for anti-diabetic drugs, bring more attention in cancer research for their beneficial effects. Phenformin is more potent than metformin. However its potential application as a anti-cancer regent is far behind metformin. In order to investigate any beneficial effect of combination of Phenformin and radiotherapy, non-small cell lung cancer cell lines A549 and H1299 were exposure under different dose of ionizing radiation with or without Phenformin. Results indicated Phenformin showed synergistic effect and could induce more cancer cell apoptosis and inhibition of tumor growth compared with ionizing radiation alone. Furthermore, this synergistic effect may be through different pathway according to cancer cell genotype background. Our results showed Phenformin induced AMPK activation in A549 but not H1299. However, Phenformin activated eIF2α in both cell lines. Our findings implicated Phenformin may be used as radiosensitizer for non-small cell lung cancer therapy.
(Bis)urea and (Bis)thiourea Inhibitors of Lysine-Specific Demethylase 1 as Epigenetic Modulators
Sharma, Shiv K.; Wu, Yu; Steinbergs, Nora; Crowley, Michael L.; Hanson, Allison S.; Casero, Robert A.; Woster, Patrick M.
2010-01-01
The recently discovered enzyme lysine-specific demethylase 1 (LSD1) plays an important role in the epigenetic control of gene expression, and aberrant gene silencing secondary to LSD1 over expression is thought to contribute to the development of cancer. We recently reported a series of (bis)guanidines and (bis)biguanides that are potent inhibitors of LSD1, and induce the re-expression of aberrantly silenced tumor suppressor genes in tumor cells in vitro. We now report a series of isosteric ureas and thioureas that are also potent inhibitors of LSD1. These compounds induce increases in methylation at the histone 3 lysine 4 (H3K4) chromatin mark, a specific target of LSD1, in Calu-6 lung carcinoma cells. In addition, these analogues increase cellular levels of secreted frizzle-related proteins (SFRP) 2 and 5, and transcription factor GATA4. These compounds represent an important new series of epigenetic modulators with the potential for use as antitumor agents. PMID:20568780
High Pressure Laminates with Antimicrobial Properties
Magina, Sandra; Santos, Mauro D.; Ferra, João; Cruz, Paulo; Portugal, Inês; Evtuguin, Dmitry
2016-01-01
High-pressure laminates (HPLs) are durable, resistant to environmental effects and good cost-benefit decorative surface composite materials with special properties tailored to meet market demand. In the present work, polyhexamethylene biguanide (PHMB) was incorporated for the first time into melamine-formaldehyde resin (MF) matrix on the outer layer of HPLs to provide them antimicrobial properties. Chemical binding of PHMB to resin matrix was detected on the surface of produced HPLs by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Antimicrobial evaluation tests were carried out on the ensuing HPLs doped with PHMB against gram-positive Listeria innocua and gram-negative Escherichia coli bacteria. The results revealed that laminates prepared with 1.0 wt % PHMB in MF resin were bacteriostatic (i.e., inhibited the growth of microorganisms), whereas those prepared with 2.4 wt % PHMB in MF resin exhibited bactericidal activity (i.e., inactivated the inoculated microorganisms). The results herein reported disclose a promising strategy for the production of HPLs with antimicrobial activity without affecting basic intrinsic quality parameters of composite material. PMID:28787897
High Pressure Laminates with Antimicrobial Properties.
Magina, Sandra; Santos, Mauro D; Ferra, João; Cruz, Paulo; Portugal, Inês; Evtuguin, Dmitry
2016-02-06
High-pressure laminates (HPLs) are durable, resistant to environmental effects and good cost-benefit decorative surface composite materials with special properties tailored to meet market demand. In the present work, polyhexamethylene biguanide (PHMB) was incorporated for the first time into melamine-formaldehyde resin (MF) matrix on the outer layer of HPLs to provide them antimicrobial properties. Chemical binding of PHMB to resin matrix was detected on the surface of produced HPLs by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). Antimicrobial evaluation tests were carried out on the ensuing HPLs doped with PHMB against gram-positive Listeria innocua and gram-negative Escherichia coli bacteria. The results revealed that laminates prepared with 1.0 wt % PHMB in MF resin were bacteriostatic ( i.e. , inhibited the growth of microorganisms), whereas those prepared with 2.4 wt % PHMB in MF resin exhibited bactericidal activity ( i.e. , inactivated the inoculated microorganisms). The results herein reported disclose a promising strategy for the production of HPLs with antimicrobial activity without affecting basic intrinsic quality parameters of composite material.
Obesity, insulin resistance, and type 1 diabetes mellitus.
Polsky, Sarit; Ellis, Samuel L
2015-08-01
To summarize recent studies about obesity, insulin resistance, and type 1 diabetes mellitus (T1DM). Overweight and obesity continue to be prevalent among individuals with T1DM. Obesity rates appear to have reached a plateau among children with T1DM in some parts of the world. The risk for development of T1DM is increased by obesity and may occur at an earlier age among obese individuals with a predisposition. Obesity increases the risk for comorbidities among individuals with T1DM, especially metabolic syndrome, and microvascular and macrovascular diseases. Metformin, glucagon-like peptide-1 agonist therapy, sodium glucose cotransporter-2 inhibitor therapy, and bariatric surgery may be beneficial therapies for glucose control, comorbidity management, and obesity among adults with T1DM. Insulin resistance may be improved among obese individuals with T1DM by biguanides (metformin) and glucagon-like peptide-1 agonists (exenatide). We review the last 18 months of literature on obesity, insulin resistance, and T1DM to highlight new epidemiologic results and treatments.
Martinka, Emil; Uličiansky, Vladimír; Mokáň, Marián; Tkáč, Ivan; Galajda, Peter; Dókušová, Silvia; Schroner, Zbynek
2018-01-01
Type 2 diabetes mellitus is a heterogeneous medical condition involving multiple pathophysiological mechanisms. Its successful treatment requires an individualized approach and frequently combined therapy with utilizing its effect on multiple levels. Current possibilities enable the employment of such procedures to an incomparably greater extent than before. The effects of different classes of oral antidiabetic drugs on the reduction of glycemia and HbA1c is mutually comparable. However differences are observed in the proportions of patients who met the required criteria, regarding the increase in weight, incidence of hypoglycemia as well as the effect on cardiovascular, renal or oncologic morbidity and mortality, and severity of specific adverse effects, potential risks and contraindications. The presented text provides the reader with the information about the Consensual therapeutic algorithm for the treatment of type 2 diabetes mellitus in compliance with SPC, the ADA/EASD amended indicative limitations and recommendations, formulated by the Committee of the Slovak Diabetes Society.Key words: biguanides - gliflozins - gliptins - glitazones - GLP-1-receptor agonists - insulin - sulfonylurea.
PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery.
Zhao, Yi; Wang, Wei; Guo, Shutao; Wang, Yuhua; Miao, Lei; Xiong, Yang; Huang, Leaf
2016-06-06
Metformin, a widely implemented anti-diabetic drug, exhibits potent anticancer efficacies. Herein a polymeric construction of Metformin, PolyMetformin (PolyMet) is successfully synthesized through conjugation of linear polyethylenimine (PEI) with dicyandiamide. The delocalization of cationic charges in the biguanide groups of PolyMet reduces the toxicity of PEI both in vitro and in vivo. Furthermore, the polycationic properties of PolyMet permits capture of siRNA into a core-membrane structured lipid-polycation-hyaluronic acid (LPH) nanoparticle for systemic gene delivery. Advances herein permit LPH-PolyMet nanoparticles to facilitate VEGF siRNA delivery for VEGF knockdown in a human lung cancer xenograft, leading to enhanced tumour suppressive efficacy. Even in the absence of RNAi, LPH-PolyMet nanoparticles act similarly to Metformin and induce antitumour efficacy through activation of the AMPK and inhibition of the mTOR. In essence, PolyMet successfully combines the intrinsic anticancer efficacy of Metformin with the capacity to carry siRNA to enhance the therapeutic activity of an anticancer gene therapy.
Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders.
Waltenberger, Birgit; Mocan, Andrei; Šmejkal, Karel; Heiss, Elke H; Atanasov, Atanas G
2016-06-22
Natural products have always been exploited to promote health and served as a valuable source for the discovery of new drugs. In this review, the great potential of natural compounds and medicinal plants for the treatment or prevention of cardiovascular and metabolic disorders, global health problems with rising prevalence, is addressed. Special emphasis is laid on natural products for which efficacy and safety have already been proven and which are in clinical trials, as well as on plants used in traditional medicine. Potential benefits from certain dietary habits and dietary constituents, as well as common molecular targets of natural products, are also briefly discussed. A glimpse at the history of statins and biguanides, two prominent representatives of natural products (or their derivatives) in the fight against metabolic disease, is also included. The present review aims to serve as an "opening" of this special issue of Molecules, presenting key historical developments, recent advances, and future perspectives outlining the potential of natural products for prevention or therapy of cardiovascular and metabolic disease.
Singh, Abhishank; Dwivedi, Shridhar
2017-02-01
The present prospective observational study was carried out in a tertiary care hospital in New Delhi, India from May 2014 to June 2015 to report adverse drug reactions (ADRs) in patients with type 2 diabetes mellitus (T2DM) using antidiabetic drugs. A total of 220 patients (121 males, 99 females) were enrolled. ADRs were recorded on the prescribed form. Causality and severity assessment was done using Naranjo's probability scale and modified Hartwig and Siegel's severity scale, respectively. Commonly prescribed drugs were biguanides, peptide hormone and sulphonylurea. A total of 26 ADRs were recorded (16 in males and 10 in females). Most commonly observed ADRs were related to endocrine and gastrointestinal system. Severity assessment of ADRs showed seven (26.9%) ADRs as moderate, and 19 (73.1%) as mild. No severe reactions were observed. ADRs were mostly related to endocrine and gastrointestinal system. More information on prescribed drugs and their side effects is required for ensuring patient safety.
Lea, Michael A; Chacko, Jerel; Bolikal, Sandhya; Hong, Ji Y; Chung, Ryan; Ortega, Andres; desbordes, Charles
2011-02-01
A report that effects of butyrate on some cells may be mediated by activation of AMP-activated protein kinase (AMPK) prompted this study which examines if other AMPK activators can induce differentiation and inhibit proliferation of colon cancer cells in a manner similar to butyrate. Using induction of alkaline phosphatase as a marker, it was observed that compound C, an AMPK inhibitor, is able to reduce the differentiating effect of butyrate on SW1116 and Caco-2 colon cancer cells. Metformin was observed to be less effective than butyrate in the induction of alkaline phosphatase but was more effective as a growth inhibitor. Phenformin was found to be a more potent growth inhibitor than metformin and both compounds cause acidification of the medium when incubated with colon cancer cells. Combined incubation of 2-deoxyglucose with either of the biguanides prevented the acidification of the medium but enhanced the growth inhibitory effects.
Wasiak, Mathieu; Jouannet, Mireille; Sautou, Valérie
2018-01-01
Background Polyhexamethylene biguanide (PHMB) eye drops are a frequently used medication to treat Acanthamoeba keratitis. In the absence of marketed PHMB eye drops, pharmacy-compounding units are needed to prepare this much needed treatment, but the lack of validated PHMB stability data severely limits their conservation by imposing short expiration dates after preparation. In this study we aim to assess the physicochemical and microbiological stability of a 0.2 mg/mL PHMB eye drop formulation stored in two kinds of polyethylene bottles at two different temperatures. Methods A liquid chromatography coupled with diode array detector stability-indicating method was validated to quantify PHMB, using a cyanopropyl bonded phase (Agilent Zorbax Eclipse XDB-CN column 4.6 × 75 mm with particle size of 3.5 μm) and isocratic elution consisting of acetonitrile/deionized water (3/97 v/v) at a flow rate of 1.3 mL/min. PHMB eye drops stability was assessed for 90 days of storage at 5 and 25 °C in ethylene oxide sterilized low density polyethylene (EOS-LDPE) and gamma sterilized low density polyethylene (GS-LDPE) bottles. The following analyses were performed: visual inspection, PHMB quantification and breakdown products (BPs) screening, osmolality and pH measurements, and sterility assessment. PHMB quantification and BP screening was also performed on the drops emitted from the multidose eyedroppers to simulate in-use condition. Results The analytical method developed meets all the qualitative and quantitative criteria for validation with an acceptable accuracy and good linearity, and is stability indicating. During 90 days of storage, no significant decrease of PHMB concentration was found compared to initial concentration in all stored PHMB eye drops. However, BP were found at day 30 and at day 90 of monitoring in both kind of bottles, stored at 5 and 25 °C, respectively. Although no significant variation of osmolality was found and sterility was maintained during 90 days of monitoring, a significant decrease of pH in GS-LDPE PHMB eye drops was noticed reaching 4 and 4.6 at 25 °C and 5 °C respectively, compared to initial pH of 6.16. Discussion Although no significant decrease in PHMB concentration was found during 90 days of monitoring in all conditions, the appearance of BPs and their unknown toxicities let us believe that 0.2 mg/mL PHMB solution should be conserved for no longer than 60 days in EOS-LDPE bottles at 25 °C. PMID:29682408
Śliwczyński, Andrzej; Brzozowska, Melania; Jacyna, Andrzej; Iltchev, Petre; Iwańczuk, Tymoteusz; Wierzba, Waldemar; Marczak, Michał; Orlewska, Katarzyna; Szymański, Piotr; Orlewska, Ewa
2017-01-01
to investigate the drug-class-specific changes in the volume and cost of antidiabetic medications in Poland in 2012-2015. This retrospective analysis was conducted based on the National Health Fund database covering an entire Polish population. The volume of antidiabetic medications is reported according to ATC/DDD methodology, costs-in current international dollars, based on purchasing power parity. During a 4-year observational period the number of patients, consumption of antidiabetic drugs and costs increased by 17%, 21% and 20%, respectively. Biguanides are the basic diabetes medication with a 39% market share. The insulin market is still dominated by human insulins, new antidiabetics (incretins, thiazolidinediones) are practically absent. Insulins had the largest share in diabetes medications expenditures (67% in 2015). The increase in antidiabetic medications costs over the analysed period of time was mainly caused by the increased use of insulin analogues. The observed tendencies correspond to the evidence-based HTA recommendations. The reimbursement status, the ratio of cost to clinical outcomes and data on the long-term safety have a deciding impact on how a drug is used.
Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders
Šmejkal, Karel; Heiss, Elke H.; Atanasov, Atanas G.
2016-01-01
Natural products have always been exploited to promote health and served as a valuable source for the discovery of new drugs. In this review, the great potential of natural compounds and medicinal plants for the treatment or prevention of cardiovascular and metabolic disorders, global health problems with rising prevalence, is addressed. Special emphasis is laid on natural products for which efficacy and safety have already been proven and which are in clinical trials, as well as on plants used in traditional medicine. Potential benefits from certain dietary habits and dietary constituents, as well as common molecular targets of natural products, are also briefly discussed. A glimpse at the history of statins and biguanides, two prominent representatives of natural products (or their derivatives) in the fight against metabolic disease, is also included. The present review aims to serve as an “opening” of this special issue of Molecules, presenting key historical developments, recent advances, and future perspectives outlining the potential of natural products for prevention or therapy of cardiovascular and metabolic disease. PMID:27338339
Epidemiology of adverse drug reactions to phenformin and metformin.
Bergman, U; Boman, G; Wiholm, B E
1978-01-01
Adverse drug reactions (ADRs) to phenformin and metformin reported to the Swedish Adverse Drug Reaction Committee during 1965--77 were analysed in relation to sales and prescription data. The biguanides accounted for 0.6% of all reported adverse drug reactions but for 6% of the fatal cases (all phenformin). Sixty-four ADRs to phenformin and eight to metformin were classified as causal relation "probable" or "not excluded." Fifty-one of these reactions (71%) were lactic acidosis, all but one being reactions to phenformin. After 1973 phenformin was prescribed less in Sweden and metformin became predominant. A nationwide prescription survey during 1975--6 disclosed no differences in age and sex between patients receiving phenformin and metformin. The mean daily doses prescribed in 1976 were 74 mg of phenformin and 1.5 g of metformin. The numbers of ADRs to the two drugs reported during 1975--7 were related to use. The relative incidences of ADRs reported for phenformin and metformin did not differ. Significantly more cases of lactic acidosis and deaths were reported for phenformin. PMID:678924
Mallik, Ritwika; Chowdhury, Tahseen A
2018-05-26
Metformin is a lipophilic biguanide which inhibits hepatic gluconeogenesis and improves peripheral utilization of glucose. It is the first line pharmacotherapy for glucose control in patients with Type 2 diabetes due to its safety, efficacy and tolerability. Metformin exhibits pleotropic effects, which may have beneficial effects on a variety of tissues independent of glucose control. A potential anti-tumourigenic effect of metformin may be mediated by its role in activating AMP-kinase, which in turn inhibits mammalian target of rapamycin (mTOR). Non-AMPK dependent protective pathways may include reduction of insulin, insulin-like growth factor-1, leptin, inflammatory pathways and potentiation of adiponectin, all of which may have a role in tumourigenesis. A role in inhibiting cancer stem cells is also postulated. A number of large scale observational and cohort studies suggest metformin is associated with a reduced risk of a number of cancers, although the data is not conclusive. Recent randomised studies reporting use of metformin in treatment of cancer have revealed mixed results, and the results of much larger randomised trials of metformin as an adjuvant therapy in breast and colorectal cancers are awaited. Copyright © 2018 Elsevier B.V. All rights reserved.
Effects of phenformin on the proliferation of human tumor cell lines.
Caraci, Filippo; Chisari, Mariangela; Frasca, Giuseppina; Chiechio, Santina; Salomone, Salvatore; Pinto, Antonio; Sortino, Maria Angela; Bianchi, Alfredo
2003-12-19
Phenformin is a biguanide that has been largely used in the past for its anti-diabetic activity. A large body of evidence suggests additional effects of phenformin including antitumoral activity in different animal models in vivo. Thus, the present study has been conducted in order to elucidate possible mechanisms involved in the antitumoral effects of phenformin. In various tumoral cell lines (SH-SY5Y neuroblastoma and LNCaP prostate adenocarcinoma cells), increasing concentrations of phenformin (50-500 microM) induced a concentration-dependent inhibition of cell proliferation. This effect was not dependent on the ability of the drug to reduce glucose levels and was accompanied by induction of apoptotic cell death as measured by cytofluorometric analysis. In addition, a short-time incubation of SH-SY5Y cells with phenformin induced enhanced and transient expression of the cell cycle inhibitor p21 suggesting that phenformin causes inhibition of cell cycle progression prior to induction of apoptosis. These results demonstrate an activity at the cellular level of phenformin that supports its antitumoral effect observed in vivo.
Albumin reduces the antibacterial efficacy of wound antiseptics against Staphylococcus aureus.
Kapalschinski, N; Seipp, H M; Kückelhaus, M; Harati, K K; Kolbenschlag, J J; Daigeler, A; Jacobsen, F; Lehnhardt, M; Hirsch, T
2017-04-02
The influence of proteins on the efficacy of antiseptic solutions has been rarely investigated even though exudate can contain high levels of protien. The aim of this study was to analyse the antibacterial efficacy of commonly used solutions in the presence of albumin protein. Using Staphylococcus aureus in a standardised quantitative suspension assay, the antibacterial effects of poly (1-(2-oxo-1-pyrrolidinyl) ethylene)-iodine (PVP-I) and octenidin-dihydrochloride/phenoxyethanol (OCT/PE) were analysed in the presence of 0-3% bovine serum albumin (BSA). These were compared with previous results obtained with polyhexamethylene biguanide hydrochloride (PHMB). Presence of albumin caused a significant (p<0.001) decrease in antibacterial effect in the analysed solutions. The concentrations of albumin that provoked highly significant decreases in the bacterial reduction factors of the study agents were: 0.01875 % for PVP-I, followed by 0.75 % for OCT/PE. After addition of 3 % albumin, adequate antimicrobial effects were ensured for titrations to 5 % PVP-I and 8 % OCT/PE. As we could show before, it is not possible to titrate PHMB in order to assure adequate potency. This study demonstrates that albumin induces a significant decrease of the antibacterial potency of the analysed solutions.
[Mechanism of action of insulin sensitizer agents in the treatment of polycystic ovarian syndrome].
Galindo García, Carlos G; Vega Arias, Maria de Jesús; Hernández Marín, Imelda; Ayala, Aquiles R
2007-03-01
Polycystic ovarian disease (PCOD) is the most important endocrine abnormality that affects women in reproductive age. It is characterized by chronic anovulation and hyperandrogenemia probably secondary to insulin resistance. Hence insulin sensitizers agents had been used in PCOD. Metformin is a biguanide used in the treatment of PCOD via decrease of hepatic gluconeogenesis and insulinemia; improvement peripheral glucose utilization, oxidative glucose metabolism, nonoxidative glucose metabolism and intracellular glucose transport. Such effects, when this drug is administered alone during 3 to 6 months, increase sex hormone binding globulin (SHBG), reduce free androgens index and hirsutism, decrease insulin resistance, and regulate menses in 60 to 70% of cases. Thiazolidinodiones are drugs that decrease insulin resistance in the liver with hepatic glucose production. Their mechanism of action is through the peroxisome proliferator-activated receptors gamma (PPAR-gamma), that help to decrease plasmatic concentrations of free fatty acids, pre and postprandial glucose, insulin, triglycerides, increased HDL cholesterol and decreased LDL, menses return to normality, with improvement of ovulation and decreased hirsutism. It seems that by modulation and attenuation of insulin resistance, hypoglucemic agents such as metfomin and thiazolidinodiones can be used effectively to treat anovulation, infertility and hyperandrogenemia.
NASA Astrophysics Data System (ADS)
Sharma, Deepti; Ojha, Himanshu; Pathak, Mallika; Singh, Bhawna; Sharma, Navneet; Singh, Anju; Kakkar, Rita; Sharma, Rakesh K.
2016-08-01
Metformin is a biguanide class of drug used for the treatment of diabetes mellitus. It is well known that serum protein-ligand binding interaction significantly influence the biodistribution of a drug. Current study was performed to characterize the binding mechanism of metformin with serum albumin. The binding interaction of the metformin with bovine serum albumin (BSA) was examined using UV-Vis absorption spectroscopy, fluorescence, circular dichroism, density functional theory and molecular docking studies. Absorption spectra and fluorescence emission spectra pointed out the weak binding of metformin with BSA as was apparent from the slight change in absorbance and fluorescence intensity of BSA in presence of metformin. Circular dichroism study implied the significant change in the conformation of BSA upon binding with metformin. Density functional theory calculations showed that metformin has non-planar geometry and has two energy states. The docking studies evidently signified that metformin could bind significantly to the three binding sites in BSA via hydrophobic, hydrogen bonding and electrostatic interactions. The data suggested the existence of non-covalent specific binding interaction in the complexation of metformin with BSA. The present study will certainly contribute to the development of metformin as a therapeutic molecule.
Forst, Thomas; Bramlage, Peter
2014-06-01
Dipeptidyl peptidase-4 inhibitors increase circulating levels of glucagon-like peptide 1 (GLP-1) and glucose dependent insulinotropic polypeptide regulating glucose-dependent insulin secretion. In addition, GLP-1 suppresses glucagon secretion, delays gastric emptying and increases satiety. The combination of vildagliptin with the biguanide metformin is of particular interest because of its complementary mode of action, addressing insulin resistance, alpha- and beta cell function in the islet of the pancreas. Because of the abundance of data supporting the use of vildagliptin alone and in combination with metformin, the present paper aims at giving an overview on the current evidence for its use in patients with type 2 diabetes mellitus. The data suggest that vildagliptin offers similar glycemic control compared to sulfonylureas and thiazolidinediones, while having the benefit of being associated with fewer cases of hypoglycemia and less body weight gain. There is increasing evidence that compared with sulfonylureas, vildagliptin has favorable effects on pancreatic alpha- and beta-cell function. Vildagliptin in combination with metformin, improve glycemic control with a favorable safety and tolerability profile, making it an attractive therapeutic option in patients where metformin monotherapy alone is not sufficient.
Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk
Lien, Fleur; Berthier, Alexandre; Bouchaert, Emmanuel; Gheeraert, Céline; Alexandre, Jeremy; Porez, Geoffrey; Prawitt, Janne; Dehondt, Hélène; Ploton, Maheul; Colin, Sophie; Lucas, Anthony; Patrice, Alexandre; Pattou, François; Diemer, Hélène; Van Dorsselaer, Alain; Rachez, Christophe; Kamilic, Jelena; Groen, Albert K.; Staels, Bart; Lefebvre, Philippe
2014-01-01
The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry–based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis. PMID:24531544
INSULIN RESISTANCE POST-BURN: UNDERLYING MECHANISMS AND CURRENT THERAPEUTIC STRATEGIES
Gauglitz, Gerd G.; Herndon, David N.; Jeschke, Marc G.
2014-01-01
The profound hypermetabolic response to burn injury is associated with insulin resistance and hyperglycemia, significantly contributing to the incidence of morbidity and mortality in this patient population. These responses are present in all trauma, surgical, or critically ill patients, but the severity, length, and magnitude is unique for burn patients. Although advances in therapeutic strategies to attenuate the post-burn hypermetabolic response have significantly improved the clinical outcome of these patients over the past years, therapeutic approaches to overcome stress-induced hyperglycemia have remained challenging. Intensive insulin therapy has been shown to significantly reduce morbidity and mortality in critically ill patients. High incidence of hypoglycemic events and difficult blood glucose titrations have led to investigation of alternative strategies, including the use of metformin, a biguanide, or fenofibrate, a PPAR-γ agonist. Nevertheless, weaknesses and potential side affects of these drugs reinforces the need for better understanding of the molecular mechanisms underlying insulin resistance post-burn that may lead to novel therapeutic strategies further improving the prognosis of these patients. This review aims to discuss the mechanisms underlying insulin resistance induced hyperglycemia post-burn and outlines current therapeutic strategies that are being used to modulate hyperglycemia following thermal trauma. PMID:18695610
van Kuijk, Simon J A; Parvathaneni, Nanda Kumar; Niemans, Raymon; van Gisbergen, Marike W; Carta, Fabrizio; Vullo, Daniela; Pastorekova, Silvia; Yaromina, Ala; Supuran, Claudiu T; Dubois, Ludwig J; Winum, Jean-Yves; Lambin, Philippe
2017-02-15
Carbonic anhydrase IX (CAIX) is a hypoxia-regulated and tumor-specific protein that maintains the pH balance of cells. Targeting CAIX might be a valuable approach for specific delivery of cytotoxic drugs, thereby reducing normal tissue side-effects. A series of dual-target compounds were designed and synthesized incorporating a sulfonamide, sulfamide, or sulfamate moiety combined with several different anti-cancer drugs, including the chemotherapeutic agents chlorambucil, tirapazamine, and temozolomide, two Ataxia Telangiectasia and Rad3-related protein inhibitors (ATRi), and the anti-diabetic biguanide agent phenformin. An ATRi derivative (12) was the only compound to show a preferred efficacy in CAIX overexpressing cells versus cells without CAIX expression when combined with radiation. Its efficacy might however not solely depend on binding to CAIX, since all described compounds generally display low activity as carbonic anhydrase inhibitors. The hypothesis that dual-target compounds specifically target CAIX expressing tumor cells was therefore not confirmed. Even though dual-target compounds remain an interesting approach, alternative options should also be investigated as novel treatment strategies. Copyright © 2016 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Importance of Porins for Biocide Efficacy against Mycobacterium smegmatis▿
Frenzel, Elrike; Schmidt, Stefan; Niederweis, Michael; Steinhauer, Katrin
2011-01-01
Mycobacteria are among the microorganisms least susceptible to biocides but cause devastating diseases, such as tuberculosis, and increasingly opportunistic infections. The exceptional resistance of mycobacteria to toxic solutes is due to an unusual outer membrane, which acts as an efficient permeability barrier, in synergy with other resistance mechanisms. Porins are channel-forming proteins in the outer membrane of mycobacteria. In this study we used the alamarBlue assay to show that the deletion of Msp porins in isogenic mutants increased the resistance of Mycobacterium smegmatis to isothiazolinones (methylchloroisothiazolinone [MCI]/methylisothiazolinone [MI] and octylisothiazolinone [2-n-octyl-4-isothiazolin-3-one; OIT]), formaldehyde-releasing biocides {hexahydrotriazine [1,3,5-tris (2-hydroxyethyl)-hexahydrotriazine; HHT] and methylenbisoxazolidine [N,N′-methylene-bis-5-(methyloxazolidine); MBO]}, and the lipophilic biocides polyhexamethylene biguanide and octenidine dihydrochloride 2- to 16-fold. Furthermore, the susceptibility of the porin triple mutant against a complex disinfectant was decreased 8-fold compared to wild-type (wt) M. smegmatis. Efficacy testing in the quantitative suspension test EN 14348 revealed 100-fold improved survival of the porin mutant in the presence of this biocide. These findings underline the importance of porins for the susceptibility of M. smegmatis to biocides. PMID:21398489
Cardiovascular effects of anti-diabetes drugs
Younk, Lisa M.; Lamos, Elizabeth M.
2016-01-01
Introduction Cardiovascular disease remains the major contributor to morbidity and mortality in diabetes. From the need to reduce cardiovascular risk in diabetes and to ensure that such risk is not exacerbated by drug treatments, governmental regulators and drug manufacturers have focused on clinical trials evaluating cardiovascular outcomes. Areas covered Findings from mechanistic and clinical trials of biguanides, sulfonylureas, thiazolidinediones, dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 (GLP-1) receptor agonists, and sodium-glucose transporter 2 (SGLT-2) inhibitors will be reviewed. These drug classes will be compared within the context of available cardiovascular outcomes data. Clinical implications of new study regulations will be examined. Expert opinion Recent cardiovascular studies provide a more comprehensive evaluation of specific anti-diabetes therapy in individuals with high cardiovascular risk. Long-term effects of anti-hyperglycemic agents in patients with lower cardiovascular risk are still speculative. Historical data supports continued use of metformin as a first-line agent. DPP-4 inhibitors and GLP-1 receptor agonists appear to have neutral effects on cardiovascular outcomes. The significantly decreased cardiovascular risk associated with empagliflozin SGLT-2 inhibitor therapy is impressive and may change how practitioners prescribe add-on therapy to metformin. PMID:27268470
Chlorhexidine digluconate induces mitotic recombination in diploid cells of Aspergillus nidulans.
Souza-Júnior, S A; Castro-Prado, M A A
2005-05-01
Chlorhexidine digluconate (1,1'-hexamethylene-bis[(5-p-clorophenyl)-biguanide]) is a bisbiguanidine antiseptic, used to decrease plaque formation and to control periodontal diseases. The determination of the frequency of mitotic crossing-over constitutes a very important method for detecting carcinogenic agents. The recombinogenic potential of chlorhexidine digluconate was evaluated on Aspergillus nidulans by the production of cells homozygous for the following nutritional markers: riboA1, pabaA124, biA1, methA17 and pyroA4. A. nidulans was exposed to three concentrations of chlorhexidine digluconate (1, 5, and 10 microM). Inhibition of colony development, conidiophore morphological alteration (cytotoxic effect), and the recombinogenic effect, indicated by homozygotization index (HI) values higher than 2.0, were observed for all concentrations of chlorhexidine digluconate. A homozygous pyro+//pyro+ diploid strain and a diploid homozygous for the recessive w gene were isolated from UT448//A757 diploid treated with chlorhexidine digluconate, emphasazing its recombinogenic potential. Although, beneficial effects of chlorhexidine, as an antiseptic agent, are reported in the literature, our results revealed that chlorhexidine digluconate, at less levels lowered those used clinically, caused toxic and recombinogenic effects on diploid A. nidulans strain.
Kim, Sun Hye; Li, Man; Trousil, Sebastian; Zhang, Yaqing; Pasca di Magliano, Marina; Swanson, Kenneth D; Zheng, Bin
2017-08-01
Biguanides, such as the diabetes therapeutics metformin and phenformin, have shown antitumor activity both in vitro and in vivo. However, their potential effects on the tumor microenvironment are largely unknown. Here we report that phenformin selectively inhibits granulocytic myeloid-derived suppressor cells in spleens of tumor-bearing mice and ex vivo. Phenformin induces production of reactive oxygen species in granulocytic myeloid-derived suppressor cells, whereas the antioxidant N-acetylcysteine attenuates the inhibitory effects of phenformin. Co-treatment of phenformin enhances the effect of anti-PD-1 antibody therapy on inhibiting tumor growth in the BRAF V600E/PTEN-null melanoma mouse model. Combination of phenformin and anti PD-1 cooperatively induces CD8 + T-cell infiltration and decreases levels of proteins that are critical for immune suppressive activities of myeloid-derived suppressor cells. Our findings show a selective, inhibitory effect of phenformin on granulocytic myeloid-derived suppressor cell-driven immune suppression and support that phenformin improves the anti-tumor activity of PD-1 blockade immunotherapy in melanoma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Opekar, František; Tůma, Petr
2017-01-13
An electrophoretic apparatus with a flow-gating interface has been developed, enabling hydrodynamic sequence injection of the sample into the separation capillary from the liquid flow by underpressure generated in the outlet electrophoretic vessel. The properties of the apparatus were tested on an artificial sample of an equimolar mixture of 100μM potassium and sodium ions and arginine. The repeatability of the injection of the tested ions expressed as RSD (in%) for the peak area, peak height and migration time was in the range 0.76-2.08, 0.18-0.68 and 0.28-0.48, respectively. Under optimum conditions, the apparatus was used for sequence monitoring of the reaction between the antidiabetic drug phenyl biguanide and the glycation agent methyl glyoxal. The reaction solution was continuously sampled by a microdialysis probe from a thermostated external vessel using a syringe pump at a flow rate of 3μLmin -1 and was injected into a separation capillary at certain time intervals. The electrophoretic separation progressed in a capillary with an internal diameter of 50μm with a length of 11.5cm and was monitored using a contactless conductivity detector. Copyright © 2016 Elsevier B.V. All rights reserved.
