Science.gov

Sample records for bilateral continuous theta

  1. Bilateral Theta-Burst TMS to Influence Global Gestalt Perception

    PubMed Central

    Ritzinger, Bernd; Huberle, Elisabeth; Karnath, Hans-Otto

    2012-01-01

    While early and higher visual areas along the ventral visual pathway in the inferotemporal cortex are critical for the recognition of individual objects, the neural representation of human perception of complex global visual scenes remains under debate. Stroke patients with a selective deficit in the perception of a complex global Gestalt with intact recognition of individual objects – a deficit termed simultanagnosia – greatly helped to study this question. Interestingly, simultanagnosia typically results from bilateral lesions of the temporo-parietal junction (TPJ). The present study aimed to verify the relevance of this area for human global Gestalt perception. We applied continuous theta-burst TMS either unilaterally (left or right) or bilateral simultaneously over TPJ. Healthy subjects were presented with hierarchically organized visual stimuli that allowed parametrical degrading of the object at the global level. Identification of the global Gestalt was significantly modulated only for the bilateral TPJ stimulation condition. Our results strengthen the view that global Gestalt perception in the human brain involves TPJ and is co-dependent on both hemispheres. PMID:23110106

  2. Bilateral theta-burst TMS to influence global gestalt perception.

    PubMed

    Ritzinger, Bernd; Huberle, Elisabeth; Karnath, Hans-Otto

    2012-01-01

    While early and higher visual areas along the ventral visual pathway in the inferotemporal cortex are critical for the recognition of individual objects, the neural representation of human perception of complex global visual scenes remains under debate. Stroke patients with a selective deficit in the perception of a complex global Gestalt with intact recognition of individual objects - a deficit termed simultanagnosia - greatly helped to study this question. Interestingly, simultanagnosia typically results from bilateral lesions of the temporo-parietal junction (TPJ). The present study aimed to verify the relevance of this area for human global Gestalt perception. We applied continuous theta-burst TMS either unilaterally (left or right) or bilateral simultaneously over TPJ. Healthy subjects were presented with hierarchically organized visual stimuli that allowed parametrical degrading of the object at the global level. Identification of the global Gestalt was significantly modulated only for the bilateral TPJ stimulation condition. Our results strengthen the view that global Gestalt perception in the human brain involves TPJ and is co-dependent on both hemispheres.

  3. Continuous theta burst transcranial magnetic stimulation affects brain functional connectivity.

    PubMed

    Dan Cao; Yingjie Li; Ling Wei; Yingying Tang

    2016-08-01

    Prefrontal cortex (PFC) plays an important role in the emotional processing as well as in the functional brain network. Hyperactivity in the right dorsolateral prefrontal cortex (DLPFC) would be found in anxious participants. However, it is still unclear what the role of PFC played in a resting functional network. Continuous theta burst transcranial magnetic stimulation (cTBS) is an effective tool to create virtual lesions on brain regions. In this paper, we applied cTBS over right prefrontal area, and investigated the effects of cTBS on the brain activity for functional connectivity by the method of graph theory. We recorded 64-channels EEG on thirteen healthy participants in the resting condition and emotional tasks before and after 40 s of cTBS. This work focused on the effect of cTBS on cortical activities in the resting condition by calculating the coherence between EEG channels and building functional networks before and after cTBS in the delta, theta, alpha and beta bands. Results revealed that 1) The functional connectivity after cTBS was significantly increased compared with that before cTBS in delta, theta, alpha and beta bands in the resting condition; 2) The efficiency-cost reached the maximum before and after cTBS both with the cost about 0.3 in the bands above, which meant that the information transmission of functional brain network with this cost was highly efficient; 3) the clustering coefficient and path length after cTBS was significantly increased in delta, theta and beta bands. In conclusion, cTBS over PFC indeed enhanced the functional connectivity in the resting condition. In addition, the information transmission in the resting brain network was highly efficient with the cost about 0.3.

  4. Continuous theta-burst stimulation modulates tactile synchronization

    PubMed Central

    2013-01-01

    Background Temporal order judgement (TOJ) is the ability to detect the order of occurrence of two sequentially delivered stimuli. Previous research has shown that TOJ in the presence of synchronized periodic conditioning stimuli impairs TOJ performance, and this phenomenon is suggested to be mediated by GABAergic interneurons that cause perceptual binding across the two skin sites. Application of continuous theta-burst repetitive TMS (cTBS) over primary somatosensory cortex (SI) alters temporal and spatial tactile perception. The purpose of this study was to examine TOJ perception in the presence and absence of synchronized periodic conditioning stimuli before and after cTBS applied over left-hemisphere SI. A TOJ task was administered on the right index and middle finger (D2 and D3) in two separate sessions in the presence and absence of conditioning stimuli (a background low amplitude sinusoidal vibration). Results CTBS reduced the impact of the conditioning stimuli on TOJ performance for up to 18 minutes following stimulation while sham cTBS did not affect TOJ performance. In contrast, the TOJ task performed in the absence of synchronized conditioning stimulation was unaltered following cTBS. Conclusion We conclude that cTBS suppresses inhibitory networks in SI that mediate perceptual binding during TOJ synchronization. CTBS offers one method to suppress cortical excitability in the cortex and potentially benefit clinical populations with altered inhibitory cortical circuits. Additionally, TOJ measures with conditioning stimuli may provide an avenue to assess sensory processing in neurologically impaired patient populations. PMID:23968301

  5. Modulation of Visual Cortex Excitability by Continuous Theta Burst Stimulation Depends on Coil Type

    PubMed Central

    Brückner, Sabrina; Kammer, Thomas

    2016-01-01

    Subthreshold continuous theta burst stimulation of the visual cortex has been reported to cause inhibitory effects on phosphene threshold. In contrast, we observed no inhibition in a former study applying higher stimulation intensities. The main discrepancies between our experiments and the former studies were stimulation intensity and coil type. We aimed at investigating the role of these factors on the modulatory effects of continuous theta burst stimulation applied to the visual cortex. In a between-group-design, we used either a figure-of-eight-coil or a round coil, respectively. We measured phosphene thresholds prior and after continuous theta burst stimulation applied at 80% of individual phosphene threshold. With the figure-of-eight-coil, phosphene thresholds significantly decreased following stimulation. This is in line with the results of our former study but contrary to the increase observed in the other two studies. Using a round coil, no significant effect was observed. A correlation analysis revealed an inhibitory effect in subjects with higher phosphene thresholds only. Furthermore, the slope of the baseline phosphene threshold seems to predict the direction of modulation, independent from coil type. Thus, modulatory effects of continuous theta burst stimulation seem to depend on coil type and psychophysics parameters, probably due to different cortex volumes stimulated. Stochastic resonance phenomena might account for the differences observed. PMID:27459108

  6. Bilateral primary motor cortex circuitry is modulated due to theta burst stimulation to left dorsal premotor cortex and bimanual training.

    PubMed

    Neva, Jason L; Vesia, Michael; Singh, Amaya M; Staines, W Richard

    2015-08-27

    Motor preparatory and execution activity is enhanced after a single session of bimanual visuomotor training (BMT). Recently, we have shown that increased primary motor cortex (M1) excitability occurs when BMT involves simultaneous activation of homologous muscles and these effects are enhanced when BMT is preceded by intermittent theta burst stimulation (iTBS) to the left dorsal premotor cortex (lPMd). The neural mechanisms underlying these modulations are unclear, but may include interhemispheric interactions between homologous M1s and connectivity with premotor regions. The purpose of this study was to investigate the possible intracortical and interhemispheric modulations of the extensor carpi radials (ECR) representation in M1 bilaterally due to: (1) BMT, (2) iTBS to lPMd, and (3) iTBS to lPMd followed by BMT. This study tests three related hypotheses: (1) BMT will enhance excitability within and between M1 bilaterally, (2) iTBS to lPMd will primarily enhance left M1 (lM1) excitability, and (3) the combination of these interventions will cause a greater enhancement of bilateral M1 excitability. We used single and paired-pulse transcranial magnetic stimulation (TMS) to quantify M1 circuitry bilaterally. The results demonstrate the neural mechanisms underlying the early markers of rapid functional plasticity associated with BMT and iTBS to lPMd primarily relate to modulations of long-interval inhibitory (i.e. GABAB-mediated) circuitry within and between M1s. This work provides novel insight into the underlying neural mechanisms involved in M1 excitability changes associated with BMT and iTBS to lPMd. Critically, this work may inform rehabilitation training and stimulation techniques that modulate cortical plasticity after brain injury.

  7. Improvement of language functions in a chronic non-fluent post-stroke aphasic patient following bilateral sequential theta burst magnetic stimulation.

    PubMed

    Vuksanović, Jasmina; Jelić, Milan B; Milanović, Sladjan D; Kačar, Katarina; Konstantinović, Ljubica; Filipović, Saša R

    2015-01-01

    In chronic non-fluent aphasia patients, inhibition of the intact right hemisphere (RH), by transcranial magnetic stimulation (TMS) or similar methods, can induce improvement in language functions. The supposed mechanism behind this improvement is a release of preserved left hemisphere (LH) language networks from RH transcallosal inhibition. Direct stimulation of the damaged LH can sometimes bring similar results too. Therefore, we developed a novel treatment approach that combined direct LH (Broca's area (BA)) stimulation, by intermittent theta burst stimulation (TBS), with homologue RH area's inhibition, by continuous TBS. We present the results of application of 15 daily sessions of the described treatment approach in a right-handed patient with chronic post-stroke non-fluent aphasia. The intervention appeared to improve several language functions, but most notably propositional speech, semantic fluency, short-term verbal memory, and verbal learning. Bilateral TBS modulation of activation of the language-related areas of both hemispheres seems to be a feasible and promising way to induce recovery in chronic aphasic patients. Due to potentially cumulative physiological effects of bilateral stimulation, the improvements may be even greater than following unilateral interventions.

  8. Effects of bilateral vestibular deafferentation in rat on hippocampal theta response to somatosensory stimulation, acetylcholine release, and cholinergic neurons in the pedunculopontine tegmental nucleus.

    PubMed

    Aitken, Phillip; Zheng, Yiwen; Smith, Paul F

    2017-03-27

    Vestibular dysfunction has been shown to cause spatial memory impairment. Neurophysiological studies indicate that bilateral vestibular loss (BVL), in particular, is associated with an impairment of the response of hippocampal place cells and theta rhythm. However, the specific neural pathways through which vestibular information reaches the hippocampus are yet to be fully elucidated. The aim of the present study was to further investigate the hypothesised 'theta-generating pathway' from the brainstem vestibular nucleus to the hippocampus. BVL, and in some cases, unilateral vestibular loss (UVL), induced by intratympanic sodium arsanilate injections in rats, were used to investigate the effects of vestibular loss on somatosensory-induced type 2 theta rhythm, acetylcholine (ACh) release in the hippocampus, and the number of cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg), an important part of the theta-generating pathway. Under urethane anaesthesia, BVL was found to cause a significant increase in the maximum power of the type 2 theta (3-6 Hz) frequency band compared to UVL and sham animals. Rats with BVL generally exhibited a lower basal level of ACh release than sham rats; however, this difference was not statistically significant. The PPTg of BVL rats exhibited significantly more choline-acetyltransferase (ChAT)-positive neurons than that of sham animals, as did the contralateral PPTg of UVL animals; however, the number of ChAT-positive neurons on the ipsilateral side of UVL animals was not significantly different from sham animals. The results of these studies indicate that parts of the theta-generating pathway undergo a significant reorganisation following vestibular loss, which suggests that this pathway is important for the interaction between the vestibular system and the hippocampus.

  9. Bilateral Continuous Automated Distraction Osteogenesis: Proof of Principle.

    PubMed

    Peacock, Zachary S; Tricomi, Brad J; Faquin, William C; Magill, John C; Murphy, Brian A; Kaban, Leonard B; Troulis, Maria J

    2015-11-01

    The purpose of this study was to demonstrate that automated, continuous, curvilinear distraction osteogenesis (DO) in a minipig model is effective when performed bilaterally, at rates up to 3 mm/day, to achieve clinically relevant lengthening. A Yucatan minipig in the mixed dentition phase underwent bilaterally, at a continuous DO at a rate of 2 mm/day at the center of rotation; 1.0 and 3.0 mm/day at the superior and inferior regions, respectively. The distraction period was 13 days with no latency period. Vector and rate of distraction were remotely monitored without radiographs, using the device sensor. After fixation and euthanasia, the mandible and digastric muscles were harvested. The ex vivo appearance, stability, and radiodensity of the regenerate were evaluated using a semiquantitative scale. Percent surface area (PSA) occupied by bone, fibrous tissue, cartilage, and hematoma were calculated using histomorphometrics. The effects of DO on the digastric muscles and mandibular condyles were assessed via microscopy, and degenerative changes were quantified. The animal was distracted to 21 mm and 24 mm on the right and left sides, respectively. Clinical appearance, stability, and radiodensity were scored as "3" bilaterally indicating osseous union. The total PSA occupied by bone (right = 75.53 ± 2.19%; left PSA = 73.11 ± 2.18%) approached that of an unoperated mandible (84.67 ± 0.86%). Digastric muscles and condyles showed negligible degenerative or abnormal histologic changes. This proof of principle study is the first report of osseous healing with no ill-effect on associated soft tissue and the mandibular condyle using bilateral, automated, continuous, and curvilinear DO at rates up to 3 mm/day. The model approximates potential human application of continuous automated distraction with a semiburied device.

  10. Continuous theta-burst stimulation over primary somatosensory cortex modulates short-latency afferent inhibition.

    PubMed

    Tsang, Philemon; Jacobs, Mark F; Lee, Kevin G H; Asmussen, Michael J; Zapallow, Christopher M; Nelson, Aimee J

    2014-11-01

    The present study investigated the effects of continuous theta-burst stimulation (cTBS) over primary somatosensory (SI) and motor (M1) cortices on motor-evoked potentials (MEPs) and short-latency afferent inhibition (SAI). MEPs and SAI were recorded from the first dorsal interosseous (FDI) muscle of the right hand following 30Hz cTBS over left-hemisphere SI and M1 delivered to the same participants in separate sessions. Measurements were taken before and up to 60min following cTBS. CTBS over M1 suppressed MEPs and did not alter SAI. In contrast cTBS over SI facilitated MEPs and decreased median and digital nerve evoked SAI. These findings indicate that SAI amplitude is influenced by cTBS over SI but not M1, suggesting an important role for SI in the modulation of this circuit. These data provide further evidence that cTBS over SI versus M1 has opposite effects on corticospinal excitability. To date, plasticity-inducing TMS protocols delivered over M1 have failed to modulate SAI, and the present research continues to support these findings. However, in young adults, cTBS over SI acts to reduce SAI and simultaneously increase corticospinal excitability. Future studies may investigate the potential to modulate SAI via targeting neural activity within SI. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Continuous Theta-Burst Stimulation Demonstrates a Causal Role of Premotor Homunculus in Action Understanding

    PubMed Central

    Sandberg, Kristian; Skewes, Joshua; Wolf, Thomas; Blicher, Jakob; Overgaard, Morten; Frith, Chris D.

    2014-01-01

    Although it is well established that regions of premotor cortex (PMC) are active during action observation, it remains controversial whether they play a causal role in action understanding. In the experiment reported here, we used off-line continuous theta-burst stimulation (cTBS) to investigate this question. Participants received cTBS over the hand and lip areas of left PMC, in separate sessions, before completing a pantomime-recognition task in which half of the trials contained pantomimed hand actions, and half contained pantomimed mouth actions. The results reveal a double dissociation: Participants were less accurate in recognizing pantomimed hand actions after receiving cTBS over the hand area than over the lip area and less accurate in recognizing pantomimed mouth actions after receiving cTBS over the lip area than over the hand area. This finding constrains theories of action understanding by showing that somatotopically organized regions of PMC contribute causally to action understanding and, thus, that the mechanisms underpinning action understanding and action performance overlap. PMID:24549297

  12. Facilitation of Fast Backward Priming After Left Cerebellar Continuous Theta-Burst Stimulation.

    PubMed

    Allen-Walker, Louise S T; Bracewell, R Martyn; Thierry, Guillaume; Mari-Beffa, Paloma

    2017-09-05

    Traditional theories of backward priming account only for the priming effects found at long stimulus onset asynchronies (SOAs). Here, we suggest that the presence of backward priming at short SOAs may be related to the integrative role of the cerebellum. Previous research has shown that the right cerebellum is involved in forward associative priming. Functional magnetic resonance imaging reveals some activation of the left cerebellar hemisphere during backward priming; but what this activation represents is unclear. Here we explore this issue using continuous theta-burst transcranial magnetic stimulation (cTBS) and associative priming in a lexical decision task. We tested the hypothesis that the left cerebellum plays a role in backward priming and that this is dissociated from the role of the right cerebellum in forward priming. Before and after cTBS was applied to their left and right cerebellar hemispheres, participants completed a lexical decision task. Although we did not replicate the forward priming effect reported in the literature, we did find a significant increase in backward priming after left relative to right cerebellar cTBS. We consider how theories of cerebellar function in the motor domain can be extended to language and cognitive models of backward priming.

  13. Continuous theta-burst stimulation demonstrates a causal role of premotor homunculus in action understanding.

    PubMed

    Michael, John; Sandberg, Kristian; Skewes, Joshua; Wolf, Thomas; Blicher, Jakob; Overgaard, Morten; Frith, Chris D

    2014-04-01

    Although it is well established that regions of premotor cortex (PMC) are active during action observation, it remains controversial whether they play a causal role in action understanding. In the experiment reported here, we used off-line continuous theta-burst stimulation (cTBS) to investigate this question. Participants received cTBS over the hand and lip areas of left PMC, in separate sessions, before completing a pantomime-recognition task in which half of the trials contained pantomimed hand actions, and half contained pantomimed mouth actions. The results reveal a double dissociation: Participants were less accurate in recognizing pantomimed hand actions after receiving cTBS over the hand area than over the lip area and less accurate in recognizing pantomimed mouth actions after receiving cTBS over the lip area than over the hand area. This finding constrains theories of action understanding by showing that somatotopically organized regions of PMC contribute causally to action understanding and, thus, that the mechanisms underpinning action understanding and action performance overlap.

  14. Continuous theta-burst stimulation of the primary motor cortex in essential tremor.

    PubMed

    Hellriegel, Helge; Schulz, Eva M; Siebner, Hartwig R; Deuschl, Günther; Raethjen, Jan H

    2012-05-01

    We investigated whether essential tremor (ET) can be altered by suppressing the corticospinal excitability in the primary motor cortex (M1) with transcranial magnetic stimulation. 10 Patients with ET and 10 healthy controls underwent transcranial continuous theta-burst stimulation (cTBS) of the left primary motor hand area at 80% (real cTBS) and 30% (control cTBS) of active motor threshold in two separate sessions at least one week apart. Postural tremor was rated clinically and measured accelerometrically before and after cTBS. Corticospinal excitability was assessed by recording the motor evoked potentials (MEP) from the first dorsal interosseous muscle. Real cTBS but not control cTBS reduced the tremor total power assessed with accelerometry. This beneficial effect was subclinical as there were no significant changes in clinical tremor rating after real cTBS. Relative to control cTBS, real cTBS reduced corticospinal excitability in the stimulated primary motor cortex only in healthy controls but not in ET patients. Real cTBS has a beneficial effect on ET. Since cTBS did not induce a parallel reduction in corticospinal excitability, this effect was not mediated by a suppression of the corticospinal motor output. "Inhibitory" cTBS of M1 leads to a consistent but subclinical reduction in tremor amplitude. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Speed of processing in the primary motor cortex: a continuous theta burst stimulation study.

    PubMed

    Lakhani, Bimal; Bolton, David A E; Miyasike-Dasilva, Veronica; Vette, Albert H; McIlroy, William E

    2014-03-15

    'Temporally urgent' reactions are extremely rapid, spatially precise movements that are evoked following discrete stimuli. The involvement of primary motor cortex (M1) and its relationship to stimulus intensity in such reactions is not well understood. Continuous theta burst stimulation (cTBS) suppresses focal regions of the cortex and can assess the involvement of motor cortex in speed of processing. The primary objective of this study was to explore the involvement of M1 in speed of processing with respect to stimulus intensity. Thirteen healthy young adults participated in this experiment. Behavioral testing consisted of a simple button press using the index finger following median nerve stimulation of the opposite limb, at either high or low stimulus intensity. Reaction time was measured by the onset of electromyographic activity from the first dorsal interosseous (FDI) muscle of each limb. Participants completed a 30 min bout of behavioral testing prior to, and 15 min following, the delivery of cTBS to the motor cortical representation of the right FDI. The effect of cTBS on motor cortex was measured by recording the average of 30 motor evoked potentials (MEPs) just prior to, and 5 min following, cTBS. Paired t-tests revealed that, of thirteen participants, five demonstrated a significant attenuation, three demonstrated a significant facilitation and five demonstrated no significant change in MEP amplitude following cTBS. Of the group that demonstrated attenuated MEPs, there was a biologically significant interaction between stimulus intensity and effect of cTBS on reaction time and amplitude of muscle activation. This study demonstrates the variability of potential outcomes associated with the use of cTBS and further study on the mechanisms that underscore the methodology is required. Importantly, changes in motor cortical excitability may be an important determinant of speed of processing following high intensity stimulation.

  16. A Data-Driven Approach to Responder Subgroup Identification after Paired Continuous Theta Burst Stimulation

    PubMed Central

    Heidegger, Tonio; Hansen-Goos, Onno; Batlaeva, Olga; Annak, Onur; Ziemann, Ulf; Lötsch, Jörn

    2017-01-01

    Background: Modulation of cortical excitability by transcranial magnetic stimulation (TMS) is used for investigating human brain functions. A common observation is the high variability of long-term depression (LTD)-like changes in human (motor) cortex excitability. This study aimed at analyzing the response subgroup distribution after paired continuous theta burst stimulation (cTBS) as a basis for subject selection. Methods: The effects of paired cTBS using 80% active motor threshold (AMT) in 31 healthy volunteers were assessed at the primary motor cortex (M1) corresponding to the representation of the first dorsal interosseous (FDI) muscle of the left hand, before and up to 50 min after plasticity induction. The changes in motor evoked potentials (MEPs) were analyzed using machine-learning derived methods implemented as Gaussian mixture modeling (GMM) and computed ABC analysis. Results: The probability density distribution of the MEP changes from baseline was tri-modal, showing a clear separation at 80.9%. Subjects displaying at least this degree of LTD-like changes were n = 6 responders. By contrast, n = 7 subjects displayed a paradox response with increase in MEP. Reassessment using ABC analysis as alternative approach led to the same n = 6 subjects as a distinct category. Conclusion: Depressive effects of paired cTBS using 80% AMT endure at least 50 min, however, only in a small subgroup of healthy subjects. Hence, plasticity induction by paired cTBS might not reflect a general mechanism in human motor cortex excitability. A mathematically supported criterion is proposed to select responders for enrolment in assessments of human brain functional networks using virtual brain lesions. PMID:28824394

  17. Cerebellar continuous theta-burst stimulation affects motor learning of voluntary arm movements in humans.

    PubMed

    Li Voti, Pietro; Conte, Antonella; Rocchi, Lorenzo; Bologna, Matteo; Khan, Nashaba; Leodori, Giorgio; Berardelli, Alfredo

    2014-01-01

    In this study we investigated in healthy subjects whether continuous theta-burst stimulation (cTBS) over the lateral cerebellum alters motor practice and retention phases during ipsilateral index finger and arm reaching movements. In 12 healthy subjects we delivered cTBS before repeated index finger abductions or arm reaching movements differing in complexity (reaching-to-grasp and reaching-to-point). We evaluated kinematic variables for index finger and arm reaching movements and changes in primary motor cortex (M1) activity tested with transcranial magnetic stimulation. Peak acceleration increased during motor practice for index finger abductions and reaching-to-grasp movements and persisted during motor retention. Peak acceleration decreased during motor practice for reaching-to-point movements and the decrease remained during motor retention. Cerebellar cTBS left the changes in peak acceleration during motor practice for index finger abductions and reaching-to-grasp arm movements unchanged but reduced peak acceleration at motor retention. Cerebellar cTBS prevented the decrease in peak acceleration for reaching-to-point movements during motor practice and at motor retention. Index finger abductions and arm reaching movements increased M1 excitability. Cerebellar cTBS decreased the motor evoked potential (MEP) facilitation induced by index finger movements, but increased the MEP facilitation after reaching-to-grasp and reaching-to-point movements. Cerebellar stimulation prevents motor retention for index finger abductions, reaching-to-grasp and reaching-to-point movements and degrades motor practice only for reaching-to-point movements. Cerebellar cTBS alters practice-related changes in M1 excitability depending on how intensely the cerebellum contributes to the task. Changes in M1 excitability reflect mechanisms of homeostatic plasticity elicited by the interaction of an 'exogenous' (cTBS-induced) and an 'endogenous' (motor practice-induced) plasticity

  18. Combined transcranial alternating current stimulation and continuous theta burst stimulation: a novel approach for neuroplasticity induction.

    PubMed

    Goldsworthy, Mitchell R; Vallence, Ann-Maree; Yang, Ruiting; Pitcher, Julia B; Ridding, Michael C

    2016-02-01

    Non-invasive brain stimulation can induce functionally relevant plasticity in the human cortex, making it potentially useful as a therapeutic tool. However, the induced changes are highly variable between individuals, potentially limiting research and clinical utility. One factor that might contribute to this variability is the level of cortical inhibition at the time of stimulation. The alpha rhythm (~ 8-13 Hz) recorded with electroencephalography (EEG) is thought to reflect pulsatile cortical inhibition; therefore, targeting non-invasive brain stimulation to particular phases of the alpha rhythm may provide an approach to enhance plasticity induction. Transcranial alternating current stimulation (tACS) has been shown to entrain cortical oscillations in a frequency-specific manner. We investigated whether the neuroplastic response to continuous theta burst stimulation (cTBS) was enhanced by timing bursts of stimuli to the peak or the trough of a tACS-imposed alpha rhythm. While motor evoked potentials (MEPs) were unaffected when cTBS was applied in-phase with the peak of the tACS-imposed oscillation, MEP depression was enhanced when cTBS was applied in-phase with the trough. This enhanced MEP depression was dependent on the individual peak frequency of the endogenous alpha rhythm recorded with EEG prior to stimulation, and was strongest in those participants classified as non-responders to standard cTBS. These findings suggest that tACS may be used in combination with cTBS to enhance the plasticity response. Furthermore, the peak frequency of endogenous alpha, as measured with EEG, may be used as a simple marker to pre-select those individuals likely to benefit from this approach. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Probing the timing network: A continuous theta burst stimulation study of temporal categorization.

    PubMed

    Méndez, Juan Carlos; Rocchi, Lorenzo; Jahanshahi, Marjan; Rothwell, John; Merchant, Hugo

    2017-07-25

    Time perception in the millisecond and second ranges is thought to be processed by different neural mechanisms. However, whether there is a sharp boundary between these ranges and whether they are implemented in the same, overlapped or separate brain areas is still not certain. To probe the role of the right dorsolateral prefrontal cortex (dlPFC), the right supplementary motor area (SMA), and the cerebellum on time perception, we temporarily altered their activity on healthy volunteers on separate sessions using transcranial magnetic stimulation with the continuous Theta Burst Stimulation (cTBS) protocol. A control session was reserved for the stimulation of the primary somatosensory cortex (S1). Before and after stimulation, participants were tested on a temporal categorization task using intervals in the hundreds and thousands of milliseconds ranges, as well as on a pitch categorization task which was used as a further control. We then looked for changes in the Relative Threshold and the Constant Error, which, respectively, reflect participants' sensitivity to interval duration and their accuracy at setting an interval that acts as a boundary between categories. We found that after cTBS in all of the studied regions, the Relative Threshold, but not the Constant Error, was affected and only when hundreds of milliseconds intervals were being categorized. Categorization of thousands of milliseconds intervals and of pitch was not affected. These results suggest that the fronto-cerebellar circuit is particularly involved in the estimation of intervals in the hundreds of milliseconds range. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. After Effects of Cerebellar Continuous Theta Burst Stimulation on Reflexive Saccades and Smooth Pursuit in Humans.

    PubMed

    Colnaghi, Silvia; Colagiorgio, P; Ramat, S; D'Angelo, E; Koch, G; Versino, M

    2017-08-01

    The use of cerebellar repetitive transcranial magnetic stimulation has been attempted for perturbing reflexive and voluntary eye movements, but discrepancies are seen between the results of distinct studies possibly due to the different stimulation sites, intensities, and paradigms. We describe the after effects of 20 and 40 s continuous Theta Burst Stimulation (cTBS) as compared to sham stimulation, applied over the lateral cerebellar vermis and paravermis on Reflexive Saccades (RS) and Smooth Pursuit (SP) eye movements, recorded in the 30 min following stimulation. The experiments were carried out in eight healthy volunteers, and eye movements were recorded monocularly with video-oculography. The 40 s cTBS significantly increased the amplitude of ipsilateral RS and the acceleration of the ipsilateral SP, and this effect was detectable all over the 30-min recording period; 40 s cTBS did not modify the other parameters, namely the peak velocity, the duration and the latency of RS, and the latency and the velocity of SP. The 20 s cTBS was ineffective on all RS and SP parameters. Finally, we detected a significant quite-linear reduction of RS peak velocity over time, but this was independent from cTBS and was probably caused by fatigue. The effects of 40 s cTBS in our experiments mimic the disorder of ocular motility in Wallenberg's syndrome and could result from functional impairment of cerebellopontine pathways. This effect lasts 30 min at least, and can provide a useful framework for adaptive ocular motor studies.

  1. Variation in left posterior parietal-motor cortex interhemispheric facilitation following right parietal continuous theta-burst stimulation in healthy adults.

    PubMed

    Killington, Christopher; Barr, Christopher; Loetscher, Tobias; Bradnam, Lynley V

    2016-08-25

    Spatial neglect is modeled on an imbalance of interhemispheric inhibition (IHI); however evidence is emerging that it may not explain neglect in all cases. The aim of this study was to investigate the IHI imbalance model of visual neglect in healthy adults, using paired pulse transcranial magnetic stimulation to probe excitability of projections from posterior parietal cortex (PPC) to contralateral primary motor cortex (M1) bilaterally. Motor-evoked potentials (MEPs) were recorded from the first dorsal interossei and facilitation was determined as ratio of conditioned to non-conditioned MEP amplitude. A laterality index reflecting the balance of excitability between the two hemispheres was calculated. A temporal order judgment task (TOJ) assessed visual attention. Continuous theta-burst stimulation was used to transiently suppress right parietal cortex activity and the effect on laterality and judgment task measured, along with associations between baseline and post stimulation measures. Stimulation had conflicting results on laterality, with most participants demonstrating an effect in the negative direction with no decrement in the TOJ task. Correlation analysis suggests a strong association between laterality direction and degree of facilitation of left PPC-to right M1 following stimulation (r=.902), with larger MEP facilitation at baseline demonstrating greater reduction (r=-.908). Findings indicate there was relative balance between the cortices at baseline but right PPC suppression did not evoke left PPC facilitation in most participants, contrary to the IHI imbalance model. Left M1 facilitation prior to stimulation may predict an individual's response to continuous theta-burst stimulation of right PPC.

  2. Continuous bilateral TAP block in patient with prior abdominal surgery.

    PubMed

    Lima, Isabel Flor de; Linda, Filipe; dos Santos, Ângela; Lages, Neusa; Correia, Carlos

    2013-01-01

    We present as an option for epidural analgesia and intravenous opioid infusion a clinical case of transversus abdominis plane (TAP) block, with bilateral placement of catheter for postoperative analgesia after exploratory laparotomy performed in a patient with previous abdominal surgery and heart, kidney and liver failure.

  3. Continuous theta burst stimulation over the left dorsolateral prefrontal cortex decreases medium load working memory performance in healthy humans.

    PubMed

    Schicktanz, Nathalie; Fastenrath, Matthias; Milnik, Annette; Spalek, Klara; Auschra, Bianca; Nyffeler, Thomas; Papassotiropoulos, Andreas; de Quervain, Dominique J-F; Schwegler, Kyrill

    2015-01-01

    The dorsolateral prefrontal cortex (DLPFC) plays a key role in working memory. Evidence indicates that transcranial magnetic stimulation (TMS) over the DLPFC can interfere with working memory performance. Here we investigated for how long continuous theta-burst stimulation (cTBS) over the DLPFC decreases working memory performance and whether the effect of cTBS on performance depends on working memory load. Forty healthy young subjects received either cTBS over the left DLPFC or sham stimulation before performing a 2-, and 3-back working memory letter task. An additional 0-back condition served as a non-memory-related control, measuring general attention. cTBS over the left DLPFC significantly impaired 2-back working memory performance for about 15 min, whereas 3-back and 0-back performances were not significantly affected. Our results indicate that the effect of left DLPFC cTBS on working memory performance lasts for roughly 15 min and depends on working memory load.

  4. Continuous theta burst stimulation (cTBS) on left cerebellar hemisphere affects mental rotation tasks during music listening.

    PubMed

    Picazio, Silvia; Oliveri, Massimiliano; Koch, Giacomo; Caltagirone, Carlo; Petrosini, Laura

    2013-01-01

    Converging evidence suggests an association between spatial and music domains. A cerebellar role in music-related information processing as well as in spatial-temporal tasks has been documented. Here, we investigated the cerebellar role in the association between spatial and musical domains, by testing performances in embodied (EMR) or abstract (AMR) mental rotation tasks of subjects listening Mozart Sonata K.448, which is reported to improve spatial-temporal reasoning, in the presence or in the absence of continuous theta burst stimulation (cTBS) of the left cerebellar hemisphere. In the absence of cerebellar cTBS, music listening did not influence either MR task, thus not revealing a "Mozart Effect". Cerebellar cTBS applied before musical listening made subjects faster (P = 0.005) and less accurate (P = 0.005) in performing the EMR but not the AMR task. Thus, cerebellar inhibition by TBS unmasked the effect of musical listening on motor imagery. These data support a coupling between music listening and sensory-motor integration in cerebellar networks for embodied representations.

  5. Continuous theta-burst stimulation (cTBS) over the lateral prefrontal cortex alters reinforcement learning bias.

    PubMed

    Ott, Derek V M; Ullsperger, Markus; Jocham, Gerhard; Neumann, Jane; Klein, Tilmann A

    2011-07-15

    The prefrontal cortex is known to play a key role in higher-order cognitive functions. Recently, we showed that this brain region is active in reinforcement learning, during which subjects constantly have to integrate trial outcomes in order to optimize performance. To further elucidate the role of the dorsolateral prefrontal cortex (DLPFC) in reinforcement learning, we applied continuous theta-burst stimulation (cTBS) either to the left or right DLPFC, or to the vertex as a control region, respectively, prior to the performance of a probabilistic learning task in an fMRI environment. While there was no influence of cTBS on learning performance per se, we observed a stimulation-dependent modulation of reward vs. punishment sensitivity: Left-hemispherical DLPFC stimulation led to a more reward-guided performance, while right-hemispherical cTBS induced a more avoidance-guided behavior. FMRI results showed enhanced prediction error coding in the ventral striatum in subjects stimulated over the left as compared to the right DLPFC. Both behavioral and imaging results are in line with recent findings that left, but not right-hemispherical stimulation can trigger a release of dopamine in the ventral striatum, which has been suggested to increase the relative impact of rewards rather than punishment on behavior.

  6. Continuous Theta Burst Stimulation (cTBS) on Left Cerebellar Hemisphere Affects Mental Rotation Tasks during Music Listening

    PubMed Central

    Picazio, Silvia; Oliveri, Massimiliano; Koch, Giacomo; Caltagirone, Carlo; Petrosini, Laura

    2013-01-01

    Converging evidence suggests an association between spatial and music domains. A cerebellar role in music-related information processing as well as in spatial-temporal tasks has been documented. Here, we investigated the cerebellar role in the association between spatial and musical domains, by testing performances in embodied (EMR) or abstract (AMR) mental rotation tasks of subjects listening Mozart Sonata K.448, which is reported to improve spatial-temporal reasoning, in the presence or in the absence of continuous theta burst stimulation (cTBS) of the left cerebellar hemisphere. In the absence of cerebellar cTBS, music listening did not influence either MR task, thus not revealing a “Mozart Effect”. Cerebellar cTBS applied before musical listening made subjects faster (P = 0.005) and less accurate (P = 0.005) in performing the EMR but not the AMR task. Thus, cerebellar inhibition by TBS unmasked the effect of musical listening on motor imagery. These data support a coupling between music listening and sensory-motor integration in cerebellar networks for embodied representations. PMID:23724071

  7. Primary somatosensory cortex necessary for the perception of weight from other people's action: A continuous theta-burst TMS experiment.

    PubMed

    Valchev, Nikola; Tidoni, Emmanuele; Hamilton, Antonia F de C; Gazzola, Valeria; Avenanti, Alessio

    2017-02-28

    The presence of a network of areas in the parietal and premotor cortices, which are active both during action execution and observation, suggests that we might understand the actions of other people by activating those motor programs for making similar actions. Although neurophysiological and imaging studies show an involvement of the somatosensory cortex (SI) during action observation and execution, it is unclear whether SI is essential for understanding the somatosensory aspects of observed actions. To address this issue, we used off-line transcranial magnetic continuous theta-burst stimulation (cTBS) just before a weight judgment task. Participants observed the right hand of an actor lifting a box and estimated its relative weight. In counterbalanced sessions, we delivered sham and active cTBS over the hand region of the left SI and, to test anatomical specificity, over the left motor cortex (M1) and the left superior parietal lobule (SPL). Active cTBS over SI, but not over M1 or SPL, impaired task performance relative to sham cTBS. Moreover, active cTBS delivered over SI just before participants were asked to evaluate the weight of a bouncing ball did not alter performance compared to sham cTBS. These findings indicate that SI is critical for extracting somatosensory features (heavy/light) from observed action kinematics and suggest a prominent role of SI in action understanding.

  8. Continuous Theta Burst Stimulation over the Left Dorsolateral Prefrontal Cortex Decreases Medium Load Working Memory Performance in Healthy Humans

    PubMed Central

    Schicktanz, Nathalie; Fastenrath, Matthias; Milnik, Annette; Spalek, Klara; Auschra, Bianca; Nyffeler, Thomas; Papassotiropoulos, Andreas; de Quervain, Dominique J.-F.; Schwegler, Kyrill

    2015-01-01

    The dorsolateral prefrontal cortex (DLPFC) plays a key role in working memory. Evidence indicates that transcranial magnetic stimulation (TMS) over the DLPFC can interfere with working memory performance. Here we investigated for how long continuous theta-burst stimulation (cTBS) over the DLPFC decreases working memory performance and whether the effect of cTBS on performance depends on working memory load. Forty healthy young subjects received either cTBS over the left DLPFC or sham stimulation before performing a 2-, and 3-back working memory letter task. An additional 0-back condition served as a non-memory-related control, measuring general attention. cTBS over the left DLPFC significantly impaired 2-back working memory performance for about 15 min, whereas 3-back and 0-back performances were not significantly affected. Our results indicate that the effect of left DLPFC cTBS on working memory performance lasts for roughly 15 min and depends on working memory load. PMID:25781012

  9. Continuous theta-burst stimulation over the dorsal premotor cortex interferes with associative learning during object lifting.

    PubMed

    Nowak, Dennis A; Berner, Julia; Herrnberger, Bärbel; Kammer, Thomas; Grön, Georg; Schönfeldt-Lecuona, Carlos

    2009-04-01

    When lifting objects of different mass, humans scale grip force according to the expected mass. In this context, humans are able to associate a sensory cue, such as a colour, to a particular mass of an object and link this association to the grip forces necessary for lifting. Here, we study the role of the dorsal premotor cortex (PMd) in setting-up an association between a colour cue and a particular mass to be lifted. Healthy right-handed subjects used a precision grip between the index finger and thumb to lift two different masses. Colour cues provided information about which of the two masses subjects would have to lift. Subjects first performed a series of lifts with the right hand to establish a stable association between a colour cue and a mass, followed by 20sec of continuous high frequency repetitive trancranial magnetic stimulation using a recently developed protocol (continuous theta-burst stimulation, cTBS) over (i) the left primary motor cortex, (ii) the left PMd and (iii) the left occipital cortex to be commenced by another series of lifts with either the right or left hand. cTBS over the PMd, but not over the primary motor cortex or O1, disrupted the predictive scaling of isometric finger forces based on colour cues, irrespective of whether the right or left hand performed the lifts after the stimulation. Our data highlight the role of the PMd to generalize and maintain associative memory processes relevant for predictive control of grip forces during object manipulation.

  10. Continuous theta burst stimulation over the left pre-motor cortex affects sensorimotor timing accuracy and supraliminal error correction.

    PubMed

    Bijsterbosch, Janine D; Lee, Kwang-Hyuk; Dyson-Sutton, William; Barker, Anthony T; Woodruff, Peter W R

    2011-09-02

    Adjustments to movement in response to changes in our surroundings are common in everyday behavior. Previous research has suggested that the left pre-motor cortex (PMC) is specialized for the temporal control of movement and may play a role in temporal error correction. The aim of this study was to determine the role of the left PMC in sensorimotor timing and error correction using theta burst transcranial magnetic stimulation (TBS). In Experiment 1, subjects performed a sensorimotor synchronization task (SMS) with the left and the right hand before and after either continuous or intermittent TBS (cTBS or iTBS). Timing accuracy was assessed during synchronized finger tapping with a regular auditory pacing stimulus. Responses following perceivable local timing shifts in the pacing stimulus (phase shifts) were used to measure error correction. Suppression of the left PMC using cTBS decreased timing accuracy because subjects tapped further away from the pacing tones and tapping variability increased. In addition, error correction responses returned to baseline tap-tone asynchrony levels faster following negative shifts and no overcorrection occurred following positive shifts after cTBS. However, facilitation of the left PMC using iTBS did not affect timing accuracy or error correction performance. Experiment 2 revealed that error correction performance may change with practice, independent of TBS. These findings provide evidence for a role of the left PMC in both sensorimotor timing and error correction in both hands. We propose that the left PMC may be involved in voluntarily controlled phase correction responses to perceivable timing shifts.

  11. Continuous theta-burst stimulation combined with occupational therapy for upper limb hemiparesis after stroke: a preliminary study.

    PubMed

    Yamada, Naoki; Kakuda, Wataru; Kondo, Takahiro; Shimizu, Masato; Sageshima, Masashi; Mitani, Sugao; Abo, Masahiro

    2014-12-01

    The purpose of this study was to assess the safety, feasibility and efficacy of continuous theta-burst stimulation (cTBS) combined with intensive occupational therapy (OT) for upper limb hemiparesis after stroke. Ten patients with history of stroke and upper limb hemiparesis (age 62.0 ± 11.1 years, time since stroke 95.7 ± 70.2 months, mean ± SD) were studied. Each patient received 13 sessions, each comprising 160 s of cTBS applied to the skull on the area of the non-lesional hemisphere (using a 70-mm figure-8 coil, three pulse bursts at 50 Hz, repeated every 200 ms, i.e., 5 Hz, with total stimulation of 2,400 pulses), followed by intensive OT (comprising 120-min one-to-one training and 120-min self-training) during 15-day hospitalization. The motor function of the affected upper limb was evaluated by Fugl-Meyer Assessment (FMA) and Wolf Motor Function Test (WMFT) on the days of admission and discharge. All patients completed the 15-day protocol without any adverse effects. Treatment significantly increased the FMA score (from 46.6 ± 8.7 to 51.6 ± 8.2 points, p < 0.01) and shortened the log performance time of WMFT (from 2.5 ± 1.1 to 2.2 ± 1.2 s, p < 0.01). The 15-day protocol of cTBS combined with intensive OT is a safe and potentially useful therapeutic modality for upper limb hemiparesis after stroke.

  12. Continuous theta burst stimulation of the supplementary motor area: effect upon perception and somatosensory and motor evoked potentials.

    PubMed

    Legon, Wynn; Dionne, Jennifer K; Staines, W Richard

    2013-11-01

    The supplementary motor area (SMA) has been implicated in many aspects of movement preparation and execution. In addition to motor roles, the SMA is responsive to somesthetic stimuli though it is unclear exactly what role the SMA plays in a somatosensory network. It is the purpose of this study to assess how continuous theta burst stimulation (cTBS) of the SMA affects both somatosensory (SEPs) and motor evoked potentials (MEPs) and if cTBS leads to alterations in tactile perception thresholds of the index fingertip. In experiment 1, cTBS was delivered over scalp sites FCZ (SMA stimulation) (n = 10) and CZ (control stimulation) (n = 10) in separate groups for 40 s (600 pulses) at 90% of participants' resting motor threshold. For both groups, median nerve SEPs were elicited from the right wrist at rest via electrical stimulation (0.5 ms pulse) before and at 10 min intervals post-cTBS out to 30 min (t = pre, 10, 20, and 30 min). Subjects' perceptual thresholds were assessed at similar time intervals as the SEP data using a biothesiometer (120 Hz vibration). In experiment 2 (n = 10) the effect of cTBS to SMA upon single and paired-pulse MEP amplitudes from the right first dorsal interosseous (FDI) was assessed. cTBS to scalp site FCZ (SMA stimulation) reduced the frontal N30 SEP and increased tactile perceptual thresholds 30 min post-stimulation. However, parietal SEPs and MEP amplitudes from both single and paired-pulse stimulation were unaffected at all time points post-stimulation. cTBS to stimulation site CZ (control) did not result in any physiological or behavioral changes. These data demonstrate cTBS to the SMA reduces the amplitude of the N30 coincident with an increase in vibration sensation threshold but does not affect primary somatosensory or motor cortex excitability. The SMA may play a significant role in a somatosensory tactile attention network. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Bilateral Automated Continuous Distraction Osteogenesis in a Design Model: Proof of Principle

    PubMed Central

    Peacock, Zachary S.; Tricomi, Brad J.; Faquin, William C.; Magill, John C.; Murphy, Brian A.; Kaban, Leonard B.; Troulis, Maria J.

    2015-01-01

    The purpose of this study was to demonstrate that automated, continuous, curvilinear distraction osteogenesis (DO) in a minipig model is effective when performed bilaterally, at rates up to 3mm/day, to achieve clinically relevant lengthening. A Yucatan minipig in the mixed dentition phase, underwent bilateral, continuous DO at a rate of 2 mm/day at the center of rotation; 1.0 and 3.0 mm/day at the superior and inferior regions, respectively. The distraction period was 13 days with no latency period. Vector and rate of distraction were remotely monitored without radiographs, using the device sensor. After fixation and euthanasia, the mandible and digastric muscles were harvested. The ex-vivo appearance, stability, and radiodensity of the regenerate were evaluated using a semi-quantitative scale. Percent surface area (PSA) occupied by bone, fibrous tissue, cartilage, and hematoma were calculated using histomorphometrics. The effects of DO on the digastric muscles and mandibular condyles were assessed via microscopy and degenerative changes were quantified. The animal was distracted to 21 mm and 24 mm on the right and left sides, respectively. Clinical appearance, stability, and radiodensity were scored as ‘3’ bilaterally indicating osseous union. The total PSA occupied by bone (right = 75.53±2.19%; left PSA = 73.11±2.18%) approached that of an unoperated mandible (84.67±0.86%). Digastric muscles and condyles showed negligible degenerative or abnormal histologic changes. This proof of principle study is the first report of osseous healing with no ill-effect on associated soft tissue and the mandibular condyle using bilateral, automated, continuous, curvilinear DO at rates up to 3 mm/day. The model approximates potential human application of continuous automated distraction with a semiburied device. PMID:26594967

  14. Continuous respiratory support in quadriplegic children by bilateral phrenic nerve stimulation.

    PubMed Central

    Garrido, H; Mazaira, J; Gutierrez, P; Gonzalez, E; Rivas, J; Madrazo, J

    1987-01-01

    Three children, aged 6-10 years, in whom cervical cord injury at the C1-C2 level resulted in apnoea had bilateral implantation of diaphragm pacemakers. With periods of gradual conditioning of the diaphragm muscle to low frequency stimulation and slow respiratory rates they adapted to continuous ventilatory support by simultaneous stimulation of both hemidiaphragms without evidence of fatigue, so far for periods of 23-47 months. PMID:3499003

  15. Bilateral Anterior Ischaemic Optic Neuropathy in a Child on Continuous Peritoneal Dialysis

    PubMed Central

    Al-Kaabi, Abdullah; Haider, Agha S.; Shafeeq, Mohammed O.; El-Naggari, Mohammed A.; El-Nour, Ibtisam; Ganesh, Anuradha

    2016-01-01

    Non-arteritic anterior ischaemic optic neuropathy (NAION) is a serious complication of continuous peritoneal dialysis (CPD) which can lead to poor vision and blindness. We report a five-year-old girl who had undergone a bilateral nephrectomy at the age of one year and was on home CPD. She was referred to the Paediatric Ophthalmology Unit of Sultan Qaboos University Hospital, Muscat, Oman, in 2013 with acute bilateral vision loss, preceded by a three-day history of poor oral intake. At presentation, the patient had severe systemic hypotension. An ophthalmological examination revealed severe bilateral visual impairment and NAION. She was treated with intravenous methylprednisolone and normal saline boluses. At a five-month follow-up, the visual acuity of the right eye had improved but vision in the left eye remained the same. Acute bilateral blindness due to NAION while on CPD is a rare condition in childhood. Paediatricians should be aware of this complication in order to ensure prompt management. PMID:28003901

  16. [Bilateral parotitis in a patient under continuous positive airway pressure treatment].

    PubMed

    Abdullayev, Ruslan; Saral, Filiz Cosku; Kucukebe, Omer Burak; Sayiner, Hakan Sezgin; Bayraktar, Cem; Akgun, Sadik

    Many conditions such as bacterial and viral infectious diseases, mechanical obstruction due to air and calculi and drugs can cause parotitis. We present a case of unusual bilateral parotitis in a patient under non-invasive continuous positive airway pressure (CPAP) therapy for chronic obstructive pulmonary disease exacerbation in intensive care unit. A 36-year-old patient was admitted to intensive care unit with the diagnosis of chronic obstructive pulmonary disease exacerbation. Antibiotherapy, bronchodilator therapy and non-invasive positive pressure ventilation were applied as treatment regimen. Painless swellings developed on the 3rd day of admission on the right and a day after this on the left parotid glands. Amylase levels were increased and ultrasonographic evaluation revealed bilateral parotitis. No intervention was made and the therapy was continued. The patient was discharged on the 6th day with clinical improvement and regression of parotid swellings without any complications. Parotitis may have occurred after retrograde air flow in the Stensen duct during CPAP application. After the exclusion of possible viral and bacteriological etiologies and possible drug reactions we can focus on this diagnosis. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  17. Bilateral parotitis in a patient under continuous positive airway pressure treatment.

    PubMed

    Abdullayev, Ruslan; Saral, Filiz Cosku; Kucukebe, Omer Burak; Sayiner, Hakan Sezgin; Bayraktar, Cem; Akgun, Sadik

    Many conditions such as bacterial and viral infectious diseases, mechanical obstruction due to air and calculi and drugs can cause parotitis. We present a case of unusual bilateral parotitis in a patient under non-invasive continuous positive airway pressure (CPAP) therapy for chronic obstructive pulmonary disease exacerbation in intensive care unit. A 36-year-old patient was admitted to intensive care unit with the diagnosis of chronic obstructive pulmonary disease exacerbation. Antibiotherapy, bronchodilator therapy and non-invasive positive pressure ventilation were applied as treatment regimen. Painless swellings developed on the 3rd day of admission on the right and a day after this on the left parotid glands. Amylase levels were increased and ultrasonographic evaluation revealed bilateral parotitis. No intervention was made and the therapy was continued. The patient was discharged on the 6th day with clinical improvement and regression of parotid swellings without any complications. Parotitis may have occurred after retrograde air flow in the Stensen duct during CPAP application. After the exclusion of possible viral and bacteriological etiologies and possible drug reactions we can focus on this diagnosis. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume.

    PubMed

    Abouchami, W; Hofmann, A W; Galer, S J G; Frey, F A; Eisele, J; Feigenson, M

    2005-04-14

    The two parallel chains of Hawaiian volcanoes ('Loa' and 'Kea') are known to have statistically different but overlapping radiogenic isotope characteristics. This has been explained by a model of a concentrically zoned mantle plume, where the Kea chain preferentially samples a more peripheral portion of the plume. Using high-precision lead isotope data for both centrally and peripherally located volcanoes, we show here that the two trends have very little compositional overlap and instead reveal bilateral, non-concentric plume zones, probably derived from the plume source in the mantle. On a smaller scale, along the Kea chain, there are isotopic differences between the youngest lavas from the Mauna Kea and Kilauea volcanoes, but the 550-thousand-year-old Mauna Kea lavas are isotopically identical to Kilauea lavas, consistent with Mauna Kea's position relative to the plume, which was then similar to that of present-day Kilauea. We therefore conclude that narrow (less than 50 kilometres wide) compositional streaks, as well as the larger-scale bilateral zonation, are vertically continuous over tens to hundreds of kilometres within the plume.

  19. Bilateral Continuous Quadratus Lumborum Block for Acute Postoperative Abdominal Pain as a Rescue After Opioid-Induced Respiratory Depression.

    PubMed

    Shaaban, Mohamed; Esa, Wael Ali Sakr; Maheshwari, Kamal; Elsharkawy, Hesham; Soliman, Loran Mounir

    2015-10-01

    We present a case of acute postoperative abdominal pain after proctosigmoidectomy and colorectal anastomosis that was treated by bilateral continuous quadratus lumborum block. The block was performed in the lateral position under ultrasound guidance with a 15-mL bolus of 0.5% bupivacaine injected anterior to the quadratus lumborum muscle followed by bilateral catheter placement. Each catheter received a continuous infusion of 0.1% bupivacaine at 8 mL/h and an on-demand bolus 5 mL every 30 minutes. Sensory level was confirmed by insensitivity to cold from T7 through T12. The block was devoid of hemodynamic side effects or motor weakness. This case demonstrates that bilateral continuous quadratus lumborum catheters can provide extended postoperative pain control.

  20. U.S.-CHINA RADIOLOGICAL SOURCE SECURITY PROJECT: CONTINUING AND EXPANDING BILATERAL COOPERATION

    SciTech Connect

    Zhu, Zhixuan; Zhou, Qifu; Yang, Yaoyun; Huang, Chaoyun; Lloyd, James; Williams, Adam; Feldman, Alexander; Streeper, Charles; Pope, Noah G.; Hawk, Mark; Rawl, Rick; Howell, Randy A.; Kennedy, Catherine

    2009-10-07

    The successful radiological security cooperation between the U.S. and China to secure at-risk sites near venues of the 2008 Beijing Summer Olympics has led to an expanded bilateral nonproliferation cooperation scope. The U.S. Department of Energy’s National Nuclear Security Administration, the Chinese Atomic Energy Authority and the China Ministry of Environmental Protection are continuing joint efforts to secure radiological sources throughout China under the U.S.-China Peaceful Uses of Nuclear Technology (PUNT) Agreement. Joint cooperation activities include physical security upgrades of sites with International Atomic Energy Agency (IAEA) Category 1 radiological sources, packaging, recovery, and storage of high activity transuranic and beta gamma sources, and secure transportation practices for the movement of recovered sources. Expansion of cooperation into numerous provinces within China includes the use of integrated training workshops that will demonstrate methodologies and best practices between U.S. and Chinese radiological source security and recovery experts. The fiscal year 2009 expanded scope of cooperation will be conducted similar to the 2008 Olympic cooperation with the Global Threat Reduction Initiative taking the lead for the U.S., PUNT being the umbrella agreement, and Los Alamos, Sandia, and Oak Ridge National Laboratories operating as technical working groups. This paper outlines the accomplishments of the joint implementation and training efforts to date and discusses the possible impact on future U.S./China cooperation.

  1. Continuous nicotinamide administration improves behavioral recovery and reduces lesion size following bilateral frontal controlled cortical impact injury

    PubMed Central

    Haar, Cole Vonder; Anderson, Gail D.; Hoane, Michael R.

    2011-01-01

    Previous research has demonstrated considerable preclinical efficacy of nicotinamide (NAM; vitamin B3) in animal models of TBI with systemic dosing at 50 and 500 mg/kg yielding improvements on sensory, motor, cognitive and histological measures. The current study aimed to utilize a more specific dosing paradigm in a clinically relevant delivery mechanism: continuously secreting subcutaneous pumps. A bilateral frontal controlled cortical impact (CCI) or sham surgery was performed and rats were treated with NAM (150 mg/kg/day) or saline (1 ml/kg) pumps 30 min after CCI, continuing until seven days post-CCI. Rats were given a loading dose of NAM (50 mg/kg) or saline (1 ml/kg) following pump implant. Rats received behavioral testing (bilateral tactile adhesive removal, locomotor placing task and Morris water maze) starting on day two post-CCI and were sacrificed at 31 days post-CCI and brains were stained to examine lesion size. NAM-treated rats had reductions in sensory, motor and cognitive behavioral deficits compared to vehicle-treated rats. Specifically, NAM-treated rats significantly improved on the bilateral tactile adhesive removal task, locomotor placing task and the reference memory paradigm of the Morris water maze. Lesion size was also significantly reduced in the NAM-treated group. The results from this study indicate that at the current dose, NAM produces beneficial effects on recovery from a bilateral frontal brain injury and that it may be a relevant compound to be explored in human studies. PMID:21704653

  2. Continuous nicotinamide administration improves behavioral recovery and reduces lesion size following bilateral frontal controlled cortical impact injury.

    PubMed

    Vonder Haar, Cole; Anderson, Gail D; Hoane, Michael R

    2011-10-31

    Previous research has demonstrated considerable preclinical efficacy of nicotinamide (NAM; vitamin B(3)) in animal models of TBI with systemic dosing at 50 and 500 mg/kg yielding improvements on sensory, motor, cognitive and histological measures. The current study aimed to utilize a more specific dosing paradigm in a clinically relevant delivery mechanism: continuously secreting subcutaneous pumps. A bilateral frontal controlled cortical impact (CCI) or sham surgery was performed and rats were treated with NAM (150 mg/kg day) or saline (1 ml/kg) pumps 30 min after CCI, continuing until seven days post-CCI. Rats were given a loading dose of NAM (50mg/kg) or saline (1 ml/kg) following pump implant. Rats received behavioral testing (bilateral tactile adhesive removal, locomotor placing task and Morris water maze) starting on day two post-CCI and were sacrificed at 31 days post-CCI and brains were stained to examine lesion size. NAM-treated rats had reductions in sensory, motor and cognitive behavioral deficits compared to vehicle-treated rats. Specifically, NAM-treated rats significantly improved on the bilateral tactile adhesive removal task, locomotor placing task and the reference memory paradigm of the Morris water maze. Lesion size was also significantly reduced in the NAM-treated group. The results from this study indicate that at the current dose, NAM produces beneficial effects on recovery from a bilateral frontal brain injury and that it may be a relevant compound to be explored in human studies.

  3. Suprazygomatic Access for Continuous Bilateral Mandibular Nerve Block for Pain and Trismus Relief in the Tetraplegic Patient.

    PubMed

    Dziadzko, Mikhail A; Heritier, Fabrice

    2016-10-01

    Extraoral mandibular nerve block (MNB) is used in oropharyngeal surgery for analgesia and anesthesia. Repeated or continuous MNB has been used successfully as treatment for uncontrollable pain, masseter spasticity, and airway assessment. The usual technique involves transcutaneous infrazygomatic access. However, in some specific settings, this approach is not always feasible. A continuous bilateral MNB with a suprazygomatic approach to the pterygomandibular space was used to resolve a case of refractory and painful trismus in a patient with tetraplegia. Analgesia was achieved and maintained by bilateral catheter placement to the pterygomandibular space and repeated injection of local anesthetic for 48 hours. The right-side catheter was accidentally withdrawn; the left-side catheter was maintained up to 72 hours. The efficiency of analgesia was not affected. This block provided effective analgesia within the first few hours after local anesthetic injection, helped to improve mouth opening, and resolved acute pain. Because kinesitherapy could be introduced, the patient was left on nonopioid analgesics. Continuous bilateral MNB through the suprazygomatic approach was used safely and efficiently. The suggested approach is quite unique, as is the clinical circumstance, and might be considered when the usual technique is challenging. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Offline continuous theta burst stimulation over right inferior frontal gyrus and pre-supplementary motor area impairs inhibition during a go/no-go task.

    PubMed

    Drummond, Neil M; Cressman, Erin K; Carlsen, Anthony N

    2017-04-06

    In a typical go/no-go task a single imperative stimulus is presented each trial, either a go or no-go stimulus. Participants are instructed to initiate a known response upon appearance of the go-signal and withhold the response if the no-go signal is presented. It is unclear whether the go-response is prepared in advance of the imperative stimulus in a go/no-go task. Moreover, it is unclear if inhibitory control processes suppress preparatory go-activation. The purpose of the present experiment was 1) to determine whether the go-response is prepared in advance of stimulus identification with the use of a startling acoustic stimulus (SAS), and 2) investigate the inhibitory role of the right inferior frontal gyrus (rIFG) and pre-supplementary motor area (preSMA) during the performance of a go/no-go task with the use of continuous theta burst stimulation (cTBS). The experiment consisted of three phases; a pre-cTBS phase in which participants completed a go/no-go and simple-RT task, followed by offline cTBS to temporarily deactivate either rIFG or preSMA (with a sham control), then a post-cTBS phase which was identical to the pre-cTBS phase. Results revealed that stimulation to both cortical sites impaired participants' ability to withhold movements during no-go trials. Notably, rIFG or preSMA stimulation did not affect the latency of voluntary go-responses and did not enable the SAS to involuntarily trigger responses. These findings suggest that preparation and initiation of the go-response occurs after the imperative stimulus, with the rIFG and preSMA involved in inhibiting the go-response once the stimulus is identified as a no-go signal.

  5. Task-relevancy effects on movement-related gating are modulated by continuous theta-burst stimulation of the dorsolateral prefrontal cortex and primary somatosensory cortex.

    PubMed

    Brown, Katlyn E; Ferris, Jennifer K; Amanian, Mohammad A; Staines, W Richard; Boyd, Lara A

    2015-03-01

    Movement-related gating ensures that decreased somatosensory information from external stimulation reaches the cortex during movement when compared to resting levels; however, gating may be influenced by task-relevant manipulations, such that increased sensory information ascends to the cortex when information is relevant to goal-based actions. These task-relevancy effects are hypothesized to be controlled by a network involving the dorsolateral prefrontal cortex (DLPFC) based on this region's known role in selective attention, modulating the primary somatosensory cortex (S1). The purpose of the current study was first to verify task-relevancy influences on movement-related gating in the upper limb, and second to test the contribution of the DLPFC and the primary somatosensory cortex (S1) to these relevancy effects. Ten healthy participants received median nerve stimulation at the left wrist during three conditions: rest, task-irrelevant movement, and task-relevant movement. Cortical responses to median nerve stimulations were measured in the form of somatosensory evoked potentials (SEPs). The three conditions were collected on a baseline day and on two separate days following continuous theta-burst (cTBS), which transiently reduces cortical excitability, over either the contralateral S1 or DLPFC. Results demonstrated a significant interaction between stimulation and condition, with a priori contrasts revealing that cTBS over either S1 or DLPFC diminished the relevancy-based modulation of SEP amplitudes; however, the degree of this effect was different. These results indicate that DLPFC influences over S1 are involved in the facilitation of relevant sensory information during movement.

  6. Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex and the Pre-SMA Alter Drift Rate and Response Thresholds Respectively During Perceptual Decision-Making.

    PubMed

    Georgiev, Dejan; Rocchi, Lorenzo; Tocco, Pierluigi; Speekenbrink, Maarten; Rothwell, John C; Jahanshahi, Marjan

    2016-01-01

    The speed-accuracy trade-off (SAT) refers to the balancing of speed versus accuracy during decision-making. SAT is very commonly investigated with perceptual decision-making tasks such as the moving dots task (MDT). The dorsolateral prefrontal cortex (DLPFC) and the pre-supplementary motor area (pre-SMA) are two brain regions considered to be involved in the control of SAT. The study tested whether the DLPFC and the pre-SMA play an essential role in the control of SAT. We hypothesized that continuous theta burst stimulation (cTBS) over the right DLPFC would primarily alter the rate of accumulation of evidence, whereas stimulation of the pre-SMA would influence the threshold for reaching a decision. Fifteen (5 females; mean age = 30, SD =5.40) healthy volunteers participated in the study. We used two versions of the MDT and cTBS over the right DLPFC, pre-SMA and sham stimulation. The drift diffusion model was fit to the behavioural data (reaction time and error rate) in order to calculate the drift rate, boundary separation (threshold) and non-decision time. cTBS over the right DLPFC decreased the rate of accumulation of evidence (i.e. the drift rate from the diffusion model) in high (0.35 and 0.5) but not in low coherence trials. cTBS over the pre-SMA changed the boundary separation/threshold required to reach a decision on accuracy, but not on speed trials. The results suggest for the first time that both the DLPFC and the pre-SMA make essential but distinct contributions to the modulation of SAT. Copyright © 2016. Published by Elsevier Inc.

  7. Differential effects of continuous theta burst stimulation over left premotor cortex and right prefrontal cortex on modulating upper limb somatosensory input.

    PubMed

    Brown, Matt J N; Staines, W Richard

    2016-02-15

    Somatosensory evoked potentials (SEPs) represent somatosensory processing in non-primary motor areas (i.e. frontal N30 and N60) and somatosensory cortices (i.e. parietal P50). It is well-known that the premotor cortex (PMC) and prefrontal cortex (PFC) are involved in the preparation and planning of upper limb movements but it is currently unclear how they modulate somatosensory processing for upper limb motor control. In the current study, two experiments examined SEP modulations after continuous theta burst stimulation (cTBS) was used to transiently disrupt the left PMC (Experiment 1) and right PFC (Experiment 2). Both Experiment 1 (n=15) and Experiment 2 (n=16) used pre-post experimental designs. In both experiments participants performed a task requiring detection of varying amplitudes of attended vibrotactile (VibT) stimuli to the left index finger (D2) and execution of a pre-matched finger sequence with the right (contralateral) hand to specific VibT targets. During the task, SEPs were measured to median nerve (MN) stimulations time-locked during pre-stimulus (250 ms before VibT), early response selection (250 ms after VibT), late preparatory (750 ms after VibT) and execution (1250 ms VibT) phases. The key findings of Experiment 1 revealed significant decreases in N30 and N60 peak amplitudes after cTBS to PMC. In contrast, the results of Experiment 2, also found significant decreased N60 peak amplitudes as well as trends for increased N30 and P50 peak amplitudes. A direct comparison of Experiment 1 and Experiment 2 confirmed differential modulation of N30 peak amplitudes after PMC (gated) compared to PFC (enhanced) cTBS. Collectively, these results support that both the left PMC and right PFC have modulatory roles on early somatosensory input into non-primary motor areas, such as PMC and supplementary motor area (SMA), represented by frontal N30 and N60 SEPs. These results confirm that PMC and PFC are both part of a network that regulates somatosensory input

  8. [Successful treatment of laryngomalacia and bilateral vocal cord paralysis with continuous positive airway pressure].

    PubMed

    Sovtić, Aleksandar; Minić, Predrag; Vukcević, Miodrag; Rodić, Milan

    2010-01-01

    Laryngomalacia is the most frequent congenital anomaly of airways, and it may cause obstructive sleep apneas. The associated vocal cord paralysis may aggravate the symptoms of upper airway obstruction. In a 14 month old boy severe laryngomalacia and bilateral vocal cord paralysis were diagnosed by flexible bronchoscopy. A sleep study showed a severe obstructive sleep apnoea (OSA). The patient was ventilated at home via the face mask with non invasive mechanical ventilation (CPAP) for a year. The level of pressure had to be set at 7 cm H2O to correct desaturation with an improvement in mean SpO2. On the follow up bronchoscopic examination laryngomalatia was improved, vocal cord paralysis persisted and sleep study revealed significant improvement. In the patient with severe laryngomalatia and bilateral vocal cord paralysis with OSA conservative treatment with CPAP was used instead of a surgical intervention. Non invasive ventilation was used every night, for at least 6 hours, without adverse events. Invasive measurement of transdiaphragmatic pressure is the best way of titrating of CPAP level. This case report suggests the efficacy of noninvasive titrating of CPAP level by the hemoglobin oxygen saturation trend measurement. In case of severe laryngomalatia and associated vocal cord paralysis, followed by OSA non invasive ventilation by nasal CPAP represents an effective and safe alternative to surgery.

  9. Clinical and histological observations of continuously formed bilateral mandibular deciduous central incisor roots after traumatic coronal destruction.

    PubMed

    Yakushiji, M; Mochizuki, K; Machida, Y

    1996-05-01

    We encountered a rare case of continuously forming bilateral mandibular deciduous central incisor roots after traumatic coronal destruction. The patient, 3 year 3 month old boy, had sustained an external injury which had caused the crowns of hist bilateral deciduous central incisors to fall out when he was 12 months old. Oral examination revealed two small, hard tissues resembling tooth structures on the alveolar ridge in the area of the lost mandibular central incisors. X-ray examination revealed them to be deciduous central incisor roots. We observed the extracted roots histologically and found that the lesion of the crown fracture and pulpal exposure on these roots was completely covered by newly formed irregular dentin and cementoid tissues. In this case, the causes of the continuous root formation were considered to be that the pulp tissues of traumatized teeth were able survive, so the injured lesion was quickly healed and covered with gingival tissue. The vital pulp produced the reparative hard tissue, sealing the site of pulpal exposure and continuing root formation after the trauma.

  10. Hearing-in-noise benefits after bilateral simultaneous cochlear implantation continue to improve 4 years after implantation.

    PubMed

    Eapen, Rose J; Buss, Emily; Adunka, Marcia Clark; Pillsbury, Harold C; Buchman, Craig A

    2009-02-01

    The purpose of this 4-year longitudinal study was to assess the stability of the binaural benefits of head shadow, summation, and squelch for bilateral cochlear implant recipients and to quantify these benefits for the understanding of speech in noise. This is a prospective study of 9 patients who received simultaneous bilateral insertion of MED-EL COMBI +40 cochlear implants in a single-stage operation at the University of North Carolina, Chapel Hill, NC. Each patient had postlingual deafness of short duration before insertion of the device. Each year, the patients were tested for word recognition using consonant-nucleus-consonant words in quiet and speech perception in noise using City University of New York sentences. These tests were administered using direct audio input to the implants. Head-related transfer functions were used to simulate speech in noise testing in a spatial environment. Speech was always presented at midline (0 degrees), and the noise masker was presented at either side or midline (-90, 0, +90 degrees). The binaural benefits of head shadow and summation effects developed early in the postoperative period and remained stable throughout the follow-up period. Squelch developed more slowly and was first demonstrated at 12 months after implantation but continued to increase beyond the first year of follow-up. Benefits of head shadow and summation emerge early and remain stable. However, squelch has the most protracted period of development, with increasing benefit after a year or more of implant experience. These data support the idea that binaural integration continues several years after insertion of bilateral cochlear implant devices.