The treatment of type 1 diabetes mellitus with agents approved for type 2 diabetes mellitus.
Munir, Kashif M; Davis, Stephen N
2015-01-01
The management of type 1 diabetes remains a challenge for clinicians. Current practice is to administer insulin analogues to best mimic normal physiological insulin profiles. However, despite our best efforts the majority of individuals with type 1 diabetes continue to suffer from suboptimal glucose control, significant hypoglycemia and microvascular tissue complications of the disease. There is thus a significant unmet need in the treatment of T1DM to obtain better glycemic control. We discuss the use of α-glucosidase inhibitors, dipeptidyl-peptidase inhibitors, glucagon-like peptide 1 agonists, biguanides, thiazolidinediones and sodium glucose co-transporter 2 inhibitors in individuals with T1DM. Non-insulin therapies present a unique and exciting adjunctive treatment for individuals with type 1 diabetes. Although data are scarce, the classes of medications discussed help to lower glucose, decrease glycemic excursions and in some cases improve body weight, along with allowing dose reductions in total daily insulin. Glucagon-like peptide 1 agonists and sodium glucose co-transporter 2 inhibitors, in particular, have been demonstrated to provide clinical improvements in individuals with T1DM and we feel their use can be explored in obese, insulin-resistant patients with T1DM, those with frequent and significant glycemic excursions or individuals with persistently elevated hemoglobin A1c.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, J.; Farrell, I.; Brown, M.R.W.
1992-08-01
Survival studies were conducted on Legionella pneumophila cells that had been grown intracellulary in Acanthamoeba polyphaga and then exposed to polyhexamethylene biguanide (PHMB), benzisothiazolone (BIT), and 5-chloro-N-methylisothiazolone (CMIT). Susceptibilities were also determined for L. pneumophila grown under iron-sufficient and iron-depleted conditions. BIT was relatively ineffective against cells to PHMB and CMIT. The activities of all three biocides were greatly reduced against L. pneumophila grown in amoebae. PHMB (1 [times] MIC) gave 99.99% reductions in viability for cultures grown in broth within 6 h and no detectable survivors at 24 h but only 90 and 99.9% killing at 6 h andmore » 24 h, respectively, for cells grown in amoebae. The antimicrobial properties of the three biocides against A. polyphaga were also determined. The majority of amoebae recovered from BIT treatment, but few, if any, survived CMIT treatment or exposure of PHMB. This study not only shows the profound effect that intra-amoebal growth has on the physiological status and antimicrobial susceptibility of L. pneumophila but also reveals PHMB to be a potential biocide for effective water treatment. In this respect, PHMB has significant activity, below its recommended use concentrations, against both the host amoeba and L. pneumophila.« less
Quantification of individual proteins in silicone hydrogel contact lens deposits
Zhao, Zhenjun; Zhu, Hua; Tilia, Daniel; Willcox, Mark D.P.
2013-01-01
Purpose The aim of this study was to quantify specific proteins deposited on daily wear silicone hydrogel lenses used in combination with multipurpose disinfecting solutions (MPDSs) by applying multiple-reaction-monitoring mass spectrometry (MRM-MS). Methods Balafilcon A or senofilcon A contact lenses used with different MPDSs on a daily wear schedule were collected. Each worn lens was extracted and then digested with trypsin. MRM-MS was applied to quantify the amounts of lysozyme, lactoferrin, lipocalin-1, proline-rich protein-4, and keratin-1 in the extracts. Results The amount of protein extracted from the contact lenses was affected by the individual wearers, lens material, and type of care system used. Higher amounts of proteins were extracted from lenses after wear when they were used with an MPDS containing polyhexamethylene biguanide (PHMB) and poloxamer 407 compared with MPDSs containing polyquaternium-1 (PQ-1)/alexidine dihydrochloride with Tetronic 904 or PQ-1/ PHMB with poloxamine and sulfobetaine (p<0.05). There was a correlation between the amount of lipocalin-1 or keratin-1 extracted from lenses and symptoms of ocular dryness. Conclusions The MRM-MS technique is a promising approach that could be used to reveal associations of individual proteins deposited on lenses with performance of contact lenses during wear. PMID:23441110
Diffusion of Antimicrobials Across Silicone Hydrogel Contact Lenses.
Zambelli, Alison M; Brothers, Kimberly M; Hunt, Kristin M; Romanowski, Eric G; Nau, Amy C; Dhaliwal, Deepinder K; Shanks, Robert M Q
2015-09-01
To measure the diffusion of topical preparations of moxifloxacin, amphotericin B (AmB), and polyhexamethylene biguanide (PHMB) through silicone hydrogel (SH) contact lenses (CLs) in vitro. Using an in vitro model, the diffusion of three antimicrobials through SH CLs was measured. Diffused compounds were measured using a spectrophotometer at set time points over a period of 4 hr. The amount of each diffused antimicrobial was determined by comparing the experimental value with a standard curve. A biological assay was performed to validate the CL diffusion assay by testing antimicrobial activity of diffused material against lawns of susceptible bacteria (Staphylococcus epidermidis) and yeast (Saccharomyces cerevisiae). Experiments were repeated at least two times with a total of at least four independent replicates. Our data show detectable moxifloxacin and PHMB diffusion through SH CLs at 30 min, whereas AmB diffusion remained below the limit of detection within the 4-hr experimental period. In the biological assay, diffused moxifloxacin demonstrated microbial killing starting at 20 min on bacterial lawns, whereas PHMB and AmB failed to demonstrate killing on microbial lawns over the course of the 60-min experiment. In vitro diffusion assays demonstrate limited penetration of certain anti-infective agents through SH CLs. Further studies regarding the clinical benefit of using these agents along with bandage CL for corneal pathologic condition are warranted.
Enhanced Basicity of Push-Pull Nitrogen Bases in the Gas Phase.
Raczyńska, Ewa D; Gal, Jean-François; Maria, Pierre-Charles
2016-11-23
Nitrogen bases containing one or more pushing amino-group(s) directly linked to a pulling cyano, imino, or phosphoimino group, as well as those in which the pushing and pulling moieties are separated by a conjugated spacer (C═X) n , where X is CH or N, display an exceptionally strong basicity. The n-π conjugation between the pushing and pulling groups in such systems lowers the basicity of the pushing amino-group(s) and increases the basicity of the pulling cyano, imino, or phosphoimino group. In the gas phase, most of the so-called push-pull nitrogen bases exhibit a very high basicity. This paper presents an analysis of the exceptional gas-phase basicity, mostly in terms of experimental data, in relation with structure and conjugation of various subfamilies of push-pull nitrogen bases: nitriles, azoles, azines, amidines, guanidines, vinamidines, biguanides, and phosphazenes. The strong basicity of biomolecules containing a push-pull nitrogen substructure, such as bioamines, amino acids, and peptides containing push-pull side chains, nucleobases, and their nucleosides and nucleotides, is also analyzed. Progress and perspectives of experimental determinations of GBs and PAs of highly basic compounds, termed as "superbases", are presented and benchmarked on the basis of theoretical calculations on existing or hypothetical molecules.
Gusev, Alexander А; Kudrinsky, Alexey A; Zakharova, Olga V; Klimov, Alexey I; Zherebin, Pavel M; Lisichkin, George V; Vasyukova, Inna A; Denisov, Albert N; Krutyakov, Yurii A
2016-05-01
Silver nanoparticles (AgNPs) are well-known bactericidal agents. However, information about the influence of AgNPs on the morphometric parameters and biochemical status of most important agricultural crops is limited. The present study reports the influence of AgNPs stabilized with cationic polymer polyhexamethylene biguanide hydrochloride (PHMB) on growth, development, and biochemical status of fodder beet Beta vulgaris L. under laboratory and greenhouse conditions. PHMB-stabilized AgNPs were obtained via sodium borohydride reduction of silver nitrate in an aqueous solution. The average diameter of thus prepared AgNPs was 10 nm. It appears that the results of experiments with laboratory-grown beets in the nanosilver-containing medium, where germination of seeds and growth of roots were suppressed, do not correlate with the results of greenhouse experiments. The observed growth-stimulating action of PHMB-stabilized AgNPs can be explained by the change of activity of oxidases and, consequently, by the change of auxins amount in plant tissues. In beets grown in the presence of PHMB-stabilized AgNPs no negative deviations of biological parameters from normal values were registered. Furthermore, the SEM/EDS examination revealed no presence of silver in the tissues of the studied plants. Copyright © 2016 Elsevier B.V. All rights reserved.
Andrès, Emmanuel; Vidal-Alaball, Josep; Federici, Laure; Loukili, Noureddine Henoun; Zimmer, Jacques; Kaltenbach, Georges
2007-10-01
The aim of this work was to review the literature concerning cobalamin deficiency in elderly patients. Articles were identified through searches of PubMed-MEDLINE (January 1990 to June 2006), restricted to: English and French language, human subjects, elderly patients (>65 years), clinical trial, review and guidelines. Additional unpublished data from our cohort with cobalamin deficiency at the University Hospital of Strasbourg, France, were also considered. All of the papers and abstracts were reviewed by at least two senior researchers who selected the data used in the study. In elderly people, the main causes of cobalamin deficiency are pernicious anemia and food-cobalamin malabsorption. The recently identified food-cobalamin malabsorption syndrome is a disorder characterized by the inability to release cobalamin from food or from its binding proteins. This syndrome is usually the consequence of atrophic gastritis, related or not to Helicobacter pylori infection, and of the long-term ingestion of antacids and biguanides (in around 60% of the patients). Management of cobalamin deficiency has been well established with the use of cobalamin injections. However, new routes of cobalamin administration (oral and nasal) are currently being developed, especially the use of oral cobalamin therapy to treat food-cobalamin malabsorption.
Repurposing phenformin for the targeting of glioma stem cells and the treatment of glioblastoma
Jiang, Wei; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Brodie, Ziv; Mikkelsen, Tom; Poisson, Laila; Shackelford, David B.; Brodie, Chaya
2016-01-01
Glioblastoma (GBM) is the most aggressive primary brain tumor with poor prognosis. Here, we studied the effects of phenformin, a mitochondrial complex I inhibitor and more potent chemical analog of the diabetes drug metformin on the inhibition of cell growth and induction of apoptosis of glioma stem cells (GSCs) using both in vitro and in vivo models. Phenformin inhibited the self-renewal of GSCs, decreased the expression of stemness and mesenchymal markers and increased the expression of miR-124, 137 and let-7. Silencing of let-7 abrogated phenformin effects on the self-renewal of GSCs via a pathway associated with inhibition of H19 and HMGA2 expression. Moreover, we demonstrate that phenformin inhibited tumor growth and prolonged the overall survival of mice orthotopically transplanted with GSCs. Combined treatments of phenformin and temozolomide exerted an increased antitumor effect on GSCs in vitro and in vivo. In addition, dichloroacetate, an inhibitor of the glycolysis enzyme pyruvate dehydrogenase kinase, that decreases lactic acidosis induced by biguanides, enhanced phenformin effects on the induction of cell death in GSCs and prolonged the survival of xenograft-bearing mice. Our results demonstrate for the first time that phenformin targets GSCs and can be efficiently combined with current therapies for GBM treatment and GSC eradication. PMID:27486821
Niyyati, Maryam; Dodangeh, Samira; Lorenzo-Morales, Jacob
2016-01-01
Acanthamoeba keratitis (AK) is a sight-threating infection of the cornea that mostly affects contact lens wearers. Until now, AK treatment remains very difficult due to the existence of a highly resistant cyst stage in the life cycle of Acanthamoeba which is extremely resistant to most of the available anti-amoebic compounds. Moreover, current treatment of AK is usually based in the combination of various therapeutic agents such as polyhexamethylene biguanide or chlorhexidine and propamidine isethionate. However, all the mentioned compounds have also showed toxic side effects on human keratocytes and presented poor cysticidal effect at the concentrations currently used in the established AK treatments. Nowadays, the elucidation of novel compounds with antimicrobial and anticancer properties from plant and herbs with medicinal properties have encouraged researchers to evaluate plants as a source of new molecules with anti-trophozoite and cysticidal effects. Thus, in recent years, many natural products have been reported to present potent anti-Acanthamoeba properties with good selectivity and minimal toxic effects. Therefore, the chemical drugs currently used for AK treatment, their drawbacks as well as the current research in medicinal plants as a source of potent anti-Acanthamoeba compounds are described in this review. PMID:28243287
Effect of Liquid Crystalline Systems Containing Antimicrobial Compounds on Infectious Skin Bacteria.
Souza, Carla; Watanabe, Evandro; Aires, Carolina Patrícia; Lara, Marilisa Guimarães
2017-08-01
This study aimed (i) to prepare liquid crystalline systems (LCS) of glyceryl monooleate (GMO) and water containing antibacterial compounds and (ii) to evaluate their potential as drug delivery systems for topical treatment of bacterial infections. Therefore, LCS containing CPC (cetylpyridinium chloride) (LCS/CPC) and PHMB (poly(hexamethylene biguanide) hydrochloride) (LCS/PHMB) were prepared and the liquid crystalline phases were identified by polarizing light microscopy 24 h and 7 days after preparation. The in vitro drug release profile and in vitro antibacterial activity of the systems were assessed using the double layer agar diffusion method against Staphylococcus aureus, methicillin-resistant S. aureus, Staphylococcus epidermidis, Escherichia coli, and Enterococcus faecalis. The interaction between GMO and the drugs was evaluated by a drug absorption study. Stable liquid crystalline systems containing CPC and PHMB were obtained. LCS/PHMB decreased the PHMB release rate and exerted strong antibacterial activity against all the investigated bacteria. In contrast, CPC interacted with GMO so strongly that it became attached to the system; the amount released was not sufficient to exert antibacterial activity. Therefore, the studied liquid crystalline systems were suitable to deliver PHMB, but not CPC. Accordingly, it was demonstrated that GMO interacts with each drug differently, which may interfere in the final efficiency of GMO/water LCS.
Recent Trends in Therapeutic Approaches for Diabetes Management: A Comprehensive Update.
Tiwari, Pragya
2015-01-01
Diabetes highlights a growing epidemic imposing serious social economic crisis to the countries around the globe. Despite scientific breakthroughs, better healthcare facilities, and improved literacy rate, the disease continues to burden several sections, especially middle and low income countries. The present trends indicate the rise in premature death, posing a major threat to global development. Scientific and technological advances have witnessed the development of newer generation of drugs like sulphonylureas, biguanides, alpha glucosidase inhibitors, and thiazolidinediones with significant efficacy in reducing hyperglycemia. Recent approaches in drug discovery have contributed to the development of new class of therapeutics like Incretin mimetics, Amylin analogues, GIP analogs, Peroxisome proliferator activated receptors, and dipeptidyl peptidase-4 inhibitor as targets for potential drugs in diabetes treatment. Subsequently, the identification and clinical investigation of bioactive substances from plants have revolutionized the research on drug discovery and lead identification for diabetes management. With a focus on the emerging trends, the review article explores the current statistical prevalence of the disease, discussing the benefits and limitations of the commercially available drugs. Additionally, the critical areas in clinical diabetology are discussed, with respect to prospects of statins, nanotechnology, and stem cell technology as next generation therapeutics and why the herbal formulations are consistently popular choice for diabetes medication and management.
Lee, Jaewon; Chan, Sic L; Lu, Chengbiao; Lane, Mark A; Mattson, Mark P
2002-05-01
Phenformin is a biguanide compound that can modulate glucose metabolism and promote weight loss and is therefore used to treat patients with type-2 diabetes. While phenformin may indirectly affect neurons by changing peripheral energy metabolism, the possibility that it directly affects neurons has not been examined. We now report that phenformin suppresses responses of hippocampal neurons to glutamate and decreases their vulnerability to excitotoxicity. Pretreatment of embryonic rat hippocampal cell cultures with phenformin protected neurons against glutamate-induced death, which was correlated with reduced calcium responses to glutamate. Immunoblot analyses showed that levels of the N-methyl-d-aspartate (NMDA) subunits NR1 and NR2A were significantly decreased in neurons exposed to phenformin, whereas levels of the AMPA receptor subunit GluR1 were unchanged. Whole-cell patch clamp analyses revealed that NMDA-induced currents were decreased, and AMPA-induced currents were unchanged in neurons pretreated with phenformin. Our data demonstrate that phenformin can protect neurons against excitotoxicity by differentially modulating levels of NMDA receptor subunits in a manner that decreases glutamate-induced calcium influx. These findings show that phenformin can modulate neuronal responses to glutamate, and suggest possible use of phenformin and related compounds in the prevention and/or treatment of neurodegenerative conditions. Copyright 2002 Elsevier Science (USA).
Repurposing phenformin for the targeting of glioma stem cells and the treatment of glioblastoma.
Jiang, Wei; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Brodie, Ziv; Mikkelsen, Tom; Poisson, Laila; Shackelford, David B; Brodie, Chaya
2016-08-30
Glioblastoma (GBM) is the most aggressive primary brain tumor with poor prognosis. Here, we studied the effects of phenformin, a mitochondrial complex I inhibitor and more potent chemical analog of the diabetes drug metformin on the inhibition of cell growth and induction of apoptosis of glioma stem cells (GSCs) using both in vitro and in vivo models. Phenformin inhibited the self-renewal of GSCs, decreased the expression of stemness and mesenchymal markers and increased the expression of miR-124, 137 and let-7. Silencing of let-7 abrogated phenformin effects on the self-renewal of GSCs via a pathway associated with inhibition of H19 and HMGA2 expression. Moreover, we demonstrate that phenformin inhibited tumor growth and prolonged the overall survival of mice orthotopically transplanted with GSCs. Combined treatments of phenformin and temozolomide exerted an increased antitumor effect on GSCs in vitro and in vivo. In addition, dichloroacetate, an inhibitor of the glycolysis enzyme pyruvate dehydrogenase kinase, that decreases lactic acidosis induced by biguanides, enhanced phenformin effects on the induction of cell death in GSCs and prolonged the survival of xenograft-bearing mice. Our results demonstrate for the first time that phenformin targets GSCs and can be efficiently combined with current therapies for GBM treatment and GSC eradication.
Recent Trends in Therapeutic Approaches for Diabetes Management: A Comprehensive Update
Tiwari, Pragya
2015-01-01
Diabetes highlights a growing epidemic imposing serious social economic crisis to the countries around the globe. Despite scientific breakthroughs, better healthcare facilities, and improved literacy rate, the disease continues to burden several sections, especially middle and low income countries. The present trends indicate the rise in premature death, posing a major threat to global development. Scientific and technological advances have witnessed the development of newer generation of drugs like sulphonylureas, biguanides, alpha glucosidase inhibitors, and thiazolidinediones with significant efficacy in reducing hyperglycemia. Recent approaches in drug discovery have contributed to the development of new class of therapeutics like Incretin mimetics, Amylin analogues, GIP analogs, Peroxisome proliferator activated receptors, and dipeptidyl peptidase-4 inhibitor as targets for potential drugs in diabetes treatment. Subsequently, the identification and clinical investigation of bioactive substances from plants have revolutionized the research on drug discovery and lead identification for diabetes management. With a focus on the emerging trends, the review article explores the current statistical prevalence of the disease, discussing the benefits and limitations of the commercially available drugs. Additionally, the critical areas in clinical diabetology are discussed, with respect to prospects of statins, nanotechnology, and stem cell technology as next generation therapeutics and why the herbal formulations are consistently popular choice for diabetes medication and management. PMID:26273667
Therapeutic molecules against type 2 diabetes: What we have and what are we expecting?
Kumar, Ashwini; Bharti, Sudhanshu Kumar; Kumar, Awanish
2017-10-01
World Health Organization (WHO) has identified diabetes as one of the fastest growing non-communicable diseases with 422 million patients around the world in 2014. Diabetes, a metabolic disease, is characterized primarily by hyperglycemia which results in various macrovascular and microvascular complications like cardiovascular disease and neuropathies which can significantly deteriorate the quality of life. The body either does not manufactures enough insulin (type 1 diabetes or T1DM) or becomes insensitive to physiologically secreted insulin or both (type 2 diabetes or T2DM). The majority of the diabetic population is affected by type 2 diabetes. Currently, hyperglycemia is treated by a broad range of molecules such as biguanides, sulfonylurea, insulin, thiazolidinediones, incretin mimetics, and DPP-4 inhibitors exerting different mechanisms. However, new drug classes have indeed come in the market such as SGLT-2 inhibitors and other are in the experimental stages such as GPR 40 agonists, GSK-3 inhibitors, GK activators and GPR21 inhibitors which definitely could be anticipated as safe and effective for diabetes therapy. This article reviews the general approach to currently approved therapies for type 2 diabetes and focusing on novel approaches that could be a panacea and might be useful in the future for diabetes patients. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Wu, Cheng-Chun; Chew, Khong-Yik; Chen, Chien-Chang; Kuo, Yur-Ren
2015-01-01
Immobilization and adequate surface contact to wounds are critical for skin graft take. Techniques such as the tie-over dressing, cotton bolster, and vacuum-assisted closure are used to address this, but each has its limitations. This study is designed to assess the effect of antimicrobial-impregnated dressing (AMD) combined with negative-pressure wound therapy (NPWT) on skin graft survival. Retrospective case-control study : Patients with chronic or contaminated wounds treated with split-thickness skin graft. A broad spectrum of wounds was included, from causes such as trauma, burns, chronic diabetic ulcers, and infection. Antimicrobial-impregnated dressing, which contains 0.2% polyhexamethylene biguanide, with NPWT MAIN OUTCOME MEASURE:: Success of skin graft : In the AMD group, all skin grafts achieved 100% take without secondary intervention. No infection or graft failure was observed in any patients, and no complications, such as hematoma or seroma formation, were noted, although in the control group partial loss of skin grafts was noted in 3 patients. Infection and inadequate immobilization were thought to be the main reasons. There were no hematoma or seroma formations in the control group. Use of an AMD dressing with NPWT after split-thickness skin grafting can be an effective method to ensure good graft to wound contact and enhances skin graft take in chronic and contaminated wounds.
Diffusion of Antimicrobials Across Silicone Hydrogel Contact Lenses
Zambelli, Alison M.; Brothers, Kimberly M.; Hunt, Kristin M.; Romanowski, Eric G.; Nau, Amy C.; Dhaliwal, Deepinder K.; Shanks, Robert M. Q.
2014-01-01
Objectives To measure the diffusion of topical preparations of moxifloxacin, amphotericin B (AmB), and polyhexamethylene biguanide (PHMB) through silicone hydrogel (SH) contact lenses in vitro. Methods Using an in vitro model, the diffusion of three antimicrobials through SH contact lenses was measured. Diffused compounds were measured using a spectrophotometer at set time points over a period of four hours. The amount of each diffused antimicrobial was determined by comparing the experimental value to a standard curve. A biological assay was performed to validate the contact lens diffusion assay by testing antimicrobial activity of diffused material against lawns of susceptible bacteria (Staphylococcus epidermidis) and yeast (Saccharomyces cerevisiae). Experiments were repeated at least two times with a total of at least 4 independent replicates. Results Our data show detectable moxifloxacin and PHMB diffusion through SH contact lenses at 30 minutes, while amphotericin B diffusion remained below the limit of detection within the 4 hour experimental period. In the biological assay, diffused moxifloxacin demonstrated microbial killing starting at 20 minutes on bacterial lawns, whereas PHMB and amphotericin B failed to demonstrate killing on microbial lawns over the course of the 60 minute experiment. Conclusions In vitro diffusion assays demonstrate limited penetration of certain anti-infective agents through silicone hydrogel contact lenses. Further studies regarding the clinical benefit of using these agents along with bandage contact lens use for corneal pathology are warranted. PMID:25806673
Shoff, Megan E; Lucas, Anne D; Brown, Jennifer N; Hitchins, Victoria M; Eydelman, Malvina B
2012-11-01
To determine the effect of 8 different lens materials on polyhexamethylene biguanide (PHMB) concentration in multipurpose solution (MPS) levels over time and to determine the effect of lenses on lens solution microbial efficacy over time. Silicone hydrogel lenses and conventional hydrogel lenses were soaked in polypropylene lens cases filled with contact lens MPS containing 1 ppm PHMB for 6, 12, 24, 72, and 168 hours. Cases filled with the same solution without lenses were controls. After each time period, solutions from cases with the 8 types of lenses and controls were assayed for activity against Staphylococcus aureus according to International Organization for Standardization-14729 with modifications. Solutions were analyzed for PHMB concentration at each time point. Some of the different lens materials significantly affected the PHMB concentration (P<0.0001) and the biocidal efficacy. Etafilcon A lenses significantly decreased PHMB levels after only 6 hours of lens soak time. The product lot of MPS used was also significant (P<0.0001). Enfilcon A, senofilcon A, and lotrafilcon B lenses did not significantly decrease PHMB levels. The efficacy of MPS was affected by some lens materials and PHMB concentration. Lens materials differ in their effect on PHMB concentration and the subsequent efficacy of the MPS. Over time, some lens materials can significantly reduce the PHMB concentration and the MPS's microbial activity against S. aureus.
NASA Astrophysics Data System (ADS)
Krutyakov, Yurii A.; Kudrinsky, Alexey A.; Gusev, Alexander A.; Zakharova, Olga V.; Klimov, Alexey I.; Yapryntsev, Alexey D.; Zherebin, Pavel M.; Shapoval, Olga A.; Lisichkin, Georgii V.
2017-07-01
Modern agriculture calls for a decrease in pesticide application, particularly in order to decrease the negative impact on the environment. Therefore the development of new active substances and plant protection products (PPP) to minimize the chemical load on ecosystems is a very important problem. Substances based on silver nanoparticles are a promising solution of this problem because of the fact that in correct doses such products significantly increase yields and decrease crop diseases while displaying low toxicity to humans and animals. In this paper we for the first time propose application of polymeric guanidine compounds with varying chain lengths (from 10 to 130 elementary links) for the design and synthesis of modified silver nanoparticles to be used as the basis of a new generation of PPP. Colloidal solutions of nanocrystalline silver containing 0.5 g l-1 of silver and 0.01-0.4 g l-1 of polyhexamethylene biguanide hydrochloride (PHMB) were obtained by reduction of silver nitrate with sodium borohydride in the presence of PHMB. The field experiment has shown that silver-containing solutions have a positive effect on agronomic properties of potato, wheat and apple. Also the increase in activity of such antioxidant system enzymes as peroxidase and catalase in the tissues of plants treated with nanosilver has been registered.
A phase Ib study of everolimus combined with metformin for patients with advanced cancer.
Molenaar, Remco J; van de Venne, Tim; Weterman, Mariëtte J; Mathot, Ron A; Klümpen, Heinz-Josef; Richel, Dick J; Wilmink, Johanna W
2018-02-01
Background The efficacy to monotherapy with the mTOR inhibitor everolimus in advanced cancer is often limited due to therapy resistance. Combining everolimus with metformin may decrease the chance of therapy resistance. Methods Patients received everolimus and metformin in a 3 + 3 dose-escalation scheme. Objectives were to determine the dose-limiting toxicities (DLTs), maximum tolerated dose, toxic effects, pharmacokinetics and anti-tumour efficacy. Results 9 patients received study treatment for a median duration of 48 days (range: 4-78). 6 patients discontinued due to toxicity and 3 patients because of progressive disease. At the starting dose level of 10 mg everolimus qd and 500 mg metformin bid, 3 out of 5 patients experienced a DLT. After de-escalation to 5 mg everolimus qd and 500 mg metformin bid, considerable toxicity was still observed and patient enrollment was terminated. In pharmacokinetic analyses, metformin was eliminated slower when co-administered with everolimus than as single-agent. After 9 weeks of treatment, 3 patients were still on study and all had stable disease. Conclusion The combination of everolimus and metformin is poorly tolerated in patients with advanced cancer. The pharmacokinetic interaction between everolimus and metformin may have implications for diabetic cancer patients that are treated with these drugs. Our results advocate for future clinical trials with combinations of other mTOR inhibitors and biguanides.
Aiello, Roberta; Zecchin, Barbara; Tiozzo Caenazzo, Silvia; Cattoli, Giovanni; De Benedictis, Paola
2016-08-01
In the last decades, molecular techniques have gradually been adopted for the rapid confirmation of results obtained through gold standard methods. However, international organisations discourage their use in routine laboratory investigations for rabies post-mortem diagnosis, as they may lead to false positive results due to cross-contamination. Cleaning and disinfection are essential to prevent cross-contamination of samples in the laboratory environment. The present study evaluated the efficacy of selected disinfectants on rabies-contaminated necropsy equipment under organic challenge using a carrier-based test. The occurrence of detectable Rabies virus (RABV) antigen, viable virus and RNA was assessed through the gold standard Fluorescent Antibody Test, the Rabies Tissue Culture Infection Test and molecular techniques, respectively. None of the tested disinfectants proved to be effective under label conditions. Off label disinfection protocols were found effective for oxidizing agents and phenolic, only. Biguanide and quaternary ammonium compound were both ineffective under all tested conditions. Overall, discordant results were obtained when different diagnostic tests were compared, which means that in the presence of organic contamination common disinfectants may not be effective enough on viable RABV or RNA. Our results indicate that an effective disinfection protocol should be carefully validated to guarantee staff safety and reliability of results. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
da Silva Fernandes, Meg; Kabuki, Dirce Yorika; Kuaye, Arnaldo Yoshiteru
2015-05-04
The biofilm formation of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta on stainless steel coupons was evaluated, and the effect of cleaning and sanitization procedures in the control of these biofilms was determined. The formation of biofilms was observed while varying the incubation temperature (7, 25 and 39°C) and time (0, 1, 2, 4, 6 and 8 days). At 7°C, the counts of E. faecalis and E. faecium were below 2 log10 CFU/cm(2). For the temperatures of 25 and 39°C, after 1 day, the counts of E. faecalis and E. faecium were 5.75 and 6.07 log10 CFU/cm(2), respectively, which is characteristic of biofilm formation. The tested sanitation procedures a) acid-anionic tensioactive cleaning, b) anionic tensioactive cleaning+sanitizer and c) acid-anionic tensioactive cleaning+sanitizer were effective in removing the biofilms, reducing the counts to levels below 0.4 log10 CFU/cm(2). The sanitizer biguanide was the least effective, and peracetic acid was the most effective. These studies revealed the ability of enterococci to form biofilms and the importance of the cleaning step and the type of sanitizer used in sanitation processes for the effective removal of biofilms. Copyright © 2015 Elsevier B.V. All rights reserved.
Pharmacologically-induced metabolic acidosis: a review.
Liamis, George; Milionis, Haralampos J; Elisaf, Moses
2010-05-01
Metabolic acidosis may occasionally develop in the course of treatment with drugs used in everyday clinical practice, as well as with the exposure to certain chemicals. Drug-induced metabolic acidosis, although usually mild, may well be life-threatening, as in cases of lactic acidosis complicating antiretroviral therapy or treatment with biguanides. Therefore, a detailed medical history, with special attention to the recent use of culprit medications, is essential in patients with acid-base derangements. Effective clinical management can be handled through awareness of the adverse effect of certain pharmaceutical compounds on the acid-base status. In this review, we evaluate relevant literature with regard to metabolic acidosis associated with specific drug treatment, and discuss the clinical setting and underlying pathophysiological mechanisms. These mechanisms involve renal inability to excrete the dietary H+ load (including types I and IV renal tubular acidoses), metabolic acidosis owing to increased H+ load (including lactic acidosis, ketoacidosis, ingestion of various substances, administration of hyperalimentation solutions and massive rhabdomyolysis) and metabolic acidosis due to HCO3- loss (including gastrointestinal loss and type II renal tubular acidosis). Determinations of arterial blood gases, the serum anion gap and, in some circumstances, the serum osmolar gap are helpful in delineating the pathogenesis of the acid-base disorder. In all cases of drug-related metabolic acidosis, discontinuation of the culprit medications and avoidance of readministration is advised.
Kusaka, M; Setiabudy, R; Chiba, K; Ishizaki, T
1996-02-01
A simple high-performance liquid chromatographic (HPLC) assay method was developed for the measurement of proguanil (PG) and its major metabolites, cycloguanil (CG) and 4-chlorophenyl-biguanide (CPB), in human plasma and urine. The assay allowed the simultaneous determination of all analytes in 1 ml of plasma or 0.1 ml of urine. The detection limits of PG, CG, and CPB, defined as the signal-to-noise ratio of 3, were 1 and 5 ng/ml for plasma and urine samples, respectively. Recoveries of the analytes and the internal standard (pyrimethamine) were > 62% from plasma and > 77% from urine. Intra-assay and interassay coefficients of variation for all analytes in plasma and urine were < 10% except for the values of CG and CPB, which ranged from 10% to 15% at one or two concentrations among 4-5 concentrations studied. The clinical applicability of the method was assessed by the preliminary pharmacokinetic study of PG, CG, and CPB in six healthy volunteers with the individually known phenotypes (extensive and poor metabolizers) of S-mephenytoin 4'-hydroxylation, suggesting that individuals with a poor metabolizer phenotype of S-mephenytoin have a much lower capacity to bioactivate PG to CG compared with the extensive metabolizers.