  11. Theta vocabulary I

    NASA Astrophysics Data System (ADS)

    Kharchev, S.; Zabrodin, A.

    2015-08-01

    This paper is an annotated list of transformation properties and identities satisfied by the four theta functions θ1, θ2, θ3, θ4 of one complex variable, presented in a ready-to-use form. An attempt is made to reveal a pattern behind various identities for the theta-functions. It is shown that all possible 3, 4 and 5-term identities of degree four emerge as algebraic consequences of the six fundamental bilinear 3-term identities connecting the theta-functions with modular parameters τ and 2 τ.

  12. Preliminary Study on Continuous Recognition of Elbow Flexion/Extension Using sEMG Signals for Bilateral Rehabilitation

    PubMed Central

    Song, Zhibin; Zhang, Songyuan

    2016-01-01

    Surface electromyography (sEMG) signals are closely related to the activation of human muscles and the motion of the human body, which can be used to estimate the dynamics of human limbs in the rehabilitation field. They also have the potential to be used in the application of bilateral rehabilitation, where hemiplegic patients can train their affected limbs following the motion of unaffected limbs via some rehabilitation devices. Traditional methods to process the sEMG focused on motion pattern recognition, namely, discrete patterns, which are not satisfactory for use in bilateral rehabilitation. In order to overcome this problem, in this paper, we built a relationship between sEMG signals and human motion in elbow flexion and extension on the sagittal plane. During the conducted experiments, four participants were required to perform elbow flexion and extension on the sagittal plane smoothly with only an inertia sensor in their hands, where forearm dynamics were not considered. In these circumstances, sEMG signals were weak compared to those with heavy loads or high acceleration. The contrastive experimental results show that continuous motion can also be obtained within an acceptable precision range. PMID:27775573

  13. Parvalbumin Interneurons of Hippocampus Tune Population Activity at Theta Frequency.

    PubMed

    Amilhon, Bénédicte; Huh, Carey Y L; Manseau, Frédéric; Ducharme, Guillaume; Nichol, Heather; Adamantidis, Antoine; Williams, Sylvain

    2015-06-03

    Hippocampal theta rhythm arises from a combination of recently described intrinsic theta oscillators and inputs from multiple brain areas. Interneurons expressing the markers parvalbumin (PV) and somatostatin (SOM) are leading candidates to participate in intrinsic rhythm generation and principal cell (PC) coordination in distal CA1 and subiculum. We tested their involvement by optogenetically activating and silencing PV or SOM interneurons in an intact hippocampus preparation that preserves intrinsic connections and oscillates spontaneously at theta frequencies. Despite evidence suggesting that SOM interneurons are crucial for theta, optogenetic manipulation of these interneurons modestly influenced theta rhythm. However, SOM interneurons were able to strongly modulate temporoammonic inputs. In contrast, activation of PV interneurons powerfully controlled PC network and rhythm generation optimally at 8 Hz, while continuously silencing them disrupted theta. Our results thus demonstrate a pivotal role of PV but not SOM interneurons for PC synchronization and the emergence of intrinsic hippocampal theta.

  14. Successful treatment of Raynaud's syndrome in a lupus patient with continuous bilateral popliteal sciatic nerve blocks: a case report.

    PubMed

    Dao, Thuan; Amaro-Driedger, David; Mehta, Jaideep

    2016-01-01

    Raynaud's syndrome has been treated medically and invasively, sometimes with regional anesthesia leading up to sympathectomy. We demonstrate that regional anesthesia was in this case a useful technique that can allow some patients to find temporary but significant relief from symptoms of Raynaud's syndrome exacerbation. We present a 43-year-old woman with Raynaud's syndrome secondary to lupus who was treated with bilateral popliteal nerve block catheters for ischemic pain and necrosis of her feet; this led to almost immediate resolution of her pain and return of color and function of her feet. While medical management should continue to be a front-line treatment for Raynaud's syndrome, regional anesthesia can be useful in providing rapid dissipation of symptoms and may thus serve as a viable option for short-term management of this syndrome.

  15. Continuous, bilateral Achilles' tendon vibration is not detrimental to human walk.

    PubMed

    Courtine, G; Pozzo, T; Lucas, B; Schieppati, M

    2001-05-01

    Sensory feedback from the moving limbs contributes to the regulation of animal and human locomotion. However, the question of the specific role of the various modalities is still open. Further, functional loss of leg afferent fibres due to peripheral neuropathy does not always lead to major alteration in the gait pattern. In order to gain further insight on proprioceptive control of human gait, we applied vibratory tendon stimulation, known to recruit spindle primary afferent fibres, to both triceps surae muscles during normal floor walk. This procedure would disturb organisation and execution of walking, especially if spindles fire continuously and subjects are blindfolded. Vibration induced significant, though minor, changes in duration and length of stance and swing phase, and on speed of walking and kinematics of lower limb segments. No effect was induced on angular displacement of the ankle joint or trunk and head kinematics. This paucity of effects was at variance with the perception of the subjects, who reported illusion of leg stiffness and gait imbalance. These findings would speak for a selective gating of Ia input during locomotion and emphasise the notion that the central nervous system can cope with an unusual continuous input along the Ia fibres from a key muscle like the soleus.

  16. Mechanisms of Theta Plasmid Replication.

    PubMed

    Lilly, Joshua; Camps, Manel

    2015-02-01

    Plasmids are autonomously replicating pieces of DNA. This article discusses theta plasmid replication, which is a class of circular plasmid replication that includes ColE1-like origins of replication popular with expression vectors. All modalities of theta plasmid replication initiate synthesis with the leading strand at a predetermined site and complete replication through recruitment of the host's replisome, which extends the leading strand continuously while synthesizing the lagging strand discontinuously. There are clear differences between different modalities of theta plasmid replication in mechanisms of DNA duplex melting and in priming of leading- and lagging-strand synthesis. In some replicons duplex melting depends on transcription, while other replicons rely on plasmid-encoded trans-acting proteins (Reps); primers for leading-strand synthesis can be generated through processing of a transcript or in other replicons by the action of host- or plasmid-encoded primases. None of these processes require DNA breaks. The frequency of replication initiation is tightly regulated to facilitate establishment in permissive hosts and to achieve a steady state. The last section of the article reviews how plasmid copy number is sensed and how this feedback modulates the frequency of replication.

  17. Theta-Burst LTP

    PubMed Central

    Larson, John; Munkácsy, Erin

    2014-01-01

    This review covers the spatial and temporal rules governing induction of hippocampal long-term potentiation (LTP) by theta-burst stimulation. Induction of LTP in field CA1 by high frequency stimulation bursts that resemble the burst discharges (complex-spikes) of hippocampal pyramidal neurons involves a multiple-step mechanism. A single burst is insufficient for LTP induction because it evokes both excitatory and inhibitory currents that partially cancel and limit postsynaptic depolarization. Bursts repeated at the frequency (~5 Hz) of the endogenous theta rhythm induce maximal LTP, primarily because this frequency disables feed-forward inhibition and allows sufficient postsynaptic depolarization to activate voltage-sensitive NMDA receptors. The disinhibitory process, referred to as “priming”, involves presynaptic GABA autoreceptors that inhibit GABA release. Activation of NMDA receptors allows a calcium flux into dendritic spines that serves as the proximal trigger for LTP. We include new data showing that theta-burst stimulation is more efficient than other forms of stimulation for LTP induction. In addityion, we demonstrate that associative interactions between synapses activated during theta-bursts are limited to major dendritic domains since such interactions occur within apical or basal dendritic trees but not between them. We review evidence that recordings of electrophysiological responses during theta burst stimulation can help to determine if experimental manipulations that affect LTP do so by affecting events antecedent to the induction process, such as NMDA receptor activation, or downstream signaling cascades that result from postsynaptic calcium fluxes. Finally, we argue that theta-burst LTP represents a minimal model for stable, non-decremental LTP that is more sensitive to a variety of experimental manipulations than is LTP induced by other stimulation paradigms. PMID:25452022

  18. Understanding the theta aurora

    NASA Astrophysics Data System (ADS)

    Fear, Robert; Milan, Steve; Carter, Jennifer; Maggiolo, Romain; Fazakerley, Andrew; Dandouras, Iannis; Mende, Stephen

    2015-04-01

    The theta aurora, first observed by Dynamics Explorer in the 1980s, is a configuration of the Earth's aurora in which auroral emissions extend into and across the polar cap in the form of a transpolar arc. It is well established that the theta aurora occurs predominantly when the interplanetary magnetic field has a northward component, but over the last thirty years various mechanisms have been put forward to explain this intriguing phenomenon. In the last couple of years, a range of evidence has accumulated which strongly suggests that the transpolar arc is formed as proposed by Milan et al. (2005): magnetotail reconnection occurs during intervals of northward IMF, which results in a local "wedge" of closed magnetospheric flux that remains trapped in the magnetotail. Precipitation on these closed field lines results in the transpolar arc analogously to the formation of the aurora in the main oval. Evidence for magnetotail reconnection as the cause of the theta aurora includes the timescales necessary to influence the location at which the transpolar arc forms, and the presence of characteristic ionospheric flows which are excited by magnetotail reconnection and which are statistically associated with transpolar arcs (Fear & Milan, 2012a,b). Most recently, direct observation has been made of a localised wedge of closed magnetic flux, "trapped" in the lobe, which was observed to move back and forth in a manner which (to our knowledge) can only be explained by the magnetotail reconnection mechanism (Fear et al., 2014). In this talk, we summarise the evidence for the formation of the theta aurora by magnetotail reconnection, and discuss the remaining challenges in obtaining a comprehensive understanding of this spectacular phenomenon.

  19. Theta vocabulary II. Multidimensional case

    NASA Astrophysics Data System (ADS)

    Kharchev, S.; Zabrodin, A.

    2016-06-01

    It is shown that the Jacobi and Riemann identities of degree four for the multidimensional theta functions as well as the Weierstrass identities emerge as algebraic consequences of the fundamental multidimensional binary identities connecting the theta functions with Riemann matrices τ and 2 τ.

  20. Peak Frequency in the Theta and Alpha Bands Correlates with Human Working Memory Capacity

    PubMed Central

    Moran, Rosalyn J.; Campo, Pablo; Maestu, Fernando; Reilly, Richard B.; Dolan, Raymond J.; Strange, Bryan A.

    2010-01-01

    Theta oscillations in the local field potential of neural ensembles are considered key mediators of human working memory. Theoretical accounts arising from animal hippocampal recordings propose that the phase of theta oscillations serves to instantiate sequential neuronal firing to form discrete representations of items held online. Human evidence of phase relationships in visual working memory has enhanced this theory, implicating long theta cycles in supporting greater memory capacity. Here we use human magnetoencephalographic recordings to examine a novel, alternative principle of theta functionality. The principle we hypothesize is derived from information theory and predicts that rather than long (low frequency) theta cycles, short (high frequency) theta cycles are best suited to support high information capacity. From oscillatory activity recorded during the maintenance period of a visual working memory task we show that a network of brain regions displays an increase in peak 4–12 Hz frequency with increasing memory load. Source localization techniques reveal that this network comprises bilateral prefrontal and right parietal cortices. Further, the peak of oscillation along this theta–alpha frequency axis is significantly higher in high capacity individuals compared to low capacity individuals. Importantly while we observe the adherence of cortical neuronal oscillations to our novel principle of theta functioning, we also observe the traditional inverse effect of low frequency theta maintaining high loads, where critically this was located in medial temporal regions suggesting parallel, dissociable hippocampal-centric, and prefrontal-centric theta mechanisms. PMID:21206531

  1. Permutation symmetry for theta functions

    SciTech Connect

    Carlson, B.C.

    2011-01-21

    This paper does for combinations of theta functions most of what Carlson (2004) [1] did for Jacobian elliptic functions. In each case the starting point is the symmetric elliptic integral R{sub F} of the first kind. Its three arguments (formerly squared Jacobian elliptic functions but now squared combinations of theta functions) differ by constants. Symbols designating the constants can often be used to replace 12 equations by three with permutation symmetry (formerly in the letters c, d, n for the Jacobian case but now in the subscripts 2, 3, 4 for theta functions). Such equations include derivatives and differential equations, bisection and duplication relations, addition formulas (apparently new for theta functions), and an example of pseudoaddition formulas.

  2. Search for Theta+ at CLAS in gamma n ---> Theta+ K-.

    SciTech Connect

    N.A. Baltzell; D.J. Tedeschi

    2006-06-01

    The existence of pentaquarks is being studied in recent experiments at Jefferson Lab. This analysis investigates the reaction gamma d --> Theta^+K^-(p) with the Theta^+ decaying to pK^0. Produced with a tagged photon beam of endpoint energy 3.6 GeV incident on a 24 cm liquid deuterium target, the pK^0_sK^-(p) final state is measured exclusively. With well defined strangeness and no neutral meson background, this channel is an important place to look for the Theta^+. However, it contains large contributions from hyperons produced via gamma n --> Y*K^0, and the effects of mesons are also present in the K^0K^- system. The current focus is on understanding these backgrounds.

  3. Feasibility and Safety of Continuous and Chronic Bilateral Deep Brain Stimulation of the Medial Forebrain Bundle in the Naïve Sprague-Dawley Rat

    PubMed Central

    Furlanetti, Luciano L.; Döbrössy, Máté D.; Aranda, Iñigo A.; Coenen, Volker A.

    2015-01-01

    Objective. Deep brain stimulation (DBS) of the superolateral branch of the medial forebrain bundle (MFB) has provided rapid and dramatic reduction of depressive symptoms in a clinical trial. Early intracranial self-stimulation experiments of the MFB suggested detrimental side effects on the animals' health; therefore, the current study looked at the viability of chronic and continuous MFB-DBS in rodents, with particular attention given to welfare issues and identification of stimulated pathways. Methods. Sprague-Dawley female rats were submitted to stereotactic microelectrode implantation into the MFB. Chronic continuous DBS was applied for 3–6 weeks. Welfare monitoring and behavior changes were assessed. Postmortem histological analysis of c-fos protein expression was carried out. Results. MFB-DBS resulted in mild and temporary weight loss in the animals, which was regained even with continuing stimulation. MFB-DBS led to increased and long-lasting c-fos expression in target regions of the mesolimbic/mesocortical system. Conclusions. Bilateral continuous chronic MFB-DBS is feasible, safe, and without impact on the rodent's health. MFB-DBS results in temporary increase in exploration, which could explain the initial weight loss, and does not produce any apparent behavioral abnormalities. This platform represents a powerful tool for further preclinical investigation of the MFB stimulation in the treatment of depression. PMID:25960609

  4. Mass gap in the 2D O(3) nonlinear sigma model with a {theta}={pi} term

    SciTech Connect

    Alles, B.; Papa, A.

    2008-03-01

    By analytic continuation to real {theta} of data obtained from numerical simulation at imaginary {theta} we study the Haldane conjecture and show that the O(3) nonlinear sigma model with a {theta} term in two dimensions becomes massless at {theta}=3.10(5). A modified cluster algorithm has been introduced to simulate the model with imaginary {theta}. Two different definitions of the topological charge on the lattice have been used; one of them needs renormalization to match the continuum operator. Our work also offers a successful test for numerical methods based on analytic continuation.

  5. Successful treatment of Raynaud’s syndrome in a lupus patient with continuous bilateral popliteal sciatic nerve blocks: a case report

    PubMed Central

    Dao, Thuan; Amaro-Driedger, David; Mehta, Jaideep

    2016-01-01

    Raynaud’s syndrome has been treated medically and invasively, sometimes with regional anesthesia leading up to sympathectomy. We demonstrate that regional anesthesia was in this case a useful technique that can allow some patients to find temporary but significant relief from symptoms of Raynaud’s syndrome exacerbation. We present a 43-year-old woman with Raynaud’s syndrome secondary to lupus who was treated with bilateral popliteal nerve block catheters for ischemic pain and necrosis of her feet; this led to almost immediate resolution of her pain and return of color and function of her feet. While medical management should continue to be a front-line treatment for Raynaud’s syndrome, regional anesthesia can be useful in providing rapid dissipation of symptoms and may thus serve as a viable option for short-term management of this syndrome. PMID:27366104

  6. Distributed Attention Is Implemented through Theta-Rhythmic Gamma Modulation.

    PubMed

    Landau, Ayelet Nina; Schreyer, Helene Marianne; van Pelt, Stan; Fries, Pascal

    2015-08-31

    When subjects monitor a single location, visual target detection depends on the pre-target phase of an ∼8 Hz brain rhythm. When multiple locations are monitored, performance decrements suggest a division of the 8 Hz rhythm over the number of locations, indicating that different locations are sequentially sampled. Indeed, when subjects monitor two locations, performance benefits alternate at a 4 Hz rhythm. These performance alternations were revealed after a reset of attention to one location. Although resets are common and important events for attention, it is unknown whether, in the absence of resets, ongoing attention samples stimuli in alternation. Here, we examined whether spatially specific attentional sampling can be revealed by ongoing pre-target brain rhythms. Visually induced gamma-band activity plays a role in spatial attention. Therefore, we hypothesized that performance on two simultaneously monitored stimuli can be predicted by a 4 Hz modulation of gamma-band activity. Brain rhythms were assessed with magnetoencephalography (MEG) while subjects monitored bilateral grating stimuli for a unilateral target event. The corresponding contralateral gamma-band responses were subtracted from each other to isolate spatially selective, target-related fluctuations. The resulting lateralized gamma-band activity (LGA) showed opposite pre-target 4 Hz phases for detected versus missed targets. The 4 Hz phase of pre-target LGA accounted for a 14.5% modulation in performance. These findings suggest that spatial attention is a theta-rhythmic sampling process that is continuously ongoing, with each sampling cycle being implemented through gamma-band synchrony.

  7. Bilateral cellulitis.

    PubMed

    Batra, Vivek; Baras, Alexander

    2015-09-21

    We present a case of bilateral lesions in a 50-year-old man, which were on first impression mistaken for and initially treated as bilateral cellulitis. We propose that bilateral cellulitis, as opposed to unilateral, is rare and that other aetiologies should be considered in evaluating a patient with bilateral lesions. The differential diagnosis includes stasis-dermatitis, lipodermatosclerosis, lymphoedema and vascular lesions such as Kaposi sarcoma, as was identified in this case. Early consultation with dermatology and biopsy in unclear cases mitigates the unnecessary use of prolonged antibiotics, antibiotic resistance and Clostridium difficile infections. HIV testing is an essential screening test in all adults who present with non-specific viral symptoms and rash.

  8. swot: Super W Of Theta

    NASA Astrophysics Data System (ADS)

    Coupon, Jean; Leauthaud, Alexie; Kilbinger, Martin; Medezinski, Elinor

    2017-07-01

    SWOT (Super W Of Theta) computes two-point statistics for very large data sets, based on “divide and conquer” algorithms, mainly, but not limited to data storage in binary trees, approximation at large scale, parellelization (open MPI), and bootstrap and jackknife resampling methods “on the fly”. It currently supports projected and 3D galaxy auto and cross correlations, galaxy-galaxy lensing, and weighted histograms.

  9. Pentaquark spectroscopy: exotic {theta} baryons

    SciTech Connect

    Bijker, R.; Giannini, M.M.; Santopinto, E.

    2004-09-13

    We propose a collective stringlike model of q4q-bar pentaquarks with the geometry of an equilateral tetrahedron in which the four quarks are located at the four corners and the antiquark in its center. The nonplanar equilibrium configuration is a consequence of the permutation symmetry of the four quarks. In an application to the spectrum of exotic {theta} baryons, we find that the ground state pentaquark has angular momentum and parity Jp 1/2- and a small magnetic moment of 0.382 {mu}N. The decay width is suppressed by the spatial overlap with the decay products.

  10. Bilateral vestibulopathy.

    PubMed

    Strupp, M; Feil, K; Dieterich, M; Brandt, T

    2016-01-01

    The leading symptoms of bilateral vestibulopathy (BVP) are postural imbalance and unsteadiness of gait that worsens in darkness and on uneven ground. There are typically no symptoms while sitting or lying under static conditions. A minority of patients also have movement-induced oscillopsia, in particular while walking. The diagnosis of BVP is based on a bilaterally reduced or absent function of the vestibulo-ocular reflex (VOR). This deficit is diagnosed for the high-frequency range of the angular VOR by a bilaterally pathologic bedside head impulse test (HIT) and for the low-frequency range by a bilaterally reduced or absent caloric response. If the results of the bedside HIT are unclear, angular VOR function should be quantified by a video-oculography system (vHIT). An additional test supporting the diagnosis is dynamic visual acuity. Cervical and ocular vestibular-evoked myogenic potentials (c/oVEMP) may also be reduced or absent, indicating impaired otolith function. There are different subtypes of BVP depending on the affected anatomic structure and frequency range of the VOR deficit: impaired canal function in the low- and/or high-frequency VOR range only and/or otolith function only; the latter is very rare. The etiology of BVP remains unclear in more than 50% of patients: in these cases neurodegeneration is assumed. Frequent known causes are ototoxicity mainly due to gentamicin, bilateral Menière's disease, autoimmune diseases, meningitis and bilateral vestibular schwannoma, as well as an association with cerebellar degeneration (cerebellar ataxia, neuropathy, vestibular areflexia syndrome=CANVAS). In general, in the long term there is no improvement of vestibular function. There are four treatment options: first, detailed patient counseling to explain the cause, etiology, and consequences, as well as the course of the disease; second, daily vestibular exercises and balance training; third, if possible, treatment of the underlying cause, as in bilateral

  11. Ketamine disrupts theta modulation of gamma in a computer model of hippocampus

    PubMed Central

    Neymotin, Samuel A.; Lazarewicz, Maciej T.; Sherif, Mohamed; Contreras, Diego; Finkel, Leif H.; Lytton, William W.

    2011-01-01

    Abnormalities in oscillations have been suggested to play a role in schizophrenia. We studied theta-modulated gamma oscillations in a computer model of hippocampal CA3 in vivo with and without simulated application of ketamine, an NMDA receptor antagonist and psychotomimetic. Networks of 1200 multi-compartment neurons (pyramidal, basket and oriens-lacunosum moleculare, OLM, cells) generated theta and gamma oscillations from intrinsic network dynamics: basket cells primarily generated gamma and amplified theta, while OLM cells strongly contributed to theta. Extrinsic medial septal inputs paced theta and amplified both theta and gamma oscillations. Exploration of NMDA receptor reduction across all location combinations demonstrated that the experimentally-observed ketamine effect occurred only with isolated reduction of NMDA receptors on OLMs. In the ketamine simulations, lower OLM activity reduced theta power and disinhibited pyramidal cells, resulting in increased basket cell activation and gamma power. Our simulations predict: ketamine increases firing rates;oscillations can be generated by intrinsic hippocampal circuits;medial septum inputs pace and augment oscillations;pyramidal cells lead basket cells at the gamma peak but lag at trough;basket cells amplify theta rhythms;ketamine alters oscillations due to primary blockade at OLM NMDA receptors;ketamine alters phase relationships of cell firing;ketamine reduces network responsivity to the environmentketamine effect could be reversed by providing a continuous inward current to OLM cells. We suggest that this last prediction has implications for a possible novel treatment for cognitive deficits of schizophrenia by targeting OLM cells. PMID:21832203

  12. Traveling Theta Waves in the Human Hippocampus

    PubMed Central

    Zhang, Honghui

    2015-01-01

    The hippocampal theta oscillation is strongly correlated with behaviors such as memory and spatial navigation, but we do not understand its specific functional role. One hint of theta's function came from the discovery in rodents that theta oscillations are traveling waves that allow parts of the hippocampus to simultaneously exhibit separate oscillatory phases. Because hippocampal theta oscillations in humans have different properties compared with rodents, we examined these signals directly using multielectrode recordings from neurosurgical patients. Our findings confirm that human hippocampal theta oscillations are traveling waves, but also show that these oscillations appear at a broader range of frequencies compared with rodents. Human traveling waves showed a distinctive pattern of spatial propagation such that there is a consistent phase spread across the hippocampus regardless of the oscillations' frequency. This suggests that traveling theta oscillations are important functionally in humans because they coordinate phase coding throughout the hippocampus in a consistent manner. SIGNIFICANCE STATEMENT We show for the first time in humans that hippocampal theta oscillations are traveling waves, moving along the length of the hippocampus in a posterior–anterior direction. The existence of these traveling theta waves is important for understanding hippocampal neural coding because they cause neurons at separate positions in the hippocampus to experience different theta phases simultaneously. The theta phase that a neuron measures is a key factor in how that cell represents behavioral information. Therefore, the existence of traveling theta waves indicates that, to fully understand how a hippocampal neuron represents information, it is vital to also account for that cell's location in addition to conventional measures of neural activity. PMID:26354915

  13. Reduction Formulae for Products of Theta Functions

    PubMed Central

    Walker, P. L.

    2012-01-01

    In four cases it is already known that the product of two distinct Jacobian theta functions having the same variable z and the same nome q is a multiple of a single Jacobian theta function, with the multiple independent of z. The main purpose of the present note is to show that this property also applies in the remaining two cases. PMID:26900529

  14. Photographic observations of Theta-1 Orionis

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.; Gull, T. R.

    1979-01-01

    Photographic observations of the eclipsing binary Theta-1 Ori A suggest a secondary minimum near phase 0.64 of its 65.43233-day period. This minimum may be wavelength dependent. The star Theta-1 Ori E is suspected of being variable.

  15. On a Quantization of the Classical theta-Functions

    NASA Astrophysics Data System (ADS)

    Brezhnev, Yurii V.

    2015-04-01

    The Jacobi theta-functions admit a definition through the autonomous differential equations (dynamical system); not only through the famous Fourier theta-series. We study this system in the framework of Hamiltonian dynamics and find corresponding Poisson brackets. Availability of these ingredients allows us to state the problem of a canonical quantization to these equations and disclose some important problems. In a particular case the problem is completely solvable in the sense that spectrum of the Hamiltonian can be found. The spectrum is continuous, has a band structure with infinite number of lacunae, and is determined by the Mathieu equation: the Schrödinger equation with a periodic cos-type potential.

  16. Hippocampal theta sequences reflect current goals.

    PubMed

    Wikenheiser, Andrew M; Redish, A David

    2015-02-01

    Hippocampal information processing is discretized by oscillations, and the ensemble activity of place cells is organized into temporal sequences bounded by theta cycles. Theta sequences represent time-compressed trajectories through space. Their forward-directed nature makes them an intuitive candidate mechanism for planning future trajectories, but their connection to goal-directed behavior remains unclear. As rats performed a value-guided decision-making task, the extent to which theta sequences projected ahead of the animal's current location varied on a moment-by-moment basis depending on the rat's goals. Look-ahead extended farther on journeys to distant goals than on journeys to more proximal goals and was predictive of the animal's destination. On arrival at goals, however, look-ahead was similar regardless of where the animal began its journey from. Together, these results provide evidence that hippocampal theta sequences contain information related to goals or intentions, pointing toward a potential spatial basis for planning.

  17. Movement Enhances the Nonlinearity of Hippocampal Theta

    PubMed Central

    Sheremet, Alex; Burke, Sara N.

    2016-01-01

    The nonlinear, metastable dynamics of the brain are essential for large-scale integration of smaller components and for the rapid organization of neurons in support of behavior. Therefore, understanding the nonlinearity of the brain is paramount for understanding the relationship between brain dynamics and behavior. Explicit quantitative descriptions of the properties and consequences of nonlinear neural networks, however, are rare. Because the local field potential (LFP) reflects the total activity across a population of neurons, nonlinearites of the nervous system should be quantifiable by examining oscillatory structure. We used high-order spectral analysis of LFP recorded from the dorsal and intermediate regions of the rat hippocampus to show that the nonlinear character of the hippocampal theta rhythm is directly related to movement speed of the animal. In the time domain, nonlinearity is expressed as the development of skewness and asymmetry in the theta shape. In the spectral domain, nonlinear dynamics manifest as the development of a chain of harmonics statistically phase coupled to the theta oscillation. This evolution was modulated across hippocampal regions, being stronger in the dorsal CA1 relative to more intermediate areas. The intensity and timing of the spiking activity of pyramidal cells and interneurons was strongly correlated to theta nonlinearity. Because theta is known to propagate from dorsal to ventral regions of the hippocampus, these data suggest that the nonlinear character of theta decreases as it travels and supports a hypothesis that activity dissipates along the longitudinal axis of the hippocampus. SIGNIFICANCE STATEMENT We describe the first explicit quantification regarding how behavior enhances the nonlinearity of the nervous system. Our findings demonstrate uniquely how theta changes with increasing speed due to the altered underlying neuronal dynamics and open new directions of research on the relationship between single

  18. Resting EEG theta activity predicts cognitive performance in attention-deficit hyperactivity disorder.

    PubMed

    Hermens, Daniel F; Soei, Eleonore X C; Clarke, Simon D; Kohn, Michael R; Gordon, Evian; Williams, Leanne M

    2005-04-01

    Quantitative electroencephalography has contributed significantly to elucidating the neurobiologic mechanisms of attention-deficit hyperactivity disorder. The most consistent and robust electroencephalographic disturbance in attention-deficit hyperactivity disorder has been abnormally increased theta band during resting conditions. Separate research using attention-demanding tests has elucidated cognitive disturbances that differentiate attention-deficit hyperactivity disorder. This study attempts to integrate electroencephalographic and neuropsychological indices to determine whether cognitive performance is specifically related to increased theta. Theta activity was recorded during a resting condition for 46 children/adolescents with attention-deficit hyperactivity disorder and their sex- and age-matched control subjects. Accuracy and reaction time during an auditory oddball and a visual continuous performance test were then recorded. Compared with control subjects, the attention-deficit hyperactivity disorder group manifested significantly increased (primarily left) frontal theta. Furthermore, the attention-deficit hyperactivity disorder group scored significantly delayed reaction time and decreased accuracy in both tasks. Correlation analysis revealed a significant relationship between frontal (primarily left) theta and oddball accuracy for the attention-deficit hyperactivity disorder group compared with a significant relationship between posterior (primarily right) theta and reaction time in the continuous performance test for the control group. These results indicate that spatial neurophysiologic deficits in attention-deficit hyperactivity disorder may be related to disturbances in signal detection. This observation has important implications for the role of trait-like biologic deficits in attention-deficit hyperactivity disorder predicting performance in information processing.

  19. Lattice theta constants vs Riemann theta constants and NSR superstring measures

    NASA Astrophysics Data System (ADS)

    Dunin-Barkowski, P.; Morozov, A.; Sleptsov, A.

    2009-10-01

    We discuss relations between two different representations of hypothetical holomorphic NSR measures, based on two different ways of constructing the semi-modular forms of weight 8. One of these ways is to build forms from the ordinary Riemann theta constants and another — from the lattice theta constants. We discuss unexpectedly elegant relations between lattice theta constants, corresponding to 16-dimensional self-dual lattices, and Riemann theta constants and present explicit formulae expressing the former ones through the latter. Starting from genus 5 the modular-form approach to construction of NSR measures is clearly sick and it seems to fail completely already at genus 6.

  20. Frontal theta overrides pavlovian learning biases.

    PubMed

    Cavanagh, James F; Eisenberg, Ian; Guitart-Masip, Marc; Huys, Quentin; Frank, Michael J

    2013-05-08

    Pavlovian biases influence learning and decision making by intricately coupling reward seeking with action invigoration and punishment avoidance with action suppression. This bias is not always adaptive-it can often interfere with instrumental requirements. The prefrontal cortex is thought to help resolve such conflict between motivational systems, but the nature of this control process remains unknown. EEG recordings of midfrontal theta band power are sensitive to conflict and predictive of adaptive control over behavior, but it is not clear whether this signal reflects control over conflict between motivational systems. Here we used a task that orthogonalized action requirements and outcome valence while recording concurrent EEG in human participants. By applying a computational model of task performance, we derived parameters reflective of the latent influence of Pavlovian bias and how it was modulated by midfrontal theta power during motivational conflict. Between subjects, those who performed better under Pavlovian conflict exhibited higher midfrontal theta power. Within subjects, trial-to-trial variance in theta power was predictive of ability to overcome the influence of the Pavlovian bias, and this effect was most pronounced in subjects with higher midfrontal theta to conflict. These findings demonstrate that midfrontal theta is not only a sensitive index of prefrontal control, but it can also reflect the application of top-down control over instrumental processes.

  1. Bilateral cleft lip.

    PubMed

    Mulliken, John B

    2004-04-01

    The surgeon's objectives are normal nasolabial appearance and normal speech. The principles for synchronous repair of bilateral cleft lip have been established, and the techniques continue to evolve. Primary repair impairs maxillary growth, but little can be done at this time except to practice gentle craftsmanship and to minimize tension on the lower labial closure. The cutaneous lip should never be reopened for revision, and the number of secondary procedures involving the nasal cartilages should be kept to a minimum. Many adolescents with repaired bilateral cleft lip need maxillary advancement to improve projection of the nasal tip, to protrude the upper lip, and to attain normal sagittal skeletal harmony. With expected improvements in the technology of distraction osteogenesis, maxillary advancement may someday become as acceptable as orthodontic treatment.

  2. Acute bilateral emphysematous pyelonephritis

    PubMed Central

    Surur, John

    2011-01-01

    The author reports the case of a well and fit patient who presented herself to the emergency department and was found to have bilateral emphysematous pyelonephritis. She was admitted to the intensive care where she was initially treated conservatively with antibiotics, percutaneous drainage and continuous renal replacement therapy, but her condition deteriorated. She underwent a left total nephrectomy and a partial right nephrectomy that resulted in remarkable improvement. The patient started passing urine spontaneously, so no haemofiltration was required. She was discharged home and her case was followed-up by an urologist and nephrologist. This case lays emphasis on thoroughly investigating and managing a patient with bilateral emphysematous pyelonephritis and, in relation to its management, on the dilemma of whether the treatment of choice should be conservative or surgical. PMID:22707665

  3. Grid cells without theta oscillations in the entorhinal cortex of bats.

    PubMed

    Yartsev, Michael M; Witter, Menno P; Ulanovsky, Nachum

    2011-11-02

    Grid cells provide a neural representation of space, by discharging when an animal traverses through the vertices of a periodic hexagonal grid spanning the environment. Although grid cells have been characterized in detail in rats, the fundamental question of what neural dynamics give rise to the grid structure remains unresolved. Two competing classes of models were proposed: network models, based on attractor dynamics, and oscillatory interference models, which propose that interference between somatic and dendritic theta-band oscillations (4-10 Hz) in single neurons transforms a temporal oscillation into a spatially periodic grid. So far, these models could not be dissociated experimentally, because rodent grid cells always co-exist with continuous theta oscillations. Here we used a novel animal model, the Egyptian fruit bat, to refute the proposed causal link between grids and theta oscillations. On the basis of our previous finding from bat hippocampus, of spatially tuned place cells in the absence of continuous theta oscillations, we hypothesized that grid cells in bat medial entorhinal cortex might also exist without theta oscillations. Indeed, we found grid cells in bat medial entorhinal cortex that shared remarkable similarities to rodent grid cells. Notably, the grids existed in the absence of continuous theta-band oscillations, and with almost no theta modulation of grid-cell spiking--both of which are essential prerequisites of the oscillatory interference models. Our results provide a direct demonstration of grid cells in a non-rodent species. Furthermore, they strongly argue against a major class of computational models of grid cells.

  4. Serotonergic modulation of septo-hippocampal and septo-mammillary theta activity during spatial learning, in the rat.

    PubMed

    Gutiérrez-Guzmán, Blanca Erika; Hernández-Pérez, J Jesús; Olvera-Cortés, María Esther

    2017-02-15

    Theta activity has been related to the processing of spatial information and the formation of hippocampus-dependent memory. The medial septum (MS) plays an important role in the control and coordination of theta activity, as well as in the modulation of learning. It has been established that increased serotonergic activity may desynchronize theta activity, while reduced serotonergic activity produces continuous and persistent theta activity in the hippocampus. We investigate whether serotonin acting on the medial septum could modify spatial learning and the functional relationship between septo-hippocampal and septo-mammillary theta activity. The serotonin was depleted (5HT-D) from the medial septum by the injection of 5,7 DHT (5,7- dihydroxytryptamine). Theta activity was recorded in the dorsal hippocampus, MS and mammillary nuclei (SUM, MM) of Sprague-Dawley male rats during spatial learning in the Morris water maze. Spatial learning was facilitated, and the frequency of the hippocampal theta activity during the first days of training increased (to 8.5Hz) in the 5HT-D group, unlike the vehicle group. Additionally, the coherence between the MS-hippocampus and the MS-mammillary nuclei was higher during the second day of the test compared to the vehicle group. We demonstrated that septal serotonin depletion facilitates the acquisition of spatial information in association with a higher functional coupling of the medial septum with the hippocampus and mammillary nuclei. Serotonin, acting in the medial septum, modulates hippocampal theta activity and spatial learning.

  5. Supramammillary serotonin reduction alters place learning and concomitant hippocampal, septal, and supramammillar theta activity in a Morris water maze.

    PubMed

    Hernández-Pérez, J Jesús; Gutiérrez-Guzmán, Blanca E; López-Vázquez, Miguel Á; Olvera-Cortés, María E

    2015-01-01

    Hippocampal theta activity is related to spatial information processing, and high-frequency theta activity, in particular, has been linked to efficient spatial memory performance. Theta activity is regulated by the synchronizing ascending system (SAS), which includes mesencephalic and diencephalic relays. The supramamillary nucleus (SUMn) is located between the reticularis pontis oralis and the medial septum (MS), in close relation with the posterior hypothalamic nucleus (PHn), all of which are part of this ascending system. It has been proposed that the SUMn plays a role in the modulation of hippocampal theta-frequency; this could occur through direct connections between the SUMn and the hippocampus or through the influence of the SUMn on the MS. Serotonergic raphe neurons prominently innervate the hippocampus and several components of the SAS, including the SUMn. Serotonin desynchronizes hippocampal theta activity, and it has been proposed that serotonin may regulate learning through the modulation of hippocampal synchrony. In agreement with this hypothesis, serotonin depletion in the SUMn/PHn results in deficient spatial learning and alterations in CA1 theta activity-related learning in a Morris water maze. Because it has been reported that SUMn inactivation with lidocaine impairs the consolidation of reference memory, we asked whether changes in hippocampal theta activity related to learning would occur through serotonin depletion in the SUMn, together with deficiencies in memory. We infused 5,7-DHT bilaterally into the SUMn in rats and evaluated place learning in the standard Morris water maze task. Hippocampal (CA1 and dentate gyrus), septal and SUMn EEG were recorded during training of the test. The EEG power in each region and the coherence between the different regions were evaluated. Serotonin depletion in the SUMn induced deficient spatial learning and altered the expression of hippocampal high-frequency theta activity. These results provide evidence in

  6. Supramammillary serotonin reduction alters place learning and concomitant hippocampal, septal, and supramammillar theta activity in a Morris water maze

    PubMed Central

    Hernández-Pérez, J. Jesús; Gutiérrez-Guzmán, Blanca E.; López-Vázquez, Miguel Á.; Olvera-Cortés, María E.

    2015-01-01

    Hippocampal theta activity is related to spatial information processing, and high-frequency theta activity, in particular, has been linked to efficient spatial memory performance. Theta activity is regulated by the synchronizing ascending system (SAS), which includes mesencephalic and diencephalic relays. The supramamillary nucleus (SUMn) is located between the reticularis pontis oralis and the medial septum (MS), in close relation with the posterior hypothalamic nucleus (PHn), all of which are part of this ascending system. It has been proposed that the SUMn plays a role in the modulation of hippocampal theta-frequency; this could occur through direct connections between the SUMn and the hippocampus or through the influence of the SUMn on the MS. Serotonergic raphe neurons prominently innervate the hippocampus and several components of the SAS, including the SUMn. Serotonin desynchronizes hippocampal theta activity, and it has been proposed that serotonin may regulate learning through the modulation of hippocampal synchrony. In agreement with this hypothesis, serotonin depletion in the SUMn/PHn results in deficient spatial learning and alterations in CA1 theta activity-related learning in a Morris water maze. Because it has been reported that SUMn inactivation with lidocaine impairs the consolidation of reference memory, we asked whether changes in hippocampal theta activity related to learning would occur through serotonin depletion in the SUMn, together with deficiencies in memory. We infused 5,7-DHT bilaterally into the SUMn in rats and evaluated place learning in the standard Morris water maze task. Hippocampal (CA1 and dentate gyrus), septal and SUMn EEG were recorded during training of the test. The EEG power in each region and the coherence between the different regions were evaluated. Serotonin depletion in the SUMn induced deficient spatial learning and altered the expression of hippocampal high-frequency theta activity. These results provide evidence in

  7. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex

    PubMed Central

    2011-01-01

    Background How oscillatory brain rhythms alone, or in combination, influence cortical information processing to support learning has yet to be fully established. Local field potential and multi-unit neuronal activity recordings were made from 64-electrode arrays in the inferotemporal cortex of conscious sheep during and after visual discrimination learning of face or object pairs. A neural network model has been developed to simulate and aid functional interpretation of learning-evoked changes. Results Following learning the amplitude of theta (4-8 Hz), but not gamma (30-70 Hz) oscillations was increased, as was the ratio of theta to gamma. Over 75% of electrodes showed significant coupling between theta phase and gamma amplitude (theta-nested gamma). The strength of this coupling was also increased following learning and this was not simply a consequence of increased theta amplitude. Actual discrimination performance was significantly correlated with theta and theta-gamma coupling changes. Neuronal activity was phase-locked with theta but learning had no effect on firing rates or the magnitude or latencies of visual evoked potentials during stimuli. The neural network model developed showed that a combination of fast and slow inhibitory interneurons could generate theta-nested gamma. By increasing N-methyl-D-aspartate receptor sensitivity in the model similar changes were produced as in inferotemporal cortex after learning. The model showed that these changes could potentiate the firing of downstream neurons by a temporal desynchronization of excitatory neuron output without increasing the firing frequencies of the latter. This desynchronization effect was confirmed in IT neuronal activity following learning and its magnitude was correlated with discrimination performance. Conclusions Face discrimination learning produces significant increases in both theta amplitude and the strength of theta-gamma coupling in the inferotemporal cortex which are correlated with

  8. Measuring Theta_13 at Daya Bay

    SciTech Connect

    Lau, Kwong

    2014-03-14

    We measured the neutrino mixing angle, theta13, presumably related to the preponderance of matter over antimatter in our universe with high precision. We determined theta13 by measuring the disappearance of neutrinos from a group of six nuclear reactors. The target, located inside a mountain at about 2 km from the reactors, is 80 tons of liquid scintillator doped with trace amount of Gadolinium to increase its neutron detection efficiency. The neutrino flux is measured by the inverse beta-decay reaction where the final-state particles are detected by the liquid scintillator. The measured value of theta13, based on data collected over 3 years, is large, around 8 degrees, rendering the measurement of the parameter related to matter-antimatter asymmetry in future long baseline neutrino experiments easier.

  9. Cerebellar theta oscillations are synchronized during hippocampal theta-contingent trace conditioning

    PubMed Central

    Hoffmann, Loren C.; Berry, Stephen D.

    2009-01-01

    The hippocampus and cerebellum are critically involved in trace eyeblink classical conditioning (EBCC). The mechanisms underlying the hippocampal-cerebellar interaction during this task are not well-understood, although hippocampal theta (3–7 Hz) oscillations are known to reflect a favorable state for EBCC. Two groups of rabbits received trace EBCC in which a brain-computer interface administered trials in either the explicit presence or absence of naturally occurring hippocampal theta. A high percentage of robust theta led to a striking enhancement of learning accompanied by rhythmic theta-band (6–7 Hz) oscillations in the interpositus nucleus (IPN) and cerebellar cortex that were time-locked both to hippocampal rhythms and sensory stimuli during training. Rhythmic oscillations were absent in the cerebellum of the non-theta group. These data strongly suggest a beneficial impact of theta-based coordination of hippocampus and cerebellum and, importantly, demonstrate that hippocampal theta oscillations can be used to index, and perhaps modulate, the functional properties of the cerebellum. PMID:19940240

  10. Bilateral ankle edema with bilateral iritis.

    PubMed

    Kumar, Sunil

    2007-07-01

    I report two patient presented to me with bilateral symmetrical ankle edema and bilateral acute iritis. A 42-year-old female of Indian origin and 30-year-old female from Somalia both presented with bilateral acute iritis. In the first patient, bilateral ankle edema preceded the onset of bilateral acute iritis. Bilateral ankle edema developed during the course of disease after onset of ocular symptoms in the second patient. Both patients did not suffer any significant ocular problem in the past, and on systemic examination, all clinical parameters were within normal limit. Lacrimal gland and conjunctival nodule biopsy established the final diagnosis of sarcoidosis in both cases, although the chest x-rays were normal.

  11. Holomorphic projections and Ramanujan's mock theta functions.

    PubMed

    Imamoğlu, Özlem; Raum, Martin; Richter, Olav K

    2014-03-18

    We use spectral methods of automorphic forms to establish a holomorphic projection operator for tensor products of vector-valued harmonic weak Maass forms and vector-valued modular forms. We apply this operator to discover simple recursions for Fourier series coefficients of Ramanujan's mock theta functions.

  12. Frontal-posterior theta oscillations reflect memory retrieval during sentence comprehension.

    PubMed

    Meyer, Lars; Grigutsch, Maren; Schmuck, Noura; Gaston, Phoebe; Friederici, Angela D

    2015-10-01

    Successful working-memory retrieval requires that items be retained as distinct units. At the neural level, it has been shown that theta-band oscillatory power increases with the number of to-be-distinguished items during working-memory retrieval. Here we hypothesized that during sentence comprehension, verbal-working-memory retrieval demands lead to increased theta power over frontal cortex, supposedly supporting the distinction amongst stored items during verbal-working-memory retrieval. Also, synchronicity may increase between the frontal cortex and the posterior cortex, with the latter supposedly supporting item retention. We operationalized retrieval by using pronouns, which refer to and trigger the retrieval of antecedent nouns from a preceding sentence part. Retrieval demand was systematically varied by changing the pronoun antecedent: Either, it was non-embedded in the preceding main clause, and thus easy-to-retrieve across a single clause boundary, or embedded in the preceding subordinate clause, and thus hard-to-retrieve across a double clause boundary. We combined electroencephalography (EEG), scalp-level time-frequency analysis, source localization, and source-level coherence analysis, observing a frontal-midline and broad left-hemispheric theta-power increase for embedded-antecedent compared to non-embedded-antecedent retrieval. Sources were localized to left-frontal, left-parietal, and bilateral-inferior-temporal cortices. Coherence analyses suggested synchronicity between left-frontal and left-parietal and between left-frontal and right-inferior-temporal cortices. Activity of an array of left-frontal, left-parietal, and bilateral-inferior-temporal cortices may thus assist retrieval during sentence comprehension, potentially indexing the orchestration of item distinction, verbal working memory, and long-term memory. Our results extend prior findings by mapping prior knowledge on the functional role of theta oscillations onto processes genuine to human

  13. Better than sleep: theta neurofeedback training accelerates memory consolidation.

    PubMed

    Reiner, Miriam; Rozengurt, Roman; Barnea, Anat

    2014-01-01

    Consistent empirical results showed that both night and day sleep enhanced memory consolidation. In this study we explore processes of consolidation of memory during awake hours. Since theta oscillations have been shown to play a central role in exchange of information, we hypothesized that elevated theta during awake hours will enhance memory consolidation. We used a neurofeedback protocol, to enhance the relative power of theta or beta oscillations. Participants trained on a tapping task, were divided into three groups: neurofeedback theta; neurofeedback beta; control. We found a significant improvement in performance in the theta group, relative to the beta and control groups, immediately after neurofeedback. Performance was further improved after night sleep in all groups, with a significant advantage favoring the theta group. Theta power during training was correlated with the level of improvement, indicating a clear relationship between memory consolidation, and theta neurofeedback.

  14. Hippocampal theta, gamma, and theta-gamma coupling: effects of aging, environmental change, and cholinergic activation

    PubMed Central

    Jacobson, Tara K.; Howe, Matthew D.; Schmidt, Brandy; Hinman, James R.; Escabí, Monty A.

    2013-01-01

    Hippocampal theta and gamma oscillations coordinate the timing of multiple inputs to hippocampal neurons and have been linked to information processing and the dynamics of encoding and retrieval. One major influence on hippocampal rhythmicity is from cholinergic afferents. In both humans and rodents, aging is linked to impairments in hippocampus-dependent function along with degradation of cholinergic function. Cholinomimetics can reverse some age-related memory impairments and modulate oscillations in the hippocampus. Therefore, one would expect corresponding changes in these oscillations and possible rescue with the cholinomimetic physostigmine. Hippocampal activity was recorded while animals explored a familiar or a novel maze configuration. Reexposure to a familiar situation resulted in minimal aging effects or changes in theta or gamma oscillations. In contrast, exploration of a novel maze configuration increased theta power; this was greater in adult than old animals, although the deficit was reversed with physostigmine. In contrast to the theta results, the effects of novelty, age, and/or physostigmine on gamma were relatively weak. Unrelated to the behavioral situation were an age-related decrease in the degree of theta-gamma coupling and the fact that physostigmine lowered the frequency of theta in both adult and old animals. The results indicate that age-related changes in gamma and theta modulation of gamma, while reflecting aging changes in hippocampal circuitry, seem less related to aging changes in information processing. In contrast, the data support a role for theta and the cholinergic system in encoding and that hippocampal aging is related to impaired encoding of new information. PMID:23303862

  15. Self-generated theta oscillations in the hippocampus.

    PubMed

    Goutagny, Romain; Jackson, Jesse; Williams, Sylvain

    2009-12-01

    Hippocampal theta rhythm is crucial for spatial memory and is thought to be generated by extrinsic inputs. In contrast, using a complete rat hippocampus in vitro, we found several intrinsic, atropine-resistant theta generators in CA1. These oscillators were organized along the septotemporal axis and arose independently from CA3. Our results suggest that CA1 theta rhythm can emerge from the coupling of multiple autonomous hippocampal theta oscillators.

  16. Thalamic Bursts Down-regulate Cortical Theta and Nociceptive Behavior.

    PubMed

    LeBlanc, Brian W; Cross, Brent; Smith, Kelsey A; Roach, Catherine; Xia, Jimmy; Chao, Yu-Chieh; Levitt, Joshua; Koyama, Suguru; Moore, Christopher I; Saab, Carl Y

    2017-05-30

    We tested the relation between pain behavior, theta (4-8 Hz) oscillations in somatosensory cortex and burst firing in thalamic neurons in vivo. Optically-induced thalamic bursts attenuated cortical theta and mechanical allodynia. It is proposed that thalamic bursts are an adaptive response to pain that de-synchronizes cortical theta and decreases sensory salience.

  17. Bilateral Duane syndrome and bilateral aniridia.

    PubMed

    Khan, Arif O; Aldahmesh, Mohammad

    2006-06-01

    Duane retraction syndrome has been reported in association with structural abnormalities of the eye, including epibulbar dermoid, keratoconus, iris dysplasia, heterochromia iridis, persistent fetal vasculature, cataract, choroidal coloboma, microphthalmia, and optic nerve dysplasia. A novel association, that of bilateral Duane syndrome with bilateral aniridia, is the subject of this report.

  18. Bilateral ovarian carcinoma with bilateral uveal melanoma.

    PubMed Central

    Mullaney, J; Mooney, D; O'Connor, M; McDonald, G S

    1984-01-01

    A case of bilateral uveal melanoma in a 60-year-old woman in association with primary bilateral ovarian carcinoma is described. This is the first case in which ultrastructural studies have been performed on the ocular tumours. Seven previously described cases are summarised, and the extreme rarity of such reports would suggest that this may indeed be a new syndrome. Images PMID:6704361

  19. Theta phase locking across the neocortex reflects cortico-hippocampal recursive communication during goal conflict resolution.

    PubMed

    Moore, Roger A; Gale, Anthony; Morris, Paul H; Forrester, Dave

    2006-06-01

    EEG theta coherence, EEG theta power and subjective levels of response were examined in a continuous monitoring target detection task where periodic goal conflicts were introduced as 34 participants progressed through a stimulus sequence leading to response. EEG theta coherence revealed increases in phase locking between cortical areas at specific task stages involving goal conflict. Theta power also increased at points of goal conflict. The temporal characteristics of subjective response (measured continuously throughout the task) indicated a delay between participants actually experiencing goal conflict and overt indications of conflict. The starting point for the study was based on a specific aspect of Gray and McNaughton's [Gray, J.A., McNaughton, N., 2000. The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal System, 2nd ed. Oxford University Press, Oxford] behavioural inhibition system model-namely, septo-hippocampal system involvement in the resolution of goal conflicts. We drew on Gray and McNaughton's [Gray, J.A., McNaughton, N., 2000. The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal system, 2nd ed. Oxford University Press, Oxford] suggestion that septo-hippocampal involvement in this process is reflected by EEG theta. While their theory explains many of our findings, we also drew upon Given's [Givens, B., 1996. Stimulus-evoked reseting of the dentate theta rhythm: relation to working memory. Neuroreport 8 (1), 159-163] proposal that the dentate theta rhythm is reset by behaviourally relevant stimuli. We made further proposals based on Makeig et al.'s [Makeig, S., Westerfield, M., Jung, T.-P., Enghoff, S., Townsend, J., Courchesne, E., Sejnowski, T.J., 2002. Dynamic brain sources of visual evoked responses. Science 295, 690-694] view that specific stimulus events invoke concurrent phase resetting and transient frequency domain coherence across different areas of neocortex. Relations

  20. Frequency-Specific Synchronization in the Bilateral Subthalamic Nuclei Depending on Voluntary Muscle Contraction and Relaxation in Patients with Parkinson’s Disease

    PubMed Central

    Kato, Kenji; Yokochi, Fusako; Iwamuro, Hirokazu; Kawasaki, Takashi; Hamada, Kohichi; Isoo, Ayako; Kimura, Katsuo; Okiyama, Ryoichi; Taniguchi, Makoto; Ushiba, Junichi

    2016-01-01

    The volitional control of muscle contraction and relaxation is a fundamental component of human motor activity, but how the processing of the subcortical networks, including the subthalamic nucleus (STN), is involved in voluntary muscle contraction (VMC) and voluntary muscle relaxation (VMR) remains unclear. In this study, local field potentials (LFPs) of bilateral STNs were recorded in patients with Parkinson’s disease (PD) while performing externally paced VMC and VMR tasks of the unilateral wrist extensor muscle. The VMC- or VMR-related oscillatory activities and their functional couplings were investigated over the theta (4–7 Hz), alpha (8–13 Hz), beta (14–35 Hz), and gamma (40–100 Hz) frequency bands. Alpha and beta desynchronizations were observed in bilateral STNs at the onset of both VMC and VMR tasks. On the other hand, theta and gamma synchronizations were prominent in bilateral STNs specifically at the onset of the VMC task. In particular, just after VMC, theta functional coupling between the bilateral STNs increased, and the theta phase became coupled to the gamma amplitude within the contralateral STN in a phase-amplitude cross-frequency coupled manner. On the other hand, the prominent beta-gamma cross-frequency couplings observed in the bilateral STNs at rest were reduced by the VMC and VMR tasks. These results suggest that STNs are bilaterally involved in the different performances of muscle contraction and relaxation through the theta-gamma and beta-gamma networks between bilateral STNs in patients with PD. PMID:27064969

  1. Speech encoding by coupled cortical theta and gamma oscillations

    PubMed Central

    Hyafil, Alexandre; Fontolan, Lorenzo; Kabdebon, Claire; Gutkin, Boris; Giraud, Anne-Lise

    2015-01-01

    Many environmental stimuli present a quasi-rhythmic structure at different timescales that the brain needs to decompose and integrate. Cortical oscillations have been proposed as instruments of sensory de-multiplexing, i.e., the parallel processing of different frequency streams in sensory signals. Yet their causal role in such a process has never been demonstrated. Here, we used a neural microcircuit model to address whether coupled theta–gamma oscillations, as observed in human auditory cortex, could underpin the multiscale sensory analysis of speech. We show that, in continuous speech, theta oscillations can flexibly track the syllabic rhythm and temporally organize the phoneme-level response of gamma neurons into a code that enables syllable identification. The tracking of slow speech fluctuations by theta oscillations, and its coupling to gamma-spiking activity both appeared as critical features for accurate speech encoding. These results demonstrate that cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and encoding. DOI: http://dx.doi.org/10.7554/eLife.06213.001 PMID:26023831

  2. [Quantitative evaluation of inhibitory effects of epileptic spikes on theta rhythms in the network of hippocampal CA3 and entorhinal cortex in patients with temporal lobe epilepsy].

    PubMed

    Ge, Man-Ling; Guo, Jun-Dan; Chen, Sheng-Hua; Zhang, Ji-Chang; Fu, Xiao-Xuan; Chen, Yu-Min

    2017-02-25

    Epileptic spike is an indicator of hyper-excitability and hyper-synchrony in the neural networks. The inhibitory effects of spikes on theta rhythms (4-8 Hz) might be helpful to understand the mechanism of epileptic damage on the cognitive functions. To quantitatively evaluate the inhibitory effects of spikes on theta rhythms, intracerebral electroencephalogram (EEG) recordings with both sporadic spikes (SSs) and spike-free transient period between adjacent spikes were selected in 4 patients in the status of rapid eyes movement (REM) sleep with temporal lobe epilepsy (TLE) under the pre-surgical monitoring. The electrodes of hippocampal CA3 and entorhinal cortex (EC) were employed, since CA3 and EC built up one of key loops to investigate cognition and epilepsy. These SSs occurred only in CA3, only in EC, or in both CA3 and EC synchronously. Theta power was respectively estimated around SSs and during the spike-free transient period by Gabor wavelet transform and Hilbert transform. The intermittent extent was then estimated to represent for the loss of theta rhythms during the spike-free transient period. The following findings were obtained: (1) The prominent rhythms were in theta frequency band; (2) The spikes could transiently reduce theta power, and the inhibitory effect was severer around SSs in both CA3 and EC synchronously than that around either SSs only in EC or SSs only in CA3; (3) During the spike-free transient period, theta rhythms were interrupted with the intermittent theta rhythms left and theta power level continued dropping, implying the inhibitory effect was sustained. Additionally, the intermittent extent of theta rhythms was converged to the inhibitory extent around SSs; (4) The average theta power level during the spike-free transient period might not be in line with the inhibitory extent of theta rhythms around SSs. It was concluded that the SSs had negative effects on theta rhythms transiently and directly, the inhibitory effects aroused by

  3. Deqi Induction by HT7 Acupuncture Alters Theta and Alpha Band Coherence in Human Healthy Subjects.

    PubMed

    Lee, Go-Eun; Yun, Jong-Min; Yang, Seung-Bum; Kang, Yeonseok; Kang, Hyung-Won; Choi, Kwang-Ho; Kim, Junbeom; Kwon, O Sang; Park, Ji-Eun; Kim, Jae-Hyo

    2017-01-01

    The aim of this preliminary study is to investigate the changes in phase synchronization in the theta and alpha bands before and during the performance of classical acupuncture on the Sinmun (HT7). The electroencephalogram (EEG) signals from nine healthy young subjects were recorded before and during acupuncture in the "closed-eye" state. The EEG signals were acquired from 19 surface scalp electrodes (FP1, FP2, F7, F3, Fz F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2). Needles were inserted into the HT7 bilaterally and were then manipulated to induce deqi and retained for 15 minutes. Phase synchronization was measured by phase coherence. In the theta band, coherence significantly increased between the temporal (T5, T6) and occipital areas (O1, O2) during the acupuncture stimulation. In the alpha band, coherence significantly increased between the left temporal area (T5) and other areas (frontal, parietal, and occipital). Phase coherence in the theta and alpha bands tended to increase during the retention of the acupuncture needles after deqi. Therefore, it can be concluded that acupuncture stimulation with deqi is clinically effective via the central nervous system (CNS).

  4. Deqi Induction by HT7 Acupuncture Alters Theta and Alpha Band Coherence in Human Healthy Subjects

    PubMed Central

    Choi, Kwang-Ho

    2017-01-01

    The aim of this preliminary study is to investigate the changes in phase synchronization in the theta and alpha bands before and during the performance of classical acupuncture on the Sinmun (HT7). The electroencephalogram (EEG) signals from nine healthy young subjects were recorded before and during acupuncture in the “closed-eye” state. The EEG signals were acquired from 19 surface scalp electrodes (FP1, FP2, F7, F3, Fz F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2). Needles were inserted into the HT7 bilaterally and were then manipulated to induce deqi and retained for 15 minutes. Phase synchronization was measured by phase coherence. In the theta band, coherence significantly increased between the temporal (T5, T6) and occipital areas (O1, O2) during the acupuncture stimulation. In the alpha band, coherence significantly increased between the left temporal area (T5) and other areas (frontal, parietal, and occipital). Phase coherence in the theta and alpha bands tended to increase during the retention of the acupuncture needles after deqi. Therefore, it can be concluded that acupuncture stimulation with deqi is clinically effective via the central nervous system (CNS). PMID:28484506

  5. Progressive Fracture of [0/90/ + or - Theta]s Composite Structure Under Uniform Pressure Load

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascalis K.; Chamis, Christos C.; Gotsis, Christos K.; Mouratidis, Ericos

    2007-01-01

    S-Glass/epoxy [0/90/plus or minus theta]s for theta =45 deg., 60 deg., and 75 deg. laminated fiber-reinforced composite stiffened plate was simulated to investigated for damage and fracture progression under uniform pressure. An integrated computer code was augmented for the simulation of the damage initiation, growth, accumulation, and propagation to fracture and to structural collapse. Results show in detail the damage progression sequence and structural fracture resistance during different degradation stages. Damage through the thickness of the laminate initiated first at [0/90/plus or minus 45]s at 15.168 MPa (2200 psi), followed by [0/90/plus or minus 60]s at 16.96 MPa (2460 psi) and finally by [0/90/plus or minus 75]s at 19.3 MPa (2800 psi). After damage initiation happened the cracks propagate rapidly to structural fracture.

  6. Characterizing the roles of alpha and theta oscillations in multisensory attention.

    PubMed

    Keller, Arielle S; Payne, Lisa; Sekuler, Robert

    2017-03-01

    Cortical alpha oscillations (8-13Hz) appear to play a role in suppressing distractions when just one sensory modality is being attended, but do they also contribute when attention is distributed over multiple sensory modalities? For an answer, we examined cortical oscillations in human subjects who were dividing attention between auditory and visual sequences. In Experiment 1, subjects performed an oddball task with auditory, visual, or simultaneous audiovisual sequences in separate blocks, while the electroencephalogram was recorded using high-density scalp electrodes. Alpha oscillations were present continuously over posterior regions while subjects were attending to auditory sequences. This supports the idea that the brain suppresses processing of visual input in order to advantage auditory processing. During a divided-attention audiovisual condition, an oddball (a rare, unusual stimulus) occurred in either the auditory or the visual domain, requiring that attention be divided between the two modalities. Fronto-central theta band (4-7Hz) activity was strongest in this audiovisual condition, when subjects monitored auditory and visual sequences simultaneously. Theta oscillations have been associated with both attention and with short-term memory. Experiment 2 sought to distinguish these possible roles of fronto-central theta activity during multisensory divided attention. Using a modified version of the oddball task from Experiment 1, Experiment 2 showed that differences in theta power among conditions were independent of short-term memory load. Ruling out theta's association with short-term memory, we conclude that fronto-central theta activity is likely a marker of multisensory divided attention.

  7. Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors.

    PubMed

    Korotkova, Tatiana; Ponomarenko, Alexey; Monaghan, Caitlin K; Poulter, Steven L; Cacucci, Francesca; Wills, Tom; Hasselmo, Michael E; Lever, Colin

    2017-09-05

    The theta oscillation (5-10Hz) is a prominent behavior-specific brain rhythm. This review summarizes studies showing the multifaceted role of theta rhythm in cognitive functions, including spatial coding, time coding and memory, exploratory locomotion and anxiety-related behaviors. We describe how activity of hippocampal theta rhythm generators - medial septum, nucleus incertus and entorhinal cortex, links theta with specific behaviors. We review evidence for functions of the theta-rhythmic signaling to subcortical targets, including lateral septum. Further, we describe functional associations of theta oscillation properties - phase, frequency and amplitude - with memory, locomotion and anxiety, and outline how manipulations of these features, using optogenetics or pharmacology, affect associative and innate behaviors. We discuss work linking cognition to the slope of the theta frequency to running speed regression, and emotion-sensitivity (anxiolysis) to its y-intercept. Finally, we describe parallel emergence of theta oscillations, theta-mediated neuronal activity and behaviors during development. This review highlights a complex interplay of neuronal circuits and synchronization features, which enables an adaptive regulation of multiple behaviors by theta-rhythmic signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Topography, Power and Current Source Density of Theta Oscillations during Reward Processing as Markers for Alcohol Dependence

    PubMed Central

    Kamarajan, Chella; Rangaswamy, Madhavi; Manz, Niklas; Chorlian, David B.; Pandey, Ashwini K.; Roopesh, Bangalore N.; Porjesz, Bernice

    2013-01-01

    Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task which involved outcomes of either loss or gain of an amount (10¢ or 50¢) that was bet. Event-related theta band (3.0–7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200–500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current Source Density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition as compared to controls who manifested stronger and focused midline sources. Further, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control. PMID:21520344

  9. Semantic congruence enhances memory of episodic associations: role of theta oscillations.

    PubMed

    Atienza, Mercedes; Crespo-Garcia, Maite; Cantero, Jose L

    2011-01-01

    Growing evidence suggests that theta oscillations play a crucial role in episodic encoding. The present study evaluates whether changes in electroencephalographic theta source dynamics mediate the positive influence of semantic congruence on incidental associative learning. Here we show that memory for episodic associations (face-location) is more accurate when studied under semantically congruent contexts. However, only participants showing RT priming effect in a conceptual priming test (priming group) also gave faster responses when recollecting source information of semantically congruent faces as compared with semantically incongruent faces. This improved episodic retrieval was positively correlated with increases in theta power during the study phase mainly in the bilateral parahippocampal gyrus, left superior temporal gyrus, and left lateral posterior parietal lobe. Reconstructed signals from the estimated sources showed higher theta power for congruent than incongruent faces and also for the priming than the nonpriming group. These results are in agreement with the attention to memory model. Besides directing top-down attention to goal-relevant semantic information during encoding, the dorsal parietal lobe may also be involved in redirecting attention to bottom-up-driven memories thanks to connections between the medial-temporal and the left ventral parietal lobe. The latter function can either facilitate or interfere with encoding of face-location associations depending on whether they are preceded by semantically congruent or incongruent contexts, respectively, because only in the former condition retrieved representations related to the cue and the face are both coherent with the person identity and are both associated with the same location.

  10. Ramanujan’s mock theta functions

    PubMed Central

    Griffin, Michael; Ono, Ken; Rolen, Larry

    2013-01-01

    In his famous deathbed letter, Ramanujan introduced the notion of a mock theta function, and he offered some alleged examples. Recent work by Zwegers [Zwegers S (2001) Contemp Math 291:268–277 and Zwegers S (2002) PhD thesis (Univ of Utrecht, Utrecht, The Netherlands)] has elucidated the theory encompassing these examples. They are holomorphic parts of special harmonic weak Maass forms. Despite this understanding, little attention has been given to Ramanujan’s original definition. Here, we prove that Ramanujan’s examples do indeed satisfy his original definition. PMID:23536292

  11. BILATERAL ISOLATED CHOROIDAL MELANOCYTOSIS.

    PubMed

    Mason, Lauren B; Mason, John O

    2016-01-01

    To report a very rare case of bilateral isolated choroidal melanocystosis. Clinical case report and literature review. A 24-year-old asymptomatic African American woman presented with bilateral diffuse choroidal pigmentation. The diagnosis of bilateral isolated choroidal melanocytosis was made, and optical coherence tomography was remarkable for increased choroidal thickness with a normal inner and outer retina. Although extremely rare, bilateral isolated choroidal melanocytosis may occur in young patients, as well as in those who are African American. Longer follow-up of this case and those in the literature will elucidate whether these choroidal lesions enlarge or have a risk of developing uveal melanoma.

  12. A rare case of bilateral tubal pregnancy.

    PubMed

    Shetty, J P; Shetty, Bhaskar; Makkanavar, J H; Chandrika

    2011-07-01

    Diagnosis of ectopic pregnancy continues to be an important challenge. Here a case of incidental diagnosis of bilateral tubal ectopic pregnancy is reported. There was a ruptured tubal ectopic pregnancy on the left side and chronic ruptured tubal ectopic pregnancy on the right side. Leading cause of first trimester maternal deaths is due to complications of ectopic pregnancy. Here an unusual case of ectopic pregnancy is reported in which the patient had spontaneous bilateral tubal ectopic pregnancy which presented with left tubal rupture and subsequently emergency exploratory laparotomy revealed bilateral tubal mass, which on histopathological examination confirmed tubal pregnancy.

  13. Alpha- and theta-range cortical synchronization and corticomuscular coherence during joystick manipulation in a virtual navigation task.

    PubMed

    Hori, Satoshi; Matsumoto, Jumpei; Hori, Etsuro; Kuwayama, Naoya; Ono, Taketoshi; Kuroda, Satoshi; Nishijo, Hisao

    2013-10-01

    Previous studies have reported that multiple brain regions are activated during spatial navigation, but it remains unclear how this activation is converted to motor commands for navigation. This study was aimed to investigate synchronization across different brain regions and between cortical areas and muscles during spatial navigation. This synchronization has been suggested to be essential for integrating activity in the multiple brain areas to support higher cognitive functions and for conversion of cortical activity to motor commands. In the present study, the subjects were required to sequentially trace ten checkpoints in a virtual town by manipulating a joystick and to perform this three times while electroencephalograms and electromyograms from the right arm were monitored. Time spent on the task in the third trial was significantly lesser than that in the first trial indicating an improvement in task performance. This repeated learning was associated with an increase in alpha power at the electrodes over the contralateral sensorimotor region and in theta power at the electrodes over the bilateral premotor and frontotemporal regions. Alpha- and theta-range corticocortical coherences between these regions and other brain areas were also increased in the third trial compared to the first trial. Furthermore, alpha- and theta-range corticomuscular coherence was significantly increased in the second and third trials compared to the first trial. These results suggest that alpha- and theta-range synchronous activity across multiple systems is essential for the integrated brain activity required in spatial navigation and for the conversion of this activity to motor commands.