Consensus Statement on Dose Modifications of Antidiabetic Agents in Patients with Hepatic Impairment
Gangopadhyay, Kalyan Kumar; Singh, Parminder
2017-01-01
Liver disease is an important cause of mortality in type 2 diabetes mellitus (T2DM). It is estimated that diabetes is the most common cause of liver disease in the United States. Virtually, entire spectrum of liver disease is seen in T2DM including abnormal liver enzymes, nonalcoholic fatty liver disease, cirrhosis, hepatocellular carcinoma, and acute liver failure. The treatment of diabetes mellitus (DM) in cirrhotic patients has particular challenges as follows: (1) about half the patients have malnutrition; (2) patients already have advanced liver disease when clinical DM is diagnosed; (3) most of the oral antidiabetic agents (ADAs) are metabolized in the liver; (4) patients often have episodes of hypoglycemia. The aim of this consensus group convened during the National Insulin Summit 2015, Puducherry, was to focus on the challenges with glycemic management, with particular emphasis to safety of ADAs across stages of liver dysfunction. Published literature, product labels, and major clinical guidelines were reviewed and summarized. The drug classes included are biguanides (metformin), the second- or third-generation sulfonylureas, alpha-glucosidase inhibitors, thiazolidinediones, dipeptidyl peptidase-4 inhibitors, sodium-glucose co-transporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, and currently available insulins. Consensus recommendations have been drafted for glycemic targets and dose modifications of all ADAs. These can aid clinicians in managing patients with diabetes and liver disease. PMID:28459036
New directions in type 2 diabetes mellitus: an update of current oral antidiabetic therapy.
Brown, D. L.; Brillon, D.
1999-01-01
This article reviewed the relevant literature including published clinical trials and reviews on currently available oral hypoglycemic agents. Results showed that the benefits of glycemic control have been established through multiple clinical trials. Long-term control of blood glucose levels in type 1 and type 2 diabetic patients will decrease the incidence and prolong the time until progression of diabetic retinopathy, nephropathy, and neuropathy. Our increased understanding of the pathophysiology behind type 2 diabetes has led to the development of many new agents that are aimed at treating the underlying insulin resistance and relative insulinopenia. The sulfonylureas as a group have been used for many years and act by stimulating insulin secretion. They are useful alone or as combination therapy with insulin or another oral hypoglycemic agent. The biguanides act by decreasing hepatic glucose production and by increasing peripheral insulin sensitivity. The alpha-glucosidase inhibitors act nonsystemically by blocking the metabolism of digested polysaccharides and therefore lowering the amount of carbohydrate absorbed in a meal. Benzoic acid derivatives act in a manner similar to that of sulfonylureas by enhancing pancreatic insulin production. They offer a shorter duration of action, lowering the risk of hypoglycemia. The thiazolidinediones increase peripheral insulin sensitivity and are effective as both monotherapy and combination therapy. Oral hypoglycemic agents, when properly administered, are very effective in controlling type 2 diabetes and preventing long-term complications. PMID:10643211
Lettieri Barbato, D; Tatulli, G; Aquilano, K; Ciriolo, M R
2013-01-01
Finding new molecular pathways and strategies modulating lipolysis in adipocytes is an attractive goal of the current research. Indeed, it is becoming clear that several human age-related pathologies are caused by adipose tissue expansion and altered lipid metabolism. In the present work, we show that transcription factor forkhead homeobox type protein O1 (FoxO1) is upregulated by nutrient restriction (NR) in adipocytes and exerts the transcriptional control of lipid catabolism via the induction of lysosomal acid lipase (Lipa). An increased autophagy and colocalization of lipid droplets (LDs) with lysosomes was observed implying lipophagy in Lipa-mediated LDs degradation. Interestingly, we found that metformin (Metf), a biguanide drug commonly used to treat type-2 diabetes, exerts effects comparable to that of NR. Actually, it was able to elicit FoxO1-dependent Lipa induction as well as LDs degradation through lipophagy. Moreover, we demonstrate that, during NR or Metf treatment, free fatty acids released by Lipa are directed toward AMP-activated protein kinase-mediated mitochondrial oxidation, thus maintaining energetic homeostasis in adipocytes. In conclusion, our data show that lysosomal-mediated lipid catabolism is activated by NR in adipocytes and give further support to the use of Metf as a NR mimetic to combat age-related diseases associated with altered lipid metabolism. PMID:24136225
Sumi, Chisato; Okamoto, Akihisa; Tanaka, Hiromasa; Nishi, Kenichiro; Kusunoki, Munenori; Shoji, Tomohiro; Uba, Takeo; Matsuo, Yoshiyuki; Adachi, Takehiko; Hayashi, Jun-Ichi; Takenaga, Keizo; Hirota, Kiichi
2018-01-01
The intravenous anesthetic propofol (2,6-diisopropylphenol) has been used for the induction and maintenance of anesthesia and sedation in critical patient care. However, the rare but severe complication propofol infusion syndrome (PRIS) can occur, especially in patients receiving high doses of propofol for prolonged periods. In vivo and in vitro evidence suggests that the propofol toxicity is related to the impaired mitochondrial function. However, underlying molecular mechanisms remain unknown. Therefore, we investigated effects of propofol on cell metabolism and death using a series of established cell lines of various origins, including neurons, myocytes, and trans-mitochondrial cybrids, with defined mitochondrial DNA deficits. We demonstrated that supraclinical concentrations of propofol in not less than 50 μM disturbed the mitochondrial function and induced a metabolic switch, from oxidative phosphorylation to glycolysis, by targeting mitochondrial complexes I, II and III. This disturbance in mitochondrial electron transport caused the generation of reactive oxygen species, resulting in apoptosis. We also found that a predisposition to mitochondrial dysfunction, caused by a genetic mutation or pharmacological suppression of the electron transport chain by biguanides such as metformin and phenformin, promoted propofol-induced caspase activation and cell death induced by clinical relevant concentrations of propofol in not more than 25 μM. With further experiments with appropriate in vivo model, it is possible that the processes to constitute the molecular basis of PRIS are identified.
Phenformin enhances the efficacy of ERK inhibition in NF1-mutant melanoma
Shaw, Fiona M.; Yao, Zhan; Ran, Yuping; Shakuntala, Tiwari; Merghoub, Taha; Manstein, Dieter; Rosen, Neal; Cantley, Lewis C.; Zippin, Jonathan H.; Zheng, Bin
2017-01-01
Inactivation of the tumor suppressor neurofibromin 1 (NF1) presents a newly characterized melanoma subtype, for which currently no targeted therapies are clinically available. Pre-clinical studies suggest that ERK inhibitors are likely to provide benefit, albeit with limited efficacy as single agent; therefore, there is a need for rationally designed combination therapies. Here, we evaluate the combination of the ERK inhibitor SCH772984 and the biguanide phenformin. Combination of both compounds showed potent synergy in cell viability assays and cooperatively induced apoptosis. Treatment with both drugs was required to fully suppress mTOR signaling, a known effector of NF1 loss. Mechanistically, SCH772984 increased the oxygen consumption rate (OCR), indicating that these cells relied more on oxidative phosphorylation upon treatment. Consistently, SCH772984 increased expression of the mitochondrial transcriptional co-activator PGC1α. In contrast, co-treatment with phenformin, an inhibitor of complex I of the respiratory chain, decreased the OCR. SCH772984 also promoted the expansion of the H3K4 demethylase KDM5B (also known as JARID1B)-positive subpopulation of melanoma cells, which are slow-cycling and treatment-resistant. Importantly, phenformin suppressed this KDM5B-positive population, which reduced the emergence of SCH772984-resistant clones in long-term cultures. Our results warrant the clinical investigation of this combination therapy in patients with NF1 mutant melanoma. PMID:28143781
Petrachi, Tiziana; Romagnani, Alessandra; Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia
2017-01-24
Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma.
Albini, Adriana; Longo, Caterina; Argenziano, Giuseppe; Grisendi, Giulia; Dominici, Massimo; Ciarrocchi, Alessia; Dallaglio, Katiuscia
2017-01-01
Melanoma is the most dangerous and treatment-resistant skin cancer. Tumor resistance and recurrence are due to the persistence in the patient of aggressive cells with stem cell features, the cancer stem cells (CSC). Recent evidences have shown that CSC display a distinct metabolic profile as compared to tumor bulk population: a promising anti-tumor strategy is therefore to target specific metabolic pathways driving CSC behavior. Biguanides (metformin and phenformin) are anti-diabetic drugs able to perturb cellular metabolism and displaying anti-cancer activity. However, their ability to target the CSC compartment in melanoma is not known. Here we show that phenformin, but not metformin, strongly reduces melanoma cell viability, growth and invasion in both 2D and 3D (spheroids) models. While phenformin decreases melanoma CSC markers expression and the levels of the pro-survival factor MITF, MITF overexpression fails to prevent phenformin effects. Phenformin significantly reduces cell viability in melanoma by targeting both CSC (ALDHhigh) and non-CSC cells and by significantly reducing the number of viable cells in ALDHhigh and ALDHlow-derived spheroids. Consistently, phenformin reduces melanoma cell viability and growth independently from SOX2 levels. Our results show that phenformin is able to affect both CSC and non-CSC melanoma cell viability and growth and suggests its potential use as anti-cancer therapy in melanoma. PMID:28036292
Peripheral 5-HT3 Receptors Are Involved in the Antinociceptive Effect of Bunodosine 391.
Ferreira Junior, Wilson Alves; Zaharenko, Andre Junqueira; Kazuma, Kohei; Picolo, Gisele; Gutierrez, Vanessa Pacciari; de Freitas, Jose Carlos; Konno, Katsuhiro; Cury, Yara
2017-12-27
Bunodosine 391 (BDS 391), a low molecular weight compound isolated from the sea anemone Bunodosoma cangicum , increases the nociceptive threshold and inhibits inflammatory hyperalgesia. Serotonin receptors are involved in those effects. In this study, we have expanded the characterization of the antinociceptive effect of BDS 391 demonstrating that, in rats: (a) the compound inhibits (1.2-12 ng/paw) overt pain, in the formalin test, and mechanical hyperalgesia (0.6-6.0 ng/paw) detected in a model of neuropathic pain; (b) intraplantar administration of ondansetron, a selective 5-HT3 receptor antagonist, blocks the effect of BDS 391, whereas ketanserin, a 5-HT2 receptor antagonist, partially reversed this effect, indicating the involvement of peripheral 5-HT2 and 5-HT3 receptors in BDS 391 antinociception; and (c) in binding assay studies, BDS 391 was not able to displace the selective 5-HT receptor antagonists, suggesting that this compound does not directly bind to these receptors. The effect of biguanide, a selective 5-HT3 receptor agonist, was also evaluated. The agonist inhibited the formalin's nociceptive response, supporting an antinociceptive role for 5-HT3 receptors. Our study is the first one to show that a non-peptidic low molecular weight compound obtained from a sea anemone is able to induce antinociception and that activation of peripheral 5-HT3 receptors contributes to this effect.
Peripheral 5-HT3 Receptors Are Involved in the Antinociceptive Effect of Bunodosine 391
Ferreira Junior, Wilson Alves; Zaharenko, Andre Junqueira; Kazuma, Kohei; Picolo, Gisele; Gutierrez, Vanessa Pacciari; de Freitas, Jose Carlos; Konno, Katsuhiro
2017-01-01
Bunodosine 391 (BDS 391), a low molecular weight compound isolated from the sea anemone Bunodosoma cangicum, increases the nociceptive threshold and inhibits inflammatory hyperalgesia. Serotonin receptors are involved in those effects. In this study, we have expanded the characterization of the antinociceptive effect of BDS 391 demonstrating that, in rats: (a) the compound inhibits (1.2–12 ng/paw) overt pain, in the formalin test, and mechanical hyperalgesia (0.6–6.0 ng/paw) detected in a model of neuropathic pain; (b) intraplantar administration of ondansetron, a selective 5-HT3 receptor antagonist, blocks the effect of BDS 391, whereas ketanserin, a 5-HT2 receptor antagonist, partially reversed this effect, indicating the involvement of peripheral 5-HT2 and 5-HT3 receptors in BDS 391 antinociception; and (c) in binding assay studies, BDS 391 was not able to displace the selective 5-HT receptor antagonists, suggesting that this compound does not directly bind to these receptors. The effect of biguanide, a selective 5-HT3 receptor agonist, was also evaluated. The agonist inhibited the formalin’s nociceptive response, supporting an antinociceptive role for 5-HT3 receptors. Our study is the first one to show that a non-peptidic low molecular weight compound obtained from a sea anemone is able to induce antinociception and that activation of peripheral 5-HT3 receptors contributes to this effect. PMID:29280949
Lin, Leo; Kim, Janie; Chen, Hope; Kowalski, Regis
2016-01-01
More than 125 million people wear contact lenses worldwide, and contact lens use is the single greatest risk factor for developing microbial keratitis. We tested the antibacterial activity of multipurpose contact lens solutions and their individual component preservatives against the two most common pathogens causing bacterial keratitis, Pseudomonas aeruginosa and Staphylococcus aureus. The in vitro antibacterial activity of five multipurpose contact lens solutions (Opti-Free GP, Boston Simplus, Boston Advance, Menicare GP, and Lobob) was assayed by the standard broth dilution method. Synergy between the preservative components found in the top performing solutions was assayed using checkerboard and time-kill assays. The ISO 14729 criteria and the standard broth dilution method were used to define an optimized contact lens solution formulation against a clinical panel of drug-susceptible and drug-resistant P. aeruginosa and S. aureus strains. Preservatives with the biguanide function group, chlorhexidine and polyaminopropylbiguanide (PAPB), had the best antistaphylococcal activity, while EDTA was the best antipseudomonal preservative. The combination of chlorhexidine and EDTA had excellent synergy against P. aeruginosa. A solution formulation containing chlorhexidine (30 ppm), PAPB (5 ppm), and EDTA (5,000 ppm) had three to seven times more antipseudomonal activity than anything available to consumers today. A multipurpose contact lens solution containing a combination of chlorhexidine, PAPB, and EDTA could help to reduce the incidence of microbial keratitis for contact lens users worldwide. PMID:27139484
Evaluation of Protamine as a Disinfectant for Contact Lenses.
Bandara, Mahesh K; Masoudi, Simin; Zhu, Hua; Bandara, Rani; Willcox, Mark D P
2016-11-01
To investigate the ability of protamine, alone or in combination with other antimicrobial agents, to kill bacteria and fungi associated with contact lens-related keratitis. The International Organization for Standardization 14729:2001 procedure was used to test the antimicrobial activity of solutions of protamine (23-228 μM) with and without polyhexamethylene biguanide (PHMB) and ethylenediamine tetra-acetic acid (EDTA). The recommended ISO panel of microbes along with six clinical isolates was tested. The effect of increasing sodium chloride concentration on the antimicrobial activity was also assessed. The cytotoxicity of the final protamine/EDTA/PHMB solution was measured using ISO 10993-5 standard assays. Protamine gave a dose-dependent antimicrobial effect, with the highest effect for most strains being at 228 μM (≥6 log reductions of viable bacteria and ≥1 log reduction of viable fungi). Addition of EDTA and PHMB increased the antimicrobial effect for all strains except Pseudomonas aeruginosa ATCC6538, which had optimum activity (≥6 log inhibition) even in protamine alone. The optimum antimicrobial activity of all microbes was achieved in 0.2% sodium chloride, but even in 0.8% sodium chloride, the activity met or exceeded the ISO standard (>3 log reductions for bacteria and >1 log reduction for fungi). None of the formulations was cytotoxic to mammalian cells. This study highlights the potential for protamine to be used for the development of effective multipurpose disinfection solutions. Further investigations such as stability, compatibility with contact lenses, and in vivo toxicity are warranted.
Nakatsu, Yusuke; Iwashita, Misaki; Sakoda, Hideyuki; Ono, Hiraku; Nagata, Kengo; Matsunaga, Yasuka; Fukushima, Toshiaki; Fujishiro, Midori; Kushiyama, Akifumi; Kamata, Hideaki; Takahashi, Shin-Ichiro; Katagiri, Hideki; Honda, Hiroaki; Kiyonari, Hiroshi; Uchida, Takafumi; Asano, Tomoichiro
2015-01-01
AMP-activated protein kinase (AMPK) plays a critical role in metabolic regulation. In this study, first, it was revealed that Pin1 associates with any isoform of γ, but not with either the α or the β subunit, of AMPK. The association between Pin1 and the AMPK γ1 subunit is mediated by the WW domain of Pin1 and the Thr211-Pro-containing motif located in the CBS domain of the γ1 subunit. Importantly, overexpression of Pin1 suppressed AMPK phosphorylation in response to either 2-deoxyglucose or biguanide stimulation, whereas Pin1 knockdown by siRNAs or treatment with Pin1 inhibitors enhanced it. The experiments using recombinant Pin1, AMPK, LKB1, and PP2C proteins revealed that the protective effect of AMP against PP2C-induced AMPKα subunit dephosphorylation was markedly suppressed by the addition of Pin1. In good agreement with the in vitro data, the level of AMPK phosphorylation as well as the expressions of mitochondria-related genes, such as PGC-1α, which are known to be positively regulated by AMPK, were markedly higher with reduced triglyceride accumulation in the muscles of Pin1 KO mice as compared with controls. These findings suggest that Pin1 plays an important role in the pathogenic mechanisms underlying impaired glucose and lipid metabolism, functioning as a negative regulator of AMPK. PMID:26276391
The lysosome among targets of metformin: new anti-inflammatory uses for an old drug?
Lockwood, Thomas D
2010-05-01
Rheumatoid arthritis and type-2 diabetes exhibit progressive co-morbidity. Chloroquine (CQ) reportedly improves both. CQ inhibits lysosomal function in cultured cells at supra-therapeutic concentration; however, this is doubted as target mechanism. Some anti-diabetic biguanides are metal-interactive lysosomal inhibitors; and all bind Zn(2+). i) To bioassay the potency of CQ using (3)H-leucine release from perfused myocardial tissue. ii) To determine whether metformin (MET) is CQ-mimetic, and interactive with Zn(2+). Therapeutic CQ concentration (0.1 - 0.5 microM) clearly does cause lysosomal inhibition although delayed and submaximal. MET alone (10 microM) caused sub-maximal inhibition. Supra-physiological extracellular Zn(2+) (5 - 50 microM) alone increased tissue Zn(2+) content, and inhibited lysosomal proteolysis. Physiological equivalent Zn(2+) (approximately 1 microM) had no effect. MET (
Leveque, Nathalie L; Charman, William N; Chiu, Francis C K
2006-01-18
A sensitive, simple and fast liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method for the determination of proguanil (PG) and its metabolites, cycloguanil (CG) and 1-(4-chlorophenyl)biguanide (4CPB), was developed and validated over a concentration range of 1-2000 ng/mL using only 50 microL of blood or plasma. After a simple solvent precipitation procedure, the supernatant was analysed directly by HPLC-MS/MS. Separation was achieved using an ethyl-linked phenyl reverse phase column with polar endcapping with an acetonitrile-water-formic acid gradient. Mass spectrometry was performed using a triple quadrupole mass spectrometer operating in positive electrospray ionization mode. The elution of PG (254.07-->169.99), CG (252.12-->195.02) and 4CPB (212.06-->153.06) was monitored using selected reaction monitoring. The three compounds and the internal standard (chloroproguanil) were well separated by HPLC and no interfering peaks were detected at the usual concentrations found in blood and plasma. The limit of quantification of PG and CG was 1 ng/mL and 5 ng/mL for 4CPB in rat blood and plasma. The extraction efficiency of PG, CG and 4CPB from rat blood and plasma was higher than 73%. The intra- and inter-assay variability of PG, CG and 4CPB were within 12% and the accuracy within +/-5%. This new assay offers higher sensitivity and a much shorter run time over earlier methods.
Metformin Is a Substrate and Inhibitor of the Human Thiamine Transporter, THTR-2 (SLC19A3).
Liang, Xiaomin; Chien, Huan-Chieh; Yee, Sook Wah; Giacomini, Marilyn M; Chen, Eugene C; Piao, Meiling; Hao, Jia; Twelves, Jolyn; Lepist, Eve-Irene; Ray, Adrian S; Giacomini, Kathleen M
2015-12-07
The biguanide metformin is widely used as first-line therapy for the treatment of type 2 diabetes. Predominately a cation at physiological pH's, metformin is transported by membrane transporters, which play major roles in its absorption and disposition. Recently, our laboratory demonstrated that organic cation transporter 1, OCT1, the major hepatic uptake transporter for metformin, was also the primary hepatic uptake transporter for thiamine, vitamin B1. In this study, we tested the reverse, i.e., that metformin is a substrate of thiamine transporters (THTR-1, SLC19A2, and THTR-2, SLC19A3). Our study demonstrated that human THTR-2 (hTHTR-2), SLC19A3, which is highly expressed in the small intestine, but not hTHTR-1, transports metformin (Km = 1.15 ± 0.2 mM) and other cationic compounds (MPP(+) and famotidine). The uptake mechanism for hTHTR-2 was pH and electrochemical gradient sensitive. Furthermore, metformin as well as other drugs including phenformin, chloroquine, verapamil, famotidine, and amprolium inhibited hTHTR-2 mediated uptake of both thiamine and metformin. Species differences in the substrate specificity of THTR-2 between human and mouse orthologues were observed. Taken together, our data suggest that hTHTR-2 may play a role in the intestinal absorption and tissue distribution of metformin and other organic cations and that the transporter may be a target for drug-drug and drug-nutrient interactions.
Szczotka-Flynn, Loretta B.; Imamura, Yoshifumi; Chandra, Jyotsna; Yu, Changping; Mukherjee, Pranab K.; Pearlman, Eric; Ghannoum, Mahmoud A.
2014-01-01
PURPOSE To determine if clinical and reference strains of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus form biofilms on silicone hydrogel contact lenses, and ascertain antimicrobial activities of contact lens care solutions. METHODS Clinical and American Type Culture Collection (ATCC) reference strains of Pseudomonas aeruginosa, Serratia marcescens, and Staphylococcus aureus were incubated with lotrafilcon A lenses under conditions that facilitate biofilm formation. Biofilms were quantified by quantitative culturing (colony forming units, CFUs), and gross morphology and architecture were evaluated using scanning electron microscopy (SEM) and confocal microscopy. Susceptibilities of the planktonic and biofilm growth phases of the bacteria to five common multipurpose contact lens care solutions and one hydrogen peroxide care solution were assessed. RESULTS P. aeruginosa, S. marcescens, and S. aureus reference and clinical strains formed biofilms on lotrafilcon A silicone hydrogel contact lenses, as dense networks of cells arranged in multiple layers with visible extracellular matrix. The biofilms were resistant to commonly used biguanide preserved multipurpose care solutions. P. aeruginosa and S. aureus biofilms were susceptible to a hydrogen peroxide and a polyquaternium preserved care solution, whereas S. marcescens biofilm was resistant to a polyquaternium preserved care solution but susceptible to hydrogen peroxide disinfection. In contrast, the planktonic forms were always susceptible. CONCLUSIONS P. aeruginosa, S. marcescens, and S. aureus form biofilms on lotrafilcon A contact lenses, which in contrast to planktonic cells, are resistant to the antimicrobial activity of several soft contact lens care products. PMID:19654521
The prelude on novel receptor and ligand targets involved in the treatment of diabetes mellitus.
Jonnalagadda, Venu Gopal; Ram Raju, Allam Venkata Sita; Pittala, Srinivas; Shaik, Afsar; Selkar, Nilakash Annaji
2014-01-01
Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes.
Pharmacogenetic studies update in type 2 diabetes mellitus
Singh, Shalini; Usman, Kauser; Banerjee, Monisha
2016-01-01
Type 2 diabetes mellitus (T2DM) is a silent progressive polygenic metabolic disorder resulting from ineffective insulin cascading in the body. World-wide, about 415 million people are suffering from T2DM with a projected rise to 642 million in 2040. T2DM is treated with several classes of oral antidiabetic drugs (OADs) viz. biguanides, sulfonylureas, thiazolidinediones, meglitinides, etc. Treatment strategies for T2DM are to minimize long-term micro and macro vascular complications by achieving an optimized glycemic control. Genetic variations in the human genome not only disclose the risk of T2DM development but also predict the personalized response to drug therapy. Inter-individual variability in response to OADs is due to polymorphisms in genes encoding drug receptors, transporters, and metabolizing enzymes for example, genetic variants in solute carrier transporters (SLC22A1, SLC22A2, SLC22A3, SLC47A1 and SLC47A2) are actively involved in glycemic/HbA1c management of metformin. In addition, CYP gene encoding Cytochrome P450 enzymes also play a crucial role with respect to metabolism of drugs. Pharmacogenetic studies provide insights on the relationship between individual genetic variants and variable therapeutic outcomes of various OADs. Clinical utility of pharmacogenetic study is to predict the therapeutic dose of various OADs on individual basis. Pharmacogenetics therefore, is a step towards personalized medicine which will greatly improve the efficacy of diabetes treatment. PMID:27555891
Suzuki, Daisuke; Umezono, Tomoya; Miyauchi, Masaaki; Kimura, Moritsugu; Yamamoto, Naoyuki; Tanaka, Eitaro; Kuriyama, Yusuke; Sato, Hiroki; Miyatake, Han; Kondo, Masumi; Toyoda, Masao; Fukagawa, Masafumi
2012-07-20
To determine the clinical usefulness of basal-supported oral therapy (BOT) using insulin glargine in Japanese patients with type 2 diabetes. We compared HbA1c levels, body weight, and insulin doses before the introduction of BOT and in the final month of the observation period in 122 patients with type 2 diabetes who received BOT with insulin glargine between October 2007 and July 2009. To exclude the possible effects of seasonal changes in glycemic control, 57 of the 122 patients were followed-up for one year and examined for changes in HbA1c levels, body weight, and insulin dose. Examination of all cases (n=122) showed a significant decrease in HbA1c (before BOT: 8.7±1.8, after: 7.1±1.1%), but no significant change in body weight (before: 63.1±16.1, after: 63.8±17.0 kg). The mean observation period was 10.5±6.4 months. Insulin doses were significantly increased during the study. HbA1c levels improved significantly in patients on non-insulin-secreting drugs (biguanide, α-glucosidase inhibitor and thiazolidine derivatives) than those on insulin-secreting drugs (SU agents and glinides). BOT with insulin glargine is a useful strategy that can achieve good glycemic control in clinical practice without causing serious hypoglycemia. The introduction of BOT before exhaustion of pancreatic β cells may increase its effectiveness.
The role of metformin on vitamin B12 deficiency: a meta-analysis review.
Niafar, Mitra; Hai, Faizi; Porhomayon, Jahan; Nader, Nader Djalal
2015-02-01
Metformin is the only biguanide oral hypoglycemic drug, that is used to treat patients with type-2 diabetes mellitus. There are some reports of metformin being associated with decreased serum levels of vitamin B12 (VB12). The objective of this study is to systematically analyze the impact of metformin on the frequency of VB12 deficiency and serum levels of VB12. A search of various databases provided 18 retrospective cohort studies and 11 randomized controlled trials. Pooled estimates of odds ratio with 95% confidence interval using random effect model were conducted. Studies were examined for heterogeneity, publication bias and sensitivity analysis. Separate analysis of randomized control trials (RCTs) including both low-risk and high-risk bias was also conducted. 29 studies were selected with a total of 8,089 patients. 19 studies were rated intermediate or high quality. Primary outcome suggested increased incidence of VB12 deficiency in metformin group (OR = 2.45, 95% CI 1.74-3.44, P < 0.0001.) Heterogeneity was relatively high (I(2) = 53%), with minor publication bias. Secondary outcome suggested lower serum VB12 concentrations in metformin group (Mean difference = -65.8, 95% CI -78.1 to -53.6 pmol/L, P < 0.00001) with high heterogeneity (I(2) = 98%,) and low publication bias. RCTs analysis of low-and high-risk group revealed similar trends. We conclude that metformin treatment is significantly associated with an increase in incidence of VB12 deficiency and reduced serum VB12 levels.
Geoghegan, Fintan; Chadderton, Naomi; Farrar, G Jane; Zisterer, Daniela M; Porter, Richard K
2017-11-01
Phenformin, a member of the biguanides class of drugs, has been reported to be efficacious in cancer treatment. The focus of the current study was to establish whether there were direct effects of phenformin on the metabolism and bioenergetics of neuroblastoma SH-SY5Y cancer cells. Cell viability was assessed using the alamar blue assay, flow cytometry analysis using propidium iodide and annexin V stain and poly (ADP-ribose) polymerase analysis. Cellular and mitochondrial oxygen consumption was determined using a Seahorse Bioscience Flux analyser and an Oroboros Oxygraph respirometer. Cells were transfected using electroporation and permeabilized for in situ mitochondrial functional analysis using digitonin. Standard protocols were used for immunoblotting and proteins were separated on denaturing gels. Phenformin was effective in reducing the viability of SH-SY5Y cells, causing G 1 cell cycle arrest and inducing apoptosis. Bioenergetic analysis demonstrated that phenformin significantly decreased oxygen consumption in a dose- and time-dependent manner. The sensitivity of oxygen consumption in SH-SY5Y cells to phenformin was circumvented by the expression of NADH-quinone oxidoreductase 1, a ubiquinone oxidoreductase, suggesting that complex I may be a target of phenformin. As a result of this inhibition, adenosine monophosphate protein kinase is activated and acetyl-coenzyme A carboxylase is inhibited. To the best of our knowledge, the current study is the first to demonstrate the efficacy and underlying mechanism by which phenformin directly effects the survival of neuroblastoma cancer cells.
Liu, Zhao; Ren, Lidong; Liu, Chenghao; Xia, Tiansong; Zha, Xiaoming; Wang, Shui
2015-01-01
Breast cancer remains a world-wide challenge, and additional anti-cancer therapies are still urgently needed. Emerging evidence has demonstrated the potent anti-tumor effect of biguanides, among which phenformin was reported to potentially be a more active anti-cancer agent than metformin. However, little attention has been given to the role of phenformin in breast cancer. In this study, we reveal the role of phenformin in cell death of the MCF7, ZR-75-1, MDA-MB-231 and SUM1315 breast cancer cell lines. The respective IC50 values of phenformin in MCF7, ZR-75-1, MDA-MB-231 and SUM1315 cells were 1.184±0.045 mM, 0.665±0.007 mM, 2.347±0.010 mM and 1.885±0.015 mM (mean± standard error). Phenformin induced cell cycle change and apoptosis in breast cancer cells via the AMPK/mTOR/p70s6k and MAPK/ERK pathways. Interestingly, phenformin induced MET (mesenchymal-epithelial transition) and decreased the migration rate in breast cancer cell lines. Furthermore, our results suggest that phenformin inhibits breast cancer cell metastasis after intracardiac injection into nude mice. Taken together, our study further confirms the potential benefit of phenformin in breast cancer treatment and provides novel mechanistic insight into its anti-cancer activity in breast cancer.
Phenformin Enhances the Efficacy of ERK Inhibition in NF1-Mutant Melanoma.
Trousil, Sebastian; Chen, Shuang; Mu, Chan; Shaw, Fiona M; Yao, Zhan; Ran, Yuping; Shakuntala, Tiwari; Merghoub, Taha; Manstein, Dieter; Rosen, Neal; Cantley, Lewis C; Zippin, Jonathan H; Zheng, Bin
2017-05-01
Inactivation of the tumor suppressor neurofibromin 1 (NF1) presents a newly characterized melanoma subtype, for which currently no targeted therapies are clinically available. Preclinical studies suggest that extracellular signal-regulated kinase (ERK) inhibitors are likely to provide benefit, albeit with limited efficacy as a single agent; therefore, there is a need for rationally designed combination therapies. Here, we evaluate the combination of the ERK inhibitor SCH772984 and the biguanide phenformin. A combination of both compounds showed potent synergy in cell viability assays and cooperatively induced apoptosis. Treatment with both drugs was required to fully suppress mechanistic target of rapamycin signaling, a known effector of NF1 loss. Mechanistically, SCH772984 increased the oxygen consumption rate, indicating that these cells relied more on oxidative phosphorylation upon treatment. Consistently, SCH772984 increased expression of the mitochondrial transcriptional coactivator peroxisome proliferator-activated receptor gamma, coactivator 1-α. In contrast, cotreatment with phenformin, an inhibitor of complex I of the respiratory chain, decreased the oxygen consumption rate. SCH772984 also promoted the expansion of the H3K4 demethylase KDM5B (also known as JARID1B)-positive subpopulation of melanoma cells, which are slow-cycling and treatment-resistant. Importantly, phenformin suppressed this KDM5B-positive population, which reduced the emergence of SCH772984-resistant clones in long-term cultures. Our results warrant the clinical investigation of this combination therapy in patients with NF1 mutant melanoma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Metformin and insulin receptors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigneri, R.; Gullo, D.; Pezzino, V.
The authors evaluated the effect of metformin (N,N-dimethylbiguanide), a biguanide known to be less toxic than phenformin, on insulin binding to its receptors, both in vitro and in vivo. Specific /sup 125/I-insulin binding to cultured IM-9 human lymphocytes and MCF-7 human breast cancer cells was determined after preincubation with metformin. Specific /sup 125/I-insulin binding to circulating monocytes was also evaluated in six controls, eight obese subjects, and six obese type II diabetic patients before and after a short-term treatment with metformin. Plasma insulin levels and blood glucose were also measured on both occasions. Metformin significantly increased insulin binding in vitromore » to both IM-9 lymphocytes and MCF-7 cells; the maximum increment was 47.1% and 38.0%, respectively. Metformin treatment significantly increased insulin binding in vivo to monocytes of obese subjects and diabetic patients. Scatchard analysis indicated that the increased binding was mainly due to an increase in receptor capacity. Insulin binding to monocytes of normal controls was unchanged after metformin as were insulin levels in all groups; blood glucose was significantly reduced after metformin only in diabetic patients. These data indicate that metformin increases insulin binding to its receptors in vitro and in vivo. The effect in vivo is observed in obese subjects and in obese type II diabetic patients, paralleling the clinical effectiveness of this antidiabetic agent, and is not due to receptor regulation by circulating insulin, since no variation in insulin levels was recorded.« less
Liu, Zhao; Ren, Lidong; Liu, Chenghao; Xia, Tiansong; Zha, Xiaoming; Wang, Shui
2015-01-01
Breast cancer remains a world-wide challenge, and additional anti-cancer therapies are still urgently needed. Emerging evidence has demonstrated the potent anti-tumor effect of biguanides, among which phenformin was reported to potentially be a more active anti-cancer agent than metformin. However, little attention has been given to the role of phenformin in breast cancer. In this study, we reveal the role of phenformin in cell death of the MCF7, ZR-75-1, MDA-MB-231 and SUM1315 breast cancer cell lines. The respective IC50 values of phenformin in MCF7, ZR-75-1, MDA-MB-231 and SUM1315 cells were 1.184±0.045 mM, 0.665±0.007 mM, 2.347±0.010 mM and 1.885±0.015 mM (mean± standard error). Phenformin induced cell cycle change and apoptosis in breast cancer cells via the AMPK/mTOR/p70s6k and MAPK/ERK pathways. Interestingly, phenformin induced MET (mesenchymal-epithelial transition) and decreased the migration rate in breast cancer cell lines. Furthermore, our results suggest that phenformin inhibits breast cancer cell metastasis after intracardiac injection into nude mice. Taken together, our study further confirms the potential benefit of phenformin in breast cancer treatment and provides novel mechanistic insight into its anti-cancer activity in breast cancer. PMID:26114294
Geoghegan, Fintan; Chadderton, Naomi; Farrar, G. Jane; Zisterer, Daniela M.; Porter, Richard K.
2017-01-01
Phenformin, a member of the biguanides class of drugs, has been reported to be efficacious in cancer treatment. The focus of the current study was to establish whether there were direct effects of phenformin on the metabolism and bioenergetics of neuroblastoma SH-SY5Y cancer cells. Cell viability was assessed using the alamar blue assay, flow cytometry analysis using propidium iodide and annexin V stain and poly (ADP-ribose) polymerase analysis. Cellular and mitochondrial oxygen consumption was determined using a Seahorse Bioscience Flux analyser and an Oroboros Oxygraph respirometer. Cells were transfected using electroporation and permeabilized for in situ mitochondrial functional analysis using digitonin. Standard protocols were used for immunoblotting and proteins were separated on denaturing gels. Phenformin was effective in reducing the viability of SH-SY5Y cells, causing G1 cell cycle arrest and inducing apoptosis. Bioenergetic analysis demonstrated that phenformin significantly decreased oxygen consumption in a dose- and time-dependent manner. The sensitivity of oxygen consumption in SH-SY5Y cells to phenformin was circumvented by the expression of NADH-quinone oxidoreductase 1, a ubiquinone oxidoreductase, suggesting that complex I may be a target of phenformin. As a result of this inhibition, adenosine monophosphate protein kinase is activated and acetyl-coenzyme A carboxylase is inhibited. To the best of our knowledge, the current study is the first to demonstrate the efficacy and underlying mechanism by which phenformin directly effects the survival of neuroblastoma cancer cells. PMID:29113281
Díaz, Angélica; del Valle, Luis J; Tugushi, David; Katsarava, Ramaz; Puiggalí, Jordi
2015-01-01
Electrospun scaffolds from an amino acid containing poly(ester urea) (PEU) were developed as promising materials in the biomedical field and specifically in tissue engineering applications. The selected poly(ester urea) was obtained with a high yield and molecular weight by reaction of phosgene with a bis(α-aminoacyl)-α,ω-diol-diester monomer. The polymer having L-leucine, 1,6-hexanediol and carbonic acid units had a semicrystalline character and relatively high glass transition and melting temperatures. Furthermore it was highly soluble in most organic solvents, an interesting feature that facilitated the electrospinning process and the effective incorporation of drugs with bactericidal activity (e.g. biguanide derivatives such as clorhexidine and polyhexamethylenebiguanide) and enzymes (e.g. α-chymotrypsin) that accelerated the degradation process. Continuous micro/nanofibers were obtained under a wide range of processing conditions, being diameters of electrospun fibers dependent on the drug and solvent used. Poly(ester urea) samples were degradable in media containing lipases and proteinases but the degradation rate was highly dependent on the surface area, being specifically greater for scaffolds with respect to films. The high hydrophobicity of new scaffolds had repercussions on enzymatic degradability since different weight loss rates were found depending on how samples were exposed to the medium (e.g. forced or non-forced immersion). New scaffolds were biocompatible, as demonstrated by adhesion and proliferation assays performed with fibroblast and epithelial cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Cowley, Nicola L.; Forbes, Sarah; Amézquita, Alejandro; McClure, Peter; Humphreys, Gavin J.
2015-01-01
Risk assessments of the potential for microbicides to select for reduced bacterial susceptibility have been based largely on data generated through the exposure of bacteria to microbicides in aqueous solution. Since microbicides are normally formulated with multiple excipients, we have investigated the effect of formulation on antimicrobial activity and the induction of bacterial insusceptibility. We tested 8 species of bacteria (7 genera) before and after repeated exposure (14 passages), using a previously validated gradient plating system, for their susceptibilities to the microbicides benzalkonium chloride, benzisothiozolinone, chlorhexidine, didecyldimethyl ammonium chloride, DMDM-hydantoin, polyhexamethylene biguanide, thymol, and triclosan in aqueous solution (nonformulated) and in formulation with excipients often deployed in consumer products. Susceptibilities were also assessed following an additional 14 passages without microbicide to determine the stability of any susceptibility changes. MICs and minimum bactericidal concentrations (MBC) were on average 11-fold lower for formulated microbicides than for nonformulated microbicides. After exposure to the antimicrobial compounds, of 72 combinations of microbicide and bacterium there were 19 ≥4-fold (mean, 8-fold) increases in MIC for nonformulated and 8 ≥4-fold (mean, 2-fold) increases in MIC for formulated microbicides. Furthermore, there were 20 ≥4-fold increases in MBC (mean, 8-fold) for nonformulated and 10 ≥4-fold (mean, 2-fold) increases in MBC for formulated microbicides. Susceptibility decreases fully or partially reverted back to preexposure values for 49% of MICs and 72% of MBCs after further passage. In summary, formulated microbicides exhibited greater antibacterial potency than unformulated actives and susceptibility decreases after repeated exposure were lower in frequency and extent. PMID:26253662
Zonta, William; Mauroy, Axel; Farnir, Frederic; Thiry, Etienne
2016-03-01
Human noroviruses (HuNoV) are the leading cause of acute non-bacterial gastroenteritis in humans and can be transmitted either by person-to-person contact or by consumption of contaminated food. A knowledge of an efficient disinfection for both hands and food-contact surfaces is helpful for the food sector and provides precious information for public health. The aim of this study was to evaluate the effect of seven disinfectants belonging to different groups of biocides (alcohol, halogen, oxidizing agents, quaternary ammonium compounds, aldehyde and biguanide) on infectious viral titre and on genomic copy number. Due to the absence of a cell culture system for HuNoV, two HuNoV surrogates, such as murine norovirus and feline calicivirus, were used and the tests were performed in suspension, on gloves and on stainless steel discs. When, as criteria of efficacy, a log reduction >3 of the infectious viral titre on both surrogates and in the three tests is used, the most efficacious disinfectants in this study appear to be biocidal products B, C and D, representing the halogens, the oxidizing agents group and a mix of QAC, alcohol and aldehyde, respectively. In addition, these three disinfectants also elicited a significant effect on genomic copy number for both surrogate viruses and in all three tests. The results of this study demonstrate that a halogen compound, oxidizing agents and a mix of QAC, alcohol and aldehyde are advisable for HuNoV disinfection of either potentially contaminated surfaces or materials in contact with foodstuffs.
Veiga, Sonia Rosa; Ge, Xuemei; Mercer, Carol A; Hernández-Alvarez, María Isabel; Thomas, Hala Elnakat; Hernández-Losa, Javier; Ramón Y Cajal, Santiago; Zorzano, Antonio; Thomas, George; Kozma, Sara C
2018-04-24
Hepatocellular carcinoma (HCC) ranks second in cancer mortality and has limited therapeutic options. We recently described the synergistic effect of allosteric and ATP-site competitive inhibitors against the mammalian target of rapamycin (mTOR) for the treatment of HCC. However, such inhibitors induce glycemia and increase mitochondrial efficiency. Here we determined whether the mitochondrial complex I inhibitor Phenformin could reverse both side effects, impose an energetic-stress on cancer cells and suppress the growth of HCC. Human HCC cell lines were used in vitro to access the signaling and energetic impact of mTOR inhibitors and Phenformin, either alone or in combination. Next, the therapeutic utility of these drugs alone or in combination was investigated pre-clinically in human orthotopic tumors implanted in mice, by analyzing their impact on the tumor burden and overall survival. We found Phenformin caused mitochondrial dysfunction and fragmentation, inducing a compensatory shift to glycolysis. In contrast, dual inhibition of mTOR impaired cell growth and glycolysis, while increasing mitochondrial fusion and efficiency. In a mouse model of human HCC, dual inhibition of mTOR, together with Phenformin, was highly efficacious in controlling tumor burden. However, more striking, pretreatment with Phenformin sensitized tumors to dual inhibition of mTOR, leading to a dramatic improvement in survival. Treatment of HCC cells in vitro with the biguanide Phenformin causes a metabolic shift to glycolysis, mitochondrial dysfunction and fragmentation, and dramatically sensitizes orthotopic liver tumors to dual inhibition of mTOR. We therefore propose this therapeutic approach should be tested clinically in HCC. Copyright ©2018, American Association for Cancer Research.
Acute metformin intoxication: 2012 experience of Emergency Departement of Lodi, Italy.
Acquistapace, Giulia; Rossi, Marco; Garbi, Mara; Cosci, Pablo; Canetta, Ciro; Manelli, Anna; Ricevuti, Giovanni
2014-10-01
Background: Metformin is a biguanide antihyperglycemic agent that decreases insulin resistance. It is removed through renal mechanisms and its clearance is reduced in renal failure. Metformin ingestion should always be considered in the differential diagnosis of any patient with metabolic acidosis and increased lactate level. Hemodialysis and continuous veno-venous hemofiltration (CVVH) are both efficient methods to treat metformin intoxication and correct metabolic abnormalities. Patient 1: A 63-year-old man with type 2 diabetes mellitus presented to emergency department (ED) of Lodi (Italy) for dyspnea. He also reported having diarrhea for 10 days. Initial investigations revealed metabolic acidosis with hyperlactatemia and hypoglycemia (54 mg/dL), metformin concentration was 41 μg/mL (normal value <4 μg/mL). His hemodynamic condition became rapidly unstable and hypotension worsened despite CVVH being performed. Death occurred in 24 h. Patient 2: A 76-year-old man with type 2 diabetes mellitus presented to ED of Lodi for dyspnea. He referred a recent surgery amputation of the left foot's fifth phalanx for osteomyelitis, in levofloxacin therapy. Initial investigations revealed metabolic acidosis with hyperlactatemia and severe hypoglycemia (20 mg/dL). Two hemodialysis sessions were performed with complete normalization of the serum concentration of metformin. In our two cases the genesis of metformin intoxication was clear, powered by acute renal failure, but less obvious was the etiology of acute renal damage responsible for metformin accumulation. Damage due to renal hypoperfusion or the direct toxic effect of metformin should be considered. Additionally, for the second patient, we can also hypothesize that interstitial nephritis was exacerbated by levofloxacin.
The origins of western obesity: a role for animal protein?
McCarty, M F
2000-03-01
A reduced propensity to oxidize fat, as indicated by a relatively high fasting respiratory quotient, is a major risk factor for weight gain. Increased insulin secretion works in various ways to impede fat oxidation and promote fat storage. The substantial 'spontaneous' weight loss often seen with very-low-fat dietary regimens may reflect not only a reduced rate of fat ingestion, but also an improved insulin sensitivity of skeletal muscle that down-regulates insulin secretion. Reduction of diurnal insulin secretion may also play a role in the fat loss often achieved with exercise training, low-glycemic-index diets, supplementation with soluble fiber or chromium, low-carbohydrate regimens, and biguanide therapy. The exceptional leanness of vegan cultures may reflect an additional factor - the absence of animal protein. Although dietary protein by itself provokes relatively little insulin release, it can markedly potentiate the insulin response to co-ingested carbohydrate; Western meals typically unite starchy foods with an animal protein-based main course. Thus, postprandial insulin secretion may be reduced by either avoiding animal protein, or segregating it in low-carbohydrate meals; the latter practice is a feature of fad diets stressing 'food combining'. Vegan diets tend to be relatively low in protein, legume protein may be slowly absorbed, and, as compared to animal protein, isolated soy protein provokes a greater release of glucagon, an enhancer of fat oxidation. The low insulin response to rice may mirror its low protein content. Minimizing diurnal insulin secretion in the context of a low fat intake may represent an effective strategy for achieving and maintaining leanness. Copyright 2000 Harcourt Publishers Ltd.
van Orten-Luiten, Anne Claire B; Janse, André; Dhonukshe-Rutten, Rosalie A M; Witkamp, Renger F
2014-02-01
The risk of adverse drug reactions (ADRs) rises with increasing age. In the field of ADRs, drug-nutrient interactions (DNIs) are a relatively unexplored area. More knowledge will contribute to the simple prevention of this type of ADR. As the prevalence of vitamin D deficiency in the elderly is high, the primary objective of this review is to evaluate the literature on the relationship between drug use and vitamin D status, focusing on medicines commonly used by the elderly. PubMed was searched for human epidemiological and clinical studies published until early 2013, investigating the relationship between vitamin D blood levels and use of drugs from one of the following groups: proton pump inhibitors (PPIs), biguanides, vitamin K antagonists, platelet aggregation inhibitors, thiazide diuretics, loop diuretics, beta-blocking agents, calcium channel blockers, angiotensin-converting enzyme (ACE) inhibitors, angiotensin-II antagonists, statins, benzodiazepines, and antidepressants. A total of 63 publications were identified. Thiazide diuretics, statins, and calcium channel blocking agents were the most frequently studied drug groups. Associations between thiazides and vitamin D were mixed (n = 22), statins had no or positive associations (n = 16) and calcium blockers were not associated or were negatively associated with vitamin D (n = 10). In conclusion, several knowledge gaps exist on the relationship between drug use and vitamin D blood levels. Available data are scarce (particularly for the aged), study characteristics are highly variable, and found associations may be confounded by, amongst other things, the underlying disease. Nonetheless, this review provides a basis for future research on ADRs that contribute to nutrient deficiencies.
Furukawa, Shinya; Kumagi, Teru; Miyake, Teruki; Ueda, Teruhisa; Niiya, Tetsuji; Nishino, Keiichiro; Murakami, Shigeto; Murakami, Masato; Matsuura, Bunzo; Onji, Morikazu
2012-01-01
Dipeptidyl peptidase-4 (DPP-4) inhibitors are a newer class of oral hypoglycemic agents for the management of diabetes that elevate the plasma concentration of active glucagon-like peptide-1 via inhibition of DPP-4. They effectively lower not only glycosylated hemoglobin levels, but also fasting and postprandial plasma glucose levels. Patients with diabetes occasionally consume an overdose of oral hypoglycemic agents in suicide attempts: the prevalence of depression is high in patients with diabetes, and depression is a strong risk factor for suicide. We encountered an 86-year-old woman with type 2 diabetes and depression, who was transferred to the emergency room 4h after ingestion of 1,700 mg of the DPP-4 inhibitor sitagliptin (1,700 mg is 17 times greater than the approved maximum dose). Upon arrival, she was fully conscious, plasma glucose was 124 mg/dL, and serum immunoreactive insulin level was 5.81 µU/mL. Thereafter, the plasma concentration of sitagliptin rose to 3,793 nM, which is 4.5 times higher than the value found under regular treatment with the maximum dose. The patient did not suffer from hypoglycemia, suggesting that a single oral overdose of sitagliptin is unlikely to cause hypoglycemia. A literature review of oral anti-diabetic agents revealed that overdose of biguanides is occasionally fatal when immediate intensive care is not provided. In summary, sitagliptin is a good treatment option for diabetic elderly patients or patients with psychiatric disorders who are suicidal and do not require insulin.
Grützner, Verena; Unger, Ronald E; Baier, Grit; Choritz, Lars; Freese, Christian; Böse, Thomas; Landfester, Katharina; Kirkpatrick, C James
2015-01-01
Responsive, theranostic nanosystems, capable of both signaling and treating wound infections, is a sophisticated approach to reduce the most common and potentially traumatizing side effects of burn wound treatment: slowed wound healing due to prophylactic anti-infective drug exposure as well as frequent painful dressing changes. Antimicrobials as well as dye molecules have been incorporated into biodegradable nanosystems that release their content only in the presence of pathogens. Following nanocarrier degradation by bacterial enzymes, any infection will thus emit a visible signal and be effectively treated at its source. In this study, we investigated the effect of fluorescent-labeled hyaluronan nanocapsules containing polyhexanide biguanide and poly-L-lactic acid nanoparticles loaded with octenidine on primary human dermal microvascular endothelial cells, which play a major role in cutaneous wound healing. Microscopic and flow cytometric analysis indicated a time-dependent uptake of both the nanocapsules and the nanoparticles. However, enzyme immunoassays showed no significant influence on the expression of pro-inflammatory cell adhesion molecules and cytokines by the endothelial cells. Under angiogenic-stimulating conditions, the potential to form capillary-like structures in co-culture with dermal fibroblasts was not inhibited. Furthermore, cytotoxicity studies (the MTS and crystal violet assay) after short- and long-term exposure to the materials demonstrated that both systems exhibited less toxicity than solutions of the antiseptic agents alone in comparable concentrations. The results indicate that responsive antimicrobial nanocomposites could be used as an advanced drug delivery system and a promising addition to current best practice wound infection prophylaxis with few side effects. PMID:26150717
Forstner, Christina; Leitgeb, Johannes; Schuster, Rupert; Dosch, Verena; Kramer, Axel; Cutting, Keith F.; Leaper, David J.; Assadian, Ojan
2013-01-01
A flexible methacrylate powder dressing (Altrazeal®) transforms into a wound contour conforming matrix once in contact with wound exudate. We hypothesised that it may also serve as a drug delivery vehicle for antiseptics. The antimicrobial efficacy and influence on bacterial growth kinetics in combination with three antiseptics was investigated in an in vitro porcine wound model. Standardized in vitro wounds were contaminated with Staphylococcus aureus (MRSA; ATCC 33591) and divided into six groups: no dressing (negative control), methacrylate dressing alone, and combinations with application of 0.02% Polyhexamethylene Biguanide (PHMB), 0.4% PHMB, 0.1% PHMB + 0.1% betaine, 7.7 mg/mL Povidone-iodine (PVP-iodine), and 0.1% Octenidine-dihydrochloride (OCT) + 2% phenoxyethanol. Bacterial load per gram tissue was measured over five days. The highest reduction was observed with PVP-iodine at 24 h to log10 1.43 cfu/g, followed by OCT at 48 h to log10 2.41 cfu/g. Whilst 0.02% PHMB resulted in a stable bacterial load over 120 h to log10 4.00 cfu/g over 120 h, 0.1% PHMB + 0.1% betaine inhibited growth during the first 48 h, with slightly increasing bacterial numbers up to log10 5.38 cfu/g at 120 h. These results indicate that this flexible methacrylate dressing can be loaded with various antiseptics serving as drug delivery system. Depending on the selected combination, an individually shaped and controlled antibacterial effect may be achieved using the same type of wound dressing. PMID:23698780
Donnelly, William T.; Bartlett, Donald; Leiter, J.C.
2017-01-01
The laryngeal chemoreflex (LCR), an airway protective reflex that causes apnea and bradycardia, has long been suspected as an initiating event in the sudden infant death syndrome (SIDS). Serotonin (5-HT) and 5-HT receptors may be deficient in the brainstems of babies who die of SIDS, and 5-HT seems to be important in terminating apneas directly or in causing arousals or as part of the process of autoresuscitation. We hypothesized that 5-HT in the brainstem would limit the duration of the LCR. We studied anesthetized rat pups between 7 and 21 days of age and made microinjections into the cisterna magna or into the nucleus of the solitary tract (NTS). Focal, bilateral microinjections of 5-HT into the caudal NTS significantly shortened the LCR. The 5-HT 1a receptor antagonist, WAY 100635, did not affect the LCR consistently, nor did a 5-HT2 receptor antagonist, ketanserin, alter the duration of the LCR. The 5-HT3 specific agonist, 1-(3-chlorophenyl)-biguanide, microinjected bilaterally into the caudal NTS significantly shortened the LCR. Thus, endogenous 5-HT released within the NTS may curtail the respiratory depression that is part of the LCR, and serotonergic shortening of the LCR may be attributed to activation of 5-HT3 receptors within the NTS. 5-HT3 receptors are expressed presynaptically on C-fiber afferents of the superior laryngeal nerve, and serotonergic shortening of the LCR may be mediated presynaptically by enhanced activation of inhibitory interneurons within the NTS that terminate during the LCR. PMID:27121960
Winter, Selina; Nolff, Mirja Christine; Reese, Sven; Meyer-Lindenberg, Andrea
2018-04-01
To evaluate the bacterial contamination rate and to compare the efficacy of polyhexanide, cold argon plasma and saline at reducing bacterial bio-burden in dog bite wounds. Dogs with bite-wound injuries were included when surgical debridement was pursued with subsequent treatment using either polyhexanide-biguanide lavage (A), cold argon plasma treatment (B) or saline lavage (C). Culture swabs were taken after debridement as well as after lavageor argon treatment. Statistical analysis was performed using the chi-square test. A total of 40 dogs were enrolled in the study (A: n = 12; B: n = 10; C: n = 18). The majority of injuries were minor and 87.5% of patients had positive bacterial culture results pre-lavage, with 19.8% of isolates classified as multidrug resistant. A reduction in wound bioburden was achieved in 8/12 patients in group A, 5/10 patients in group B and 14/18 patients in group C. Complete decontamination was achieved in 5/12 patients in group A, 2/10 in group B and 9/18 in group C. None of these differences were statistically significant nor associated with the development of complications. No statistically significant differences were detected between the treatment groups; however, the cold argon plasma treatment provided the least effective decontamination. Bite wounds yield a high rate of bacterial contamination, with increasing multidrug-resistance rates. Based on these preliminary results, no superior effect was detected for lavage using polyhexanidebiguanide or cold argon plasma. Schattauer GmbH.
Shitara, Yoshihisa; Nakamichi, Noritaka; Norioka, Misaki; Shima, Hiroyo; Kato, Yukio; Horie, Toshiharu
2013-03-01
Phenformin causes lactic acidosis in clinical situations due to inhibition of mitochondrial respiratory chain complex I. It is reportedly taken up by hepatocytes and exhibits mitochondrial toxicity in the liver. In this study, uptake of phenformin and [(14)C]tetraethylammonium (TEA) and complex I inhibition by phenformin were examined in isolated liver and heart mitochondria. Uptake of phenformin into isolated rat liver mitochondria was higher than that into heart mitochondria. It was inhibited by several cat ionic compounds, which suggests the involvement of multispecific transport system(s). Similar characteristics were also observed for uptake of TEA; however, uptake of phenformin into mitochondria of organic cation/carnitine transporter 1 (OCTN1) knockout mice was lower than that in wild-type mice, whereas uptake of TEA was comparable between the two strains, suggesting the involvement of distinct transport mechanisms for these two cations in mitochondria. Inhibition by phenformin of oxygen consumption via complex I respiration in isolated rat liver mitochondria was greater than that in heart mitochondria, whereas inhibitory effect of phenformin on complex I respiration was similar in inside-out structured submitochondrial particles prepared from rat livers and hearts. Lactic acidosis provoked by iv infusion of phenformin was weaker in octn1(-/-) mice than that in wild-type mice. These observations suggest that uptake of phenformin into liver mitochondria is at least partly mediated by OCTN1 and functionally relevant to its inhibition potential of complex I respiration. This study was, thus, the first to demonstrate OCTN1-mediated mitochondrial transport and toxicity of biguanide in vivo in rodents.
Visual outcome in Japanese patients with Acanthamoeba keratitis.
Yamazoe, K; Yamamoto, Y; Shimazaki-Den, S; Shimazaki, J
2012-04-01
To identify prognostic factors affecting visual outcome in Acanthamoeba keratitis (AK) treated with topical chlorhexidine gluconate (CHG). A total of 35 eyes in 34 patients with AK were treated with 0.02% topical CHG. Patients were divided into two groups according to the final visual outcome: Group 1, final visual acuity (VA) of 20/25 or greater (22 eyes); Group 2, less than 20/25 (13 eyes). We compared these groups and evaluated the effectiveness of topical CHG compared with outcomes in previous reports. Ring infiltrate was observed more often in Group 2 (4.5% vs 61.5%, OR 33.6, 95% confidence interval (CI) 3.4-333.9, P<0.01). The duration between onset and diagnosis of AK was significantly longer (24.9 days vs 48.4 days, OR 1.03, 95% CI 1.00-1.06, P = 0.04) and VA at initial examination (log MAR) significantly lower (0.47 vs 1.59, OR 25.5, 95% CI 3.4-186.7, P<0.01) in Group 2 (visual outcome <20/25). Multivariate analysis revealed that only VA at initial examination was independently associated with worse visual outcome (adjusted OR 24.5, 95% CI 1.9-312.6, P=0.01). Seventeen (85.0%) of the 20 eyes diagnosed within 1 month and 24 (82.8%) of 29 eyes diagnosed within 2 months achieved a VA of 20/40 or greater. VA at initial examination was the most predictive factors for final visual outcome in AK. Topical CHG was comparably effective to other treatments, including polyhexamethyl biguanide and propamidine isethionate.
Metformin inhibits the radiation-induced invasive phenotype of esophageal squamous cell carcinoma.
Nakayama, Akira; Ninomiya, Itasu; Harada, Shinichi; Tsukada, Tomoya; Okamoto, Koichi; Nakanuma, Shinichi; Sakai, Seisho; Makino, Isamu; Kinoshita, Jun; Hayashi, Hironori; Oyama, Katsunobu; Miyashita, Tomoharu; Tajima, Hidehiro; Takamura, Hiroyuki; Fushida, Sachio; Ohta, Tetsuo
2016-11-01
Esophageal cancer is one of the most aggressive tumor types because of its invasiveness and metastatic potential. Several reports have described an association between increased invasiveness after ionizing radiation (IR) treatment and epithelial-to-mesenchymal transition (EMT). The biguanide metformin is reported to prevent transforming growth factor-β (TGF-β)-induced EMT and proliferation of cancer. This study examined whether IR induces EMT and promotes the invasive potential of TE-9 esophageal squamous cell carcinoma cells and the effect of metformin on IR-induced EMT. After IR exposure, TE-9 cells showed a spindle-shaped morphology and lost cell-cell adhesion. Immunoblotting showed that IR induced expression of mesenchymal markers (vimentin and N-cadherin), transcription factors (Slug, Snail, and Twist), and matrix metalloproteinases. A scratch wound assay and Matrigel invasion assay showed that IR enhanced the invasive potential and migratory capacity of TE-9 cells. Expression of hypoxia-related factor-1α and TGF-β was increased after IR. IR also induced phosphorylation of Smad2 and Smad3. Metformin inhibited radiation-induced EMT-like morphological changes, and enhanced invasion and migration of TE-9 cells. Metformin inhibited IR-induced phosphorylation of Smad2 and Smad3. Although phosphorylation of AMP-activated protein kinase was enhanced by IR and metformin, phosphorylation of mammalian target of rapamycin was enhanced by IR and suppressed by metformin. These results indicated that metformin suppressed IR-induced EMT via suppression of the TGF-β-Smad phosphorylation pathway, and a part of the non-Smad pathway. Metformin might be useful to prevent IR-induced invasion and metastasis of esophageal squamous cell carcinoma.
Impact of lens case hygiene guidelines on contact lens case contamination.
Wu, Yvonne T; Teng, Yuu Juan; Nicholas, Mary; Harmis, Najat; Zhu, Hua; Willcox, Mark D P; Stapleton, Fiona
2011-10-01
Lens case contamination is a risk factor for microbial keratitis. The effectiveness of manufacturers' lens case cleaning guidelines in limiting microbial contamination has not been evaluated in vivo. This study compared the effectiveness of manufacturers' guidelines and an alternative cleaning regimen. A randomized cross-over clinical trial with two phases (n = 40) was performed. Participants used the lens types of their choice in conjunction with the provided multipurpose solution (containing polyhexamethylene biguanide) for daily wear. In the manufacturers' guideline phase, cases were rinsed with multipurpose solution and air dried. In the alternative regimen phase, cases were rubbed, rinsed with solution, tissue wiped, and air-dried face down. The duration of each phase was 1 month. Lens cases were collected at the end of each phase for microbiological investigation. The levels of microbial contamination were compared, and compliance to both regimens was assessed. The case contamination rate was 82% (32/39) in the manufacturers' guideline group, compared with 72% (28/39) in the alternative regimen group. There were significantly fewer (p = 0.004) colony forming units (CFU) of bacteria from cases used by following the alternative regimen (CFU range of 0 to 10, and median of 12 CFU per well) compared with that of the manufacturer's guidelines (CFU range of 0 to 10, and median of 28 CFU per well). The compliance level between both guidelines was not significantly different (p > 0.05). The alternative guidelines are more effective in eliminating microbial contamination from lens cases than that of the current manufacturer's guideline. Simply incorporating rubbing and tissue-wiping steps in daily case hygiene reduces viable organism contamination.
Metformin: Multi-faceted protection against cancer
Cufí, Sílvia; Oliveras-Ferraros, Cristina; Bosch-Barrera, Joaquim; Joven, Jorge; Martin-Castillo, Begoña; Menendez, Javier A.
2011-01-01
The biguanide metformin, a widely used drug for the treatment of type 2 diabetes, may exert cancer chemopreventive effects by suppressing the transformative and hyperproliferative processes that initiate carcinogenesis. Metformin's molecular targets in cancer cells (e.g., mTOR, HER2) are similar to those currently being used for directed cancer therapy. However, metformin is nontoxic and might be extremely useful for enhancing treatment efficacy of mechanism-based and biologically targeted drugs. Here, we first revisit the epidemiological, preclinical, and clinical evidence from the last 5 years showing that metformin is a promising candidate for oncology therapeutics. Second, the anticancer effects of metformin by both direct (insulin-independent) and indirect (insulin-dependent) mechanisms are discussed in terms of metformin-targeted processes and the ontogenesis of cancer stem cells (CSC), including Epithelial-to-Mesenchymal Transition (EMT) and microRNAs-regulated dedifferentiation of CSCs. Finally, we present preliminary evidence that metformin may regulate cellular senescence, an innate safeguard against cellular immortalization. There are two main lines of evidence that suggest that metformin's primary target is the immortalizing step during tumorigenesis. First, metformin activates intracellular DNA damage response checkpoints. Second, metformin attenuates the anti-senescence effects of the ATP-generating glycolytic metabotype-the Warburg effect-, which is required for self-renewal and proliferation of CSCs. If metformin therapy presents an intrinsic barrier against tumorigenesis by lowering the threshold for stress-induced senescence, metformin therapeutic strategies may be pivotal for therapeutic intervention for cancer. Current and future clinical trials will elucidate whether metformin has the potential to be used in preventive and treatment settings as an adjuvant to current cancer therapeutics. PMID:22203527
Sarfstein, Rive; Friedman, Yael; Attias-Geva, Zohar; Fishman, Ami; Bruchim, Ilan; Werner, Haim
2013-01-01
Accumulating epidemiological evidence shows that obesity is associated with an increased risk of several types of adult cancers, including endometrial cancer. Chronic hyperinsulinemia, a typical hallmark of diabetes, is one of the leading factors responsible for the obesity-cancer connection. Numerous cellular and circulating factors are involved in the biochemical chain of events leading from hyperinsulinemia and insulin resistance to increased cancer risk and, eventually, tumor development. Metformin is an oral anti-diabetic drug of the biguanide family used for treatment of type 2 diabetes. Recently, metformin was shown to exhibit anti-proliferative effects in ovarian and Type I endometrial cancer, although the mechanisms responsible for this non-classical metformin action remain unclear. The insulin-like growth factors (IGFs) play a prominent role in cancer biology and their mechanisms of action are tightly interconnected with the insulin signaling pathways. Given the cross-talk between the insulin and IGF signaling pathways, the aim of this study was to examine the hypothesis that the anti-proliferative actions of metformin in uterine serous carcinoma (USC) are potentially mediated via suppression of the IGF-I receptor (IGF-IR) pathway. Our results show that metformin interacts with the IGF pathway, and induces apoptosis and inhibition of proliferation and migration of USC cell lines with both wild type and mutant p53. Taken together, our results suggest that metformin therapy could be a novel and attractive therapeutic approach for human USC, a highly aggressive variant of endometrial cancer.