  14. Theta burst stimulation over the right Broca's homologue induces improvement of naming in aphasic patients.

    PubMed

    Kindler, Jochen; Schumacher, Rahel; Cazzoli, Dario; Gutbrod, Klemens; Koenig, Monica; Nyffeler, Thomas; Dierks, Thomas; Müri, René M

    2012-08-01

    Improvements of language production in aphasic patients have been reported following repeated 1-Hz transcranial magnetic stimulation over the nondamaged right hemisphere. Most studies examined aphasic patients in the chronic phase. The effect of transcranial magnetic stimulation application in acute or subacute patients has not been systematically studied. We aimed to evaluate whether continuous theta burst stimulation, an inhibitory protocol with a shorter application time than the common 1-Hz protocol, is able to improve naming performance in aphasic patients in different poststroke phases. Eighteen right-handed aphasic patients performed a picture naming task and a language independent alertness test before and after the application of theta burst stimulation over the intact right Broca's homologue localized by the 10-20 electroencephalogram system in a randomized, sham-controlled, crossover trial. We found that naming performance was significantly better, and naming latency was significantly shorter, after theta burst stimulation than after the sham intervention. Patients who responded best were in the subacute phase after stroke. This setting with the short theta burst stimulation application time and the simple stimulation localization procedure is suitable for clinical purposes.

  15. [Hemorrhagic bilateral renal angiomyolipoma].

    PubMed

    Benjelloun, Mohamed; Rabii, Redouane; Mezzour, Mohamed Hicham; Joual, Abdenbi; Bennani, Saâd; el Mrini, Mohamed

    2003-09-01

    Renal angiomyolipoma is a rare benign tumour, often associated with congenital diseases especially de Bourneville's tuberous sclerosis. Bilateral angiomyolipoma is exceptional. The authors report a case of bilateral renal angiomyolipoma in a 33-year-old patient presenting with haemorrhagic shock. In the light of this case and a review of the literature, the authors discuss the diagnostic and therapeutic aspects of this disease.

  16. Hippocampo-cerebellar theta band phase synchrony in rabbits.

    PubMed

    Wikgren, J; Nokia, M S; Penttonen, M

    2010-02-17

    Hippocampal functioning, in the form of theta band oscillation, has been shown to modulate and predict cerebellar learning of which rabbit eyeblink conditioning is perhaps the most well-known example. The contribution of hippocampal neural activity to cerebellar learning is only possible if there is a functional connection between the two structures. Here, in the context of trace eyeblink conditioning, we show (1) that, in addition to the hippocampus, prominent theta oscillation also occurs in the cerebellum, and (2) that cerebellar theta oscillation is synchronized with that in the hippocampus. Further, the degree of phase synchrony (PS) increased both as a response to the conditioning stimuli and as a function of the relative power of hippocampal theta oscillation. However, the degree of PS did not change as a function of either training or learning nor did it predict learning rate as the hippocampal theta ratio did. Nevertheless, theta band synchronization might reflect the formation of transient neural assemblies between the hippocampus and the cerebellum. These findings help us understand how hippocampal function can affect eyeblink conditioning, during which the critical plasticity occurs in the cerebellum. Future studies should examine cerebellar unit activity in relation to hippocampal theta oscillations in order to discover the detailed mechanisms of theta-paced neural activity.

  17. Reversal of theta rhythm flow through intact hippocampal circuits.

    PubMed

    Jackson, Jesse; Amilhon, Bénédicte; Goutagny, Romain; Bott, Jean-Bastien; Manseau, Frédéric; Kortleven, Christian; Bressler, Steven L; Williams, Sylvain

    2014-10-01

    Activity flow through the hippocampus is thought to arise exclusively from unidirectional excitatory synaptic signaling from CA3 to CA1 to the subiculum. Theta rhythms are important for hippocampal synchronization during episodic memory processing; thus, it is assumed that theta rhythms follow these excitatory feedforward circuits. To the contrary, we found that theta rhythms generated in the rat subiculum flowed backward to actively modulate spike timing and local network rhythms in CA1 and CA3. This reversed signaling involved GABAergic mechanisms. However, when hippocampal circuits were physically limited to a lamellar slab, CA3 outputs synchronized CA1 and the subiculum using excitatory mechanisms, as predicted by classic hippocampal models. Finally, analysis of in vivo recordings revealed that this reversed theta flow was most prominent during REM sleep. These data demonstrate that communication between CA3, CA1 and the subiculum is not exclusively unidirectional or excitatory and that reversed inhibitory theta signaling also contributes to intrahippocampal synchrony.

  18. Learning to learn: theta oscillations predict new learning, which enhances related learning and neurogenesis.

    PubMed

    Nokia, Miriam S; Sisti, Helene M; Choksi, Monica R; Shors, Tracey J

    2012-01-01

    Animals in the natural world continuously encounter learning experiences of varying degrees of novelty. New neurons in the hippocampus are especially responsive to learning associations between novel events and more cells survive if a novel and challenging task is learned. One might wonder whether new neurons would be rescued from death upon each new learning experience or whether there is an internal control system that limits the number of cells that are retained as a function of learning. In this experiment, it was hypothesized that learning a task that was similar in content to one already learned previously would not increase cell survival. We further hypothesized that in situations in which the cells are rescued hippocampal theta oscillations (3-12 Hz) would be involved and perhaps necessary for increasing cell survival. Both hypotheses were disproved. Adult male Sprague-Dawley rats were trained on two similar hippocampus-dependent tasks, trace and very-long delay eyeblink conditioning, while recording hippocampal local-field potentials. Cells that were generated after training on the first task were labeled with bromodeoxyuridine and quantified after training on both tasks had ceased. Spontaneous theta activity predicted performance on the first task and the conditioned stimulus induced a theta-band response early in learning the first task. As expected, performance on the first task correlated with performance on the second task. However, theta activity did not increase during training on the second task, even though more cells were present in animals that had learned. Therefore, as long as learning occurs, relatively small changes in the environment are sufficient to increase the number of surviving neurons in the adult hippocampus and they can do so in the absence of an increase in theta activity. In conclusion, these data argue against an upper limit on the number of neurons that can be rescued from death by learning.

  19. Spontaneous bilateral tubal pregnancy.

    PubMed

    Wali, Aisha Syed; Khan, Rozilla Sadia

    2012-02-01

    With the increase in incidence of ectopic pregnancy over the decades, bilateral ectopic pregnancy is also increasing. It is usually associated with assisted reproductive techniques (ART) but in recent years few cases of spontaneous bilateral ectopic pregnancy have been reported. Gynaecologists should be aware of this and that ultrasonography has limitations in diagnosis. In cases of ectopic pregnancy where contralateral adnexa is not clearly identified on ultrasound and fertility needs to be conserved, patient should be managed by experts in well equipped centres. A case of spontaneous bilateral tubal pregnancy that remained undiagnosed till laparotomy, is described.

  20. Bilateral Anterior Shoulder Dislocation

    PubMed Central

    Siu, Yuk Chuen; Lui, Tun Hing

    2014-01-01

    Introduction: Unilateral anterior shoulder dislocation is one of the most common problems encountered in orthopedic practice. However, simultaneous bilateral anterior dislocation of the shoulders is quite rare. Case Presentation: We report a case of a 75-year-old woman presented with simultaneous bilateral anterior shoulder dislocation following a trauma, complicated with a traction injury to the posterior cord of the brachial plexus. Conclusions: Bilateral anterior shoulder dislocation is very rare. The excessive traction force during closed reduction may lead to nerve palsy. Clear documentation of neurovascular status and adequate imaging before and after a reduction should be performed. PMID:25685749

  1. Bilateral Integrative Medicine, Obviously

    PubMed Central

    Stumpf, Steven H.; Shapiro, Simon J.

    2006-01-01

    Unstated and unacknowledged bias has a profound impact on the nature and implementation of integrative education models. Integrative education is the process of training conventional biomedical and traditional Chinese medicine practitioners in each tradition such that patient care may be effectively coordinated. A bilateral education model ensures that students in each tradition are cross-taught by experts from the ‘other’ tradition, imparting knowledge and values in unison. Acculturation is foundational to bilateral integrative medical education and practice. Principles are discussed for an open-minded bilateral educational model that can result in a new generation of integrative medicine teachers. PMID:16786060

  2. An integrative model of the intrinsic hippocampal theta rhythm

    PubMed Central

    2017-01-01

    Hippocampal theta oscillations (4–12 Hz) are consistently recorded during memory tasks and spatial navigation. Despite several known circuits and structures that generate hippocampal theta locally in vitro, none of them were found to be critical in vivo, and the hippocampal theta rhythm is severely attenuated by disruption of external input from medial septum or entorhinal cortex. We investigated these discrepancies that question the sufficiency and robustness of hippocampal theta generation using a biophysical spiking network model of the CA3 region of the hippocampus that included an interconnected network of pyramidal cells, inhibitory basket cells (BC) and oriens-lacunosum moleculare (OLM) cells. The model was developed by matching biological data characterizing neuronal firing patterns, synaptic dynamics, short-term synaptic plasticity, neuromodulatory inputs, and the three-dimensional organization of the hippocampus. The model generated theta power robustly through five cooperating generators: spiking oscillations of pyramidal cells, recurrent connections between them, slow-firing interneurons and pyramidal cells subnetwork, the fast-spiking interneurons and pyramidal cells subnetwork, and non-rhythmic structured external input from entorhinal cortex to CA3. We used the modeling framework to quantify the relative contributions of each of these generators to theta power, across different cholinergic states. The largest contribution to theta power was that of the divergent input from the entorhinal cortex to CA3, despite being constrained to random Poisson activity. We found that the low cholinergic states engaged the recurrent connections in generating theta activity, whereas high cholinergic states utilized the OLM-pyramidal subnetwork. These findings revealed that theta might be generated differently across cholinergic states, and demonstrated a direct link between specific theta generators and neuromodulatory states. PMID:28787026

  3. Bilateral guaifenesin ureteral calculi.

    PubMed

    Whelan, Chris; Schwartz, Bradley F

    2004-01-01

    We report on a patient with bilateral ureteral calculi composed of guaifenesin metabolite as determined by infrared spectroscopy. These stones may be associated with excessive guaifenesin intake related to the current popularity of ephedrine preparations.

  4. Bilateral lateral periodontal cyst.

    PubMed

    Govil, Somya; Gupta, Vishesh; Misra, Neeta; Misra, Pradyumna

    2013-05-10

    The bilateral lateral periodontal cyst is a rare nasological entity, which despite clinical and radiological presentation is being diagnosed by histological characteristics. It is asymptomatic in nature and is observed in routine radiography. The aim and objective of this article is to present a rare case of bilateral lateral periodontal cyst in a 14-year-old child. The clinical and radiographical findings, along with its management have been discussed. Enucleation of bilateral cyst without extraction of the adjacent tooth was performed. Lesion samples were sent for histopathological analysis. The histopathological analysis revealed a thin, non keratinised stratified squamous epithelium resembling reduced enamel epithelium. Epithelial plaques were also seen. A clinicopathological correlation incorporating the surgical, radiographical and gold standard histopathological findings was obtained to suggest the final diagnosis of the bilateral lateral periodontal cyst.

  5. [Bilateral idiopathic granulomatous orchitis].

    PubMed

    Peyrí Rey, E; Riverola Manzanilla, A; Cañas Tello, M A

    2008-04-01

    A rare case of asymtomatic synchronous bilateral granulomatous orchitis idiopathic is decribed. In the scrotal ultrasonography are multiple hypoecoic areas, differential diagnosis between testicular tumor and granulomatous orchitis is very difficult in any examination by histological findings.

  6. Echinoderms Have Bilateral Tendencies

    PubMed Central

    Zhao, Wenchan; Wang, Sishuo; Lv, Jianhao

    2012-01-01

    Echinoderms take many forms of symmetry. Pentameral symmetry is the major form and the other forms are derived from it. However, the ancestors of echinoderms, which originated from Cambrian period, were believed to be bilaterians. Echinoderm larvae are bilateral during their early development. During embryonic development of starfish and sea urchins, the position and the developmental sequence of each arm are fixed, implying an auxological anterior/posterior axis. Starfish also possess the Hox gene cluster, which controls symmetrical development. Overall, echinoderms are thought to have a bilateral developmental mechanism and process. In this article, we focused on adult starfish behaviors to corroborate its bilateral tendency. We weighed their central disk and each arm to measure the position of the center of gravity. We then studied their turning-over behavior, crawling behavior and fleeing behavior statistically to obtain the center of frequency of each behavior. By joining the center of gravity and each center of frequency, we obtained three behavioral symmetric planes. These behavioral bilateral tendencies might be related to the A/P axis during the embryonic development of the starfish. It is very likely that the adult starfish is, to some extent, bilaterian because it displays some bilateral propensity and has a definite behavioral symmetric plane. The remainder of bilateral symmetry may have benefited echinoderms during their evolution from the Cambrian period to the present. PMID:22247765

  7. Echinoderms have bilateral tendencies.

    PubMed

    Ji, Chengcheng; Wu, Liang; Zhao, Wenchan; Wang, Sishuo; Lv, Jianhao

    2012-01-01

    Echinoderms take many forms of symmetry. Pentameral symmetry is the major form and the other forms are derived from it. However, the ancestors of echinoderms, which originated from Cambrian period, were believed to be bilaterians. Echinoderm larvae are bilateral during their early development. During embryonic development of starfish and sea urchins, the position and the developmental sequence of each arm are fixed, implying an auxological anterior/posterior axis. Starfish also possess the Hox gene cluster, which controls symmetrical development. Overall, echinoderms are thought to have a bilateral developmental mechanism and process. In this article, we focused on adult starfish behaviors to corroborate its bilateral tendency. We weighed their central disk and each arm to measure the position of the center of gravity. We then studied their turning-over behavior, crawling behavior and fleeing behavior statistically to obtain the center of frequency of each behavior. By joining the center of gravity and each center of frequency, we obtained three behavioral symmetric planes. These behavioral bilateral tendencies might be related to the A/P axis during the embryonic development of the starfish. It is very likely that the adult starfish is, to some extent, bilaterian because it displays some bilateral propensity and has a definite behavioral symmetric plane. The remainder of bilateral symmetry may have benefited echinoderms during their evolution from the Cambrian period to the present.

  8. Continuous postoperative insulin infusion reduces deep sternal wound infection in patients with diabetes undergoing coronary artery bypass grafting using bilateral internal mammary artery grafts: a propensity-matched analysis.

    PubMed

    Ogawa, Shinji; Okawa, Yasuhide; Sawada, Koshi; Goto, Yoshihiro; Yamamoto, Masanori; Koyama, Yutaka; Baba, Hiroshi; Suzuki, Takahiko

    2016-02-01

    Deep sternal wound infection (DSWI), especially in patients with diabetes mellitus (DM), is a major concern after coronary artery bypass grafting (CABG) with bilateral internal mammary artery (BIMA) grafts. We evaluated the risk of DSWI and other clinical outcomes between continuous insulin infusion therapy (CIT) and insulin sliding scale therapy (IST) in a cohort of DM patients who underwent CABG with BIMA. The clinical records of DM patients who underwent isolated CABG with BIMA were retrospectively reviewed. The study population consisted of 95 patients who received CIT and 126 patients who received IST. Furthermore, a one-to-one matched analysis based on estimated propensity scores for patients who received CIT or IST yielded two groups comprising 58 patients each. The proportion of patients with DSWI, overall survival rates and major adverse cardiac events were compared between the two groups in the overall and the propensity-matching cohort. The prevalence of DSWI requiring debridement and closure was significantly reduced in the CIT group compared with that in the IST group [1/95 (1.1%) vs 9/126 (7.1%), P = 0.031]; these results were not attenuated even after propensity-matching analysis [0/58 (0%) vs 6/58 (10.3%), P = 0.031]. The mean preoperative glucose levels were similar between the two groups (157.5 ± 54.6 vs 176.1 ± ±70 mg/dl, P = 0.063), whereas the mean glucose values were significantly lower on the first and second operative days in the CIT group than in the IST group (132.9 ± 44.1 vs 197.8 ± 78.6 mg/dl, P < 0.0001; 153.5 ± 58.8 vs 199.6 ± 89.1 mg/dl, P < 0.0001, respectively). The glucose variability levels within 24 h postoperatively were significantly higher in the IST group (46.1 ± 19.4 vs 66.4 ± 26.8 mg/dl, P < 0.0001). The 30-day and 1-year survival rates were similar between the two groups (100 vs 99.2%, P = 0.384; 96.6 vs 94.4%, P = 0.454). No results were changed in the propensity-matching models. The CIT approach reduced the

  9. Theta, beta and gamma rate modulations in the developing auditory system.

    PubMed

    Vanvooren, Sophie; Hofmann, Michael; Poelmans, Hanne; Ghesquière, Pol; Wouters, Jan

    2015-09-01

    In the brain, the temporal analysis of many important auditory features relies on the synchronized firing of neurons to the auditory input rhythm. These so-called neural oscillations play a crucial role in sensory and cognitive processing and deviances in oscillatory activity have shown to be associated with neurodevelopmental disorders. Given the importance of neural auditory oscillations in normal and impaired sensory and cognitive functioning, there has been growing interest in their developmental trajectory from early childhood on. In the present study, neural auditory processing was investigated in typically developing young children (n = 40) and adults (n = 27). In all participants, auditory evoked theta, beta and gamma responses were recorded. The results of this study show maturational differences between children and adults in neural auditory processing at cortical as well as at brainstem level. Neural background noise at cortical level was shown to be higher in children compared to adults. In addition, higher theta response amplitudes were measured in children compared to adults. For beta and gamma rate modulations, different processing asymmetry patterns were observed between both age groups. The mean response phase was also shown to differ significantly between children and adults for all rates. Results suggest that cortical auditory processing of beta develops from a general processing pattern into a more specialized asymmetric processing preference over age. Moreover, the results indicate an enhancement of bilateral representation of monaural sound input at brainstem with age. A dissimilar efficiency of auditory signal transmission from brainstem to cortex along the auditory pathway between children and adults is suggested. These developmental differences might be due to both functional experience-dependent as well as anatomical changes. The findings of the present study offer important information about maturational differences between children

  10. Analysis of the energetic parameters of a theta pinch

    NASA Astrophysics Data System (ADS)

    Cavalcanti, G. H.; Farias, E. E.

    2009-12-01

    This work is devoted to study experimentally the performance of a theta pinch when the number of capacitors and turns of magnetic coil and the diameter of the glass tube are changed. To model the theta pinch a simple RLC circuit is used and the measurement of energy transmission from the bank of capacitors to the plasma is made using few experimental resources. In this work it was analyzed more than 2500 curves with a nonlinear procedure. Our results show that it is possible to design an optimized theta pinch making the appropriated choice of energetic parameters and therefore to reduce the stress of the system.

  11. Effects of theta burst stimulation on referred phantom sensations in patients with spinal cord injury.

    PubMed

    Nardone, Raffaele; De Blasi, Pierpaolo; Höller, Yvonne; Taylor, Alexandra C; Brigo, Francesco; Trinka, Eugen

    2016-03-02

    To further explore the mechanisms underlying cortical reorganization in patients with phantom sensations after deafferentation, a repetitive transcranial magnetic stimulation study was carried out in two patients with referred phantom sensations (RPS) after incomplete spinal cord injury at the thoracic level. We delivered continuous (inhibitory), intermittent (excitatory), and placebo theta burst stimulation to the contralateral primary motor cortex (M1), primary somatosensory cortex (S1), and secondary somatosensory cortex (S2). Perception of RPS was significantly and transiently disrupted by inhibitory theta burst stimulation applied over S1 and, to a lesser extent, S2. This study supports the hypothesis that RPS depend on remapping in the somatosensory cortex and provides further electrophysiological evidence in vivo that cortical reorganizational processes are critically modulated by GABAergic mechanisms. Enhancement of GABAergic activity may block cortical reorganization, leading to RPS in spinal cord injury patients.

  12. Theta Pinch Coil Design for SSX

    NASA Astrophysics Data System (ADS)

    Shrock, J. E.; Han, J.; Kaur, M.; Brown, M. R.; Schaffner, D. A.

    2016-10-01

    We present the essential physics and design parameters behind a theta pinch coil used on SSX. The coil is used as an accelerator to drive flux behind a Taylor plume traveling about 30 km/sec. Operating between 25 and 40 kV on a time scale < 10 μs , the design focuses on minimizing the quarter cycle rise time (π/2√{ LC }) of the coil while maintaining the necessary precautions for working at high voltage. Our design works with 1.1 and 3.3 μF capacitors and a maximum stored electrical energy of U =1/2 CV2 = 880 J (at the lower capacitance). This electrical energy is converted into kinetic energy in the plume. Each plume has a mass greater than 30 μg , giving an initial kinetic energy of at least 14 J . At perfect efficiency, the upper bound of the plume velocity will be 240 km/sec using the lower capacitance circuit. Work supported by DOE OFES and ARPA-E ALPHA programs.

  13. Theta Oscillation Reveals the Temporal Involvement of Different Attentional Networks in Contingent Reorienting

    PubMed Central

    Chang, Chi-Fu; Liang, Wei-Kuang; Lai, Chiou-Lian; Hung, Daisy L.; Juan, Chi-Hung

    2016-01-01

    In the visual world, rapidly reorienting to relevant objects outside the focus of attention is vital for survival. This ability from the interaction between goal-directed and stimulus-driven attentional control is termed contingent reorienting. Neuroimaging studies have demonstrated activations of the ventral and dorsal attentional networks (DANs) which exhibit right hemisphere dominance, but the temporal dynamics of the attentional networks still remain unclear. The present study used event-related potential (ERP) to index the locus of spatial attention and Hilbert-Huang transform (HHT) to acquire the time-frequency information during contingent reorienting. The ERP results showed contingent reorienting induced significant N2pc on both hemispheres. In contrast, our time-frequency analysis found further that, unlike the N2pc, theta oscillation during contingent reorienting differed between hemispheres and experimental sessions. The inter-trial coherence (ITC) of the theta oscillation demonstrated that the two sides of the attentional networks became phase-locked to contingent reorienting at different stages. The left attentional networks were associated with contingent reorienting in the first experimental session whereas the bilateral attentional networks play a more important role in this process in the subsequent session. This phase-locked information suggests a dynamic temporal evolution of the involvement of different attentional networks in contingent reorienting and a potential role of the left ventral network in the first session. PMID:27375459

  14. Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation.

    PubMed

    Butler, James L; Mendonça, Philipe R F; Robinson, Hugh P C; Paulsen, Ole

    2016-04-13

    Gamma oscillations (30-120 Hz) are thought to be important for various cognitive functions, including perception and working memory, and disruption of these oscillations has been implicated in brain disorders, such as schizophrenia and Alzheimer's disease. The cornu ammonis area 1 (CA1) of the hippocampus receives gamma frequency inputs from upstream regions (cornu ammonis area 3 and medial entorhinal cortex) and generates itself a faster gamma oscillation. The exact nature and origin of the intrinsic CA1 gamma oscillation is still under debate. Here, we expressed channel rhodopsin-2 under the CaMKIIα promoter in mice and prepared hippocampal slices to produce a model of intrinsic CA1 gamma oscillations. Sinusoidal optical stimulation of CA1 at theta frequency was found to induce robust theta-nested gamma oscillations with a temporal and spatial profile similar to CA1 gamma in vivo The results suggest the presence of a single gamma rhythm generator with a frequency range of 65-75 Hz at 32 °C. Pharmacological analysis found that the oscillations depended on both AMPA and GABAA receptors. Cell-attached and whole-cell recordings revealed that excitatory neuron firing slightly preceded interneuron firing within each gamma cycle, suggesting that this intrinsic CA1 gamma oscillation is generated with a pyramidal-interneuron circuit mechanism. This study demonstrates that the cornu ammonis area 1 (CA1) is capable of generating intrinsic gamma oscillations in response to theta input. This gamma generator is independent of activity in the upstream regions, highlighting that CA1 can produce its own gamma oscillation in addition to inheriting activity from the upstream regions. This supports the theory that gamma oscillations predominantly function to achieve local synchrony, and that a local gamma generated in each area conducts the signal to the downstream region. Copyright © 2016 Butler et al.

  15. Intrinsic Cornu Ammonis Area 1 Theta-Nested Gamma Oscillations Induced by Optogenetic Theta Frequency Stimulation

    PubMed Central

    Butler, James L.; Mendonça, Philipe R. F.; Robinson, Hugh P. C.

    2016-01-01

    Gamma oscillations (30–120 Hz) are thought to be important for various cognitive functions, including perception and working memory, and disruption of these oscillations has been implicated in brain disorders, such as schizophrenia and Alzheimer's disease. The cornu ammonis area 1 (CA1) of the hippocampus receives gamma frequency inputs from upstream regions (cornu ammonis area 3 and medial entorhinal cortex) and generates itself a faster gamma oscillation. The exact nature and origin of the intrinsic CA1 gamma oscillation is still under debate. Here, we expressed channelrhodopsin-2 under the CaMKIIα promoter in mice and prepared hippocampal slices to produce a model of intrinsic CA1 gamma oscillations. Sinusoidal optical stimulation of CA1 at theta frequency was found to induce robust theta-nested gamma oscillations with a temporal and spatial profile similar to CA1 gamma in vivo. The results suggest the presence of a single gamma rhythm generator with a frequency range of 65–75 Hz at 32°C. Pharmacological analysis found that the oscillations depended on both AMPA and GABAA receptors. Cell-attached and whole-cell recordings revealed that excitatory neuron firing slightly preceded interneuron firing within each gamma cycle, suggesting that this intrinsic CA1 gamma oscillation is generated with a pyramidal–interneuron circuit mechanism. SIGNIFICANCE STATEMENT This study demonstrates that the cornu ammonis area 1 (CA1) is capable of generating intrinsic gamma oscillations in response to theta input. This gamma generator is independent of activity in the upstream regions, highlighting that CA1 can produce its own gamma oscillation in addition to inheriting activity from the upstream regions. This supports the theory that gamma oscillations predominantly function to achieve local synchrony, and that a local gamma generated in each area conducts the signal to the downstream region. PMID:27076416

  16. [Bilateral caudate head infarcts].

    PubMed

    Kuriyama, N; Yamamoto, Y; Akiguchi, I; Oiwa, K; Nakajima, K

    1997-11-01

    We reported a 67-year-old woman with bilateral caudate head infarcts. She developed sudden mutism followed by abulia. She was admitted to our hospital 2 months after ictus for further examination. She showed prominent abulia and was inactive, slow and apathetic. Spontaneous activity and speech, immediate response to queries, spontaneous word recall and attention and persistence to complex programs were disturbed. Apparent motor disturbance, gait disturbance, motor aphasia, apraxia and remote memory disturbance were not identified. She seemed to be depressed but not sad. Brain CT and MRI revealed bilateral caudate head hemorrhagic infarcts including bilateral anterior internal capsules, in which the left lesion was more extensive than right one and involved the part of the left putamen. These infarct locations were thought to be supplied by the area around the medial striate artery including Heubner's arteries and the A1 perforator. Digital subtraction angiography showed asymptomatic right internal carotid artery occlusion. She bad had hypertension, diabetes mellitus and atrial fibrillation and also had a left atrium with a large diameter. The infarcts were thought to be caused by cardioembolic occlusion to the distal portion of the left internal carotid artery. Although some variations of vasculature at the anterior communicating artery might contribute to bilateral medial striate artery infarcts, we could not demonstrate such abnormalities by angiography. Bilateral caudate head infarcts involving the anterior internal capsule may cause prominent abulia. The patient did not improve by drug and rehabilitation therapy and died suddenly a year after discharge.

  17. Theta synchronization and alpha desynchronization in a memory task.

    PubMed

    Klimesch, W; Doppelmayr, M; Schimke, H; Ripper, B

    1997-03-01

    In the present study, we examined the hypothesis that episodic encoding and retrieval processes are primarily reflected by a task-related increase in theta power. Individuals performed a recognition task with a total of 192 words. The electroencephalogram was recorded during the study and recognition phase. The results show that only those words that were later correctly recognized produced a significant increase in theta power during encoding. During the actual recognition processes too, a significant theta synchronization (increase in band power) was found for correctly remembered words only. In contrast to the theta band, remembered and not remembered words revealed a complex pattern of desynchronization in the lower and upper alpha band that was different during encoding and recognition.

  18. Reversed theta sequences of hippocampal cell assemblies during backward travel.

    PubMed

    Cei, Anne; Girardeau, Gabrielle; Drieu, Céline; Kanbi, Karim El; Zugaro, Michaël

    2014-05-01

    Hippocampal cell assemblies coding for past, present and future events form theta-timescale (~100 ms) sequences that represent spatio-temporal episodes. However, the underlying mechanisms remain largely unknown. We recorded hippocampal and entorhinal cortical activity as rats experienced backward travel on a model train. Although the firing fields of place cells remained stable, the order in which they were activated in the theta sequence was reversed during backward travel. Thus, hippocampal cell assemblies coordinated their relative timing to correctly predict the sequential traversal of place fields in reverse order. At the single-cell level, theta phase represented distance traveled through the field, even though the head of the rat was oriented opposite to travel direction and entorhinal head-direction cells maintained their preferred firing direction. Our results challenge most theoretical models of theta sequence generation in the hippocampus.

  19. Modulation of EEG Theta Band Signal Complexity by Music Therapy

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Joydeep; Lee, Eun-Jeong

    The primary goal of this study was to investigate the impact of monochord (MC) sounds, a type of archaic sounds used in music therapy, on the neural complexity of EEG signals obtained from patients undergoing chemotherapy. The secondary goal was to compare the EEG signal complexity values for monochords with those for progressive muscle relaxation (PMR), an alternative therapy for relaxation. Forty cancer patients were randomly allocated to one of the two relaxation groups, MC and PMR, over a period of six months; continuous EEG signals were recorded during the first and last sessions. EEG signals were analyzed by applying signal mode complexity, a measure of complexity of neuronal oscillations. Across sessions, both groups showed a modulation of complexity of beta-2 band (20-29Hz) at midfrontal regions, but only MC group showed a modulation of complexity of theta band (3.5-7.5Hz) at posterior regions. Therefore, the neuronal complexity patterns showed different changes in EEG frequency band specific complexity resulting in two different types of interventions. Moreover, the different neural responses to listening to monochords and PMR were observed after regular relaxation interventions over a short time span.

  20. Subsequent bilateral thalamic haemorrhage

    PubMed Central

    Perez, Jesus; Scherle, Claudio; Machado, Calixto

    2009-01-01

    Simultaneous or subsequent bilateral thalamic haemorrhage is rare, and most reported cases are from Asian countries. An 80-year-old white Cuban man, with a history of arterial hypertension, suffered sudden onset of right hemiparesis. Computed tomography (CT) scan showed a left posteromedial thalamic haemorrhage. Two days later his condition suddenly deteriorated: blood pressure was 220/105 mm Hg, he was stuporous and tetraplegic, respiration was ataxic, and his gaze was fixed and deviated downward and inward. CT scan showed haemorrhages in both thalami, extending to the ventricles. 32 h later the patient died. There are few previous publications of simultaneous or subsequent bilateral thalamic haemorrhages and this is the first report involving a Hispanic patient. Prognosis in patients with bilateral thalamic haemorrhage is poor, and the mechanism underlying the development of subsequent and symmetrical bleeding is not clear. PMID:21709830

  1. Optogenetic Activation of Septal Glutamatergic Neurons Drive Hippocampal Theta Rhythms.

    PubMed

    Robinson, Jennifer; Manseau, Frédéric; Ducharme, Guillaume; Amilhon, Bénédicte; Vigneault, Erika; El Mestikawy, Salah; Williams, Sylvain

    2016-03-09

    The medial septum and diagonal band of Broca (MS-DBB) has an essential role for theta rhythm generation in the hippocampus and is critical for learning and memory. The MS-DBB contains cholinergic, GABAergic, and recently described glutamatergic neurons, but their specific contribution to theta generation is poorly understood. Here, we examined the role of MS-DBB glutamatergic neurons in theta rhythm using optogenetic activation and electrophysiological recordings performed in in vitro preparations and in freely behaving mice. The experiments in slices suggest that MS-DBB glutamatergic neurons provide prominent excitatory inputs to a majority of local GABAergic and a minority of septal cholinergic neurons. In contrast, activation of MS-DBB glutamatergic fiber terminals in hippocampal slices elicited weak postsynaptic responses in hippocampal neurons. In the in vitro septo-hippocampal preparation, activation of MS-DBB glutamatergic neurons did increase the rhythmicity of hippocampal theta oscillations, whereas stimulation of septo-hippocampal glutamatergic fibers in the fornix did not have an effect. In freely behaving mice, activation of these neurons in the MS-DBB strongly synchronized hippocampal theta rhythms over a wide range of frequencies, whereas activation of their projections to the hippocampus through fornix stimulations had no effect on theta rhythms, suggesting that MS-DBB glutamatergic neurons played a role in theta generation through local modulation of septal neurons. Together, these results provide the first evidence that MS-DBB glutamatergic neurons modulate local septal circuits, which in turn contribute to theta rhythms in the hippocampus. Copyright © 2016 the authors 0270-6474/16/363016-08$15.00/0.

  2. Analytical Insights on Theta-Gamma Coupled Neural Oscillators

    PubMed Central

    2013-01-01

    In this paper, we study the dynamics of a quadratic integrate-and-fire neuron, spiking in the gamma (30–100 Hz) range, coupled to a delta/theta frequency (1–8 Hz) neural oscillator. Using analytical and semianalytical methods, we were able to derive characteristic spiking times for the system in two distinct regimes (depending on parameter values): one regime where the gamma neuron is intrinsically oscillating in the absence of theta input, and a second one in which gamma spiking is directly gated by theta input, i.e., windows of gamma activity alternate with silence periods depending on the underlying theta phase. In the former case, we transform the equations such that the system becomes analogous to the Mathieu differential equation. By solving this equation, we can compute numerically the time to the first gamma spike, and then use singular perturbation theory to find successive spike times. On the other hand, in the excitable condition, we make direct use of singular perturbation theory to obtain an approximation of the time to first gamma spike, and then extend the result to calculate ensuing gamma spikes in a recursive fashion. We thereby give explicit formulas for the onset and offset of gamma spike burst during a theta cycle, and provide an estimation of the total number of spikes per theta cycle both for excitable and oscillator regimes. PMID:23945442

  3. Electroencephalographic theta activity and cognition in schizophrenia: preliminary results.

    PubMed

    Wichniak, Adam; Okruszek, Łukasz; Linke, Magdalena; Jarkiewicz, Michał; Jędrasik-Styła, Małgorzata; Ciołkiewicz, Agnieszka; Wierzbicka, Aleksandra; Jernajczyk, Wojciech; Jarema, Marek

    2015-04-01

    MATRICS Consensus Cognitive Battery (MCCB) is a contemporary standard for assessment of cognitive functions in schizophrenia. The aim of the study was to examine the association between electroencephalographic spectral power and a wide range of cognitive functions measured with MCCB. Thirty-nine patients with schizophrenia (27 male, mean age 28.2 ± 5.2 years) underwent EEG recordings and were assessed with MCCB. The EEG recordings were visually inspected and manually cleaned from artifacts and subjected to spectral analysis with EEGlab. Absolute and relative power as percentage of total spectral power were computed for frequency ranges from 0.5 to 30 Hz. To compare spectral power in patients with various cognitive functioning, patients from best and worst MCCB quartiles were selected. Superior cognitive performance was associated with less power of theta waves. Six MCCB cognitive tests showed significant correlations with absolute theta power and three tests with relative theta power. The correlation coefficients between MCCB composite score and theta power were rp = -0.45 for absolute and rp = -0.36 for relative values. Increased theta power was linked especially to memory deficits. These preliminary results suggest that electroencephalographic resting state theta power is an indicator of cognitive deficit in patients with schizophrenia.

  4. Flexible theta sequence compression mediated via phase precessing interneurons

    PubMed Central

    Chadwick, Angus; van Rossum, Mark CW; Nolan, Matthew F

    2016-01-01

    Encoding of behavioral episodes as spike sequences during hippocampal theta oscillations provides a neural substrate for computations on events extended across time and space. However, the mechanisms underlying the numerous and diverse experimentally observed properties of theta sequences remain poorly understood. Here we account for theta sequences using a novel model constrained by the septo-hippocampal circuitry. We show that when spontaneously active interneurons integrate spatial signals and theta frequency pacemaker inputs, they generate phase precessing action potentials that can coordinate theta sequences in place cell populations. We reveal novel constraints on sequence generation, predict cellular properties and neural dynamics that characterize sequence compression, identify circuit organization principles for high capacity sequential representation, and show that theta sequences can be used as substrates for association of conditioned stimuli with recent and upcoming events. Our results suggest mechanisms for flexible sequence compression that are suited to associative learning across an animal’s lifespan. DOI: http://dx.doi.org/10.7554/eLife.20349.001 PMID:27929374

  5. Interpretation of the Theta+ as an isotensor pentaquark with weakly decaying partners

    SciTech Connect

    Simon Capstick; Philip R. Page; Winston Roberts

    2003-09-25

    The {Theta}{sup +}(1540), recently observed at LEPS, DIANA and CLAS, is hypothesized to be an isotensor resonance. This implies the existence of a multiplet where the {Theta}{sup ++}, {Theta}{sup +} and {Theta}{sup 0} have isospin-violating strong decays, and the {Theta}{sup +++} and {Theta}{sup -} have weak decays and so are long-lived. Production mechanisms for these states are discussed. The J{sup P} assignment of the {Theta} is most likely 1/2{sup -} or 3/2{sup -} or 5/2{sup -}.

  6. Theta and Alpha Oscillations during the Retention Period of Working Memory by rTMS Stimulating the Parietal Lobe

    PubMed Central

    Li, Song; Jin, Jing-Na; Wang, Xin; Qi, Hong-Zhi; Liu, Zhi-Peng; Yin, Tao

    2017-01-01

    Studies on repetitive transcranial magnetic stimulation (rTMS) have shown that stimulating the parietal lobe, which plays a role in memory storage, can enhance performance during the “retention” process of working memory (WM). However, the mechanism of rTMS effect during this phase is still unclear. In this study, we stimulated the superior parietal lobe (SPL) using 5-Hz rTMS in 26 participants and recorded electroencephalography (EEG) while they performed a delayed-recognition WM task. The analyses included the comparisons of event-related spectral perturbation (ERSP) value variations in theta (4–7 Hz) and alpha (8–14 Hz) band frequencies between conditions (rTMS vs. sham), as well as the correlations between different brain areas. Following rTMS, the ERSP values of theta-band oscillations were significantly increased in the parietal and occipital-parietal brain areas (P < 0.05*), whereas the ERSP values of alpha-band oscillations were significantly decreased in the parietal area (P < 0.05*). The ERSP value variations of theta-band oscillations between the two conditions in the left parietal and left prefrontal areas were positively correlated with the response time (RT) variations (by using rTMS, the more subject RT decreased, the more ERSP value of theta oscillation increased). The ERSP value variations of alpha-band oscillations in the left parietal and bilateral prefrontal areas were negatively correlated with RT variations (by using rTMS, the more RT of the subject decreased, the more ERSP value of alpha oscillation decreased). Inter-sites phase synchronization of theta-band EEG between the left parietal and left prefrontal areas, as well as alpha-band EEG between the left parietal and bilateral prefrontal areas were enhanced by rTMS. These results indicated that activities of both parietal and prefrontal areas were required for information storage, and these activities were related to the behavioral responses. Moreover, the connectivity between these

  7. Theta and Alpha Oscillations during the Retention Period of Working Memory by rTMS Stimulating the Parietal Lobe.

    PubMed

    Li, Song; Jin, Jing-Na; Wang, Xin; Qi, Hong-Zhi; Liu, Zhi-Peng; Yin, Tao

    2017-01-01

    Studies on repetitive transcranial magnetic stimulation (rTMS) have shown that stimulating the parietal lobe, which plays a role in memory storage, can enhance performance during the "retention" process of working memory (WM). However, the mechanism of rTMS effect during this phase is still unclear. In this study, we stimulated the superior parietal lobe (SPL) using 5-Hz rTMS in 26 participants and recorded electroencephalography (EEG) while they performed a delayed-recognition WM task. The analyses included the comparisons of event-related spectral perturbation (ERSP) value variations in theta (4-7 Hz) and alpha (8-14 Hz) band frequencies between conditions (rTMS vs. sham), as well as the correlations between different brain areas. Following rTMS, the ERSP values of theta-band oscillations were significantly increased in the parietal and occipital-parietal brain areas (P < 0.05*), whereas the ERSP values of alpha-band oscillations were significantly decreased in the parietal area (P < 0.05*). The ERSP value variations of theta-band oscillations between the two conditions in the left parietal and left prefrontal areas were positively correlated with the response time (RT) variations (by using rTMS, the more subject RT decreased, the more ERSP value of theta oscillation increased). The ERSP value variations of alpha-band oscillations in the left parietal and bilateral prefrontal areas were negatively correlated with RT variations (by using rTMS, the more RT of the subject decreased, the more ERSP value of alpha oscillation decreased). Inter-sites phase synchronization of theta-band EEG between the left parietal and left prefrontal areas, as well as alpha-band EEG between the left parietal and bilateral prefrontal areas were enhanced by rTMS. These results indicated that activities of both parietal and prefrontal areas were required for information storage, and these activities were related to the behavioral responses. Moreover, the connectivity between these two

  8. Bilateral clicking ribs.

    PubMed Central

    Parry, W; Breckenridge, I; Khalil, Y F

    1989-01-01

    Congenital abnormalities of the ribs, including slipping or clicking rib, are well recognised but rarely give rise to symptoms. Slipping rib has previously been described as a unilateral condition. We report an unusual case of symptomatic bilateral slipping ribs treated successfully by surgery. PMID:2928991

  9. [Bilateral papillary necrosis during indinavir treatment].

    PubMed

    Iba-Ba, Josaphat; Yombi, Jean Cyr; Danse, Etienne; Van Beers, Benoît; Vandercam, Bernard

    2008-06-01

    Papillary necrosis results from ischemia of the renal medulla and papillae, induced by a variety of mechanisms. Papillary necrosis is a rare adverse effect of continuous protease-inhibitor therapy with indinavir. We describe the case of a patient who developed bilateral papillary necrosis. It was reversible after treatment interruption and increased hydration. This case shows the need to monitor kidney markers in patients under continuous treatment with indinavir.

  10. Quantum modular forms, mock modular forms, and partial theta functions

    NASA Astrophysics Data System (ADS)

    Kimport, Susanna

    Defined by Zagier in 2010, quantum modular forms have been the subject of an explosion of recent research. Many of these results are aimed at discovering examples of these functions, which are defined on the rational numbers and have "nice" modularity properties. Though the subject is in its early stages, numerous results (including Zagier's original examples) show these objects naturally arising from many areas of mathematics as limits of other modular-like functions. One such family of examples is due to Folsom, Ono, and Rhoades, who connected these new objects to partial theta functions (introduced by Rogers in 1917) and mock modular forms (about which there is a rich theory, whose origins date back to Ramanujan in 1920). In this thesis, we build off of the work of Folsom, Ono, and Rhoades by providing an infinite family of quantum modular forms of arbitrary positive half-integral weight. Further, this family of quantum modular forms "glues" mock modular forms to partial theta functions and is constructed from a so-called "universal" mock theta function by extending a method of Eichler and Zagier (originally defined for holomorphic Jacobi forms) into a non-holomorphic setting. In addition to the infinite family, we explore the weight 1/2 and 3/2 functions in more depth. For both of these weights, we are able to explicitly write down the quantum modular form, as well as the corresponding "errors to modularity," which can be shown to be Mordell integrals of specific theta functions and, as a consequence, are real-analytic functions. Finally, we turn our attention to the partial theta functions associated with these low weight examples. Berndt and Kim provide asymptotic expansions for a certain class of partial theta functions as q approaches 1 radially within the unit disk. Here, we extend this work to not only obtain asymptotic expansions for this class of functions as q approaches any root of unity, but also for a certain class of derivatives of these functions

  11. Septal serotonin depletion in rats facilitates working memory in the radial arm maze and increases hippocampal high-frequency theta activity.

    PubMed

    López-Vázquez, Miguel Ángel; López-Loeza, Elisa; Lajud Ávila, Naima; Gutiérrez-Guzmán, Blanca Erika; Hernández-Pérez, J Jesús; Reyes, Yoana Estrada; Olvera-Cortés, María Esther

    2014-07-05

    Hippocampal theta activity, which is strongly modulated by the septal medial/Broca׳s diagonal band neurons, has been linked to information processing of the hippocampus. Serotonin from the medial raphe nuclei desynchronises hippocampal theta activity, whereas inactivation or a lesion of this nucleus induces continuous and persistent theta activity in the hippocampus. Hippocampal serotonin depletion produces an increased expression of high-frequency theta activity concurrent with the facilitation of place learning in the Morris maze. The medial septum-diagonal band of Broca complex (MS/DBB) has been proposed as a key structure in the serotonin modulation of theta activity. We addressed whether serotonin depletion of the MS/DBB induces changes in the characteristics of hippocampal theta activity and whether the depletion is associated with learning in a working memory spatial task in the radial arm maze. Sprague Dawley rats were depleted of 5HT with the infusion of 5,7-dihydroxytriptamine (5,7-DHT) in MS/DBB and were subsequently trained in the standard test (win-shift) in the radial arm, while the CA1 EEG activity was simultaneously recorded through telemetry. The MS/DBB serotonin depletion induced a low level of expression of low-frequency (4.5-6.5Hz) and a higher expression of high-frequency (6.5-9.5Hz) theta activity concomitant to a minor number of errors committed by rats on the working memory test. Thus, the depletion of serotonin in the MS/DBB caused a facilitator effect on working memory and a predominance of high-frequency theta activity.

  12. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning

    PubMed Central

    Hoffmann, Loren C.; Cicchese, Joseph J.; Berry, Stephen D.

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3–12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3–7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning. PMID:25918501

  13. Amyloid Beta Peptides Differentially Affect Hippocampal Theta Rhythms In Vitro

    PubMed Central

    Gutiérrez-Lerma, Armando I.; Ordaz, Benito; Peña-Ortega, Fernando

    2013-01-01

    Soluble amyloid beta peptide (Aβ) is responsible for the early cognitive dysfunction observed in Alzheimer's disease. Both cholinergically and glutamatergically induced hippocampal theta rhythms are related to learning and memory, spatial navigation, and spatial memory. However, these two types of theta rhythms are not identical; they are associated with different behaviors and can be differentially modulated by diverse experimental conditions. Therefore, in this study, we aimed to investigate whether or not application of soluble Aβ alters the two types of theta frequency oscillatory network activity generated in rat hippocampal slices by application of the cholinergic and glutamatergic agonists carbachol or DHPG, respectively. Due to previous evidence that oscillatory activity can be differentially affected by different Aβ peptides, we also compared Aβ25−35 and Aβ1−42 for their effects on theta rhythms in vitro at similar concentrations (0.5 to 1.0 μM). We found that Aβ25−35 reduces, with less potency than Aβ1−42, carbachol-induced population theta oscillatory activity. In contrast, DHPG-induced oscillatory activity was not affected by a high concentration of Aβ25−35 but was reduced by Aβ1−42. Our results support the idea that different amyloid peptides might alter specific cellular mechanisms related to the generation of specific neuronal network activities, instead of exerting a generalized inhibitory effect on neuronal network function. PMID:23878547

  14. Modulation of frontal-midline theta by neurofeedback.

    PubMed

    Enriquez-Geppert, Stefanie; Huster, René J; Scharfenort, Robert; Mokom, Zacharais N; Zimmermann, Jörg; Herrmann, Christoph S

    2014-01-01

    Cortical oscillations demonstrate a relationship with cognition. Moreover, they also exhibit associations with task performance and psychiatric mental disorders. This being the case, the modification of oscillations has become one of the key interests of neuroscientific approaches for cognitive enhancement. For such kind of alterations, neurofeedback (NF) of brain activity constitutes a promising tool. Concerning specific higher cognitive functions, frontal-midline theta (fm-theta) has been suggested as an important indicator of relevant brain processes. This paper presents a novel approach for an individualized, eight-session NF training to enhance fm-theta. An individual's dominant fm-theta frequency was determined based on experiments tapping executive functions. Effects of the actual NF training were compared to a pseudo-NF training. Participants of the pseudo-NF training experienced a comparable degree of motivation and commitment as the subjects of the actual NF training, but found the "training" slightly easier. In comparison to the pseudo-NF training, proper NF training significantly enhanced fm-theta amplitude in the actual training sessions, as well as during the whole course of training. However, unspecific changes in the alpha and beta frequency ranges found with both the actual NF and the pseudo-NF training groups emphasize the relevance of active control groups for neurofeedback studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Recognition memory and theta-gamma interactions in the hippocampus.

    PubMed

    Trimper, John B; Stefanescu, Roxana A; Manns, Joseph R

    2014-03-01

    Neuronal oscillations and cross-frequency interactions in the rat hippocampus relate in important ways to memory processes and serve as a model for studying oscillatory activity in cognition more broadly. We report here that hippocampal synchrony (CA3-CA1 coherence) increased markedly in the low gamma range as rats were exploring novel objects, particularly those for which the rat subsequently showed good memory. The gamma synchrony varied across phases of the theta rhythm such that coherence was highest at the falling slope and trough of the theta wave. Further, the shape of the theta wave was more asymmetric and elongated at the falling slope during exploration of objects for which the rat subsequently showed good memory as compared with objects for which the rat subsequently showed poor memory. The results showed a strong association between event-related gamma synchrony in rat hippocampus and memory encoding for novel objects. In addition, a novel potential mechanism of cross-frequency interactions was observed whereby dynamic alterations in the shape of theta wave related to memory in correspondence with the strength of gamma synchrony. These findings add to our understanding of how theta and gamma oscillations interact in the hippocampus in the service of memory. Copyright © 2013 Wiley Periodicals, Inc.

  16. Bilateral tibial hemimelia I.

    PubMed

    Suganthy, J; Rassau, Marina; Koshi, Rachel; Battacharjee, Suranjan

    2007-05-01

    Congenital absence of tibia is a rare anomaly. We report a case of bilateral tibial hemimelia born to phenotypically normal parents. The two amputated legs with tibial dysplasia obtained from a 3-year-old boy were studied by radiography and anatomical dissection. The radiological evaluation revealed a normal hip joint. The lower end of femur was normal without any bifurcation, shortening or bowing. Fibula was present on both legs and there was no sign of bowing or doubling. Both right and left tibiae were absent. In addition, on the right side, five tarsal bones, two metatarsals and the corresponding digital rays were absent. On the left side, three tarsal bones were absent. Dissection of the amputated segments showed the presence of extensor digitorum longus, peroneus tertius, peroneus longus and brevis, gastrocnemius, and soleus. Following bilateral knee disarticulation the patient was fitted with prosthesis and is doing well.

  17. Bilateral pneumothoraces following acupuncture.

    PubMed

    Oskarsson, Palmi; Walker, Craig Andrew; Leigh-Smith, Simon

    2017-08-03

    A 50-year-old woman was brought to the emergency department with shortness of breath and chest tightness following acupuncture to her upper back for a chronically painful left shoulder. She had symptoms of respiratory distress and chest X-ray revealed bilateral pneumothoraces. Symptoms resolved after insertion of bilateral Seldinger chest drains. She was admitted to the Cardiothoracic Surgery ward, chest drains were removed on the second and third days and the patient was discharged from hospital after 3 days. Clinicians and acupuncturists should be aware of this adverse event following acupuncture. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Bilateral Wilms' tumor

    SciTech Connect

    Malcolm, A.W.; Jaffe, N.; Folkman, M.J.; Cassady, J.R.

    1980-02-01

    Twenty children with bilateral Wilms' tumor were presented to the Children's Hospital Medical Center and Children's Cancer Research Foundation, Sidney Farber Cancer Institute, and Joint Center for Radiation Therapy (CHMC-CCRF, SFCI, JCRT) from January 1, 1956 to December 31, 1976. Of these 20, 16 had simultaneous and 4 had metachronous disease on presentation. All patients were treated with surgery, radiation and chemotherapy. Of the 16 patients with simultaneous disease, 10 (63%) are alive and free of disease 12+ to 175+ months post diagnosis and treatment, with median follow-up of 121 months. There were no long-term survivors in the metachronous group; all were dead of disease within 21 months from initial presentation of original tumor. With these data we relate prognosis to extent of disease and discuss a general approach to the management of bilateral Wilms' tumor.

  19. Bilateral renal calculi

    PubMed Central

    Sreenevasan, G

    1974-01-01

    Bilateral renal calculi were present in 114 (10.7%) of 1,070 cases of proved urinary calculus admitted to the Urological Department of the General Hospital, Kuala Lumpur, during the period November 1968—May 1973. The management of bilateral renal calculi is discussed with reference to the first 100 cases in this series. The introduction of renography has greatly facilitated the decision as to which kidney should be operated on first. The management of patients with and without uraemia is discussed and the use of the modified V and V—Y incisions for the removal of staghorn calculi is described. Complications and results are briefly reviewed. ImagesFig. 1Fig. 4Fig. 6Fig. 7 PMID:4845653

  20. Bilateral internal acoustic canal mass.

    PubMed

    Nazim, Korkut; Mehmet, Yilmaz; Tuna, Edizer Deniz; Marlen, Mamanov Asanbekovich

    2013-01-01

    We reported a case of bilateral internal acoustic canal mass. A 42-year-old man patient was previously treated for colon cancer. After surgery during chemotherapy signs as severe vertigo and bilateral sudden hearing loss occurred. Temporal bone magnetic resonance imaging (MRI) had bilateral internal acoustic canal masses.

  1. Bilateral Renal Lymphangiectasia.

    PubMed

    Pandya, Vaidehi K; Shah, Maulin K; Gandhi, Shruti P; Patel, Himanshu V

    2016-09-01

    Renal Lymphangiectasia (RLM) is very rare benign lymphatic malformation. It can be misdiagnosed for other cystic renal masses, most commonly polycystic kidneys. Though incidentally found in most cases, it may be the cause for hypertension and renal failure in undiagnosed patients. Here, we report a case of an adult asymptomatic male with bilateral RLM which was detected as an incidental finding on ultrasound. Confirmation by CT-scan and laboratory diagnosis of aspirated fluid was done, and patient was managed conservatively.

  2. Bilateral combined laryngocele

    PubMed Central

    Suqati, Abrar A.; Alherabi, Ameen Z.; Marglani, Osama A.; Alaidarous, Tariq O.

    2016-01-01

    Laryngocele is an uncommon condition that represents a benign dilatation of the laryngeal saccule with air and/or fluid, arising in the region of the laryngeal ventricle. Laryngoceles, or laryngomucocele can be classified as internal, or combined. The aim of presenting this rare case of a bilateral combined laryngocele, are to emphasize the importance of diagnostic laryngoscopy in upper airway pathologies evaluation, increase awareness in the general otolaryngologist community, and to highlight the external surgical method. PMID:27464869

  3. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway.

    PubMed

    Bender, Franziska; Gorbati, Maria; Cadavieco, Marta Carus; Denisova, Natalia; Gao, Xiaojie; Holman, Constance; Korotkova, Tatiana; Ponomarenko, Alexey

    2015-10-12

    Hippocampal theta oscillations support encoding of an animal's position during spatial navigation, yet longstanding questions about their impact on locomotion remain unanswered. Combining optogenetic control of hippocampal theta oscillations with electrophysiological recordings in mice, we show that hippocampal theta oscillations regulate locomotion. In particular, we demonstrate that their regularity underlies more stable and slower running speeds during exploration. More regular theta oscillations are accompanied by more regular theta-rhythmic spiking output of pyramidal cells. Theta oscillations are coordinated between the hippocampus and its main subcortical output, the lateral septum (LS). Chemo- or optogenetic inhibition of this pathway reveals its necessity for the hippocampal regulation of running speed. Moreover, theta-rhythmic stimulation of LS projections to the lateral hypothalamus replicates the reduction of running speed induced by more regular hippocampal theta oscillations. These results suggest that changes in hippocampal theta synchronization are translated into rapid adjustment of running speed via the LS.

  4. Quantum Theta Functions and Gabor Frames for Modulation Spaces

    NASA Astrophysics Data System (ADS)

    Luef, Franz; Manin, Yuri I.

    2009-06-01

    Representations of the celebrated Heisenberg commutation relations in quantum mechanics (and their exponentiated versions) form the starting point for a number of basic constructions, both in mathematics and mathematical physics (geometric quantization, quantum tori, classical and quantum theta functions) and signal analysis (Gabor analysis). In this paper we will try to bridge the two communities, represented by the two co-authors: that of noncommutative geometry and that of signal analysis. After providing a brief comparative dictionary of the two languages, we will show, e.g. that the Janssen representation of Gabor frames with generalized Gaussians as Gabor atoms yields in a natural way quantum theta functions, and that the Rieffel scalar product and associativity relations underlie both the functional equations for quantum thetas and the Fundamental Identity of Gabor analysis.

  5. Frontal theta as a mechanism for cognitive control

    PubMed Central

    Cavanagh, James F.; Frank, Michael J.

    2014-01-01

    Recent advancements in cognitive neuroscience have afforded a description of neural responses in terms of latent algorithmic operations. However, the adoption of this approach to human scalp EEG has been more limited, despite the ability of this methodology to quantify canonical neuronal processes. Here we provide evidence that theta band activities over the mid-frontal cortex appear to reflect a common computation used for realizing the need for cognitive control. Moreover, by virtue of inherent properties of field oscillations, these theta band processes may be used to communicate this need and subsequently implement such control across disparate brain regions. Frontal theta is thus a compelling candidate mechanism by which emergent processes such as ‘cognitive control’ may be biophysically realized. PMID:24835663

  6. Some aspects on the structure and reaction of {theta}+

    SciTech Connect

    Hosaka, Atsushi

    2006-11-02

    In this report, we discuss some aspects of the present theoretical status of the pentaquarks. In the first part we discuss the importance of the pion interaction due to spontaneous symmetry breaking of chiral symmetry, which affects the basic property such as the parity of {theta}+. In the second part we show some calculations for the photoproduction of {theta}+ and {lambda}(1520) in the effective Lagrangian approach. Within the minimal setup of the model, we make comments in comparison with the present controversial experimental results.

  7. Ischemic bilateral opercular syndrome.

    PubMed

    Milanlioglu, Aysel; Aydın, Mehmet Nuri; Gökgül, Alper; Hamamcı, Mehmet; Erkuzu, Mehmet Atilla; Tombul, Temel

    2013-01-01

    Opercular syndrome, also known as Foix-Chavany-Marie syndrome, is a paralysis of the facial, pharyngeal, masticatory, tongue, laryngeal, and brachial muscles. It is a rare cortical form of pseudobulbar palsies caused by vascular insults to bilateral operculum. Its clinical presentations include anarthria, weakness of voluntary muscles involving face, tongue, pharynx, larynx, and masticatory muscles. However, autonomic reflexes and emotional activities of these structures are preserved. In the present case, an 81-year-old male presented with acute onset of anarthria with difficulties in chewing, speaking, and swallowing that was diagnosed with opercular syndrome.

  8. Ischemic Bilateral Opercular Syndrome

    PubMed Central

    Milanlioglu, Aysel; Aydın, Mehmet Nuri; Gökgül, Alper; Hamamcı, Mehmet; Erkuzu, Mehmet Atilla; Tombul, Temel

    2013-01-01

    Opercular syndrome, also known as Foix-Chavany-Marie syndrome, is a paralysis of the facial, pharyngeal, masticatory, tongue, laryngeal, and brachial muscles. It is a rare cortical form of pseudobulbar palsies caused by vascular insults to bilateral operculum. Its clinical presentations include anarthria, weakness of voluntary muscles involving face, tongue, pharynx, larynx, and masticatory muscles. However, autonomic reflexes and emotional activities of these structures are preserved. In the present case, an 81-year-old male presented with acute onset of anarthria with difficulties in chewing, speaking, and swallowing that was diagnosed with opercular syndrome. PMID:23476665

  9. Osteomyelitis of Bilateral Femoral Heads After Childbirth: A Case Report.

    PubMed

    Lee, Kyung Soo; Kong, Sangwon; Kim, Junho; Kim, Taikon; Choi, Chan Beom; Kim, Yee-Suk; Lee, Kyu Hoon

    2015-06-01

    Hip and pelvic pain during pregnancy or after delivery is a common problem in young females, and in most cases this problem has a self-limiting course. The patient described in this case suffered from severe hip pain after childbirth. MR imaging study was performed and it showed arthritis of bilateral hip joints and osteomyelitis of femoral heads with an abscess in the surrounding muscle. Infection, such as septic arthritis or osteomyelitis, is an extremely rare cause of peripartum joint pain. The patient's clinical symptoms and laboratory findings improved with antibiotic therapy. However, limitation of motion of the bilateral hip joints persisted although the patient continued rehabilitative therapy for 15 months, and the patient had to undergo bilateral total hip replacement. Hereby, we present a case of severe osteomyelitis and pyogenic arthritis of bilateral femoral heads and hip joints after delivery, which eventually required bilateral total hip replacement.

  10. Osteomyelitis of Bilateral Femoral Heads After Childbirth: A Case Report

    PubMed Central

    Lee, Kyung Soo; Kong, Sangwon; Kim, Junho; Kim, Taikon; Choi, Chan Beom; Kim, Yee-Suk

    2015-01-01

    Hip and pelvic pain during pregnancy or after delivery is a common problem in young females, and in most cases this problem has a self-limiting course. The patient described in this case suffered from severe hip pain after childbirth. MR imaging study was performed and it showed arthritis of bilateral hip joints and osteomyelitis of femoral heads with an abscess in the surrounding muscle. Infection, such as septic arthritis or osteomyelitis, is an extremely rare cause of peripartum joint pain. The patient's clinical symptoms and laboratory findings improved with antibiotic therapy. However, limitation of motion of the bilateral hip joints persisted although the patient continued rehabilitative therapy for 15 months, and the patient had to undergo bilateral total hip replacement. Hereby, we present a case of severe osteomyelitis and pyogenic arthritis of bilateral femoral heads and hip joints after delivery, which eventually required bilateral total hip replacement. PMID:26161359

  11. Presence of state transitions in the cryptophyte alga Guillardia theta

    PubMed Central

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ondřej; Schröder, Wolfgang P.; Kaňa, Radek; Funk, Christiane

    2015-01-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions. PMID:26254328

  12. Oscillatory frontal theta responses are increased upon bisensory stimulation.

    PubMed

    Sakowitz, O W; Schürmann, M; Başar, E

    2000-05-01

    To investigate the functional correlation of oscillatory EEG components with the interaction of sensory modalities following simultaneous audio-visual stimulation. In an experimental study (15 subjects) we compared auditory evoked potentials (AEPs) and visual evoked potentials (VEPs) to bimodal evoked potentials (BEPs; simultaneous auditory and visual stimulation). BEPs were assumed to be brain responses to complex stimuli as a marker for intermodal associative functioning. Frequency domain analysis of these EPs showed marked theta-range components in response to bimodal stimulation. These theta components could not be explained by linear addition of the unimodal responses in the time domain. Considering topography the increased theta-response showed a remarkable frontality in proximity to multimodal association cortices. Referring to methodology we try to demonstrate that, even if various behavioral correlates of brain oscillations exist, common patterns can be extracted by means of a systems-theoretical approach. Serving as an example of functionally relevant brain oscillations, theta responses could be interpreted as an indicator of associative information processing.

  13. Classical Conditioning of Hippocampal Theta Patterns in the Rat.

    DTIC Science & Technology

    1976-08-01

    associated with changes in performance of learned tasks , 1,4,5, 8,9 there have been very few studies of neurona l plasticity of the hippocampus It self...rapid development of a conditioned hippocampal theta response to a visual sti mulus demonstrates tha t there is considerable neurona l plasticity in the

  14. Presence of state transitions in the cryptophyte alga Guillardia theta.

    PubMed

    Cheregi, Otilia; Kotabová, Eva; Prášil, Ondřej; Schröder, Wolfgang P; Kaňa, Radek; Funk, Christiane

    2015-10-01

    Plants and algae have developed various regulatory mechanisms for optimal delivery of excitation energy to the photosystems even during fluctuating light conditions; these include state transitions as well as non-photochemical quenching. The former process maintains the balance by redistributing antennae excitation between the photosystems, meanwhile the latter by dissipating excessive excitation inside the antennae. In the present study, these mechanisms have been analysed in the cryptophyte alga Guillardia theta. Photoprotective non-photochemical quenching was observed in cultures only after they had entered the stationary growth phase. These cells displayed a diminished overall photosynthetic efficiency, measured as CO2 assimilation rate and electron transport rate. However, in the logarithmic growth phase G. theta cells redistributed excitation energy via a mechanism similar to state transitions. These state transitions were triggered by blue light absorbed by the membrane integrated chlorophyll a/c antennae, and green light absorbed by the lumenal biliproteins was ineffective. It is proposed that state transitions in G. theta are induced by small re-arrangements of the intrinsic antennae proteins, resulting in their coupling/uncoupling to the photosystems in state 1 or state 2, respectively. G. theta therefore represents a chromalveolate algae able to perform state transitions.

  15. Interindividual Differences in Alpha and Theta Power Reflect Memory Performance.

    ERIC Educational Resources Information Center

    Klimesch, W.; Vogt, F.; Doppelmayr, M.

    1999-01-01

    Tested whether tonic EEG power is related to memory performance by analyzing ongoing EEG for 60 subjects in 5 experimental conditions. Subjects with good memory performance had significantly larger upper alpha power, but less theta and lower alpha power. Also discusses findings for subjects good at calculation. (SLD)

  16. A Low energy neutrino factory for large theta(13)

    SciTech Connect

    Geer, Steve; Mena, Olga; Pascoli, Silvia; /Durham U., IPPP

    2007-01-01

    If the value of {theta}{sub 13} is within the reach of the upcoming generation of long-baseline experiments, T2K and NOvA, they show that a low-energy neutrino factory, with peak energy in the few GeV range, would provide a sensitive tool to explore CP-violation and the neutrino mass hierarchy. They consider baselines with typical length 1000-1500 km. The unique performance of the low energy neutrino factory is due to the rich neutrino oscillation pattern at energies between 1 and 4 GeV at baselines {Omicron}(1000) km. They perform both a semi-analytical study of the sensitivities and a numerical analysis to explore how well this setup can measure {theta}{sub 13}, CP-violation, and determine the type of mass hierarchy and the {theta}{sub 23} quadrant. A low energy neutrino factory provides a powerful tool to resolve ambiguities and make precise parameter determinations, for both large and fairly small values of the mixing parameter {theta}{sub 13}.

  17. Can prefrontal theta cordance differentiate between depression recovery and dissimulation?

    PubMed

    Kopecek, Miloslav; Sos, Peter; Brunovsky, Martin; Bares, Martin; Stopkova, Pavla; Krajca, Vladimir

    2007-08-01

    We present a case report of a 37-year old woman diagnosed with depressive disorder, first episode, who was admitted into a psychiatric hospital after a failed suicidal attempt. She responded to antidepressant therapy, as evidenced by a >50% reduction in MADRS total score. She was discharged after 4 weeks of treatment, denying any suicidal ideations. The following day the patient committed suicide; she burned herself to death. It is very likely that the patient dissimulated her symptoms and ideations. Subsequently, her quantitative EEG records were retrospectively analyzed. An increase of prefrontal theta cordance value after the first week of mirtazapine therapy was found. Recently three small studies have revealed that decrease of prefrontal theta cordance after 1 week of antidepressant administration can predict clinical response in patients with unipolar depression. In our previous study the absence of a decreased theta prefrontal cordance was associated with lack of treatment response with NPV 1.0 (Bares et al., 2007). Thus, we hypothesize that prefrontal theta cordance could become an objective marker of change of depressive symptoms, independent of patients' compliance and symptom dissimulation, more precise than objective and self-rated depression rating scales.

  18. Theta oscillations locked to intended actions rhythmically modulate perception

    PubMed Central

    Tomassini, Alice; Ambrogioni, Luca; Medendorp, W Pieter; Maris, Eric

    2017-01-01

    Ongoing brain oscillations are known to influence perception, and to be reset by exogenous stimulations. Voluntary action is also accompanied by prominent rhythmic activity, and recent behavioral evidence suggests that this might be coupled with perception. Here, we reveal the neurophysiological underpinnings of this sensorimotor coupling in humans. We link the trial-by-trial dynamics of EEG oscillatory activity during movement preparation to the corresponding dynamics in perception, for two unrelated visual and motor tasks. The phase of theta oscillations (~4 Hz) predicts perceptual performance, even >1 s before movement. Moreover, theta oscillations are phase-locked to the onset of the movement. Remarkably, the alignment of theta phase and its perceptual relevance unfold with similar non-monotonic profiles, suggesting their relatedness. The present work shows that perception and movement initiation are automatically synchronized since the early stages of motor planning through neuronal oscillatory activity in the theta range. DOI: http://dx.doi.org/10.7554/eLife.25618.001 PMID:28686161

  19. Theta-Coupled Periodic Replay in Working Memory

    PubMed Central

    Fuentemilla, Lluís; Penny, Will D.; Cashdollar, Nathan; Bunzeck, Nico; Düzel, Emrah

    2010-01-01

    Summary Working memory allows information from transient events to persist as active neural representations [1] that can be used for goal-directed behaviors such as decision making and learning [2, 3]. Computational modeling based on neuronal firing patterns in animals suggests that one putative mechanism enabling working memory is periodic reactivation (henceforth termed “replay”) of the maintained information coordinated by neural oscillations at theta (4–8 Hz) and gamma (30–80 Hz) frequency [4–6]. To investigate this possibility, we trained multivariate pattern classifier decoding algorithms on oscillatory brain responses to images depicting natural scenes, recorded with high temporal resolution via magnetoencephalography. These classifiers were applied to brain activity recorded during the subsequent five second maintenance of the scenes. This decoding revealed replay during the entire maintenance interval. Replay was specific to whether an indoor or an outdoor scene was maintained and whether maintenance centered on configural associations of scene elements or just single scene elements. Replay was coordinated by the phase of theta and the amount of theta coordination was correlated with working memory performance. By confirming the predictions of a mechanistic model and linking these to behavioral performance in humans, these findings identify theta-coupled replay as a mechanism of working memory maintenance. PMID:20303266

  20. Holomorphic projections and Ramanujan’s mock theta functions

    PubMed Central

    Imamoğlu, Özlem; Raum, Martin; Richter, Olav K.