Grenet, Guillaume; Lajoinie, Audrey; Ribault, Shams; Nguyen, Gia Bao; Linet, Thomas; Metge, Augustin; Cornu, Catherine; Cucherat, Michel; Moulin, Philippe; Gueyffier, François
2017-06-01
The aim of this study was to propose a ranking of the currently available antidiabetic drugs, regarding vascular clinical outcomes, in patients with type 2 diabetes, through a network meta-analysis approach. Randomized clinical trials, regardless of the blinding design, testing contemporary antidiabetic drugs, and considering clinically relevant outcomes in patients with type 2 diabetes mellitus will be included. The primary outcomes of this analysis will be overall mortality, cardiovascular mortality, and major cardiovascular events. Diabetic microangiopathy will be a secondary outcome. Adverse events, hypoglycemia, weight evolution, bariatric surgery, and discontinuation of the treatment will also be recorded. Each drug will be analyzed according to its therapeutic class: biguanide, alpha-glucosidase inhibitors, sulfonylureas, glitazones, glinides, insulin, DPP-4 inhibitors, GLP-1 analogs, and gliflozins. The treatment effect of each drug class will be compared using pairwise meta-analysis and a Bayesian random model network meta-analysis. Sensitivity analyses will be conducted according to the quality of the studies and the glycemic control. The report will follow the PRISMA checklist for network meta-analysis. Results of the search strategy and of the study selection will be presented in a PRISMA compliant flowchart. The treatment effects will be summarized with odds ratio (OR) estimates and their 95% credible intervals. A ranking of the drugs will be proposed. Our network meta-analysis should allow a clinically relevant ranking of the contemporary antidiabetic drugs. © 2016 Société Française de Pharmacologie et de Thérapeutique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Haruo, E-mail: hal.kato@gunma-u.ac.jp; Sekine, Yoshitaka; Furuya, Yosuke
Metformin is a biguanide drug that is widely used for the treatment of type 2 diabetes. Recent studies have shown that metformin inhibits cancer cell proliferation and tumor growth both in vitro and in vivo. The anti-tumor mechanisms of metformin include activation of the AMP-activated protein kinase/mTOR pathway and direct inhibition of insulin/insulin-like growth factor (IGF)-mediated cellular proliferation. However, the anti-tumor mechanism in prostate cancer remains unclear. Because activation of the IGF-1 receptor (IGF-1R) is required for prostate cell proliferation, IGF-1R inhibitors may be of therapeutic value. Accordingly, we examined the effects of metformin on IGF-1R signaling in prostate cancer cells. Metforminmore » significantly inhibited PC-3 cell proliferation, migration, and invasion. IGF-1R mRNA expression decreased significantly after 48 h of treatment, and IGF-1R protein expression decreased in a similar manner. IGF-1R knockdown by siRNA transfection led to inhibited proliferation, migration and invasion of PC-3 cells. IGF-1 activated both ERK1/2 and Akt, but these effects were attenuated by metformin treatment. In addition, intraperitoneal treatment with metformin significantly reduced tumor growth and IGF-1R mRNA expression in PC-3 xenografts. Our results suggest that metformin is a potent inhibitor of the IGF-1/IGF-1R system and may be beneficial in prostate cancer treatment. - Highlights: • Metformin inhibited PC-3 cell proliferation, migration, and invasion. • Metformin decreased IGF-1R mRNA and protein expressions in PC-3 cells. • Metformin inhibited IGF-1 induced ERK and Akt phosphorylations in PC-3 cells. • Metformin treatment inhibited PC-3 cell growth and IGF-1R expression in vivo. • Metformin may be a potent inhibitor of the IGF-1/IGF-1R signaling.« less
Huri, Hasniza Zaman; Ling, Doris Yew Hui; Ahmad, Wan Azman Wan
2015-01-01
Purpose Cardiovascular disease (CVD) is a macrovascular complication in patients with type 2 diabetes mellitus (T2DM). To date, glycemic control profiles of antidiabetic drugs in cardiovascular (CV) complications have not been clearly elucidated. Therefore, this study was conducted retrospectively to assess the association of antidiabetic drugs and glycemic control with CV profiles in T2DM patients. The association of concurrent medications and comorbidities with glycemic control was also investigated. Methods A total of 220 T2DM patients from the University of Malaya Medical Centre, Malaysia, who had at least one CV complication and who had been taking at least one antidiabetic drug for at least 3 months, were included. The associations of antidiabetics, cardiovascular diseases, laboratory parameters, concurrent medications, comorbidities, demographics, and clinical characteristics with glycemic control were investigated. Results Sulfonylureas in combination (P=0.002) and sulfonylurea monotherapy (P<0.001) were found to be associated with good glycemic control, whereas insulin in combination (P=0.051), and combination biguanides and insulin therapy (P=0.012) were found to be associated with poor glycemic control. Stroke (P=0.044) was the only type of CVD that seemed to be significantly associated with good glycemic control. Other factors such as benign prostatic hyperplasia (P=0.026), elderly patients (P=0.018), low-density lipoprotein cholesterol levels (P=0.021), and fasting plasma glucose (P<0.001) were found to be significantly correlated with good glycemic control. Conclusion Individualized treatment in T2DM patients with CVDs can be supported through a better understanding of the association between glycemic control and CV profiles in T2DM patients. PMID:26316711
Corneal inflammatory events with daily silicone hydrogel lens wear.
Szczotka-Flynn, Loretta; Jiang, Ying; Raghupathy, Sangeetha; Bielefeld, Roger A; Garvey, Matthew T; Jacobs, Michael R; Kern, Jami; Debanne, Sara M
2014-01-01
This study aimed to determine the probability and risk factors for developing a corneal inflammatory event (CIE) during daily wear of lotrafilcon A silicone hydrogel contact lenses. Eligible participants (n = 218) were fit with lotrafilcon A lenses for daily wear and followed up for 12 months. Participants were randomized to either a polyhexamethylene biguanide-preserved multipurpose solution or a one-step peroxide disinfection system. The main exposures of interest were bacterial contamination of lenses, cases, lid margins, and ocular surface. Kaplan-Meier (KM) plots were used to estimate the cumulative unadjusted probability of remaining free from a CIE, and multivariate Cox proportional hazards regression was used to model the hazard of experiencing a CIE. The KM unadjusted cumulative probability of remaining free from a CIE for both lens care groups combined was 92.3% (95% confidence interval [CI], 88.1 to 96.5%). There was one participant with microbial keratitis, five participants with asymptomatic infiltrates, and seven participants with contact lens peripheral ulcers, providing KM survival estimates of 92.8% (95% CI, 88.6 to 96.9%) and 98.1% (95% CI, 95.8 to 100.0%) for remaining free from noninfectious and symptomatic CIEs, respectively. The presence of substantial (>100 colony-forming units) coagulase-negative staphylococci bioburden on lid margins was associated with about a five-fold increased risk for the development of a CIE (p = 0.04). The probability of experiencing a CIE during daily wear of lotrafilcon A contact lenses is low, and symptomatic CIEs are rare. Patient factors, such as high levels of bacterial bioburden on lid margins, contribute to the development of noninfectious CIEs during daily wear of silicone hydrogel lenses.
Koyanagi, Kaori; Kubota, Toshio; Kobayashi, Daisuke; Kihara, Taro; Yoshida, Takeo; Miisho, Takamasa; Miura, Tomoko; Sakamoto, Yoshiko; Takaki, Junichi; Seo, Takashi; Shimazoe, Takao
2016-01-01
Medication adherence has an important influence on health outcomes in patients with chronic diseases. However, few studies have been performed in Japan to determine factors related to medication non-adherence. The aim of this study was to identify prescription factors related to medication non-adherence by investigating patient characteristics, all prescriptions, and prescriptions for oral antidiabetic drugs (OADs). A retrospective cross-sectional survey of prescription data about implementation of dosing regimen was performed at community pharmacies engaged in appropriate use of leftover drugs. We evaluated the amount of drugs originally prescribed and the reduced amount after use of leftover drugs, and then calculated prescription reduction ratio (PRR). We analyzed prescription factors contributing to non-adherence based on the PRR. Prescription information for 1207 patients was reviewed, revealing that patients were non-adherent to 58% of prescriptions. Lack of a drug copayment, fewer concurrent drugs, and drugs not in single-dose packaging were associated with non-adherence. Among the 1207 patients, 234 prescriptions for diabetes and 452 OAD formulations were included. Forty-seven percent of prescriptions and 29% of the formulations were non-adherent. A higher dosing frequency and preprandial administration were associated with non-adherence. Among the OADs, adherence was lower for α-glucosidase inhibitors and biguanides than for sulfonylureas. Several factors related to patient characteristics, general drug prescriptions, and OAD prescriptions were associated with non-adherence. Further consideration will be needed to improve adherence to medication in Japan. Health care providers should perform more careful monitoring of adherence in patients with the factors identified by this study.
Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity.
Markowicz-Piasecka, Magdalena; Sikora, Joanna; Mateusiak, Łukasz; Mikiciuk-Olasik, Elżbieta; Huttunen, Kristiina M
2017-01-01
The results of epidemiological and pathophysiological studies suggest that type 2 diabetes mellitus (T2DM) may predispose to Alzheimer's disease (AD). The two conditions present similar glucose levels, insulin resistance, and biochemical etiologies such as inflammation and oxidative stress. The diabetic state also contributes to increased acetylcholinesterase (AChE) activity, which is one of the factors leading to neurodegeneration in AD. The aim of this study was to assess in vitro the effects of metformin, phenformin, and metformin sulfenamide prodrugs on the activity of human AChE and butyrylcholinesterase (BuChE) and establish the type of inhibition. Metformin inhibited 50% of the AChE activity at micromolar concentrations (2.35 μ mol/mL, mixed type of inhibition) and seemed to be selective towards AChE since it presented low anti-BuChE activity. The tested metformin prodrugs inhibited cholinesterases (ChE) at nanomolar range and thus were more active than metformin or phenformin. The cyclohexyl sulfenamide prodrug demonstrated the highest activity towards both AChE (IC 50 = 890 nmol/mL, noncompetitive inhibition) and BuChE (IC 50 = 28 nmol/mL, mixed type inhibition), while the octyl sulfenamide prodrug did not present anti-AChE activity, but exhibited mixed inhibition towards BuChE (IC 50 = 184 nmol/mL). Therefore, these two bulkier prodrugs were concluded to be the most selective compounds for BuChE over AChE. In conclusion, it was demonstrated that biguanides present a novel class of inhibitors for AChE and BuChE and encourages further studies of these compounds for developing both selective and nonselective inhibitors of ChEs in the future.
Jingi, Ahmadou M; Nansseu, Jobert Richie N; Noubiap, Jean Jacques N
2015-04-04
Primary care physicians (PCPs) are the main providers of diabetes care especially in resource-limited countries which experience extreme shortage of specialists. The present study aimed to evaluate PCPs' approach towards diabetes mellitus (DM) diagnosis, evaluation and management in Cameroon. We carried-out a cross-sectional survey in February 2012 in the West Region of Cameroon. Using a structured pretested questionnaire, we interviewed all PCPs working in the region who were present at their working place when the investigators visited, and volunteered to be enrolled in the study. Sixty-six PCPs were interviewed. Their ages ranged from 24 to 56 years (mean 38.3, standard deviation 9.2 years). The levels of knowledge of PCPs regarding DM diagnosis were: 72.7%, 37.9%, 19.7% and 32.8% respectively obtained when using fasting plasma glucose, post-prandial glycemia, random glycemia and glycated hemoglobin as diagnostic tools. Only 6 PCPs (9.9%) prescribed the correct minimal work-up to evaluate diabetes patients at diagnosis. PCPs advised lifestyle modifications in 92.4% of cases, and thirty nine (53.1%) PCP's used to prescribe both generic and specialty oral anti-diabetic drugs in case of uncomplicated type 2 DM management. The two main classes of anti-diabetic drugs prescribed were biguanides (77.3%) and sulfonamides (60.6%). Nearly all PCPs (97%) used to give frequent follow-up appointments to their patients. Ninety eight point five percent of participants were willing to receive any further continuous training on DM management. PCPs knowledge and practices towards diabetes mellitus diagnosis, evaluation and management were not optimal, stressing the need to improve their capacities regarding diabetes care. As such, more educational initiatives should be taken on, alongside regular upgrade and dissemination of clinical guidelines.
Adua, Eric; Roberts, Peter; Sakyi, Samuel Asamoah; Yeboah, Francis Agyemang; Dompreh, Albert; Frimpong, Kwasi; Anto, Enoch Odame; Wang, Wei
2017-09-07
Type II diabetes mellitus (T2DM) is complicated by multiple cardio-metabolic risk factors. Controlling these factors requires lifestyle modifications alongside utilisation of anti-diabetic medications. Different glucose lowering [(biguanides (BIGs), sulfonylureas (SUAs), thiazolidinediones (TNZ)], lipid lowering (statins), and anti-hypertensive medicines [angiotensin converting enzyme inhibitors (ACEIs), calcium channel blockers (CCBs), angiotensin II receptor blockers (ARBs) and central acting drugs (CADs)] have been approved for controlling hyperglycaemia, dyslipidaemia and hypertension respectively. Here, we examined factors that characterise T2DM and explored the response to medication therapy among T2DM patients. This prospective cohort study recruited 241 T2DM patients reporting at a clinic in Ghana, from January through to August, 2016. Each patient's demographic, medications and anthropometric data was obtained while information on medication adherence was captured using Morisky adherence scale-8 (MMAS-8). Fasting blood samples were collected for biochemical analysis. The mean age of participants was 57.82 years for baseline and six-month follow-up. Physical activity differed at baseline and follow up (p < 0.05) but not body mass index (BMI). BIG alone, or in combination with SUA and TNZ did not improve glycaemic status at follow up (p > 0.05). Many participants using either ACEI or ARB were able to control their blood pressures. Among dyslipidaemia patients under statin treatment, there was an improved lipid profile at follow-up. Statin medications are effective for reducing dyslipidaemia in T2DM patients. However, control of modifiable risk factors, particularly blood glucose and to a lesser degree blood pressure is suboptimal. Addressing these will require concomitant interventions including education on medication adherence and correct dietary plans, lifestyle modifications and physical activity.
Lapane, Kate L; Jesdale, Bill M; Dubé, Catherine E; Pimentel, Camilla B; Rajpathak, Swapnil N
2015-08-01
Although sulfonylureas increase the risk of hypoglycemia which may lead to fall-associated fractures, studies quantifying the association between sulfonylureas and falls and/or fractures are sparse and existing studies have yielded inconsistent results. Our objective is to evaluate the extent to which sulfonylurea use was associated with fractures and falls among nursing home residents with type 2 diabetes mellitus. We performed a propensity-matched retrospective new user cohort study of 12,327 Medicare Parts A/B/D eligible long-stay NH residents. Medicare Part D data provided information on sulfonylurea and biguanide use initiated as monotherapy (nsulfonylurea=5807 and nbiguanide=6151) after NH entry. Medicare hospitalizations were used to identify hypoglycemic events (ICD-9-CM codes 250.8, 251.1, 251.2) and fall-associated fractures (ICD-9-CM codes 800, 804, 812-817, 820, 823, 824). Minimum Data Set 2.0 (2008-2010) provided information on falls and potential confounders. Cox models conducted on propensity-matched samples provided adjusted hazard ratio (aHR) estimates and 95% confidence intervals (CI). Falls were common (37.4 per 100 person-years). Fractures were not associated with initiation of sulfonylureas. Sulfonylurea initiation was associated with an excess risk of falls among residents with moderate activities of daily living limitations (aHR: 1.13; 95% CI: 1.00-1.26), but not among those with minimal limitations or dependence in activities of daily living. Nursing home residents with moderate limitations in activities of daily living are at increased risk of falls upon initiation of sulfonylureas. Initiating sulfonylurea use in NH residents must be done with caution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Meta-analysis of the ocular biocompatibility of a new multipurpose lens care system.
Reindel, William; Merchea, Mohinder M; Rah, Marjorie J; Zhang, Lening
2013-01-01
The purpose of this paper is to evaluate the biocompatibility of a novel multipurpose solution (MPS) with a dual disinfectant system containing polyaminopropyl biguanide and polyquaternium-1 (Biotrue®) by analysis of biomicroscopy signs and adverse events in six large clinical trials. Data from six consecutive, prospective clinical trials conducted from February 2008 to March 2010 were combined for meta-analysis. Subjects used the new MPS daily for periods of 2 weeks to 6 months. Slit-lamp signs were graded at each follow-up visit using an ordinal scale (0, one; 1, trace; 2, mild; 3, moderate; 4, severe). Analysis for biocompatibility included tracking of greater than grade 2 slit-lamp findings and number of adverse events. A total of 1,567 subjects (3,134 eyes) and 81 clinical investigators participated in the six studies, with 1,499 subjects completing the studies. Based on subject days in the studies, there were 72,904 exposures to the MPS and 7,212 biomicroscopy examinations. The completion rate for the studies was 96.3%. Per observation incidence of any finding greater than grade 2 at the follow-up visits were: corneal staining 0.08%, limbal injection 0.04%, bulbar injection 0.04%, tarsal conjunctiva abnormality 0.09%, and neovascularization 0.01%. There were no other slit-lamp signs greater than grade 2 and no statistically significant difference between hydrogels and silicone hydrogels for any finding. There were no reports of adverse events during the trials. Analysis of over 72,000 daily exposures and 7,212 eye examinations showed that the novel MPS exhibited excellent biocompatibility in subjects using daily wear hydrogel or silicone hydrogel lenses.
Heynen, Miriam; Liu, Lina; Sheardown, Heather; Jones, Lyndon
2010-01-01
Purpose To investigate the efficiency of lysozyme and albumin removal from silicone hydrogel and conventional contact lenses, using a polyhexamethylene biguanide multipurpose solution (MPS) in a soaking or rubbing/soaking application and a hydrogen peroxide system (H2O2). Methods Etafilcon A, lotrafilcon B and balafilcon A materials were incubated in protein solutions for up to 14 days. Lenses were either placed in radiolabeled protein to quantify the amount deposited or in fluorescent-conjugated protein to identify its location, using confocal laser scanning microscopy (CLSM). Lenses were either rinsed with PBS or soaked overnight in H2O2 or MPS with and without lens rubbing. Results After 14 days lysozyme was highest on etafilcon A (2,200 μg) >balafilcon A (50 µg) >lotrafilcon B (9.7 µg) and albumin was highest on balafilcon A (1.9 µg) =lotrafilcon B (1.8 µg) >etafilcon A (0.2 µg). Lysozyme removal was greatest for balafilcon A >etafilcon A >lotrafilcon B, with etafilcon A showing the most change in protein distribution. Albumin removal was highest from etafilcon A >balafilcon A >lotrafilcon B. H2O2 exhibited greater lysozyme removal from etafilcon A compared to both MPS procedures (p<0.001) but performed similarly for lotrafilcon B and balafilcon A lenses (p>0.62). Albumin removal was solely material specific, while all care regimens performed to a similar degree (p>0.69). Conclusions Protein removal efficiency for the regimens evaluated depended on the lens material and protein type. Overall, lens rubbing with MPS before soaking did not reduce the protein content on the lenses compared to nonrubbed lenses (p=0.89). PMID:20098668
Prevalence, awareness and treatment of type 2 diabetes mellitus in Switzerland: the CoLaus study.
Kaiser, A; Vollenweider, P; Waeber, G; Marques-Vidal, P
2012-02-01
To assess the prevalence, awareness and treatment levels of Type 2 diabetes in a Swiss city. Population-based cross-sectional study of 6181 subjects (3246 women) aged 35-75 years living in Lausanne, Switzerland. Type 2 diabetes was defined as fasting plasma glucose ≥ 7 mmol/l and/or oral hypoglycaemic treatment and/or insulin. Total prevalence of Type 2 diabetes was 6.3% (95% confidence interval: 5.7-7.0%), higher in men (9.1%) than in women (3.8%, P < 0.001) and increased with age. Two-thirds (65.3%; 60.4-70.0%) of participants with Type 2 diabetes were aware of their status and among those aware 86.0% (81.5-90.3%) were treated. Treatment was more frequent in men (91.3%) than in women (75.9%, P < 0.001). Two-thirds of those treated for Type 2 diabetes were on monotherapy. Biguanides were prescribed in 65.0% of Type 2 diabetes patients and represented 48% of all antidiabetic drugs. Multivariable analysis showed male gender, increasing age, waist or BMI to be positively associated with prevalence of Type 2 diabetes, while leisure-time physical activity and alcohol consumption were negatively associated. Among participants presenting with Type 2 diabetes, increasing age was positively associated with awareness of Type 2 diabetes. Among subjects diagnosed with Type 2 diabetes, male gender and increasing age were positively associated with treatment. Prevalence of Type 2 diabetes in Switzerland is estimated to be between 5.7% and 7.0%. Two-thirds of patients with Type 2 diabetes are aware of their status, and over three quarters of those aware are treated. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.
Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi; Suh, Hong-Won
2013-12-01
We have recently demonstrated that some anti-diabetic drugs such as biguanide and thizolidinediones administered centrally modulate the blood glucose level, suggesting that orally administered anti-diabetic drugs may modulate the blood glucose level by acting on central nervous system. The present study was designed to explore the possible action of another class of anti-diabetic drugs, glinidies, administered centrally on the blood glucose level in ICR mice. Mice were administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) with 5 to 30 µg of repaglinide or nateglinide in D-glucose-fed and streptozotocin (STZ)-treated models. We found that i.c.v. or i.t. injection with repaglinide dose-dependently attenuated the blood glucose level in D-glucose-fed model, whereas i.c.v. or i.t. injection with nateglinide showed no modulatory action on the blood glucose level in D-glucose-fed model. Furthermore, the effect of repaglinide administered i.c.v. or i.t. on the blood glucose level in STZ-treated model was studied. We found that repaglinide administered i.c.v. slightly enhanced the blood glucose level in STZ-treated model. On the other hand, i.t. injection with repaglinide attenuated the blood glucose level in STZ-treated model. The plasma insulin level was enhanced by repaglinide in D-glucose-fed model, but repaglinide did not affect the plasma insulin level in STZ-treated model. In addition, nateglinide did not alter the plasma insulin level in both D-glucose-fed and STZ-treated models. These results suggest that the anti-diabetic action of repaglinide appears to be, at least, mediated via the brain and the spinal cord as revealed in both D-glucose fed and STZ-treated models.
Nath, Sayantan; Ghosh, Sankar Kumar; Choudhury, Yashmin
A murine model of type 2 diabetes mellitus was used to compare the antidiabetic effects of the dipeptidyl peptidase-4 (DPP4) inhibitor vildagliptin and biguanide, metformin. Swiss albino mice (n=20 males; n=25 females) were given high fat diet (HFD) ad libitum for 3weeks followed by low dose (40mgkg -1 body weight, bw daily) of streptozotocin (STZ) intraperitoneally five times from the 22nd day of treatment onwards, with HFD continued up to 26th day. Controls (n=15 males; n=15 females) were fed normal balanced diet without administration of STZ. Successful induction of diabetes mellitus was confirmed by testing for fasting blood glucose, intraperitoneal glucose tolerance and intraperitoneal insulin sensitivity. Diabetic mice were administered vildagliptin (10mgkg -1 bw daily) and metformin (50mgkg -1 bw daily) orally for 4weeks. Control, diabetic, vildagliptin and metformin-treated diabetic mice were evaluated for alterations in lipid profile using blood serum and histopathology and oxidative stress using tissues including liver, kidney and heart. Diabetic mice showed significant alterations in lipid profile, tissue histopathology, impaired glucose tolerance, lower insulin sensitivity and elevated lipid peroxidation and protein carbonylation, with depressed catalase activity, when compared to age and gender-matched controls. Metformin and vildagliptin ameliorated the abovementioned diabetic conditions, with vildagliptin found to be more effective. A murine model developed by the combination of HFD and multiple low dose of STZ mimics the metabolic characteristics of type 2 diabetes mellitus in humans, and may be useful for antidiabetic drug screening. Copyright © 2016 Elsevier Inc. All rights reserved.
Sim, Yun-Beom; Park, Soo-Hyun; Kang, Yu-Jung; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Ryu, Ohk-Hyun; Choi, Moon-Gi
2013-01-01
We have recently demonstrated that some anti-diabetic drugs such as biguanide and thizolidinediones administered centrally modulate the blood glucose level, suggesting that orally administered anti-diabetic drugs may modulate the blood glucose level by acting on central nervous system. The present study was designed to explore the possible action of another class of anti-diabetic drugs, glinidies, administered centrally on the blood glucose level in ICR mice. Mice were administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) with 5 to 30 µg of repaglinide or nateglinide in D-glucose-fed and streptozotocin (STZ)-treated models. We found that i.c.v. or i.t. injection with repaglinide dose-dependently attenuated the blood glucose level in D-glucose-fed model, whereas i.c.v. or i.t. injection with nateglinide showed no modulatory action on the blood glucose level in D-glucose-fed model. Furthermore, the effect of repaglinide administered i.c.v. or i.t. on the blood glucose level in STZ-treated model was studied. We found that repaglinide administered i.c.v. slightly enhanced the blood glucose level in STZ-treated model. On the other hand, i.t. injection with repaglinide attenuated the blood glucose level in STZ-treated model. The plasma insulin level was enhanced by repaglinide in D-glucose-fed model, but repaglinide did not affect the plasma insulin level in STZ-treated model. In addition, nateglinide did not alter the plasma insulin level in both D-glucose-fed and STZ-treated models. These results suggest that the anti-diabetic action of repaglinide appears to be, at least, mediated via the brain and the spinal cord as revealed in both D-glucose fed and STZ-treated models. PMID:24381497
Ali, Sharique A; Salim, Saima; Sahni, Tarandeep; Peter, Jaya; Ali, Ayesha S
2012-01-01
BACKGROUND AND PURPOSE Biochemical identification of 5-HT has revealed similar projection patterns across vertebrates. In CNS, 5-HT regulates major physiological functions but its peripheral functions are still emerging. The pharmacology of 5-HT is mediated by a diverse range of receptors that trigger different responses. Interestingly, 5-HT receptors have been detected in pigment cells indicating their role in skin pigmentation. Hence, we investigated the role of this monoaminergic system in amphibian pigment cells, melanophores, to further our understanding of its role in pigmentation biology together with its evolutionary significance. EXPERIMENTAL APPROACH Pharmacological profiling of 5-HT receptors was achieved using potent/selective agonists and antagonists. In vitro responses of melanophores were examined by Mean Melanophores Size Index assay. The melanophores of lower vertebrates are highly sensitive to external stimuli. The immediate cellular responses to drugs were defined in terms of pigment translocation within the cells. KEY RESULTS 5-HT exerted strong concentration-dependent pigment dispersion at threshold dose of 1 × 10−6 g·mL−1. Specific 5-HT1 and 5-HT2 receptor agonists, sumatriptan and myristicin. also induced dose-dependent dispersion. Yohimbine and metergoline synergistically antagonized sumatriptan-mediated dispersion, whereas trazodone partially blocked myristicin-induced dispersion. Conversely, 5-HT3 and 5-HT4 receptor agonists, 1 (3 chlorophenyl) biguanide (1,3 CPB) and 5-methoxytryptamine (5-MT), caused a dose-dependent pigment aggregation. The aggregatory effect of 1,3 CPB was completely blocked by ondansetron, whereas L-lysine partially blocked the effect of 5-MT. CONCLUSIONS AND IMPLICATIONS The results suggest that 5-HT-induced physiological effects are mediated via distinct classes of receptors, which possibly participate in the modulation of pigmentary responses in amphibian. PMID:21880033
Bactericidal Effects and Mechanism of Action of Olanexidine Gluconate, a New Antiseptic
Iwata, Koushi; Nii, Takuya; Nakata, Hikaru; Tsubotani, Yoshie; Inoue, Yasuhide
2015-01-01
Olanexidine gluconate [1-(3,4-dichlorobenzyl)-5-octylbiguanide gluconate] (development code OPB-2045G) is a new monobiguanide compound with bactericidal activity. In this study, we assessed its spectrum of bactericidal activity and mechanism of action. The minimal bactericidal concentrations of the compound for 30-, 60-, and 180-s exposures were determined with the microdilution method using a neutralizer against 320 bacterial strains from culture collections and clinical isolates. Based on the results, the estimated bactericidal olanexidine concentrations with 180-s exposures were 869 μg/ml for Gram-positive cocci (155 strains), 109 μg/ml for Gram-positive bacilli (29 strains), and 434 μg/ml for Gram-negative bacteria (136 strains). Olanexidine was active against a wide range of bacteria, especially Gram-positive cocci, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, and had a spectrum of bactericidal activity comparable to that of commercial antiseptics, such as chlorhexidine and povidone-iodine. In vitro experiments exploring its mechanism of action indicated that olanexidine (i) interacts with the bacterial surface molecules, such as lipopolysaccharide and lipoteichoic acid, (ii) disrupts the cell membranes of liposomes, which are artificial bacterial membrane models, (iii) enhances the membrane permeability of Escherichia coli, (iv) disrupts the membrane integrity of S. aureus, and (v) denatures proteins at relatively high concentrations (≥160 μg/ml). These results indicate that olanexidine probably binds to the cell membrane, disrupts membrane integrity, and its bacteriostatic and bactericidal effects are caused by irreversible leakage of intracellular components. At relatively high concentrations, olanexidine aggregates cells by denaturing proteins. This mechanism differs slightly from that of a similar biguanide compound, chlorhexidine. PMID:25987609
National Trends in Treatment of Type 2 Diabetes Mellitus, 1994–2007
Alexander, G. Caleb; Sehgal, Niraj L.; Moloney, Rachael M.; Stafford, Randall S.
2010-01-01
Background Diabetes mellitus is common, costly, and increasingly prevalent. Despite innovations in therapy, little is known about patterns and costs of drug treatment. Methods We used the National Disease and Therapeutic Index to analyze medications prescribed between 1994 and 2007 for all US office visits among patients 35 years and older with type 2 diabetes. We used the National Prescription Audit to assess medication costs between 2001 and 2007. Results The estimated number of patient visits for treated diabetes increased from 25 million (95% confidence interval [CI], 23 million to 27 million) in 1994 to 36 million (95% CI, 34 million to 38 million) by 2007. The mean number of diabetes medications per treated patient increased from 1.14 (95% CI, 1.06–1.22) in 1994 to 1.63 (1.54–1.72) in 2007. Monotherapy declined from 82% (95% CI, 75%–89%) of visits during which a treatment was used in 1994 to 47% (43%–51%) in 2007. Insulin use decreased from 38% of treatment visits in 1994 to a nadir of 25% in 2000 and then increased to 28% in 2007. Sulfonylurea use decreased from 67% of treatment visits in 1994 to 34% in 2007. By 2007, biguanides (54% of treatment visits) and glitazones (thiazolidinediones) (28%) were leading therapeutic classes. Increasing use of glitazones, newer insulins, sitagliptin phosphate, and exenatide largely accounted for recent increases in the mean cost per prescription ($56 in 2001 to $76 in 2007) and aggregate drug expenditures ($6.7 billion in 2001 to $12.5 billion in 2007). Conclusions Increasingly complex and costly diabetes treatments are being applied to an increasing population. The magnitude of these rapid changes raises concerns about whether these more costly therapies will result in proportionately improved outcomes. PMID:18955637
Khalam, Ameera; Dilip, Chandrasekhar; Shinu, Cholamugath
2012-01-01
Many drugs are available for the treatment of diabetes mellitus and are sometimes prescribed in combination. Irrational use of drugs is increasing expenditure and strain on health budgets. The aim of this study was to determine patient demographic characteristics, analyze prescription patterns of antidiabetic drugs, distribution of complications of diabetes, distribution of co-existing illnesses, distribution of common symptoms of diabetes and distribution of adverse drug reactions. A study was carried out for 11 months in diabetic inpatients in the General Medicine Department. Data of 200 patients were collected and evaluated. The pattern of drug prescription in diabetes shows that insulin (80.5%) was most frequently prescribed followed by biguanides (23%), sulfonylureas (22.5%), thiazolidinediones (11%), dipeptidyl peptidase-IV (DPP-4) inhibitors (9.5%) and meglitinides (5.5%). The percentage of patients on diet control therapy was found to be 3%. Combination therapy was prescribed to 26.5% and monotherapy to 65% of patients; 47.5% of these patients were male and 52.5% were female. The most common co-existing illness was found to be hypertension (53.5%). In addition, 67% of patients had irregular blood sugar monitoring and the remaining 33% had regular (either 4 or 6 hourly) monitoring. It is concluded that the prescribing trend is moving away from monotherapy with insulin and sulfonylureas and towards combination therapies. There is also a significant increase in prescriptions of newer oral antidiabetic drugs, such as DPP-4 inhibitors and insulin analogs. Most inpatients had their blood glucose checked irregularly and haphazardly by ward staff. This study strongly highlights the need for patient education or counseling on use of antidiabetic and concomitant drugs, monitoring of blood glucose and glycosylated hemoglobin (HbA1c) levels, diet control and correction of diabetic complications.
Eppolito, Amy K; Kodeih, Hanna R; Gerak, Lisa R
2014-10-01
Neuroactive steroids are increasingly implicated in the development of depression and anxiety and have been suggested as possible treatments for these disorders. While neuroactive steroids, such as pregnanolone, act primarily at γ-aminobutyric acidA (GABAA) receptors, other mechanisms might contribute to their behavioral effects and could increase their clinical effectiveness, as compared with drugs acting exclusively at GABAA receptors (e.g., benzodiazepines). The current study examined the role of non-GABAA receptors, including N-methyl-d-aspartate (NMDA) and serotonin3 (5-HT3) receptors, in the discriminative stimulus effects of pregnanolone. Separate groups of rats discriminated either 3.2mg/kg pregnanolone from vehicle or 0.32mg/kg of the benzodiazepine midazolam from vehicle while responding under a fixed-ratio 10 schedule for food pellets. When administered alone in both groups, pregnanolone and midazolam produced ≥80% drug-lever responding, the NMDA receptor antagonists dizocilpine and phencyclidine produced ≥60 and ≥30% drug-lever responding, respectively, and the 5-HT3 receptor agonist 1-(m-chlorophenyl)-biguanide (CPBG) and morphine produced <20% drug-lever responding up to doses that markedly decreased response rates. When studied together, neither dizocilpine, phencyclidine, CPBG nor morphine significantly altered the midazolam dose-effect curve in either group. Given that CPBG is without effect, it is unlikely that 5-HT3 receptors contribute substantially to the discriminative stimulus effects of pregnanolone. Similarities across groups in effects of dizocilpine and phencyclidine suggest that NMDA receptors do not differentially contribute to the effects of pregnanolone. Thus, NMDA and 5-HT3 receptors are not involved in the discriminative stimulus effects of pregnanolone. Copyright © 2014 Elsevier Inc. All rights reserved.
Baidwan, Sartaj; Chekuri, Anil; Hynds, DiAnna L; Kowluru, Anjaneyulu
2017-11-01
Emerging evidence suggests that long-term exposure of insulin-secreting pancreatic β-cells to hyperglycemic (HG; glucotoxic) conditions promotes oxidative stress, which, in turn, leads to stress kinase activation, mitochondrial dysfunction, loss of nuclear structure and integrity and cell apoptosis. Original observations from our laboratory have proposed that Rac1 plays a key regulatory role in the generation of oxidative stress and downstream signaling events culminating in the onset of dysfunction of pancreatic β-cells under the duress of metabolic stress. However, precise molecular and cellular mechanisms underlying the metabolic roles of hyperactive Rac1 remain less understood. Using pharmacological and molecular biological approaches, we now report mistargetting of biologically-active Rac1 [GTP-bound conformation] to the nuclear compartment in clonal INS-1 cells, normal rat islets and human islets under HG conditions. Our findings also suggest that such a signaling step is independent of post-translational prenylation of Rac1. Evidence is also presented to highlight novel roles for sustained activation of Rac1 in HG-induced expression of Cluster of Differentiation 36 [CD36], a fatty acid transporter protein, which is implicated in cell apoptosis. Finally, our findings suggest that metformin, a biguanide anti-diabetic drug, at a clinically relevant concentration, prevents β-cell defects [Rac1 activation, nuclear association, CD36 expression, stress kinase and caspase-3 activation, and loss in metabolic viability] under the duress of glucotoxicity. Potential implications of these findings in the context of novel and direct regulation of islet β-cell function by metformin are discussed.
Umehara, K; Kudo, S; Hirao, Y; Morita, S; Uchida, M; Odomi, M; Miyamoto, G
2000-08-01
The metabolism of 1-(3,4-dichlorobenzyl)-5-octylbiguanide (OPB-2045), a new potent biguanide antiseptic, was investigated using rat and dog liver preparations to elucidate the mechanism of OPB-2045 metabolite formation, in which the octyl side chain is reduced to four, five, or six carbon atoms. Chemical structures of metabolites were characterized by 1H NMR, fast atom bombardment/mass spectrometry, and liquid chromatography/electrospray ionization-tandem mass spectrometry. Three main metabolites were observed during incubation of OPB-2045 with rat liver S9: 2-octanol (M-1), 3-octanol (M-2), and 4-octanol (M-3). In the incubation of OPB-2045 with dog liver S9, eight metabolites were observed, seven of which being M-1, M-2, M-3, 2-octanone (M-4), threo-2,3-octandiol (M-5), erythro-2,3-octandiol (M-6), and 1,2-octandiol (M-7). M-5 and M-6 were further biotransformed to a ketol derivative and C-C bond cleavage metabolite (hexanoic acid derivative), an in vivo end product, in the incubation with dog liver microsomes. The reactions required NADPH as a cofactor and were significantly inhibited by the various inhibitors of cytochrome P450 (i.e., CO, n-octylamine, SKF 525-A, metyrapone, and alpha-naphthoflavone). The results indicate that the degraded products of OPB-2045 are produced by C-C bond cleavage after monohydroxylation, dihydroxylation, and ketol formation at the site of the octyl side chain with possible involvement of cytochrome P450 systems. This aliphatic C-C bond cleavage by sequential oxidative reactions may play an important role in the metabolism of other drugs or endogenous compounds that possess aliphatic chains.
Mori, Miho; Gomi, Mitsuhiro; Matsumune, Norihiko; Niizeki, Kazuma; Sakagami, Yoshikazu
2013-01-01
To evaluate the sanitary conditions of toilets, the bacterial counts of the toilet bowl biofilms in 5 Kansai area and 11 Kansai and Kanto area homes in Japan were measured in winter and summer seasons, respectively. Isolates (128 strains) were identified by analyzing 16S ribosomal RNA sequences. The number of colonies and bacterial species from biofilms sampled in winter tended to be higher and lower, respectively, than those in summer. Moreover, the composition of bacterial communities in summer and winter samples differed considerably. In summer samples, biofilms in Kansai and Kanto areas were dominated by Blastomonas sp. and Mycobacterium sp., respectively. Methylobacterium sp. was detected in all toilet bowl biofilms except for one sample. Methylobacterium sp. constituted the major presence in biofilms along with Brevundimonas sp., Sphingomonas sp., and/or Pseudomonas sp. The composition ratio of the sum of their genera was 88.0 from 42.9% of the total bacterial flora. The biofilm formation abilities of 128 isolates were investigated, and results suggested that Methylobacterium sp. and Sphingomonas sp. were involved in biofilm formation in toilet bowls. The biofilm formation of a mixed bacteria system that included bacteria with the highest biofilm-forming ability in a winter sample was greater than mixture without such bacteria. This result suggests that isolates possessing a high biofilm-forming activity are involved in the biofilm formation in the actual toilet bowl. A bactericidal test against 25 strains indicated that the bactericidal activities of didecyldimethylammonium chloride (DDAC) tended to be higher than those of polyhexamethylene biguanide (PHMB) and N-benzyl-N,N-dimethyldodecylammonium chloride (ADBAC). In particular, DDAC showed high bactericidal activity against approximately 90% of tested strains under the 5 h treatment.
Somlyai, Gábor; Collins, T Que; Meuillet, Emmanuelle J; Hitendra, Patel; D'Agostino, Dominic P; Boros, László G
2017-07-25
Phenformin's recently demonstrated efficacy in melanoma and Gleevec's demonstrated anti-proliferative action in chronic myeloid leukemia may lie within these drugs' significant pharmacokinetics, pharmacodynamics and structural homologies, which are reviewed herein. Gleevec's success in turning a fatal leukemia into a manageable chronic disease has been trumpeted in medical, economic, political and social circles because it is considered the first successful targeted therapy. Investments have been immense in omics analyses and while in some cases they greatly helped the management of patients, in others targeted therapies failed to achieve clinically stable recurrence-free disease course or to substantially extend survival. Nevertheless protein kinase controlling approaches have persisted despite early warnings that the targeted genomics narrative is overblown. Experimental and clinical observations with Phenformin suggest an alternative explanation for Gleevec's mode of action. Using 13C-guided precise flux measurements, a comparative multiple cell line study demonstrated the drug's downstream impact on submolecular fatty acid processing metabolic events that occurred independent of Gleevec's molecular target. Clinical observations that hyperlipidemia and diabetes are both reversed in mice and in patients taking Gleevec support the drugs' primary metabolic targets by biguanides and statins. This is evident by structural data demonstrating that Gleevec shows pyridine- and phenyl-guanidine homology with Phenformin and identical phenylcarbamoyl structural and ligand binding homology with Lipitor. The misunderstood mechanism of action of Gleevec is emblematic of the pervasive flawed reasoning that genomic analysis will lead to targeted, personalized diagnosis and therapy. The alternative perspective for Gleevec's mode of action may turn oncotargets towards metabolic channel reaction architectures in leukemia and melanoma, as well as in other cancers.
Phenformin has a direct inhibitory effect on the ATP-sensitive potassium channel.
Aziz, Qadeer; Thomas, Alison; Khambra, Tapsi; Tinker, Andrew
2010-05-25
The biguanides, phenformin and metformin, are used in the treatment of type II diabetes mellitus, as well as being routinely used in studies investigating AMPK activity. We used the patch-clamp technique and rubidium flux assays to determine the role of these drugs in ATP-sensitive K+ channel (K(ATP)) regulation in cell lines expressing the cloned components of K(ATP) and the current natively expressed in vascular smooth muscle cells (VSMCs). Phenformin but not metformin inhibits a number of variants of K(ATP) including the cloned equivalents of currents present in vascular and non-vascular smooth muscle (Kir6.1/SUR2B and Kir6.2/SUR2B) and pancreatic beta-cells (Kir6.2/SUR1). However it does not inhibit the current potentially present in cardiac myocytes (Kir6.2/SUR2A). The highest affinity interaction is seen with Kir6.1/SUR2B (IC50=0.55 mM) and it also inhibits the current in native vascular smooth muscle cells. The extent and rate of inhibition are similar to that seen with the known K(ATP) blocker PNU 37883A. Additionally, phenformin inhibited the current elicited through the Kir6.2DeltaC26 (functional without SUR) channel with an IC50 of 1.78 mM. Phenformin reduced the open probability of Kir6.1/SUR2B channels by approximately 90% in inside-out patches. These findings suggest that phenformin interacts directly with the pore-forming Kir6.0 subunit however the sulphonylurea receptor is able to significantly modulate the affinity. It is likely to block from the intracellular side of the channel in a manner analogous to that of PNU 37883A. Copyright 2010 Elsevier B.V. All rights reserved.
Gonzalez, Reyna; Pao, Peng-Wen; Hofman, Florence M.; Chen, Thomas C.; Louie, Stan G.; Pirrung, Michael C.; Schönthal, Axel H.
2013-01-01
Verrucosidin (VCD) belongs to a group of fungal metabolites that were identified in screening programs to detect molecules that preferentially kill cancer cells under glucose-deprived conditions. Its mode of action was proposed to involve inhibition of increased GRP78 (glucose regulated protein 78) expression during hypoglycemia. Because GRP78 plays an important role in tumorigenesis, inhibitors such as VCD might harbor cancer therapeutic potential. We therefore sought to characterize VCD’s anticancer activity in vitro. Triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468 were treated with VCD under different conditions known to trigger increased expression of GRP78, and a variety of cellular processes were analyzed. We show that VCD was highly cytotoxic only under hypoglycemic conditions, but not in the presence of normal glucose levels, and VCD blocked GRP78 expression only when glycolysis was impaired (due to hypoglycemia or the presence of the glycolysis inhibitor 2-deoxyglucose), but not when GRP78 was induced by other means (hypoxia, thapsigargin, tunicamycin). However, VCD’s strictly hypoglycemia-specific toxicity was not due to the inhibition of GRP78. Rather, VCD blocked mitochondrial energy production via inhibition of complex I of the electron transport chain. As a result, cellular ATP levels were quickly depleted under hypoglycemic conditions, and common cellular functions, including general protein synthesis, deteriorated and resulted in cell death. Altogether, our study identifies mitochondria as the primary target of VCD. The possibility that other purported GRP78 inhibitors (arctigenin, biguanides, deoxyverrucosidin, efrapeptin, JBIR, piericidin, prunustatin, pyrvinium, rottlerin, valinomycin, versipelostatin) might act in a similar GRP78-independent fashion will be discussed. PMID:23755268
Ortiz, Mario I
2013-01-01
BACKGROUND There is evidence that biguanides and sulfonylureas block diclofenac-induced antinociception (DIA) in rat models. However, little is known about the interaction between these hypoglycemics with respect to DIA. OBJECTIVE: To determine whether metformin-sulfonylurea combinations affect DIA during the formalin test. METHODS: Rats received the appropriate vehicle or diclofenac before 1% formaldehyde was injected into the paw. Rats were also pretreated with vehicle, glibenclamide, glipizide, metformin or glibenclamide/metformin and glipizide/metformin combinations before the diclofenac and formaldehyde injections, and the effect on antinociception was assessed. Isobolograms of the combinations were constructed to test for a synergistic interaction. RESULTS: Systemic injection of diclofenac resulted in antinociception during the second phase of the test. Systemic pretreatment with the combinations of glibenclamide (0.56 mg/kg to 10 mg/kg)/metformin (10 mg/kg to 180 mg/kg) and glipizide (0.56 mg/kg to10 mg/kg)/metformin (10 mg/kg to 180 mg/kg) blocked DIA. The derived theoretical effective doses for 50% of subjects (ED50) for the glibenclamide/metformin and glipizide/metformin combinations were 32.52 mg/kg and 32.42 mg/kg, respectively, and were significantly higher than the actual observed experimental ED50 values (7.57 mg/kg and 8.43 mg/kg, respectively). CONCLUSION: Pretreatment with glibenclamide, glipizide or metformin blocked DIA in a dose-dependent manner, and combining either sulfonylurea with metformin produced even greater effects. The observed ED50s for the combinations were approximately fourfold lower than the calculated additive effects. These data indicate that sulfonylureas interact to produce antagonism of DIA. Combination therapy is a common second-line treatment for patients with diabetes and metabolic syndrome, a group that experiences pain from multiple sources. The results suggest that at least some anti-inflammatory agents may not be effective in this group. PMID:23985578
[The quantitative recovery of microbes during testing of disinfectants for instruments].
Höller, C; Gundermann, K O
1990-02-01
The efficacy of a disinfectant can only be determined exactly, when quantitative as well as qualitative tests are being performed. Aim of this study was to ascertain whether the earlier published method of a germ carrier test could be applied also to the testing of disinfectants for instruments. Rubber tubes of 1 cm length were used as germ carriers, Staph. aureus, Pseud. aerug., Proteus mir., E. coli and Cand. alb. as test organisms. The culture media were CASO-agar and -broth, latter containing 20% defibrinated sheep blood in some experiments. Two disinfectants on aldehyde-basis and one disinfectant on phenol-basis and on biguanide-basis, respectively, were used for the disinfectant tests. The rubber tubes were contaminated with bacterial suspension, dried upright on sterile filters and then put into 10 ml CASO-broth. After high speed vortexing of the germ carriers the bacterial count was determined. Following factors that were believed to probably having an influence on the recovery rate of bacteria were investigated: 1. the amount of fluid staying on the rubber tubes; 2. the drying time; 3. the vortexing time; 4. repeated vortexing; 5. variations of the initial concentration of bacteria on the rubber tubes; 6. addition of inactivating substances. ad 1. The mean amount of fluid staying on the tubes was 0.0056 g. ad 2. Drying times longer than 30 to 60 min resulted partly in considerably lower bacterial counts. ad. 3. and 4. Neither extension of vortexing time nor repeated vortexing of the same germ carrier could raise the recovery rate of bacteria. ad 5. Higher initial concentration of bacteria on the rubber tubes could not be achieved. The recovery rate of bacteria was reliable even when the initial bacterial concentration was low. ad 6. Addition of inactivating substances to the CASO-broth had no influence on the recovery rate of bacteria. The test method was checked by testing four disinfectants for instruments and proved itself a good and reliable quantitative method.
Metformin reduces morphine tolerance by inhibiting microglial-mediated neuroinflammation.
Pan, Yinbing; Sun, Xiaodi; Jiang, Lai; Hu, Liang; Kong, Hong; Han, Yuan; Qian, Cheng; Song, Chao; Qian, Yanning; Liu, Wentao
2016-11-17
Tolerance seriously impedes the application of morphine in clinical medicine. Thus, it is necessary to investigate the exact mechanisms and efficient treatment. Microglial activation and neuroinflammation in the spinal cord are thought to play pivotal roles on the genesis and maintaining of morphine tolerance. Activation of adenosine monophosphate-activated kinase (AMPK) has been associated with the inhibition of inflammatory nociception. Metformin, a biguanide class of antidiabetic drugs and activator of AMPK, has a potential anti-inflammatory effect. The present study evaluated the effects and potential mechanisms of metformin in inhibiting microglial activation and alleviating the antinociceptive tolerance of morphine. The microglial cell line BV-2 cells and mouse brain-derived endothelial cell line bEnd3 cells were used. Cytokine expression was measured using quantitative polymerase chain reaction. Cell signaling was assayed by western blot and immunohistochemistry. The antinociception and morphine tolerance were assessed in CD-1 mice using tail-flick tests. We found that morphine-activated BV-2 cells, including the upregulation of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation, pro-inflammatory cytokines, and Toll-like receptor-4 (TLR-4) mRNA expression, which was inhibited by metformin. Metformin suppressed morphine-induced BV-2 cells activation through increasing AMPK phosphorylation, which was reversed by the AMPK inhibitor compound C. Additionally, in BV-2 cells, morphine did not affect the cell viability and the mRNA expression of anti-inflammatory cytokines. In bEnd3 cells, morphine did not affect the mRNA expression of interleukin-1β (IL-1β), but increased IL-6 and tumor necrosis factor-α (TNF-α) mRNA expression; the effect was inhibited by metformin. Morphine also did not affect the mRNA expression of TLR-4 and chemokine ligand 2 (CCL2). Furthermore, systemic administration of metformin significantly blocked morphine-induced microglial activation in the spinal cord and then attenuated the development of chronic morphine tolerance in mice. Metformin significantly attenuated morphine antinociceptive tolerance by suppressing morphine-induced microglial activation through increasing AMPK phosphorylation.
Huri, Hasniza Zaman; Lim, Lay Peng; Lim, Soo Kun
2015-01-01
Background Good glycemic control can delay the progression of kidney diseases in type 2 diabetes mellitus (T2DM) patients with renal complications. To date, the association between antidiabetic agents and glycemic control in this specific patient population is not well established. Purpose This study aimed to identify antidiabetic regimens as well as other factors that associated with glycemic control in T2DM patients with different stages of chronic kidney disease (CKD). Patients and methods This retrospective, cross-sectional study involved 242 T2DM inpatients and outpatients with renal complications from January 2009 to March 2014 and was conducted in a tertiary teaching hospital in Malaysia. Glycated hemoglobin (A1C) was used as main parameter to assess patients’ glycemic status. Patients were classified to have good (A1C <7%) or poor glycemic control (A1C ≥7%) based on the recommendations of the American Diabetes Association. Results Majority of the patients presented with CKD stage 4 (43.4%). Approximately 55.4% of patients were categorized to have poor glycemic control. Insulin (57.9%) was the most commonly prescribed antidiabetic medication, followed by sulfonylureas (43%). Of all antidiabetic regimens, sulfonylureas monotherapy (P<0.001), insulin therapy (P=0.005), and combination of biguanides with insulin (P=0.038) were found to be significantly associated with glycemic control. Other factors including duration of T2DM (P=0.004), comorbidities such as anemia (P=0.024) and retinopathy (P=0.033), concurrent medications such as erythropoietin therapy (P=0.047), α-blockers (P=0.033), and antigouts (P=0.003) were also correlated with A1C. Conclusion Identification of factors that are associated with glycemic control is important to help in optimization of glucose control in T2DM patients with renal complication. PMID:26300627
Situ, Ping; Simpson, Trefford L; Jones, Lyndon W; Fonn, Desmond
2010-12-01
To determine the effects of silicone hydrogel lens wear and lens-solution interactions on ocular surface sensitivity. Forty-eight adapted lens wearers completed the study, which comprised two phases. Phase 1 included habitual lens wear, no lens wear (7 ± 3 days), and balafilcon A lenses (PV; PureVision; Bausch & Lomb, Rochester, NY) with a hydrogen peroxide-based regimen for 2 weeks; phase 2 included wear of PV with the use of a multipurpose solution containing either polyhexamethylene-biguanide (PHMB) or Polyquad/Aldox (Alcon Laboratories, Fort Worth, TX) preservative, each for 1 week, with a 2-week washout period between solutions. Tactile and pneumatic (mechanical and chemical) stimuli were delivered, and thresholds were determined by Cochet-Bonnet (Luneau Ophthalmologie, Chartres, France) and Belmonte (Cooperative Research Centre for Eye Research and Technology, Sydney, NSW, Australia) pneumatic esthesiometers, respectively. Corneal and conjunctival thresholds and staining scores were assessed at baseline, after 2 and 8 hours of lens wear on day 1 and at the end of each wearing cycle (2 hours). In phase 1, compared to the no-lens baseline, corneal tactile thresholds increased at the 1-day, 8-hour and the 2-week visits (P < 0.05), whereas conjunctival mechanical thresholds decreased at the 1-day, 2-hour and the 2-week visits (P < 0.05). In phase 2, the chemical thresholds were lower with PHMB-preserved solution compared with the Polyquad/Aldox system at the 1-day, 2-hour and the 1-week visits (P < 0.05). Staining scores correlated inversely with conjunctival chemical thresholds (all P < 0.05). Ocular surface sensitivity changed in adapted lens wearers, when lenses were refit after a no-lens interval and during lens wear with different care regimens. The corneal staining that was observed with certain lens-solution combinations was accompanied by sensory alteration of the ocular surface-that is, higher levels of staining correlated with increased conjunctival chemical sensitivity. (ClinicalTrials.gov number, NCT00455455.).
Marcum, Zachary A.; Driessen, Julia; Thorpe, Carolyn T.; Gellad, Walid F.; Donohue, Julie M.
2014-01-01
Objective To assess the association between multiple pharmacy use and medication adherence and potential drug-drug interactions (DDIs) among older adults. Design, Setting, and Participants Cross-sectional propensity score-weighted analysis of 2009 claims data from a nationally representative sample of 926,956 Medicare Part D beneficiaries aged >65 continuously enrolled in fee-for-service Medicare and Part D that year, and filled >1 prescription at a community/retail or mail order pharmacy. Multiple pharmacy use was defined as concurrent (overlapping time periods) or sequential use (non-overlapping time periods) of >2 pharmacies in the year. Measurements Medication adherence was calculated using a proportion of days covered ≥0.80 for eight therapeutic categories (β-blockers, renin angiotensin system antagonists, calcium channel blockers, statins, sulfonylureas, biguanides [i.e., metformin], thiazolidinediones, and dipeptidyl peptidase-IV inhibitors). Potential DDIs arising from use of certain drugs across a broad set of classes were defined as the concurrent filling of two interacting drugs. Results Overall, 38.1% of the sample used multiple pharmacies. Those using multiple pharmacies (both concurrently and sequentially) consistently had higher adjusted odds of non-adherence (ranging from 1.10 to 1.31, p<0.001) across all chronic medication classes assessed after controlling for socio-demographic, health status and access to care factors, compared to single pharmacy users. The adjusted predicted probability of exposure to a DDI was also slightly higher for those using multiple pharmacies concurrently (3.6%) compared to single pharmacy users (3.2%, AOR 1.11, 95% CI 1.08–1.15) but lower in individuals using multiple pharmacies sequentially (2.8%, AOR 0.85, 95% CI 0.81–0.91). Conclusions Filling prescriptions at multiple pharmacies was associated with lower medication adherence across multiple chronic medications, and a small but statistically significant increase in DDIs among concurrent pharmacy users. PMID:24521363
Guillon, Michel; Maissa, Cécile; Wong, Stéphanie; Patel, Trisha; Garofalo, Renée
2018-04-14
To compare the effects of a hydrogen peroxide (H 2 O 2 )-based lens care solution and a polyhexamethylene biguanide (PHMB) multi-purpose solution on the eyelids when used with silicone hydrogel (SiHy) contact lenses. A total of 74 symptomatic wearers of ACUVUE ® OASYS ® (senofilcon A; n = 39) or PureVision ® (balafilcon A; n = 35) contact lenses were randomised 1:1 to either CLEAR CARE ® Cleaning & Disinfecting Solution or renu ® fresh™ multi-purpose solution (n = 37 each). Assessments of hyperaemia, papillae and lid margin staining of eyelid tissue were evaluated subjectively by a masked investigator at enrolment (with the subjects' habitual SiHy contact lenses and PHMB-preserved care systems), at dispensing visit (when no lenses were worn) and at 3-months' follow-up. There were no differences in eyelid assessments between the two lens care groups at dispensing visit (p = 0.086 to 0.947). After 3 months, the papillae response was significantly less marked with H2O2-based solution than with PHMB-based solution (p = 0.017). Lid hyperaemia (p < 0.001) and papillae (p = 0.002) were also significantly reduced. Although lid hyperaemia was also reduced with PHMB-based solution (p < 0.001), there was no concurrent decrease in papillae response (p = 0.051). No improvements were found in eyelid margin staining either over time or between the two lens care groups. In symptomatic contact lens wearers, a H 2 O 2 -based lens care solution used with senofilcon A and balafilcon A lenses was better tolerated by eyelid tissues than was a PHMB-based solution and led to a decrease in clinical markers of eyelid inflammation. Copyright © 2018 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
Guo, Xiao Hui; Ji, Li Nong; Lu, Ju Ming; Liu, Jie; Lou, Qing Qing; Liu, Jing; Shen, Li; Zhang, Ming Xia; Lv, Xiao Feng; Gu, Ming Jun
2014-07-01
The aim of the present study was to assess the efficacy of structured education in insulin-treated type 2 diabetes mellitus (T2DM) patients. In a 16-week open-label randomized controlled study, 1511 T2DM patients with inadequate responses to two or more oral antidiabetic drugs (OADs) for >3 months (HbA1c >7.5%) were randomized (1:1) to either an education group (structured diabetes education plus insulin therapy) or a control group (usual care plus insulin therapy). Both groups discontinued previous OADs (except biguanides and α-glucosidase inhibitors) and started twice daily injections of 30% soluble-70% isophane recombinant insulin. The primary endpoint was the change in HbA1c from baseline. Efficacy and safety data were analyzed for within- and between-group differences. Of the initial 1511 patients, 1289 completed the study (643 in the control group; 646 in the education group). At the end of the study, significant reductions in HbA1c versus baseline were evident in both groups, but the reduction was greater in the education group (2.16% vs. 2.08%; P < 0.05). A higher proportion of patients in the education group achieved target HbA1c levels <7% (43.81% vs. 36.86%; P < 0.05) and ≤6.5% (28.48% vs. 22.71%; P < 0.05). In addition, patients in the education group showed greater increments in scores and improvement in the Morisky Medication Adherence Scale (P < 0.05). The overall incidence of hypoglycemic events was similar in the two groups. Structured education can promote the ability of patients to self-manage and their compliance with medications, thereby achieving better outcomes. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.
El Hadri, Khadija; Denoyelle, Chantal; Ravaux, Lucas; Viollet, Benoit; Foretz, Marc; Friguet, Bertrand; Rouis, Mustapha; Raymondjean, Michel
2015-01-01
Secretory Phospholipase A2 of type IIA (sPLA2 IIA) plays a crucial role in the production of lipid mediators by amplifying the neointimal inflammatory context of the vascular smooth muscle cells (VSMCs), especially during atherogenesis. Phenformin, a biguanide family member, by its anti-inflammatory properties presents potential for promoting beneficial effects upon vascular cells, however its impact upon the IL-1β-induced sPLA2 gene expression has not been deeply investigated so far. The present study was designed to determine the relationship between phenformin coupling AMP-activated protein kinase (AMPK) function and the molecular mechanism by which the sPLA2 IIA expression was modulated in VSMCs. Here we find that 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleotide (AICAR) treatment strongly repressed IL-1β-induced sPLA2 expression at least at the transcriptional level. Our study reveals that phenformin elicited a dose-dependent inhibition of the sPLA2 IIA expression and transient overexpression experiments of constitutively active AMPK demonstrate clearly that AMPK signaling is involved in the transcriptional inhibition of sPLA2-IIA gene expression. Furthermore, although the expression of the transcriptional repressor B-cell lymphoma-6 protein (BCL-6) was markedly enhanced by phenformin and AICAR, the repression of sPLA2 gene occurs through a mechanism independent of BCL-6 DNA binding site. In addition we show that activation of AMPK limits IL-1β-induced NF-κB pathway activation. Our results indicate that BCL-6, once activated by AMPK, functions as a competitor of the IL-1β induced NF-κB transcription complex. Our findings provide insights on a new anti-inflammatory pathway linking phenformin, AMPK and molecular control of sPLA2 IIA gene expression in VSMCs. PMID:26162096
El Hadri, Khadija; Denoyelle, Chantal; Ravaux, Lucas; Viollet, Benoit; Foretz, Marc; Friguet, Bertrand; Rouis, Mustapha; Raymondjean, Michel
2015-01-01
Secretory Phospholipase A2 of type IIA (sPLA2 IIA) plays a crucial role in the production of lipid mediators by amplifying the neointimal inflammatory context of the vascular smooth muscle cells (VSMCs), especially during atherogenesis. Phenformin, a biguanide family member, by its anti-inflammatory properties presents potential for promoting beneficial effects upon vascular cells, however its impact upon the IL-1β-induced sPLA2 gene expression has not been deeply investigated so far. The present study was designed to determine the relationship between phenformin coupling AMP-activated protein kinase (AMPK) function and the molecular mechanism by which the sPLA2 IIA expression was modulated in VSMCs. Here we find that 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleotide (AICAR) treatment strongly repressed IL-1β-induced sPLA2 expression at least at the transcriptional level. Our study reveals that phenformin elicited a dose-dependent inhibition of the sPLA2 IIA expression and transient overexpression experiments of constitutively active AMPK demonstrate clearly that AMPK signaling is involved in the transcriptional inhibition of sPLA2-IIA gene expression. Furthermore, although the expression of the transcriptional repressor B-cell lymphoma-6 protein (BCL-6) was markedly enhanced by phenformin and AICAR, the repression of sPLA2 gene occurs through a mechanism independent of BCL-6 DNA binding site. In addition we show that activation of AMPK limits IL-1β-induced NF-κB pathway activation. Our results indicate that BCL-6, once activated by AMPK, functions as a competitor of the IL-1β induced NF-κB transcription complex. Our findings provide insights on a new anti-inflammatory pathway linking phenformin, AMPK and molecular control of sPLA2 IIA gene expression in VSMCs.
Ppm1E is an in cellulo AMP-activated protein kinase phosphatase.
Voss, Martin; Paterson, James; Kelsall, Ian R; Martín-Granados, Cristina; Hastie, C James; Peggie, Mark W; Cohen, Patricia T W
2011-01-01
Activation of 5'-AMP-activated protein kinase (AMPK) is believed to be the mechanism by which the pharmaceuticals, metformin and phenformin, exert their beneficial effects for treatment of type 2 diabetes. These biguanide drugs elevate 5'-AMP, which allosterically activates AMPK and promotes phosphorylation on Thr172 of AMPK catalytic α subunits. Although kinases phosphorylating this site have been identified, phosphatases that dephosphorylate it are unknown. The aim of this study is to identify protein phosphatase(s) that dephosphorylate AMPKα-Thr172 within cells. Our initial data indicated that members of the protein phosphatase Mg/Mn(2+)-dependent [corrected] (PPM) family and not those of the PPP family of protein serine/threonine phosphatases may be directly or indirectly inhibited by phenformin. Using antibodies raised to individual Ppm phosphatases that facilitated the assessment of their activities, phenformin stimulation of cells was found to decrease the Mg(2+)/Mn(2+)-dependent [corrected] protein serine/threonine phosphatase activity of Ppm1E and Ppm1F, but not that attributable to other PPM family members, including Ppm1A/PP2Cα. Depletion of Ppm1E, but not Ppm1A, using lentiviral-mediated stable gene silencing, increased AMPKα-Thr172 phosphorylation approximately three fold in HEK293 cells. In addition, incubation of cells with low concentrations of phenformin and depletion of Ppm1E increased AMPK phosphorylation synergistically. Ppm1E and the closely related Ppm1F interact weakly with AMPK and assays with lysates of cells stably depleted of Ppm1F suggest [corrected] that this phosphatase contributes to dephosphorylation of AMPK. The data indicate that Ppm1E and probably PpM1F are in cellulo AMPK phosphatases and that Ppm1E is a potential anti-diabetic drug target. Copyright © 2010 Elsevier Inc. All rights reserved.