    2014-01-01

    We use spectral methods of automorphic forms to establish a holomorphic projection operator for tensor products of vector-valued harmonic weak Maass forms and vector-valued modular forms. We apply this operator to discover simple recursions for Fourier series coefficients of Ramanujan’s mock theta functions. PMID:24591582

  1. Frontal theta reflects uncertainty and unexpectedness during exploration and exploitation.

    PubMed

    Cavanagh, James F; Figueroa, Christina M; Cohen, Michael X; Frank, Michael J

    2012-11-01

    In order to understand the exploitation/exploration trade-off in reinforcement learning, previous theoretical and empirical accounts have suggested that increased uncertainty may precede the decision to explore an alternative option. To date, the neural mechanisms that support the strategic application of uncertainty-driven exploration remain underspecified. In this study, electroencephalography (EEG) was used to assess trial-to-trial dynamics relevant to exploration and exploitation. Theta-band activities over middle and lateral frontal areas have previously been implicated in EEG studies of reinforcement learning and strategic control. It was hypothesized that these areas may interact during top-down strategic behavioral control involved in exploratory choices. Here, we used a dynamic reward-learning task and an associated mathematical model that predicted individual response times. This reinforcement-learning model generated value-based prediction errors and trial-by-trial estimates of exploration as a function of uncertainty. Mid-frontal theta power correlated with unsigned prediction error, although negative prediction errors had greater power overall. Trial-to-trial variations in response-locked frontal theta were linearly related to relative uncertainty and were larger in individuals who used uncertainty to guide exploration. This finding suggests that theta-band activities reflect prefrontal-directed strategic control during exploratory choices.

  2. Theta burst stimulation over the primary motor cortex does not induce cortical plasticity in Parkinson's disease.

    PubMed

    Eggers, Carsten; Fink, Gereon R; Nowak, Dennis A

    2010-10-01

    The purpose of this study was to investigate whether a period of continuous theta burst stimulation (cTBS) induces cortical plasticity and thus improves bradykinesia of the upper limb in Parkinson's disease. In eight patients with Parkinson's disease (two females; mean age: 68.5 ± 5 years; disease duration: 4 ± 3 years) electrophysiological (motor evoked potentials, contralateral and ipsilateral silent period) and behavioural (Purdue pegboard test, UPDRS motor subscore) parameters were evaluated before (baseline condition) and after a 40-s period of (1) real or (2) sham continuous theta burst stimulation over the primary motor cortex contralateral to the more affected body side off dopaminergic drugs. Compared to baseline, cTBS did change neither measures of cortical excitability nor behavioural measures. cTBS over the primary motor cortex does not impact on cortical excitability or motor function of the upper limb in Parkinson's disease. We interpret these data to reflect impaired cortical plasticity in Parkinson's disease. This study is an important contribution to the knowledge about impaired plasticity in Parkinson's disease.

  3. Bilateral Hernias in the Female

    PubMed Central

    Glassow, Frank

    1969-01-01

    An experience with 216 bilateral hernias in female patients is reviewed. The condition is rare, occurring only once in every 250 patients admitted for a hernia repair. Bilateral primary indirect inguinal hernias were the most frequent type. Bilateral primary femoral hernias were quite rare while bilateral primary direct inguinal hernias were even more uncommon. Other rare bilateral combinations are briefly described. The incidence in children is given. Etiological factors are discussed, emphasizing the strong posterior wall of the inguinal canal in females. Two per cent of patients developed a recurrent hernia; one per cent of hernias recurred. No recurrence following a bilateral primary indirect inguinal hernia repair and no “femoral” recurrence following inguinal repair were recorded. PMID:5348491

  4. Hierarchical Organization of Gamma and Theta Oscillatory Dynamics in Schizophrenia

    PubMed Central

    Kirihara, Kenji; Rissling, Anthony J.; Swerdlow, Neal R.; Braff, David L.; Light, Gregory A.

    2012-01-01

    Background Schizophrenia patients have deficits across a broad range of important cognitive and clinical domains. Synchronization of oscillations in the gamma frequency range (~40 Hz) is associated with many normal cognitive functions and underlies at least some of the deficits observed in schizophrenia patients. Recent studies have demonstrated that gamma oscillations are modulated by the phase of theta waves, and this cross-frequency coupling indicates that a complex and hierarchical organization governs neural oscillatory dynamics. The aims of the present study were to determine if schizophrenia patients have abnormalities in the amplitude, synchrony, and cross-frequency coupling of gamma and theta oscillations in response to gamma-frequency steady-state stimulation and if abnormal neural oscillatory dynamics are associated with cognitive deficits in schizophrenia. Methods Schizophrenia patients (n = 234) and healthy control subjects (n = 188) underwent EEG testing in response to 40-Hz auditory steady-state stimulation. Cognitive functions were assessed with a battery of neuropsychological tests. Results Schizophrenia patients had significantly reduced gamma intertrial phase coherence, increased theta amplitude, and intact cross-frequency coupling relative to healthy control subjects. In schizophrenia patients, increased theta amplitude was associated with poor verbal memory performance. Conclusions Results suggest that schizophrenia patients have specific alterations in both gamma and theta oscillations but these deficits occur in the context of an intact hierarchical organization of their cross-frequency modulation in response to 40 Hz steady-state stimulation. Cortical oscillatory dynamics may be useful for understanding the neural mechanisms that underlie the disparate cognitive and functional impairments of schizophrenia. PMID:22361076

  5. Hierarchical organization of gamma and theta oscillatory dynamics in schizophrenia.

    PubMed

    Kirihara, Kenji; Rissling, Anthony J; Swerdlow, Neal R; Braff, David L; Light, Gregory A

    2012-05-15

    Schizophrenia patients have deficits across a broad range of important cognitive and clinical domains. Synchronization of oscillations in the gamma frequency range (~40 Hz) is associated with many normal cognitive functions and underlies at least some of the deficits observed in schizophrenia patients. Recent studies have demonstrated that gamma oscillations are modulated by the phase of theta waves, and this cross-frequency coupling indicates that a complex and hierarchical organization governs neural oscillatory dynamics. The aims of the present study were to determine if schizophrenia patients have abnormalities in the amplitude, synchrony, and cross-frequency coupling of gamma and theta oscillations in response to gamma-frequency steady-state stimulation and if abnormal neural oscillatory dynamics are associated with cognitive deficits in schizophrenia. Schizophrenia patients (n = 234) and healthy control subjects (n = 188) underwent electroencephalography testing in response to 40-Hz auditory steady-state stimulation. Cognitive functions were assessed with a battery of neuropsychological tests. Schizophrenia patients had significantly reduced gamma intertrial phase coherence, increased theta amplitude, and intact cross-frequency coupling relative to healthy control subjects. In schizophrenia patients, increased theta amplitude was associated with poor verbal memory performance. Results suggest that schizophrenia patients have specific alterations in both gamma and theta oscillations, but these deficits occur in the context of an intact hierarchical organization of their cross-frequency modulation in response to 40-Hz steady-state stimulation. Cortical oscillatory dynamics may be useful for understanding the neural mechanisms that underlie the disparate cognitive and functional impairments of schizophrenia. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Etiologies of bilateral pleural effusions

    PubMed Central

    Puchalski, Jonathan T.; Argento, A. Christine; Murphy, Terrence E.; Araujo, Katy L.B.; Oliva, Isabel B.; Rubinowitz, Ami N.; Pisani, Margaret A.

    2017-01-01

    Summary Background To evaluate the safety, etiology and outcomes of patients undergoing bilateral thoracentesis. Methods This is a prospective cohort study of 100 consecutive patients who underwent bilateral thoracenteses in an academic medical center from July 2009 through November 2010. Pleural fluid characteristics and etiologies of the effusions were assessed. Mean differences in levels of fluid characteristics between right and left lungs were tested. Associations between fluid characteristics and occurrence of bilateral malignant effusions were evaluated. The rate of pneumothorax and other complications subsequent to bilateral thoracentesis was determined. Results Exudates were more common than transudates, and most effusions had multiple etiologies, with 83% having two or more etiologies. Bilateral malignant effusions occurred in 19 patients, were the most common single etiology of exudative effusions, and were associated with higher levels of protein and LDH in the pleural fluid. Among 200 thoracenteses performed with a bilateral procedure, seven resulted in pneumothoraces, three of which required chest tube drainage and four were ex vacuo. Conclusions More often than not, there are multiple etiologies that contribute to pleural fluid formation, and of the combinations of etiologies observed congestive heart failure was the most frequent contributor. Exudative effusions are more common than transudates when bilateral effusions are present. Malignancy is a common etiology of exudative effusions. This study suggests that the overall complication rate following bilateral thoracentesis is low and the rate of pneumothorax subsequent to bilateral thoracentesis is comparable to unilateral thoracentesis. PMID:23219348

  7. Hippocampal theta (3-8Hz) activity during classical eyeblink conditioning in rabbits.

    PubMed

    Nokia, Miriam S; Penttonen, Markku; Korhonen, Tapani; Wikgren, Jan

    2008-07-01

    In 1978, Berry and Thompson showed that the amount of theta (3-8Hz) activity in the spontaneous hippocampal EEG predicted learning rate in subsequent eyeblink conditioning in rabbits. More recently, the absence of theta activity during the training trial has been shown to have a detrimental effect on learning rate. Here, we aimed to further explore the relationship between theta activity and classical eyeblink conditioning by determining how the relative power of hippocampal theta activity [theta/(theta+delta) ratio] changes during both unpaired control and paired training phases. We found that animals with a higher hippocampal theta ratio immediately before conditioning learned faster and also that in these animals the theta ratio was higher throughout both experimental phases. In fact, while the hippocampal theta ratio remained stable in the fast learners as a function of training, it decreased in the slow learners already during unpaired training. In addition, the presence of hippocampal theta activity enhanced the hippocampal model of the conditioned response (CR) and seemed to be beneficial for CR performance in terms of peak latency during conditioning, but did not have any effect when the animals showed asymptotic learning. Together with earlier findings, these results imply that the behavioral state in which hippocampal theta activity is absent is detrimental for learning, and that the behavioral state in which hippocampal theta activity dominates is beneficial for learning, at least before a well-learned state is achieved.

  8. Modulation of Hippocampal Theta Oscillations and Spatial Memory by Relaxin-3 Neurons of the Nucleus Incertus

    ERIC Educational Resources Information Center

    Ma, Sherie; Olucha-Bordonau, Francisco E.; Hossain, M. Akhter; Lin, Feng; Kuei, Chester; Liu, Changlu; Wade, John D.; Sutton, Steven W.; Nunez, Angel; Gundlach, Andrew L.

    2009-01-01

    Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that "pacemaker" neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the…

  9. Modulation of Hippocampal Theta Oscillations and Spatial Memory by Relaxin-3 Neurons of the Nucleus Incertus

    ERIC Educational Resources Information Center

    Ma, Sherie; Olucha-Bordonau, Francisco E.; Hossain, M. Akhter; Lin, Feng; Kuei, Chester; Liu, Changlu; Wade, John D.; Sutton, Steven W.; Nunez, Angel; Gundlach, Andrew L.

    2009-01-01

    Hippocampal theta rhythm is thought to underlie learning and memory, and it is well established that "pacemaker" neurons in medial septum (MS) modulate theta activity. Recent studies in the rat demonstrated that brainstem-generated theta rhythm occurs through a multisynaptic pathway via the nucleus incertus (NI), which is the primary source of the…

  10. [Bilateral cochlear implantation].

    PubMed

    Kronenberg, Jona; Migirov, Lela; Taitelbaum-Swead, Rikey; Hildesheimer, Minka

    2010-06-01

    Cochlear implant surgery became the standard of care in hearing rehabilitation of patients with severe to profound sensorineural hearing loss. This procedure may alter the lives of children and adults enabling them to integrate with the hearing population. In the past, implantation was performed only in one ear, despite the fact that binaural hearing is superior to unilateral, especially in noisy conditions. Cochlear implantation may be performed sequentially or simultaneously. The "sensitive period" of time between hearing loss and implantation and between the two implantations, when performed sequentially, significantly influences the results. Shorter time spans between implantations improve the hearing results after implantation. Hearing success after implantation is highly dependent on the rehabilitation process which includes mapping, implant adjustments and hearing training. Bilateral cochlear implantation in children is recommended as the proposed procedure in spite of the additional financial burden.

  11. Idiopathic bilateral lipid keratopathy.

    PubMed Central

    Alfonso, E.; Arrellanes, L.; Boruchoff, S. A.; Ormerod, L. D.; Albert, D. M.

    1988-01-01

    A 52-year-old Mexican man presented with asymptomatic, bilaterally symmetrical lipid infiltrates of the cornea and adjacent limbus. No evidence of previous ocular disease or systemic disorder of lipid metabolism could be detected. Penetrating keratoplasty of the right eye was required. The cornea was rigid and thick, with posterior bulging into the anterior chamber. Light microscopy revealed deep corneal lipid granules, foamy histiocytes, vascularisation, and chronic non-granulomatous inflammation. Transmission electron microscopy showed extracellular lipid spaces and numerous intracytoplasmic lipid vacuoles in histiocytes, keratocytes, conjunctival epithelium, and the endothelium of blood vessels in the corneal stroma and adjacent limbal conjunctiva. Histochemical analysis revealed the presence of neutral fats, free fatty acids, cholesterol, and phospholipids. Images PMID:3395592

  12. Bilateral isolated phrenic neuropathy causing painless bilateral diaphragmatic paralysis.

    PubMed

    Lin, P T; Andersson, P-B; Distad, B J; Barohn, R J; Cho, S C; So, Y T; Katz, J S

    2005-11-08

    The authors report four patients with a syndrome of painless bilateral isolated phrenic neuropathy. Electrophysiologic testing demonstrated active denervation restricted to the diaphragm. Long-term recovery was poor. The authors conclude that bilateral isolated phrenic neuropathy is a cause of painless diaphragmatic paralysis distinguishable from immune brachial plexus neuropathy and other neuromuscular disorders with similar clinical presentation.

  13. Rigorously defined hemicrania continua presenting bilaterally.

    PubMed

    Southerland, Andrew M; Login, Ivan S

    2011-10-01

    Hemicrania continua (HC) is a headache syndrome characterized by continuous, unilateral head pain, autonomic features, and a complete therapeutic response to indomethacin. Although HC is classified as a unique entity among primary headache disorders, it clearly shares features with other primary headaches, including trigeminal autonomic cephalalgias, and chronic daily headaches, such as chronic migraine and chronic tension-type headache. In addition, the diagnosis is often delayed secondary to a relatively low incidence and the occurrence of some phenotypic variability as found in previous case series. A 62-year-old woman presented with 5 months of unremitting, bilateral headache with significant autonomic symptoms during exacerbations of pain. Neurological examination and imaging studies were normal. After failure to respond to numerous previous therapeutic medicines and interventions, she experienced complete resolution following administration of indomethacin and eventual remission on sustained treatment. This case demonstrates that hemicrania continua with requisite autonomic features can occur in a purely bilateral form. Although the definitive aspects of HC continue to evolve, a bilateral headache meeting the current criteria warrants a therapeutic trial of indomethacin.

  14. Prestimulus theta in the human hippocampus predicts subsequent recognition but not recall.

    PubMed

    Merkow, Maxwell B; Burke, John F; Stein, Joel M; Kahana, Michael J

    2014-12-01

    Human theta (4-8 Hz) activity in the medial temporal lobe correlates with memory formation; however, the precise role that theta plays in the memory system remains elusive (Hanslmayr and Staudigl, ). Recently, prestimulus theta activity has been associated with successful memory formation, although its specific cognitive role remains unknown (e.g., Fell et al., 2011). In this report, we demonstrate that prestimulus theta in the hippocampus indexes encoding that supports old-new recognition memory but not recall. These findings suggest that human hippocampal prestimulus theta may preferentially participate in the encoding of item information, as opposed to associative information.

  15. Prestimulus theta in the human hippocampus predicts subsequent recognition but not recall

    PubMed Central

    Merkow, Maxwell B.; Burke, John F.; Stein, Joel M.; Kahana, Michael J.

    2014-01-01

    Human theta (4−8 Hz) activity in the medial temporal lobe correlates with memory formation; however, the precise role that theta plays in the memory system remains elusive (Hanslmayr and Staudigl, 2013). Recently, prestimulus theta activity has been associated with successful memory formation, although its specific cognitive role remains unknown (e.g. Fell et al., 2011). In this report, we demonstrate that prestimulus theta in the hippocampus indexes encoding that supports old–new recognition memory but not recall. These findings suggest that human hippocampal prestimulus theta may preferentially participate in the encoding of item information, as opposed to associative information. PMID:25074395

  16. Bilateral asymmetric supernumerary heads of biceps brachii

    PubMed Central

    Lee, Song Eun; Jung, Chaeyong; Ahn, Kyu Youn

    2011-01-01

    Anatomical variations of the biceps brachii have been described by various authors, but the occurrence of bilateral asymmetric supernumerary heads is rare and has not been reported. We found three accessory heads of the biceps brachii muscle on right arm and an anomalous third head of biceps brachii on left arm. The third, fourth, and fifth heads of right arm originated from the body of humerus at the insertion site of coracobrachialis and inserted into the distal part of biceps brachii short head in order. The third head of left arm originated from humerus at the insertion site of coracobrachialis and combined with the distal part of biceps brachii and continued to the proximal part of common biceps tendon. Understanding the existence of bilateral asymmetric supernumerary heads of biceps brachii may influence preoperative diagnosis and surgery on the upper limbs. PMID:22025976

  17. Theta oscillations predict the detrimental effects of memory retrieval.

    PubMed

    Hanslmayr, Simon; Staudigl, Tobias; Aslan, Alp; Bäuml, Karl-Heinz

    2010-09-01

    Retrieving a target item from episodic memory typically enhances later memory for the retrieved item but causes forgetting of competing irrelevant memories. This finding is termed retrieval-induced forgetting (RIF) and is assumed to be the consequence of an inhibitory mechanism resolving retrieval competition. In the present study, we examined brain oscillatory processes related to RIF, as induced by competitive memory retrieval. Contrasting a competitive with a noncompetitive retrieval condition, we found a stronger increase in early evoked theta (4-7 Hz) activity, which specifically predicted RIF, but not retrieval-induced enhancement. Within the cognitive framework of RIF, these findings suggest that theta oscillations reflect arising interference and its resolution during competitive retrieval in episodic memory. Supplemental materials for this article may be downloaded from http://cabn.psychonomic-journals.org/content/supplemental.

  18. A model code for the radiative theta pinch

    SciTech Connect

    Lee, S.; Saw, S. H.; Lee, P. C. K.; Akel, M.; Damideh, V.; Khattak, N. A. D.; Mongkolnavin, R.; Paosawatyanyong, B.

    2014-07-15

    A model for the theta pinch is presented with three modelled phases of radial inward shock phase, reflected shock phase, and a final pinch phase. The governing equations for the phases are derived incorporating thermodynamics and radiation and radiation-coupled dynamics in the pinch phase. A code is written incorporating correction for the effects of transit delay of small disturbing speeds and the effects of plasma self-absorption on the radiation. Two model parameters are incorporated into the model, the coupling coefficient f between the primary loop current and the induced plasma current and the mass swept up factor f{sub m}. These values are taken from experiments carried out in the Chulalongkorn theta pinch.

  19. A model code for the radiative theta pinch

    NASA Astrophysics Data System (ADS)

    Lee, S.; Saw, S. H.; Lee, P. C. K.; Akel, M.; Damideh, V.; Khattak, N. A. D.; Mongkolnavin, R.; Paosawatyanyong, B.

    2014-07-01

    A model for the theta pinch is presented with three modelled phases of radial inward shock phase, reflected shock phase, and a final pinch phase. The governing equations for the phases are derived incorporating thermodynamics and radiation and radiation-coupled dynamics in the pinch phase. A code is written incorporating correction for the effects of transit delay of small disturbing speeds and the effects of plasma self-absorption on the radiation. Two model parameters are incorporated into the model, the coupling coefficient f between the primary loop current and the induced plasma current and the mass swept up factor fm. These values are taken from experiments carried out in the Chulalongkorn theta pinch.

  20. REM Sleep Theta Changes in Frequent Nightmare Recallers.

    PubMed

    Marquis, Louis-Philippe; Paquette, Tyna; Blanchette-Carrière, Cloé; Dumel, Gaëlle; Nielsen, Tore

    2017-09-01

    To replicate and expand upon past research by evaluating sleep and wake electroencephalographic spectral activity in samples of frequent nightmare (NM) recallers and healthy controls. Computation of spectral activity for sleep (non-REM and REM) and wake electroencephalogram recordings from 18 frequent NM recallers and 15 control participants. There was higher "slow-theta" (2-5 Hz) for NM recallers than for controls during wake, non-REM sleep and REM sleep. Differences were clearest for frontal and central derivations and for REM sleep cycles 2-4. There was also higher beta activity during NREM sleep for NM recallers. Findings partially replicate past research by demonstrating higher relative "slow-theta" (3-4Hz) for NM recallers than for controls. Findings are consistent with a neurocognitive model of nightmares that stipulates cross-state anomalies in emotion processing in NM-prone individuals.

  1. Traumatic bilateral renal infarction.

    PubMed

    Peterson, N E

    1989-02-01

    Published examples of unilateral and bilateral renal artery thrombosis attest to their usual subjection to nephrectomy at diagnosis or soon thereafter, eliminating the opportunity for spontaneous improvement which would enlighten the issue of how often late recovery may occur, and under what circumstances. Seven cases of renal artery thrombosis and five patients with renal artery embolization extracted from the literature have included documentation of patchy histologic viability within otherwise total infarction. Conversely, 47 reports of renal artery thrombosis culminating in nephrectomy or examined post mortem include no reference to any of these histologic features. Presumptions are speculative regarding whether these features were absent, overlooked, or unexamined. Their incidence cannot be estimated--only the possibility of recoverable renal function in an unknown number of involved patients. It may be presumed that the majority of kidneys exposed to sustained arterial interruption will undergo irreversible infarction, with an undefined small subgroup later developing renal hypertension. An unknown number, however, may fortuitously possess arterial collateralization competent to support sufficient numbers of viable nephrons to sustain adequate renal function. It is further speculated that shared pathophysiologic features establish the opportunity for misdiagnosis of renal cortical necrosis, which carries a documented potential for spontaneous recovery. Impulsive bilateral nephrectomy may therefore be unjustified, particularly in consideration of the minimal potential hazards of nonremoval. In the event of convalescent problems of renal origin, delayed nephrectomy remains an option. The requirement for interval hemodialysis is further influenced by the advantages accruing from retention of the native kidneys relative to calcium metabolism and blood product replacement. A final consideration relates to the advisability of secondary revascularization of

  2. Early, severe and bilateral loss of LTP and LTD-like plasticity in motor cortex (M1) in de novo Parkinson's disease.

    PubMed

    Kishore, Asha; Joseph, Thomas; Velayudhan, Balu; Popa, Traian; Meunier, Sabine

    2012-04-01

    To test the plasticity of bilateral motor cortices (M1) in treatment-naïve (de novo) Parkinson's disease (PD) patients and its response to single dose of L-DOPA. Twenty-one de novo PD patients with only unilateral motor symptoms were recruited to eliminate the effects of advanced disease and chronic treatment and were tested with intermittent (n=10) and continuous theta burst stimulation (iTBS and cTBS) (n=11) protocols to induce LTP and LTD-like plasticity on both M1 cortices. They were compared with two groups of 10 each, age-matched, healthy volunteers (HV). Severity of motor signs and effectiveness of TBS were measured bilaterally in the untreated state and after a uniform dose of L-DOPA in all patients. iTBS and cTBS induced significant LTP and LTD- like plasticity in M1 of HV. In de novo patients, there was no plasticity in both M1. Acute L-DOPA challenge did not improve plasticity in either M1 cortices, though motor signs of PD improved. There was no correlation of motor signs with M1 plasticity. The early, severe and bilateral loss of plasticity in M1 in de novo PD patients is a primary disease-related cortical dysfunction. The contrasting L-DOPA response of motor signs and M1 plasticity could arise from differences in neural circuits mediating them or differing effects of acute dopamine replacement on circuits recruited by specific plasticity-induction techniques, particularly in treatment naïve PD. M1 plasticity defect occurs early in PD and might affect motor learning. Acute vs. chronic dopamine replacement could have different effects on plasticity in PD or in the networks recruited by a specific plasticity induction technique. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Correlation of hippocampal theta rhythm with changes in cutaneous temperature

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Saleh, M. A.; Karem, R. D.

    1974-01-01

    Investigation of the possibility that the hippocampus performs the function of alerting an animal to changes in cutaneous temperature, using unanesthetized, loosely restrained rabbits. The results indicate that the hippocampal theta rhythm, which appears to be evoked by changes in cutaneous temperature, can be related to a specific type of hyppocampal neuron which is, in turn, connected with other areas of the brain involved in temperature regulation.

  4. Correlation of hippocampal theta rhythm with changes in cutaneous temperature

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Saleh, M. A.; Karem, R. D.

    1974-01-01

    Investigation of the possibility that the hippocampus performs the function of alerting an animal to changes in cutaneous temperature, using unanesthetized, loosely restrained rabbits. The results indicate that the hippocampal theta rhythm, which appears to be evoked by changes in cutaneous temperature, can be related to a specific type of hyppocampal neuron which is, in turn, connected with other areas of the brain involved in temperature regulation.

  5. Theta Coordinated Error-Driven Learning in the Hippocampus

    PubMed Central

    Ketz, Nicholas; Morkonda, Srinimisha G.; O'Reilly, Randall C.

    2013-01-01

    The learning mechanism in the hippocampus has almost universally been assumed to be Hebbian in nature, where individual neurons in an engram join together with synaptic weight increases to support facilitated recall of memories later. However, it is also widely known that Hebbian learning mechanisms impose significant capacity constraints, and are generally less computationally powerful than learning mechanisms that take advantage of error signals. We show that the differential phase relationships of hippocampal subfields within the overall theta rhythm enable a powerful form of error-driven learning, which results in significantly greater capacity, as shown in computer simulations. In one phase of the theta cycle, the bidirectional connectivity between CA1 and entorhinal cortex can be trained in an error-driven fashion to learn to effectively encode the cortical inputs in a compact and sparse form over CA1. In a subsequent portion of the theta cycle, the system attempts to recall an existing memory, via the pathway from entorhinal cortex to CA3 and CA1. Finally the full theta cycle completes when a strong target encoding representation of the current input is imposed onto the CA1 via direct projections from entorhinal cortex. The difference between this target encoding and the attempted recall of the same representation on CA1 constitutes an error signal that can drive the learning of CA3 to CA1 synapses. This CA3 to CA1 pathway is critical for enabling full reinstatement of recalled hippocampal memories out in cortex. Taken together, these new learning dynamics enable a much more robust, high-capacity model of hippocampal learning than was available previously under the classical Hebbian model. PMID:23762019

  6. Cold iron cos THETA magnet option for the SSC

    SciTech Connect

    Reardon, P.

    1985-01-01

    We review first the evolution over the past several years of a cold iron, high field cos THETA magnet design option for the SSC. We note the collaborative approach pursued by BNL and LBL on the 2-in-1 option, and the culmination of this effort in the tests of the BNL 4.5 m model magnets. Next, we discuss the subsequent 1-in-1 option being pursued jointly by BNL, Fermilab and LBL.

  7. The role of REM sleep theta activity in emotional memory

    PubMed Central

    Hutchison, Isabel C.; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity—which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex—is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus. PMID:26483709

  8. The role of REM sleep theta activity in emotional memory.

    PubMed

    Hutchison, Isabel C; Rathore, Shailendra

    2015-01-01

    While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity-which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex-is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus.

  9. Laminar profile of spontaneous and evoked theta: Rhythmic modulation of cortical processing during word integration.

    PubMed

    Halgren, Eric; Kaestner, Erik; Marinkovic, Ksenija; Cash, Sydney S; Wang, Chunmao; Schomer, Donald L; Madsen, Joseph R; Ulbert, Istvan

    2015-09-01

    Theta may play a central role during language understanding and other extended cognitive processing, providing an envelope for widespread integration of participating cortical areas. We used linear microelectrode arrays in epileptics to define the circuits generating theta in inferotemporal, perirhinal, entorhinal, prefrontal and anterior cingulate cortices. In all locations, theta was generated by excitatory current sinks in middle layers which receive predominantly feedforward inputs, alternating with sinks in superficial layers which receive mainly feedback/associative inputs. Baseline and event-related theta were generated by indistinguishable laminar profiles of transmembrane currents and unit-firing. Word presentation could reset theta phase, permitting theta to contribute to late event-related potentials, even when theta power decreases relative to baseline. Limited recordings during sentence reading are consistent with rhythmic theta activity entrained by a given word modulating the neural background for the following word. These findings show that theta occurs spontaneously, and can be momentarily suppressed, reset and synchronized by words. Theta represents an alternation between feedforward/divergent and associative/convergent processing modes that may temporally organize sustained processing and optimize the timing of memory formation. We suggest that words are initially encoded via a ventral feedforward stream which is lexicosemantic in the anteroventral temporal lobe; its arrival may trigger a widespread theta rhythm which integrates the word within a larger context.

  10. A Modified Theta Projection Model for Creep Behavior of Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Singh, I. V.; Mishra, B. K.; Ahmad, S.; Venugopal Rao, A.; Kumar, Vikas

    2016-09-01

    In this work, a modified theta projection model is proposed for the constitutive modeling of creep behavior of metals and alloys. In the conventional theta projection model, strain hardening exponent is a function of time and theta, whereas in the modified theta projection model, the exponent is taken as a function of time, theta, and applied stress. The results obtained by the modified theta projection model for Al 2124 T851 alloy at constant uniaxial tensile stress are compared with the experimental results and with the predictions of the conventional theta projection method. The creep behavior of Al 7075 T651 alloy is also predicted using modified and conventional theta projection model and compared with the available experimental data. It is observed that the modified theta projection model captures the creep behavior more accurately as compared to the conventional theta projection model. The modified theta projection model can be used to predict the creep strain of pure metals and class M alloys (similar creep behavior to pure metals) for intermediate range of stress and temperature.

  11. Associative Recognition Memory Awareness Improved by Theta-Burst Stimulation of Frontopolar Cortex

    PubMed Central

    Ryals, Anthony J.; Rogers, Lynn M.; Gross, Evan Z.; Polnaszek, Kelly L.; Voss, Joel L.

    2016-01-01

    Neuroimaging and lesion studies have implicated specific prefrontal cortex locations in subjective memory awareness. Based on this evidence, a rostrocaudal organization has been proposed whereby increasingly anterior prefrontal regions are increasingly involved in memory awareness. We used theta-burst transcranial magnetic stimulation (TBS) to temporarily modulate dorsolateral versus frontopolar prefrontal cortex to test for distinct causal roles in memory awareness. In three sessions, participants received TBS bilaterally to frontopolar cortex, dorsolateral prefrontal cortex, or a control location prior to performing an associative-recognition task involving judgments of memory awareness. Objective memory performance (i.e., accuracy) did not differ based on stimulation location. In contrast, frontopolar stimulation significantly influenced several measures of memory awareness. During study, judgments of learning were more accurate such that lower ratings were given to items that were subsequently forgotten selectively following frontopolar TBS. Confidence ratings during test were also higher for correct trials following frontopolar TBS. Finally, trial-by-trial correspondence between overt performance and subjective awareness during study demonstrated a linear increase across control, dorsolateral, and frontopolar TBS locations, supporting a rostrocaudal hierarchy of prefrontal contributions to memory awareness. These findings indicate that frontopolar cortex contributes causally to memory awareness, which was improved selectively by anatomically targeted TBS. PMID:25577574

  12. Theta Series, Wall-Crossing and Quantum Dilogarithm Identities

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Pioline, Boris

    2016-08-01

    Motivated by mathematical structures which arise in string vacua and gauge theories with N=2 supersymmetry, we study the properties of certain generalized theta series which appear as Fourier coefficients of functions on a twisted torus. In Calabi-Yau string vacua, such theta series encode instanton corrections from k Neveu-Schwarz five-branes. The theta series are determined by vector-valued wave-functions, and in this work we obtain the transformation of these wave-functions induced by Kontsevich-Soibelman symplectomorphisms. This effectively provides a quantum version of these transformations, where the quantization parameter is inversely proportional to the five-brane charge k. Consistency with wall-crossing implies a new five-term relation for Faddeev's quantum dilogarithm {Φ_b} at b = 1, which we prove. By allowing the torus to be non-commutative, we obtain a more general five-term relation valid for arbitrary b and k, which may be relevant for the physics of five-branes at finite chemical potential for angular momentum.

  13. Impaired theta-gamma coupling in APP-deficient mice

    PubMed Central

    Zhang, Xiaomin; Zhong, Wewei; Brankačk, Jurij; Weyer, Sascha W.; Müller, Ulrike C.; Tort, Adriano B. L.; Draguhn, Andreas

    2016-01-01

    Amyloid precursor protein (APP) is critically involved in the pathophysiology of Alzheimer’s disease, but its physiological functions remain elusive. Importantly, APP knockout (APP-KO) mice exhibit cognitive deficits, suggesting that APP plays a role at the neuronal network level. To investigate this possibility, we recorded local field potentials (LFPs) from the posterior parietal cortex, dorsal hippocampus and lateral prefrontal cortex of freely moving APP-KO mice. Spectral analyses showed that network oscillations within the theta- and gamma-frequency bands were not different between APP-KO and wild-type mice. Surprisingly, however, while gamma amplitude coupled to theta phase in all recorded regions of wild-type animals, in APP-KO mice theta-gamma coupling was strongly diminished in recordings from the parietal cortex and hippocampus, but not in LFPs recorded from the prefrontal cortex. Thus, lack of APP reduces oscillatory coupling in LFP recordings from specific brain regions, despite not affecting the amplitude of the oscillations. Together, our findings reveal reduced cross-frequency coupling as a functional marker of APP deficiency at the network level. PMID:26905287

  14. Acute silicosis with bilateral pneumothorax.

    PubMed

    Srivastava, G N; Prasad, Rajniti; Meena, Manoj; Hussain, Moosa

    2014-05-26

    We present a case of acute silicosis with bilateral pneumothorax of a 28-year-old man working at a stone crusher factory for 1 year. He presented to the emergency department with cough, respiratory distress and diffuse chest pain. The patient was managed with bilateral intercostal tube drainage under water seal, oxygen inhalation and conservative therapy. On follow-up he showed improvement of resting dyspnoea and was doing well. This case is being reported because of the rare complications of acute silicosis as bilateral pneumothorax.

  15. Brain Responses to a 6-Hz Binaural Beat: Effects on General Theta Rhythm and Frontal Midline Theta Activity

    PubMed Central

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2017-01-01

    A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG) was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS) before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state. PMID:28701912

  16. Brain Responses to a 6-Hz Binaural Beat: Effects on General Theta Rhythm and Frontal Midline Theta Activity.

    PubMed

    Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan

    2017-01-01

    A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG) was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS) before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state.

  17. Comparison of numerical techniques for the evaluation of the Doppler broadening functions psi(x,theta) and chi(x,theta)

    NASA Technical Reports Server (NTRS)

    Canright, R. B., Jr.; Semler, T. T.

    1972-01-01

    Several approximations to the Doppler broadening functions psi(x, theta) and chi(x, theta) are compared with respect to accuracy and speed of evaluation. A technique, due to A. M. Turning (1943), is shown to be at least as accurate as direct numerical quadrature and somewhat faster than Gaussian quadrature. FORTRAN 4 listings are included.

  18. Demonstration of short-term plasticity in the dorsolateral prefrontal cortex with theta burst stimulation: A TMS-EEG study.

    PubMed

    Chung, Sung Wook; Lewis, Benjamin P; Rogasch, Nigel C; Saeki, Takashi; Thomson, Richard H; Hoy, Kate E; Bailey, Neil W; Fitzgerald, Paul B

    2017-07-01

    To examine the effects of intermittent TBS (iTBS) and continuous TBS (cTBS) on cortical reactivity in the dorsolateral prefrontal cortex. 10 healthy participants were stimulated with either iTBS, cTBS or sham at F3 electrode. Single- and paired-pulse TMS and concurrent electroencephalography (EEG) were used to assess change in cortical reactivity and long-interval intracortical inhibition (LICI) via TMS-evoked potentials (TEPs) and TMS-evoked oscillations. Significant increases in N120 amplitudes (p<0.01) were observed following iTBS over prefrontal cortex. Changes in TMS-evoked theta oscillations and LICI of theta oscillations were also observed following iTBS (increase) and cTBS (decrease). Change in LICI of theta oscillations correlated with change in N120 amplitude following TBS (r=-0.670, p=0.001). This study provides preliminary evidence that TBS produces direct changes in cortical reactivity in the prefrontal cortex. Combining TBS with TMS-EEG may be a useful approach to optimise stimulation paradigms prior to the conduct of clinical trials. TBS is able to modulate cortical reactivity and cortical inhibition in the prefrontal cortex. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  19. Bilateral and symmetrical tinea mammae.

    PubMed

    Yilmaz, Murat; Kavak, Ayse; Yamaner, Nalan Jale

    2013-09-14

    Tinea corporis has rarely been reported in some locations such as on the breast skin as unilaterally. Herein, we present a case of bilateral tinea mammae, which has not been reported before in English language literature to our knowledge.

  20. Bilateral Olecranon Tophaceous Gout Bursitis

    PubMed Central

    Özdemir, Güzelali; Andıç, Kemal; Erdem Yaşar, Niyazi

    2017-01-01

    In this case, we present a patient with the diagnosis of bilateral olecranon tophaceous gout. After the surgical treatment, there was no limitation of range of motion or wound problem at 6th month control. PMID:28326103

  1. Pediatric isolated bilateral iliac aneurysm.

    PubMed

    Chithra, R; Sundar, R Ajai; Velladuraichi, B; Sritharan, N; Amalorpavanathan, J; Vidyasagaran, T

    2013-07-01

    Aneurysms are rare in children. Isolated iliac artery aneurysms are very rare, especially bilateral aneurysms. Pediatric aneurysms are usually secondary to connective tissue disorders, arteritis, or mycotic causes. We present a case of a 3-year-old child with bilateral idiopathic common iliac aneurysms that were successfully repaired with autogenous vein grafts. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  2. Bilateral cochlear implantation: current concepts.

    PubMed

    Eapen, Rose J; Buchman, Craig A

    2009-10-01

    The goal of this review is to examine the most recent literature exploring the indications, outcomes, and long-term benefit of bilateral cochlear implantation in children and adults. The indications for cochlear implantation have expanded, as many unilaterally implanted individuals are able to achieve open-set word recognition. Despite the benefits seen in unilateral implantation, many individuals have difficulty perceiving speech in noisy environments. Bilateral cochlear implantation has made great strides in providing individuals access to sound information from both ears, allowing improved speech perception in quiet and in noise, as well as sound localization. Recently, the House Cochlear Implant study group released a position statement in which the group strongly endorsed bilateral cochlear implantation. Improved speech perception in quiet has also been demonstrated by many groups with bilateral implantation. Improved sound localization abilities have been shown to be dependent on interaural level differences. The binaural benefits of head shadow and summation have been long shown in bilaterally implanted individuals. Recently, a growth in squelch has been seen in these individuals likely as a result of increased experience with both implants. This may indicate neural integration of the inputs over time. The literature supports the binaural benefit of bilateral cochlear implantation with demonstrated improved speech perception outcomes in quiet and in noise, sound localization data, and subjective benefits.

  3. The Predictive Nature of Pseudoneglect for Visual Neglect: Evidence from Parietal Theta Burst Stimulation

    PubMed Central

    Varnava, Alice; Dervinis, Martynas; Chambers, Christopher D.

    2013-01-01

    Following parietal damage most patients with visual neglect bisect horizontal lines significantly away from the true centre. Neurologically intact individuals also misbisect lines; a phenomenon referred to as ‘pseudoneglect’. In this study we examined the relationship between neglect and pseudoneglect by testing how patterns of pre-existing visuospatial asymmetry predict asymmetry caused by parietal interference. Twenty-four participants completed line bisection and Landmark tasks before receiving continuous theta burst stimulation to the left or right angular gyrus. Results showed that a pre-existing pattern of left pseudoneglect (i.e. right bias), but not right pseudoneglect, predicts left neglect-like behaviour during line bisection following right parietal cTBS. This correlation is consistent with the view that neglect and pseudoneglect arise via a common or linked neural mechanism. PMID:23823975

  4. Theta-Pinch Thruster for Piloted Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    LaPointe, Mike R.; Reddy, Dhanireddy (Technical Monitor)

    2000-01-01

    A new high-power propulsion concept that combines a rapidly pulsed theta-pinch discharge with upstream particle reflection by a magnetic mirror was evaluated under a Phase 1 grant awarded through the NASA Institute for Advanced Concepts. Analytic and numerical models were developed to predict the performance of a theta-pinch thruster operated over a wide range of initial gas pressures and discharge periods. The models indicate that a 1 m radius, 10 m long thruster operated with hydrogen propellant could provide impulse-bits ranging from 1 N-s to 330 N-s with specific impulse values of 7,500 s to 2,500 s, respectively. A pulsed magnetic field strength of 2 T is required to compress and heat the preionized hydrogen over a 10(exp -3) second discharge period, with about 60% of the heated plasma exiting the chamber each period to produce thrust. The unoptimized thruster efficiency is low, peaking at approximately 16% for an initial hydrogen chamber pressure of 100 Torr. The specific impulse and impulse-bit at this operating condition are 3,500 s and 90 N-s, respectively, and the required discharge energy is approximately 9x10(exp 6) J. For a pulse repetition rate of 10 Hz, the engine would produce an average thrust of 900 N at 3,500 s specific impulse. Combined with the electrodeless nature of the device, these performance parameters indicate that theta-pinch thrusters could provide unique, long-life propulsion systems for piloted deep space mission applications.

  5. The Brain of Binge Drinkers at Rest: Alterations in Theta and Beta Oscillations in First-Year College Students with a Binge Drinking Pattern

    PubMed Central

    López-Caneda, Eduardo; Cadaveira, Fernando; Correas, Angeles; Crego, Alberto; Maestú, Fernando; Rodríguez Holguín, Socorro

    2017-01-01

    Background: Previous studies have reported anomalous resting brain activity in the electroencephalogram (EEG) of alcoholics, often reflected as increased power in the beta and theta frequency bands. The effects of binge drinking, the most common pattern of excessive alcohol consumption during adolescence and youth, on brain activity at rest is still poorly known. In this study, we sought to assess the pattern of resting-state EEG oscillations in college-aged binge drinkers (BDs). Methods: Resting-state brain activity during eyes-open and eyes-closed conditions was recorded from 60 channels in 80 first-year undergraduate students (40 controls and 40 BDs). Cortical sources activity of EEG rhythms was estimated using exact Low-Resolution Electromagnetic Tomography (eLORETA) analysis. Results: EEG-source localization analysis revealed that BDs showed, in comparison with controls, significantly higher intracranial current density in the beta frequency band over the right temporal lobe (parahippocampal and fusiform gyri) during eyes-open resting state as well as higher intracranial current density in the theta band over the bilateral occipital cortex (cuneus and lingual gyrus) during eyes-closed resting condition. Conclusions: These findings are in line with previous results observing increased beta and/or theta power following chronic or heavy alcohol drinking in alcohol-dependent subjects and BDs. Increased tonic beta and theta oscillations are suggestive of an augmented cortical excitability and of potential difficulties in the information processing capacity in young BDs. Furthermore, enhanced EEG power in these frequency bands may respond to a neuromaturational delay as a result of excessive alcohol consumption during this critical brain developmental period. PMID:28959193

  6. Search for Theta++ pentaquarks in the exclusive reaction gammap-->K+K-p.

    PubMed

    Kubarovsky, V; Battaglieri, M; De Vita, R; Goett, J; Guo, L; Mutchler, G S; Stoler, P; Weygand, D P; Ambrozewicz, P; Anghinolfi, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Batourine, V; Bedlinskiy, I; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Bültmann, S; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Chen, S; Clinton, E; Cole, P L; Collins, P; Coltharp, P; Crabb, D; Crannell, H; Crede, V; Cummings, J P; De Masi, R; Dale, D; De Sanctis, E; Degtyarenko, P V; Deur, A; Dharmawardane, K V; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dugger, M; Dzyubak, O P; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Eugenio, P; Fedotov, G; Funsten, H; Gabrielyan, M Y; Gan, L; Garçon, M; Gasparian, A; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Glamazdin, O; Goetz, J T; Golovach, E; Gonenc, A; Gordon, C I O; Gothe, R W; Griffioen, K A; Guidal, M; Guler, N; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, R S; Hardie, J; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Joo, K; Juengst, H G; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Kossov, M; Kramer, L H; Kuhn, J; Kuhn, S E; Kuleshov, S V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Lee, T; Li, Ji; Livingston, K; Lu, H; MacCormick, M; Markov, N; McKinnon, B; Mecking, B A; Melone, J J; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Mochalov, V; Mokeev, V; Morand, L; Morrow, S A; Moteabbed, M; Nadel-Turonski, P; Nakagawa, I; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Pozdniakov, S; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Sabatié, F; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabian, Y G; Shvedunov, N V; Smith, E S; Smith, L C; Sober, D I; Stavinsky, A; Stepanyan, S S; Stepanyan, S; Stokes, B E; Strakovsky, I I; Strauch, S; Taiuti, M; Tedeschi, D J; Teymurazyan, A; Thoma, U; Tkabladze, A; Tkachenko, S; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Weinstein, L B; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Zana, L; Zhang, J; Zhao, B

    2006-09-08

    The reaction gammap --> pK+K- was studied at Jefferson Lab with photon energies from 1.8 to 3.8 GeV using a tagged photon beam. The goal was to search for a Theta++ pentaquark, a narrow, doubly charged baryon state having strangeness S=+1 and isospin I=1, in the pK+ invariant mass spectrum. No statistically significant evidence of a Theta++ was found. Upper limits on the total and differential cross section for the reaction gammap --> K-Theta++ were obtained in the mass range from 1.5 to 2.0 GeV/c2, with an upper limit for a narrow resonance with a mass M(Theta++) = 1.54 GeV/c2 of about 0.15 nb, 95% C.L.. This result places a stringent upper limit on the Theta++ width Gamma(Theta++) <0.1 MeV/c2.

  7. Correlation of the Hippocampal theta rhythm to changes in hypothalamic temperature

    NASA Technical Reports Server (NTRS)

    Saleh, M. A.; Horowitz, J. M.; Hsieh, A. C. L.

    1974-01-01

    Warming and cooling the preoptic anterior hypothalamic area in awake, loosely restrained rabbits was found to evoke theta rhythm. This is consistent with previous studies indicating that theta rhythm is a nonspecific response evoked by stimulation of several sensory modalities. Several studies have correlated theta rhythm with alertness. A neural pathway involving the hypothalamus, the hippocampus, the septal area, and the reticular formation is proposed. Thus, a role of this pathway may be to alert the animal to changes in its body temperature.

  8. Hippocampal theta phase-contingent memory retrieval in delay and trace eyeblink conditioning.

    PubMed

    Waselius, Tomi; Pöllänen, Eveliina; Wikgren, Jan; Penttonen, Markku; Nokia, Miriam S

    2017-09-04

    Hippocampal theta oscillations (3-12Hz) play a prominent role in learning. It has been suggested that encoding and retrieval of memories are supported by different phases of the theta cycle. Our previous study on trace eyeblink conditioning in rabbits suggests that the timing of the conditioned stimulus (CS) in relation to theta phase affects encoding but not retrieval of the memory trace. Here, we directly tested the effects of hippocampal theta phase on memory retrieval in two experiments conducted on adult female New Zealand White rabbits. In Experiment 1, animals were trained in trace eyeblink conditioning followed by extinction, and memory retrieval was tested by presenting the CS at troughs and peaks of the theta cycle during different stages of learning. In Experiment 2, animals were trained in delay conditioning either contingent on a high level of theta or at a random neural state. Conditioning was then followed by extinction conducted either at a random state, contingent on theta trough or contingent on theta peak. Our current results indicate that the phase of theta at CS onset has no effect on the performance of the behavioral learned response at any stage of classical eyeblink conditioning or extinction. In addition, theta-contingent trial presentation does not improve learning during delay eyeblink conditioning. The results are consistent with our earlier findings and suggest that the theta phase alone is not sufficient to affect learning at the behavioral level. It seems that the retrieval of recently acquired memories and consequently performing a learned response is moderated by neural mechanisms other than hippocampal theta. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. 38 CFR 4.26 - Bilateral factor.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Bilateral factor. 4.26... DISABILITIES General Policy in Rating § 4.26 Bilateral factor. When a partial disability results from disease... disability. The bilateral factor will be applied to such bilateral disabilities before other combinations are...

  10. 38 CFR 4.26 - Bilateral factor.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Bilateral factor. 4.26... DISABILITIES General Policy in Rating § 4.26 Bilateral factor. When a partial disability results from disease... disability. The bilateral factor will be applied to such bilateral disabilities before other combinations are...

  11. Pentaquark {Theta}{sup +} production from the reaction {gamma}p {yields} {pi}{sup +} K{sup -} {Theta}{sup +}

    SciTech Connect

    W. Liu; C. M. Ko; V. Kubarovsky

    2004-02-01

    The cross section for {Theta}{sup +} production from the reaction {gamma}p {yields} {pi}{sup +} K{sup -} {Theta}{sup +}, which was observed in the CLAS experiment at the Jefferson National Laboratory, is evaluated in a hadronic model that includes couplings of {Theta}{sup +} to both KN and K*N. With their coupling constants determined from the empirical {pi} NN(1710) and {rho} NN(1710) coupling constants using the SU(3) symmetry, the cross section for this reaction has been evaluated by taking {Theta}{sup +} to have spin 1/2 and isospin 0 but either positive or negative parity. We find that the cross section is 10-15 nb if {Theta}{sup +} has positive parity as predicted by the chiral soliton model. The cross section is reduced by more than a factor of 10 if {Theta}{sup +} has negative parity as given by lattice QCD studies. For both parities, the differential distribution peaks at small negative four momentum transfer as expected from the dominating t-channel kaon-exchange diagram that involves only the coupling of {Theta}{sup +} to KN.

  12. Cholinergic Blockade Reduces Theta-Gamma Phase Amplitude Coupling and Speed Modulation of Theta Frequency Consistent with Behavioral Effects on Encoding

    PubMed Central

    Gillet, Shea N.; Climer, Jason R.; Hasselmo, Michael E.

    2013-01-01

    Large-scale neural activation dynamics in the hippocampal-entorhinal circuit local field potential, observable as theta and gamma rhythms and coupling between these rhythms, is predictive of encoding success. Behavioral studies show that systemic administration of muscarinic acetylcholine receptor antagonists selectively impairs encoding, suggesting that they may also disrupt the coupling between the theta and gamma bands. Here, we tested the hypothesis that muscarinic antagonists selectively disrupt coupling between theta and gamma. Specifically, we characterized the effects of systemically administered scopolamine on movement-induced theta and gamma rhythms recorded in the superficial layers of the medial entorhinal cortex (MEC) of freely moving rats. We report the novel result that gamma power at the peak of theta was most reduced following muscarinic blockade, significantly shifting the phase of maximal gamma power to occur at later phases of theta. We also characterize the existence of multiple distinct gamma bands in the superficial layers of the MEC. Further, we observed that theta frequency was significantly less modulated by movement speed following muscarinic blockade. Finally, the slope relating speed to theta frequency, a correlate of familiarity with a testing enclosure, increased significantly less between the preinjection and recovery trials when scopolamine was administered during the intervening injection session than when saline was administered, suggesting that scopolamine reduced encoding of the testing enclosure. These data are consistent with computational models suggesting that encoding and retrieval occur during the peak and trough of theta, respectively, and support the theory that acetylcholine regulates the balance between encoding versus retrieval. PMID:24336727

  13. Expected reward modulates encoding-related theta activity before an event.

    PubMed

    Gruber, Matthias J; Watrous, Andrew J; Ekstrom, Arne D; Ranganath, Charan; Otten, Leun J

    2013-01-01

    Oscillatory brain activity in the theta frequency range (4-8 Hz) before the onset of an event has been shown to affect the likelihood of successfully encoding the event into memory. Recent work has also indicated that frontal theta activity might be modulated by reward, but it is not clear how reward expectancy, anticipatory theta activity, and memory formation might be related. Here, we used scalp electroencephalography (EEG) to assess the relationship between these factors. EEG was recorded from healthy adults while they memorized a series of words. Each word was preceded by a cue that indicated whether a high or low monetary reward would be earned if the word was successfully remembered in a later recognition test. Frontal theta power between the presentation of the reward cue and the onset of a word was predictive of later memory for the word, but only in the high reward condition. No theta differences were observed before word onset following low reward cues. The magnitude of prestimulus encoding-related theta activity in the high reward condition was correlated with the number of high reward words that were later confidently recognized. These findings provide strong evidence for a link between reward expectancy, theta activity, and memory encoding. Theta activity before event onset seems to be especially important for the encoding of motivationally significant stimuli. One possibility is that dopaminergic activity during reward anticipation mediates frontal theta activity related to memory. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Frontal theta is a signature of successful working memory manipulation

    PubMed Central

    Itthipuripat, Sirawaj; Wessel, Jan R.; Aron, Adam R.

    2012-01-01

    It has been proposed that working memory (WM) is updated/manipulated via a fronto-basal-ganglia circuit. One way that this could happen is via the synchronization of neural oscillations. A first step towards testing this hypothesis is to clearly establish a frontal scalp EEG signature of WM manipulation. Although many EEG studies have indeed revealed frontal EEG signatures for WM, especially in the theta frequency band (3–8 Hz), few of them required subjects to manipulate WM, and of those that did, none specifically tied the EEG signature to the manipulation process per se. Here we employed a WM manipulation task that has been shown with imaging to engage the prefrontal cortex and the striatum. We adapted this task to titrate the success of WM manipulation to approximately 50%. Using time-frequency analysis of EEG, we showed that theta power is increased over frontal cortex for successful versus failed WM manipulation, specifically at the time of the manipulation event. This establishes a clear-cut EEG signature of WM manipulation. Future studies could employ this to test the fronto-basal-ganglia hypothesis of WM updating/manipulation. PMID:23109082

  15. Increased oscillatory theta activation evoked by violent digital game events.

    PubMed

    Salminen, Mikko; Ravaja, Niklas

    2008-04-11

    The authors examined electroencephalographic (EEG) oscillatory responses to two violent events, the player character wounding and killing an opponent character with a gun, in the digital game James Bond 007: NightFire. EEG was recorded from 25 (16 male) right-handed healthy young adults. EEG data were segmented into one 1-s baseline epoch before each event and two 1-s epochs after event onset. Power estimates (microV(2)) were derived with the fast Fourier transform (FFT) for each artefact free event. Both of the studied events evoked increased occipital theta (4-6Hz) responses as compared to the pre-event baseline. The wounding event evoked also increased occipital high theta (6-8Hz) response and the killing event evoked low alpha (8-10Hz) asymmetry over the central electrodes, both relative to the pre-event baseline. The results are discussed in light of facial electromyographic and electrodermal activity responses evoked by these same events, and it is suggested that the reported EEG responses may be attributable to affective processes related to these violent game events.

  16. Frontal beta-theta network during REM sleep

    PubMed Central

    Vijayan, Sujith; Lepage, Kyle Q; Kopell, Nancy J; Cash, Sydney S

    2017-01-01

    We lack detailed knowledge about the spatio-temporal physiological signatures of REM sleep, especially in humans. By analyzing intracranial electrode data from humans, we demonstrate for the first time that there are prominent beta (15–35 Hz) and theta (4–8 Hz) oscillations in both the anterior cingulate cortex (ACC) and the DLPFC during REM sleep. We further show that these theta and beta activities in the ACC and the DLPFC, two relatively distant but reciprocally connected regions, are coherent. These findings suggest that, counter to current prevailing thought, the DLPFC is active during REM sleep and likely interacting with other areas. Since the DLPFC and the ACC are implicated in memory and emotional regulation, and the ACC has motor areas and is thought to be important for error detection, the dialogue between these two areas could play a role in the regulation of emotions and in procedural motor and emotional memory consolidation. DOI: http://dx.doi.org/10.7554/eLife.18894.001 PMID:28121613

  17. D3-instantons, mock theta series and twistors

    NASA Astrophysics Data System (ADS)

    Alexandrov, Sergei; Manschot, Jan; Pioline, Boris

    2013-04-01

    The D-instanton corrected hypermultiplet moduli space of type II string theory compactified on a Calabi-Yau threefold is known in the type IIA picture to be determined in terms of the generalized Donaldson-Thomas invariants, through a twistorial construction. At the same time, in the mirror type IIB picture, and in the limit where only D3-D1-D(-1)-instanton corrections are retained, it should carry an isometric action of the S-duality group SL(2, {Z} ). We prove that this is the case in the one-instanton approximation, by constructing a holomorphic action of SL(2, {Z} ) on the linearized twistor space. Using the modular invariance of the D4-D2-D0 black hole partition function, we show that the standard Darboux coordinates in twistor space have modular anomalies controlled by period integrals of a Siegel-Narain theta series, which can be canceled by a contact transformation generated by a holomorphic mock theta series.

  18. Bimodal fitting or bilateral implantation?

    PubMed

    Ching, Teresa Y C; Massie, Robyn; Van Wanrooy, Emma; Rushbrooke, Emma; Psarros, Colleen

    2009-01-01

    This paper summarises findings from studies that evaluated the benefits of bimodal fitting (combining a hearing aid and a cochlear implant in opposite ears) or bilateral cochlear implantation, relative to unilateral implantation, for children (Ching et al., 2007). On average, the size of binaural speech intelligibility advantages due to redundancy and head shadow was similar for the two bilateral conditions. An added advantage of bimodal fitting was that the low-frequency cues provided by acoustic hearing complemented the high-frequency cues conveyed by electric hearing in perception of voice and music. Some children with bilateral cochlear implants were able to use spatial separation between speech and noise to improve speech perception in noise. This is possibly a combined effect of the directional microphones in their implant systems and their ability to use spatial cues. The evidence to date supports the provision of hearing in two ears as the standard of care.

  19. Simultaneous bilateral patellar tendon rupture.

    PubMed

    Moura, Diogo Lino; Marques, José Pedro; Lucas, Francisco Manuel; Fonseca, Fernando Pereira

    2017-01-01

    Bilateral patellar tendon rupture is a rare entity, often associated with systemic diseases and patellar tendinopathy. The authors report a rare case of a 34-year-old man with simultaneous bilateral rupture of the patellar tendon caused by minor trauma. The patient is a retired basketball player with no past complaints of chronic knee pain and a history of steroid use. Surgical management consisted in primary end-to-end tendon repair protected temporarily with cerclage wiring, followed by a short immobilization period and intensive rehabilitation program. Five months after surgery, the patient was able to fully participate in sport activities.

  20. [Neurofibromatosis 2 (bilateral acoustic neurofibromatosis)].

    PubMed

    Yalcinkaya, C; Sarioglu, A; Boltshauser, E

    1989-10-14

    We report a personal series of 28 patients with neurofibromatosis 2 (NF-2), emphasizing the differences from classical NF-1. The hallmark of NF-2 is bilateral acoustic neuromas with initial symptoms usually occurring in the second or third decade. The natural history may lead to bilateral deafness, but hearing loss may also be a complication of surgery. NF-2 is frequently accompanied by additional intracranial tumors (particularly multiple meningiomas). Half of our patients had a spinal space-occupying lesion. NF-2 is inherited as an autosomal dominant trait, and many patients appear to represent new mutations.

  1. Theta-burst Transcranial Magnetic Stimulation Alters the Functional Topography of the Cortical Motor Network

    PubMed Central

    NOH, Nor Azila; FUGGETTA, Giorgio; MANGANOTTI, Paolo

    2015-01-01

    Background: Transcranial magnetic stimulation (TMS) is a non-invasive tool that is able to modulate the electrical activity of the brain depending upon its protocol of stimulation. Theta burst stimulation (TBS) is a high-frequency TMS protocol that is able to induce prolonged plasticity changes in the brain. The induction of plasticity-like effects by TBS is useful in both experimental and therapeutic settings; however, the underlying neural mechanisms of this modulation remain unclear. The aim of this study was to investigate the effects of continuous TBS (cTBS) on the intrahemispheric and interhemispheric functional connectivity of the resting and active brain. Methods: A total of 26 healthy humans were randomly divided into two groups that received either real cTBS or sham (control) over the left primary motor cortex. Surface electroencephalogram (EEG) was used to quantify the changes of neural oscillations after cTBS at rest and after a choice reaction time test. The cTBS-induced EEG oscillations were computed using spectral analysis of event-related coherence (ERCoh) of theta (4–7.5 Hz), low alpha (8–9.5 Hz), high alpha (10–12.5 Hz), low beta (13–19.5 Hz), and high beta (20–30 Hz) brain rhythms. Results: We observed a global decrease in functional connectivity of the brain in the cTBS group when compared to sham in the low beta brain rhythm at rest and high beta brain rhythm during the active state. In particular, EEG spectral analysis revealed that high-frequency beta, a cortically generated brain rhythm, was the most sensitive band that was modulated by cTBS. Conclusion: Overall, our findings suggest that cTBS, a TMS protocol that mimics the mechanism of long-term depression of synaptic plasticity, modulates motor network oscillations primarily at the cortical level and might interfere with cortical information coding. PMID:27006636

  2. Increased Entorhinal–Prefrontal Theta Synchronization Parallels Decreased Entorhinal–Hippocampal Theta Synchronization during Learning and Consolidation of Associative Memory

    PubMed Central

    Takehara-Nishiuchi, Kaori; Maal-Bared, Geith; Morrissey, Mark D.

    2012-01-01

    Memories are thought to be encoded as a distributed representation in the neocortex. The medial prefrontal cortex (mPFC) has been shown to support the expression of memories that initially depend on the hippocampus (HPC), yet the mechanisms by which the HPC and mPFC access the distributed representations in the neocortex are unknown. By measuring phase synchronization of local field potential (LFP) oscillations, we found that learning initiated changes in neuronal communication of the HPC and mPFC with the lateral entorhinal cortex (LEC), an area that is connected with many other neocortical regions. LFPs were recorded simultaneously from the three brain regions while rats formed an association between an auditory stimulus (CS) and eyelid stimulation (US) in a trace eyeblink conditioning paradigm, as well as during retention 1 month following learning. Over the course of learning, theta oscillations in the LEC and mPFC became strongly synchronized following presentation of the CS on trials in which rats exhibited a conditioned response (CR), and this strengthened synchronization was also observed during remote retention. In contrast, CS-evoked theta synchronization between the LEC and HPC decreased with learning. Our results suggest that communication between the LEC and mPFC are strengthened with learning whereas the communication between the LEC and HPC are concomitantly weakened, suggesting that enhanced LEC–mPFC communication may be a neuronal correlate for theoretically proposed neocortical reorganization accompanying encoding and consolidation of a memory. PMID:22319482

  3. Color density spectral array of bilateral bispectral index system: Electroencephalographic correlate in comatose patients with nonconvulsive status epilepticus.

    PubMed

    Hernández-Hernández, Miguel A; Fernández-Torre, José L

    2016-01-01

    to describe the characteristics of the color density spectral array (CDSA) of bilateral bispectral index (b-BIS) monitoring system in patients with comatose nonconvulsive status epilepticus (NCSE). We hypothesized that CDSA could be helpful for monitoring NCSE in critically subjects if continuous EEG (cEEG) is not available. we retrospectively analyzed comatose patients admitted to our neurological intensive care unit (NICU) from 2011 to 2014 with a diagnosis of definitive NCSE that underwent b-BIS monitoring for at least 24h to guide anesthetic sedation. Clinical, electroencephalography and neuroimaging findings were analyzed. Moreover, all parameters from the b-BIS data including the CDSA were reviewed during periods of NCSE (NCSE pattern) and profound sedation (sedation pattern). 15 NCSE patients were included. The delay from the diagnosis of NCSE to the onset of b-BIS monitoring was 8 (0.5-31)h and total time of b-BIS monitoring 7.8±6.5 days. CDSA during NCSE pattern was characterized by continuous or intermittent red and dark red tones, spectral edge frequency (SEF) in the delta-theta range, with or without asymmetry and BIS number trend with significant variability. In contrast, CDSA during sedation revealed predominance of orange, yellow, green and occasionally blue tones, SEF in the alpha-beta range, absence of asymmetry and stability of BIS number. b-BIS monitoring system and, in particular, CDSA used by nonexpert NICU personnel may be helpful to follow-up episodes of NCSE, to detect recurrences of nonconvulsive seizures (NCSzs), and to monitor profound anesthetic therapy in comatose patients when cEEG is not available. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  4. Continuous Tuning and Calibration of Vibratory Gyroscopes

    NASA Technical Reports Server (NTRS)

    Hayworth, Ken

    2003-01-01

    A method of control and operation of an inertial reference unit (IRU) based on vibratory gyroscopes provides for continuously repeated cycles of tuning and calibration. The method is intended especially for application to an IRU containing vibratory gyroscopes that are integral parts of microelectromechanical systems (MEMS) and that have cloverleaf designs, as described in several previous NASA Tech Briefs articles. The method provides for minimization of several measures of spurious gyroscope output, including zero-rate offset (ZRO), angle random walk (ARW), and rate drift. These benefits are afforded both at startup and thereafter during continuing operation, in the presence of unknown rotation rates and changes in temperature. A vibratory gyroscope contains a precision mechanically resonant structure containing two normal modes of vibration nominally degenerate in frequency and strongly coupled via a Coriolis term. In the case of the cloverleaf design MEMS gyro, these normal modes of vibration are plate rocking modes. The rocking motion of the plate is described by giving two angles, theta(sub 1) and theta(sub 2). A proof mass consisting of a post orthogonal to the plate ensures a high degree of Coriolis coupling of vibratory energy from one mode into the other under inertial rotation. The plate is driven and sensed capacitively across a few-microns-wide gap, and the normal mode frequencies can be tuned electrostatically by DC voltages applied across this gap. In order to sense rotation, the resonator plate is caused to rock in the theta(sub 1) direction, then any small motions in the theta(sub 2) direction are sensed, rebalanced, and interpreted as inertial rotation. In this scenario, the "drive" has been assigned to the theta(sub 1) direction, and the "sense" has been assigned to the theta(sub 2) direction.

  5. The Experiences of Deaf Young People with Sequential Bilateral Cochlear Implants

    ERIC Educational Resources Information Center

    Mather, Julie; Gregory, Sue; Archbold, Sue

    2011-01-01

    Fifteen young people who had received sequential bilateral cochlear implants were interviewed about their experiences. The majority had become full-time users, and all found improvements in listening with the second implant, including those who did not continue to wear it. All would recommend sequential bilateral implantation to their peers. For…

  6. The Experiences of Deaf Young People with Sequential Bilateral Cochlear Implants

    ERIC Educational Resources Information Center

    Mather, Julie; Gregory, Sue; Archbold, Sue

    2011-01-01

    Fifteen young people who had received sequential bilateral cochlear implants were interviewed about their experiences. The majority had become full-time users, and all found improvements in listening with the second implant, including those who did not continue to wear it. All would recommend sequential bilateral implantation to their peers. For…

  7. High visual demand following theta burst stimulation modulates the effect on visual cortex excitability.

    PubMed

    Brückner, Sabrina; Kammer, Thomas

    2015-01-01

    Modulatory effects of repetitive transcranial magnetic stimulation (TMS) depend on the activity of the stimulated cortical area before, during, and even after application. In the present study, we investigated the effects of theta burst stimulation (TBS) on visual cortex excitability using phosphene threshold (PTs). In a between-group design either continuous or intermittent TBS was applied with 100% of individual PT intensity. We varied visual demand following stimulation in form of high demand (acuity task) or low demand (looking at the wall). No change of PTs was observed directly after TBS. We found increased PTs only if subjects had high visual demand following continuous TBS. With low visual demand following stimulation no change of PT was observed. Intermittent TBS had no effect on visual cortex excitability at all. Since other studies showed increased PTs following continuous TBS using subthreshold intensities, our results highlight the importance of stimulation intensity applying TBS to the visual cortex. Furthermore, the state of the neurons in the stimulated cortex area not only before but also following TBS has an important influence on the effects of stimulation, making it necessary to scrupulously control for activity during the whole experimental session in a study.

  8. High visual demand following theta burst stimulation modulates the effect on visual cortex excitability

    PubMed Central

    Brückner, Sabrina; Kammer, Thomas

    2015-01-01

    Modulatory effects of repetitive transcranial magnetic stimulation (TMS) depend on the activity of the stimulated cortical area before, during, and even after application. In the present study, we investigated the effects of theta burst stimulation (TBS) on visual cortex excitability using phosphene threshold (PTs). In a between-group design either continuous or intermittent TBS was applied with 100% of individual PT intensity. We varied visual demand following stimulation in form of high demand (acuity task) or low demand (looking at the wall). No change of PTs was observed directly after TBS. We found increased PTs only if subjects had high visual demand following continuous TBS. With low visual demand following stimulation no change of PT was observed. Intermittent TBS had no effect on visual cortex excitability at all. Since other studies showed increased PTs following continuous TBS using subthreshold intensities, our results highlight the importance of stimulation intensity applying TBS to the visual cortex. Furthermore, the state of the neurons in the stimulated cortex area not only before but also following TBS has an important influence on the effects of stimulation, making it necessary to scrupulously control for activity during the whole experimental session in a study. PMID:26578935

  9. Structural Organization of the Corpus Callosum Predicts Attentional Shifts after Continuous Theta Burst Stimulation

    PubMed Central

    Humphreys, Glyn W.; Sotiropoulos, Stamatios N.; Kennard, Christopher; Cazzoli, Dario

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) applied over the right posterior parietal cortex (PPC) in healthy participants has been shown to trigger a significant rightward shift in the spatial allocation of visual attention, temporarily mimicking spatial deficits observed in neglect. In contrast, rTMS applied over the left PPC triggers a weaker or null attentional shift. However, large interindividual differences in responses to rTMS have been reported. Studies measuring changes in brain activation suggest that the effects of rTMS may depend on both interhemispheric and intrahemispheric interactions between cortical loci controlling visual attention. Here, we investigated whether variability in the structural organization of human white matter pathways subserving visual attention, as assessed by diffusion magnetic resonance imaging and tractography, could explain interindividual differences in the effects of rTMS. Most participants showed a rightward shift in the allocation of spatial attention after rTMS over the right intraparietal sulcus (IPS), but the size of this effect varied largely across participants. Conversely, rTMS over the left IPS resulted in strikingly opposed individual responses, with some participants responding with rightward and some with leftward attentional shifts. We demonstrate that microstructural and macrostructural variability within the corpus callosum, consistent with differential effects on cross-hemispheric interactions, predicts both the extent and the direction of the response to rTMS. Together, our findings suggest that the corpus callosum may have a dual inhibitory and excitatory function in maintaining the interhemispheric dynamics that underlie the allocation of spatial attention. SIGNIFICANCE STATEMENT The posterior parietal cortex (PPC) controls allocation of attention across left versus right visual fields. Damage to this area results in neglect, characterized by a lack of spatial awareness of the side of space contralateral to the brain injury. Transcranial magnetic stimulation over the PPC is used to study cognitive mechanisms of spatial attention and to examine the potential of this technique to treat neglect. However, large individual differences in behavioral responses to stimulation have been reported. We demonstrate that the variability in the structural organization of the corpus callosum accounts for these differences. Our findings suggest novel dual mechanism of the corpus callosum function in spatial attention and have broader implications for the use of stimulation in neglect rehabilitation. PMID:26586822

  10. Theta Dynamics in Rat: Speed and Acceleration across the Septotemporal Axis

    PubMed Central

    Long, Lauren L.; Hinman, James R.; Chen, Chi-Ming; Escabi, Monty A.; Chrobak, James J.