Ngalesoni, Frida N; Ruhago, George M; Mori, Amani T; Robberstad, Bjarne; Norheim, Ole F
2016-05-17
Cardiovascular disease (CVD) is a growing cause of mortality and morbidity in Tanzania, but contextualized evidence on cost-effective medical strategies to prevent it is scarce. We aim to perform a cost-effectiveness analysis of medical interventions for primary prevention of CVD using the World Health Organization's (WHO) absolute risk approach for four risk levels. The cost-effectiveness analysis was performed from a societal perspective using two Markov decision models: CVD risk without diabetes and CVD risk with diabetes. Primary provider and patient costs were estimated using the ingredients approach and step-down methodologies. Epidemiological data and efficacy inputs were derived from systematic reviews and meta-analyses. We used disability- adjusted life years (DALYs) averted as the outcome measure. Sensitivity analyses were conducted to evaluate the robustness of the model results. For CVD low-risk patients without diabetes, medical management is not cost-effective unless willingness to pay (WTP) is higher than US$1327 per DALY averted. For moderate-risk patients, WTP must exceed US$164 per DALY before a combination of angiotensin converting enzyme inhibitor (ACEI) and diuretic (Diu) becomes cost-effective, while for high-risk and very high-risk patients the thresholds are US$349 (ACEI, calcium channel blocker (CCB) and Diu) and US$498 per DALY (ACEI, CCB, Diu and Aspirin (ASA)) respectively. For patients with CVD risk with diabetes, a combination of sulfonylureas (Sulf), ACEI and CCB for low and moderate risk (incremental cost-effectiveness ratio (ICER) US$608 and US$115 per DALY respectively), is the most cost-effective, while adding biguanide (Big) to this combination yielded the most favourable ICERs of US$309 and US$350 per DALY for high and very high risk respectively. For the latter, ASA is also part of the combination. Medical preventive cardiology is very cost-effective for all risk levels except low CVD risk. Budget impact analyses and distributional concerns should be considered further to assess governments' ability and to whom these benefits will accrue.
Gerber, Philipp Andreas; Spirk, David; Brändle, Michael; Thoenes, Martin; Lehmann, Roger; Keller, Ulrich
2011-07-07
We investigated contemporary diabetes care, quality of glycaemic control, and progression of obesity in patients with diabetes mellitus in different cultural regions within Switzerland. Overall, 1121 patients treated for type 2 diabetes mellitus by 134 general practitioners were enrolled in this representative, national, cross-sectional survey and were followed retrospectively from the start of diabetes treatment. Patients were classified into four cultural regions; the German, French, Italian and Romansh speaking parts of Switzerland. During 5.5 ± 5.1 years of diabetes treatment (retrospective survey), mean HbA1c decreased from 8.28 ± 2.01% to 7.03 ± 1.24%, fasting glucose decreased from 9.97 ± 3.86 to 7.52 ± 2.23 mmol/l, and BMI decreased from 30.2 ± 5.5 to 29.8 ± 5.6 kg/m² (p <0.001 for all parameters). Insulin therapy was associated with a larger improvement of mean HbA1c (-1.66 ± 2.33% vs. -1.15 ± 1.91%, p = 0.001) and an increase in BMI (+0.36 ± 2.92 vs. -0.63 ± 2.60 kg/m2, p <0.001). At the time when the cross-sectional survey was conducted, the mean HbA1c and fasting glucose were higher in the Italian part compared to other regions (7.72 ± 1.60% and 9.03 ± 2.49 mmol/l, respectively, p <0.001), and lower in the German part (6.89 ± 1.02% and 7.25 ± 2.02 mmol/l, respectively, p <0.001). In comparison to other regions, biguanides were more often used in the French part (86.1% versus 75.7%), insulin secretagogues in the Italian part (69.9% versus 37.8%), thiazolidinediones in the Romansh part (34.1% versus 17.8%), and insulin was more often used in the German part of Switzerland (27.0% versus 17.1%) (p <0.01 for all parameters). Efforts to identify regional-cultural differences and attempts to overcome associated potential barriers should be emphasised in any health care system when aiming for better diabetic patient care.
Systemic medication and intraocular pressure in a British population: the EPIC-Norfolk Eye Study.
Khawaja, Anthony P; Chan, Michelle P Y; Broadway, David C; Garway-Heath, David F; Luben, Robert; Yip, Jennifer L Y; Hayat, Shabina; Wareham, Nicholas J; Khaw, Kay-Tee; Foster, Paul J
2014-08-01
To determine the association between systemic medication use and intraocular pressure (IOP) in a population of older British men and women. Population-based, cross-sectional study. We included 7093 participants from the European Prospective Investigation into Cancer-Norfolk Eye Study. Exclusion criteria were a history of glaucoma therapy (medical, laser, or surgical), IOP asymmetry between eyes of >5 mmHg, and missing data for any covariables. The mean age of participants was 68 years (range, 48-92) and 56% were women. We measured IOP using the Ocular Response Analyzer. Three readings were taken per eye and the best signal value of the Goldmann-correlated IOP value considered. Participants were asked to bring all their medications and related documentation to the health examination, and these were recorded by the research nurse using an electronic case record form. The medication classes examined were angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, α-blockers, β-blockers, calcium channel blockers, diuretics, nitrates, statins, insulin, biguanides, sulfonylureas, aspirin, and other nonsteroidal anti-inflammatory drugs. We examined associations between medication use and IOP using multivariable linear regression models adjusted for age, sex, and body mass index. Models containing diabetic medication were further adjusted for glycosylated hemoglobin levels. Mean IOP of the right and left eyes. Use of systemic β-blockers (-0.92 mmHg; 95% CI, -1.19, -0.65; P<0.001) and nitrates (-0.63 mmHg; 95% CI, -1.12, -0.14; P = 0.011) were independently associated with lower IOP. The observed associations between statin or aspirin use with IOP were no longer significant after adjustment for β-blocker use. This is the first population-based study to demonstrate and quantify clinically significant differences in IOP among participants using systemic β-blockers or nitrates. Lower IOP observed in participants using statins or aspirin was explained by concurrent systemic β-blocker use. The study findings may have implications for the management of glaucoma patients with comorbidity, and may provide insight into the pathophysiologic processes underlying IOP. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Systemic Medication and Intraocular Pressure in a British Population
Khawaja, Anthony P.; Chan, Michelle P.Y.; Broadway, David C.; Garway-Heath, David F.; Luben, Robert; Yip, Jennifer L.Y.; Hayat, Shabina; Wareham, Nicholas J.; Khaw, Kay-Tee; Foster, Paul J.
2014-01-01
Objective To determine the association between systemic medication use and intraocular pressure (IOP) in a population of older British men and women. Design Population-based, cross-sectional study. Participants We included 7093 participants from the European Prospective Investigation into Cancer–Norfolk Eye Study. Exclusion criteria were a history of glaucoma therapy (medical, laser, or surgical), IOP asymmetry between eyes of >5 mmHg, and missing data for any covariables. The mean age of participants was 68 years (range, 48–92) and 56% were women. Methods We measured IOP using the Ocular Response Analyzer. Three readings were taken per eye and the best signal value of the Goldmann-correlated IOP value considered. Participants were asked to bring all their medications and related documentation to the health examination, and these were recorded by the research nurse using an electronic case record form. The medication classes examined were angiotensin-converting enzyme inhibitors, angiotensin-receptor blockers, α-blockers, β-blockers, calcium channel blockers, diuretics, nitrates, statins, insulin, biguanides, sulfonylureas, aspirin, and other nonsteroidal anti-inflammatory drugs. We examined associations between medication use and IOP using multivariable linear regression models adjusted for age, sex, and body mass index. Models containing diabetic medication were further adjusted for glycosylated hemoglobin levels. Main Outcome Measures Mean IOP of the right and left eyes. Results Use of systemic β-blockers (−0.92 mmHg; 95% CI, −1.19, −0.65; P<0.001) and nitrates (−0.63 mmHg; 95% CI, −1.12, −0.14; P = 0.011) were independently associated with lower IOP. The observed associations between statin or aspirin use with IOP were no longer significant after adjustment for β-blocker use. Conclusions This is the first population-based study to demonstrate and quantify clinically significant differences in IOP among participants using systemic β-blockers or nitrates. Lower IOP observed in participants using statins or aspirin was explained by concurrent systemic β-blocker use. The study findings may have implications for the management of glaucoma patients with comorbidity, and may provide insight into the pathophysiologic processes underlying IOP. PMID:24702754
Kaku, Kohei; Yamada, Yuichiro; Watada, Hirotaka; Abiko, Atsuko; Nishida, Tomoyuki; Zacho, Jeppe; Kiyosue, Arihiro
2018-05-01
To evaluate the safety and efficacy of once-weekly subcutaneous semaglutide as monotherapy or combined with an oral antidiabetic drug (OAD) vs an additional OAD added to background therapy in Japanese people with type 2 diabetes (T2D) inadequately controlled on diet/exercise or OAD monotherapy. In this phase III, open-label trial, adults with T2D were randomized 2:2:1 to semaglutide 0.5 mg or 1.0 mg, or one additional OAD (a dipeptidyl peptidase-4 inhibitor, biguanide, sulphonylurea, glinide, α-glucosidase inhibitor or thiazolidinedione) with a different mode of action from that of background therapy. The primary endpoint was number of adverse events (AEs) after 56 weeks. Baseline characteristics were balanced between treatment arms (601 randomized). More AEs were reported in the semaglutide 0.5 mg (86.2%) and 1.0 mg (88.0%) groups than in the additional OAD group (71.7%). These were typically mild/moderate. Gastrointestinal AEs were most frequent with semaglutide, which diminished over time. The mean glycated haemoglobin (HbA1c) concentration (baseline 8.1%) was significantly reduced with semaglutide 0.5 mg and 1.0 mg vs additional OAD (1.7% and 2.0% vs 0.7%, respectively; estimated treatment difference [ETD] vs additional OAD -1.08% and -1.37%, both P < .0001). Body weight (baseline 71.5 kg) was reduced by 1.4 kg and 3.2 kg with semaglutide 0.5 mg and 1.0 mg, vs a 0.4-kg increase with additional OAD (ETD -1.84 kg and -3.59 kg; both P < .0001). For semaglutide-treated participants, >80% achieved an HbA1c concentration <7.0% (Japanese Diabetes Society target). Semaglutide was well tolerated, with no new safety issues identified. Semaglutide treatment significantly reduced HbA1c and body weight vs additional OAD treatment in Japanese people with T2D. © 2018 The Authors. Diabetes, Obesity and Metabolism published by John Wiley & Sons Ltd.
da Silva Fernandes, Meg; Kabuki, Dirce Yorika; Kuaye, Arnaldo Yoshiteru
2015-05-04
The formation of mono-species biofilm (Listeria monocytogenes) and multi-species biofilms (Enterococcus faecium, Enterococcus faecalis, and L. monocytogenes) was evaluated. In addition, the effectiveness of sanitation procedures for the control of the multi-species biofilm also was evaluated. The biofilms were grown on stainless steel coupons at various incubation temperatures (7, 25 and 39°C) and contact times (0, 1, 2, 4, 6 and 8 days). In all tests, at 7°C, the microbial counts were below 0.4 log CFU/cm(2) and not characteristic of biofilms. In mono-species biofilm, the counts of L. monocytogenes after 8 days of contact were 4.1 and 2.8 log CFU/cm(2) at 25 and 39°C, respectively. In the multi-species biofilms, Enterococcus spp. were present at counts of 8 log CFU/cm(2) at 25 and 39°C after 8 days of contact. However, the L. monocytogenes in multi-species biofilms was significantly affected by the presence of Enterococcus spp. and by temperature. At 25°C, the growth of L. monocytogenes biofilms was favored in multi-species cultures, with counts above 6 log CFU/cm(2) after 8 days of contact. In contrast, at 39°C, a negative effect was observed for L. monocytogenes biofilm growth in mixed cultures, with a significant reduction in counts over time and values below 0.4 log CFU/cm(2) starting at day 4. Anionic tensioactive cleaning complemented with another procedure (acid cleaning, disinfection or acid cleaning+disinfection) eliminated the multi-species biofilms under all conditions tested (counts of all micro-organisms<0.4 log CFU/cm(2)). Peracetic acid was the most effective disinfectant, eliminating the multi-species biofilms under all tested conditions (counts of the all microorganisms <0.4 log CFU/cm(2)). In contrast, biguanide was the least effective disinfectant, failing to eliminate biofilms under all the test conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Gupta, Deepali; Thangaraj, Devadoss; Radhakrishnan, Mahesh
2016-01-15
Despite the presence of a multitudinous pharmacotherapy, diabetes-induced depressive disorder remains undertreated. Evidence suggests that brain serotonergic deficits are associated with depressive-like behavior in diabetes and that 5HT3 receptor (5HT3R) antagonists have serotonergic facilitatory effects. This study examined the effects of a novel 5HT3R antagonist, 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide), in diabetes-induced depressive phenotypes. Experimentally, (1) to evaluate the effects of 4i, mice with 8-weeks of diabetes (induced by streptozotocin, 200mg/kg, i.p.) were treated with vehicle, 4i (0.5 and 1mg/kg/day, i.p.), fluoxetine (10mg/kg/day, i.p.) for 4-weeks and subjected to neurobehavioral assays, followed by biochemical estimation of serotonin levels in midbrain, prefrontal-cortex and cerebellum. (2) To evaluate the role of 5HT3R in the postulated effect of 4i, diabetic mice were given 4i (1mg/kg/day, i.p.) after 1h of 1-(m-chlorophenyl)-biguanide (mCPBG, a 5HT3R agonist, 10mg/kg/day, i.p.) treatment and subjected to the same protocol. The results showed that diabetic mice exhibited a significant behavioral deficit, including depression-like behavior in forced swim test, anxiety-like in open field test and sociability deficits in social interaction test, along with a significant decrease in serotonin level in these brain regions. 4i (1mg/kg), similar to fluoxetine, prevented these behavioral abnormalities and normalized brain serotonin levels. 4i (0.5mg/kg) ameliorated only diabetes-induced depressive-like behavior and serotonin deficits, but not anxiety-like effects. mCPBG blunted 4i-mediated behavioral response and increase in brain serotonin levels. Altogether, this study suggests that 4i prevents diabetes-induced depressive phenotypes in mice, which may involve antagonism of 5HT3Rs and increase in serotonin levels in discrete brain regions. Copyright © 2015 Elsevier B.V. All rights reserved.
Management of obesity in non- insulin- dependent diabetes mellitus.
Cheah, J S
1998-12-01
Obesity is common in non-insulin-dependent diabetes mellitus (NIDDM) patients; in Singapore in a cohort of 314 diabetics, 44.3% were overweight. Management of obesity in diabetics differs from that in non-diabetics in that it is more urgent; weight maintenance is more difficult and hypoglycaemic medication may cause weight changes. However, like in the non-diabetic, management of obesity in the diabetic requires a pragmatic and realistic approach. A team approach is required: the help of a nurse educator, a dietitian, behaviour modification therapist, exercise therapist and others are required. A detailed history, careful physical examination and relevant investigations are required to assess the severity of the diabetic state and to exclude an occasional underlying cause of the obesity in the obese NIDDM patient. Weight loss is urgent in the obese NIDDM patient, especially for those with android obesity. There must be a reduction in energy intake. Weight loss leads to an improvement in glucose tolerance and in insulin sensitivity, as well as to a reduction in lipid levels and to a fall in blood pressure in the hypertensive. Exercise is of limited short-term value measured in terms of weight reduction, except in the younger obese NIDDM patient; but it does allow improvement in overall metabolic control and, long-term, is critical for preferred weight maintenance. The biguanide, Metformin, is the hypoglycaemic drug of choice as it leads to consistent weight reduction. The sulphonylureas may cause weight gain. Insulin should be avoided where possible as it causes further weight gain. Other hypoglycaemic agents include Glucobay (alpha-glucosidase inhibitor) and Troglitazone (insulin sensitizer) which do not alter the weight. Orlistat (lipase inhibitor) is promising as it causes reduction of weight, blood glucose and lipid levels. Anti-obesity drugs (noradrenergic and serotonergic agents) have modest effects on weight reduction in the obese NIDDM patient; a widely-used preparation, Dexfenfluramine (Adifax), has been withdrawn because of side-effects. Surgery such as gastric plication is the last resort in treating the morbidly obese NIDDM patient. Against this background, the institution of life-long food and exercise habits which favour health, body composition and fat distribution are paramount in the prevention and minimization of expression of NIDDM. The discovery of leptin in 1994 has led to intense research into energy homeostasis in obesity; hopefully this will lead to better treatment of obesity in diabetics and non-diabetics.
Forsgren-Brusk, Ulla; Yhlen, Birgitta; Blomqvist, Marie; Larsson, Peter
The purpose of this study was to evaluate a pragmatic laboratory method to provide a technique for developing incontinence products better able to reduce malodor when used in the clinical setting. Bacterial growth and bacterially formed ammonia in disposable absorbent incontinence products was measured by adding synthetic urine inoculated with bacteria to test samples cut from the crotch area of the product. The inhibitory effect's of low pH (4.5 and 4.9) and 3 antimicrobial substances-chlorhexidine, polyhexamethylene biguanide (PHMB), and thymol-at 2 concentrations each, were studied. From the initial inocula of 3.3 log colony-forming units per milliliter (cfu/mL) at baseline, the bacterial growth of the references increased to 5.0 to 6.0 log cfu/mL at 6 hours for Escherichia coli, Proteus mirabilis, and Enterococcus faecalis. At 12 hours there was a further increase to 7.0 to 8.9 log cfu/mL. Adjusting the pH of the superabsorbent in the incontinence product from 6.0 to pH 4.5 and pH 4.9 significantly (P < .05) inhibited the bacterial growth rates, in most cases, both at 6 and 12 hours. The effect was most pronounced at pH 4.5. Chlorhexidine had significant (P < .05) inhibitory effect on E. coli and E. faecalis, and at 12 hours also on P. mirabilis. For PHMB and thymol the results varied. At 6 hours, the ammonia concentration in the references (pH 6.0) was 200 to 300 ppm and it was 1500 to 1600 ppm at 8 hours. At pH 4.5, no or little ammonia production was measured at 6 and 8 hours. At pH 4.9, there was a significant reduction (P < .01). Chlorhexidine and PHMB exerted a significant (P < .01 or P < .001) inhibitory effect on ammonia production at both concentrations and at 6 and 8 hours. Thymol 0.003% and 0.03% showed inhibitory effect at both 6 hours (P < .01 or P < .001) and at 8 hours (P < .05 or P < .001). The method described in this study can be used to compare the ability of various disposable absorbent products to inhibit bacterial growth and ammonia production. This technique, we describe, provides a pragmatic method for assessing the odor-inhibiting capacity of specific incontinence products.
Loos, Julia A; Cumino, Andrea C
2015-01-01
Metformin (Met) is a biguanide anti-hyperglycemic agent, which also exerts antiproliferative effects on cancer cells. This drug inhibits the complex I of the mitochondrial electron transport chain inducing a fall in the cell energy charge and leading 5'-AMP-activated protein kinase (AMPK) activation. AMPK is a highly conserved heterotrimeric complex that coordinates metabolic and growth pathways in order to maintain energy homeostasis and cell survival, mainly under nutritional stress conditions, in a Liver Kinase B1 (LKB1)-dependent manner. This work describes for the first time, the in vitro anti-echinococcal effect of Met on Echinococcus granulosus larval stages, as well as the molecular characterization of AMPK (Eg-AMPK) in this parasite of clinical importance. The drug exerted a dose-dependent effect on the viability of both larval stages. Based on this, we proceeded with the identification of the genes encoding for the different subunits of Eg-AMPK. We cloned one gene coding for the catalytic subunit (Eg-ampkɑ) and two genes coding for the regulatory subunits (Eg-ampkβ and Eg-ampkγ), all of them constitutively transcribed in E. granulosus protoscoleces and metacestodes. Their deduced amino acid sequences show all the conserved functional domains, including key amino acids involved in catalytic activity and protein-protein interactions. In protoscoleces, the drug induced the activation of AMPK (Eg-AMPKɑ-P176), possibly as a consequence of cellular energy charge depletion evidenced by assays with the fluorescent indicator JC-1. Met also led to carbohydrate starvation, it increased glucogenolysis and homolactic fermentation, and decreased transcription of intermediary metabolism genes. By in toto immunolocalization assays, we detected Eg-AMPKɑ-P176 expression, both in the nucleus and the cytoplasm of cells as in the larval tegument, the posterior bladder and the calcareous corpuscles of control and Met-treated protoscoleces. Interestingly, expression of Eg-AMPKɑ was observed in the developmental structures during the de-differentiation process from protoscoleces to microcysts. Therefore, the Eg-AMPK expression during the asexual development of E. granulosus, as well as the in vitro synergic therapeutic effects observed in presence of Met plus albendazole sulfoxide (ABZSO), suggest the importance of carrying out chemoprophylactic and clinical efficacy studies combining Met with conventional anti-echinococcal agents to test the potential use of this drug in hydatidosis therapy.
Sundaramoorthi, Kamatchi; Sethu, Gunasekaran; Ethirajulu, Sailatha; Raja Marthandam, Pavithra
2017-03-20
Diabetes mellitus is chronic metabolic disorder, resulting from insulin deficiency, characterized by hyperglycemia altered metabolism of carbohydrates, proteins and lipids and an increased risk of vascular complications. There are different classes of anti-diabetic drugs in allopathic system of medicine. Metformin (dimethyl biguanide) is a blood glucose lowering agent used in the treatment of non-insulin dependent diabetes mellitus. Almost in all diseases the blood serves as the primary metabolic transport system in the body. Its composition is the preferred indicator with respect to the pathophysiological condition of the patient. Instead of analyzing blood to diagnose diabetes, hair could be used to detect diabetes using FTIR-ATR technique. The most important components of hair are fibrous proteins (keratins), melanins, glycogen, and lipids. Hair follicles are located 3-4mm below the surface of the skin and are surrounded by rich blood capillary system. In the present study, ten diabetic subjects were considered to evaluate the efficacy of metformin hydrochloride for the treatment of diabetes mellitus using FTIR-ATR spectroscopy. The spectra of diabetic hair fibre samples have been recorded in the mid infrared region of 4000-450cm -1 . The hair samples of the diabetic subjects before medication were taken as pre-treatment samples. The hair samples of diabetic subjects referred to medication with metformin for a period of three month were taken as post-treatment sample. Some remarkable spectral differences were elucidated between pre- and post-treatment hair fibre samples. A comparative study on the FTIR-ATR hair spectra of patients (pre- and post-treatment) along with the healthy subjects has been made. The absorption values of some of the specific bands of biomolecules present in the hair samples viz., protein, lipids and glucose for both the pre- and post-treatment subjects are noted. It was observed that, these biomarkers are significantly different between pre- and post-treatment hair samples. Some of the biomarkers such as R 1 =I 1635/1450 , R 2 =I 1540/1450 , R 3 =I 2885/1450, R 4 =I 1255/1450 and R 5 =I 1015/1450 were used as diagnostic parameters, and hence the efficacy of metformin is estimated. The results are further validated with statistical analysis by applying the dependent t-test, which indicated that the spectral variations are statistically significant. Copyright © 2016 Elsevier B.V. All rights reserved.
Trautwein, Christoph; Berset, Jean-Daniel; Wolschke, Hendrik; Kümmerer, Klaus
2014-09-01
In 2030, the World Health Organization estimates that more than 350 million people will be diagnosed with diabetes. Consequently, Metformin - the biguanide drug of choice orally administered for diabetes type II - is anticipated to see a spike in production. Unlike many pharmaceutical drugs, Metformin (Met) is not metabolized by humans but passes through the body unchanged. Entering aquatic compartments, such as in sewage, it can be bacterially transformed to the ultimate transformation product Guanylurea (Gua). Sampling over one week (n=5) from a Southern German sewage treatment plant revealed very high average (AV) concentrations in influent (AVMet=111,800ng/L, AVGua=1300ng/L) and effluent samples (AVMet=4800ng/L, AVGua=44,000ng/L). To provide a more complete picture of the distribution and potential persistence of these compounds in the German water cycle, a new, efficient and highly sensitive liquid chromatography mass spectrometric method with direct injection was used for the measurement of Metformin and Guanylurea in drinking, surface, sewage and seawater. Limits of quantification (LOQ) ranging from 2-10ng/L allowed the detection of Metformin and Guanylurea in different locations such as: Lake Constance (n=11: AVMet=102ng/L, AVGua=16ng/L), river Elbe (n=12: AVMet=472ng/L, AVGua=9ng/L), river Weser (n=6: AVMet=349ng/L, AVGua=137ng/L) and for the first time in marine North Sea water (n=14: AVMet=13ng/L, AVGua=11ng/L). Based on daily water discharges, Metformin loads of 15.2kg/d (Elbe) and 6.4kg/d (Weser) into the North Sea were calculated. Lake Constance is used to abstract potable water which is further purified to be used as drinking water. A first screening of two tap water samples contained 2ng/L and 61ng/L of Metformin, respectively. The results of this study suggest that Metformin and Guanylurea could be distributed over a large fraction of the world's potable water sources and oceans. With no natural degradation processes, these compounds can be easily reintroduced to humans as they enter the food chain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Loos, Julia A.; Cumino, Andrea C.
2015-01-01
Metformin (Met) is a biguanide anti-hyperglycemic agent, which also exerts antiproliferative effects on cancer cells. This drug inhibits the complex I of the mitochondrial electron transport chain inducing a fall in the cell energy charge and leading 5'-AMP-activated protein kinase (AMPK) activation. AMPK is a highly conserved heterotrimeric complex that coordinates metabolic and growth pathways in order to maintain energy homeostasis and cell survival, mainly under nutritional stress conditions, in a Liver Kinase B1 (LKB1)-dependent manner. This work describes for the first time, the in vitro anti-echinococcal effect of Met on Echinococcus granulosus larval stages, as well as the molecular characterization of AMPK (Eg-AMPK) in this parasite of clinical importance. The drug exerted a dose-dependent effect on the viability of both larval stages. Based on this, we proceeded with the identification of the genes encoding for the different subunits of Eg-AMPK. We cloned one gene coding for the catalytic subunit (Eg-ampkɑ) and two genes coding for the regulatory subunits (Eg-ampkβ and Eg-ampkγ), all of them constitutively transcribed in E. granulosus protoscoleces and metacestodes. Their deduced amino acid sequences show all the conserved functional domains, including key amino acids involved in catalytic activity and protein-protein interactions. In protoscoleces, the drug induced the activation of AMPK (Eg-AMPKɑ-P176), possibly as a consequence of cellular energy charge depletion evidenced by assays with the fluorescent indicator JC-1. Met also led to carbohydrate starvation, it increased glucogenolysis and homolactic fermentation, and decreased transcription of intermediary metabolism genes. By in toto immunolocalization assays, we detected Eg-AMPKɑ-P176 expression, both in the nucleus and the cytoplasm of cells as in the larval tegument, the posterior bladder and the calcareous corpuscles of control and Met-treated protoscoleces. Interestingly, expression of Eg-AMPKɑ was observed in the developmental structures during the de-differentiation process from protoscoleces to microcysts. Therefore, the Eg-AMPK expression during the asexual development of E. granulosus, as well as the in vitro synergic therapeutic effects observed in presence of Met plus albendazole sulfoxide (ABZSO), suggest the importance of carrying out chemoprophylactic and clinical efficacy studies combining Met with conventional anti-echinococcal agents to test the potential use of this drug in hydatidosis therapy. PMID:25965910
Donnelly, William T; Bartlett, Donald; Leiter, J C
2016-07-01
What is the central question of this study? Failure to terminate apnoea and arouse is likely to contribute to sudden infant death syndrome (SIDS). Serotonin is deficient in the brainstems of babies who died of SIDS. Therefore, we tested the hypothesis that serotonin in the nucleus of the solitary tract (NTS) would shorten reflex apnoea. What is the main finding and its importance? Serotonin microinjected into the NTS shortened the apnoea and respiratory inhibition associated with the laryngeal chemoreflex. Moreover, this effect was achieved through a 5-HT3 receptor. This is a new insight that is likely to be relevant to the pathogenesis of SIDS. The laryngeal chemoreflex (LCR), an airway-protective reflex that causes apnoea and bradycardia, has long been suspected as an initiating event in the sudden infant death syndrome. Serotonin (5-HT) and 5-HT receptors may be deficient in the brainstems of babies who die of sudden infant death syndrome, and 5-HT seems to be important in terminating apnoeas directly or in causing arousals or as part of the process of autoresuscitation. We hypothesized that 5-HT in the brainstem would limit the duration of the LCR. We studied anaesthetized rat pups between 7 and 21 days of age and made microinjections into the cisterna magna or into the nucleus of the solitary tract (NTS). Focal, bilateral microinjections of 5-HT into the caudal NTS significantly shortened the LCR. The 5-HT1a receptor antagonist, WAY 100635, did not affect the LCR consistently, nor did a 5-HT2 receptor antagonist, ketanserin, alter the duration of the LCR. The 5-HT3 specific agonist, 1-(3-chlorophenyl)-biguanide, microinjected bilaterally into the caudal NTS significantly shortened the LCR. Thus, endogenous 5-HT released within the NTS may curtail the respiratory depression that is part of the LCR, and serotonergic shortening of the LCR may be attributed to activation of 5-HT3 receptors within the NTS. 5-HT3 receptors are expressed presynaptically on C fibre afferents of the superior laryngeal nerve, and serotonergic shortening of the LCR may be mediated presynaptically by enhanced activation of inhibitory interneurons within the NTS. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.
Woollhead, Alison M; Scott, John W; Hardie, D Grahame; Baines, Deborah L
2005-08-01
Active re-absorption of Na+ across the alveolar epithelium is essential to maintain lung fluid balance. Na+ entry at the luminal membrane is predominantly via the amiloride-sensitive Na+ channel (ENaC) down its electrochemical gradient. This gradient is generated and maintained by basolateral Na+ extrusion via Na+,K+-ATPase an energy-dependent process. Several kinases and factors that activate them are known to regulate these processes; however, the role of AMP-activated protein kinase (AMPK) in the lung is unknown. AMPK is an ultra-sensitive cellular energy sensor that monitors energy consumption and down-regulates ATP-consuming processes when activated. The biguanide phenformin has been shown to independently decrease ion transport processes, influence cellular metabolism and activate AMPK. The AMP mimetic drug 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) also activates AMPK in intact cells. Western blotting revealed that both the alpha1 and alpha2 catalytic subunits of AMPK are present in Na+ transporting H441 human lung epithelial cells. Phenformin and AICAR increased AMPK activity in H441 cells in a dose-dependent fashion, stimulating the kinase maximally at 5-10 mm (P = 0.001, n = 3) and 2 mm (P < 0.005, n = 3), respectively. Both agents significantly decreased basal ion transport (measured as short circuit current) across H441 monolayers by approximately 50% compared with that of controls (P < 0.05, n = 4). Neither treatment altered the resistance of the monolayers. Phenformin and AICAR significantly reduced amiloride-sensitive transepithelial Na+ transport compared with controls (P < 0.05, n = 4). This was a result of both decreased Na+,K+-ATPase activity and amiloride-sensitive apical Na+ conductance. Transepithelial Na+ transport decreased with increasing concentrations of phenformin (0.1-10 mm) and showed a significant correlation with AMPK activity. Taken together, these results show that phenformin and AICAR suppress amiloride-sensitive Na+ transport across H441 cells via a pathway that includes activation of AMPK and inhibition of both apical Na+ entry through ENaC and basolateral Na+ extrusion via the Na+,K+-ATPase. These are the first studies to provide a cellular signalling mechanism for the action of phenformin on ion transport processes, and also the first studies showing AMPK as a regulator of Na+ absorption in the lung.
Woollhead, Alison M; Scott, John W; Hardie, D Grahame; Baines, Deborah L
2005-01-01
Active re-absorption of Na+ across the alveolar epithelium is essential to maintain lung fluid balance. Na+ entry at the luminal membrane is predominantly via the amiloride-sensitive Na+ channel (ENaC) down its electrochemical gradient. This gradient is generated and maintained by basolateral Na+ extrusion via Na+,K+-ATPase an energy-dependent process. Several kinases and factors that activate them are known to regulate these processes; however, the role of AMP-activated protein kinase (AMPK) in the lung is unknown. AMPK is an ultra-sensitive cellular energy sensor that monitors energy consumption and down-regulates ATP-consuming processes when activated. The biguanide phenformin has been shown to independently decrease ion transport processes, influence cellular metabolism and activate AMPK. The AMP mimetic drug 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) also activates AMPK in intact cells. Western blotting revealed that both the α1 and α2 catalytic subunits of AMPK are present in Na+ transporting H441 human lung epithelial cells. Phenformin and AICAR increased AMPK activity in H441 cells in a dose-dependent fashion, stimulating the kinase maximally at 5–10 mm (P = 0.001, n = 3) and 2 mm (P < 0.005, n = 3), respectively. Both agents significantly decreased basal ion transport (measured as short circuit current) across H441 monolayers by approximately 50% compared with that of controls (P < 0.05, n = 4). Neither treatment altered the resistance of the monolayers. Phenformin and AICAR significantly reduced amiloride-sensitive transepithelial Na+ transport compared with controls (P < 0.05, n = 4). This was a result of both decreased Na+,K+-ATPase activity and amiloride-sensitive apical Na+ conductance. Transepithelial Na+ transport decreased with increasing concentrations of phenformin (0.1–10 mm) and showed a significant correlation with AMPK activity. Taken together, these results show that phenformin and AICAR suppress amiloride-sensitive Na+ transport across H441 cells via a pathway that includes activation of AMPK and inhibition of both apical Na+ entry through ENaC and basolateral Na+ extrusion via the Na+,K+-ATPase. These are the first studies to provide a cellular signalling mechanism for the action of phenformin on ion transport processes, and also the first studies showing AMPK as a regulator of Na+ absorption in the lung. PMID:15919715
Feig, Denice S; Murphy, Kellie; Asztalos, Elizabeth; Tomlinson, George; Sanchez, Johanna; Zinman, Bernard; Ohlsson, Arne; Ryan, Edmond A; Fantus, I George; Armson, Anthony B; Lipscombe, Lorraine L; Barrett, Jon F R
2016-07-19
The incidence of type 2 diabetes in pregnancy is rising and rates of serious adverse maternal and fetal outcomes remain high. Metformin is a biguanide that is used as first-line treatment for non-pregnant patients with type 2 diabetes. We hypothesize that metformin use in pregnancy, as an adjunct to insulin, will decrease adverse outcomes by reducing maternal hyperglycemia, maternal insulin doses, maternal weight gain and gestational hypertension/pre-eclampsia. In addition, since metformin crosses the placenta, metformin treatment of the fetus may have a direct beneficial effect on neonatal outcomes. Our aim is to compare the effectiveness of the addition of metformin to insulin, to standard care (insulin plus placebo) in women with type 2 diabetes in pregnancy. The MiTy trial is a multi-centre randomized trial currently enrolling pregnant women with type 2 diabetes, who are on insulin, between the ages of 18-45, with a gestational age of 6 weeks 0 days to 22 weeks 6 days. In this randomized, double-masked, parallel placebo-controlled trial, after giving informed consent, women are randomized to receive either metformin 1,000 mg twice daily or placebo twice daily. A web-based block randomization system is used to assign women to metformin or placebo in a 1:1 ratio, stratified for site and body mass index. The primary outcome is a composite neonatal outcome of pregnancy loss, preterm birth, birth injury, moderate/severe respiratory distress, neonatal hypoglycemia, or neonatal intensive care unit admission longer than 24 h. Secondary outcomes are large for gestational age, cord blood gas pH < 7.0, congenital anomalies, hyperbilirubinemia, sepsis, hyperinsulinemia, shoulder dystocia, fetal fat mass, as well as maternal outcomes: maternal weight gain, maternal insulin doses, maternal glycemic control, maternal hypoglycemia, gestational hypertension, preeclampsia, cesarean section, number of hospitalizations during pregnancy, and duration of hospital stays. The trial aims to enroll 500 participants. The results of this trial will inform endocrinologists, obstetricians, family doctors, and other healthcare professionals caring for women with type 2 diabetes in pregnancy, as to the benefits of adding metformin to insulin in this high risk population. ClinicalTrials.gov Identifier: no. NCT01353391 . Registered February 6, 2009.
Current management of diabetes mellitus and future directions in care.
Chatterjee, Sudesna; Davies, Melanie J
2015-11-01
The last 90 years have seen considerable advances in the management of type 1 and type 2 diabetes. Prof MacLean of Guy's Hospital wrote in the Postgraduate Medical Journal in 1926 about the numerous challenges that faced patients and their healthcare professionals in delivering safe and effective diabetes care at that time. The discovery of insulin in 1922 heralded a new age in enabling long-term glycaemic control, which reduced morbidity and mortality. Thirty years later, the first oral agents for diabetes, the biguanides and sulfonylureas, appeared and freed type 2 patients from having to inject insulin following diagnosis. Improvements in insulin formulations over the decades, including rapid-acting and long-acting insulin analogues that more closely mimic physiological insulin secretion, have increased the flexibility and efficacy of type 1 diabetes management. The last two decades have seen major advances in technology, which has manifested in more accurate glucose monitoring systems and insulin delivery devices ('insulin pump'). Increased understanding of the pathophysiological deficits underlying type 2 diabetes has led to the development of targeted therapeutic approaches such as on the small intestine (glucagon-like peptide-1 receptor analogues and dipeptidyl-peptidase IV inhibitors) and kidneys (sodium-glucose cotransporter-2 inhibitors). A patient-centred approach delivered by a multidisciplinary team is now advocated. Glycaemic targets are set according to individual circumstances, taking into account factors such as weight, hypoglycaemia risk and patient preference. Stepwise treatment guidelines devised by international diabetes organisations standardise and rationalise management. Structured education programmes and psychological support are now well-established as essential for improving patient motivation and self-empowerment. Large multicentre randomised trials have confirmed the effectiveness of intensive glycaemic control on microvascular outcomes, but macrovascular outcomes and cardiovascular safety remain controversial with several glucose-lowering agents. Future directions in diabetes care include strategies such as the 'bionic pancreas', stem cell therapy and targeting the intestinal microbiome. All of these treatments are still being refined, and it may be several decades before they are clinically useful. Prevention and cure of diabetes is the Holy Grail but remain elusive due to lack of detailed understanding of the metabolic, genetic and immunological causes that underpin diabetes. Much progress has been made since the time of Prof MacLean 90 years ago, but there are still great strides to be taken before the life of the patient with diabetes improves even more significantly. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Bilayer Tablet Formulation of Metformin HCl and Acarbose: A Novel Approach To Control Diabetes.
Tiwari, Ruchi; Gupta, Ankita; Joshi, Meenakshi; Tiwari, Gaurav
2014-01-01
The present investigation studied a novel bilayer tablet having an extended release system of metformin HCl with Eudragit RS 100 and RL 100 and an immediate release system of acarbose with polyvinylpyrrolidone K30 (PVP K30) and polyethylene glycol 6000 (PEG 6000) in different ratios using solvent evaporation and cogrinding techniques. Solid dispersions (SDs) were characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), powder x-ray diffractometry (XRD), scanning electron microscopy (SEM), as well as by content uniformity, in vitro dissolution studies, and release kinetics. The selected SD system was subjected to bilayer tablet preparation by direct compression. Compressed tablets were evaluated for drug content, weight variation, friability, hardness, and thickness, and they underwent in vitro dissolution studies. The progressive disappearance of IR, x-ray, and thermotropic drug signals in SDs and physical mixtures were related to increasing amount of polymer. SEM studies suggested the homogenous dispersion of drug in polymers. FT-IR studies confirmed the formation of hydrogen bonding between drug and polymer. All tablet formulations showed compliance with pharmacopoeial standards. The formulations gave an initial burst effect to provide the loading dose of the drug followed by extended release for 12 h (Higuchi model via a non-Fickian diffusion controlled release mechanism). Stability studies conducted for the optimized formulation did not show any change in physical properties, drug content, or in vitro drug release. The goal of diabetes therapy today is to achieve and maintain as near normal glycemia as possible to prevent the long-term microvascular and macrovascular complications of elevated blood glucose levels. Oral therapeutic options for the treatment of type 2 diabetes mellitus, until recently, have been severely limited. Metformin, a biguanide, targets additional mechanisms of hyperglycemia by inhibiting hepatic glucose production and enhancing peripheral glucose uptake and thereby reducing insulin resistance; acarbose reversibly bind to pancreatic alpha-amylase and membrane-bound intestinal alpha-glucoside hydrolases. These enzymes inhibit hydrolysis of complex starches to oligosaccharides in the lumen of the small intestine and hydrolysis of oligosaccharides, trisaccharides, and disaccharides to glucose and other monosaccharides in the brush border of the small intestine. The two agents were found to have a remarkable effect on glycemic control. In the present investigation a bilayer tablet was prepared in which one layer gives instant action against diabetes and another layer maintain concentration of drug in plasma for longer periods.
Clinical evaluation of long-term users of two contact lens care preservative systems.
Young, Graeme; Keir, Nancy; Hunt, Chris; Woods, Craig A
2009-03-01
To clinically evaluate long-term users of two different contact lens care preservative systems and to investigate whether prolonged use is associated with an increase in the prevalence of dry eye. Eighty-nine wearers of group IV hydrogel or silicone hydrogel lenses participated in this one-visit, investigator-masked study. Subjects were required to have consistently used a polyhexamethylene biguanide (PHMB) or polyquaternium-1 (PQT) based solution for 2 years. Consistent use was defined as 80% for the past 2 years and 100% for the past year. Clinical assessments included: average and comfortable wear time; overall and end-of-day comfort; signs of dryness, discomfort, burning or stinging, grittiness or scratchiness and visual changes; non-invasive and fluorescein break-up-time; pre-ocular tear film lipids, tear meniscus height, Schirmer and fluorescein clearance tests; limbal and bulbar hyperemia; palpebral roughness; corneal and conjunctival staining; lens front surface wetting; and lens film deposits. Significantly more grittiness or scratchiness was reported by subjects using a PHMB-containing system (67% vs. 44%; P = 0.02). Palpebral roughness and hyperemia were significantly greater in the PHMB group wearing group IV lenses (P = 0.01 and P = 0.05, respectively). Corneal staining was significantly higher in the PHMB users in all four peripheral sectors (P < 0.01). Nasal and temporal conjunctival staining was also significantly higher for users of PHMB-containing systems (P < 0.05). Front surface lens wettability was significantly better for group IV PQT users compared to PHMB users (P = 0.008), with 84% vs. 72%, respectively, with lenses graded by the investigator as having "good" or "excellent" wettability. Significantly higher levels of lens front surface film deposits were noted with PHMB users (P = 0.007), with 58% of group IV lenses treated with PHMB compared with 38% of group IV lenses treated with PQT showing some lens front surface film deposition. No significant differences between the two preservative system groups were noted for the range of dry eye evaluations nor the remaining clinical assessments. Differences in both ocular and lens characteristic were observed between long-term users of two preservative systems used in many contact lens multi-purpose solutions. The findings from this study did not support the hypothesis that prolonged use of PHMB-containing solutions leads to dry eye. Additional studies including a larger sample size and perhaps longer use of the systems could help to further elucidate differences in clinical performance between systems.
Pin site care for preventing infections associated with external bone fixators and pins.
Lethaby, Anne; Temple, Jenny; Santy-Tomlinson, Julie
2013-12-03
Metal pins are used to apply skeletal traction or external fixation devices in the management of orthopaedic fractures. These percutaneous pins protrude through the skin, and the way in which they are treated after insertion may affect the incidence of pin site infection. This review set out to summarise the evidence of pin site care on infection rates. To assess the effect on infection rates of different methods of cleansing and dressing orthopaedic percutaneous pin sites. In September 2013, for this third update, we searched the Cochrane Wounds Group Specialised Register; The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library); Ovid MEDLINE; Ovid MEDLINE (In-Process & Other Non-Indexed Citations); Ovid EMBASE; and EBSCO CINAHL. We evaluated all randomised controlled trials (RCTs) that compared the effect on infection and other complication rates of different methods of cleansing or dressing orthopaedic percutaneous pin sites. Two review authors independently assessed the citations retrieved by the search strategies for reports of relevant RCTs, then independently selected trials that satisfied the inclusion criteria, extracted data and undertook quality assessment. A total of eleven trials (572 participants) were eligible for inclusion in the review but not all participants contributed data to each comparison. Three trials compared a cleansing regimen (saline, alcohol, hydrogen peroxide or antibacterial soap) with no cleansing (application of a dry dressing), three trials compared alternative sterile cleansing solutions (saline, alcohol, peroxide, povidone iodine), three trials compared methods of cleansing (one trial compared identical pin site care performed daily or weekly and the two others compared sterile with non sterile techniques), one trial compared daily pin site care with no care and six trials compared different dressings (using different solutions/ointments and dry and impregnated gauze or sponges). One small blinded study of 38 patients found that the risk of pin site infection was significantly reduced with polyhexamethylene biguanide (PHMB) gauze when compared to plain gauze (RR 0.23, 95% CI 0.12 to 0.44) (infection rate of 1% in the PHMB group and 4.5% in the control group) but this study was at high risk of bias as the unit of analysis was observations rather than patients. There were no other statistically significant differences between groups in any of the other trials. The available trial evidence was not extensive, was very heterogeneous and generally of poor quality, so there was insufficient evidence to be able to identify a strategy of pin site care that minimises infection rates. Adequately-powered randomised trials are required to examine the effects of different pin care regimens, and co-interventions - such as antibiotic use - and other extraneous factors must be controlled in the study designs.
Ho, Henrietta; Shi, Yuan; Chua, Jacqueline; Tham, Yih-Chung; Lim, Sing Hui; Aung, Tin; Wong, Tien Yin; Cheng, Ching-Yu
2017-03-01
There is limited understanding of the associations between systemic medication use and intraocular pressure (IOP) in the general population. To examine the association between systemic medication use and IOP in a multiethnic Asian population. In this post hoc analysis of the Singapore Epidemiology of Eye Diseases study, a population-based study of 10 033 participants (78.7% response rate) from 3 racial/ethnic groups (Chinese [recruited from February 9, 2009, through December 19, 2011], Malays [recruited from August 16, 2004, though July 10, 2006], and Indians [recruited from May 21, 2007, through December 29, 2009]), participants with glaucoma, previous ocular surgery, or trauma and an IOP asymmetry greater than 5 mm Hg between eyes were excluded. Intraocular pressure was measured using Goldmann applanation tonometry. An interviewer-administered questionnaire was conducted to collect data on medication and other variables. Data analysis was performed from August 1 through October 31, 2015. Associations between medication and IOP were assessed using linear regression models adjusted for age, sex, body mass index, ethnicity, and the medical condition for which the medication was taken (angiotensin-converting enzyme inhibitors [ACEIs], angiotensin receptor blockers [ARBs], and β-blockers adjusted for blood pressure, statins adjusted for lipids, and biguanides, sulfonylureas, α-glycosidase inhibitors [AGIs], and insulin adjusted for glycosylated hemoglobin). Medications associated with significant IOP differences were incorporated into regression models adjusted for concomitant use of multiple medications. Generalized estimating equation models were used to account for correlation between eyes. Of the 10 033 participants, we analyzed 8063 (mean [SD] age, 57.0 [9.6] years; 4107 female [50.9%]; 2680 Chinese [33.2%], 2757 Malay [34.2%], and 2626 Indian [32.6%] individuals). Systemic β-blocker use was independently associated with an IOP of 0.45 mm Hg lower (95% CI, -0.65 to -0.25 mm Hg; P < .001). Conversely, higher mean IOP was associated with use of ACEIs (0.33 mm Hg higher; 95% CI, 0.08 to 0.57 mm Hg; P = .008), ARBs (0.40 mm Hg higher; 95% CI, 0.40-0.75 mm Hg; P = .02), statins (0.21 mm Hg higher; 95% CI, 0.02-0.4 mm Hg; P = .03), and sulfonylureas (0.34 mm Hg higher; 95% CI, 0.05-0.63 mm Hg; P = .02). An interaction between medication classes for additive, synergistic, or antagonistic effects on IOP was not identified. Although systemic β-blocker use was associated with lower IOP and systemic ACEI, ARB, statin, and sulfonylurea use was associated with higher IOP in this study, the associations were modest at best. Only the associations with systemic hypoglycemic agents were greater than 1 mm Hg, a threshold that has translated to a 14% greater risk of incident glaucoma across 5 years in other studies. At this point, the effect of systemic medication on IOP in eyes with glaucoma is not well elucidated but important. Our findings indicate that patients with glaucoma may potentially be at risk of higher or lower IOP, depending on medication class, and this would in turn affect management of IOP control.
Kołodziejczyk, Michał Krzysztof; Kołodziejska, Justyna; Zgoda, Marian Mikołaj
2012-01-01
Metformin hydrochloride after buformin and phenformin belongs to the group of biguanid derivatives used as oral anti-diabetic drugs. The object of the study is the technological analysis and the potential effect of biodegradable macromolecular polymers on the technological and therapeutic parameters of oral anti-diabetic medicinal products with metformin hydrochloride: Siofor, Formetic, Glucophage, Metformax in doses of 500mg and 1000mg and Glucophage XR in a dose of 500 mg of modified release. Market therapeutic products containing 500 and 1000 mg of metformin hydrochloride in a normal formulation and 500 mg of metformin hydrochloride in a formulation of modified release were analyzed. Following research methods were used: technological analysis of tablets, study of disintegration time of tablets, evaluation of pharmaceutical availability of metformin hydrochloride from tested therapeutic products, mathematical and kinetic analysis of release profiles of metformin hydrochloride, statistical analysis of mean differences of release coefficients. The percentage of excipients in the XR formulation is higher and constitutes 50.5% of a tablet mass. However, in standard formulations the percentage is lower, between 5.5% and 12.76%. On the basis of the results of disintegration time studies, the analysed therapeutic products can be divided into two groups, regardless the dose. The first one are preparations with faster (not fast!) disintegration: Glucophage i Metformax. The second group are preparations with slower disintegration, more balanced in the aspect of a high dose of the biologically active substance: Formetic and Siofor. Products with a lower content of excipients (Metformax, Glucophage) disintegrate in a faster way. The disintegration rate of the products with a higher content of excipients (Formetic, Siofor) is slower. The appearance of metformin hydrochloride concentration in the gastrointestinal contents, balanced in time, caused by a slower disintegration-dissolving of a tablet, is conducive to the reduction of gastrointestinal side effects and better tolerance of the therapeutic product by a patient. The study on pharmaceutical availability indicated relevant kinetic differences between tested therapeutic products. They are particularly visible between standard formulations and the one with prolonged release (Glucophage XR500). Its release profile bears features of kinetics similar to zero-order reactions. Tested therapeutic products contain a large amount of the biologically active substance in relation to the content of excipients. A higher content of excipients in a single tablet mass distinguishes Siofor in comparison with Glucophage i Metformax. The excipients used in the formulations of tested preparations are comparable. A higher percentage of binding agents (HPMC, PVP) is observed, but there is a lack of typical disintegrants which results in a longer disintegration time up to 15 minutes. Siofor disintegrates at the same time as Formetic, but longer than Glucophage i Metformax. Considering the large content of the active substance and pharmacological properties of metformin hydrochloride, such a disintegration might have beneficial consequences, because the amount of the free active substance in the gastrointestinal tract will increase over the longer time period what will reduce the level of gastrointestinal side effects. The release profiles of metformin hydrochloride from tested therapeutic products are comparable. The Glucophage XR 500 formulation with the release kinetics of metformin hydrochloride similar to the zero-order kinetics is completely different from the others. The above is confirmed by the mathematical analysis of release profiles of metformin hydrochloride from tested preparations where equations of lines describing the release profile are characterized by similar values of correlation coefficients.
Effect of lens care system on silicone hydrogel contact lens wettability.
Guillon, Michel; Maissa, Cécile; Wong, Stéphanie; Patel, Trisha; Garofalo, Renée
2015-12-01
The purpose was to compare the effect of the repeated usage of two care systems (one hydrogen peroxide cleaning and disinfecting system and one polyaminopropyl biguanide (PHMB) containing multi-purpose system) with silicone hydrogel contact lenses worn for three months on a daily wear modality. A specific aspect of interest was of the effect of the care systems on contact lens wettability. Seventy-four symptomatic contact lens wearers, habitually wearing either ACUVUE(®) OASYS(®) (n=37) or PureVision™ (n=37), constituted the study population. The study was a two-arm prospective, investigator-masked, bilateral study of three-month duration to evaluate the effects of CLEAR CARE(®) compared with renu(®) fresh™. The subjects were randomized to one of the two lens care systems. Contact lens wettability and surface cleanliness were assessed with the Tearscope and reported in terms of pre-lens non-invasive break-up time (PL-NIBUT) and visible deposits. Baseline assessments at enrollment were with the subjects' own contact lenses worn for at least 6h when using their habitual PHMB-preserved care system and at the dispensing visit with new contact lenses. At the follow-up visits, the contact lenses were worn for at least 6h, and were at least 11 days old for ACUVUE(®) OASYS(®) and 25 days old for PureVision™. The results obtained showed that: (i) with CLEAR CARE(®), a significant improvement in contact lens wettability was recorded compared with the habitual care system at the three-month follow-up visit (mean median PL-NIBUT 5.8 vs. 4.0 s, p<0.001). Further, with this same lens care system a significant increase in wettability was observed at the three-month follow-up visit compared with dispensing (mean median PL-NIBUT 5.8 vs. 4.5s, p=0.022). (ii) Whereas no difference in contact lens wettability was observed at dispensing between the two lens care groups (mean PL-NIBUT: 4.5 vs. 4.2s, p=0.518), a significantly more stable pre-lens tear film was observed with CLEAR CARE(®) than with renu(®) fresh™ at both the two-month (mean PL-NIBUT: 4.6 vs. 3.7s, p=0.005) and three-month (mean PL-NIBUT: 5.8 vs. 4.2 s, p=0.028) visits. iii. With renu(®) fresh™, no significant differences were observed at the end of three months of use compared with either the habitual care system or the new contact lens solution (mean PL-NIBUT: 3M 4.2 vs. Disp 4.2 s (p=0.420) vs. enrolment habitual care solution 5.1s (p=0.734)). iv. With CLEAR CARE(®) significant increases in the incidence of surfaces free of both mucus (3 month 95%. vs. habitual solution 82% enrolment; p=0.005) and lipid (3 month 87% vs. habitual solution 72% enrolment; p=0.009) were observed. Significantly better contact lens wettability and surface cleanliness were achieved for ACUVUE(®) OASYS(®) and PureVision™ with CLEAR CARE(®) than with renu(®) fresh™ at the end of three months of use. Copyright © 2015. Published by Elsevier Ltd.
Ozawa, Hikaru; Murai, Yuriko; Ozawa, Terutaka
2003-01-01
The development and progress of antidiabetic drugs (e.g., insulin preparations and hypoglycemic drugs) are retrospectively investigated in Japan. Their influences on the treatment of diabetes mellitus (DM) and its epidemiological aspects are also discussed. 1) Insulin preparations: Insulin was introduced for DM therapy in 1925, two or three years after its discovery in Canada. The preparations were raw extracts of bovine or porcine pancreas. These did not prevail widely in Japan because of the low incidence of DM before World Wan II. After the war, a shortage of mammalian materials compelled the use of fish pancreatic tissues such as bonito and/or tuna for insulin production. Insulin infection, so-called regular insulin, was first promoted in the 6th "Pharmacopoeia Japonica" (JP6) in 1951 and has been maintained to the present edition (JP14, 2001). Although depot-type insulin preparations were developed in the USA and Europe during the war, the introduction of those preparations to Japan was delayed until 1951, when Protamine zinc insulin appeared. Globin zinc insulin and Isophane insulin were introduced for clinical use in 1952 and 1955, respectively. These were also adopted for JP7 (1961). Biphasic-type insulin, which has a rapid onset and long duration of activity, appeared in 1965. Purified preparations from bovine or porcine sources have been available since 1980, which might be a strong reason for the decrease in insulin allergy. Insulin from animal origin has been supplied for almost 60 years since its discovery. Amino acid sequences of insulins from various species of animals were determined by the pioneering studies of Sanger and his associates. Human insulin, which differs from porcine insulin by only one amino acid, was produced by Novo researchers in 1982 using a semi-synthetic method. Then the Lilly group soon succeeded in obtaining human insulin by recombinant DNA technology in the same year. Both products were introduced to Japan in 1985, and the recombinant products prevailed throughout the 1990s. Human insulin analogues (i.e., Insulin lispro and Insulin aspart) appeared in 2001. These are applied for after-meal glycosmia owing to their ultrarapid onset of activity. Self-injection by DM patients was legalized in 1981. To make the infection technique sure and easy, cartridge (pen-type) and disposable kit-type needles were devised in the 1990s. 2) Oral hypoglycemic drugs: Instead of the exclusive parenteral usage of insulins, there was also demand for oral dosage forms. The first of the sulfonyrlurea (SU) group, BZ-55, was used for DM clinically in 1955 in Germany. But it was soon withdrawn because of its antibacterial action. This led to the development of various SU groups. Tolbutamide (1956), chlorpropamide (1959), acetohexamide (1964) and tolazamide (1961) were introduced to Japan as first-generation SUs. Then glyclopyramide (Kyorin, 1965), glybenclamide (1971), gliclazide (1984) and glimepiride (1999) appeared as the second-generation SUs. These were used orally for Type 2 diabetes. Biguanide (BG) group, phenformin HC1 (1959), metformin HC1 (1961) and buformin HC1 (1961) had also been in use by oral treatment of Type 2 diabetes. SU appears to act by increasing the sensitivity of b-cells, which secrete insulin. BG probably exerts by increasing glucose transport across the membranes of target organs. 3) New types of antidiabetic drugs: a-Glucosidase inhibitors (i.e., acarbose: Bayer, 1993; and voglibose: Takeda, 1994) act on hyperglycemia after meals by decreasing glucose absorption. Thiazolidinedione compounds, such as troglitazone (Sankyo, 1995) and pioglitazone HC1 (Takeda, 1994) act by increasing the insulin sensitivity of the target tissues. These are useful for Type 2 DM patients when SUs are ineffective. Nevertheless, troglitazone was discontinued in 2000 due to severe liver damage. Nateglinide (Ajinomoto Co., 1999), which is a D-phenylalanine derivative acting similar to SUs, is useful orally for after-meal hyperglycemia of Type 2 diabetes. Epalrestat (Ono Yakuhin Co., 1992) is effective for diabetic neuropathy by reducing the formation of sorbitol. These anti-DM drugs were recently studied and developed in Japan. 4) The Japan Diabetes Society proposed a guideline on diagnostic criteria and treatment of diabetes mellitus (DM) in 1999 and revised it in 2002. DM is classified as insulin-dependent DM (Type l) and non-insulin dependent DM (Type 2). Type 1, juvenile onset DM, requires insulin therapy to prevent ketosis and to sustain life. Treatment of type 2, adult onset DM, is recommended as a step-by-step method, starting with dietary-exercise therapy, followed by oral hypoglycemic drugs and then insulin therapy. DM patients with complications should have a therapy devised to match their circumstances. 5) Epidemiological aspects: The mortality rate of DM compared to the time of drug appearance was traced from 1920 to 2000. The curve goes down slowly in the time frame of World War II, but rises from 1950 to 1970. The elevation could not be suppressed by the appearance of SUs, BGs or improved insulin preparations. The curve runs flat from 1980 to 1990, which might be related to the use of purified insulin or human insulin therapy. The mortality rate of DM indicates that death by hyperglycemic coma and other deaths resulting from complications are excluded. The survey of the principal cause of death by DM during the period of 1981-1990 indicates that the death rate due to hyperglycemic coma is only 1.7% of the total deaths caused by DM. The effect of drug therapy on all of the death resulting from DM is not detected. Hospital visitation and admission rates of the DM patients have been recorded since 1952 in Japan. This curve is rising continuously, and none of the antidiabetic drugs has been able to suppress it. These data show that the antidiabetic drugs relieve DM symptoms through their effective hypoglycemic actions, but that they cannot suppress the mortality rate of DM. It is possible that none of the drugs currently available can suppress the increasing tendency of DM patients.
Norman, Gill; Christie, Janice; Liu, Zhenmi; Westby, Maggie J; Jefferies, Jayne M; Hudson, Thomas; Edwards, Jacky; Mohapatra, Devi Prasad; Hassan, Ibrahim A; Dumville, Jo C
2017-07-12
Burn wounds cause high levels of morbidity and mortality worldwide. People with burns are particularly vulnerable to infections; over 75% of all burn deaths (after initial resuscitation) result from infection. Antiseptics are topical agents that act to prevent growth of micro-organisms. A wide range are used with the intention of preventing infection and promoting healing of burn wounds. To assess the effects and safety of antiseptics for the treatment of burns in any care setting. In September 2016 we searched the Cochrane Wounds Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE, Ovid MEDLINE (In-Process & Other Non-Indexed Citations), Ovid Embase, and EBSCO CINAHL. We also searched three clinical trials registries and references of included studies and relevant systematic reviews. There were no restrictions based on language, date of publication or study setting. We included randomised controlled trials (RCTs) that enrolled people with any burn wound and assessed the use of a topical treatment with antiseptic properties. Two review authors independently performed study selection, risk of bias assessment and data extraction. We included 56 RCTs with 5807 randomised participants. Almost all trials had poorly reported methodology, meaning that it is unclear whether they were at high risk of bias. In many cases the primary review outcomes, wound healing and infection, were not reported, or were reported incompletely.Most trials enrolled people with recent burns, described as second-degree and less than 40% of total body surface area; most participants were adults. Antiseptic agents assessed were: silver-based, honey, Aloe Vera, iodine-based, chlorhexidine or polyhexanide (biguanides), sodium hypochlorite, merbromin, ethacridine lactate, cerium nitrate and Arnebia euchroma. Most studies compared antiseptic with a topical antibiotic, primarily silver sulfadiazine (SSD); others compared antiseptic with a non-antibacterial treatment or another antiseptic. Most evidence was assessed as low or very low certainty, often because of imprecision resulting from few participants, low event rates, or both, often in single studies. Antiseptics versus topical antibioticsCompared with the topical antibiotic, SSD, there is low certainty evidence that, on average, there is no clear difference in the hazard of healing (chance of healing over time), between silver-based antiseptics and SSD (HR 1.25, 95% CI 0.94 to 1.67; I 2 = 0%; 3 studies; 259 participants); silver-based antiseptics may, on average, increase the number of healing events over 21 or 28 days' follow-up (RR 1.17 95% CI 1.00 to 1.37; I 2 = 45%; 5 studies; 408 participants) and may, on average, reduce mean time to healing (difference in means -3.33 days; 95% CI -4.96 to -1.70; I 2 = 87%; 10 studies; 979 participants).There is moderate certainty evidence that, on average, burns treated with honey are probably more likely to heal over time compared with topical antibiotics (HR 2.45, 95% CI 1.71 to 3.52; I 2 = 66%; 5 studies; 140 participants).There is low certainty evidence from single trials that sodium hypochlorite may, on average, slightly reduce mean time to healing compared with SSD (difference in means -2.10 days, 95% CI -3.87 to -0.33, 10 participants (20 burns)) as may merbromin compared with zinc sulfadiazine (difference in means -3.48 days, 95% CI -6.85 to -0.11, 50 relevant participants). Other comparisons with low or very low certainty evidence did not find clear differences between groups.Most comparisons did not report data on infection. Based on the available data we cannot be certain if antiseptic treatments increase or reduce the risk of infection compared with topical antibiotics (very low certainty evidence). Antiseptics versus alternative antisepticsThere may be some reduction in mean time to healing for wounds treated with povidone iodine compared with chlorhexidine (MD -2.21 days, 95% CI 0.34 to 4.08). Other evidence showed no clear differences and is of low or very low certainty. Antiseptics versus non-antibacterial comparatorsWe found high certainty evidence that treating burns with honey, on average, reduced mean times to healing in comparison with non-antibacterial treatments (difference in means -5.3 days, 95% CI -6.30 to -4.34; I 2 = 71%; 4 studies; 1156 participants) but this comparison included some unconventional treatments such as amniotic membrane and potato peel. There is moderate certainty evidence that honey probably also increases the likelihood of wounds healing over time compared to unconventional anti-bacterial treatments (HR 2.86, 95% C 1.60 to 5.11; I 2 = 50%; 2 studies; 154 participants).There is moderate certainty evidence that, on average, burns treated with nanocrystalline silver dressings probably have a slightly shorter mean time to healing than those treated with Vaseline gauze (difference in means -3.49 days, 95% CI -4.46 to -2.52; I 2 = 0%; 2 studies, 204 participants), but low certainty evidence that there may be little or no difference in numbers of healing events at 14 days between burns treated with silver xenograft or paraffin gauze (RR 1.13, 95% CI 0.59 to 2.16 1 study; 32 participants). Other comparisons represented low or very low certainty evidence.It is uncertain whether infection rates in burns treated with either silver-based antiseptics or honey differ compared with non-antimicrobial treatments (very low certainty evidence). There is probably no difference in infection rates between an iodine-based treatment compared with moist exposed burn ointment (moderate certainty evidence). It is also uncertain whether infection rates differ for SSD plus cerium nitrate, compared with SSD alone (low certainty evidence).Mortality was low where reported. Most comparisons provided low certainty evidence that there may be little or no difference between many treatments. There may be fewer deaths in groups treated with cerium nitrate plus SSD compared with SSD alone (RR 0.22, 95% CI 0.05 to 0.99; I 2 = 0%, 2 studies, 214 participants) (low certainty evidence). It was often uncertain whether antiseptics were associated with any difference in healing, infections, or other outcomes. Where there is moderate or high certainty evidence, decision makers need to consider the applicability of the evidence from the comparison to their patients. Reporting was poor, to the extent that we are not confident that most trials are free from risk of bias.