    2014-01-01

    Theta (6–12 Hz) rhythmicity in the local field potential (LFP) reflects a clocking mechanism that brings physically isolated neurons together in time, allowing for the integration and segregation of distributed cell assemblies. Variation in the theta signal has been linked to locomotor speed, sensorimotor integration as well as cognitive processing. Previously, we have characterized the relationship between locomotor speed and theta power and how that relationship varies across the septotemporal (long) axis of the hippocampus (HPC). The current study investigated the relationship between whole body acceleration, deceleration and theta indices at CA1 and dentate gyrus (DG) sites along the septotemporal axis of the HPC in rats. Results indicate that whole body acceleration and deceleration predicts a significant amount of variability in the theta signal beyond variation in locomotor speed. Furthermore, deceleration was more predictive of variation in theta amplitude as compared to acceleration as rats traversed a linear track. Such findings highlight key variables that systematically predict the variability in the theta signal across the long axis of the HPC. A better understanding of the relative contribution of these quantifiable variables and their variation as a function of experience and environmental conditions should facilitate our understanding of the relationship between theta and sensorimotor/cognitive functions. PMID:24842406

  11. The Estimation of Theta in the Integrated Moving Average Time-Series Model.

    ERIC Educational Resources Information Center

    Martin, Gerald R.

    Through Monte Carlo procedures, three different techniques for estimating the parameter theta (proportion of the "shocks" remaining in the system) in the Integrated Moving Average (0,1,1) time-series model are compared in terms of (1) the accuracy of the estimates, (2) the independence of the estimates from the true value of theta, and…

  12. Orthostatic Tremor Responds to Bilateral Thalamic Deep Brain Stimulation

    PubMed Central

    Lyons, Mark K.; Behbahani, Mandana; Boucher, Orland K.; Caviness, John N.; Evidente, Virgilio Gerald H.

    2012-01-01

    Background Orthostatic tremor (OT) is a disabling movement disorder manifested by postural and gait disturbance. Primarily a condition of elderly people, it can be progressive in up to 15% of patients. The primary treatments are medications that are often ineffective. Case Report A 75-year-old male presented with a 10-year history of progressive and disabling OT. He had tried various medications without significant benefits. He underwent bilateral thalamic Vim deep brain stimulation (DBS). At 30-month follow-up, he has had continued significant improvement of his OT. Discussion Bilateral thalamic DBS may be a viable option for medically refractory OT. PMID:23439685

  13. Aggregation of theta-polymers in spherical confinement.

    PubMed

    Zierenberg, Johannes; Mueller, Marco; Schierz, Philipp; Marenz, Martin; Janke, Wolfhard

    2014-09-21

    We investigate the aggregation transition of theta polymers in spherical confinement with multicanonical simulations. This allows for a systematic study of the effect of density on the aggregation transition temperature for up to 24 monodisperse polymers. Our results for solutions in the dilute regime show that polymers can be considered isolated for all temperatures larger than the aggregation temperature, which is shown to be a function of the density. The resulting competition between single-polymer collapse and aggregation yields the lower temperature bound of the isolated chain approximation. We provide entropic and energetic arguments to describe the density dependence and finite-size effects of the aggregation transition for monodisperse solutions in finite systems. This allows us to estimate the aggregation transition temperature of dilute systems in a spherical cavity, using a few simulations of small, sufficiently dilute polymer systems.

  14. A Light Curve of Theta-1 Orionis A

    NASA Astrophysics Data System (ADS)

    Robertson, J. R.; Stutts, S. C.; Caton, D. B.

    2002-12-01

    Theta-1 Orionis A (V1016 Ori), a member of the Trapezium, was only discovered to be an eclipsing binary system in 1974. The study of this system has been recently summarized by Strickland and Lloyd (The Observatory, 120, 2000, pp. 141-149). We are obtaining a complete light curve in VBRI using a CCD on the 18-inch telescope at Appalachian State University's Dark Sky Observatory. We have obtained new times of primary minimum and are searching for the undiscovered secondary eclipse as well. A status update on this project will be presented. We gratefully acknowledge the support of the National Science Foundation, through grant AST-9731062, and the Dunham Fund for Astrophysical Research. We would also like to thank the staff of the U.S. Naval Observatory Library and acknowledge the use of the Simbad Astronomical Data Base. The instrumentation help provided by Lee Hawkins and Robert Miller is appreciated as well.

  15. Destructive power dynamics of alpha-theta oscillations via spike and wave in CA3.

    PubMed

    Dong, Guoya; Chen, Xiaogang; Li, Wenwen; Cheng, Zhishuang; Ge, Manling

    2010-01-01

    The power dynamics of alpha-theta oscillations via inter-ictal spikes and waves (SWs) in CA3 is investigated by means of Hilbert transform and the statistical method based on CA3 channel of LFP(Local Field Potention) data sampled on total 6 rats in resting with sniffing and of iEEG data on total 10 patients in quiet wakefulness. The comparison of alpha-theta power is done between the inter-ictal groups and control groups. It is concluded that the inter-ictal SWs can disrupt the power of alpha-theta oscillations, leading to the decreased power after SW. Because the alpha-theta oscillations are related with the cognition, it is estimated that the inter-ictal SWs can negatively affecte the cognitive function during the inter-ictal dynamics, although the alpha-theta power will be recoverable in some days after injections, even exceed over the power level before injections.

  16. Hints of theta13>0 from global neutrino data analysis.

    PubMed

    Fogli, G L; Lisi, E; Marrone, A; Palazzo, A; Rotunno, A M

    2008-10-03

    Nailing down the unknown neutrino mixing angle theta{13} is one of the most important goals in current lepton physics. In this context, we perform a global analysis of neutrino oscillation data, focusing on theta{13}, and including recent results [ (unpublished)]. We discuss two converging hints of theta{13}>0, each at the level of approximately 1sigma: an older one coming from atmospheric neutrino data, and a newer one coming from the combination of solar and long-baseline reactor neutrino data. Their combination provides the global estimate sin{2}theta{13}=0.016+/-0.010(1sigma), implying a preference for theta{13}>0 with non-negligible statistical significance ( approximately 90% C.L.). We discuss possible refinements of the experimental data analyses, which might sharpen such intriguing indications.

  17. Adults with dyslexia: theta power changes during performance of a sequential motor task.

    PubMed

    Coombes, Stephen A; Janelle, Christopher M; Duley, Aaron R; Conway, Timothy

    2005-04-01

    Performance deficits during cerebellar intensive motor tasks maybe reflected by discrepant theta activity in the cerebral cortex. The present experiment examined the relationship between performance on a novel motor task and theta activity in adults with developmental dyslexia (DD) and an age- and IQ-matched control group (CG). Time-locked tonic and phasic lower and upper theta measures were derived and separate event-related theta band power (ERBP) scores were calculated for each of three experimental trials. The DD made significantly more errors than CG during Trials 1 and 2 of the motor task. Tonic theta did not differ between groups; however, the DD group displayed a significant decrease in ERBP across all trials and sites, specifically in central and parietal regions during Trial 3. No significant behavioral or physiological evidence supported the notion of conscious compensation (CC). Rather, deficient task performance in the DD group was associated with a general inability to recruit sufficient working memory processes.

  18. Environmental novelty elicits a later theta phase of firing in CA1 but not subiculum

    PubMed Central

    Lever, Colin; Burton, Stephen; Jeewajee, Ali; Wills, Thomas J.; Cacucci, Francesca; Burgess, Neil; O’Keefe, John

    2011-01-01

    The mechanism supporting the role of the hippocampal formation in novelty detection remains controversial. A comparator function has been variously ascribed to CA1 or subiculum, while the theta rhythm has been suggested to separate neural firing into encoding and retrieval phases. We investigated theta phase of firing in principal cells in subiculum and CA1 as rats foraged in familiar and novel environments. We found that the preferred theta phase of firing in CA1, but not subiculum, was shifted to a later phase of the theta cycle during environmental novelty. Furthermore, the amount of phase shift elicited by environmental change correlated with the extent of place cell remapping in CA1. Our results support a relationship between theta phase and novelty-induced plasticity in CA1. PMID:19623610

  19. Bilateral arm training: why and who benefits?

    PubMed

    McCombe Waller, Sandy; Whitall, Jill

    2008-01-01

    Bilateral arm training has emerged as an approach that leads to positive outcomes in addressing upper extremity paresis after stroke. However, studies have not demonstrated improvements in all patients using current outcome measures. Furthermore, the rationale for using this type of training has been incompletely explained. The purpose of this article was to first review the theoretical justifications for the use of bilateral arm training by examining motor control and neural mechanisms underlying arm function and neural recovery, and second, to discuss examples of clinical studies using a variety of bilateral training strategies to identify who may benefit most from this approach. We argue that bilateral arm training is a necessary adjunct to unilateral training because bilateral re-training is important and best served through bilateral not unilateral training, and also, that bilateral training may help unilateral skill recovery through alternative putative mechanisms. Our review of the empirical evidence suggests that individuals at all levels of severity can benefit in some manner from bilateral training, but that not all approaches are effective for all severity levels. In addition to requesting more randomized controlled trials and studies of neurophysiological mechanisms we conclude the following: 1) Bilateral training can improve unilateral paretic limb functions of the upper extremity after stroke, however, specific training approaches need to be matched to baseline characteristics of the patients; 2) Given the importance of bilateral activities in daily life, there is a need to recognize, train and assess the important contribution of supportive role functions of the paretic arm used on its own and as part of complementary bilateral functional skills; 3) An assessment of bilateral and unilateral functioning which includes bilateral task analysis, as well as, evaluations of interlimb coordination should be included in all studies that include bilateral

  20. Bilateral arm training: Why and who benefits?

    PubMed Central

    Waller, Sandy McCombe; Whitall, Jill

    2010-01-01

    Bilateral arm training has emerged as an approach that leads to positive outcomes in addressing upper extremity paresis after stroke. However, studies have not demonstrated improvements in all patients using current outcome measures. Furthermore, the rationale for using this type of training has been incompletely explained. The purpose of this article was to first review the theoretical justifications for the use of bilateral arm training by examining motor control and neural mechanisms underlying arm function and neural recovery, and second, to discuss examples of clinical studies using a variety of bilateral training strategies to identify who may benefit most from this approach. We argue that bilateral arm training is a necessary adjunct to unilateral training because bilateral re-training is important and best served through bilateral not unilateral training, and also, that bilateral training may help unilateral skill recovery through alternative putative mechanisms. Our review of the empirical evidence suggests that individuals at all levels of severity can benefit in some manner from bilateral training, but that not all approaches are effective for all severity levels. In addition to requesting more randomized controlled trials and studies of neurophysiological mechanisms we conclude the following: 1) Bilateral training can improve unilateral paretic limb functions of the upper extremity after stroke, however, specific training approaches need to be matched to baseline characteristics of the patients; 2) Given the importance of bilateral activities in daily life, there is a need to recognize, train and assess the important contribution of supportive role functions of the paretic arm used on its own and as part of complementary bilateral functional skills; 3) An assessment of bilateral and unilateral functioning which includes bilateral task analysis, as well as, evaluations of interlimb coordination should be included in all studies that include bilateral

  1. Frontal and rostral anterior cingulate (rACC) theta EEG in depression: implications for treatment outcome?

    PubMed

    Arns, Martijn; Etkin, Amit; Hegerl, Ulrich; Williams, Leanne M; DeBattista, Charles; Palmer, Donna M; Fitzgerald, Paul B; Harris, Anthony; deBeuss, Roger; Gordon, Evian

    2015-08-01

    In major depressive disorder (MDD), elevated theta current density in the rostral anterior cingulate (rACC), as estimated by source localization of scalp-recorded electroencenphalogram (EEG), has been associated with response to antidepressant treatments, whereas elevated frontal theta has been linked to non-response. This study used source localization to attempt to integrate these apparently opposite results and test, whether antidepressant response is associated with elevated rACC theta and non-response with elevated frontal theta and whether theta activity is a differential predictor of response to different types of commonly used antidepressants. In the international Study to Predict Optimized Treatment in Depression (iSPOT-D), a multi-center, international, randomized, prospective practical trial, 1008 MDD participants were randomized to escitalopram, sertraline or venlafaxine-XR. The study also recruited 336 healthy controls. Treatment response and remission were established after eight weeks using the 17-item Hamilton Rating Scale for Depression (HRSD17). The resting-state EEG was assessed at baseline with eyes closed and source localization (eLORETA) was employed to extract theta from the rACC and frontal cortex. Patients with MDD had elevated theta in both frontal cortex and rACC, with small effect sizes. High frontal and rACC theta were associated with treatment non-response, but not with non-remission, and this effect was most pronounced in a subgroup with previous treatment failures. Low theta in frontal cortex and rACC are found in responders to antidepressant treatments with a small effect size. Future studies should investigate in more detail the role of previous treatment (failure) in the association between theta and treatment outcome. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  2. Fluctuating Inhibitory Inputs Promote Reliable Spiking at Theta Frequencies in Hippocampal Interneurons

    PubMed Central

    Sritharan, Duluxan; Skinner, Frances K.

    2012-01-01

    Theta-frequency (4–12 Hz) rhythms in the hippocampus play important roles in learning and memory. CA1 interneurons located at the stratum lacunosum-moleculare and radiatum junction (LM/RAD) are thought to contribute to hippocampal theta population activities by rhythmically pacing pyramidal cells with inhibitory postsynaptic potentials. This implies that LM/RAD cells need to fire reliably at theta frequencies in vivo. To determine whether this could occur, we use biophysically based LM/RAD model cells and apply different cholinergic and synaptic inputs to simulate in vivo-like network environments. We assess spike reliabilities and spiking frequencies, identifying biophysical properties and network conditions that best promote reliable theta spiking. We find that synaptic background activities that feature large inhibitory, but not excitatory, fluctuations are essential. This suggests that strong inhibitory input to these cells is vital for them to be able to contribute to population theta activities. Furthermore, we find that Type I-like oscillator models produced by augmented persistent sodium currents (INaP) or diminished A-type potassium currents (IA) enhance reliable spiking at lower theta frequencies. These Type I-like models are also the most responsive to large inhibitory fluctuations and can fire more reliably under such conditions. In previous work, we showed that INaP and IA are largely responsible for establishing LM/RAD cells’ subthreshold activities. Taken together with this study, we see that while both these currents are important for subthreshold theta fluctuations and reliable theta spiking, they contribute in different ways – INaP to reliable theta spiking and subthreshold activity generation, and IA to subthreshold activities at theta frequencies. This suggests that linking subthreshold and suprathreshold activities should be done with consideration of both in vivo contexts and biophysical specifics. PMID:22654751

  3. The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum.

    PubMed

    Varga, Viktor; Hangya, Balázs; Kránitz, Kinga; Ludányi, Anikó; Zemankovics, Rita; Katona, István; Shigemoto, Ryuichi; Freund, Tamás F; Borhegyi, Zsolt

    2008-08-15

    The medial septum (MS) is an indispensable component of the subcortical network which synchronizes the hippocampus at theta frequency during specific stages of information processing. GABAergic neurons exhibiting highly regular firing coupled to the hippocampal theta rhythm are thought to form the core of the MS rhythm-generating network. In recent studies the hyperpolarization-activated, cyclic nucleotide-gated non-selective cation (HCN) channel was shown to participate in theta synchronization of the medial septum. Here, we tested the hypothesis that HCN channel expression correlates with theta modulated firing behaviour of MS neurons by a combined anatomical and electrophysiological approach. HCN-expressing neurons represented a subpopulation of GABAergic cells in the MS partly overlapping with parvalbumin (PV)-containing neurons. Rhythmic firing in the theta frequency range was characteristic of all HCN-expressing neurons. In contrast, only a minority of HCN-negative cells displayed theta related activity. All HCN cells had tight phase coupling to hippocampal theta waves. As a group, PV-expressing HCN neurons had a marked bimodal phase distribution, whereas PV-immunonegative HCN neurons did not show group-level phase preference despite significant individual phase coupling. Microiontophoretic blockade of HCN channels resulted in the reduction of discharge frequency, but theta rhythmic firing was perturbed only in a few cases. Our data imply that HCN-expressing GABAergic neurons provide rhythmic drive in all phases of the hippocampal theta activity. In most MS theta cells rhythm genesis is apparently determined by interactions at the level of the network rather than by the pacemaking property of HCN channels alone.

  4. Experimental search for radiative decays of the pentaquark baryon {Theta}{sup +}(1540)

    SciTech Connect

    Barmin, V. V.; Asratyan, A. E.; Borisov, V. S.; Curceanu, C.; Davidenko, G. V.; Dolgolenko, A. G.; Guaraldo, C.; Kubantsev, M. A.; Larin, I. F.; Matveev, V. A.; Shebanov, V. A.; Shishov, N. N.; Sokolov, L. I.; Tumanov, G. K.; Verebryusov, V. S.

    2010-07-15

    The data on the reactions K{sup +}Xe {sup {yields}}K{sup 0{gamma}}X and K{sup +}Xe {sup {yields}}K{sup +{gamma}}X, obtained with the bubble chamber DIANA, have been analyzed for possible radiative decays of the {Theta}{sup +}(1540) baryon: {Theta}{sup +} {sup {yields}}K{sup 0}p{gamma} and {Theta}{sup +} {sup {yields}}K{sup +}n{gamma}. No signals have been observed, and we derive the upper limits {Gamma}({Theta}{sup +} {sup {yields}}K{sup 0}p{gamma})/{Gamma}({Theta}{sup +} {sup {yields}}K{sup 0}p) < 0.032 and {Gamma}({Theta}{sup +} {sup {yields}}K{sup +}n{gamma})/{Gamma}({Theta}{sup +} {sup {yields}}K{sup +}n{gamma}) < 0.041 which, using our previous measurement of {Gamma}({Theta}{sup +} {sup {yields}}KN) = 0.39 {+-} 0.10 MeV, translate to {Gamma}({Theta}{sup +} {sup {yields}}K{sup 0}p{gamma}) < 8 keV and {Gamma}({Theta}{sup +} {sup {yields}}K{sup +}n{gamma}) < 11 keV at 90% confidence level. We have also measured the cross sections of K{sup +}-induced reactions involving emission of a neutral pion: {sigma}(K{sup +}n {sup {yields}}K{sup 0}p{pi}{sup 0}) = 68 {+-} 18 {mu}b and {sigma}(K{sup +}N {sup {yields}}K{sup +}N{pi}{sup 0}) = 30 {+-} 8 {mu}b for incident K{sup +} momentum of 640 MeV.

  5. Different systems in the posterior hypothalamic nucleus of rats control theta frequency and trigger movement.

    PubMed

    Woodnorth, Mary-Anne; McNaughton, Neil

    2005-08-30

    Reduced frequency of theta activity is thought to compromise hippocampal function and so behavioural inhibition. The anxiolytic benzodiazepine chlordiazepoxide (CDP) reduces theta frequency when injected into the medial supramammillary nucleus (mSuM), posterior hypothalamic nucleus (PH) and dorsomedial hypothalamic nucleus (DMH). These hypothalamic effects on theta could underlie at least some behavioural effects of benzodiazepines. We have previously shown that in a fixed interval 60-s schedule (FI60), CDP injected into mSuM reduced both theta frequency and behavioural inhibition. The present experiments test the effect of injections into PH and DMH on theta and hippocampal-sensitive behaviour (FI60 and open field ambulation). Systemic CDP (5mg/kg i.p.) released, but PH/CDP (20microg in 0.5microl vehicle) suppressed FI responding, though they both reduced FI theta frequency. In the open field, both CDP i.p. and PH/CDP reduced ambulation, but only the systemic injection reduced ambulation theta frequency. Taken together with previous research, these results support a role for PH in the control of voluntary behaviour. They imply that this function may be suppressed, independently of theta, by benzodiazepines. An anxiolytic effect of PH/CDP in FI60 may, therefore, have been masked by a concurrent action of CDP on the PH motor system. DMH/CDP did not affect behaviour or theta in either experiment, despite the fact that this nucleus is involved in benzodiazepine mediation of risk assessment and the flight response. This suggests that, like the control of theta frequency by the hypothalamus, the neural mechanisms underlying anxiety are distributed in complex networks.

  6. Movement-Related Theta Rhythm in Humans: Coordinating Self-Directed Hippocampal Learning

    PubMed Central

    Kaplan, Raphael; Doeller, Christian F.; Barnes, Gareth R.; Litvak, Vladimir; Düzel, Emrah; Bandettini, Peter A.; Burgess, Neil

    2012-01-01

    The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG) to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI) to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods). These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating exploratory

  7. Movement-related theta rhythm in humans: coordinating self-directed hippocampal learning.

    PubMed

    Kaplan, Raphael; Doeller, Christian F; Barnes, Gareth R; Litvak, Vladimir; Düzel, Emrah; Bandettini, Peter A; Burgess, Neil

    2012-01-01

    The hippocampus is crucial for episodic or declarative memory and the theta rhythm has been implicated in mnemonic processing, but the functional contribution of theta to memory remains the subject of intense speculation. Recent evidence suggests that the hippocampus might function as a network hub for volitional learning. In contrast to human experiments, electrophysiological recordings in the hippocampus of behaving rodents are dominated by theta oscillations reflecting volitional movement, which has been linked to spatial exploration and encoding. This literature makes the surprising cross-species prediction that the human hippocampal theta rhythm supports memory by coordinating exploratory movements in the service of self-directed learning. We examined the links between theta, spatial exploration, and memory encoding by designing an interactive human spatial navigation paradigm combined with multimodal neuroimaging. We used both non-invasive whole-head Magnetoencephalography (MEG) to look at theta oscillations and Functional Magnetic Resonance Imaging (fMRI) to look at brain regions associated with volitional movement and learning. We found that theta power increases during the self-initiation of virtual movement, additionally correlating with subsequent memory performance and environmental familiarity. Performance-related hippocampal theta increases were observed during a static pre-navigation retrieval phase, where planning for subsequent navigation occurred. Furthermore, periods of the task showing movement-related theta increases showed decreased fMRI activity in the parahippocampus and increased activity in the hippocampus and other brain regions that strikingly overlap with the previously observed volitional learning network (the reverse pattern was seen for stationary periods). These fMRI changes also correlated with participant's performance. Our findings suggest that the human hippocampal theta rhythm supports memory by coordinating exploratory

  8. Time-intensity trading in bilateral congenital aural atresia patients.

    PubMed

    Schmerber, Sébastien; Sheykholeslami, Kianoush; Kermany, Mohammad Habiby; Hotta, Shoko; Kaga, Kimitaka

    2005-04-01

    In an effort to examine the rules by which information of bilaterally applied bone-conducted signals arising from interaural time differences (ITD) and interaural intensity differences (IID) is combined, data were measured for continuous 500 Hz narrow band noise at 65-70 dB HL in 11 patients with bilateral congenital aural atresia. Time-intensity trading functions were obtained by shifting the sound image towards one side using ITD, and shifting back to a centered sound image by varying the IID in the same ear (auditory midline task). ITD values were varied from -600 to +600 micros at 200 micros steps, where negative values indicate delays to the right ear. The results indicate that time-intensity trading is present in patients with bilateral aural atresia. The gross response properties of time-intensity trading in response to bone-conducted signals were comparable in patients with bilateral aural atresia and normal-hearing subjects, though there was a larger inter-subject variability and higher discrimination thresholds across IIDs in the atresia group. These results suggest that the mature auditory brainstem has a potential to employ binaural cues later in life, although to a restricted degree. A binaural fitting of a bone-conducted hearing aid might optimize binaural hearing and improve sound lateralization, and we recommend now systematically bilateral fitting in aural atresia patients.

  9. Auto power and coherence analysis of delta-theta band EEG during the waking-sleeping transition period.

    PubMed

    Morikawa, T; Hayashi, M; Hori, T

    1997-12-01

    To evaluate the spatio-temporal variation of delta and theta band EEGs during the waking-sleeping transition period, auto power and coherence analyses of scalp EEGs were carried out on 12 male subjects. The 7 auto power and 21 coherence values obtained from the 7 areas were studied every 20 s from 5 min before stage 1 onset to 24 min after stage 1 onset. The consecutive samples of spectra were computed for two frequency bands (delta: 2.5-3.5 Hz; theta: 4.0-7.5 Hz). Auto power started to increase after stage 1 onset and terminated 8.4 min after stage 2 onset. Topograms of each band power changed with progression towards deep sleep from the flat or relatively low voltage pattern without any focus to the frontopolar-parietal pattern or the fronto-parietal dominant pattern. Principal component analysis of the coherence values revealed generalized and localized components in each band. The generalized component was distributed across scalp areas, while the localized component was distributed in frontopolar-frontal areas. The generalized component decreased to the plateau level of non-rapid eye movement (NREM) sleep 5.4 min after stage 2 onset. The localized component started to increase after stage 1 onset and reached the plateau level of NREM sleep 2.4 min after stage 2 onset. These results indicate that the delta-theta band EEG structures of the waking-sleeping transition period may not be uniform across the scalp areas and the hypnagogic period may start after stage 1 onset and continue for 8.4 min after stage 2 onset.

  10. Bilateral tonsillolithiasis: a case report.

    PubMed

    Ozcan, Emel; Ural, Ahmet; Oktemer, Tuğba Koçak; Alpaslan, Gökhan

    2006-09-01

    Although tonsilloliths are reported to be fairly common, florid cases casting distinct radiopaque shadows on panoramic radiographs are not often reported. This report illustrates such a case as an incidental finding in an asymptomatic 38-year-old female dental patient. Panoramic radiography revealed distinct radiopaque shadows over the ascending rami of the mandible bilaterally. These radiopacities were localized to the palatine tonsils by computerized tomographic inspection. Tonsillectomy was performed and tonsillolithiasis was confirmed by histopathologic examination.

  11. Spontaneous bilateral fracture of patella.

    PubMed

    Moretti, Biagio; Speciale, Domenico; Garofalo, Raffaele; Moretti, Lorenzo; Patella, Silvio; Patella, Vittorio

    2008-03-01

    Bilateral patellae fractures represent a rare entity, accounting for approximately 2.9% of all lesions interesting in this anatomical district. In most cases found in the published work, they are described as stress fractures or as complications of chronic diseases such as osteoporosis, renal failure and secondary hyperparathyroidism. Although many pathogenetic mechanisms have been supposed, none have been proved for certain. Insufficiency fractures of the patellae are rare events and no data has been published on their incidence. We present a case of bilateral fracture of the patellae due to an indirect trauma occurring in an 85-year-old patient affected by Parkinson's disease, osteoporosis and diffuse degenerative osteoarthritis. X-ray of the knees (anteroposterior and lateral) and magnetic resonance imaging evaluation confirmed the fractures. The patient was treated conservatively. She had a good result, returning to her previous autonomous ambulation. This case is unusual because there was no direct trauma to the knees because of bilaterality, but confirmed previous observations about insufficiency fractures of patellae in the presence of comorbidity. Insufficiency fractures of patellae can be an insidious condition in elderly people. Prepatellar pain, a common symptom in the relapse phase of degenerative arthritis of the knee, should not be underestimated, particularly in patients with diseases influencing metabolism of bone and with an elevated risk of fall. A periodical clinical and instrumental follow up should be done in these patient. Moreover, we underline the necessity of a multidisciplinary approach.

  12. Hippocampal theta-band activity and trace eyeblink conditioning in rabbits.

    PubMed

    Nokia, Miriam S; Penttonen, Markku; Korhonen, Tapani; Wikgren, Jan

    2009-06-01

    The authors examined the relationship between hippocampal theta activity and trace eyeblink conditioning. Hippocampal electrophysiological local field potentials were recorded before, during, and after conditioning or explicitly unpaired training sessions in adult male New Zealand White rabbits. As expected, a high relative power of theta activity (theta ratio) in the hippocampus predicted faster acquisition of the conditioned response during trace conditioning but, contrary to previous results obtained using the delay paradigm, only in the initial stage of learning. The presentation of the conditioned stimulus overall elicited an increase in the hippocampal theta ratio. The theta ratio decreased in the unpaired group as a function of training, remained high throughout conditioning in the fast learners, and rapidly increased in the slow learners initially showing a low theta ratio. Our results indicate a reciprocal connection between the hippocampal oscillatory activity and associative learning. The hippocampal theta ratio seems to reflect changes and differences in the subjects' alertness and responsiveness to external stimuli, which affect the rate of learning and are, in turn, affected by both conditioning and unpaired training.

  13. Someone has to give in: theta oscillations correlate with adaptive behavior in social bargaining.

    PubMed

    Billeke, Pablo; Zamorano, Francisco; López, Tamara; Rodriguez, Carlos; Cosmelli, Diego; Aboitiz, Francisco

    2014-12-01

    During social bargain, one has to both figure out the others' intentions and behave strategically in such a way that the others' behaviors will be consistent with one's expectations. To understand the neurobiological mechanisms underlying these behaviors, we used electroencephalography while subjects played as proposers in a repeated ultimatum game. We found that subjects adapted their offers to obtain more acceptances in the last round and that this adaptation correlated negatively with prefrontal theta oscillations. People with higher prefrontal theta activity related to a rejection did not adapt their offers along the game to maximize their earning. Moreover, between-subject variation in posterior theta oscillations correlated positively with how individual theta activity influenced the change of offer after a rejection, reflecting a process of behavioral adaptation to the others' demands. Interestingly, people adapted better their offers when they knew that they where playing against a computer, although the behavioral adaptation did not correlate with prefrontal theta oscillation. Behavioral changes between human and computer games correlated with prefrontal theta activity, suggesting that low adaptation in human games could be a strategy. Taken together, these results provide evidence for specific roles of prefrontal and posterior theta oscillations in social bargaining. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Someone has to give in: theta oscillations correlate with adaptive behavior in social bargaining

    PubMed Central

    Zamorano, Francisco; López, Tamara; Rodriguez, Carlos; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    During social bargain, one has to both figure out the others’ intentions and behave strategically in such a way that the others’ behaviors will be consistent with one’s expectations. To understand the neurobiological mechanisms underlying these behaviors, we used electroencephalography while subjects played as proposers in a repeated ultimatum game. We found that subjects adapted their offers to obtain more acceptances in the last round and that this adaptation correlated negatively with prefrontal theta oscillations. People with higher prefrontal theta activity related to a rejection did not adapt their offers along the game to maximize their earning. Moreover, between-subject variation in posterior theta oscillations correlated positively with how individual theta activity influenced the change of offer after a rejection, reflecting a process of behavioral adaptation to the others’ demands. Interestingly, people adapted better their offers when they knew that they where playing against a computer, although the behavioral adaptation did not correlate with prefrontal theta oscillation. Behavioral changes between human and computer games correlated with prefrontal theta activity, suggesting that low adaptation in human games could be a strategy. Taken together, these results provide evidence for specific roles of prefrontal and posterior theta oscillations in social bargaining. PMID:24493841

  15. Resting-state EEG theta activity and risk learning: sensitivity to reward or punishment?

    PubMed

    Massar, Stijn A A; Kenemans, J Leon; Schutter, Dennis J L G

    2014-03-01

    Increased theta (4-7 Hz)-beta (13-30 Hz) power ratio in resting state electroencephalography (EEG) has been associated with risky disadvantageous decision making and with impaired reinforcement learning. However, the specific contributions of theta and beta power in risky decision making remain unclear. The first aim of the present study was to replicate the earlier found relationship and examine the specific contributions of theta and beta power in risky decision making using the Iowa Gambling Task. The second aim of the study was to examine whether the relation were associated with differences in reward or punishment sensitivity. We replicated the earlier found relationship by showing a positive association between theta/beta ratio and risky decision making. This correlation was mainly driven by theta oscillations. Furthermore, theta power correlated with reward motivated learning, but not with punishment learning. The present results replicate and extend earlier findings by providing novel insights into the relation between thetabeta ratios and risky decision making. Specifically, findings show that resting-state theta activity is correlated with reinforcement learning, and that this association may be explained by differences in reward sensitivity.

  16. Hippocampal strata theta oscillations change their frequency and coupling during spatial learning.

    PubMed

    Hernández-Pérez, J Jesús; Gutiérrez-Guzmán, Blanca E; Olvera-Cortés, María E

    2016-11-19

    The theta rhythm is necessary for hippocampal-dependent spatial learning. It has been proposed that each hippocampal stratum can generate a current theta dipole. Therefore, considering that each hippocampal circuit (CA1, CA3, and Dentate Gyrus (DG)) contributes differently to distinct aspects of a spatial memory, the theta oscillations on each stratum and their couplings may exhibit oscillatory dynamics associated with different stages of learning. To test this hypothesis, the theta oscillations from five hippocampal strata were recorded in the rat during different stages of learning in a Morris maze. The peak power, the relative power (RP) and the coherence between hippocampal strata were analyzed. The early acquisition stage of the Morris task was characterized by the predominance of slow frequency theta activity and high coupling between specific hippocampal strata at slow frequencies. However, on the last training day, the theta oscillations were faster in all hippocampal strata, with tighter coupling at fast frequencies between the CA3 pyramidal stratum and other strata. Our results suggest that modifications to the theta frequency and its coupling can be a means by which the hippocampus differentially operates during acquisition and retrieval states.

  17. Frontal Theta Dynamics during Response Conflict in Long-Term Mindfulness Meditators

    PubMed Central

    Jo, Han-Gue; Malinowski, Peter; Schmidt, Stefan

    2017-01-01

    Mindfulness meditators often show greater efficiency in resolving response conflicts than non-meditators. However, the neural mechanisms underlying the improved behavioral efficiency are unclear. Here, we investigated frontal theta dynamics—a neural mechanism involved in cognitive control processes—in long-term mindfulness meditators. The dynamics of EEG theta oscillations (4–8 Hz) recorded over the medial frontal cortex (MFC) were examined in terms of their power (MFC theta power) and their functional connectivity with other brain areas (the MFC-centered theta network). Using a flanker-type paradigm, EEG data were obtained from 22 long-term mindfulness meditators and compared to those from 23 matched controls without meditation experience. Meditators showed more efficient cognitive control after conflicts, evidenced by fewer error responses irrespective of response timing. Furthermore, meditators exhibited enhanced conflict modulations of the MFC-centered theta network shortly before the response, in particular for the functional connection between the MFC and the motor cortex. In contrast, MFC theta power was comparable between groups. These results suggest that the higher behavioral efficiency after conflicts in mindfulness meditators could be a function of increased engagement to control the motor system in association with the MFC-centered theta network. PMID:28638334

  18. A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations

    PubMed Central

    Lin, Shih-Chieh; Nicolelis, Miguel A. L.

    2011-01-01

    The medial septum-vertical limb of the diagonal band of Broca (MSvDB) is important for normal hippocampal functions and theta oscillations. Although many previous studies have focused on understanding how MSVDB neurons fire rhythmic bursts to pace hippocampal theta oscillations, a significant portion of MSVDB neurons are slow-firing and thus do not pace theta oscillations. The function of these MSVDB neurons, especially their role in modulating hippocampal activity, remains unknown. We recorded MSVDB neuronal ensembles in behaving rats, and identified a distinct physiologically homogeneous subpopulation of slow-firing neurons (overall firing <4 Hz) that shared three features: 1) much higher firing rate during rapid eye movement sleep than during slow-wave (SW) sleep; 2) temporary activation associated with transient arousals during SW sleep; 3) brief responses (latency 15∼30 ms) to auditory stimuli. Analysis of the fine temporal relationship of their spiking and theta oscillations showed that unlike the theta-pacing neurons, the firing of these “pro-arousal” neurons follows theta oscillations. However, their activity precedes short-term increases in hippocampal oscillation power in the theta and gamma range lasting for a few seconds. Together, these results suggest that these pro-arousal slow-firing MSvDB neurons may function collectively to promote hippocampal activation. PMID:21865435

  19. Behavioral inhibition during a conflict state elicits a transient decline in hippocampal theta power.

    PubMed

    Sakimoto, Yuya; Sakata, Shogo

    2015-09-01

    Although it has been shown that hippocampal theta power transiently declines during response inhibition in a simultaneous feature negative (FN: A+, AB-) task, observations of additional changes after this initial decline have been inconsistent across subjects. We hypothesized that the cause of these inconsistencies might be that variations in the learning speed for the FN task differentially affect the changes in hippocampal theta activity observed during the task. In this study, we classified rats into three groups (fast, intermediate, and slow FN-learning groups) based on the number of sessions required to complete learning of the FN task. We then examined whether there was a difference in hippocampal theta power among the fast, intermediate, and slow FN-learning groups, and rats that learned a simple discrimination task (SD group). We observed that compared to the SD group, the slow FN-learning group, but not the fast FN-learning group, showed an increase in hippocampal theta power. In addition, a transient decline of hippocampal theta power occurred in the fast FN-learning group, but not in the slow FN-learning group. These results indicate that the hippocampal theta activity during response inhibition in the FN task differed between fast- and slow-learning rats. Thus, we propose that a difference in learning speed affected hippocampal theta activity during response inhibition under a conflict state.

  20. Cortico-pontine theta synchronization phase shift following monoaminergic lesion in rat.

    PubMed

    Kalauzi, A; Kesic, S; Saponjic, J

    2009-12-01

    The experiments were performed in 14 adult, male Sprague Dawley rats chronically instrumented for sleep recording and recorded during baseline condition, following sham injection (saline i.p. 1 ml/kg), and every week for 5 weeks following injection of the systemic neurotoxins (DSP-4 or PCA; 1 ml/kg, i.p.) for chemical axotomy of the locus coeruleus (LC) and dorsal raphe (DR) axon terminals. In our former study we demonstrated that the systemically induced lesion of the noradrenergic or serotonergic axon terminals did not affect the sleep-wake distribution from control condition. In this study, by using spectral analysis and phase shift spectra of the cortical and pontine EEG we analyzed cortico-pontine theta oscillation synchronization phase shift on 6-hour recordings in control condition and 28 days following the monoaminergic lesions, as a time for permanently established DR or LC chemical axotomy. Our results demonstrated for the first time that chronically decreased brain monoamines in freely moving rats changed cortico-pontine theta synchronization phase shift. Pons became a leading theta oscillator. We assume that deficit of monoamines induced predominance of the NREM/REM transitions, characterized with phasic theta oscillations (the increased density of clustered P waves which intrinsic frequency corresponds to theta frequency oscillations), and may produced preceding phasic theta versus tonic theta oscillation drive.

  1. Hippocampal Non-Theta-Contingent Eyeblink Classical Conditioning: A Model System for Neurobiological Dysfunction

    PubMed Central

    Cicchese, Joseph J.; Berry, Stephen D.

    2016-01-01

    Typical information processing is thought to depend on the integrity of neurobiological oscillations that may underlie coordination and timing of cells and assemblies within and between structures. The 3–7 Hz bandwidth of hippocampal theta rhythm is associated with cognitive processes essential to learning and depends on the integrity of cholinergic, GABAergic, and glutamatergic forebrain systems. Since several significant psychiatric disorders appear to result from dysfunction of medial temporal lobe (MTL) neurochemical systems, preclinical studies on animal models may be an important step in defining and treating such syndromes. Many studies have shown that the amount of hippocampal theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning and attainment of asymptotic performance. Our lab has developed a brain–computer interface that makes eyeblink training trials contingent upon the explicit presence or absence of hippocampal theta. The behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to fourfold increase in learning speed over non-theta states. The non-theta behavioral impairment is accompanied by disruption of the amplitude and synchrony of hippocampal local field potentials, multiple-unit excitation, and single-unit response patterns dependent on theta state. Our findings indicate a significant electrophysiological and behavioral impact of the pretrial state of the hippocampus that suggests an important role for this MTL system in associative learning and a significant deleterious impact in the absence of theta. Here, we focus on the impairments in the non-theta state, integrate them into current models of psychiatric disorders, and suggest how improvement in our understanding of neurobiological oscillations is critical for theories and treatment of psychiatric

  2. Theta synchronization between the hippocampus and the nucleus incertus in urethane-anesthetized rats.

    PubMed

    Cervera-Ferri, Ana; Guerrero-Martínez, Juan; Bataller-Mompeán, Manuel; Taberner-Cortes, Alida; Martínez-Ricós, Joana; Ruiz-Torner, Amparo; Teruel-Martí, Vicent

    2011-06-01

    Oscillatory coupling between distributed areas can constitute a mechanism for neuronal integration. Theta oscillations provide temporal windows for hippocampal processing and only appear during certain active states of animals. Since previous studies have demonstrated that nucleus incertus (NI) contributes to the generation of hippocampal theta activity, in this paper, we evaluated the oscillatory coupling between both structures. We compared hippocampal and NI field potentials that were simultaneously recorded in urethane-anesthetized rats. Electrical and cholinergic stimulations of the reticularis pontis oralis nucleus have been used as hippocampal theta generation models. The spectral analyses reveal that electrical stimulation induced an increase in theta oscillations in both channels, whose frequencies depended on the intensity of stimulation. The intensity range used simultaneously increased the normalized spectral energy in the fast theta band (6-12 Hz) in HPC and NI. Frequencies within the theta range were found to be very similar in both channels. In order to validate coupling, spectral coherence was inspected. The data reveal that coherence in the high theta band also increased while stimuli were applied. Cholinergic activation progressively increased the main frequency in both structures to reach an asymptotic period with stable peak frequency in the low theta range (3-6 Hz), which could be first observed in NI and lasted about 1,500 s. Coherence in this band reached values close to 1. Taken together, these results support an electrophysiological and functional coupling between the hippocampus and the reticular formation, suggesting NI to be part of a distributed network working at theta frequencies.

  3. Medial Prefrontal-Medial Temporal Theta Phase Coupling in Dynamic Spatial Imagery.

    PubMed

    Kaplan, Raphael; Bush, Daniel; Bisby, James A; Horner, Aidan J; Meyer, Sofie S; Burgess, Neil

    2017-03-01

    Hippocampal-medial prefrontal interactions are thought to play a crucial role in mental simulation. Notably, the frontal midline/medial pFC (mPFC) theta rhythm in humans has been linked to introspective thought and working memory. In parallel, theta rhythms have been proposed to coordinate processing in the medial temporal cortex, retrosplenial cortex (RSc), and parietal cortex during the movement of viewpoint in imagery, extending their association with physical movement in rodent models. Here, we used noninvasive whole-head MEG to investigate theta oscillatory power and phase-locking during the 18-sec postencoding delay period of a spatial working memory task, in which participants imagined previously learned object sequences either on a blank background (object maintenance), from a first-person viewpoint in a scene (static imagery), or moving along a path past the objects (dynamic imagery). We found increases in 4- to 7-Hz theta power in mPFC when comparing the delay period with a preencoding baseline. We then examined whether the mPFC theta rhythm was phase-coupled with ongoing theta oscillations elsewhere in the brain. The same mPFC region showed significantly higher theta phase coupling with the posterior medial temporal lobe/RSc for dynamic imagery versus either object maintenance or static imagery. mPFC theta phase coupling was not observed with any other brain region. These results implicate oscillatory coupling between mPFC and medial temporal lobe/RSc theta rhythms in the dynamic mental exploration of imagined scenes.

  4. Activation of 5-HT6 receptors modulates sleep-wake activity and hippocampal theta oscillation.

    PubMed

    Ly, Susanna; Pishdari, Bano; Lok, Ling Ling; Hajos, Mihaly; Kocsis, Bernat

    2013-01-16

    The modulatory role of 5-HT neurons and a number of different 5-HT receptor subtypes has been well documented in the regulation of sleep-wake cycles and hippocampal activity. A high level of 5-HT(6) receptor expression is present in the rat hippocampus. Further, hippocampal function has been shown to be modulated by both 5-HT(6) agonists and antagonists. In the current study, the potential involvement of 5-HT(6) receptors in the control of hippocampal theta rhythms and sleep-wake cycles has been investigated. Hippocampal activity was recorded by intracranial hippocampal electrodes both in anesthetized (n = 22) and in freely moving rats (n = 9). Theta rhythm was monitored in different sleep-wake states in freely moving rats and was elicited by stimulation of the brainstem reticular formation under anesthesia. Changes in theta frequency and power were analyzed before and after injection of the 5-HT(6) antagonist (SAM-531) and the 5-HT(6) agonist (EMD386088). In freely moving rats, EMD386088 suppressed sleep for several hours and significantly decreased theta peak frequency, while, in anesthetized rats, EMD386088 had no effect on theta power but significantly decreased theta frequency, which could be blocked by coadministration of SAM-531. SAM-531 alone did not change sleep-wake patterns and had no effect on theta parameters in both unanesthetized and anesthetized rats. Decreases in theta frequency induced by the 5-HT(6) receptor agonist correspond to previously described electrophysiological patterns shared by all anxiolytic drugs, and it is in line with its behavioral anxiolytic profile. The 5-HT(6) antagonist, however, failed to potentiate theta power, which is characteristic of many pro-cognitive substances, indicating that 5-HT(6) receptors might not tonically modulate hippocampal oscillations and sleep-wake patterns.

  5. Role of CA3 theta-modulated interneurons during the transition to spontaneous seizures.

    PubMed

    Karunakaran, Suganya; Grasse, Dane W; Moxon, Karen A

    2016-09-01

    Multiple studies have observed heterogeneous neuronal firing patterns as a local network transitions to spontaneous seizures. We demonstrated that separately examining interneurons and pyramidal cells during this transition in a rat model of temporal lobe epilepsy elucidates some of this heterogeneity. Recently, it was demonstrated that classifying cells into specific theta-related subtypes further clarified the heterogeneity. Moreover, changes in neuronal synchrony with the local field potential were identified and determined to be specific to interneurons during the transition to seizures. To extend our understanding of the chronic changes in epileptic networks, we examined field potentials and single neuron activity in the CA3 hippocampus of pilocarpine-treated rats during interictal periods and compared these to neuronal activity in healthy controls and during preictal periods. Neurons were classified into theta-subtypes based on changes in firing patterns during theta periods. As previously reported, we find a high probability of theta oscillations before seizure onset and a selective increase in theta-on interneuron firing rate immediately preceding seizure onset. However, we also find overall slower theta rhythm and a general decrease in subtype-specific firing during interictal periods compared to that in control animals. The decrease in subtype specific interneuron activity is accompanied by increases in synchrony. Exceptionally, theta-on interneurons, that selectively increase their firing rate at seizure onset, maintain similar firing rates and synchrony as controls during interictal period. These data suggest that increased synchrony during interictal periods may compensate for low firing rates creating instability during theta that is prone to seizure initiation via a transition to hyper-synchronous activation of theta-on interneurons.

  6. Nicotine induction of theta frequency oscillations in rodent hippocampus in vitro.

    PubMed

    Lu, C B; Henderson, Z

    2010-03-10

    The hippocampus is an area important for learning and memory and exhibits prominent and behaviourally relevant theta (4-12 Hz) and gamma (30-100 Hz) frequency oscillations in vivo. Hippocampal slices produce similar types of oscillatory activity in response to bath-application of neurotransmitter receptor agonists. The medial septum diagonal band area (MS/DB) provides both a cholinergic and GABAergic projection to the hippocampus, and although it plays a major role in the generation and maintenance of the hippocampal theta rhythm in vivo, there is evidence for intrinsic theta generation mechanisms in the hippocampus, especially in area CA3. The aim of this study was to examine the role of the nicotinic receptor (nAChR) in the induction of oscillatory field activity in the in vitro preparation of the rat hippocampus. Bath-application of a low concentration of nicotine (1 muM) to transversely-cut hippocampal slices produced persistent theta-frequency oscillations in area CA3 of the hippocampus. These oscillations were reduced by both GABA(A) receptor antagonists and ionotropic glutamate receptor antagonists, indicating the involvement of local GABAergic and glutamatergic neurons in the production of the rhythmic theta activity. The nicotine-induced theta activity was inhibited by non-selective nAChR antagonists and partially by an alpha7* nAChR antagonist. The induction of theta frequency oscillations in CA3 by nicotine was mimicked alpha7* nAChR agonists but not by non-alpha7* nAChR agonists. In conclusion, theta activity in the hippocampus may be promoted by tonic stimulation of alpha7* nAChRs, possibly via selective stimulation of theta-preferring interneurons in the hippocampus that express post-synaptic alpha7* nAChRs.

  7. Cosine Directional Tuning of Theta Cell Burst Frequencies: Evidence for Spatial Coding by Oscillatory Interference

    PubMed Central

    Welday, Adam C.; Shlifer, I. Gary; Bloom, Matthew L.; Zhang, Kechen

    2011-01-01

    The rodent septohippocampal system contains “theta cells,” which burst rhythmically at 4–12 Hz, but the functional significance of this rhythm remains poorly understood (Buzsáki, 2006). Theta rhythm commonly modulates the spike trains of spatially tuned neurons such as place (O'Keefe and Dostrovsky, 1971), head direction (Tsanov et al., 2011a), grid (Hafting et al., 2005), and border cells (Savelli et al., 2008; Solstad et al., 2008). An “oscillatory interference” theory has hypothesized that some of these spatially tuned neurons may derive their positional firing from phase interference among theta oscillations with frequencies that are modulated by the speed and direction of translational movements (Burgess et al., 2005, 2007). This theory is supported by studies reporting modulation of theta frequency by movement speed (Rivas et al., 1996; Geisler et al., 2007; Jeewajee et al., 2008a), but modulation of theta frequency by movement direction has never been observed. Here we recorded theta cells from hippocampus, medial septum, and anterior thalamus of freely behaving rats. Theta cell burst frequencies varied as the cosine of the rat's movement direction, and this directional tuning was influenced by landmark cues, in agreement with predictions of the oscillatory interference theory. Computer simulations and mathematical analysis demonstrated how a postsynaptic neuron can detect location-dependent synchrony among inputs from such theta cells, and thereby mimic the spatial tuning properties of place, grid, or border cells. These results suggest that theta cells may serve a high-level computational function by encoding a basis set of oscillatory signals that interfere with one another to synthesize spatial memory representations. PMID:22072668

  8. Bilateral distal biceps tendon ruptures.

    PubMed

    Green, Jennifer B; Skaife, Tyler L; Leslie, Bruce M

    2012-01-01

    To determine the incidence of bilateral distal biceps tendon ruptures. A retrospective review of 321 patients who underwent operative repair of a distal biceps tendon rupture between 1988 and 2010 identified 26 patients with bilateral ruptures. We recorded patient age, mechanism of injury, time between symptom onset before the first surgery and subsequent contralateral symptoms, and time between surgeries. Twenty-two bilateral ruptures were confirmed intra-operatively, 3 by MRI, and 1 was lost to follow up. A total of 23 bilateral ruptures (92%) occurred in men. The average age at the initial rupture was 44 years (range, 29-74 y). The average age at subsequent rupture was 48 years (range, 36-79 y). Excluding the 2 women (age 72 and 79 y), the average age at the initial rupture was 42 years and the average age at subsequent rupture was 46 years. The average interval between ruptures was 4.1 years (range, 0.8-13.9 y). The initial rupture occurred in the dominant extremity in 12 cases (50%) and in the nondominant extremity in 10 cases (42%); in 3 patients (8%) the dominance was not documented or ambidextrous. Thirty-three percent were heavy laborers, 3 patients had a smoking history, and 1 patient reported a history of steroid use. Twenty-two patients (88%) had the second side repaired, where we noted that 12 (55%) of the second tendon ruptures were partial tears. The 8% cumulative incidence of bilateral biceps tendon ruptures in a consecutive series of biceps tendon repairs may be higher because not all patients were contacted, which introduced a sampling bias. This 8% rate is markedly higher than the reported rate of 1.2 per 100,000 for an isolated distal biceps tendon rupture. This implies that patients with a distal biceps tendon rupture are at risk for a rupture on the contralateral side. Prognostic III. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  9. Bilateral Ureteral Obstruction in Children after Appendectomy

    PubMed Central

    Grande, M.; Lisi, G.; Bianchi, D.; Bove, P.; Miano, R.; Esser, A.; De Sanctis, F.; Neri, A.; Grande, S.; Villa, M.

    2015-01-01

    Acute renal failure due to bilateral ureteral obstruction is a rare complication after appendectomy in children. We report a case of bilateral ureteric obstruction in a 14-year-old boy nine days after surgery for an acute appendicitis. After saline-filling of the urinary bladder, transabdominal ultrasound demonstrated bilateral hydronephrosis of moderate degree. No abscess was found with CT but presence of millimetric stones on both distal ureters was shown, with bilateral calyceal dilatation. Cystoscopy revealed inflammatory changes in the bladder base. Following introduction of bilateral ureteric stents, there was rapid normalisation of urinary output and serum creatinine. PMID:26295001

  10. Theta-rhythmic drive between medial septum and hippocampus in slow-wave sleep and microarousal: a Granger causality analysis.

    PubMed

    Kang, D; Ding, M; Topchiy, I; Shifflett, L; Kocsis, B

    2015-11-01

    Medial septum (MS) plays a critical role in controlling the electrical activity of the hippocampus (HIPP). In particular, theta-rhythmic burst firing of MS neurons is thought to drive lasting HIPP theta oscillations in rats during waking motor activity and REM sleep. Less is known about MS-HIPP interactions in nontheta states such as non-REM sleep, in which HIPP theta oscillations are absent but theta-rhythmic burst firing in subsets of MS neurons is preserved. The present study used Granger causality (GC) to examine the interaction patterns between MS and HIPP in slow-wave sleep (SWS, a nontheta state) and during its short interruptions called microarousals (a transient theta state). We found that during SWS, while GC revealed a unidirectional MS→HIPP influence over a wide frequency band (2-12 Hz, maximum: ∼8 Hz), there was no theta peak in the hippocampal power spectra, indicating a lack of theta activity in HIPP. In contrast, during microarousals, theta peaks were seen in both MS and HIPP power spectra and were accompanied by bidirectional GC with MS→HIPP and HIPP→MS theta drives being of equal magnitude. Thus GC in a nontheta state (SWS) vs. a theta state (microarousal) primarily differed in the level of HIPP→MS. The present findings suggest a modification of our understanding of the role of MS as the theta generator in two regards. First, a MS→HIPP theta drive does not necessarily induce theta field oscillations in the hippocampus, as found in SWS. Second, HIPP theta oscillations entail bidirectional theta-rhythmic interactions between MS and HIPP.

  11. EEG oscillations and recognition memory: theta correlates of memory retrieval and decision making.

    PubMed

    Jacobs, Joshua; Hwang, Grace; Curran, Tim; Kahana, Michael J

    2006-08-15

    Studies of memory retrieval have identified electroencephalographic (EEG) correlates of a test item's old-new status, reaction time, and memory load. In the current study, we used a multivariate analysis to disentangle the effects of these correlated variables. During retrieval, power of left-parietal theta (4-8 Hz) oscillations increased in proportion to how well a test item was remembered, and theta in central regions correlated with decision making. We also studied how these oscillatory dynamics complemented event-related potentials. These findings are the first to demonstrate that distinct patterns of theta oscillations can simultaneously relate to different aspects of behavior.

  12. Frontal midline theta oscillations during mental arithmetic: effects of stress.

    PubMed

    Gärtner, Matti; Grimm, Simone; Bajbouj, Malek

    2015-01-01

    Complex cognitive tasks such as mental arithmetic heavily rely on intact, well-coordinated prefrontal cortex (PFC) function. Converging evidence suggests that frontal midline theta (FMT) oscillations play an important role during the execution of such PFC-dependent tasks. Additionally, it is well-established that acute stress impairs PFC function, and recent evidence suggests that FMT is decreased under stress. In this EEG study, we investigated FMT oscillations during a mental arithmetic task that was carried out in a stressful and a neutral control condition. Our results show late-onset, sustained FMT increases during mental arithmetic. In the neutral condition FMT started to increase earlier than in the stress condition. Direct comparison of the conditions quantified this difference by showing stronger FMT increases in the neutral condition in an early time window. Between-subject correlation analysis showed that attenuated FMT under stress was related to slowed reaction times. Our results suggest that FMT is associated with stimulus independent mental processes during the natural and complex PFC-dependent task of mental arithmetic, and is a possible marker for intact PFC function that is disrupted under stress.

  13. Geometric Calibration of Full Spherical Panoramic Ricoh-Theta Camera

    NASA Astrophysics Data System (ADS)

    Aghayari, S.; Saadatseresht, M.; Omidalizarandi, M.; Neumann, I.

    2017-05-01

    A novel calibration process of RICOH-THETA, full-view fisheye camera, is proposed which has numerous applications as a low cost sensor in different disciplines such as photogrammetry, robotic and machine vision and so on. Ricoh Company developed this camera in 2014 that consists of two lenses and is able to capture the whole surrounding environment in one shot. In this research, each lens is calibrated separately and interior/relative orientation parameters (IOPs and ROPs) of the camera are determined on the basis of designed calibration network on the central and side images captured by the aforementioned lenses. Accordingly, designed calibration network is considered as a free distortion grid and applied to the measured control points in the image space as correction terms by means of bilinear interpolation. By performing corresponding corrections, image coordinates are transformed to the unit sphere as an intermediate space between object space and image space in the form of spherical coordinates. Afterwards, IOPs and EOPs of each lens are determined separately through statistical bundle adjustment procedure based on collinearity condition equations. Subsequently, ROPs of two lenses is computed from both EOPs. Our experiments show that by applying 3*3 free distortion grid, image measurements residuals diminish from 1.5 to 0.25 degrees on aforementioned unit sphere.

  14. Frontal midline theta oscillations during mental arithmetic: effects of stress

    PubMed Central

    Gärtner, Matti; Grimm, Simone; Bajbouj, Malek

    2015-01-01

    Complex cognitive tasks such as mental arithmetic heavily rely on intact, well-coordinated prefrontal cortex (PFC) function. Converging evidence suggests that frontal midline theta (FMT) oscillations play an important role during the execution of such PFC-dependent tasks. Additionally, it is well-established that acute stress impairs PFC function, and recent evidence suggests that FMT is decreased under stress. In this EEG study, we investigated FMT oscillations during a mental arithmetic task that was carried out in a stressful and a neutral control condition. Our results show late-onset, sustained FMT increases during mental arithmetic. In the neutral condition FMT started to increase earlier than in the stress condition. Direct comparison of the conditions quantified this difference by showing stronger FMT increases in the neutral condition in an early time window. Between-subject correlation analysis showed that attenuated FMT under stress was related to slowed reaction times. Our results suggest that FMT is associated with stimulus independent mental processes during the natural and complex PFC-dependent task of mental arithmetic, and is a possible marker for intact PFC function that is disrupted under stress. PMID:25941479

  15. The Theta 2 Tau campaign by the Delta Scuti Network

    NASA Astrophysics Data System (ADS)

    Breger, M.

    1995-01-01

    The star Theta 2 Tau had already been studied by the Delta Scuti Network during two previous multisite campaigns (see Breger, M., Garrido, R., Huang Lin, Jiang Shi-Yang, Guo Zi-He, Frueh, M., Paparo M. Astron. Astrophys. 214, 209, 1989). The star offers a chance to study nonradial modes of different degrees and similar radial orders. The previous multisite campaigns have detected five frequencies from the photometric data. However, these data also show that there exist a number of additional, presently unidentified pulsation modes in the 10 to 15 c/d and the 25 to 30 c/d range. These new frequencies could be detected and confirmed in an additional campaign. Dziembowski and Goode (Astrophys. J.394, 670,1992) have successfully modelled the five previously identified modes, but the theoretical challenge will be provided by the frequencies of the additional modes. The star seems to differ from 4 CVn in that no variability of amplitudes could be detected so far, but the data are limited. Furthermore, during 1994 a spectroscopic MUSICOS campaign was undertaken. A new multisite photometric campaign was carried out with the Delta Scuti Network during 1994 November and December. Data has already been obtained from the McDonald, Lowell, Sierra Nevada, Xing-Long and Tien-Shan Observatories. Approximately 40 nights of photometric observations are presently being reduced.

  16. Theta gun, a multistage, coaxial, magnetic induction projectile accelerator

    NASA Astrophysics Data System (ADS)

    Burgess, T. J.; Duggin, B. W.; Cowan, M., Jr.

    1985-11-01

    We experimentally and theoretically studied a multistage coaxial magnetic induction projectile accelerator. We call this system a theta gun to differentiate it from other coaxial accelerator concepts such as the mass driver. We conclude that this system can theoretically attain railgun performance only for large caliber or very high injection velocity and, even then, only for long coil geometry. Our experiments with a three-stage, capacitor bank-driven accelerator are described. The experiments are modeled with a 1-1/2 dimensional equivalent circuit-hydrodynamics code which is also described. We derive an expression for the conditions of coaxial accelerator-railgun velocity breakeven in the absence of ohmic and hydrodynamic effects. This, in conjunction with an expression for the magnetic coupling coefficient, defines a set of geometric relations which the coaxial system must simultaneously satisfy. Conclusions concerning both the existence and configuration of a breakeven coaxial system follow from this requirement. The relative advantages and disadvantages of the coaxial induction projectile accelerator, previously cited in the literature, are critiqued from the viewpoint of our analysis and experimental results. We find that the advantages vis-a-vis the railgun have been overstated.

  17. Attenuation of N2 amplitude of laser-evoked potentials by theta burst stimulation of primary somatosensory cortex.

    PubMed

    Poreisz, Csaba; Antal, Andrea; Boros, Klára; Brepohl, Nadine; Csifcsák, Gábor; Paulus, Walter

    2008-03-01

    Theta burst stimulation (TBS) is a special repetitive transcranial magnetic stimulation (rTMS) paradigm, where bursts of low-intensity stimuli are applied in the theta frequency. The aim of this study was to investigate the effect of neuronavigated TBS over primary somatosensory cortex (SI) on laser-evoked potentials (LEPs) and acute pain perception induced with Tm : YAG laser stimulation. The amplitude changes of the N1, N2, and P2 components of LEPs and related subjective pain rating scores of 12 healthy subjects were analyzed prior to and following continuous TBS (cTBS), intermittent TBS (iTBS), intermediate TBS (imTBS), and sham stimulation. Our results demonstrate that all active TBS paradigms significantly diminished the amplitude of the N2 component, when the hand contralateral to the site of TBS was laser-stimulated. Sham stimulation condition had no significant effect. The subjective pain perception also decreased during the experimental sessions, but did not differ significantly from the sham stimulation condition. The main finding of our study is that TBS over SI diminished the amplitude of the N2 component evoked from the contralateral side without any significant analgesic effects. Furthermore, imTBS produced responses similar to those observed by other forms of TBS induced excitability changes in the SI.

  18. Attenuation of N2 amplitude of laser-evoked potentials by theta burst stimulation of primary somatosensory cortex

    PubMed Central

    Antal, Andrea; Boros, Klára; Brepohl, Nadine; Csifcsák, Gábor; Paulus, Walter

    2007-01-01

    Theta burst stimulation (TBS) is a special repetitive transcranial magnetic stimulation (rTMS) paradigm, where bursts of low-intensity stimuli are applied in the theta frequency. The aim of this study was to investigate the effect of neuronavigated TBS over primary somatosensory cortex (SI) on laser-evoked potentials (LEPs) and acute pain perception induced with Tm : YAG laser stimulation. The amplitude changes of the N1, N2, and P2 components of LEPs and related subjective pain rating scores of 12 healthy subjects were analyzed prior to and following continuous TBS (cTBS), intermittent TBS (iTBS), intermediate TBS (imTBS), and sham stimulation. Our results demonstrate that all active TBS paradigms significantly diminished the amplitude of the N2 component, when the hand contralateral to the site of TBS was laser-stimulated. Sham stimulation condition had no significant effect. The subjective pain perception also decreased during the experimental sessions, but did not differ significantly from the sham stimulation condition. The main finding of our study is that TBS over SI diminished the amplitude of the N2 component evoked from the contralateral side without any significant analgesic effects. Furthermore, imTBS produced responses similar to those observed by other forms of TBS induced excitability changes in the SI. PMID:18043910

  19. Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmetic-induced workload.

    PubMed

    Sammer, Gebhard; Blecker, Carlo; Gebhardt, Helge; Bischoff, Matthias; Stark, Rudolf; Morgen, Katrin; Vaitl, Dieter

    2007-08-01

    Theta increases with workload and is associated with numerous processes including working memory, problem solving, encoding, or self monitoring. These processes, in turn, involve numerous structures of the brain. However, the relationship between regional brain activity and the occurrence of theta remains unclear. In the present study, simultaneous EEG-fMRI recordings were used to investigate the functional topography of theta. EEG-theta was enhanced by mental arithmetic-induced workload. For the EEG-constrained fMRI analysis, theta-reference time-series were extracted from the EEG, reflecting the strength of theta occurrence during the time course of the experiment. Theta occurrence was mainly associated with activation of the insular cortex, hippocampus, superior temporal areas, cingulate cortex, superior parietal, and frontal areas. Though observation of temporal and insular activation is in accord with the theory that theta specifically reflects encoding processes, the involvement of several other brain regions implies that surface-recorded theta represents comprehensive functional brain states rather than specific processes in the brain. The results provide further evidence for the concept that emergent theta band oscillations represent dynamic functional binding of widely distributed cortical assemblies, essential for cognitive processing. This binding process may form the source of surface-recorded EEG theta. 2006 Wiley-Liss, Inc.

  20. Bilateral ECT induces bilateral increases in regional cortical thickness

    PubMed Central

    van Eijndhoven, P; Mulders, P; Kwekkeboom, L; van Oostrom, I; van Beek, M; Janzing, J; Schene, A; Tendolkar, I

    2016-01-01

    Electroconvulsive therapy (ECT) is the most effective treatment for patients suffering from severe or treatment-resistant major depressive disorder (MDD). Unfortunately its underlying neurobiological mechanisms are still unclear. One line of evidence indicates that the seizures produced by ECT induce or stimulate neuroplasticity effects. Although these seizures also affect the cortex, the effect of ECT on cortical thickness is not investigated until now. We acquired structural magnetic resonance imaging data in 19 treatment-resistant MDD patients before and after a bilateral ECT course, and 16 healthy controls at 2 time points, and compared changes in cortical thickness between the groups. Our results reveal that ECT induces significant, bilateral increases in cortical thickness, including the temporal pole, inferior and middle temporal cortex and the insula. The pattern of increased cortical thickness was predominant in regions that are associated with seizure onset in ECT. Post hoc analyses showed that the increase in thickness of the insular cortex was larger in responders than in non-responders, which may point to a specific relationship of this region with treatment effects of ECT. PMID:27552587

  1. Effects of nicotine stimulation on spikes, theta frequency oscillations, and spike-theta oscillation relationship in rat medial septum diagonal band Broca slices

    PubMed Central

    Wen, Dong; Peng, Ce; Ou-yang, Gao-xiang; Henderson, Zainab; Li, Xiao-li; Lu, Cheng-biao

    2013-01-01

    Aim: Spiking activities and neuronal network oscillations in the theta frequency range have been found in many cortical areas during information processing. The aim of this study is to determine whether nicotinic acetylcholine receptors (nAChRs) mediate neuronal network activity in rat medial septum diagonal band Broca (MSDB) slices. Methods: Extracellular field potentials were recorded in the slices using an Axoprobe 1A amplifier. Data analysis was performed off-line. Spike sorting and local field potential (LFP) analyses were performed using Spike2 software. The role of spiking activity in the generation of LFP oscillations in the slices was determined by analyzing the phase-time relationship between the spikes and LFP oscillations. Circular statistic analysis based on the Rayleigh test was used to determine the significance of phase relationships between the spikes and LFP oscillations. The timing relationship was examined by quantifying the spike-field coherence (SFC). Results: Application of nicotine (250 nmol/L) induced prominent LFP oscillations in the theta frequency band and both small- and large-amplitude population spiking activity in the slices. These spikes were phase-locked to theta oscillations at specific phases. The Rayleigh test showed a statistically significant relationship in phase-locking between the spikes and theta oscillations. Larger changes in the SFC were observed for large-amplitude spikes, indicating an accurate timing relationship between this type of spike and LFP oscillations. The nicotine-induced spiking activity (large-amplitude population spikes) was suppressed by the nAChR antagonist dihydro-β-erythroidine (0.3 μmol/L). Conclusion: The results demonstrate that large-amplitude spikes are phase-locked to theta oscillations and have a high spike-timing accuracy, which are likely a main contributor to the theta oscillations generated in MSDB during nicotine receptor activation. PMID:23474704

  2. Bilateral cleft lip nasal deformity

    PubMed Central

    Singh, Arun Kumar; Nandini, R.

    2009-01-01

    Bilateral cleft lip nose deformity is a multi-factorial and complex deformity which tends to aggravate with growth of the child, if not attended surgically. The goals of primary bilateral cleft lip nose surgery are, closure of the nasal floor and sill, lengthening of the columella, repositioning of the alar base, achieving nasal tip projection, repositioning of the lower lateral cartilages, and reorienting the nares from horizontal to oblique position. The multiplicity of procedures in the literature for correction of this deformity alludes to the fact that no single procedure is entirely effective. The timing for surgical intervention and its extent varies considerably. Early surgery on cartilage may adversely affect growth and development; at the same time, allowing the cartilage to grow in an abnormal position and contributing to aggravation of deformity. Some surgeons advocate correction of deformity at an early age. However, others like the cartilages to grow and mature before going in for surgery. With peer pressure also becoming an important consideration during the teens, the current trend is towards early intervention. There is no unanimity in the extent of nasal dissection to be done at the time of primary lip repair. While many perform limited nasal dissection for the fear of growth retardation, others opt for full cartilage correction at the time of primary surgery itself. The value of naso-alveolar moulding (NAM) too is not universally accepted and has now more opponents than proponents. Also most centres in the developing world have neither the personnel nor the facilities for the same. The secondary cleft nasal deformity is variable and is affected by the extent of the original abnormality, any prior surgeries performed and alteration due to nasal growth. This article reviews the currently popular methods for correction of nasal deformity associated with bilateral cleft lip, it's management both at the time of cleft lip repair and also secondarily

  3. Amelogenesis imperfecta with bilateral nephrocalcinosis.

    PubMed

    Poornima, P; Katkade, Shashikant; Mohamed, Roshan Noor; Mallikarjuna, Rachappa

    2013-05-24

    A 12-year-old patient presented with a severe delay of eruption in permanent maxillary and mandibular incisors. On examination, there was over-retained primary teeth and delayed eruption of permanent teeth. Retained primary teeth showed light yellow discolouration whereas permanent teeth were distinct yellow with thin or little enamel. Subsequent imaging revealed all the premolars except maxillary left first premolar showed signs of intra-alveolar coronal resorption, nephrocalcinosis with bilateral multiple calculi and small papillary tip calcifications, marked increase in alkaline phosphatase. Subsequent dental treatment for restoring the functional and aesthetic requirement followed by appropriate treatment for renal problem was undertaken.

  4. Bilateral talon cusp: case report.

    PubMed

    Soares, A B; de Araújo, J J; de Sousa, S M; Veronezi, M C

    2001-04-01

    Talon cusp is an uncommon condition often present in the maxillary incisors and mandibular premolars. Morphologically, this anomaly has a well-delineated cusp that extends at least half the distance from the cementoenamel junction or cingulum area to the incisal edge. The alteration can cause clinical problems such as caries or occlusal interference. Management of the talon cusp varies according to the circumstances of the individual case and should be as conservative as possible. Presented is a case of bilateral bifid talon cusp in maxillary central incisors that was successfully managed with conservative therapy.

  5. Bilateral isolated submandibular gland mumps.

    PubMed

    Cheung, Linnea; Henderson, Arthur Harry; Banfield, Graham; Carswell, Andrew

    2017-06-05

    Isolated submandibular swellings pose a diagnostic challenge to the practising otolaryngologist. We report an unusual case of mumps isolated to bilateral submandibular glands. We discuss the case and the literature surrounding this condition and remind clinicians that mumps should be considered as a diagnosis in the presence of submandibular gland swelling in the absence of typical parotid swelling associated with mumps. Early consideration of this differential diagnosis, serological testing and a multidisciplinary approach may help to clinch the diagnosis earlier and prevent spread of the virus. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Bilateral Inguinal Hernias Containing Ovaries

    PubMed Central

    Basrur, Gurudutt Bhaskar

    2015-01-01

    Inguinal hernias are rare in females. The authors report a case of bilateral inguinal hernias in a 10-year-old female. On exploration, the patient was found to be having a sliding hernia containing incarcerated ovary as contents on both sides. Peroperatively the contents were reduced, the sac was transfixed at its base and the redundant sac was excised. The repair of this form of hernias is more difficult because of adhesions between the contents and the wall of the sac and risk of damage during dissection. A description of this clinical presentation in the pre operative assessment and operative management are discussed in this report. PMID:25918632

  7. [Case report: bilateral Cushing's syndrome].

    PubMed

    Cheikhrouhou, Héla; Khiari, Karima; Chérif, Lotfi; Ben Abdallah, Néjib; Ben Maïz, Hédi

    2003-04-01

    The authors report a case of a 49-year-old woman presenting a Cushing's syndrome (January 1997). The Magnetic Resonance Image of the pituitary gland revealed a microadenoma without extension in the cavernous sinus and a partial empty sella. The computed tomography scan showed a discreet bilateral adrenal hyperplasia with a left nodule (23 mm in diameter) a second nodule was noted. These data suggested the eventuality of maconodular adrenocortical hyperplasia in long-standing Cushing's disease. We discuss the implications of this finding for diagnosis, treatment and follow-up.

  8. Spontaneous bilateral tubal ectopic pregnancy.

    PubMed

    Marasinghe, Jeevan P; Condous, George; Amarasinghe, W I

    2009-03-01

    A 28-year-old woman presented at eight weeks and four days of gestation, according to her menstrual dates, complaining of painless vaginal bleeding for three days. Her urinary pregnancy test was positive. Initial transvaginal ultrasound demonstrated an irregular complex structure with a fluid filled centre in the right adnexum. Despite the diagnosis of a possible underlying unruptured right tubal ectopic pregnancy, she declined surgical intervention and was managed expectantly as an inpatient. When she complained of increasing abdominal pain with haemodynamic instability, an emergency laparotomy was performed and a diagnosis of bilateral tubal ectopic pregnancy was made.

  9. Bilateral Impedance Control For Telemanipulators

    NASA Technical Reports Server (NTRS)

    Moore, Christopher L.

    1993-01-01

    Telemanipulator system includes master robot manipulated by human operator, and slave robot performing tasks at remote location. Two robots electronically coupled so slave robot moves in response to commands from master robot. Teleoperation greatly enhanced if forces acting on slave robot fed back to operator, giving operator feeling he or she manipulates remote environment directly. Main advantage of bilateral impedance control: enables arbitrary specification of desired performance characteristics for telemanipulator system. Relationship between force and position modulated at both ends of system to suit requirements of task.

  10. Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling.

    PubMed

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Hinrichs, Hermann; Heinze, Hans-Jochen; Rugg, Michael D; Knight, Robert T; Richardson-Klavehn, Alan

    2015-05-20

    Previously we reported electrophysiological evidence for a role for the anterior thalamic nucleus (ATN) in human memory formation (Sweeney-Reed et al., 2014). Theta-gamma cross-frequency coupling (CFC) predicted successful memory formation, with the involvement of gamma oscillations suggesting memory-relevant local processing in the ATN. The importance of the theta frequency range in memory processing is well-established, and phase alignment of oscillations is considered to be necessary for synaptic plasticity. We hypothesized that theta phase alignment in the ATN would be necessary for memory encoding. Further analysis of the electrophysiological data reveal that phase alignment in the theta rhythm was greater during successful compared with unsuccessful encoding, and that this alignment was correlated with the CFC. These findings support an active processing role for the ATN during memory formation.

  11. Correlation of hippocampal theta rhythm with changes in cutaneous temperature. [evoked neuron response in thermoregulation

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Saleh, M. A.; Karem, R. D.

    1974-01-01

    A possible role for the hippocampus in alerting an animal to changes in cutaneous temperature was examined. Following local warming or cooling of the ears of unanesthetized, loosely restrained rabbits, theta waves (4-7 Hz EEG waves) were recorded from electrodes straddling the hippocampus. The onset of the hippocampal theta rhythm was correlated with changes in cutaneous temperature, an observation consistent with studies indicating that the theta rhythm is a nonspecific response evoked by stimulation of several sensory modalities. Additional data from cats and rabbits were correlated with specific neurons within the hippocampus, namely pyramidal cells. Post stimulus time histograms obtained by excitation of the dorsal fornix were interpreted in terms of excitatory and inhibitory inputs to pyramidal cells. Thus, the theta rhythm, which appears to be evoked by changes in cutaneous temperature, can be related to a specific type of hippocampal neuron which is in turn connected with other areas of the brain involved in temperature regulation.

  12. Status of the iota (1440) and theta (1640) as gluonium candidates

    SciTech Connect

    Lockman, W.S.

    1983-04-01

    A review of the experimental evidence for the iota (1440) and theta (1640) states is presented. The measured properties of these states are compared with various theoretical predictions. A likely interpretation is that these states contain a large gluonic admixture.

  13. Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex.

    PubMed

    Ray, Saikat; Naumann, Robert; Burgalossi, Andrea; Tang, Qiusong; Schmidt, Helene; Brecht, Michael

    2014-02-21

    Little is known about how microcircuits are organized in layer 2 of the medial entorhinal cortex. We visualized principal cell microcircuits and determined cellular theta-rhythmicity in freely moving rats. Non-dentate-projecting, calbindin-positive pyramidal cells bundled dendrites together and formed patches arranged in a hexagonal grid aligned to layer 1 axons, parasubiculum, and cholinergic inputs. Calbindin-negative, dentate-gyrus-projecting stellate cells were distributed across layer 2 but avoided centers of calbindin-positive patches. Cholinergic drive sustained theta-rhythmicity, which was twofold stronger in pyramidal than in stellate neurons. Theta-rhythmicity was cell-type-specific but not distributed as expected from cell-intrinsic properties. Layer 2 divides into a weakly theta-locked stellate cell lattice and spatiotemporally highly organized pyramidal grid. It needs to be assessed how these two distinct principal cell networks contribute to grid cell activity.

  14. Segregation of cortical head direction cell assemblies on alternating theta cycles

    PubMed Central

    Brandon, Mark P.; Bogaard, Andrew R.; Schultheiss, Nathan W.; Hasselmo, Michael E.

    2013-01-01

    High-level cortical systems for spatial navigation, including entorhinal grid cells, critically depend on input from the head direction system. We examined spiking rhythms and modes of synchrony between neurons participating in head direction networks for evidence of internal processing, independent of direct sensory drive, which may be important for grid cell function. We demonstrate that head direction networks of rats are segregated into at least two populations of neurons firing on alternate theta cycles (theta cycle skipping) with fixed synchronous or anti-synchronous relationships. Pairs of anti-synchronous theta cycle skipping neurons exhibited larger differences in head direction tuning with a minimum difference of 40 degrees of head direction. Septal inactivation preserved the head direction signal but eliminated theta cycle skipping of head direction cells and grid cell spatial periodicity. We propose that internal mechanisms underlying cycle skipping in head direction networks may be critical for downstream spatial computation by grid cells. PMID:23603709

  15. Hippocampal Theta Input to the Amygdala Shapes Feedforward Inhibition to Gate Heterosynaptic Plasticity

    PubMed Central

    Bazelot, Michaël; Bocchio, Marco; Kasugai, Yu; Fischer, David; Dodson, Paul D.; Ferraguti, Francesco; Capogna, Marco

    2015-01-01

    Summary The dynamic interactions between hippocampus and amygdala are critical for emotional memory. Theta synchrony between these structures occurs during fear memory retrieval and may facilitate synaptic plasticity, but the cellular mechanisms are unknown. We report that interneurons of the mouse basal amygdala are activated during theta network activity or optogenetic stimulation of ventral CA1 pyramidal cell axons, whereas principal neurons are inhibited. Interneurons provide feedforward inhibition that transiently hyperpolarizes principal neurons. However, synaptic inhibition attenuates during theta frequency stimulation of ventral CA1 fibers, and this broadens excitatory postsynaptic potentials. These effects are mediated by GABAB receptors and change in the Cl− driving force. Pairing theta frequency stimulation of ventral CA1 fibers with coincident stimuli of the lateral amygdala induces long-term potentiation of lateral-basal amygdala excitatory synapses. Hence, feedforward inhibition, known to enforce temporal fidelity of excitatory inputs, dominates hippocampus-amygdala interactions to gate heterosynaptic plasticity. Video Abstract PMID:26402610

  16. Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling

    PubMed Central

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Hinrichs, Hermann; Heinze, Hans-Jochen; Rugg, Michael D; Knight, Robert T; Richardson-Klavehn, Alan

    2015-01-01

    Previously we reported electrophysiological evidence for a role for the anterior thalamic nucleus (ATN) in human memory formation (Sweeney-Reed et al., 2014). Theta-gamma cross-frequency coupling (CFC) predicted successful memory formation, with the involvement of gamma oscillations suggesting memory-relevant local processing in the ATN. The importance of the theta frequency range in memory processing is well-established, and phase alignment of oscillations is considered to be necessary for synaptic plasticity. We hypothesized that theta phase alignment in the ATN would be necessary for memory encoding. Further analysis of the electrophysiological data reveal that phase alignment in the theta rhythm was greater during successful compared with unsuccessful encoding, and that this alignment was correlated with the CFC. These findings support an active processing role for the ATN during memory formation. DOI: http://dx.doi.org/10.7554/eLife.07578.001 PMID:25993559

  17. Beam heated linear theta-pinch device for producing hot plasmas

    DOEpatents

    Bohachevsky, Ihor O.

    1981-01-01

    A device for producing hot plasmas comprising a single turn theta-pinch coil, a fast discharge capacitor bank connected to the coil, a fuel element disposed along the center axis of the coil, a predetermined gas disposed within the theta-pinch coil, and a high power photon, electron or ion beam generator concentrically aligned to the theta-pinch coil. Discharge of the capacitor bank generates a cylindrical plasma sheath within the theta-pinch coil which heats the outer layer of the fuel element to form a fuel element plasma layer. The beam deposits energy in either the cylindrical plasma sheath or the fuel element plasma layer to assist the implosion of the fuel element to produce a hot plasma.

  18. Optical design of f-theta lens for dual wavelength selective laser melting

    NASA Astrophysics Data System (ADS)

    Feng, Lianhua; Cao, Hongzhong; Zhang, Ning; Xu, Xiping; Duan, Xuanming

    2016-10-01

    F-theta lens is an important unit for selective laser melting (SLM) manufacture. The dual wavelength f-theta lens has not been used in SLM manufacture. Here, we present the design of the f-theta lens which satisfies SLM manufacture with coaxial 532 nm and 1030 nm 1080 nm laser beams. It is composed of three pieces of spherical lenses. The focal spots for 532 nm laser and 1030 nm 1080 nm laser are smaller than 35 μm and 70 μm, respectively. The results meet the demands of high precision SLM. The chromatic aberration could cause separation between two laser focal spots in the scanning plane, so chromatic aberration correction is very important to our design. The lateral color of the designed f-theta lens is less than 11 μm within the scan area of 150 mm x 150 mm, which meet the application requirements of dual wavelength selective laser melting.

  19. Independent mechanisms for ventriloquism and multisensory integration as revealed by theta-burst stimulation.

    PubMed

    Bertini, Caterina; Leo, Fabrizio; Avenanti, Alessio; Làdavas, Elisabetta

    2010-05-01

    The visual and auditory systems often concur to create a unified perceptual experience and to determine the localization of objects in the external world. Co-occurring auditory and visual stimuli in spatial coincidence are known to enhance performance of auditory localization due to the integration of stimuli from different sensory channels (i.e. multisensory integration). However, auditory localization of audiovisual stimuli presented at spatial disparity might also induce a mislocalization of the sound towards the visual stimulus (i.e. ventriloquism effect). Using repetitive transcranial magnetic stimulation we tested the role of right temporoparietal (rTPC), right occipital (rOC) and right posterior parietal (rPPC) cortex in an auditory localization task in which indices of ventriloquism and multisensory integration were computed. We found that suppression of rTPC excitability by means of continuous theta-burst stimulation (cTBS) reduced multisensory integration. No similar effect was found for cTBS over rOC. Moreover, inhibition of rOC, but not of rTPC, suppressed the visual bias in the contralateral hemifield. In contrast, cTBS over rPPC did not produce any modulation of ventriloquism or integrative effects. The double dissociation found in the present study suggests that ventriloquism and audiovisual multisensory integration are functionally independent phenomena and may be underpinned by partially different neural circuits.

  20. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex

    PubMed Central

    Di Lazzaro, V; Pilato, F; Saturno, E; Oliviero, A; Dileone, M; Mazzone, P; Insola, A; Tonali, PA; Ranieri, F; Huang, YZ; Rothwell, JC

    2005-01-01

    In four conscious patients who had electrodes implanted in the cervical epidural space for the control of pain, we recorded corticospinal volleys evoked by single-pulse transcranial magnetic stimulation (TMS) over the motor cortex before and after a 20 s period of continuous theta-burst stimulation (cTBS). It has previously been reported that this form of repetitive TMS reduces the amplitude of motor-evoked potentials (MEPs), with the maximum effect occurring at 5–10 min after the end of stimulation. The present results show that cTBS preferentially decreases the amplitude of the corticospinal I1 wave, with approximately the same time course. This is consistent with a cortical origin of the effect on the MEP. However, other protocols that lead to MEP suppression, such as short-interval intracortical inhibition, are characterized by reduced excitability of late I waves (particularly I3), suggesting that cTBS suppresses MEPs through different mechanisms, such as long-term depression in excitatory synaptic connections. PMID:15845575

  1. Theta Burst Stimulation of the Precuneus Modulates Resting State Connectivity in the Left Temporal Pole.

    PubMed

    Mancini, Matteo; Mastropasqua, Chiara; Bonnì, Sonia; Ponzo, Viviana; Cercignani, Mara; Conforto, Silvia; Koch, Giacomo; Bozzali, Marco

    2017-03-14

    It has been shown that continuous theta burst stimulation (cTBS) over the precuneus acts on specific memory retrieval abilities. In order to study the neural mechanisms beyond these findings, we combined cTBS and resting-state functional magnetic resonance imaging. Our experimental protocol involved stimulation and sham conditions on a group of healthy subjects, and each condition included a baseline and two follow-up acquisitions (5 and 15 min after baseline) after cTBS. We analysed brain functional connectivity by means of graph theoretical measures, with a specific focus on the network modular structure. Our results showed that cTBS of the precuneus selectively affects the left temporal pole, decreasing its functional connectivity in the first follow-up. Moreover, we observed a significant increase in the size of the module of the precuneus in the second follow-up. Such effects were absent in the sham condition. We observed here a modulation of functional connectivity as a result of inhibitory stimulation over the precuneus. Such a modulation first acts indirectly on the temporal area and then extends the connectivity of the precuneus itself by a feed-back mechanism. Our current findings extend our previous behavioural observations and increase our understanding of the mechanisms underlying the stimulation of the precuneus.

  2. Theta burst stimulation improves overt visual search in spatial neglect independently of attentional load.

    PubMed

    Cazzoli, Dario; Rosenthal, Clive R; Kennard, Christopher; Zito, Giuseppe A; Hopfner, Simone; Müri, René M; Nyffeler, Thomas

    2015-12-01

    Visual neglect is considerably exacerbated by increases in visual attentional load. These detrimental effects of attentional load are hypothesised to be dependent on an interplay between dysfunctional inter-hemispheric inhibitory dynamics and load-related modulation of activity in cortical areas such as the posterior parietal cortex (PPC). Continuous Theta Burst Stimulation (cTBS) over the contralesional PPC reduces neglect severity. It is unknown, however, whether such positive effects also operate in the presence of the detrimental effects of heightened attentional load. Here, we examined the effects of cTBS on neglect severity in overt visual search (i.e., with eye movements), as a function of high and low visual attentional load conditions. Performance was assessed on the basis of target detection rates and eye movements, in a computerised visual search task and in two paper-pencil tasks. cTBS significantly ameliorated target detection performance, independently of attentional load. These ameliorative effects were significantly larger in the high than the low load condition, thereby equating target detection across both conditions. Eye movement analyses revealed that the improvements were mediated by a redeployment of visual fixations to the contralesional visual field. These findings represent a substantive advance, because cTBS led to an unprecedented amelioration of overt search efficiency that was independent of visual attentional load.

  3. Probing changes in corticospinal excitability following theta burst stimulation of the human primary motor cortex.

    PubMed

    Goldsworthy, Mitchell R; Vallence, Ann-Maree; Hodyl, Nicolette A; Semmler, John G; Pitcher, Julia B; Ridding, Michael C

    2016-01-01

    To determine whether the intensity of transcranial magnetic stimulation (TMS) used to probe changes in corticospinal excitability influences the measured plasticity response to theta burst stimulation (TBS) of the human primary motor cortex. Motor evoked potential (MEP) input/output (I/O) curves were recorded before and following continuous TBS (cTBS) (Experiment 1; n=18) and intermittent TBS (iTBS) (Experiment 2; n=18). The magnitude and consistency of MEP depression induced by cTBS was greatest when probed using stimulus intensities at or above 150% of resting motor threshold (RMT). In contrast, facilitation of MEPs following iTBS was strongest and most consistent at 110% of RMT. The plasticity response to both cTBS and iTBS is influenced by the stimulus intensity used to probe the induced changes in corticospinal excitability. The results highlight the importance of the test stimulus intensity used to assess TBS-induced changes in corticospinal excitability when interpreting neuroplasticity data, and suggest that a number of test intensities may be required to reliably probe the plasticity response. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Efficacy and Time Course of Theta Burst Stimulation in Healthy Humans.

    PubMed

    Wischnewski, Miles; Schutter, Dennis J L G

    2015-01-01

    In the past decade research has shown that continuous (cTBS) and intermittent theta burst stimulation (iTBS) alter neuronal excitability levels in the primary motor cortex. Quantitatively review the magnitude and time course on cortical excitability of cTBS and iTBS. Sixty-four TBS studies published between January 2005 and October 2014 were retrieved from the scientific search engine PubMED and included for analyses. The main inclusion criteria involved stimulation of the primary motor cortex in healthy volunteers with no motor practice prior to intervention and motor evoked potentials as primary outcome measure. ITBS applied for 190 s significantly increases cortical excitability up to 60 min with a mean maximum potentiation of 35.54 ± 3.32%. CTBS applied for 40 s decreases cortical excitability up to 50 min with a mean maximum depression of -22.81 ± 2.86%, while cTBS applied for 20 s decreases cortical excitability (mean maximum -27.84 ± 4.15%) for 20 min. The present findings offer normative insights into the magnitude and time course of TBS-induced changes in cortical excitability levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Normalisation of frontal theta activity following methylphenidate treatment in adult attention-deficit/hyperactivity disorder.

    PubMed

    Skirrow, Caroline; McLoughlin, Grainne; Banaschewski, Tobias; Brandeis, Daniel; Kuntsi, Jonna; Asherson, Philip

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is associated with cognitive performance and functional brain changes that are sensitive to task conditions, indicating a role for dynamic impairments rather than stable cognitive deficits. Prominent hypotheses consistent with this observation are a failure to optimise brain arousal or activation states. Here we investigate cortical activation during different conditions. Using a sample of 41 non-comorbid adults with ADHD and 48 controls, we examine quantitative EEG activity during a resting state, a cued continuous performance test with flankers (CPT-OX) and the sustained attention to response task (SART). We further investigate the effects of methylphenidate in a subsample of 21 ADHD cases. Control participants showed a task-related increase in theta activity when engaged in cognitive tasks, primarily in frontal and parietal regions, which was absent in participants with ADHD. Treatment with methylphenidate resulted in normalisation of the resting state to task activation pattern. These findings suggest that ADHD in adults is associated with insufficient allocation of neuronal resources required for normal cortical activation commensurate with task demands. Further work is required to clarify the causal role of the deficit in cortical activation and provide a clearer understanding of the mechanisms involved. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  6. Effects of two weeks of cerebellar theta burst stimulation in cervical dystonia patients.

    PubMed

    Koch, Giacomo; Porcacchia, Paolo; Ponzo, Viviana; Carrillo, Fatima; Cáceres-Redondo, María Teresa; Brusa, Livia; Desiato, Maria Teresa; Arciprete, Flavio; Di Lorenzo, Francesco; Pisani, Antonio; Caltagirone, Carlo; Palomar, Francisco J; Mir, Pablo

    2014-01-01

    Dystonia is generally regarded as a disorder of the basal ganglia and their efferent connections to the thalamus and brainstem, but an important role of cerebellar-thalamo-cortical (CTC) circuits in the pathophysiology of dystonia has been invoked. Here in a sham controlled trial, we tested the effects of two-weeks of cerebellar continuous theta burst stimulation (cTBS) in a sample of cervical dystonia (CD) patients. Clinical evaluations were performed by administering the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) and the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). We used TMS to measure the inhibitory connectivity between the cerebellum and the contralateral motor cortex (cerebellar brain inhibition [CBI]), and the excitability of the contralateral primary motor cortex assessing intracortical inhibition (SICI), intracortical facilitation (ICF) and cortical silent period (CSP). Paired associative stimulation (PAS) was tested to evaluate the level and the topographical specificity of cortical plasticity, which is abnormally enhanced and non-focal in CD patients. Two weeks of cerebellar stimulation resulted in a small but significant clinical improvement as measured by the TWSTRS of approximately 15%. Cerebellar stimulation modified the CBI circuits and reduced the heterotopic PAS potentiation, leading to a normal pattern of topographic specific induced plasticity. These data provide novel evidence CTC circuits could be a potential target to partially control some dystonic symptoms in patients with cervical dystonia. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Theta burst stimulation in the treatment of incapacitating tinnitus accompanied by severe depression.

    PubMed

    Soekadar, Surjo R; Arfeller, Carola; Rilk, Albrecht; Plontke, Stefan K; Plewnia, Christian

    2009-04-01

    This case report describes the use of transcranial magnetic theta burst stimulation (TBS) in the treatment of incapacitating tinnitus accompanied by symptoms of severe depression. Tinnitus is known to be associated with hyperactivity and maladaptive cortical reorganization of the central auditory system. Combined with anxiety and depression, it can occasionally constitute a psychiatric emergency. Recently, it has been demonstrated that tinnitus can be temporarily suppressed by non-invasive transcranial magnetic stimulation. TBS is a newly developed technique for rapid and lasting modulation of cortical excitability. Herein, we present a case of a 54-year-old woman with incapacitating tinnitus that has significantly decreased after three cycles of 1-week treatment with continuous TBS to the temporo-parietal auditory association cortex. According to the Tinnitus Questionnaire, tinnitus intensity decreased from 84 points before to 59 points after treatment. Hamilton Rating Scale for Depression score dropped from 44 to 23 points. TBS showed to be efficient, well-tolerated, and practical in the management of distressing tinnitus accompanied by symptoms of severe depression.

  8. Theta-burst repetitive transcranial magnetic stimulation suppresses specific excitatory circuits in the human motor cortex.

    PubMed

    Di Lazzaro, V; Pilato, F; Saturno, E; Oliviero, A; Dileone, M; Mazzone, P; Insola, A; Tonali, P A; Ranieri, F; Huang, Y Z; Rothwell, J C

    2005-06-15

    In four conscious patients who had electrodes implanted in the cervical epidural space for the control of pain, we recorded corticospinal volleys evoked by single-pulse transcranial magnetic stimulation (TMS) over the motor cortex before and after a 20 s period of continuous theta-burst stimulation (cTBS). It has previously been reported that this form of repetitive TMS reduces the amplitude of motor-evoked potentials (MEPs), with the maximum effect occurring at 5-10 min after the end of stimulation. The present results show that cTBS preferentially decreases the amplitude of the corticospinal I1 wave, with approximately the same time course. This is consistent with a cortical origin of the effect on the MEP. However, other protocols that lead to MEP suppression, such as short-interval intracortical inhibition, are characterized by reduced excitability of late I waves (particularly I3), suggesting that cTBS suppresses MEPs through different mechanisms, such as long-term depression in excitatory synaptic connections.

  9. Zeeman effect in the X-ray star candidates HD 77581 and theta super 2 Orionis.

    NASA Technical Reports Server (NTRS)

    Kemp, J. C.; Wolstencroft, R. D.

    1973-01-01

    The discovery of Zeeman effects is reported in HD 77581 and theta super 2 Orionis, optical candidates for the X-ray sources Vela XR-1 and 2U 0525-06, respectively. The maximum longitudinal magnetic fields recorded were -10,000 G in HD 77581 and +1500 G in theta super 2 Ori. Various polarimetric data are also given, including evidence for a variable linear polarization in HD 77581.

  10. Regular theta-firing neurons in the nucleus incertus during sustained hippocampal activation.

    PubMed

    Martínez-Bellver, Sergio; Cervera-Ferri, Ana; Martínez-Ricós, Joana; Ruiz-Torner, Amparo; Luque-Garcia, Aina; Luque-Martinez, Aina; Blasco-Serra, Arantxa; Guerrero-Martínez, Juan; Bataller-Mompeán, Manuel; Teruel-Martí, Vicent

    2015-04-01

    This paper describes the existence of theta-coupled neuronal activity in the nucleus incertus (NI). Theta rhythm is relevant for cognitive processes such as spatial navigation and memory processing, and can be recorded in a number of structures related to the hippocampal activation including the NI. Strong evidence supports the role of this tegmental nucleus in neural circuits integrating behavioural activation with the hippocampal theta rhythm. Theta oscillations have been recorded in the local field potential of the NI, highly coupled to the hippocampal waves, although no rhythmical activity has been reported in neurons of this nucleus. The present work analyses the neuronal activity in the NI in conditions leading to sustained hippocampal theta in the urethane-anaesthetised rat, in order to test whether such activation elicits a differential firing pattern. Wavelet analysis has been used to better define the neuronal activity already described in the nucleus, i.e., non-rhythmical neurons firing at theta frequency (type I neurons) and fast-firing rhythmical neurons (type II). However, the most remarkable finding was that sustained stimulation activated regular-theta neurons (type III), which were almost silent in baseline conditions and have not previously been reported. Thus, we describe the electrophysiological properties of type III neurons, focusing on their coupling to the hippocampal theta. Their spike rate, regularity and phase locking to the oscillations increased at the beginning of the stimulation, suggesting a role in the activation or reset of the oscillation. Further research is needed to address the specific contribution of these neurons to the entire circuit. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Comments on the slip factor and the relation Delta phi = -h Delta theta

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2009-09-01

    The definition of the slip factor can be obtained from the phase equation. However, a derivation using the relation {Delta}{phi} = -h{Delta}{theta} leads to a different slip-factor definition. This apparent paradox is examined in detail and resolved. Here {Delta}{phi} is the rf phase difference and {Delta}{theta} is the azimuthal phase difference around the accelerator ring between an off-momentum particle and the synchronous particle, while h is the rf harmonic.

  12. A KCNJ6 gene polymorphism modulates theta oscillations during reward processing.

    PubMed

    Kamarajan, Chella; Pandey, Ashwini K; Chorlian, David B; Manz, Niklas; Stimus, Arthur T; Edenberg, Howard J; Wetherill, Leah; Schuckit, Marc; Wang, Jen-Chyong; Kuperman, Samuel; Kramer, John; Tischfield, Jay A; Porjesz, Bernice

    2017-05-01

    Event related oscillations (EROs) are heritable measures of neurocognitive function that have served as useful phenotype in genetic research. A recent family genome-wide association study (GWAS) by the Collaborative Study on the Genetics of Alcoholism (COGA) found that theta EROs during visual target detection were associated at genome-wide levels with several single nucleotide polymorphisms (SNPs), including a synonymous SNP, rs702859, in the KCNJ6 gene that encodes GIRK2, a G-protein inward rectifying potassium channel that regulates excitability of neuronal networks. The present study examined the effect of the KCNJ6 SNP (rs702859), previously associated with theta ERO to targets in a visual oddball task, on theta EROs during reward processing in a monetary gambling task. The participants were 1601 adolescent and young adult offspring within the age-range of 17-25years (800 males and 801 females) from high-dense alcoholism families as well as control families of the COGA prospective study. Theta ERO power (3.5-7.5Hz, 200-500ms post-stimulus) was compared across genotype groups. ERO theta power at central and parietal regions increased as a function of the minor allele (A) dose in the genotype (AA>AG>GG) in both loss and gain conditions. These findings indicate that variations in the KCNJ6 SNP influence magnitude of theta oscillations at posterior loci during the evaluation of loss and gain, reflecting a genetic influence on neuronal circuits involved in reward-processing. Increased theta power as a function of minor allele dose suggests more efficient cognitive processing in those carrying the minor allele of the KCNJ6 SNPs. Future studies are needed to determine the implications of these genetic effects on posterior theta EROs as possible "protective" factors, or as indices of delays in brain maturation (i.e., lack of frontalization). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. [Epidemiological aspects of bilateral retinoblastoma].

    PubMed

    Gómez-Martínez, R; Leal, C A; Rivera-Luna, R; Cárdenas, R S; Martínez, A B; Medina, A

    1995-01-01

    Retinoblastoma (RB) is the most frequent solid tumor in the Instituto Nacional de Pediatría, México (INP). The bilateral presentation occurs in 25% of all patients. We present some epidemiological data of this form of the disease, in learn these epidemiological variables in our series. We reviewed the clinical charts from 1972 to 1994. We analyzed age, sex, timing of presentation of the second affected eye, positive family history, clinical staging, and the development of secondary malignancies. A total of 105 cases were detected from 412 RB total cases (25%). We observed a male predominance 1.6:1.0 p = 0.04 versus females. The clinical staging showed: retinal stage 9/102, ocular stage 58/102, orbital stage 26/102 and non classified 9/102 p < 0.00001. The asynchronous form is a rare presentation in our experience: 16/105 cases p = 0.00001 (15%). Only 16/105 patients had a positive family history of RB (15%). We found 2 of 105 cases with secondary malignancies (0.01%). The asynchronous form constitutes a rare presentation. We cannot explain the etiology for the high prevalence of bilateral disease. The frequency of secondary malignancies is lower than that reported in the literature.

  14. LUNG EDEMA FOLLOWING BILATERAL VAGOTOMY

    PubMed Central

    Lorber, Victor

    1939-01-01

    1. Small animals (rat and guinea pig) vagotomized in the neck die within a period of hours, the lungs showing extensive congestion and edema. 2. Tracheotomy permits appreciably longer survival with minimal lung changes approximating those seen in the control animals. 3. Intrathoracic vagotomy (sparing the recurrent laryngeal nerve) on one side, and cervical vagotomy on the other, permits almost indefinite survival (guinea pig and rabbit), unless laryngeal paralysis from the unilateral denervation produces respiratory obstruction (rat, guinea pig, and rabbit). 4. Pulmonary edema following bilateral vagotomy probably results primarily from respiratory obstruction. It is suggested that circulatory failure may also be a factor of some importance. The rôle of vagotomy itself is considered in relationship to these two phenomena. 5. The reaction of smaller animals to bilateral vagotomy, with regard to lung changes, apparently differs in no way from that of the larger animals, but is less readily demonstrated because of the smaller diameters of the air passages. PMID:19870894

  15. Bilateral zosteriform extragenital lichen sclerosus.

    PubMed

    Kumar, Piyush; Jha, Abhijeet Kumar; Mallik, Sambeet Kumar; Raihan, Mohammed

    2014-01-01

    A 35-year-old man presented with asymptomatic eruption on both forearms and lower aspects of the legs for 6 months. The lesions first appeared on his inner aspects of the wrist, the dorsal surface of the hands, and legs and progressed to involve proximal aspects of the extremities. There was no significant past history. On examination, multiple pearly white papules and depigmented atrophic plaques were found bilaterally on the flexors of the arms and the extensors of the legs. The lesions were arranged in a linear manner, following the lines of Blaschko (Figures 1 and 2). The surface of the atrophic plaques was notable for prominent telangiectasia, giving an erythematous appearance. The genitalia, oral cavity, palms, and soles were spared. Systemic examination was noncontributory. Lichen striatus and extragenital lichen sclerosus (ELS) were considered the differential diagnosis. Clinically, the age of the patient, the absence of scaling, and the presence of atrophic plaques and telangiectasia were in favor of ELS. A punch biopsy from an atrophic plaque was performed, and it revealed hyperkeratosis, atrophic epidermis, basal layer vacuolar degeneration, mild lymphocytic infiltration in the dermis, edema, and homogenization of collagen of the upper portion of the dermis (Figures 3 and Figure 4). Histopathologic findings were consistent with lichen sclerosus. A diagnosis of bilateral zosteriform ELS was made.

  16. Bilateral internal thoracic artery grafting

    PubMed Central

    2013-01-01

    The effectiveness of the left internal mammary artery graft to the anterior descending coronary artery as a surgical strategy has been shown to improve the survival rate and decrease the risk of adverse cardiac events in patients undergoing coronary bypass surgery. These clinical benefits appear to be related to the superior short and long-term patency rates of the internal thoracic artery graft. Although the advantages of using of both internal thoracic arteries (ITA) for bypass grafting have taken longer to prove, recent results from multiple data sets now support these findings. The major advantage of bilateral ITA grafting appears to be improved survival rate, while the disadvantages of complex ITA grafting include the increased complexity of operation, and an increased risk of wound complications. While these short-term disadvantages have been mitigated in contemporary surgical practice, they have not eliminated. Bilateral ITA grafting should be considered the procedure of choice for patients undergoing coronary bypass surgery that have a predicted survival rate of longer than ten years. PMID:23977627

  17. SRBF: Speckle reducing bilateral filtering.

    PubMed

    Balocco, Simone; Gatta, Carlo; Pujol, Oriol; Mauri, Josepa; Radeva, Petia

    2010-08-01

    Speckle noise negatively affects medical ultrasound image shape interpretation and boundary detection. Speckle removal filters are widely used to selectively remove speckle noise without destroying important image features to enhance object boundaries. In this article, a fully automatic bilateral filter tailored to ultrasound images is proposed. The edge preservation property is obtained by embedding noise statistics in the filter framework. Consequently, the filter is able to tackle the multiplicative behavior modulating the smoothing strength with respect to local statistics. The in silico experiments clearly showed that the speckle reducing bilateral filter (SRBF) has superior performances to most of the state of the art filtering methods. The filter is tested on 50 in vivo US images and its influence on a segmentation task is quantified. The results using SRBF filtered data sets show a superior performance to using oriented anisotropic diffusion filtered images. This improvement is due to the adaptive support of SRBF and the embedded noise statistics, yielding a more homogeneous smoothing. SRBF results in a fully automatic, fast and flexible algorithm potentially suitable in wide ranges of speckle noise sizes, for different medical applications (IVUS, B-mode, 3-D matrix array US).

  18. Bilateral facial synkinesis in leprosy.

    PubMed

    Malhotra, Hardeep Singh; Garg, Ravindra Kumar; Goel, Madhu Mati; Jain, Amita; Gupta, Arvind; Lalla, Rakesh; Singh, Gyan Prakash

    2012-05-23

    Leprosy is an important cause of cranial nerve palsy in endemic areas where it may be seen in upto 17.6% patients. The authors herein describe a rare case of bilaterally symmetrical facial synkinesis with video documentation and modified blink reflex. A 35-year-old gentleman presented with numbness involving right half of his face for 8 months and abnormal stretching sensations over both sides of his nose for one and a half months. Sensory and motor involvement of the right trigeminal nerve was detected along with bilaterally symmetrical facial synkinesis involving orbicularis oculi and nasalis. R(1) and R(2) responses consistent with mis-reinnervation were recorded on the left-side using orbicularis oculi and nasalis muscles. Skin biopsy revealed acid-fast bacilli and sural nerve biopsy, the presence of granulomas. After 3 months of follow-up on WHO multi-drug therapy, an improvement in facial sensations was observed but without any change in facial synkinetic movements.

  19. Phase-locked hippocampal theta-band responses are related to discriminative eyeblink conditioned responding.

    PubMed

    Nokia, Miriam S; Wikgren, Jan

    2013-11-01

    Hippocampal electrophysiological oscillatory activity is undoubtedly related to learning and memory. The relative power of spontaneously occurring hippocampal theta (∼4-8 Hz) oscillations predicts how fast and how well an animal will learn: more theta predicts faster acquisition of the conditioned response in eyeblink conditioning in both rats and rabbits. Here, our aim was to study how hippocampal theta-band responses to conditioned stimuli elicited during very-long delay discrimination eyeblink conditioning relate to the accompanying conditioned behavior. We trained adult male New Zealand White rabbits using 1500-ms auditory stimuli as conditioned stimuli and a 100-ms airpuff as an unconditioned stimulus. The reinforced conditioned stimulus overlapped and co-terminated with the unconditioned stimulus whereas the non-reinforced conditioned stimulus was always presented alone. Consistent with previous results, hippocampal theta-band responses to the conditioned stimuli diminished in amplitude across training. Interestingly, hippocampal theta-band responses were most consistently time-locked when a well-trained animal failed to suppress behavioral learned responses to the non-reinforced conditioned stimulus. We suggest that phase-locking of hippocampal theta-band oscillations in response to external stimuli reflects retrieval of the dominant memory trace (adaptive or not) along with initiating the most prominent action scheme related to that memory trace.

  20. Developmental Changes in Hippocampal CA1 Single Neuron Firing and Theta Activity during Associative Learning

    PubMed Central

    Kim, Jangjin; Goldsberry, Mary E.; Harmon, Thomas C.; Freeman, John H.

    2016-01-01

    Hippocampal development is thought to play a crucial role in the emergence of many forms of learning and memory, but ontogenetic changes in hippocampal activity during learning have not been examined thoroughly. We examined the ontogeny of hippocampal function by recording theta and single neuron activity from the dorsal hippocampal CA1 area while rat pups were trained in associative learning. Three different age groups [postnatal days (P)17-19, P21-23, and P24-26] were trained over six sessions using a tone conditioned stimulus (CS) and a periorbital stimulation unconditioned stimulus (US). Learning increased as a function of age, with the P21-23 and P24-26 groups learning faster than the P17-19 group. Age- and learning-related changes in both theta and single neuron activity were observed. CA1 pyramidal cells in the older age groups showed greater task-related activity than the P17-19 group during CS-US paired sessions. The proportion of trials with a significant theta (4–10 Hz) power change, the theta/delta ratio, and theta peak frequency also increased in an age-dependent manner. Finally, spike/theta phase-locking during the CS showed an age-related increase. The findings indicate substantial developmental changes in dorsal hippocampal function that may play a role in the ontogeny of learning and memory. PMID:27764172

  1. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain.

    PubMed

    Nokia, Miriam S; Anderson, Megan L; Shors, Tracey J

    2012-12-01

    Chemotherapy, especially if prolonged, disrupts attention, working memory and speed of processing in humans. Most cancer drugs that cross the blood-brain barrier also decrease adult neurogenesis. Because new neurons are generated in the hippocampus, this decrease may contribute to the deficits in working memory and related thought processes. The neurophysiological mechanisms that underlie these deficits are generally unknown. A possible mediator is hippocampal oscillatory activity within the theta range (3-12 Hz). Theta activity predicts and promotes efficient learning in healthy animals and humans. Here, we hypothesised that chemotherapy disrupts learning via decreases in hippocampal adult neurogenesis and theta activity. Temozolomide was administered to adult male Sprague-Dawley rats in a cyclic manner for several weeks. Treatment was followed by training with different types of eyeblink classical conditioning, a form of associative learning. Chemotherapy reduced both neurogenesis and endogenous theta activity, as well as disrupted learning and related theta-band responses to the conditioned stimulus. The detrimental effects of temozolomide only occurred after several weeks of treatment, and only on a task that requires the association of events across a temporal gap and not during training with temporally overlapping stimuli. Chemotherapy did not disrupt the memory for previously learned associations, a memory independent of (new neurons in) the hippocampus. In conclusion, prolonged systemic chemotherapy is associated with a decrease in hippocampal adult neurogenesis and theta activity that may explain the selective deficits in processes of learning that describe the 'chemobrain'.

  2. Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus.

    PubMed

    Siegle, Joshua H; Wilson, Matthew A

    2014-07-29

    Assessing the behavioral relevance of the hippocampal theta rhythm has proven difficult, due to a shortage of experiments that selectively manipulate phase-specific information processing. Using closed-loop stimulation, we triggered inhibition of dorsal CA1 at specific phases of the endogenous theta rhythm in freely behaving mice. This intervention enhanced performance on a spatial navigation task that requires the encoding and retrieval of information related to reward location on every trial. In agreement with prior models of hippocampal function, the behavioral effects depended on both the phase of theta and the task segment at which we stimulated. Stimulation in the encoding segment enhanced performance when inhibition was triggered by the peak of theta. Conversely, stimulation in the retrieval segment enhanced performance when inhibition was triggered by the trough of theta. These results suggest that processes related to the encoding and retrieval of task-relevant information are preferentially active at distinct phases of theta.DOI: http://dx.doi.org/10.7554/eLife.03061.001. Copyright © 2014, Siegle and Wilson.

  3. Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala

    PubMed Central

    Stujenske, Joseph M.; Likhtik, Ekaterina; A.Topiwala, Mihir; Gordon, Joshua A.

    2014-01-01

    Summary Theta oscillations synchronize the basolateral amygdala (BLA) with the hippocampus (HPC) and medial prefrontal cortex (mPFC) during fear expression. The role of gamma-frequency oscillations in the BLA is less well characterized. We examined gamma- and theta-frequency activity in recordings of neural activity from the BLA-HPC-mPFC circuit during fear conditioning, extinction, and exposure to an open field. In the BLA, slow (40-70 Hz) and fast (70-120 Hz) gamma oscillations were coupled to distinct phases of the theta cycle and reflected synchronous high frequency unit activity. During periods of fear, BLA theta-fast gamma coupling was enhanced, while fast gamma power was suppressed. Periods of relative safety were associated with enhanced BLA fast gamma power, mPFC-to-BLA directionality, and strong coupling of BLA gamma to mPFC theta. These findings suggest that switches between states of fear and safety are mediated by changes in BLA gamma coupling to competitive theta frequency inputs. PMID:25144877

  4. Social exclusion modulates event-related frontal theta and tracks ostracism distress in children

    PubMed Central

    van Noordt, Stefon J.R.; White, Lars O.; Wu, Jia; Mayes, Linda C.; Crowley, Michael J.

    2015-01-01

    Social exclusion is a potent elicitor of distress. Previous studies have shown that medial frontal theta oscillations are modulated by the experience of social exclusion. Using the Cyberball paradigm, we examined event-related dynamics of theta power in the EEG at medial frontal sites while children aged 8–12 years were exposed to conditions of fair play and social exclusion. Using an event-related design, we found that medial frontal theta oscillations (4–8 Hz) increase during both early (i.e., 200–400 ms) and late (i.e., 400–800 ms) processing of rejection events during social exclusion relative to perceptually identical “not my turn” events during inclusion. Importantly, we show that only for the later time window (400–800 ms) slow-wave theta power tracks self-reported ostracism distress. Specifically, greater theta power at medial frontal sites to “rejection” events predicted higher levels of ostracism distress. Alpha and beta oscillations for rejection events were unrelated to ostracism distress at either 200–400 ms or 400–800 ms time windows. Our findings extend previous studies by showing that medial frontal theta oscillations for rejection events are a neural signature of social exclusion, linked to experienced distress in middle childhood. PMID:26048623

  5. Phospholipase C beta 4 in the medial septum controls cholinergic theta oscillations and anxiety behaviors.

    PubMed

    Shin, Jonghan; Gireesh, Gangadharan; Kim, Seong-Wook; Kim, Duk-Soo; Lee, Sukyung; Kim, Yeon-Soo; Watanabe, Masahiko; Shin, Hee-Sup

    2009-12-09

    Anxiety is among the most prevalent and costly diseases of the CNS, but its underlying mechanisms are not fully understood. Although attenuated theta rhythms have been observed in human subjects with increased anxiety, no study has been done on the possible physiological link between these two manifestations. We found that the mutant mouse for phospholipase C beta 4 (PLC-beta 4(-/-)) showed attenuated theta rhythm and increased anxiety, presenting the first animal model for the human condition. PLC-beta 4 is abundantly expressed in the medial septum, a region implicated in anxiety behavior. RNA interference-mediated PLC-beta 4 knockdown in the medial septum produced a phenotype similar to that of PLC-beta 4(-/-) mice. Furthermore, increasing cholinergic signaling by administering an acetylcholinesterase inhibitor cured the anomalies in both cholinergic theta rhythm and anxiety behavior observed in PLC-beta 4(-/-) mice. These findings suggest that (1) PLC-beta 4 in the medial septum is involved in controlling cholinergic theta oscillation and (2) cholinergic theta rhythm plays a critical role in suppressing anxiety. We propose that defining the cholinergic theta rhythm profile may provide guidance in subtyping anxiety disorders in humans for more effective diagnosis and treatments.

  6. Frontal theta links prediction errors to behavioral adaptation in reinforcement learning.

    PubMed

    Cavanagh, James F; Frank, Michael J; Klein, Theresa J; Allen, John J B

    2010-02-15

    Investigations into action monitoring have consistently detailed a frontocentral voltage deflection in the event-related potential (ERP) following the presentation of negatively valenced feedback, sometimes termed the feedback-related negativity (FRN). The FRN has been proposed to reflect a neural response to prediction errors during reinforcement learning, yet the single-trial relationship between neural activity and the quanta of expectation violation remains untested. Although ERP methods are not well suited to single-trial analyses, the FRN has been associated with theta band oscillatory perturbations in the medial prefrontal cortex. Mediofrontal theta oscillations have been previously associated with expectation violation and behavioral adaptation and are well suited to single-trial analysis. Here, we recorded EEG activity during a probabilistic reinforcement learning task and fit the performance data to an abstract computational model (Q-learning) for calculation of single-trial reward prediction errors. Single-trial theta oscillatory activities following feedback were investigated within the context of expectation (prediction error) and adaptation (subsequent reaction time change). Results indicate that interactive medial and lateral frontal theta activities reflect the degree of negative and positive reward prediction error in the service of behavioral adaptation. These different brain areas use prediction error calculations for different behavioral adaptations, with medial frontal theta reflecting the utilization of prediction errors for reaction time slowing (specifically following errors), but lateral frontal theta reflecting prediction errors leading to working memory-related reaction time speeding for the correct choice.

  7. Hippocampal theta wave activity during configural and non-configural tasks in rats.

    PubMed

    Sakimoto, Yuya; Hattori, Minoru; Takeda, Kozue; Okada, Kana; Sakata, Shogo

    2013-03-01

    This study examined hippocampal theta power during configural and non-configural tasks in rats. Experiment 1 compared hippocampal theta power during a negative patterning task (A+, B+, AB-) to a configural task and a simple discrimination task (A+, B-) as a non-configural task. The results showed that hippocampal theta power during the non-reinforcement trial (non-RFT) of the negative patterning task was higher than that during the simple discrimination task. However, this hippocampal power may reflect sensory processing for compound stimuli that have cross-modality features (the non-RFT of the negative patterning task was presented together with visual and auditory stimuli, but the non-RFT of the simple discrimination task was presented with visual or auditory stimulus alone). Thus, in experiment 2, we examined whether the experiment 1 results were attributable to sensory processing of a compound stimulus by comparing hippocampal theta power during negative patterning (A+, B+, AB-), simultaneous feature-negative (A+, AB-), and simple discrimination tasks (A+, B-). Experiment 2 showed that hippocampal theta activity during the non-RFT in the negative patterning task was higher than that in the simultaneous feature-negative and simple discrimination tasks. Thus, we showed that hippocampal theta activity increased during configural tasks but not during non-configural tasks.

  8. Social exclusion modulates event-related frontal theta and tracks ostracism distress in children.

    PubMed

    van Noordt, Stefon J R; White, Lars O; Wu, Jia; Mayes, Linda C; Crowley, Michael J

    2015-09-01

    Social exclusion is a potent elicitor of distress. Previous studies have shown that medial frontal theta oscillations are modulated by the experience of social exclusion. Using the Cyberball paradigm, we examined event-related dynamics of theta power in the EEG at medial frontal sites while children aged 8-12 years were exposed to conditions of fair play and social exclusion. Using an event-related design, we found that medial frontal theta oscillations (4-8Hz) increase during both early (i.e., 200-400ms) and late (i.e., 400-800ms) processing of rejection events during social exclusion relative to perceptually identical "not my turn" events during inclusion. Importantly, we show that only for the later time window (400-800ms) slow-wave theta power tracks self-reported ostracism distress. Specifically, greater theta power at medial frontal sites to "rejection" events predicted higher levels of ostracism distress. Alpha and beta oscillations for rejection events were unrelated to ostracism distress at either 200-400ms or 400-800ms time windows. Our findings extend previous studies by showing that medial frontal theta oscillations for rejection events are a neural signature of social exclusion, linked to experienced distress in middle childhood.

  9. Differential learning-related changes in theta activity during place learning in young and old rats.

    PubMed

    Olvera-Cortés, María Esther; García-Alcántar, Iván; Gutiérrez-Guzmán, Blanca; Hernández-Pérez, J Jesús; López-Vázquez, Miguel Ángel; Cervantes, Miguel

    2012-01-15

    The participation key role of the hippocampus in place learning ability as well as the decline of cognitive functions associated with aging, have been established in experimental and clinical studies. On the other hand, hippocampal theta activity has been proposed as a part of the cerebral phenomena underlying hippocampal-dependent learning processes. In the present study, the relative power of low, high, and maximal frequency components of hippocampal CA1 theta activity during a 6-day training period (four daily trials; basal, searching, and platform stages) and the probe trial of a place learning paradigm (Morris water maze) were analyzed in young and aged rats. An increase in high frequency, and a decrease in low frequency relative power of theta activity during the searching stage, which were correlated with shorter swimming path lengths and predominant hippocampal-dependent allocentric strategies, were observed in young rats as became trained in place learning and memory tasks, in the Morris water maze; while, under these conditions, no changes in theta activity and predominant non hippocampal-dependent egocentric strategies occurred in the old rats. Besides, an overall (theta activity recorded during the three behavioral stages) increase of low frequency and an overall decrease of high frequency theta bands in the old group as compared to the young group were observed. These electrophysiological data suggest that old rats process information relevant for cognitive functions in a different manner, possibly leading to the use of different learning strategies, than young rats.

  10. [Difficult respiratory management in a patient with bilateral giant bullae].

    PubMed

    Fujita, Ayaka; Hashiba, Eiji; Takahira, Yoko; Kitayama, Masatou; Tubo, Toshihito; Hirota, Kazuyoshi

    2009-10-01

    We report a case of bilateral giant bullae in a patient with multiple traumas. He had his arm amputated at the shoulder because of a machine accident and admitted to our hospital. Chest X-ray showed right-sided pneumothorax with bilateral giant bullae. Trimming of the stump was performed immediately after the placement of a right chest tube. He gradually developed hypoxia and hypercapnia with acidemia during the operation because of atelectasis due to sputum. Postoperatively, enlargement of right giant bulla led to frequent respiratory failure and he received a bilateral bullectomy through a median sternotomy 3 weeks after the accident. It was difficult to ventilate him due to air leak from the bilateral bulla and SpO2 dropped to below 70% with 100% oxygen. We continued the operation with standby extracorporeal membrane oxygenator (ECMO). Although the operation was finished without ECMO finally, ECMO had better been kept ready during anethesia with giant bullae when life threatening complication may occur at any point.

  11. Bayer bilateral denoising on TriMedia3270

    NASA Astrophysics Data System (ADS)

    Phelippeau, H.; Akil, M.; Dias Rodrigues, B.; Talbot, H.; Bara, S.

    2009-02-01

    Digital cameras are now commonly included in several digital devices such as mobile phones. They are present everywhere and have become the principal image capturing tool. Inherent to light and semiconductors properties, sensor noise [10] continues to be an important factor of image quality [12], especially in low light conditions. Removing the noise with mathematical solutions appears thus unavoidable to obtain an acceptable image quality. However, embedded devices are limited by processing capabilities and power consumption and thus cannot make use of the full range of complex mathematical noise removing solutions. The bilateral filter [6] appears to be an interesting compromise between implementation complexity and noise removing performances. Especially, the Bayer [5] bilateral filter proposed in [11] is well adapted for single sensor devices. In this paper, we simulate and optimize the Bayer bilateral filter execution on a common media-processor: the TM3270 [4] from the NXP Semiconductors TriMedia family. To do so we use the TriMedia Compilation System (TCS). We applied common optimization techniques (such as LUT, loop unrolling, convenient data type representation) as well as custom TriMedia operations. We finally propose a new Bayer bilateral filter formulation dedicated to the TM3270 architecture that yields an execution improvement of 99.6% compared to the naÃve version. This improvement results in real-time video processing at VGA resolution at the 350MHz clock rate.

  12. Bilateral striopallidodentate calcinosis with paroxysmal kinesigenic dyskinesia.

    PubMed

    Diaz, Gloria E; Wirrell, Elaine C; Matsumoto, Joseph Y; Krecke, Karl N

    2010-07-01

    Bilateral striopallidodentate calcinosis is characterized by calcification of the basal ganglia and other gray matter structures. We describe a 16-year-old boy with paroxysmal kinesigenic dyskinesia. He exhibited mineralization in the basal ganglia, posterior thalami, and dentate nuclei bilaterally, and was diagnosed with sporadic bilateral striopallidodentate calcinosis. The paroxysmal kinesigenic dyskinesia responded to low-dose treatment with carbamazepine (200 mg/day).

  13. Congenital bilateral sternocleidomastoid contracture: a case report.

    PubMed

    Babu, Manohar K V; Lee, Peter; Mahadev, Arjandas; Lee, Eng Hin

    2009-05-01

    Unilateral sternocleidomastoid muscle contracture causing torticollis and other secondary deformities such as facial scoliosis, plagiocephaly and scoliosis of cervical spine are well known. The aetiology and pathogenesis is still intriguing. Although unilateral contracture of sternocleidomastoid is seen quite often, bilateral sternocleidomastoid contracture is almost unheard of. A review of the English literature revealed no cases of bilateral congenital sternocleidomastoid contracture being reported. We present a case report of a 19-year-old girl with congenital bilateral sternocleidomastoid contracture.

  14. THETA-Rhythm Makes the World Go Round: Dissociative Effects of TMS Theta Versus Alpha Entrainment of Right pTPJ on Embodied Perspective Transformations.

    PubMed

    Gooding-Williams, Gerard; Wang, Hongfang; Kessler, Klaus

    2017-03-03

    Being able to imagine another person's experience and perspective of the world is a crucial human ability and recent reports suggest that humans "embody" another's viewpoint by mentally rotating their own body representation into the other's orientation. Our recent Magnetoencephalography (MEG) data further confirmed this notion of embodied perspective transformations and pinpointed the right posterior temporo-parietal junction (pTPJ) as the crucial hub in a distributed network oscillating at theta frequency (3-7 Hz). In a subsequent transcranial magnetic stimulation (TMS) experiment we interfered with right pTPJ processing and observed a modulation of the embodied aspects of perspective transformations. While these results corroborated the role of right pTPJ, the notion of theta oscillations being the crucial neural code remained a correlational observation based on our MEG data. In the current study we therefore set out to confirm the importance of theta oscillations directly by means of TMS entrainment. We compared entrainment of right pTPJ at 6 Hz vs. 10 Hz and confirmed that only 6 Hz entrainment facilitated embodied perspective transformations (at 160° angular disparity) while 10 Hz slowed it down. The reverse was true at low angular disparity (60° between egocentric and target perspective) where a perspective transformation was not strictly necessary. Our results further corroborate right pTPJ involvement in embodied perspective transformations and highlight theta oscillations as a crucial neural code.

  15. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus.

    PubMed

    Vandecasteele, Marie; Varga, Viktor; Berényi, Antal; Papp, Edit; Barthó, Péter; Venance, Laurent; Freund, Tamás F; Buzsáki, György

    2014-09-16

    Theta oscillations in the limbic system depend on the integrity of the medial septum. The different populations of medial septal neurons (cholinergic and GABAergic) are assumed to affect different aspects of theta oscillations. Using optogenetic stimulation of cholinergic neurons in ChAT-Cre mice, we investigated their effects on hippocampal local field potentials in both anesthetized and behaving mice. Cholinergic stimulation completely blocked sharp wave ripples and strongly suppressed the power of both slow oscillations (0.5-2 Hz in anesthetized, 0.5-4 Hz in behaving animals) and supratheta (6-10 Hz in anesthetized, 10-25 Hz in behaving animals) bands. The same stimulation robustly increased both the power and coherence of theta oscillations (2-6 Hz) in urethane-anesthetized mice. In behaving mice, cholinergic stimulation was less effective in the theta (4-10 Hz) band yet it also increased the ratio of theta/slow oscillation and theta coherence. The effects on gamma oscillations largely mirrored those of theta. These findings show that medial septal cholinergic activation can both enhance theta rhythm and suppress peri-theta frequency bands, allowing theta oscillations to dominate.

  16. Bilateral eosinophilic mastitis: an uncommon unheard entity.

    PubMed

    Singh, Aminder; Kaur, Pavneet; Sood, Neena; Puri, Harpreet; Garg, Bhavna

    2015-01-01

    We are reporting a case of bilateral eosinophilic mastitis which is rare and hardly heard. It is a mimicker of carcinoma breast both clinically & radiologically. A 30 years old non diabetic female presented with bilateral breast lumps with history of rhinitis off & on and peripheral eosinophilia. Mammography was suspicious while ultrasonography was diagnostic of bilateral mastitis. Aspiration cytology exhibited inflammatory lesion rich in eosinophils. Histopathology revealed the diagnosis of eosinophilic mastitis. Eosinophilic infiltration of the breast is a rare manifestation of tissue involvement in peripheral eosinophilia and bilateralism is even rarer.

  17. [Our experience with bilateral cochlear implantation].

    PubMed

    Carmel, Eldar; Taitelbaum-Swead, Ricky; Migirov, Lela; Hildesheimer, Minka; Kronenberg, Jona

    2008-03-01

    Cochlear implantation is a standard method of hearing rehabilitation among patients with severe to profound bilateral sensorineural hearing loss. In recent years there have been an increasing number of studies showing superior hearing with bilateral cochlear implantation in comparison with a unilateral procedure. In this study we present our experience with 15 patients, children and adults, who had bilateral cochlear implant surgery. Speech perception test results demonstrated a hearing benefit in bilateral cochlear implantation in comparison with a unilateral device, mainly by improvement in the identification of speech in noise tests.

  18. The vector potential and stored energy of thin cosine (n{theta}) helical wiggler magnet

    SciTech Connect

    Caspi, S.

    1995-12-01

    Expressions for pure multipole field components that are present in helical devices have been derived from a current distribution on the surface of an infinitely thin cylinder of radius R. The strength of such magnetic fields varies purely as a Fourier sinusoidal series of the longitudinal coordinate Z in proportion to cos(n{theta}- {omega}{sub m}z), where {omega}{sub m} = (2m-1){pi}/L, L denotes the half-period and m = 1, 2, 3 etc. As an alternative to describing such field components as given by the negative gradient of a scalar potential function (Appendix A), one of course can derive these same fields as the curle of a vector potential function {rvec A}--specifically one for which {nabla} {times} {nabla} {times} {rvec A} = 0 and {nabla}{center_dot}{rvec A} = 0. It is noted that we seek a divergence-free vector that exhibits continuity in any of its components across the interface r = R, a feature that is free of possible concern when applying Stokes` theorem in connection with this form of vector potential. Alternative simpler forms of vector potential, that individually are divergence-free in their respective regions (r < R and r > R), do not exhibit full continuity on r = R and whose curl evaluations provide in these respective regions the correct components of magnetic field are not considered here. Such alternative forms must differ merely by the gradient of scalar functions that with the divergence-free property are required to be ``harmonic`` ({nabla}{sup 2}{Psi} = 0).

  19. Bilateral Neck of Femur Fractures in a Bilateral Below-Knee Amputee: A Unique Case

    PubMed Central

    Lancer, Hannah R.

    2016-01-01

    According to the National Hip Fracture Database, over 64,000 patients were admitted with a hip fracture across England, Wales, and Northern Ireland in 2013, but very few are bilateral, and there are no current cases in the literature of bilateral neck of femur fractures in a patient with bilateral below-knee amputations. We present a case of a 69-year-old bilateral below-knee amputee male admitted to the emergency department with bilateral hip pain and radiological evidence of bilateral displaced neck of femur fractures. The patient subsequently underwent synchronous bilateral total hip replacements under general anaesthetic and an epidural and then went on to make a full recovery. He was discharged 27 days after arrival in hospital. Outpatient follow-up at 3 months has shown that the patient has returned to a similar level of preinjury function and is still able to carry out his daily activities with walking aids and bilateral leg prostheses. PMID:26881162

  20. Bilateral adrenalectomy for Cushing's disease.

    PubMed

    Katznelson, Laurence

    2015-04-01

    Review the indications, outcomes, and consequences of bilateral adrenalectomy (BLA) in patients with Cushing's disease. A literature review was performed. The primary therapy for Cushing's disease is surgery, with medical therapy and radiation therapy relegated to an adjuvant role. BLA is indicated in cases of persistent disease following pituitary surgery or in situations where rapid normalization of hypercortisolism is required. When performed via the laparoscopic approach, BLA is associated with a significantly reduced morbidity compared to the traditional, open approach. Following BLA, patients are at risk for adrenal crisis and the concern of Nelson's syndrome. However, BLA leads to a rapid resolution of the signs and symptoms of CS and leads to an improved long-term quality of life. BLA should be considered in the treatment algorithm for patients with persistent CD after failed pituitary surgery, especially in patients who have severe consequences of hypercortisolism or desire pregnancy.

  1. Bilateral fitting subtracting confocal microscopy.

    PubMed

    Zhao, Weiqian; Sheng, Zhong; Qiu, Lirong; Wang, Yun; Shao, Rongjun

    2016-12-20

    This paper proposes a bilateral fitting subtracting confocal microscopy (BFSCM) based on the optical arrangement of conventional confocal microscopy (CM). BFSCM first uses the data in both sides of a confocal axial response curve, which are very sensitive to the axial position of the sample, for respective linear fitting to obtain two fitting straight lines, and then obtains a difference confocal line by subtraction of the two fitting lines. Finally, it calculates the zero position of the difference confocal line to precisely capture the focus position of the confocal system, and thereby achieving a high-precision measurement of the 3D structure of the sample. The theoretical analyses and experiments indicate that BFSCM can improve the axial resolution, and has anti-interference capability and focusing ability with bipolar absolute zero point tracking, while it does not change the structure and lateral resolution of CM. BFSCM provides a novel method for the improvement of CM axial resolution.

  2. Cushing syndrome after bilateral lensectomy.

    PubMed

    Scherrer, Karin Sofia; Weitz, Marcus; Eisenack, Johannes; Truffer, Béatrice; Konrad, Daniel

    2015-03-01

    Iatrogenic Cushing syndrome induced by oral and parenteral corticosteroid administration is a well-known complication, and necessary precautions have to be taken. Cushing syndrome, however, following treatment with glucocorticoid-containing eye drops is a very rare complication. To the best of our knowledge, there have been only four reported cases in the literature. Herein, we present an infant boy who developed Cushing syndrome after receiving dexamethasone-containing eye drops after bilateral cataract extraction to prevent postoperative inflammatory complications. At the age of 5 months, after approx. 3 months of dexamethasone therapy, the patient presented with cushingoid facies, nephrocalcinosis and failure to grow. Iatrogenic Cushing syndrome was diagnosed and dexamethasone-containing eye drops were reduced and eventually stopped. Follow-up examinations revealed catch-up growth. Ocularly administered corticosteroids may have substantial systemic side effects in infants.

  3. Bilateral shotgun pellet pulmonary emboli

    PubMed Central

    Huebner, Stephen; Ali, Sayed

    2012-01-01

    Intravascular migration of bullets and other foreign bodies is a rare but known complication of penetrating trauma. Missile embolization can represent a diagnostic challenge because it may present in various and unexpected ways. We present the case of a 54-year-old female who sustained shotgun pellet emboli to the pulmonary arteries following a left upper extremity gunshot wound and related vascular surgery. The case illustrates bilateral embolization, and the embolic events occurred following surgery. Embolization should be considered in evaluating patients with gunshot wounds, particularly if there are anomalous symptoms or the projectile is not found in the original, or expected, location. Close attention to the location of the foreign bodies on serial radiographs may reveal the diagnosis of intravascular embolization. PMID:22690290

  4. 14 CFR 60.37 - FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Bilateral Aviation Safety Agreement (BASA). 60.37 Section 60.37 Aeronautics and Space FEDERAL AVIATION... CONTINUING QUALIFICATION AND USE § 60.37 FSTD qualification on the basis of a Bilateral Aviation Safety... on International Civil Aviation for the sponsor of an FSTD located in that contracting State may...

  5. 14 CFR 60.37 - FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Bilateral Aviation Safety Agreement (BASA). 60.37 Section 60.37 Aeronautics and Space FEDERAL AVIATION... CONTINUING QUALIFICATION AND USE § 60.37 FSTD qualification on the basis of a Bilateral Aviation Safety... on International Civil Aviation for the sponsor of an FSTD located in that contracting State may...

  6. 14 CFR 60.37 - FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Bilateral Aviation Safety Agreement (BASA). 60.37 Section 60.37 Aeronautics and Space FEDERAL AVIATION... CONTINUING QUALIFICATION AND USE § 60.37 FSTD qualification on the basis of a Bilateral Aviation Safety... on International Civil Aviation for the sponsor of an FSTD located in that contracting State may...

  7. 14 CFR 60.37 - FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Bilateral Aviation Safety Agreement (BASA). 60.37 Section 60.37 Aeronautics and Space FEDERAL AVIATION... CONTINUING QUALIFICATION AND USE § 60.37 FSTD qualification on the basis of a Bilateral Aviation Safety... on International Civil Aviation for the sponsor of an FSTD located in that contracting State may...

  8. 14 CFR 60.37 - FSTD qualification on the basis of a Bilateral Aviation Safety Agreement (BASA).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Bilateral Aviation Safety Agreement (BASA). 60.37 Section 60.37 Aeronautics and Space FEDERAL AVIATION... CONTINUING QUALIFICATION AND USE § 60.37 FSTD qualification on the basis of a Bilateral Aviation Safety... on International Civil Aviation for the sponsor of an FSTD located in that contracting State may...

  9. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures

    PubMed Central

    Gulbahar, Gultekin; Kaplan, Tevfik; Turker, Hasan Bozkurt; Gundogdu, Ahmet Gokhan; Han, Serdar

    2015-01-01

    First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare entity. PMID:26175916

  10. Evidence for encoding versus retrieval scheduling in the hippocampus by theta phase and acetylcholine

    PubMed Central

    Douchamps, Vincent; Jeewajee, Ali; Blundell, Pam; Burgess, Neil; Lever, Colin

    2013-01-01

    The formation of new memories requires new information to be encoded in the face of proactive interference from the past. Two solutions have been proposed for hippocampal region CA1: 1) acetylcholine, released in novelty, selectively suppresses excitatory projections to CA1 from CA3 (mediating the products of retrieval), while sparing entorhinal inputs (mediating novel sensory information); 2) encoding preferentially occurs at the pyramidal-layer theta peak, coincident with input from entorhinal cortex, and retrieval occurs at the trough, coincident with input from CA3, consistent with theta-phase-dependent synaptic plasticity. We examined three predictions of these models: 1) In novel environments, the preferred theta phase of CA1 place cell firing should shift closer to the CA1 pyramidal-layer theta peak, shifting the encoding-retrieval balance towards encoding; 2) The encoding-related shift in novel environments should be disrupted by cholinergic antagonism; 3) In familiar environments, cholinergic antagonism should shift the preferred theta firing phase closer to the theta trough, shifting the encoding-retrieval balance even further towards retrieval. We tested these predictions by recording from CA1 pyramidal cells in freely moving rats as they foraged in open field environments under the influence of scopolamine (an amnestic cholinergic antagonist) or vehicle (saline). Results confirmed all three predictions, supporting both the theta phase and cholinergic models of encoding-vs-retrieval dynamics. Also consistent with cholinergic enhancement of encoding, scopolamine attenuated the formation of distinct spatial representations in a new environment, reducing the extent of place cell “remapping”. PMID:23678113

  11. Age-related changes of frontal-midline theta is predictive of efficient memory maintenance.

    PubMed

    Kardos, Z; Tóth, B; Boha, R; File, B; Molnár, M

    2014-07-25

    Frontal areas are thought to be the coordinators of working memory processes by controlling other brain areas reflected by oscillatory activities like frontal-midline theta (4-7 Hz). With aging substantial changes can be observed in the frontal brain areas, presumably leading to age-associated changes in cortical correlates of cognitive functioning. The present study aimed to test whether altered frontal-midline theta dynamics during working memory maintenance may underlie the capacity deficits observed in older adults. 33-channel EEG was recorded in young (18-26 years, N=20) and old (60-71 years, N=16) adults during the retention period of a visual delayed match-to-sample task, in which they had to maintain arrays of 3 or 5 colored squares. An additional visual odd-ball task was used to be able to measure the electrophysiological indices of sustained attentional processes. Old participants showed reduced frontal theta activity during both tasks compared to the young group. In the young memory maintenance-related frontal-midline theta activity was shown to be sensitive both to the increased memory demands and to efficient subsequent memory performance, whereas the old adults showed no such task-related difference in the frontal theta activity. The decrease of frontal-midline theta activity in the old group indicates that cerebral aging may alter the cortical circuitries of theta dynamics, thereby leading to age-associated decline of working memory maintenance function. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Self-regulation of frontal-midline theta facilitates memory updating and mental set shifting

    PubMed Central

    Enriquez-Geppert, Stefanie; Huster, René J.; Figge, Christian; Herrmann, Christoph S.

    2014-01-01

    Frontal-midline (fm) theta oscillations as measured via the electroencephalogram (EEG) have been suggested as neural “working language” of executive functioning. Their power has been shown to increase when cognitive processing or task performance is enhanced. Thus, the question arises whether learning to increase fm-theta amplitudes would functionally impact the behavioral performance in tasks probing executive functions (EFs). Here, the effects of neurofeedback (NF), a learning method to self-up-regulate fm-theta over fm electrodes, on the four most representative EFs, memory updating, set shifting, conflict monitoring, and motor inhibition are presented. Before beginning and after completing an individualized, eight-session gap-spaced NF intervention, the three-back, letter/number task-switching, Stroop, and stop-signal tasks were tested while measuring the EEG. Self-determined up-regulation of fm-theta and its putative role for executive functioning were compared to an active control group, the so-called pseudo-neurofeedback group. Task-related fm-theta activity after training differed significantly between groups. More importantly, though, after NF significantly enhanced behavioral performance was observed. The training group showed higher accuracy scores in the three-back task and reduced mixing and shifting costs in letter/number task-switching. However, this specific protocol type did not affect performance in tasks probing conflict monitoring and motor inhibition. Thus, our results suggest a modulation of proactive but not reactive mechanisms of cognitive control. Furthermore, task-related EEG changes show a distinct pattern for fm-theta after training between the NF and the pseudo-neurofeedback group, which indicates that NF training indeed tackles EFs-networks. In sum, the modulation of fm-theta via NF may serve as potent treatment approach for executive dysfunctions. PMID:25538585

  13. Self-regulation of frontal-midline theta facilitates memory updating and mental set shifting.

    PubMed

    Enriquez-Geppert, Stefanie; Huster, René J; Figge, Christian; Herrmann, Christoph S

    2014-01-01

    Frontal-midline (fm) theta oscillations as measured via the electroencephalogram (EEG) have been suggested as neural "working language" of executive functioning. Their power has been shown to increase when cognitive processing or task performance is enhanced. Thus, the question arises whether learning to increase fm-theta amplitudes would functionally impact the behavioral performance in tasks probing executive functions (EFs). Here, the effects of neurofeedback (NF), a learning method to self-up-regulate fm-theta over fm electrodes, on the four most representative EFs, memory updating, set shifting, conflict monitoring, and motor inhibition are presented. Before beginning and after completing an individualized, eight-session gap-spaced NF intervention, the three-back, letter/number task-switching, Stroop, and stop-signal tasks were tested while measuring the EEG. Self-determined up-regulation of fm-theta and its putative role for executive functioning were compared to an active control group, the so-called pseudo-neurofeedback group. Task-related fm-theta activity after training differed significantly between groups. More importantly, though, after NF significantly enhanced behavioral performance was observed. The training group showed higher accuracy scores in the three-back task and reduced mixing and shifting costs in letter/number task-switching. However, this specific protocol type did not affect performance in tasks probing conflict monitoring and motor inhibition. Thus, our results suggest a modulation of proactive but not reactive mechanisms of cognitive control. Furthermore, task-related EEG changes show a distinct pattern for fm-theta after training between the NF and the pseudo-neurofeedback group, which indicates that NF training indeed tackles EFs-networks. In sum, the modulation of fm-theta via NF may serve as potent treatment approach for executive dysfunctions.

  14. Dissociative mental states are canonically associated with decreased temporal theta activity on spectral analysis of EEG.

    PubMed

    Krüger, Christa; Bartel, Peter; Fletcher, Lizelle

    2013-01-01

    Quantitative electroencephalographic (QEEG) changes relating to dissociative experiences have only rarely been demonstrated, and dissociative states were not quantified in those studies. The aim of this study was to explore concurrent associations between quantified dissociative states and QEEG spectral parameters, in particular theta activity, in psychiatric patients. Fifty psychiatric patients completed the State Scale of Dissociation (SSD) immediately after a 15-min EEG recording. The EEG was assessed by conventional clinical visual analysis as well as by quantitative (QEEG) spectral analysis. Canonical analysis was performed between the set of SSD subscale scores and the following QEEG parameters: alpha-theta magnitude ratios, and relative as well as absolute theta magnitude obtained from right and left mid- to posterior-temporal and parieto-occipital derivations. The SSD transferred well to the present data in terms of reliability and internal criterion-related validity. The SSD and Dissociative Experiences Scale (DES) correlated significantly (r = .73, p < .001). Conventional EEG analysis identified 29 EEGs (58%) as abnormal. The main abnormality in 23 EEGs was slowing, maximal temporally in half of these cases. Canonical analyses confirmed a statistically significant relationship between the dissociation variables (especially conversion and depersonalization symptoms) and the QEEG variables (especially relative theta magnitude in the temporal regions; R = .72, p = .03, for SSD-QEEG; and R = .66, p = .04, for DES-QEEG). Quantified dissociative mental states are positively canonically associated with decreased temporal theta activity and increased alpha-theta ratios on QEEG in psychiatric patients with a high tendency to dissociate. The potential implications of the dissociation-theta-alpha relationship for understanding normal attentional processes need to be studied further.

  15. Endourological treatment of bilateral ureteral stones in bilateral ureteral duplication with right ureterocele

    PubMed Central

    Sen, Volkan; Aydogdu, Ozgu; Yonguc, Tarık; Bozkurt, Ibrahim Halil; Polat, Salih; Basmaci, Ismail

    2015-01-01

    Bilateral collecting system duplication is a very rare abnormality, including the splitting of the ureteric bud. Complete ureteral duplication with two separate openings in the urinary bladder is also extremely rare. To the best of our knowledge, we present the first case of bilateral ureteral stones in bilateral duplicated collecting system. PMID:26279727

  16. A case of bilateral testicular calcifications in a bicycle motocross rider accompanied by bulbar urethral injury.

    PubMed

    Izumi, Kouji; Konaka, Hiroyuki; Seto, Chikashi; Komatsu, Kazuto; Yokoyama, Osamu; Namiki, Mikio

    2006-05-01

    A 21-year-old Japanese man who was a professional bicycle motocross rider injured his perineum during a competition. Chief complaints were gross hematuria, perineal pain, and subcutaneous ecchymosis of the scrotum. Urethrocystography revealed a torn bulbar urethra and extravasation in the same region. Scrotal ultrasonography revealed small calcifications in the bilateral testes. Here, we report a case of bilateral testicular calcifications caused by the continuous shock and vibration of the saddle in an off-road bicycle rider.

  17. Bilateral Heel Numbness due to External Compression during Obstetric Epidural Analgesia

    PubMed Central

    Kamphuis, Vivian P.; Zegers, Marie P.A.; Koppen, Hille

    2015-01-01

    We describe the case of a 32-year-old woman who developed bilateral heel numbness after obstetric epidural analgesia. We diagnosed her with bilateral neuropathy of the medial calcaneal nerve, most likely due to longstanding pressure on both heels. Risk factors for the development of this neuropathy were prolonged labour with spinal analgesia and a continuation of analgesia during episiotomy. Padded footrests decrease pressure and can possibly prevent this neuropathy. PMID:25802500

  18. Localization ability with bimodal hearing aids and bilateral cochlear implants

    NASA Astrophysics Data System (ADS)

    Seeber, Bernhard U.; Baumann, Uwe; Fastl, Hugo

    2004-09-01

    After successful cochlear implantation in one ear, some patients continue to use a hearing aid at the contralateral ear. They report an improved reception of speech, especially in noise, as well as a better perception of music when the hearing aid and cochlear implant are used in this bimodal combination. Some individuals in this bimodal patient group also report the impression of an improved localization ability. Similar experiences are reported by the group of bilateral cochlear implantees. In this study, a survey of 11 bimodally and 4 bilaterally equipped cochlear implant users was carried out to assess localization ability. Individuals in the bimodal implant group were all provided with the same type of hearing aid in the opposite ear, and subjects in the bilateral implant group used cochlear implants of the same manufacturer on each ear. Subjects adjusted the spot of a computer-controlled laser-pointer to the perceived direction of sound incidence in the frontal horizontal plane by rotating a trackball. Two subjects of the bimodal group who had substantial residual hearing showed localization ability in the bimodal configuration, whereas using each single device only the subject with better residual hearing was able to discriminate the side of sound origin. Five other subjects with more pronounced hearing loss displayed an ability for side discrimination through the use of bimodal aids, while four of them were already able to discriminate the side with a single device. Of the bilateral cochlear implant group one subject showed localization accuracy close to that of normal hearing subjects. This subject was also able to discriminate the side of sound origin using the first implanted device alone. The other three bilaterally equipped subjects showed limited localization ability using both devices. Among them one subject demonstrated a side-discrimination ability using only the first implanted device.

  19. Thoracoscopic Bilateral Bullectomy for Simultaneously Developed Bilateral Primary Spontaneous Pneumothorax: Ipsilateral Transmediastinal versus Bilateral Sequential Approach.

    PubMed

    Cho, Deog Gon; Lee, Seok In; Chang, Yong Jin; Cho, Kyu Do; Cho, Suk Kyu

    2017-01-01

    Background Simultaneously developed bilateral primary spontaneous pneumothorax (BPSP) is an indication for thoracic surgery of both sides. Recently, we have reported a new technique for BPSP, which is ipsilateral apicoposterior transmediastinal (TM) bullectomy of both sides using video-assisted thoracoscopic surgery (VATS), and we compared this TM VATS with bilateral sequential (BS) VATS for BPSP. Materials and Methods From June 2003 to May 2014, 11 and 14 patients were performed VATS TM and BS bullectomy for BPSP, respectively. We reviewed the medical records and compared the clinical data between the two groups. For TM group, we first performed the right VATS bullectomy and approached through the apicoposterior mediastinal region for contralateral VATS. In the other group, conventional BS VATS bullectomy was performed in the lateral decubitus position change. Results The mean follow-up was 62.0 ± 32.6 months. No mortality and major complications were observed. The operative time (68.18 ± 24.93 vs. 96.07 ± 37.73, p = 0.046), duration of left pleural drainage (1.00 ± 0.45 vs. 3.21 ± 1.37, p = 0.000), and length of hospital stay (3.82 ± 1.54 vs. 4.93 ± 1.07, p = 0.044) were significantly shorter in the TM group than in the BS group. No significant differences were seen in duration of general anesthesia, total number of wedge resections and endostaplers used in both lungs, duration of right drainage, and postoperative recurrence. Conclusion The TM VATS approach may be a safe and feasible modality for BPSP. It may decrease the operative time, patients inconvenience such as bilateral multiple wounds and longstanding placement of chest tubes, and decrease the hospital stay compared with the BS VATS approach.

  20. Spontaneous bilateral adrenal hemorrhage following cholecystectomy.

    PubMed

    Dahan, Meryl; Lim, Chetana; Salloum, Chady; Azoulay, Daniel

    2016-06-01

    Postoperative bilateral adrenal hemorrhage is a rare but potentially life-threatening complication. This diagnosis is often missed because the symptoms and laboratory results are usually nonspecific. We report a case of bilateral adrenal hemorrhage associated with acute primary adrenal insufficiency following laparoscopic cholecystectomy. The knowledge of this uncommon complication following any abdominal surgery allows timey diagnosis and rapid treatment.

  1. Bilateral phacoemulsification in an orangutan (Pongo pygmaeus).

    PubMed

    Montiani-Ferreira, Fabiano; Lima, Leandro; Bacellar, Marianna; D'Otaviano Vilani, Ricardo G; Fedullo, José Daniel; Lange, Rogério R

    2010-09-01

    A 14-year-old, female, captive-born orangutan (Pongo pygmaeus) developed bilateral cataracts. Ultrasonography, electroretinography and cataract correction using phacoemulsification were performed bilaterally. This case report aims to describe the ophthalmic procedures performed in this animal critically endangered of extinction. The surgery successfully restored vision and normal activity to the patient.

  2. Severe bilateral microphthalmos in a Pomeranian pup.

    PubMed

    Dell, Melanie

    2010-12-01

    A 4-week-old male Pomeranian was presented with eyes that had remained closed since birth. Clinical examination of the orbits revealed that globes were bilaterally absent, suggesting clinical anophthalmos. Following ultrasound imaging of the orbits, a diagnosis of severe bilateral microphthalmos was made, a condition of rare occurrence with an etiology that is not fully understood.

  3. Bilateral parotid swelling: a radiological review

    PubMed Central

    Gadodia, A; Bhalla, A S; Sharma, R; Thakar, A; Parshad, R

    2011-01-01

    Bilateral parotid swelling is not an uncommon occurrence and may pose a challenge for clinicians and radiologists. Numerous causes of bilateral parotid swellings have been identified. The purpose of this pictorial review is to display this wide array with a focus on multimodality approach. PMID:21960397

  4. Bilateral failure of adduction following orbital decompression.

    PubMed Central

    Kinsella, F; Kyle, P; Stansfield, A

    1990-01-01

    We report a case of bilateral complete failure of adduction following bilateral translid antralethmoidal orbital decompression. We believe the probable mechanism is neuropraxia (temporary dysfunction) of the third cranial nerves' supply to the medial recti, owing to these nerves' occupying an anatomically abnormal position. Partial recovery of adduction occurred over the ensuing six months. Images PMID:2337551

  5. CT demonstration of bilateral adrenal hemorrhage

    SciTech Connect

    Ling, D.; Korobkin, M.; Silverman, P.M.; Dunnick, N.R.

    1983-08-01

    Bilateral adrenal hemorrhage with subsequent adrenal insufficiency is a recognized complication of anticoagulant therapy. Because the clinical manifestations are often nonspecific, the antemortem diagnosis of adrenal hemorrhage has been a difficult clinical problem. Computed tomography (CT) provides detailed images of the adrenal glands that are not possible with conventional imaging methods. The CT findings of bilateral adrenal hemorrhage in an anticoagulated patient are reported.

  6. Severe bilateral microphthalmos in a Pomeranian pup

    PubMed Central

    Dell, Melanie

    2010-01-01

    A 4-week-old male Pomeranian was presented with eyes that had remained closed since birth. Clinical examination of the orbits revealed that globes were bilaterally absent, suggesting clinical anophthalmos. Following ultrasound imaging of the orbits, a diagnosis of severe bilateral microphthalmos was made, a condition of rare occurrence with an etiology that is not fully understood. PMID:21358938

  7. Spontaneous bilateral adrenal hemorrhage following cholecystectomy

    PubMed Central

    Dahan, Meryl; Lim, Chetana; Salloum, Chady

    2016-01-01

    Postoperative bilateral adrenal hemorrhage is a rare but potentially life-threatening complication. This diagnosis is often missed because the symptoms and laboratory results are usually nonspecific. We report a case of bilateral adrenal hemorrhage associated with acute primary adrenal insufficiency following laparoscopic cholecystectomy. The knowledge of this uncommon complication following any abdominal surgery allows timey diagnosis and rapid treatment. PMID:27275469

  8. Postlaminectomy Bilateral Lumbar Intraspinal Synovial Cysts

    PubMed Central

    Cho, Sung Ik; Lee, Jung Hwan

    2016-01-01

    Lumbar intraspinal synovial cysts are included in the difference diagnosis of lumbar radiculopathy. Developing imaging modalities has result in increased reporting about these lesions. However, the case of bilateral new lumbar intraspinal synovial cysts after laminectomy has been rarely reported. We report of a rare case with bilateral lumbar intraspinal synovial cysts after laminectomy, requiring surgical excision. PMID:27799997

  9. [Theta/beta ratio (NEBA) in the diagnosis of attention deficit hyperactivity disorder].

    PubMed

    Delgado-Mejía, Iván D; Palencia-Avendaño, M Luisa; Mogollón-Rincón, Carolina; Etchepareborda, Máximo C

    2014-02-24

    In July 2013, the US Food and Drug Administration approved the use of NEBA as the first device for the complementary evaluation of attention deficit hyperactivity disorder (ADHD). It is based on quantitative electroencephalogram (qEEG) and includes the standardised theta/beta ratio, the results of which were consistent with both the medical and psychological clinical evaluation. Likewise, it has proved to be a useful tool for determining whether the ADHD is primary, secondary or comorbid to another pathology. Yet, to date no publications have specified whether it is a total theta/beta ratio or theta/beta-1 and theta/beta-2. Additionally, no data are provided to be able to discriminate between diagnostic subtypes of ADHD. To quantify the theta/beta ratios, by means of qEEG, in a sample of patients from the Rio de la Plata area with a main confirmed diagnosis of ADHD, in order to compare the neurophysiological patterns according to the diagnostic subtypes. We used a randomised stratified sample of 62 subjects of both sexes, with ages between 8 and 17 years, distributed into two groups, depending on the diagnostic subtype: attention deficit subtype of ADHD (n = 31) and the combined subtype of ADHD (n = 31). High theta/beta-1 and theta/beta-2 ratios were confirmed in the Cz region, being higher than the ratios in the C3 and C4 areas. Moderate and statistically significant differences were found between the two subtypes only in the beta-1 band in the occipital regions. The analysis of the interhemispheric coherence suggests an association of the power peak crossed with the diagnostic subtype, which is the fastest peak (10 Hz) for the combined subtype. No important differences are found on analysing the phase spectra or the theta/beta ratios. Although the scientific literature, especially the NEBA system, highlights the importance of the theta/beta ratio in the differential diagnosis of ADHD in control samples and other neurodevelopmental disorders, a distinction must be

  10. Sigma Theta Tau, DAaL/Texas Nurse Association, 2017 South Texas Nurse Imagemaker, Lt Col Jacqueline Killian

    DTIC Science & Technology

    2018-04-28

    FROM: 59 MDW/SGYU SUBJECT: Professional Presentation Approval 18 APR2017 1. Your paper, entitled Sigma Theta Tau, DAaL/Texas Nurses Association , 2017...submitted for review and approval.) 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Sigma Theta Tau, D AaL ffexas N urses Association , 2017 South...of 3 Pages Sigma Theta Tau, DAaL/Texas Nurses Association , 2017 South Texas Nurse lmagemaker, Lt Col Jacqueline Killian Lt Col Jacqueline Killian

  11. The driving system for hippocampal theta in the brainstem: an examination by single neuron recording in urethane-anesthetized rats.

    PubMed

    Takano, Yuji; Hanada, Yasuhiro

    2009-05-08

    The brainstem has been shown to be involved in generating hippocampal theta; however, which brainstem region plays the most important role in generating the rhythm has remained unclear. To reveal which brainstem region triggers the theta, the hippocampal local field potential was recorded simultaneously with single unit activity in the brainstem of urethane-anesthetized rat. The firing latencies before theta onset and offset were compared among recording sites (deep mesencephalic nucleus, DpMe; pedunculopontine tegmental nucleus, PPT; nucleus pontis oralis, PnO). We examined the activities of 59 cells; PPT showed the highest proportion of neurons changing their firing rates at theta onset (14/16, 87.5%). The proportion in the PnO was 14/22 (63.6%), but the neurons in the PnO showed the earliest changes in latencies (0.57s before theta onset). The change in the PPT was 0.96s after theta onset. Regarding the theta offset, the PPT showed the highest proportion of neurons changing their firing rates at theta offset (9/16, 56.3%; the proportion in the PnO was 5/22, 22.7%), but the difference in latent time was not significant among recorded regions. The neurons in the DpMe did not show any remarkable firing tendency at theta onset and offset. From these results, we propose a driving system of hippocampal theta, in which neurons in the PnO first trigger the theta onset and then those in the PPT maintain the theta by activating broadly the brainstem areas for the wave.

  12. EEG synchronization characteristics of functional connectivity and complex network properties of memory maintenance in the delta and theta frequency bands.

    PubMed

    Tóth, Brigitta; Boha, Roland; Pósfai, Márton; Gaál, Zsófia Anna; Kónya, Anikó; Stam, Cornelis Jan; Molnár, Márk

    2012-03-01

    Task-dependent changes of nonlinear-linear synchronization features and graph theoretical properties of the delta and theta frequencies were analyzed in the present EEG study that were related to episodic memory maintenance processes. Synchronization was found to increase with respect to both the delta and theta bands within the frontal and parietal areas and also between these regions. Results of graph theoretical analysis indicated a task-related shift towards small-world network topology in the theta band.

  13. Bilateral xanthogranulomatous orchitis in a tetraplegic patient.

    PubMed

    Val-Bernal, J Fernando; Argueta, Liza; Fernández-Flórez, Alejandro; Correas, Miguel Angel; Val, Daniel; Garijo, M Francisca; López-Rasines, Gerardo

    2012-01-15

    Xanthogranulomatous orchitis (XGO) is a rare chronic inflammatory process characterized by destruction of tissue that is replaced by an outstanding cellular infiltrate of lipid-laden macrophages. To date, 20 cases of this process have been reported previously. We present herein the case of a 55-year-old man who had sustained complete tetraplegia at C-6 level and neuropathic bladder for 21 years. After repeated episodes of urinary tract infection, the patient developed a bilateral XGO and a right xanthogranulomatous epididymitis (XGE) that were treated with bilateral orchiepididymectomy. To our knowledge, a bilateral XGO has not yet been reported. Repeated episodes of high-pressure urinary reflux along the vas deferens during dyssynergic voiding possibly led to retrograde extension from the urinary tract by common urinary pathogens and development of bilateral XGO and right XGE. Since tissue destruction is a feature of this process, curative treatment required antibiotic therapy followed by bilateral excision of testes and epididymes.

  14. Oscillator-interference models of path integration do not require theta oscillations.

    PubMed

    Orchard, Jeff

    2015-03-01

    Navigation and path integration in rodents seems to involve place cells, grid cells, and theta oscillations (4-12 Hz) in the local field potential. Two main theories have been proposed to explain the neurological underpinnings of how these phenomena relate to navigation and to each other. Attractor network (AN) models revolve around the idea that local excitation and long-range inhibition connectivity can spontaneously generate grid-cell-like activity patterns. Oscillator interference (OI) models propose that spatial patterns of activity are caused by the interference patterns between neural oscillators. In rats, these oscillators have a frequency close to the theta frequency. Recent studies have shown that bats do not exhibit a theta cycle when they crawl, and yet they still have grid cells. This has been interpreted as a criticism of OI models. However, OI models do not require theta oscillations. We explain why the absence of theta oscillations does not contradict OI models and discuss how the two families of models might be distinguished experimentally.

  15. Patterns of Theta Activity in Limbic Anxiety Circuit Preceding Exploratory Behavior in Approach-Avoidance Conflict.

    PubMed

    Jacinto, Luis R; Cerqueira, João J; Sousa, Nuno

    2016-01-01

    Theta oscillations within the hippocampus-amygdala-medial prefrontal cortex (HPC-AMY-mPFC) circuit have been consistently implicated in the regulation of anxiety behaviors, including risk-assessment. To study if theta activity during risk-assessment was correlated with exploratory behavior in an approach/avoidance paradigm we recorded simultaneous local field potentials from this circuit in rats exploring the elevated-plus maze (EPM). Opposing patterns of power variations in the ventral hippocampus (vHPC), basolateral amygdala (BLA), and prelimbic (PrL) mPFC, but not in the dorsal hippocampus (dHPC), during exploratory risk-assessment of the open arms preceded further exploration of the open arms or retreat back to the safer closed arms. The same patterns of theta power variations in the HPC-BLA-mPFC(PrL) circuit were also displayed by animals submitted to chronic unpredictable stress protocol known to induce an anxious state. Diverging patterns of vHPC-mPFC(PrL) theta coherence were also significantly correlated with forthcoming approach or avoidance behavior in the conflict situation in both controls and stressed animals; interestingly, vHPC-BLA, and BLA-mPFC(PrL) theta coherence correlated with future behavior only in stressed animals, underlying the pivotal role of the amygdala on the stress response.

  16. Independent theta phase coding accounts for CA1 population sequences and enables flexible remapping

    PubMed Central

    Chadwick, Angus; van Rossum, Mark CW; Nolan, Matthew F

    2015-01-01

    Hippocampal place cells encode an animal's past, current, and future location through sequences of action potentials generated within each cycle of the network theta rhythm. These sequential representations have been suggested to result from temporally coordinated synaptic interactions within and between cell assemblies. Instead, we find through simulations and analysis of experimental data that rate and phase coding in independent neurons is sufficient to explain the organization of CA1 population activity during theta states. We show that CA1 population activity can be described as an evolving traveling wave that exhibits phase coding, rate coding, spike sequences and that generates an emergent population theta rhythm. We identify measures of global remapping and intracellular theta dynamics as critical for distinguishing mechanisms for pacemaking and coordination of sequential population activity. Our analysis suggests that, unlike synaptically coupled assemblies, independent neurons flexibly generate sequential population activity within the duration of a single theta cycle. DOI: http://dx.doi.org/10.7554/eLife.03542.001 PMID:25643396

  17. Search for $\\Theta^{++}$ Pentaquarks in the Exclusive Reaction $\\gamma p\\to K^+K^-p$

    SciTech Connect

    V. Kubarovsky; Marco Battaglieri; Raffaella De Vita; John Goett; Lei Guo; Gordon Mutchler; Paul Stoler; Dennis Weygand; Pawel Ambrozewicz; Marco Anghinolfi; Gegham Asryan; Harutyun AVAKIAN; Harutyun Avakian; H. Bagdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; V. Batourine; Ivan Bedlinski; Ivan Bedlinskiy; Matthew Bellis; Nawal Benmouna; Barry Berman; Angela Biselli; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Shifeng Chen; Eric Clinton; Philip Cole; Patrick Collins; Philip Coltharp; Donald Crabb; Hall Crannell; Volker Crede; John Cummings; Rita De Masi; Daniel Dale; Enzo De Sanctis; Pavel Degtiarenko; Alexandre Deur; Kahanawita Dharmawardane; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Latifa Elouadrhiri; Paul Eugenio; Gleb Fedotov; Herbert Funsten; Marianna Gabrielyan; Liping Gan; Michel Garcon; Ashot Gasparian; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; Oleksandr Glamazdin; John Goetz; Evgueni Golovatch; Atilla Gonenc; Christopher Gordon; Ralf Gothe; Keith Griffioen; Michel Guidal; Nevzat Guler; Vardan Gyurjyan; Cynthia Hadjidakis; Kawtar Hafidi; Rafael Hakobyan; John Hardie; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; James Kellie; Mahbubul Khandaker; Wooyoung Kim; Franz Klein; Friedrich Klein; Alexei Klimenko; Mikhail Kossov; Laird Kramer; Joachim Kuhn; Sebastian Kuhn; Sergey Kuleshov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Ji Li; Kenneth Livingston; Hai-jiang Lu; Marion MacCormick; Nikolai Markov; Bryan McKinnon; Bernhard Mecking; Joseph Melone; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Vasiliy Mochalov; Viktor Mokeev; Ludyvine Morand; Steven Morrow; Maryam Moteabbed; Pawel Nadel-Turonski; Itaru Nakagawa; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Mikhail Osipenko; Alexander Ostrovidov; Kijun Park; Evgueni Pasyuk; Craig Paterson; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; Sergey Pozdnyakov; John Price; Yelena Prok; Dan Protopopescu; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; Franck Sabatie; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Youri Sharabian; Nikolay Shvedunov; Elton Smith; Lee Smith; Daniel Sober; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Igor Strakovski; Steffen Strauch; Mauro Taiuti; David Tedeschi; Aram Teymurazyan; Ulrike Thoma; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Lawrence Weinstein; Michael Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Lorenzo Zana; Jixie Zhang; Bo Zhao

    2006-04-28

    The reaction {gamma}p {yields} K{sup +}K{sup -}p was studied at Jefferson Lab with photon energies from 1.8 to 3.8 GeV using a tagged photon beam. The goal was to search for a {Theta}{sup ++} pentaquark, a narrow doubly charged baryon state having strangeness S = +1 and isospin I = 1, in the pK{sup +} invariant mass spectrum. No statistically significant evidence of a {Theta}{sup ++} was found. Upper limits on the total and differential production cross section for the reaction {gamma}p {yields} K{sup -}{Theta}{sup ++} were obtained in the mass range from 1.5 to 2.0 GeV/c{sup 2}, with an upper limit of about 0.15 nb, 95% C.L. for a narrow resonance with a mass M{sub {Theta}{sup ++}} = 1.54 GeV/c{sup 2}. This result places a very stringent upper limit on the {Theta}{sup ++} width.

  18. Theta oscillations at encoding mediate the context-dependent nature of human episodic memory.

    PubMed

    Staudigl, Tobias; Hanslmayr, Simon

    2013-06-17

    Human episodic memory is highly context dependent. Therefore, retrieval benefits when a memory is recalled in the same context compared to a different context. This implies that items and contexts are bound together during encoding, such that the reinstatement of the initial context at test improves retrieval. Animal studies suggest that theta oscillations and theta-to-gamma cross-frequency coupling modulate such item-context binding, but direct evidence from humans is scarce. We investigated this issue by manipulating the overlap of contextual features between encoding and retrieval. Participants studied words superimposed on movie clips and were later tested by presenting the word with either the same or a different movie. The results show that memory performance and the oscillatory correlates of memory formation crucially depend on the overlap of the context between encoding and test. When the context matched, high theta power during encoding was related to successful recognition, whereas the opposite pattern emerged in the context-mismatch condition. In addition, cross-frequency coupling analysis revealed a context-dependent theta-to-gamma memory effect specifically in the left hippocampus. These results reveal for the first time that context-dependent episodic memory effects are mediated by theta oscillatory activity.

  19. Theta Phase Synchronization Is the Glue that Binds Human Associative Memory.

    PubMed

    Clouter, Andrew; Shapiro, Kimron L; Hanslmayr, Simon

    2017-10-04

    Episodic memories are information-rich, often multisensory events that rely on binding different elements [1]. The elements that will constitute a memory episode are processed in specialized but distinct brain modules. The binding of these elements is most likely mediated by fast-acting long-term potentiation (LTP), which relies on the precise timing of neural activity [2]. Theta oscillations in the hippocampus orchestrate such timing as demonstrated by animal studies in vitro [3, 4] and in vivo [5, 6], suggesting a causal role of theta activity for the formation of complex memory episodes, but direct evidence from humans is missing. Here, we show that human episodic memory formation depends on phase synchrony between different sensory cortices at the theta frequency. By modulating the luminance of visual stimuli and the amplitude of auditory stimuli, we directly manipulated the degree of phase synchrony between visual and auditory cortices. Memory for sound-movie associations was significantly better when the stimuli were presented in phase compared to out of phase. This effect was specific to theta (4 Hz) and did not occur in slower (1.7 Hz) or faster (10.5 Hz) frequencies. These findings provide the first direct evidence that episodic memory formation in humans relies on a theta-specific synchronization mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Patterns of Theta Activity in Limbic Anxiety Circuit Preceding Exploratory Behavior in Approach-Avoidance Conflict

    PubMed Central

    Jacinto, Luis R.; Cerqueira, João J.; Sousa, Nuno

    2016-01-01

    Theta oscillations within the hippocampus-amygdala-medial prefrontal cortex (HPC-AMY-mPFC) circuit have been consistently implicated in the regulation of anxiety behaviors, including risk-assessment. To study if theta activity during risk-assessment was correlated with exploratory behavior in an approach/avoidance paradigm we recorded simultaneous local field potentials from this circuit in rats exploring the elevated-plus maze (EPM). Opposing patterns of power variations in the ventral hippocampus (vHPC), basolateral amygdala (BLA), and prelimbic (PrL) mPFC, but not in the dorsal hippocampus (dHPC), during exploratory risk-assessment of the open arms preceded further exploration of the open arms or retreat back to the safer closed arms. The same patterns of theta power variations in the HPC-BLA-mPFC(PrL) circuit were also displayed by animals submitted to chronic unpredictable stress protocol known to induce an anxious state. Diverging patterns of vHPC-mPFC(PrL) theta coherence were also significantly correlated with forthcoming approach or avoidance behavior in the conflict situation in both controls and stressed animals; interestingly, vHPC-BLA, and BLA-mPFC(PrL) theta coherence correlated with future behavior only in stressed animals, underlying the pivotal role of the amygdala on the stress response. PMID:27713693

  1. Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior.

    PubMed

    Cohen, Michael X; Donner, Tobias H

    2013-12-01

    Action monitoring and conflict resolution require the rapid and flexible coordination of activity in multiple brain regions. Oscillatory neural population activity may be a key physiological mechanism underlying such rapid and flexible network coordination. EEG power modulations of theta-band (4-8 Hz) activity over the human midfrontal cortex during response conflict have been proposed to reflect neural oscillations that support conflict detection and resolution processes. However, it has remained unclear whether this frequency-band-specific activity reflects neural oscillations or nonoscillatory responses (i.e., event-related potentials). Here, we show that removing the phase-locked component of the EEG did not reduce the strength of the conflict-related modulation of the residual (i.e., non-phase-locked) theta power over midfrontal cortex. Furthermore, within-subject regression analyses revealed that the non-phase-locked theta power was a significantly better predictor of the conflict condition than was the time-domain phase-locked EEG component. Finally, non-phase-locked theta power showed robust and condition-specific (high- vs. low-conflict) cross-trial correlations with reaction time, whereas the phase-locked component did not. Taken together, our results indicate that most of the conflict-related and behaviorally relevant midfrontal EEG signal reflects a modulation of ongoing theta-band oscillations that occurs during the decision process but is not phase-locked to the stimulus or to the response.

  2. The effect of topological constraint on the theta temperature of a knotted polymer

    NASA Astrophysics Data System (ADS)

    Sheng, Yu-Jane; Liao, Chen-Shin

    2003-03-01

    Monte Carlo simulations were used to study the effect of topological constraints of knotted polymers on their theta temperatures. The theta temperatures were determined through two different definitions—the vanishing of the second virial coefficient A2=0, and the quasi-ideal behavior of the radius of gyration, ˜N. Prime knots with chain lengths from N=60 to 300 and with crossings from 31 to 91 were considered. For chains with finite lengths, it was found that the theta temperature determined from quasi-ideal condition of the knot increases, as the complexity of the knot increases. On the other hand, the topological complexity seemed to have no effect on the theta temperatures determined from the vanishing of the second virial coefficient. Also, our simulation results suggest that for chains with finite crossing numbers, as N→∞, theta temperatures for all knots obtained from two different approaches coincide and are equivalent to that of a linear polymer chain.

  3. Mathematically gifted adolescents mobilize enhanced workspace configuration of theta cortical network during deductive reasoning.

    PubMed

    Zhang, L; Gan, J Q; Wang, H

    2015-03-19

    Previous studies have established the importance of the fronto-parietal brain network in the information processing of reasoning. At the level of cortical source analysis, this eletroencepalogram (EEG) study investigates the functional reorganization of the theta-band (4-8Hz) neurocognitive network of mathematically gifted adolescents during deductive reasoning. Depending on the dense increase of long-range phase synchronizations in the reasoning process, math-gifted adolescents show more significant adaptive reorganization and enhanced "workspace" configuration in the theta network as compared with average-ability control subjects. The salient areas are mainly located in the anterior cortical vertices of the fronto-parietal network. Further correlation analyses have shown that the enhanced workspace configuration with respect to the global topological metrics of the theta network in math-gifted subjects is correlated with the intensive frontal midline theta (fm theta) response that is related to strong neural effort for cognitive events. These results suggest that by investing more cognitive resources math-gifted adolescents temporally mobilize an enhanced task-related global neuronal workspace, which is manifested as a highly integrated fronto-parietal information processing network during the reasoning process.

  4. Dynamic mechanical response of polyvinyl alcohol-gelatin theta-gels for nucleus pulposus tissue replacement.

    PubMed

    Charron, Patrick N; Blatt, Sarah E; McKenzie, Canaan; Oldinski, Rachael A

    2017-05-03

    Intervertebral disk degeneration is one of the most significant contributors to low back pain. Thus, there is significant interest in designing new treatments and nucleus pulposus (NP) tissue replacements. Herein, the authors propose a biosynthetic material, comprised of a polyvinyl alcohol (PVA) and gelatin theta-gel, as an acellular NP tissue replacement. Theta-gels form during the solidification of PVA and gelatin (phase I), and the phase separation of a disklike short-chain polyethylene glycol (PEG, phase II). The PVA concentration and weight ratio of PVA to PEG were optimized, in order to achieve mechanical properties resembling NP tissue. Mechanical and material properties were analyzed for the PVA-gelatin theta-gels under static and dynamic conditions. Cyclic stress-strain testing demonstrated the theta-gels' ability to relax and perform properly under dynamic loading. Altering the molecular weight and concentration of the theta-gel constituents allows for a tunable material that can match a variety of native tissue properties.

  5. Event-related theta oscillations during working memory tasks in patients with schizophrenia and healthy controls.

    PubMed

    Schmiedt, C; Brand, A; Hildebrandt, H; Basar-Eroglu, C

    2005-12-01

    Altered frontal lobe activity and executive control associated with working memory (WM) dysfunction are recognized as core deficits in schizophrenia. These impairments have been discussed as being associated with deficits in self-regulated action monitoring and anticipatory action plan generation. To study electrophysiological correlates of executive control -- specifically action monitoring and action rule switching -- under varying WM load, we used a paradigm derived from classic N-back (WM) tasks and requiring monitoring of simple actions. We focused on event-related changes in post-stimulus theta oscillatory activity during varying cognitive and WM demand in healthy controls and schizophrenia patients. The results show significant WM load and rule-switching-related increases of post-stimulus theta amplitude at fronto-central locations in controls. In patients with schizophrenia, there was no such modulation, but -- apart from an increased early theta at left temporal locations -- generally reduced late theta responses in all tasks and at all locations. Furthermore, the patients with schizophrenia showed significant differences in their error patterns, which imply differences in automation and anticipation of actions between controls and patients. These findings suggest that theta oscillations are involved in mediating frontal lobe activity and functions related to enhanced executive control. We conclude that the patients with schizophrenia showed deficits in acquiring a mental task set which appear to be associated with impairments in action monitoring and task-specific regulation of executive control.

  6. Rostral anterior cingulate activity generates posterior versus anterior theta activity linked to agentic extraversion.

    PubMed

    Chavanon, Mira-Lynn; Wacker, Jan; Stemmler, Gerhard

    2011-06-01

    Recent research using the resting electroencephalogram (EEG) showed that posterior versus anterior theta activity (around 4-8 Hz) is consistently associated with agency, reflecting the dopaminergic core of extraversion (i.e., incentive motivation, positive emotion). Neuroimaging studies using various methodologies and experimental paradigms have converged on the anterior cingulate cortex (ACC) as a neurophysiological correlate of extraversion. The aim of the present study is integrate these lines of research by testing the hypothesis that posterior versus anterior EEG theta is at least partly based on ACC theta activity. Resting EEG data were analyzed in N = 78 healthy, male participants extremely high or low in agentic extraversion (aE). Using the low-resolution electromagnetic tomography algorithm, we localized the sources of aE-dependent intracerebral theta activity within rostral subdivisions of the ACC. The posterior versus anterior index and theta current density within the rostral ACC were significantly correlated (r = -.52), and both displayed high retest stability across 5 hr and were associated with traits from the aE spectrum. These neurophysiological correlates of aE and their possible functional significance are discussed.

  7. Search for the $\\Theta^+$ pentaquark in the reaction $\\gamma d \\to p K^- K^+ n$

    SciTech Connect

    B. McKinnon; K. Hicks; N.A. Baltzell; D.S. Carman; M.D. Mestayer; T. Mibe; M. Mirazita; S. Niccolai; P. Rossi; S. Stepanyan; D.J. Tedeschi; et. al.

    2006-04-04

    A search for the {Theta}{sup +} in the reaction {gamma}d {yields} pK{sup -} K{sup +} n was completed using the CLAS detector at Jefferson Lab. An earlier publication of the same reaction by the CLAS Collaboration, with lower statistics, reported the observation of a narrow resonance, identified as the {Theta}{sup +} pentaquark. The present experiment, with more than 30 times the integrated luminosity of our earlier measurement, does not show any evidence for a narrow pentaquark resonance. The upper limit on {Theta}{sup +} production in the mass range of 1.52 to 1.56 GeV/c{sup 2} for the {gamma}d {yields} pK{sup -}{Theta}{sup +} reaction is less than 0.3 nb (95% confidence level), and less than 0.6 nb over the mass range 1.48 to 1.70 GeV/c{sup 2}. Using {Lambda}(1520) production as an empirical measure of rescattering in the deuteron, the cross section upper limit for the elementary {gamma}n {yields} K{sup -}{Theta}{sup +} reaction is estimated to be a factor of 10 higher.

  8. Corrections to scaling and crossover from good- to theta-solvent regimes of interacting polymers.

    PubMed

    Pelissetto, Andrea; Hansen, Jean-Pierre

    2005-04-01

    We exploit known properties of universal ratios, involving the radius of gyration R(g), the second and third virial coefficients B(2) and B(3), and the effective pair potential between the centers of mass of self-avoiding polymer chains with nearest-neighbor attraction, as well as Monte Carlo simulations, to investigate the crossover from good- to theta-solvent regimes of polymers of finite length L. The scaling limit and finite-L corrections to scaling are investigated in the good-solvent case and close to the theta temperature. Detailed interpolation formulas are derived from Monte Carlo data and results for the Edwards two-parameter model, providing estimates of universal ratios as functions of the observable ratio A(2)=B(2)/R(g) (3) over the whole temperature range, from the theta point to the good-solvent regime. The convergence with L (L< or =8000) is found to be satisfactory under good-solvent conditions, but longer chains would be required to match theoretical predictions near the theta point, due to logarithmic corrections. A quantitative estimate of the universal ratio A(3)=B(3)/R(g) (6) as a function of temperature shows that the third virial coefficient remains positive throughout, and goes through a pronounced minimum at the theta temperature, which goes to zero as 1/ln L in the scaling limit.

  9. Oscillatory brain states and learning: Impact of hippocampal theta-contingent training

    PubMed Central

    Seager, Matthew A.; Johnson, Lynn D.; Chabot, Elizabeth S.; Asaka, Yukiko; Berry, Stephen D.

    2002-01-01

    Eyeblink classical conditioning is a relatively simple form of associative learning that has become an invaluable tool in our understanding of the neural mechanisms of learning. When studying rabbits in this paradigm, we observed a dramatic modification of learning rate by conducting training during episodes of either hippocampal theta or hippocampal non-theta activity as determined by on-line slow-wave spectral analysis. Specifically, if animals were given trials only when a computer analysis verified a predominance of slow-wave oscillations at theta frequencies (3–8 Hz), they learned in half as many trials as animals trained during non-theta hippocampal activity (58 vs. 115). This finding provides important evidence from awake, behaving animals that supports recent advances in our knowledge of (i) brain sites and neurobiological mechanisms of learning and memory, specifically hippocampus and theta oscillations, (ii) the biological plausibility of current models of hippocampal function that posit important roles for oscillatory potentials, and (iii) the design of interfaces between biological and cybernetic (electronic) systems that can optimize cognitive processes and performance. PMID:11818559

  10. Nicotine induction of theta frequency oscillations in rodent medial septal diagonal band in vitro.

    PubMed

    Lu, Cheng-biao; Li, Cheng-zhang; Li, Dong-liang; Henderson, Zaineb

    2013-06-01

    This study aimed to examine the role of the nicotinic receptor (nAChR) in the generation of theta oscillations (4-12 Hz) in vitro. Electrophysiological studies were performed on medial septal diagonal band area (MSDB) slices to measure theta oscillation. Immunofluorescence and confocal microscopy studies were carried out to detect α4 nAChR and β2 nAChR subunits in perfused-fixed tissue from VGluT2-GFP and GAD67-GFP transgenic mice. Application of nicotine to MSDB slices produced persistent theta oscillations in which area power increased in a dose-responsive manner. This activity was inhibited by GABAA receptor antagonists and partially by ionotropic glutamate receptor antagonists, indicating the involvement of local GABAergic and glutamatergic neurons in the production of the rhythmic activity. The nicotine-induced theta activity was also inhibited selectively by non-α7*nAChR antagonists, suggesting the presence of these receptor types on GABAergic and glutamatergic neuron populations in the MSDB. This was confirmed by immunofluorescence and confocal microscopy studies in transgenic mice in which the GABAergic and glutamatergic neurons express green fluorescent protein (GFP), showing localisation of β2 nAChR and α4 nAChR subunits, the most common constituents of non-α7*nAChRs, in both cell types in the MSDB. Theta activity in the MSDB may be generated by tonic stimulation of non-α7*nAChRs.

  11. Expectancy effects in feedback processing are explained primarily by time-frequency delta not theta.

    PubMed

    Watts, Adreanna T M; Bachman, Matthew D; Bernat, Edward M

    2017-09-01

    The roles of outcome valence and expectancy in feedback processing have been investigated as important factors modulating event-related potential (ERP) measures including the feedback negativity (FN) and P300, but results have been inconsistent. Recent work from our group has shown that processes underlying the FN and P300 are better represented as separable processes in the theta (3-7Hz) and delta (0-3Hz) ranges using time-frequency analysis. The current study evaluated the modulation of time-domain FN and P300 and time-frequency theta and delta to outcome valence and expectancy in a gambling feedback task paradigm. Results revealed that the FN was sensitive to valence but not expectancy, and that valence effects were driven by loss-sensitive theta and gain-sensitive delta. Alternatively, the P300 was sensitive to the expectedness of outcomes but only for gain trials, and these expectancy differences were explained by time-frequency delta not theta. These results add to a growing body of research showing that time-frequency measures reflect separable processes underlying time-domain components, where theta is more sensitive to primary task features and less sensitive to secondary features while delta is sensitive to primary and more complex, secondary task features. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Novelty and Anxiolytic Drugs Dissociate Two Components of Hippocampal Theta in Behaving Rats

    PubMed Central

    Wells, Christine E.; Amos, Doran P.; Jeewajee, Ali; Douchamps, Vincent; Rodgers, John; O’Keefe, John; Burgess, Neil; Lever, Colin

    2013-01-01

    Hippocampal processing is strongly implicated in both spatial cognition and anxiety and is temporally organized by the theta rhythm. However, there has been little attempt to understand how each type of processing relates to the other in behaving animals, despite their common substrate. In freely moving rats, there is a broadly linear relationship between hippocampal theta frequency and running speed over the normal range of speeds used during foraging. A recent model predicts that spatial-translation-related and arousal/anxiety-related mechanisms of hippocampal theta generation underlie dissociable aspects of the theta frequency–running speed relationship (the slope and intercept, respectively). Here we provide the first confirmatory evidence: environmental novelty decreases slope, whereas anxiolytic drugs reduce intercept. Variation in slope predicted changes in spatial representation by CA1 place cells and novelty-responsive behavior. Variation in intercept predicted anxiety-like behavior. Our findings isolate and doubly dissociate two components of theta generation that operate in parallel in behaving animals and link them to anxiolytic drug action, novelty, and the metric for self-motion. PMID:23678110

  13. Bilateral Nonsynchronous Male Breast Cancer: Two Case Reports.

    PubMed

    Horimoto, Yoshiya; Hino, Mako; Saito, Mitsue; Arakawa, Atsushi; Matsumoto, Toshiharu; Kasumi, Fujio

    2008-01-01

    SUMMARY: BACKGROUND: Bilateral male breast cancer (MBC) is relatively rare. CASE REPORTS: We report 2 bilateral nonsynchronous MBC cases. Second cancers developed during endocrine therapy with selective estrogen receptor modulators (SERM) after the initial surgeries. Since their second surgeries, both patients continued treatment with another SERM, because their second cancers were also hormone receptor-positive. We discuss the endocrine therapy in men based on a review of the literature. CONCLUSIONS: Adequate treatments for early MBC are still controversial. Aromatase inhibitors (AI) are not as effective in men as in women. We consider the higher androgen levels in men to be a major reason for AI not being as effective as expected, i.e. the hormonal environment is very different from that in women. Thus, different approaches are needed for MBC. With further investigation, it is hoped that methods of achieving maximal AI efficacy for MBC will be established.

  14. Bilateral Nonsynchronous Male Breast Cancer: Two Case Reports

    PubMed Central

    Horimoto, Yoshiya; Hino, Mako; Saito, Mitsue; Arakawa, Atsushi; Matsumoto, Toshiharu; Kasumi, Fujio

    2008-01-01

    Summary Background Bilateral male breast cancer (MBC) is relatively rare. Case Reports We report 2 bilateral nonsynchronous MBC cases. Second cancers developed during endocrine therapy with selective estrogen receptor modulators (SERM) after the initial surgeries. Since their second surgeries, both patients continued treatment with another SERM, because their second cancers were also hormone receptor-positive. We discuss the endocrine therapy in men based on a review of the literature. Conclusions Adequate treatments for early MBC are still controversial. Aromatase inhibitors (AI) are not as effective in men as in women. We consider the higher androgen levels in men to be a major reason for AI not being as effective as expected, i.e. the hormonal environment is very different from that in women. Thus, different approaches are needed for MBC. With further investigation, it is hoped that methods of achieving maximal AI efficacy for MBC will be established. PMID:20824021

  15. Bilateral simultaneous central retinal artery occlusion following head injury.

    PubMed

    Narang, Subina; Kochhar, Suman; Gupta, Sonika; Gupta, Hemlata; Bansal, Rakesh; Sood, Sunandan

    2007-12-01

    To report a case of bilateral simultaneous central retinal artery occlusion (CRAO) following head injury in a young 29-year-old man. A 29-year-old man presented with head injury following road traffic accident. Posterior segment evaluation revealed CRAO in both eyes. The patient was treated for CRAO in the form of immediate ocular massage, paracentesis, intravenous mannitol and transdermal isosorbide dinitrate patch. Despite treatment the vision continued to be no perception of light. Systemic investigations were unremarkable. Color Doppler of carotid arteries showed plaque in left carotid bulb and thrombus in right internal carotid artery. Bilateral simultaneous CRAO following head trauma has not been reported earlier. Thorough ocular examination is recommended in all cases of head injury.

  16. Bilateral sternales in relation to body of sternum.

    PubMed

    Gupta, Madhur; Harjeet

    2004-06-01

    The sternalis muscle on the manubrium sterni and its communication with sternocleidomastoid has been reported by many workers as unilateral or bilateral in both the sexes. The present report deals with bilateral sternales below the angle of sternum in a male cadaver during routine dissection. The proximal attachment of the muscle was from the manubriosternal joint on either side, right being broader than left and was found to be overlapping the lateral part of sternum and adjoining pectoralis major muscle. The muscle was running downwards and laterally and was attached on the cartilage of 6th and 7th ribs appearing to be continuous with rectus abdominis muscle. The muscle was found to be innervated by branches of the corresponding intercostal nerves of these spaces. The sternalis if present could be used for reconstructive surgical operations on the breast.

  17. A rare case of bilateral cystic partially differentiated nephroblastoma recurring as bilateral cystic Wilms tumour.

    PubMed

    Kurian, Jujju Jacob; Ninan, Pradeep Joseph

    2015-04-15

    Childhood cystic partially differentiated nephroblastoma (CPDN) is an uncommon renal neoplasm. Bilateral CPDN or CPDN co-existing with a cystic nephroma/Wilms tumour is extremely rare. Treatment of CPDN is by complete surgical excision. Although local recurrences are uncommon, distant metastases have not been described. We present a case of bilateral CPDN that, after complete excision, recurred as bilateral cystic Wilms tumour. To the best of our knowledge, this is the first reported case in the literature where a bilateral CPDN has recurred as bilateral Wilms tumour.

  18. Rehabilitation for bilateral amputation of fingers

    USGS Publications Warehouse

    Stapanian, Martin A.; Stapanian, Adrienne M.P.; Staley, Keith E.

    2010-01-01

    We describe reconstructive surgeries, therapy, prostheses, and adaptations for a patient who experienced bilateral amputation of all five fingers of both hands through the proximal phalanges in January 1992. The patient made considerable progress in the use of his hands in the 10 mo after amputation, including nearly a 120% increase in the active range of flexion of metacarpophalangeal joints. In late 1992 and early 1993, the patient had "on-top plasty" surgeries, in which the index finger remnants were transferred onto the thumb stumps, performed on both hands. The increased web space and functional pinch resulting from these procedures made many tasks much easier. The patient and occupational therapists set challenging goals at all times. Moreover, the patient was actively involved in the design and fabrication of all prostheses and adaptations or he developed them himself. Although he was discharged from occupational therapy in 1997, the patient continues to actively find new solutions for prehension and grip strength 18 yr after amputation.

  19. Rehabilitation for bilateral amputation of fingers.

    PubMed

    Stapanian, Martin A; Stapanian, Adrienne M P; Staley, Keith E

    2010-01-01

    We describe reconstructive surgeries, therapy, prostheses, and adaptations for a patient who experienced bilateral amputation of all five fingers of both hands through the proximal phalanges in January 1992. The patient made considerable progress in the use of his hands in the 10 mo after amputation, including nearly a 120% increase in the active range of flexion of metacarpophalangeal joints. In late 1992 and early 1993, the patient had "on-top plasty" surgeries, in which the index finger remnants were transferred onto the thumb stumps, performed on both hands. The increased web space and functional pinch resulting from these procedures made many tasks much easier. The patient and occupational therapists set challenging goals at all times. Moreover, the patient was actively involved in the design and fabrication of all prostheses and adaptations or he developed them himself. Although he was discharged from occupational therapy in 1997, the patient continues to actively find new solutions for prehension and grip strength 18 yr after amputation.

  20. The functional role of human right hippocampal/parahippocampal theta rhythm in environmental encoding during virtual spatial navigation.

    PubMed

    Pu, Yi; Cornwell, Brian R; Cheyne, Douglas; Johnson, Blake W

    2017-03-01

    Low frequency theta band oscillations (4-8 Hz) are thought to provide a timing mechanism for hippocampal place cell firing and to mediate the formation of spatial memory. In rodents, hippocampal theta has been shown to play an important role in encoding a new environment during spatial navigation, but a similar functional role of hippocampal theta in humans has not been firmly established. To investigate this question, we recorded healthy participants' brain responses with a 160-channel whole-head MEG system as they performed two training sets of a virtual Morris water maze task. Environment layouts (except for platform locations) of the two sets were kept constant to measure theta activity during spatial learning in new and familiar environments. In line with previous findings, left hippocampal/parahippocampal theta showed more activation navigating to a hidden platform relative to random swimming. Consistent with our hypothesis, right hippocampal/parahippocampal theta was stronger during the first training set compared to the second one. Notably, theta in this region during the first training set correlated with spatial navigation performance across individuals in both training sets. These results strongly argue for the functional importance of right hippocampal theta in initial encoding of configural properties of an environment during spatial navigation. Our findings provide important evidence that right hippocampal/parahippocampal theta activity is associated with environmental encoding in the human brain. Hum Brain Mapp 38:1347-1361, 2017. © 2016 Wiley Periodicals, Inc.

  1. Simultaneous Bilateral Versus Staged Bilateral Carpal Tunnel Release: A Cost-effectiveness Analysis.

    PubMed

    Park, Kevin W; Boyer, Martin I; Gelberman, Richard H; Calfee, Ryan P; Stepan, Jeffrey G; Osei, Daniel A

    2016-11-01

    The purpose of this study was to determine if simultaneous bilateral carpal tunnel release (CTR) is a cost-effective strategy compared with bilateral staged CTR for the treatment of bilateral carpal tunnel syndrome. A decision analytic model was created to compare the cost effectiveness of three strategies (ie, bilateral simultaneous CTR, bilateral staged CTR, and no treatment). Direct medical costs were estimated from 2013 Medicare reimbursement rates and wholesale drug costs in US dollars. Indirect costs were derived from consecutive patients undergoing unilateral or simultaneous bilateral CTR at our institution and from national average wages for 2013. Health state utility values were derived from a general population of volunteers using the Short Form-6 dimensions (SF-6D) health questionnaire. Both surgical strategies were cost effective compared with the no-treatment strategy. Bilateral simultaneous CTR had lower total costs and higher total effectiveness than bilateral staged CTR, and had an incremental cost-effectiveness ratio of $921 per quality-adjusted life year compared with the no-treatment strategy. The conclusions of the analysis remained unchanged though all sensitivity analyses, displaying robustness against parameter uncertainty. Surgical management is cost effective for the treatment of bilateral carpal tunnel syndrome. Bilateral simultaneous CTR, however, has lower total costs and higher total effectiveness compared with bilateral staged CTR. Economic and Decision Analysis I.

  2. Collective Dynamics for Heterogeneous Networks of Theta Neurons

    NASA Astrophysics Data System (ADS)

    Luke, Tanushree

    Collective behavior in neural networks has often been used as an indicator of communication between different brain areas. These collective synchronization and desynchronization patterns are also considered an important feature in understanding normal and abnormal brain function. To understand the emergence of these collective patterns, I create an analytic model that identifies all such macroscopic steady-states attainable by a network of Type-I neurons. This network, whose basic unit is the model "theta'' neuron, contains a mixture of excitable and spiking neurons coupled via a smooth pulse-like synapse. Applying the Ott-Antonsen reduction method in the thermodynamic limit, I obtain a low-dimensional evolution equation that describes the asymptotic dynamics of the macroscopic mean field of the network. This model can be used as the basis in understanding more complicated neuronal networks when additional dynamical features are included. From this reduced dynamical equation for the mean field, I show that the network exhibits three collective attracting steady-states. The first two are equilibrium states that both reflect partial synchronization in the network, whereas the third is a limit cycle in which the degree of network synchronization oscillates in time. In addition to a comprehensive identification of all possible attracting macro-states, this analytic model permits a complete bifurcation analysis of the collective behavior of the network with respect to three key network features: the degree of excitability of the neurons, the heterogeneity of the population, and the overall coupling strength. The network typically tends towards the two macroscopic equilibrium states when the neuron's intrinsic dynamics and the network interactions reinforce each other. In contrast, the limit cycle state, bifurcations, and multistability tend to occur when there is competition between these network features. I also outline here an extension of the above model where the

  3. Theta-burst stimulation over primary motor cortex degrades early motor learning.

    PubMed

    Iezzi, Ennio; Suppa, Antonio; Conte, Antonella; Agostino, Rocco; Nardella, Andrea; Berardelli, Alfredo

    2010-02-01

    Theta-burst stimulation (TBS) is currently used for inducing long-lasting changes in primary motor cortex (M1) excitability. More information is needed on how M1 is involved in early motor learning (practice-related improvement in motor performance, motor retention and motor consolidation). We investigated whether inhibitory continuous TBS (cTBS) is an effective experimental approach for modulating early motor learning of a simple finger movement in healthy humans. In a short task, 11 subjects practised 160 movements, and in a longer task also testing motor consolidation ten subjects practised 600 movements. During both experiments subjects randomly received real or sham cTBS over the left M1. Motor evoked potentials were tested at baseline and 7 min after cTBS. In the 160-movement experiment to test motor retention, 20 movements were repeated 30 min after motor practice ended. In the 600-movement experiment motor retention was assessed 15 and 30 min after motor practice ended, motor consolidation was tested by performing 20 movements 24 h after motor practice ended. Kinematic variables - movement amplitude, peak velocity and peak acceleration - were measured. cTBS significantly reduced the practice-related improvement in motor performance of finger movements in the experiment involving 160 movements and in the first part of the experiment involving 600 movements. After cTBS, peak velocity and peak acceleration of the 20 movements testing motor retention decreased whereas those testing motor consolidation remained unchanged. cTBS over M1 degrades practice-related improvement in motor performance and motor retention, but not motor consolidation of a voluntary finger movement.

  4. Resting state morphology predicts the effect of theta burst stimulation in false belief reasoning.

    PubMed

    Hartwright, Charlotte E; Hardwick, Robert M; Apperly, Ian A; Hansen, Peter C

    2016-10-01

    When required to represent a perspective that conflicts with one's own, functional magnetic resonance imaging (fMRI) suggests that the right ventrolateral prefrontal cortex (rvlPFC) supports the inhibition of that conflicting self-perspective. The present task dissociated inhibition of self-perspective from other executive control processes by contrasting belief reasoning-a cognitive state where the presence of conflicting perspectives was manipulated-with a conative desire state wherein no systematic conflict existed. Linear modeling was used to examine the effect of continuous theta burst stimulation (cTBS) to rvlPFC on participants' reaction times in belief and desire reasoning. It was anticipated that cTBS applied to rvlPFC would affect belief but not desire reasoning, by modulating activity in the Ventral Attention System (VAS). We further anticipated that this effect would be mediated by functional connectivity within this network, which was identified using resting state fMRI and an unbiased model-free approach. Simple reaction-time analysis failed to detect an effect of cTBS. However, by additionally modeling individual measures from within the stimulated network, the hypothesized effect of cTBS to belief (but, importantly, not desire) reasoning was demonstrated. Structural morphology within the stimulated region, rvlPFC, and right temporoparietal junction were demonstrated to underlie this effect. These data provide evidence that inconsistencies found with cTBS can be mediated by the composition of the functional network that is being stimulated. We suggest that the common claim that this network constitutes the VAS explains the effect of cTBS to this network on false belief reasoning. Hum Brain Mapp 37:3502-3514, 2016. © 2016 Wiley Periodicals, Inc.

  5. Perfusion MRI Indexes Variability in the Functional Brain Effects of Theta-Burst Transcranial Magnetic Stimulation

    PubMed Central

    Gratton, Caterina; Lee, Taraz G.; Nomura, Emi M.; D’Esposito, Mark

    2014-01-01

    Transcranial Magnetic Stimulation (TMS) is an important tool for testing causal relationships in cognitive neuroscience research. However, the efficacy of TMS can be variable across individuals and difficult to measure. This variability is especially a challenge when TMS is applied to regions without well-characterized behavioral effects, such as in studies using TMS on multi-modal areas in intrinsic networks. Here, we examined whether perfusion fMRI recordings of Cerebral Blood Flow (CBF), a quantitative measure sensitive to slow functional changes, reliably index variability in the effects of stimulation. Twenty-seven participants each completed four combined TMS-fMRI sessions during which both resting state Blood Oxygen Level Dependent (BOLD) and perfusion Arterial Spin Labeling (ASL) scans were recorded. In each session after the first baseline day, continuous theta-burst TMS (TBS) was applied to one of three locations: left dorsolateral prefrontal cortex (L dlPFC), left anterior insula/frontal operculum (L aI/fO), or left primary somatosensory cortex (L S1). The two frontal targets are components of intrinsic networks and L S1 was used as an experimental control. CBF changes were measured both before and after TMS on each day from a series of interleaved resting state and perfusion scans. Although TBS led to weak selective increases under the coil in CBF measurements across the group, individual subjects showed wide variability in their responses. TBS-induced changes in rCBF were related to TBS-induced changes in functional connectivity of the relevant intrinsic networks measured during separate resting-state BOLD scans. This relationship was selective: CBF and functional connectivity of these networks were not related before TBS or after TBS to the experimental control region (S1). Furthermore, subject groups with different directions of CBF change after TBS showed distinct modulations in the functional interactions of targeted networks. These results suggest

  6. Bilateral symmetry across Aphrodite Terra

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.; Head, J. W.; Campbell, D. B.

    1987-01-01

    There are three main highland areas on Venus: Beta Regio, Ishtar Terra and Aphrodite Terra. The latter is least known and the least mapped, yet existing analyses of Aphrodite Terra based on available Pioneer-Venus orbiter data suggest that it may be the site of extensive rifting. Some of the highest resolution (30 km) PV data (SAR) included most of the western half of Aphrodite Terra. Recent analysis of the SAR data together with Arecibo range-doppler topographic profiling (10 X 100 km horizontal and 10 m vertical resolution) across parts of Aphrodite, further characterized the nature of possible tectonic processes in the equatorial highlands. The existence of distinct topographic and radar morphologic linear discontinuities across the nearly east-west strike of Aphrodite Terra is indicated. Another prominent set of linear features is distinctly parallel to and orthogonal to the ground tracks of the PV spacecraft and are not included because of the possibility that they are artifacts. Study of the northwest trending cross-strike discontinuities (CSD's) and the nature of topographic and morphologic features along their strike suggest the presence of bilateral topographic and morphologic symmetry about the long axis of Aphrodite Terra.

  7. Bilateral inferior petrosal sinus sampling

    PubMed Central

    Grossrubatscher, Erika; Dalino Ciaramella, Paolo; Boccardi, Edoardo

    2016-01-01

    Simultaneous bilateral inferior petrosal sinus sampling (BIPSS) plays a crucial role in the diagnostic work-up of Cushing’s syndrome. It is the most accurate procedure in the differential diagnosis of hypercortisolism of pituitary or ectopic origin, as compared with clinical, biochemical and imaging analyses, with a sensitivity and specificity of 88–100% and 67–100%, respectively. In the setting of hypercortisolemia, ACTH levels obtained from venous drainage of the pituitary are expected to be higher than the levels of peripheral blood, thus suggesting pituitary ACTH excess as the cause of hypercortisolism. Direct stimulation of the pituitary corticotroph with corticotrophin-releasing hormone enhances the sensitivity of the procedure. The procedure must be undertaken in the presence of hypercortisolemia, which suppresses both the basal and stimulated secretory activity of normal corticotrophic cells: ACTH measured in the sinus is, therefore, the result of the secretory activity of the tumor tissue. The poor accuracy in lateralization of BIPSS (positive predictive value of 50–70%) makes interpetrosal ACTH gradient alone not sufficient for the localization of the tumor. An accurate exploration of the gland is recommended if a tumor is not found in the predicted area. Despite the fact that BIPSS is an invasive procedure, the occurrence of adverse events is extremely rare, particularly if it is performed by experienced operators in referral centres. PMID:27352844

  8. Bilateral inferior petrosal sinus sampling.

    PubMed

    Zampetti, Benedetta; Grossrubatscher, Erika; Dalino Ciaramella, Paolo; Boccardi, Edoardo; Loli, Paola

    2016-07-01

    Simultaneous bilateral inferior petrosal sinus sampling (BIPSS) plays a crucial role in the diagnostic work-up of Cushing's syndrome. It is the most accurate procedure in the differential diagnosis of hypercortisolism of pituitary or ectopic origin, as compared with clinical, biochemical and imaging analyses, with a sensitivity and specificity of 88-100% and 67-100%, respectively. In the setting of hypercortisolemia, ACTH levels obtained from venous drainage of the pituitary are expected to be higher than the levels of peripheral blood, thus suggesting pituitary ACTH excess as the cause of hypercortisolism. Direct stimulation of the pituitary corticotroph with corticotrophin-releasing hormone enhances the sensitivity of the procedure. The procedure must be undertaken in the presence of hypercortisolemia, which suppresses both the basal and stimulated secretory activity of normal corticotrophic cells: ACTH measured in the sinus is, therefore, the result of the secretory activity of the tumor tissue. The poor accuracy in lateralization of BIPSS (positive predictive value of 50-70%) makes interpetrosal ACTH gradient alone not sufficient for the localization of the tumor. An accurate exploration of the gland is recommended if a tumor is not found in the predicted area. Despite the fact that BIPSS is an invasive procedure, the occurrence of adverse events is extremely rare, particularly if it is performed by experienced operators in referral centres.

  9. Episodic sequence memory is supported by a theta-gamma phase code

    PubMed Central

    Heusser, Andrew C.; Poeppel, David; Ezzyat, Youssef; Davachi, Lila

    2016-01-01

    The meaning we derive from our experiences is not a simple static extraction of the elements, but is largely based on the order in which those elements occur. Models propose that sequence encoding is supported by interactions between high and low frequency oscillations, such that elements within an experience are represented by neural cell assemblies firing at higher frequencies (i.e. gamma) and sequential order is coded by the specific timing of firing with respect to a lower frequency oscillation (i.e. theta). During episodic sequence memory formation in humans, we provide evidence that items in different sequence positions exhibit relatively greater gamma power along distinct phases of a theta oscillation. Furthermore, this segregation is related to successful temporal order memory. These results provide compelling evidence that memory for order, a core component of an episodic memory, capitalizes on the ubiquitous physiological mechanism of theta-gamma phase-amplitude coupling. PMID:27571010

  10. Patterns of theta oscillation reflect the neural basis of individual differences in epistemic motivation

    PubMed Central

    Mussel, Patrick; Ulrich, Natalie; Allen, John J. B.; Osinsky, Roman; Hewig, Johannes

    2016-01-01

    Theta oscillations in the EEG have been shown to reflect ongoing cognitive processes related to mental effort. Here, we show that the pattern of theta oscillation in response to varying cognitive demands reflects stable individual differences in the personality trait epistemic motivation: Individuals with high levels of epistemic motivation recruit relatively more cognitive resources in response to situations possessing high, compared to low, cognitive demand; individuals with low levels do not show such a specific response. Our results provide direct evidence for the theory of the construct need for cognition and add to our understanding of the neural processes underlying theta oscillations. More generally, we provide an explanation how individual differences in personality traits might be represented on a neural level. PMID:27380648

  11. DE 1 observations of theta aurora plasma source regions and Birkeland current charge carriers

    NASA Astrophysics Data System (ADS)

    Menietti, J. D.; Burch, J. L.

    1987-07-01

    Detailed analyses of the DE 1 high-altitude plasma instrument electron and ion data have been performed for four passes during which theta auroras were observed. The data indicate that the theta auroras occur on what appear to be closed field lines with particle signatures and plasma parameters that are quite similar to those of the magnetospheric boundary plasma sheet. The field-aligned currents computed from particle fluxes in the energy range 18-13 keV above the theta auroras are observed to be generally downward on the dawnside of the arcs with a narrower region of larger (higher density) upward currents on the duskside of the arcs. These currents are carried predominantly by field-aligned beams of accelerated cold electrons. Of particualr interest in regions of upward field-aligned current are downward electron beams at energies less than the inferred potential drop above the spacecraft.

  12. DE 1 observations of theta aurora plasma source regions and Birkeland current charge carriers

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Burch, J. L.

    1987-01-01

    Detailed analyses of the DE 1 high-altitude plasma instrument electron and ion data have been performed for four passes during which theta auroras were observed. The data indicate that the theta auroras occur on what appear to be closed field lines with particle signatures and plasma parameters that are quite similar to those of the magnetospheric boundary plasma sheet. The field-aligned currents computed from particle fluxes in the energy range 18-13 keV above the theta auroras are observed to be generally downward on the dawnside of the arcs with a narrower region of larger (higher density) upward currents on the duskside of the arcs. These currents are carried predominantly by field-aligned beams of accelerated cold electrons. Of particualr interest in regions of upward field-aligned current are downward electron beams at energies less than the inferred potential drop above the spacecraft.

  13. Independent control of gamma and theta activity by distinct interneuron networks in the olfactory bulb

    PubMed Central

    Fukunaga, Izumi; Herb, Jan; Kollo, Mihaly; Boyden, Edward S; Schaefer, Andreas T

    2014-01-01

    Circuits in the brain possess a remarkable ability to orchestrate activities on different timescales, but how distinct circuits interact to sculpt diverse rhythms remains unresolved. The olfactory bulb is a classic example where slow, theta, and fast, gamma, rhythms coexist. Furthermore inhibitory interneurons generally implicated in rhythm generation are segregated into distinct layers, neatly separating local from global motifs. Here, combining intracellular recordings in vivo with circuit-specific optogenetic interference we dissect the contribution of inhibition to rhythmic activity in the mouse olfactory bulb. We found that the two inhibitory circuits control rhythms on distinct timescales: local, glomerular networks coordinate theta activity, regulating baseline and odor-evoked inhibition; granule cells orchestrate gamma synchrony and spike timing. Surprisingly, they did not contribute to baseline rhythms, or sniff-coupled odor-evoked inhibition despite their perceived dominance. Thus, activities on theta and gamma time scales are controlled by separate, dissociable inhibitory networks in the olfactory bulb. PMID:24997762

  14. A search for rapid spectroscopic variability in the early-type supergiants Gamma and Theta ARA

    NASA Astrophysics Data System (ADS)

    Baade, D.

    1983-08-01

    High dispersion spectra of the Si III 5442-74 A triplet and H-alpha show variable line profiles for Gamma Ara and Theta Ara. The Si III lines are asymmetric, with changes occurring even within one hour. These observations are reminiscent of, though not identical to, the Smith and Ebbets (1981) observations of Rho Leo, for which a multimode nonradial pulsation basis was suggested. The behavior of Gamma Ara may also be described in these terms, although Theta Ara, being 2500 K cooler, did not exhibit a similar behavior. It is tentatively suggested that during the first of the two distinct change periods observed for Theta Ara, where blue and red asymmetries were found in the Si II and H-alpha lines, convective motions distorted the profiles. These motions ceased due to the sudden onset of a stronger net outward flow of matter or a change in convective region location or thickness.

  15. Semantic priming increases left hemisphere theta power and inter-trial phase synchrony

    PubMed Central

    Salisbury, Dean F; Taylor, Grantley

    2011-01-01

    Information is stored in distributed cortical networks, but it is unclear how distributed stores are synthesized into a unified percept. Activation of local circuits in the gamma range (30<>80 Hz), and distributed stores in the low theta range (3–5 Hz) may underlie perceptual binding. Words have a crucial role in semantic memory. Within memory the activation of distributed semantic stores is facilitated by conceptually related previous items, termed semantic priming. We sought to detect event-related brain oscillations (EROs) sensitive to semantic activation and priming. Here we show that low theta evoked power and inter-trial phase locking (4–5 Hz) from 250–350 msec over left hemisphere language areas was greater to related than to unrelated words. Theta band event-related oscillations over left hemisphere language areas may provide a brain signature for semantic activation across distributed stores being facilitated by semantic priming. PMID:22176140

  16. Single neuron activity and theta modulation in the posterior parietal cortex in a visuospatial attention task.

    PubMed

    Yang, Fang-Chi; Jacobson, Tara K; Burwell, Rebecca D

    2017-03-01

    The posterior parietal cortex (PPC) is implicated in directing and maintaining visual attention to locations in space. We hypothesized that the PPC also engages other cognitive processes in the transformation of behaviorally relevant visual inputs into appropriate actions, for example, monitoring of multiple locations, selection of responses to locations in space, and monitoring the outcome of response selections. We recorded single cells and local field potentials in the rat PPC during performance on a novel visuospatial attention (VSA) task that requires visually monitoring locations in space in order to make appropriate stimulus-guided locomotor responses. In each trial, rats attended to four locations on the floor of a maze. A randomly chosen location was briefly illuminated. Approach to the correct target location was followed by food reward. We observed that PPC activity correlated with multiple phases of the VSA task, including monitoring for stimulus onset, detection of a target, spatial location of the target, and target choice. A substantial proportion of cells with behavioral correlates were also modulated by outcome of the trial. Our analyses of local field potentials revealed strong oscillatory rhythms in the theta frequency band, and more than a third of PPC neurons were phase locked to theta oscillations. As in other brain regions, theta power correlated with running speed. Peak theta power was higher in superficial layers than deep layers providing evidence against volume conduction from the hippocampus. In addition, theta power was sensitive to the outcome of a choice. Theta power was significantly higher following incorrect choices compared with correct choices, possibly providing a prediction error signal. Our study provides evidence that the rat PPC has multiple roles in the translation of visual information into appropriate behavioral actions. © 2016 Wiley Periodicals, Inc.

  17. GABAergic neurons of the medial septum lead the hippocampal network during theta activity.

    PubMed

    Hangya, Balázs; Borhegyi, Zsolt; Szilágyi, Nóra; Freund, Tamás F; Varga, Viktor

    2009-06-24

    Information processing in the hippocampus critically relies on its reciprocal interaction with the medial septum (MS). Synchronization of the septo-hippocampal system was demonstrated during both major hippocampal activity states, the regular theta rhythm and the large amplitude irregular activity. Previous experimental and modeling data suggest that the MS provides rhythmic drive to the hippocampus, and hippocampo-septal feedback synchronizes septal pacemaker units. However, this view has recently been questioned based on the possibility of intrahippocampal theta genesis. Previously, we identified putative pacemaker neurons expressing parvalbumin (PV) and/or the pacemaker hyperpolarization-activated and cyclic nucleotide-gated nonselective cation channel (HCN) in the MS. In this study, by analyzing the temporal relationship of activity between the PV/HCN-containing medial septal neurons and hippocampal local field potential, we aimed to uncover whether the sequence of events during theta formation supports the classic view of septal drive or the challenging theory of hippocampal pacing of theta. Importantly, by implementing a circular statistical method, a temporal lead of these septal neurons over the hippocampus was observed on the course of theta synchronization. Moreover, the activity of putative hippocampal interneurons also preceded hippocampal local field theta, but by a shorter time period compared with PV/HCN-containing septal neurons. Using the concept of mutual information, the action potential series of PV/HCN-containing neurons shared higher amount of information with hippocampal field oscillation than PV/HCN-immunonegative cells. Thus, a pacemaker neuron population of the MS leads hippocampal activity, presumably via the synchronization of hippocampal interneurons.

  18. Theta oscillations are sensitive to both early and late conflict processing stages: effects of alcohol intoxication.

    PubMed

    Kovacevic, Sanja; Azma, Sheeva; Irimia, Andrei; Sherfey, Jason; Halgren, Eric; Marinkovic, Ksenija

    2012-01-01

    Prior neuroimaging evidence indicates that decision conflict activates medial and lateral prefrontal and parietal cortices. Theoretical accounts of cognitive control highlight anterior cingulate cortex (ACC) as a central node in this network. However, a better understanding of the relative primacy and functional contributions of these areas to decision conflict requires insight into the neural dynamics of successive processing stages including conflict detection, response selection and execution. Moderate alcohol intoxication impairs cognitive control as it interferes with the ability to inhibit dominant, prepotent responses when they are no longer correct. To examine the effects of moderate intoxication on successive processing stages during cognitive control, spatio-temporal changes in total event-related theta power were measured during Stroop-induced conflict. Healthy social drinkers served as their own controls by participating in both alcohol (0.6 g/kg ethanol for men, 0.55 g/kg women) and placebo conditions in a counterbalanced design. Anatomically-constrained magnetoencephalography (aMEG) approach was applied to complex power spectra for theta (4-7 Hz) frequencies. The principal generator of event-related theta power to conflict was estimated to ACC, with contributions from fronto-parietal areas. The ACC was uniquely sensitive to conflict during both early conflict detection, and later response selection and execution stages. Alcohol attenuated theta power to conflict across successive processing stages, suggesting that alcohol-induced deficits in cognitive control may result from theta suppression in the executive network. Slower RTs were associated with attenuated theta power estimated to ACC, indicating that alcohol impairs motor preparation and execution subserved by the ACC. In addition to their relevance for the currently prevailing accounts of cognitive control, our results suggest that alcohol-induced impairment of top-down strategic processing

  19. Bilateral sudden sensorineural hearing loss: review.

    PubMed

    Sara, S A; Teh, B M; Friedland, P

    2014-01-01

    Unilateral and bilateral sudden sensorineural hearing loss represent different disease entities. The unilateral condition is more common and predominantly idiopathic, and up to 65 per cent of patients spontaneously recover hearing. Conversely, the bilateral condition is rare, mostly associated with serious systemic conditions, and has a higher prevalence of morbidity and mortality. A literature search using the PubMed database was conducted using the MeSH terms 'sudden', 'bilateral' and 'sensorineural hearing loss'. One hundred and three reported cases of bilateral sudden sensorineural hearing loss were identified. The condition is most often associated with toxic, autoimmune, neoplastic and vascular conditions. A younger age of onset, with a bimodal age distribution, was seen for bilateral sudden sensorineural hearing loss, compared with the unilateral condition. Patients with the bilateral condition had more profound hearing loss, with poorer recovery and a 35 per cent mortality rate. Vestibular symptoms were also less common than in the unilateral condition. The presentation of bilateral sudden onset sensorineural hearing loss is a medical emergency requiring thorough and urgent investigation to exclude life-threatening and reversible conditions.

  20. Heterochronic bilateral ectopic pregnancy after ovulation induction.

    PubMed

    Zhu, Bo; Xu, Gu-feng; Liu, Yi-feng; Qu, Fan; Yao, Wei-miao; Zhu, Yi-min; Gao, Hui-juan; Zhang, Dan

    2014-08-01

    Ectopic pregnancy is identified with the widely-applied assisted reproductive technology (ART). Bilateral ectopic pregnancy is a rare form of ectopic pregnancy which is difficult to be diagnosed at the pre-operation stage. In this paper, we presented an unusual case of heterochronic bilateral ectopic pregnancy after stimulated intrauterine insemination (IUI), where there has been a delay of 22 d between the diagnoses of the two ectopic pregnancies. Literature was reviewed on the occurrence of bilateral ectopic pregnancy during the past four years in the MEDLINE database. We found 16 cases of bilateral ectopic pregnancy reported since 2008, and analyzed the characteristics of those cases of bilateral ectopic pregnancy. We emphasize that ovulation induction and other ARTs may increase the risk of bilateral ectopic pregnancy. Because of the difficulty in identification of bilateral ectopic pregnancy by ultrasonography, the clinician should be aware that the treatment of one ectopic pregnancy does not preclude the occurrence of a second ectopic pregnancy in the same patient and should pay attention to the intra-operation inspection of both side fallopian tubes in any ectopic pregnancy case.

  1. Bilateral simultaneous sudden sensorineural hearing loss.

    PubMed

    Chen, Yen-Hung; Young, Yi-Ho

    2016-03-15

    This study adopted an inner ear test battery and MR imaging in patients with bilateral sudden sensorineural hearing loss (SSNHL) to investigate their causes, disease extent, and evaluate hearing outcome. From 1995 to 2014, 16 patients with bilateral SSNHL received audiometry, caloric test and MR imaging. Vestibular-evoked myogenic potential (VEMP) test was added to the test battery after 2000. Percentages of abnormal mean hearing level (MHL), cervical VEMP test, ocular VEMP test, and caloric test in patients with bilateral SSNHL were 100% (32/32), 100% (12/12), 100% (4/4), and 81% (26/32), respectively, implying that not only the cochlear part but also the vestibular part was severely affected in both ears. Causes of bilateral SSNHL were neoplasm in 5 patients, stroke in 5, meningitis in 1, and unknown in 5. Post-treatment MHL did not significantly differ from pre-treatment MHL indicating poor hearing outcome. Seven patients (44%) had passed away within 5years after onset, 2 patients were lost, and 7 patients survived. Via MR imaging, causes of bilateral SSNHL were identified for 69% of cases. Both cochlear and vestibular endorgans/afferents were identified to be severely affected bilaterally by the vestibular test battery and resulted in poor hearing outcome. A high mortality rate (44%) indicates that bilateral SSNHL is an ominous sign for a more sinister underlying disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The future of reactor neutrino experiments: A novel approach to measuring theta{sub 13}

    SciTech Connect

    Heeger, Karsten M.; Freedman, Stuart J.; Luk, Kam-Biu

    2003-08-24

    Results from non-accelerator neutrino oscillation experiments have provided evidence for the oscillation of massive neutrinos. The subdominant oscillation, the coupling of the electron neutrino flavor to the third mass eigenstate, has not been measured yet. The size of this coupling U{sub e3} and its corresponding mixing angle theta{sub 13} are critical for CP violation searches in the lepton sector and will define the future of accelerator neutrino physics. The current best limit on U{sub e3} comes from the CHOOZ reactor neutrino disappearance experiment. In this talk we review proposals for future measurements of theta-13 with reactor antineutrinos.

  3. Relativistic five-quark equations and the nature of {theta} pentaquarks

    SciTech Connect

    Gerasyuta, S.M.; Kochkin, V.I.

    2005-04-01

    The relativistic five-quark equations are found in the framework of the dispersion relation technique. The solutions of these equations using the method based on the extraction of the leading singularities of the amplitudes are obtained. The five-quark amplitudes for the low-lying pentaquarks including the u, d, s quarks are calculated. The poles of these amplitudes determine the masses of {theta} pentaquarks. The mass spectra of the isotensor {theta} pentaquarks with J{sup P}=(1/2){sup {+-}},(3/2){sup {+-}} are calculated.

  4. Transient loss of plasma from a theta pinch having an initially reversed magnetic field

    SciTech Connect

    Heidrich, J. E.

    1981-01-01

    The results of an experimental study of the transient loss of plasma from a 25-cm-long theta pinch initially containing a reversed trapped magnetic field are presented. The plasma, amenable to MHD analyses, was a doubly ionized helium plasma characterized by an ion density N/sub i/ = 2 x 10/sup 16/ cm/sup -3/ and an ion temperature T/sub i/ = 15 eV at midcoil and by N/sub i/ = 0.5 x 10/sup 16/ cm/sup -3/ and T/sub i/ = 6 eV at a position 2.5 cm beyond the end of the theta coil.

  5. Entanglement-assisted zero-error capacity is upper-bounded by the Lovasz {theta} function

    SciTech Connect

    Beigi, Salman

    2010-07-15

    The zero-error capacity of a classical channel is expressed in terms of the independence number of some graph and its tensor powers. This quantity is hard to compute even for small graphs such as the cycle of length seven, so upper bounds such as the Lovasz theta function play an important role in zero-error communication. In this paper, we show that the Lovasz theta function is an upper bound on the zero-error capacity even in the presence of entanglement between the sender and receiver.

  6. Theta activity in the waking EEG is a marker of sleep propensity in the rat.

    PubMed

    Vyazovskiy, Vladyslav V; Tobler, Irene

    2005-07-19

    In humans, EEG power in the theta frequency band (5-8 Hz) during quiet waking increases during sleep deprivation (SD), and predicts the subsequent homeostatic increase of sleep slow-wave activity (SWA; EEG power between 0.5 and 4.0 Hz). These findings indicate that theta power in waking is an EEG variable, which reflects the rise in sleep propensity. In rodents, a number of short sleep attempts, as well as SWA in the waking EEG increase in the course of SD, but neither variable predicts the subsequent homeostatic increase of EEG SWA during recovery sleep. To investigate whether there is an EEG marker for sleep propensity also in rodents, the EEG of the rat was recorded during 6 h SD in the first half of the light period (SDL, n = 7). During SDL, power of the waking EEG showed an increase in the delta (1.5-4 Hz) and low theta (5-6.5 Hz) band. Based on the neck muscle EMG, wakefulness was subdivided into active (high EMG activity) and quiet (low EMG activity) waking. During quiet waking, the theta peak occurred at 5.5 Hz, the frequency at which the increase of EEG power during SD was most pronounced. This increase was due to higher amplitude of theta waves, while wave incidence (frequency) was unchanged. Correlation analysis showed that the rise in EEG power in the 5-7 Hz band during SD predicted the subsequent enhancement of SWA in non-rapid eye movement sleep. The analysis of data of a further batch of rats which were sleep deprived for 6 h after dark onset (SDD, n = 7) revealed a significant increase in theta-wave amplitude during the SD and a tendency for a similar, positive correlation between the increase of theta power (5-7 Hz) and subsequent SWA. The results indicate that in rats, as in humans, a specific waking EEG frequency, i.e., theta power in quiet waking is a marker of sleep propensity.

  7. [Bilateral persistent hyaloid artery. A case report].

    PubMed

    Borbolla-Pertierra, A M; Martínez-Hernández, C K; Juárez-Echenique, J C

    2014-06-01

    A 5-year-old male presented with bilateral poor vision, esotropia and a previous diagnosis of cataract since he was 1 year old. The physical examination revealed bilateral posterior paracentric capsule opacification, vitreous cavity with a permeable pulsatile blood filled hyaloid artery in both eyes. He was kept under observation. Persistent hyaloid artery is an uncommon faulty primary vitreous regression, often unilateral (although it may be bilateral) and sporadic, associated with microphthalmos. It may be complicated with glaucoma and phthisis bulbi. Vitrectomy plus lensectomy or simple observation are the accepted treatment options. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  8. Bilateral four heads of the sternocleidomastoid muscle.

    PubMed

    Kim, So-Yeon; Jang, Han-Bin; Kim, Jinu; Yoon, Sang Pil

    2015-09-01

    The sternocleidomastoid muscle shows a wide range of variations including supernumerary muscular heads. We found a rare variation in the sternocleidomastoid muscle with bilateral supernumerary heads in a 67-year-old Korean male cadaver. Bilateral four muscle bellies were recorded: two sternomastoids, one cleido-occipital and one cleido-mastoid occipital on the right side, and one sternomastoid, one cleido-occipital and two cleido-mastoids on the left side. The variation of bilateral four heads on sternocleidomastoid muscle is important to surgeons and anesthetists for clinical using.

  9. Fibromuscular Dysplasia Presenting with Bilateral Renal Infarction

    SciTech Connect

    Doody, O.; Adam, W. R.; Foley, P. T.; Lyon, S. M.

    2009-03-15

    Fibromuscular dysplasia (FMD) describes a group of conditions which cause nonatheromatous arterial stenoses, most commonly of the renal and carotid arteries, typically in young women. We report a rare case of bilateral segmental renal infarction secondary to FMD in a young male patient. His initial presentation with loin pain and pyrexia resulted in a delay in the definitive diagnosis of FMD. He was successfully treated with bilateral balloon angioplasty. The delayed diagnosis in this patient until the condition had progressed to bilateral renal infarcts highlights the need for prompt investigation and diagnosis of suspected cases of FMD.

  10. Bilateral Coordination of Children who are Blind.

    PubMed

    Rutkowska, Izabela; Lieberman, Lauren J; Bednarczuk, Grzegorz; Molik, Bartosz; Kazimierska-Kowalewska, Kalina; Marszałek, Jolanta; Gómez-Ruano, Miguel-Ángel

    2016-04-01

    The purpose of this study was to evaluate the bilateral coordination in children and adolescents with visual impairments aged 7 to 18 years in comparison to their sighted peers. An additional objective was to identify the influence of sex and age on bilateral coordination. Seventy-five individuals with congenital severe visual impairment (40 girls and 35 boys) comprised the visually impaired group. The Sighted group comprised 139 youth without visual impairment. Subtest 4 of the Bruininks-Oseretsky Test of Motor Proficiency was administered to test bilateral coordination. To analyze the effect of the independent variables in the results obtained in the Subtest 4, four linear regression models were applied according to group and sex. The results indicated that severe visual impairment and lack of visual sensation had a negative effect on the development of participants' bilateral coordination, which however did not depend on sex or age. © The Author(s) 2016.

  11. Xanthogranulomatous pyelonephritis with bilateral nephrocutaneous fistulae.

    PubMed

    Biyani, C S; Torella, F; Cornford, P A; Brough, S J

    1997-01-01

    This case report describes a patient with bilateral nephrocutaneous fistulae and xanthogranulomatous pyelonephritis. Contralateral involvement of the psoas muscle is a rare occurrence and has not been previously documented.

  12. Bilateral persistent pupillary membranes associated with cataract

    PubMed Central

    Ahmad, Syed Shoeb; Binson, Caroline; Lung, Chong Ka; Ghani, Shuaibah Abdul

    2011-01-01

    Summary Exuberant persistent pupillary membranes (PPM) are rare in adult eyes. We report the case of a 53-year-old man diagnosed with bilateral, profuse, persistent pupillary membranes and unilateral cataract. PMID:23362401

  13. Inactivation of the medial mammillary nucleus attenuates theta rhythm activity in the hippocampus in urethane-anesthetized rats.

    PubMed

    Żakowski, Witold; Braszka, Łukasz; Zawistowski, Piotr; Orzeł-Gryglewska, Jolanta; Jurkowlaniec, Edyta

    2017-04-03

    Although the importance of the mammillary body for memory and learning processes is well known, its exact role has remained vague. The fact, that many neurons in one nucleus of the mammillary body in rats, i.e. the medial mammillary nucleus (MM), fires according with hippocampal theta rhythm, makes this structure crucial for a theta rhythm signaling in so-called extended hippocampal system. These neurons are driven by descending projections from the hippocampal formation, but it is still unknown whether the mammillary body only conveys theta rhythm or may also modulate it. In the present study, we investigated the effect of pharmacological inactivation (local infusion of 0.5μl of 20% procaine hydrochloride solution) of the MM on hippocampal theta rhythm in urethane-anesthetized rats. We found that intra-MM procaine microinjections suppress sensory-elicited theta rhythm in the hippocampus by reduction of its amplitude, but not the frequency. Procaine infusion decreased the EEG signal power of low theta frequency bands, i.e. 3-5Hz, down to 9.2% in 3-4Hz band in comparison to pre-injection conditions. After water infusion (control group) no changes of hippocampal EEG signal power were observed. Our findings showed for the first time that inactivation of the MM leads to a disruption of hippocampal theta rhythm in the rat, which may suggest that the mammillary body can regulate theta rhythm signaling in the extended hippocampal system.

  14. Theta-alpha EEG phase distributions in the frontal area for dissociation of visual and auditory working memory.

    PubMed

    Akiyama, Masakazu; Tero, Atsushi; Kawasaki, Masahiro; Nishiura, Yasumasa; Yamaguchi, Yoko

    2017-03-07

    Working memory (WM) is known to be associated with synchronization of the theta and alpha bands observed in electroencephalograms (EEGs). Although frontal-posterior global theta synchronization appears in modality-specific WM, local theta synchronization in frontal regions has been found in modality-independent WM. How frontal theta oscillations separately synchronize with task-relevant sensory brain areas remains an open question. Here, we focused on theta-alpha phase relationships in frontal areas using EEG, and then verified their functional roles with mathematical models. EEG data showed that the relationship between theta (6 Hz) and alpha (12 Hz) phases in the frontal areas was about 1:2 during both auditory and visual WM, and that the phase distributions between auditory and visual WM were different. Next, we used the differences in phase distributions to construct FitzHugh-Nagumo type mathematical models. The results replicated the modality-specific branching by orthogonally of the trigonometric functions for theta and alpha oscillations. Furthermore, mathematical and experimental results were consistent with regards to the phase relationships and amplitudes observed in frontal and sensory areas. These results indicate the important role that different phase distributions of theta and alpha oscillations have in modality-specific dissociation in the brain.

  15. Theta-alpha EEG phase distributions in the frontal area for dissociation of visual and auditory working memory

    PubMed Central

    Akiyama, Masakazu; Tero, Atsushi; Kawasaki, Masahiro; Nishiura, Yasumasa; Yamaguchi, Yoko

    2017-01-01

    Working memory (WM) is known to be associated with synchronization of the theta and alpha bands observed in electroencephalograms (EEGs). Although frontal-posterior global theta synchronization appears in modality-specific WM, local theta synchronization in frontal regions has been found in modality-independent WM. How frontal theta oscillations separately synchronize with task-relevant sensory brain areas remains an open question. Here, we focused on theta-alpha phase relationships in frontal areas using EEG, and then verified their functional roles with mathematical models. EEG data showed that the relationship between theta (6 Hz) and alpha (12 Hz) phases in the frontal areas was about 1:2 during both auditory and visual WM, and that the phase distributions between auditory and visual WM were different. Next, we used the differences in phase distributions to construct FitzHugh-Nagumo type mathematical models. The results replicated the modality-specific branching by orthogonally of the trigonometric functions for theta and alpha oscillations. Furthermore, mathematical and experimental results were consistent with regards to the phase relationships and amplitudes observed in frontal and sensory areas. These results indicate the important role that different phase distributions of theta and alpha oscillations have in modality-specific dissociation in the brain. PMID:28266595

  16. Voluntary and involuntary running in the rat show different patterns of theta rhythm, physical activity, and heart rate.

    PubMed

    Li, Jia-Yi; Kuo, Terry B J; Yen, Jiin-Cherng; Tsai, Shih-Chih; Yang, Cheryl C H

    2014-05-01

    Involuntarily exercising rats undergo more physical and mental stress than voluntarily exercising rats; however, these findings still lack electrophysiological evidence. Many studies have reported that theta rhythm appears when there is mental stress and that it is affected by emotional status. Thus we hypothesized that the differences between voluntary and involuntary movement should also exist in the hippocampal theta rhythm. Using the wheel and treadmill exercise models as voluntary and involuntary exercise models, respectively, this study wirelessly recorded the hippocampal electroencephalogram, electrocardiogram, and three-dimensional accelerations of young male rats. Treadmill and wheel exercise produced different theta patterns in the rats before and during running. Even though the waking baselines for the two exercise types were recorded in different environments, there did not exist any significant difference after distinguishing the rats' sleep/wake status. When the same movement-related parameters are considered, the treadmill running group showed more changes in their theta frequency (4-12 Hz), in their theta power between 9.5-12 Hz, and in their heart rate than the wheel running group. A positive correlation between the changes in high-frequency (9.5-12 Hz) theta power and heart rate was identified. Our results reveal various voluntary and involuntary changes in hippocampal theta rhythm as well as divergences in heart rate and high-frequency theta activity that may represent the effects of an additional emotional state or the sensory interaction during involuntary running by rats.

  17. Case of bilateral pneumolabyrinth presenting as sudden, bilateral deafness, without temporal bone fracture, after a fall.

    PubMed

    Lee, E J; Yang, Y S; Yoon, Y J

    2012-07-01

    We report a case of bilateral pneumolabyrinth presenting as sudden, bilateral deafness, without temporal bone fracture, after a fall. A 49-year-old man presented with sudden, bilateral deafness and whirling vertigo, without any other neurological manifestations. Temporal bone computed tomography clearly demonstrated the presence of air in the vestibule and cochlea on both sides. However, there was no definite fracture line, ossicular chain anomaly or soft tissue density in the temporal bone or middle-ear cavity. The patient was treated conservatively. Unfortunately, there was no improvement in his hearing. Pneumolabyrinth is an uncommon condition in which air is present in the vestibule or cochlea. It is rarely found, even with fractures violating the otic capsule or with transverse fractures of the temporal bone. In addition, its bilateral occurrence is extremely rare. In this article, we describe a case of bilateral pneumolabyrinth presenting as sudden, bilateral deafness, without temporal bone fracture, an occurrence which has not previously been reported.

  18. [Adult case of acute encephalopathy associated with bilateral thalamic lesions and peripheral neuropathy].

    PubMed

    Saji, Naoki; Yamamoto, Nobuaki; Yoda, Junko; Tadano, Makoto; Yamasaki, Hiroshi; Shimizu, Hirotaka; Kawarai, Toshitaka; Kita, Yasushi

    2006-11-01

    A 76-year-old woman developed fever and consciousness disturbance. The next day, she became delirious and was brought to our hospital. On arrival, she was unconscious and showed hypopnea and hypotension. She was immediately intubated and placed on a respirator. CSF protein was 65.8 mg/dl with 1 cell/microl, and no oligoclonal bands were present. An electroencephalogram showed diffuse theta background activity without epileptic discharges. A nerve conduction study showed damaged motor and sensory peripheral nerve functions in the upper and lower limbs. The neurological findings showed no improvement after methylprednisolone pulse therapy and administration of intravenous immunoglobulin. Magnetic resonance imaging of the brain, including diffusion-weighted images showed bilateral symmetric lesions in the thalamus, globus pallidus and pontine tegmentum. These radiologic findings are not typically, but are similar to those of acute necrotizing encephalopathy (ANE) of childhood as proposed by Mizuguchi et al. After 10 months, brain MRI showed bilateral brain atrophy and a reduction of the abnormal thalamic lesions. There are very few reports of adult cases of ANE, in which, pathologically, local breakdown of the blood-brain-barrier causes acute edema and necrosis involving both gray and white matter. ANE is thought a proinflammatory cytokine-related disease. In our case, the concentrations of some cytokines (IL-6, IL-10) were elevated in serum and cerebrospinal fluid, which might suggest a relationship with them and local breakdown of the blood-brain-barrier in the thalamus.

  19. Bilateral cerebellopontine arachnoid cyst: A rare entity.

    PubMed

    Sharma, Anand; Sharma, Achal; Mittal, Radhey S; Gandhi, Ashok

    2015-01-01

    Bilateral cerebellopontine angle (CPA) arachnoid cysts (ACs) are very rare: only one case is reported in literature. Pathogenesis of those cysts is unknown; they are thought to be congenital. The presenting symptoms of CPA AC are frequently nonspecific or otological. The management of ACs of the CPA is controversial. We are reporting two cases of bilateral CPA AC with their pathophysiology and review of literature.

  20. Bilateral synchronous plasmacytoma of the testis

    PubMed Central

    Joseph, Rona; Soman, Lali V.

    2016-01-01

    Extramedullary plasmacytoma (EMP) is usually seen in the head and neck regions and in the upper respiratory, gastrointestinal, and central nervous systems. Testis is a rare site for EMP, and bilateral synchronous testicular plasmacytoma occurring as an isolated event at initial presentation has been reported only once previously. We present herein the second such report in a 70-year-old man who underwent bilateral orchidectomy. PMID:27034568

  1. Bilateral Facial Paralysis: A 13-Year Experience.

    PubMed

    Gaudin, Robert A; Jowett, Nathan; Banks, Caroline A; Knox, Christopher J; Hadlock, Tessa A

    2016-10-01

    Bilateral facial palsy is a rare clinical entity caused by myriad disparate conditions requiring different treatment paradigms. Lyme disease, Guillain-Barré syndrome, and leukemia are several examples. In this article, the authors describe the cause, the initial diagnostic approach, and the management of long-term sequelae of bilateral paralysis that has evolved in the authors' center over the past 13 years. A chart review was performed to identify all patients diagnosed with bilateral paralysis at the authors' center between January of 2002 and January of 2015. Demographics, signs and symptoms, diagnosis, initial medical treatment, interventions for facial reanimation, and outcomes were reviewed. Of the 2471 patients seen at the authors' center, 68 patients (3 percent) with bilateral facial paralysis were identified. Ten patients (15 percent) presented with bilateral facial paralysis caused by Lyme disease, nine (13 percent) with Möbius syndrome, nine (13 percent) with neurofibromatosis type 2, five (7 percent) with bilateral facial palsy caused by brain tumor, four (6 percent) with Melkersson-Rosenthal syndrome, three (4 percent) with bilateral temporal bone fractures, two (3 percent) with Guillain-Barré syndrome, one (2 percent) with central nervous system lymphoma, one (2 percent) with human immunodeficiency virus infection, and 24 (35 percent) with presumed Bell palsy. Treatment included pharmacologic therapy, physical therapy, chemodenervation, and surgical interventions. Bilateral facial palsy is a rare medical condition, and treatment often requires a multidisciplinary approach. The authors outline diagnostic and therapeutic algorithms of a tertiary care center to provide clinicians with a systematic approach to managing these complicated patients.

  2. Bilateral Keratectasia 34 Years after Corneal Transplant

    PubMed Central

    Valldeperas, Xavier; Angi, Martina; Romano, Vito; Romano, Mario R.

    2010-01-01

    We report the clinical findings of a patient with severe bilateral keratectasia 34 years after a penetrating keratoplasty (PK) in both eyes. An otherwise healthy 67-year-old man complained of deterioration of the eyesight in both eyes over the last 6 months. The patient was diagnosed with bilateral keratoconus at the age of 32 years, and he underwent a bilateral PK. At presentation, visual acuity was 20/200 in the right eye and light perception in the left eye. A Pentacam pachymetric map revealed a central pachymetry of 720 μm in the right eye and of 710 μm in the left eye, as well as an average paracentral pachymetry of 436 and 270 μm in the 9-mm zone in the right and the left eye, respectively. Corneal topography revealed bilateral irregular and asymmetric bowing with generalized steepening and high corneal power. We describe a case of bilateral keratectasia 34 years after PK in a patient who was originally diagnosed with bilateral keratoconus. PMID:20737056

  3. Bilateral giant juvenile fibroadenomas of the breasts—a rare indication for bilateral skin reducing mastectomy

    PubMed Central

    Neto, Francisco Laitano; Zerwes, Felipe Pereira

    2016-01-01

    Fibroadenoma is the most common benign tumor of the breast but giant juvenile fibroadenoma represent only 0.5% of all fibroadenomas and when bilateral are much more rare. We describe the case of a 25 years old girl that presented with bilateral giant juvenile fibroadenomas and was treated by bilateral skin reducing mastectomy using the inferior dermal flap, implant, and free nipple graft. PMID:27563567

  4. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit.

    PubMed

    Bezaire, Marianne J; Raikov, Ivan; Burk, Kelly; Vyas, Dhrumil; Soltesz, Ivan

    2016-12-23

    The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations.

  5. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit

    PubMed Central

    Bezaire, Marianne J; Raikov, Ivan; Burk, Kelly; Vyas, Dhrumil; Soltesz, Ivan

    2016-01-01

    The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations. DOI: http://dx.doi.org/10.7554/eLife.18566.001 PMID:28009257

  6. The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence.

    PubMed

    Pahor, Anja; Jaušovec, Norbert

    2014-09-01

    The objective of the study was to explore the influence of transcranial alternating current stimulation (tACS) on resting brain activity and on measures of fluid intelligence. Theta tACS was applied to the left parietal and left frontal brain areas of healthy participants after which resting electroencephalogram (EEG) data was recorded. Following sham/active stimulation, the participants solved two tests of fluid intelligence while their EEG was recorded. The results showed that active theta tACS affected spectral power in theta and alpha frequency bands. In addition, active theta tACS improved performance on tests of fluid intelligence. This influence was more pronounced in the group of participants that received stimulation to the left parietal area than in the group of participants that received stimulation to the left frontal area. Left parietal tACS increased performance on the difficult test items of both tests (RAPM and PF&C) whereas left frontal tACS increased performance only on the easy test items of one test (RAPM). The observed behavioral tACS influences were also accompanied by changes in neuroelectric activity. The behavioral and neuroelectric data tentatively support the P-FIT neurobiological model of intelligence. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Distinct contributions of human hippocampal theta to spatial cognition and anxiety

    PubMed Central

    Cornwell, Brian R.; Arkin, Nicole; Overstreet, Cassie; Carver, Frederick W.; Grillon, Christian

    2012-01-01

    Summary Current views of the hippocampus assign this structure, and its prominent theta rhythms, a key role in both cognition and affect. We studied this duality of function in humans, where no direct evidence exists. Whole-head magnetoencephalographic (MEG) data were recorded to measure theta activity while healthy participants (N = 25) navigated two virtual Morris water mazes, one in which they risked receiving aversive shocks without warning to induce anxiety and one in which they were safe from shocks. Results showed that threat of shock elevated anxiety level and enhanced navigation performance compared to the safe condition. MEG source analyses revealed that improved navigation performance during threat was preferentially associated with increased left septal (posterior) hippocampal theta (specifically 4–8 Hz activity), replicating previous research that emphasizes a predominant role of the septal third of the hippocampus in spatial cognition. Moreover, increased self-reported anxiety during threat was preferentially associated with increased left temporal (anterior) hippocampal theta (specifically 2–6 Hz activity), consistent with this region’s involvement in mediating conditioned and innate fear. Supporting contemporary theory, these findings highlight simultaneous involvement of the human hippocampus in spatial cognition and anxiety, and clarify their distinct correlates. PMID:22467298

  8. Theta-modulated place-by-direction cells in the hippocampal formation in the rat

    PubMed Central

    Cacucci, Francesca; Lever, Colin; Wills, Thomas J.; Burgess, Neil; O'Keefe, John

    2009-01-01

    We report the spatial and temporal properties of a class of cells termed theta-modulated place-by-direction cells (TPD) recorded from the pre- and parasubicular cortices of the rat. The firing characteristics of TPD cells in open field enclosures were compared to those of two other well-characterised cell classes in the hippocampal formation: place and head-direction cells. Unlike place cells, which code only for the animal's location, or head direction cells which code only for the animal's directional heading, TPD cells code for both the location and the head direction of the animal. Their firing is also strongly modulated, firing primarily at the negative-to-positive phase of the locally recorded theta wave. TPD theta modulation is significantly stronger than that of place cells. By contrast, the firing of head direction cells is not modulated by theta at all. In repeated exposures to the same environment, the locational and directional signals of TPD cells are stable. When recorded in different environments, TPD locational and directional fields can uncouple, with the locational field shifting unpredictably (“remapping”), while its directional preference remains similar across environments. PMID:15385610

  9. GLUTATHIONE S-TRANSFERASE THETA 1-1-DEPENDENT METABOLISM OF THE DISINFECTION BYPRODUCT BROMODICHLOROMETHANE

    EPA Science Inventory

    ABSTRACT
    Bromodichloromethane (BDCM), a prevalent drinking water disinfection by-product, was previously shown to be mutagenic in Salmonella expressing glutathione S-transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the...

  10. A Decade of EEG Theta/Beta Ratio Research in ADHD: A Meta-Analysis

    ERIC Educational Resources Information Center

    Arns, Martijn; Conners, C. Keith; Kraemer, Helena C.

    2013-01-01

    Objective: Many EEG studies have reported that ADHD is characterized by elevated Theta/Beta ratio (TBR). In this study we conducted a meta-analysis on the TBR in ADHD. Method: TBR data during Eyes Open from location Cz were analyzed from children/adolescents 6-18 years of age with and without ADHD. Results: Nine studies were identified with a…

  11. Measuring $\\theta_{13}$ via Muon Neutrino to Electron Neutrino Oscillations in the MINOS Experiment

    SciTech Connect

    Toner, Ruth B.

    2011-01-01

    One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter $\\theta_{13}$. This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to $\\sin^2(2\\theta_{13})$ by 27\\% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out $\\theta_{13}=0$ at 91\\%. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at $\\sin^2(2\\theta_{13})<0.09(0.015)$ for the Normal (Inverted) Hierarchy and $\\delta_{CP}=0$.

  12. EEG Theta and Gamma Responses to Semantic Violations in Online Sentence Processing

    ERIC Educational Resources Information Center

    Hald, Lea A.; Bastiaansen, Marcel C. M.; Hagoort, Peter

    2006-01-01

    We explore the nature of the oscillatory dynamics in the EEG of subjects reading sentences that contain a semantic violation. More specifically, we examine whether increases in theta ([Approximately]3-7 Hz) and gamma (around 40 Hz) band power occur in response to sentences that were either semantically correct or contained a semantically…

  13. A Decade of EEG Theta/Beta Ratio Research in ADHD: A Meta-Analysis

    ERIC Educational Resources Information Center

    Arns, Martijn; Conners, C. Keith; Kraemer, Helena C.

    2013-01-01

    Objective: Many EEG studies have reported that ADHD is characterized by elevated Theta/Beta ratio (TBR). In this study we conducted a meta-analysis on the TBR in ADHD. Method: TBR data during Eyes Open from location Cz were analyzed from children/adolescents 6-18 years of age with and without ADHD. Results: Nine studies were identified with a…

  14. Development of cos-theta Nb{sub 3}Sn dipole magnets for VLHC

    SciTech Connect

    Alexander Zlobin et al.

    2001-07-20

    This paper describes the double aperture dipole magnets developed for a VLHC based on Nb{sub 3}Sn superconductor, a cos-theta coil, cold and warm iron yokes, and the wind-and-react fabrication technique. Status of the model R and D program, strand and cable and other major component development are also discussed.

  15. REM theta activity enhances inhibitory control in typically developing children but not children with ADHD symptoms.

    PubMed

    Cremone, Amanda; Lugo-Candelas, Claudia I; Harvey, Elizabeth A; McDermott, Jennifer M; Spencer, Rebecca M C

    2017-05-01

    Sleep disturbances impair cognitive functioning in typically developing populations. Children with attention-deficit/hyperactivity disorder (ADHD), a disorder characterized by impaired inhibitory control and attention, commonly experience sleep disturbances. Whether inhibitory impairments are related to sleep deficits in children with ADHD is unknown. Children with ADHD (n = 18; M age = 6.70 years) and typically developing controls (n = 15; M age = 6.73 years) completed a Go/No-Go task to measure inhibitory control and sustained attention before and after polysomnography-monitored overnight sleep. Inhibitory control and sustained attention were improved following overnight sleep in typically developing children. Moreover, morning inhibitory control was positively correlated with rapid eye movement (REM) theta activity in this group. Although REM theta activity was greater in children with ADHD compared to typically developing children, it was functionally insignificant. Neither inhibitory control nor sustained attention was improved following overnight sleep in children with ADHD symptoms, and neither of these behaviors was associated with REM theta activity in this group. Taken together, these results indicate that elevated REM theta activity may be functionally related to ADHD symptomology, possibly reflecting delayed cortical maturation.

  16. Interactions between hippocampus and medial septum during sharp waves and theta oscillation in the behaving rat.

    PubMed

    Dragoi, G; Carpi, D; Recce, M; Csicsvari, J; Buzsáki, G

    1999-07-15

    The medial septal region and the hippocampus are connected reciprocally via GABAergic neurons, but the physiological role of this loop is still not well understood. In an attempt to reveal the physiological effects of the hippocamposeptal GABAergic projection, we cross-correlated hippocampal sharp wave (SPW) ripples or theta activity and extracellular units recorded in the medial septum and diagonal band of Broca (MSDB) in freely moving rats. The majority of single MSDB cells (60%) were significantly suppressed during SPWs. Most cells inhibited during SPW (80%) fired rhythmically and phase-locked to the negative peak of the CA1 pyramidal layer theta waves. Because both SPW and the negative peak of local theta waves correspond to the maximum discharge probability of CA1 pyramidal cells and interneuron classes, the findings indicate that the activity of medial septal neurons can be negatively (during SPW) or positively (during theta waves) correlated with the activity of hippocampal interneurons. We hypothesize that the functional coupling between medial septal neurons and hippocampal interneurons varies in a state-dependent manner.

  17. Increased frontal electroencephalogram theta amplitude in patients with anorexia nervosa compared to healthy controls

    PubMed Central

    Hestad, Knut A; Weider, Siri; Nilsen, Kristian Bernhard; Indredavik, Marit Sæbø; Sand, Trond

    2016-01-01

    Objective To conduct a blind study of quantitative electroencephalogram-band amplitudes in patients with anorexia nervosa (AN) and healthy controls. Methods Twenty-one patients with AN and 24 controls were examined with eyes-closed 16-channel electroencephalogram. Main variables were absolute alpha, theta, and delta amplitudes in frontal, temporal, and posterior regions. Results There were no significant differences between the AN patients and controls regarding absolute regional band amplitudes in μV. Borderline significance was found for anterior theta (P=0.051). Significantly increased left and right frontal electrode theta amplitude was found in AN patients (F3, P=0.014; F4, P=0.038) compared to controls. Significant differences were also observed for secondary variables: lower values for relative parietooccipital delta and frontocentral alpha activity among AN patients than among controls. Conclusion We observed slight excess frontal theta and lower relative alpha and delta amplitudes among AN patients than among controls. This pattern is possibly related to a slight frontal lobe dysfunction in AN, or it may reflect increased attention/vigilance or another state-related change in patients with AN compared to healthy controls. PMID:27703359

  18. Characterization of the Theta to Beta Ratio in ADHD: Identifying Potential Sources of Heterogeneity

    ERIC Educational Resources Information Center

    Loo, Sandra K.; Cho, Alexander; Hale, T. Sigi; McGough, James; McCracken, James; Smalley, Susan L.

    2013-01-01

    Objective: The goal of this study is to characterize the theta to beta ratio (THBR) obtained from electroencephalogram (EEG) measures, in a large sample of community and clinical participants with regard to (a) ADHD diagnosis and subtypes, (b) common psychiatric comorbidities, and (c) cognitive correlates. Method: The sample includes 871…

  19. Selective Entrainment of Theta Oscillations in the Dorsal Stream Causally Enhances Auditory Working Memory Performance.

    PubMed

    Albouy, Philippe; Weiss, Aurélien; Baillet, Sylvain; Zatorre, Robert J

    2017-04-05

    The implication of the dorsal stream in manipulating auditory information in working memory has been recently established. However, the oscillatory dynamics within this network and its causal relationship with behavior remain undefined. Using simultaneous MEG/EEG, we show that theta oscillations in the dorsal stream predict participants' manipulation abilities during memory retention in a task requiring the comparison of two patterns differing in temporal order. We investigated the causal relationship between brain oscillations and behavior by applying theta-rhythmic TMS combined with EEG over the MEG-identified target (left intraparietal sulcus) during the silent interval between the two stimuli. Rhythmic TMS entrained theta oscillation and boosted participants' accuracy. TMS-induced oscillatory entrainment scaled with behavioral enhancement, and both gains varied with participants' baseline abilities. These effects were not seen for a melody-comparison control task and were not observed for arrhythmic TMS. These data establish theta activity in the dorsal stream as causally related to memory manipulation. VIDEO ABSTRACT.

  20. EEG Theta and Gamma Responses to Semantic Violations in Online Sentence Processing

    ERIC Educational Resources Information Center

    Hald, Lea A.; Bastiaansen, Marcel C. M.; Hagoort, Peter

    2006-01-01

    We explore the nature of the oscillatory dynamics in the EEG of subjects reading sentences that contain a semantic violation. More specifically, we examine whether increases in theta ([Approximately]3-7 Hz) and gamma (around 40 Hz) band power occur in response to sentences that were either semantically correct or contained a semantically…

  1. White paper report on using nuclear reactors to search for a value of theta13

    SciTech Connect

    Anderson, K.; Anjos, J.C.; Ayres, D.; Beacom, J.; Bediaga, I.; de Bellefon, A.; Berger, B.E.; Bilenky, S.; Blucher, E.; Bolton, T.; Buck, C.; Bugg, W.; Busenitz, J.; Choubey, S.; Conrad, J.; Cribier, M.; Dadoun, O.; Dalnoki-Veress, F.; Decowski, M.; de Gouvea, Andre; Demutrh, D.; Dessages-Ardellier, F.; Efremenko, Y.; von Feilitzsch, F.; Finley, D.; Formaggio, J.A.; Freedman, S.J.; Fujikawa, B.K.; Garbini, M.; Giusti, P.; Goger-Neff, M.; Goodman, M.; Gray, F.; Grieb, C.; Grudzinski, J.J.; Guarino, V.J.; Hartmann, F.; Hagner, C.; Heeger, K.M.; Hofmann, W.; Horton-Smith, G.; Huber, P.; Inzhechik, L.; Jochum, J.; Jostlein, H.; Kadel, R.; Kamyshkov, Y.; Kaplan, D.; Kasper, P.; de Kerret, H.; Kersten, J.; Klein, J.; Knopfle, K.T.; Kopeikin, V.; Kozlov, Yu.; Kryn, D.; Kuchler, V.; Kuze, M.; Lachenmaier, T.; Lasserre, T.; Laughton, C.; Lendvai, C.; Li, J.; Lindner, M.; Link, J.; Longo, M.; Lu, Y.S.; Luk, K.B.; Ma, Y.Q.; Martemyanov, V.P.; Mauger, C.; Manghetti, H.; McKeown, R.; Mention, G.; Meyer, J.P.; Mikaelyan, L.; Minakata, H.; Naples, D.; Nunokawa, H.; Oberauer, L.; Obolensky, M.; Parke, S.; Petcov, S.T.; Peres, O.L.G.; Potzel, W.; Pilcher, J.; Plunkett, R.; Raffelt, G.; Rapidis, P.; Reyna, D.; Roe, B.; Rolinec, M.; Sakamoto, Y.; Sartorelli, G.; Schonert, S.; Schwertz, T.; Selvi, M.; Shaevitz, M.; Shellard, R.; Shrock, R.; Sidwell, R.; Sims, J.; Sinev, V.; Stanton, N.; Stancu, I.; Stefanski, R.; Seukane, F.; Sugiyama, H.; Sukhotin, S.; Sumiyoshi, T.; Svoboda, R.; Talaga, R.; Tamura, N.; Tanimoto, M.; Thron, J.; von Toerne, E.; Vignaud, D.; Wagner, C.; Wang, Y.F.; Wang, Z.; Winter, W.; Wong, H.; Yakushev, E.; Yang, C.G.; Yasuda, O.

    2004-02-26

    There has been superb progress in understanding the neutrino sector of elementary particle physics in the past few years. It is now widely recognized that the possibility exists for a rich program of measuring CP violation and matter effects in future accelerator {nu} experiments, which has led to intense efforts to consider new programs at neutrino superbeams, off-axis detectors, neutrino factories and beta beams. However, the possibility of measuring CP violation can be fulfilled only if the value of the neutrino mixing parameter {theta}{sub 13} is such that sin{sup 2} (2{theta}{sub 13}) greater than or equal to on the order of 0.01. The authors of this white paper are an International Working Group of physicists who believe that a timely new experiment at a nuclear reactor sensitive to the neutrino mixing parameter {theta}{sub 13} in this range has a great opportunity for an exciting discovery, a non-zero value to {theta}{sub 13}. This would be a compelling next step of this program. We are studying possible new reactor experiments at a variety of sites around the world, and we have collaborated to prepare this document to advocate this idea and describe some of the issues that are involved.

  2. Changes in absolute theta power in bipolar patients during a saccadic attention task.

    PubMed

    Cartier, Consuelo; Diniz, Claudia; Di Girogio, Luiza; Bittencourt, Juliana; Gongora, Mariana; Ken Tanaka, Guaraci; Teixeira, Silmar; Basile, Luis F; Novis, Fernanda; Angélica Silveira, Luciana; da Silva, Rafael de Assis; Cagy, Mauricio; Cheniaux, Elie; Ribeiro, Pedro; Velasques, Bruna

    2015-08-30

    The present study analyzed absolute theta power (ATP) in brain areas involved with attention in the three phase of BD while the patients performing a saccadic attention task. We hypothesized that patients in depression and mania states show a higher ATP compared to euthymic patients, since a higher ATP is indicative of attention deficit. We analyzed the frontal (F7, F3, Fz, F4 and F8) and central (C3, Cz and C4) areas. Thirty bipolar patients were enrolled in this study. The subjects performed a saccadic attention task while their brain activity pattern was recorded using quantitative electroencephalography (20 channels). Our results showed a main effect for group over C3, C4, Cz, F7, F4, F8 electrodes, and a main effect for moment over Cz, F7, F8 electrodes. These results indicate that both task and groups produce changes in theta activity in distinct cortical areas that participate in the organization of attention. Our results therefore demonstrate that, although it is well established in the literature that theta has a relevant role in the attention process, it is necessary to deepen the investigations to better understand the specifics of theta during visual processing tasks that have a demand for attention.

  3. The Acquisition of Dialectal Phonemes in a Study Abroad Context: The Case of the Castilian Theta

    ERIC Educational Resources Information Center

    Knouse, Stephanie M.

    2012-01-01

    This exploratory study investigates the incorporation of dialectal variants in second language (L2) pronunciation and how the learning context intersects with this acquisition. Specifically, this research examines to what extent L2 learners of Spanish acquire the regional phoneme /[theta]/ from north-central Spain in both study abroad (SA) and…

  4. Lack of the Metabotropic Glutamate Receptor Subtype 7 Selectively Modulates Theta Rhythm and Working Memory

    ERIC Educational Resources Information Center

    Holscher, Christian; Schmid, Susanne; Pilz, Peter K. D.; Sansig, Gilles; van der Putten, Herman; Plappert, Claudia F.

    2005-01-01

    Metabotropic glutamate receptors (mGluRs) are known to play a role in synaptic plasticity and learning. We have previously shown that mGluR7 deletion in mice produces a selective working memory (WM) impairment, while other types of memory such as reference memory remain unaffected. Since WM has been associated with Theta activity (6-12 Hz) in…

  5. Characterization of the Theta to Beta Ratio in ADHD: Identifying Potential Sources of Heterogeneity

    ERIC Educational Resources Information Center

    Loo, Sandra K.; Cho, Alexander; Hale, T. Sigi; McGough, James; McCracken, James; Smalley, Susan L.

    2013-01-01

    Objective: The goal of this study is to characterize the theta to beta ratio (THBR) obtained from electroencephalogram (EEG) measures, in a large sample of community and clinical participants with regard to (a) ADHD diagnosis and subtypes, (b) common psychiatric comorbidities, and (c) cognitive correlates. Method: The sample includes 871…

  6. Lack of the Metabotropic Glutamate Receptor Subtype 7 Selectively Modulates Theta Rhythm and Working Memory

    ERIC Educational Resources Information Center

    Holscher, Christian; Schmid, Susanne; Pilz, Peter K. D.; Sansig, Gilles; van der Putten, Herman; Plappert, Claudia F.

    2005-01-01

    Metabotropic glutamate receptors (mGluRs) are known to play a role in synaptic plasticity and learning. We have previously shown that mGluR7 deletion in mice produces a selective working memory (WM) impairment, while other types of memory such as reference memory remain unaffected. Since WM has been associated with Theta activity (6-12 Hz) in…

  7. Theta dynamics reveal domain-specific control over stimulus and response conflict.

    PubMed

    Nigbur, Roland; Cohen, Michael X; Ridderinkhof, K Richard; Stürmer, Birgit

    2012-05-01

    Cognitive control allows us to adjust to environmental changes. The medial frontal cortex (MFC) is thought to detect conflicts and recruit additional resources from other brain areas including the lateral prefrontal cortices. Here we investigated how the MFC acts in concert with visual, motor, and lateral prefrontal cortices to support adaptations of goal-directed behavior. Physiologically, these interactions may occur through local and long-range synchronized oscillation dynamics, particularly in the theta range (4-8 Hz). A speeded flanker task allowed us to investigate conflict-type-specific control networks for perceptual and response conflicts. Theta power over MFC was sensitive to both perceptual and response conflict. Interareal theta phase synchrony, however, indicated a selective enhancement specific for response conflicts between MFC and left frontal cortex as well as between MFC and the presumed motor cortex contralateral to the response hand. These findings suggest that MFC theta-band activity is both generally involved in conflict processing and specifically involved in linking a neural network controlling response conflict.

  8. GLUTATHIONE S-TRANSFERASE THETA 1-1-DEPENDENT METABOLISM OF THE DISINFECTION BYPRODUCT BROMODICHLOROMETHANE

    EPA Science Inventory

    ABSTRACT
    Bromodichloromethane (BDCM), a prevalent drinking water disinfection by-product, was previously shown to be mutagenic in Salmonella expressing glutathione S-transferase (GST) theta 1-1 (GST T1-1). In the present study, in vitro experiments were performed to study the...

  9. DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1

    EPA Science Inventory


    DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1. R A Pegram1 and M K Ross2. 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; 1Pharmacokinetics Branch, NHEERL, ORD, United States Environmental Protection Ag...

  10. DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1

    EPA Science Inventory


    DNA BINDING POTENTIAL OF BROMODICHLOROMETHANE MEDIATED BY GLUTATHIONE S-TRANSFERASE THETA 1-1. R A Pegram1 and M K Ross2. 2Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC; 1Pharmacokinetics Branch, NHEERL, ORD, United States Environmental Protection Ag...

  11. An Alpha and Theta Intensive and Short Neurofeedback Protocol for Healthy Aging Working-Memory Training

    PubMed Central

    Reis, Joana; Portugal, Ana Maria; Fernandes, Luís; Afonso, Nuno; Pereira, Mariana; Sousa, Nuno; Dias, Nuno S.

    2016-01-01

    The present study tested the effects of an intensive and short alpha and theta neurofeedback (NF) protocol in working memory (WM) performance in a healthy elder population and explored the effects of a multimodal approach, by supplementing NF with cognitive tasks. Participants were allocated to four groups: NF (N = 9); neurofeedback supplemented with cognitive training (NFCT) (N = 8); cognitive training (CT) (N = 7) and sham neurofeedback (Sham-NF) (N = 6). The intervention consisted in 30-min sessions for 8 days. The NF group presented post intervention increases of alpha and theta relative power as well as performance in the matrix rotation task. In addition, a successful up training of frontal theta showed positive correlation with an improvement of post-training alpha and a better performance in the matrix rotation task. The results presented herein suggest that an intensive and short NF protocol enables elders to learn alpha and theta self-modulation and already presents moderate improvements in cognition and basal EEG. Also, CT group showed moderate performance gains on the cognitive tasks used during the training sessions but no clear improvements on neurophysiology and behavioral measurements were observed. This study represents a first attempt to study the effects of an intensive and short NF protocol in WM performance of elders. The evidence presented here suggests that an intensive and short NF intervention could be a valid alternative for introduction of older populations to NF methodologies. PMID:27458369

  12. An Alpha and Theta Intensive and Short Neurofeedback Protocol for Healthy Aging Working-Memory Training.

    PubMed

    Reis, Joana; Portugal, Ana Maria; Fernandes, Luís; Afonso, Nuno; Pereira, Mariana; Sousa, Nuno; Dias, Nuno S

    2016-01-01

    The present study tested the effects of an intensive and short alpha and theta neurofeedback (NF) protocol in working memory (WM) performance in a healthy elder population and explored the effects of a multimodal approach, by supplementing NF with cognitive tasks. Participants were allocated to four groups: NF (N = 9); neurofeedback supplemented with cognitive training (NFCT) (N = 8); cognitive training (CT) (N = 7) and sham neurofeedback (Sham-NF) (N = 6). The intervention consisted in 30-min sessions for 8 days. The NF group presented post intervention increases of alpha and theta relative power as well as performance in the matrix rotation task. In addition, a successful up training of frontal theta showed positive correlation with an improvement of post-training alpha and a better performance in the matrix rotation task. The results presented herein suggest that an intensive and short NF protocol enables elders to learn alpha and theta self-modulation and already presents moderate improvements in cognition and basal EEG. Also, CT group showed moderate performance gains on the cognitive tasks used during the training sessions but no clear improvements on neurophysiology and behavioral measurements were observed. This study represents a first attempt to study the effects of an intensive and short NF protocol in WM performance of elders. The evidence presented here suggests that an intensive and short NF intervention could be a valid alternative for introduction of older populations to NF methodologies.

  13. Reduced Parahippocampal Theta Activity During Spatial Navigation in Low, but Not in High Elderly Performers.

    PubMed

    Lithfous, Ségolène; Dufour, André; Bouix, Cloé; Pebayle, Thierry; Després, Olivier

    2017-06-29

    Cognitive aging varies widely among individuals. Whereas optimal cognitive agers show highly preserved cognitive functions throughout life, other subjects experience cognitive deficits in various cognitive domains. Among them, elderly individuals frequently report difficulties in spatial navigation. In this study, we aimed to determine whether elderly participants with different cognitive profiles would perform differently at a navigation task, and explore underlying medial hippocampal activity. Two groups of elderly subjects were selected, high- and low-performing (HP and LP, respectively), based on their performance on a detailed neuropsychological examination. A group of young adults was recruited as controls. Cerebral activity was recorded by electroencephalography (EEG) during a virtual navigation task in which participants had 3 trials to find their way in mazes. We analyzed theta activity during navigation in the mazes and performed source reconstruction analyses. The LP group was less accurate than the HP group during the navigation task. Theta activity during navigation was greater in HP subjects compared with controls, whereas that theta activity was reduced in LP subjects. Moreover, theta activity in the left parahippocampal gyrus increased across trials in HP, but not in LP, subjects. Elderly participants performed differently at a navigation task according to their cognitive profile: elderly with cognitive deficits seem to have greater difficulties in spatial navigation than HP elderly. Navigational difficulties in elderly with cognitive deficits might be related to functional alteration of the parahippocampal gyrus. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Bilateral microvascular second toe transfer for bilateral post-traumatic thumb amputation

    PubMed Central

    Nehete, Rajendra; Nehete, Anita; Singla, Sandeep; Adhav, Harshad

    2012-01-01

    In bilateral thumb amputations, the functional impairment is serious and every attempt should be made to reconstruct the thumb. We report a case of bilateral post traumatic thumb amputation, reconstructed with bilateral second toe transfer. Only two such cases have been reported in literature so far. Though there are various modalities for the reconstruction of thumb, microvascular toe transfer has its own merits. The convalescent period is minimal with excellent function. It is bilaterally symmetric and aesthetically superior to the osteoplastic reconstruction. The technical details are discussed, and the long term functional and aesthetic results are presented. PMID:22754176

  15. A case report of bilateral mirror clubfeet and bilateral hand polydactyly.

    PubMed

    Nguyen, Mai P; Lawler, Ericka A; Morcuende, Jose A

    2014-01-01

    We report a rare case of a patient with bilateral mirror clubfeet and bilateral hand polydactyly. The patient presented to our orthopaedic clinic with bilateral mirror clubfeet, each with eight toes, and bilateral hands with six fingers and a hypoplastic thumb. The pattern does not fit any described syndrome such as Martin or Laurin-Sandrow syndrome. Treatments by an orthopaedic pediatric surgeon and an orthopaedic pediatric hand surgeon are described. The patient achieved excellent functional and cosmetic outcomes at four year follow-up.

  16. Bilateral microvascular second toe transfer for bilateral post-traumatic thumb amputation.

    PubMed

    Nehete, Rajendra; Nehete, Anita; Singla, Sandeep; Adhav, Harshad

    2012-01-01

    In bilateral thumb amputations, the functional impairment is serious and every attempt should be made to reconstruct the thumb. We report a case of bilateral post traumatic thumb amputation, reconstructed with bilateral second toe transfer. Only two such cases have been reported in literature so far. Though there are various modalities for the reconstruction of thumb, microvascular toe transfer has its own merits. The convalescent period is minimal with excellent function. It is bilaterally symmetric and aesthetically superior to the osteoplastic reconstruction. The technical details are discussed, and the long term functional and aesthetic results are presented.

  17. Enhanced Constraints on theta13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND

    SciTech Connect

    The KamLAND Collaboration; Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; Morikawa, T.; Nagai, N.; Nakajima, K.; Nakamura, K.; Narita, K.; Shimizu, I.; Shimizu, Y.; Shirai, J.; Suekane, F.; Suzuki, A.; Takahashi, H.; Takahashi, N.; Takemoto, Y.; Tamae, K.; Watanabe, H.; Xu, B. D.; Yabumoto, H.; Yoshida, H.; Yoshida, S.; Enomoto, S.; Kozlov, A.; Murayama, H.; Grant, C.; Keefer, G.; Piepke, A.; Banks, T. I.; Bloxham, T.; Detwiler, J. A.; Freedman, S. J.; Fujikawa, B. K.; Han, K.; Kadel, R.; O'Donnell, T.; Steiner, H. M.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Decowski, M. P.

    2010-09-24

    We present new constraints on the neutrino oscillation parameters {Delta}m{sub 21}{sup 2}, {theta}{sub 12}, and {theta}{sub 13} from a three-flavor analysis of solar and KamLAND data. The KamLAND data set includes data acquired following a radiopurity upgrade and amounts to a total exposure of 3.49 x 10{sup 32} target-proton-year. Under the assumption of CPT invariance, a two-flavor analysis ({theta}{sub 13} = 0) of the KamLAND and solar data yields the best-fit values tan{sup 2} {theta}{sub 12} = 0.444{sub -0.030}{sup +0.036} and {Delta}m{sub 21}{sup 2} = 7.50{sub -0.20}{sup +0.19} x 10{sup -5} eV{sup 2}; a three-flavor analysis with {theta}{sub 13} as a free parameter yields the best-fit values tan{sup 2} {theta}{sub 12} = 0.452{sub -0.033}{sup +0.035}, {Delta}m{sub 21}{sup 2} = 7.50{sub -0.20}{sup +0.19} x 10{sup -5}eV{sup 2}, and sin{sup 2} {theta}{sub 13} = 0.020{sub -0.016}{sup +0.016}. This {theta}{sub 13} interval is consistent with other recent work combining the CHOOZ, atmospheric and long-baseline accelerator experiments. We also present a new global {theta}{sub 13} analysis, incorporating the CHOOZ, atmospheric and accelerator data, which indicates sin{sup 2} {theta}{sub 13} = 0.017{sub -0.009}{sup +0.010}, a nonzero value at the 93% C.L. This finding will be further tested by upcoming accelerator and reactor experiments.

  18. The neuromagnetic response to spoken sentences: Co-modulation of theta band amplitude and phase

    PubMed Central

    Howard, Mary F.; Poeppel, David

    2013-01-01

    Speech elicits a phase-locked response in the auditory cortex that is dominated by theta (3–7 Hz) frequencies when observed via magnetoencephalography (MEG). This phase-locked response is potentially explained as new phase-locked activity superimposed on the ongoing theta oscillation or, alternatively, as phase-resetting of the ongoing oscillation. The conventional method used to distinguish between the two hypotheses is the comparison of post- to prestimulus amplitude for the phase-locked frequency across a set of trials. In theory, increased amplitude indicates the presence of additive activity, while unchanged amplitude points to phase-resetting. However, this interpretation may not be valid if the amplitude of ongoing background activity also changes following the stimulus. In this study, we employ a new approach that circumvents this problem. Specifically, we utilize a fine-grained time–frequency analysis of MEG channel data to examine the co-modulation of amplitude change and phase coherence in the post-stimulus theta-band response. If the phase-locked response is attributable solely to phase-resetting of the ongoing theta oscillation, then amplitude and phase coherence should be uncorrelated. In contrast, additive activity should produce a positive correlation. We find significant positive correlation not only during the onset response but also throughout the response period. In fact, transient increases in phase coherence are accompanied by transient increases in amplitude in accordance with a “signal plus background” model of the evoked response. The results support the hypothesis that the theta-band phase-locked response to attended speech observed using MEG is dominated by additive phase-locked activity. PMID:22374481

  19. MIF protein are theta-class glutathione S-transferase homologs.

    PubMed

    Blocki, F A; Ellis, L B; Wackett, L P

    1993-12-01

    MIF proteins are mammalian polypeptides of approximately 13,000 molecular weight. This class includes human macrophage migration inhibitory factor (MIF), a rat liver protein that has glutathione S-transferase (GST) activity (TRANSMIF), and the mouse delayed early response gene 6 (DER6) protein. MIF proteins were previously linked to GSTs by demonstrating transferase activity and observing N-terminal sequence homology with a mu-class GST (Blocki, F.A., Schlievert, P.M., & Wackett, L.P., 1992, Nature 360, 269-270). In this study, MIF proteins are shown to be structurally related to the theta class of GSTs. This is established in three ways. First, unique primary sequence patterns are developed for each of the GST gene classes. The patterns identify the three MIF proteins as theta-like transferase homologs. Second, pattern analysis indicates that GST members of the theta class contain a serine residue in place of the N-terminal tyrosine that is implicated in glutathione deprotonation and activation in GSTs of known structure (Liu, S., et al., 1992, J. Biol. Chem. 267, 4296-4299). The MIF proteins contain a threonine at this position. Third, polyclonal antibodies raised against recombinant human MIF cross-react on Western blots with rat theta GST but not with alpha and mu GSTs. That MIF proteins have glutathione-binding ability may provide a common structural key toward understanding the varied functions of this widely distributed emerging gene family. Because theta is thought to be the most ancient evolutionary GST class, MIF proteins may have diverged early in evolution but retained a glutathione-binding domain.

  20. Stress affects theta activity in limbic networks and impairs novelty-induced exploration and familiarization

    PubMed Central

    Jacinto, Luis R.; Reis, Joana S.; Dias, Nuno S.; Cerqueira, João J.; Correia, José H.; Sousa, Nuno

    2013-01-01

    Exposure to a novel environment triggers the response of several brain areas that regulate emotional behaviors. Here, we studied theta oscillations within the hippocampus (HPC)-amygdala (AMY)-medial prefrontal cortex (mPFC) network in exploration of a novel environment and subsequent familiarization through repeated exposures to that same environment; in addition, we assessed how concomitant stress exposure could disrupt this activity and impair both behavioral processes. Local field potentials (LFP) were simultaneously recorded from dorsal and ventral hippocampus (dHPC and vHPC, respectively), basolateral amygdala (BLA) and mPFC in freely behaving rats while they were exposed to a novel environment, then repeatedly re-exposed over the course of 3 weeks to that same environment and, finally, on re-exposure to a novel unfamiliar environment. A longitudinal analysis of theta activity within this circuit revealed a reduction of vHPC and BLA theta power and vHPC-BLA theta coherence through familiarization which was correlated with a return to normal exploratory behavior in control rats. In contrast, a persistent over-activation of the same brain regions was observed in stressed rats that displayed impairments in novel exploration and familiarization processes. Importantly, we show that stress also affected intra-hippocampal synchrony and heightened the coherence between vHPC and BLA. In summary, we demonstrate that modulatory theta activity in the aforementioned circuit, namely in the vHPC and BLA, is correlated with the expression of anxiety in novelty-induced exploration and familiarization in both normal and pathological conditions. PMID:24137113