NASA Astrophysics Data System (ADS)
Woo, Sun Young; Lee, Hwankyu
2016-03-01
Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect.
Woo, Sun Young; Lee, Hwankyu
2016-03-01
Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments. This is because K peptides electrostatically interact with lipid phosphates, as well as because hydrocarbons of lysines of K peptide are longer than those of glutamic acids of E peptide and thus form stronger hydrophobic interactions with lipid tails. This deeper insertion of K peptide increases the bilayer dynamics and a vacancy below the peptide, leading to the rearrangement of smaller lipids. These findings help explain the experimentally observed or proposed differences in the insertion depth, binding strength, and structural transition of E and K peptides, and support the snorkeling effect.
Bryksa, Brian C; Grahame, Douglas A; Yada, Rickey Y
2017-05-01
The present study characterized the aspartic protease saposin-like domains of four plant species, Solanum tuberosum (potato), Hordeum vulgare L. (barley), Cynara cardunculus L. (cardoon; artichoke thistle) and Arabidopsis thaliana, in terms of bilayer disruption and fusion, and structure pH-dependence. Comparison of the recombinant saposin-like domains revealed that each induced leakage of bilayer vesicles composed of a simple phospholipid mixture with relative rates Arabidopsis>barley>cardoon>potato. When compared for leakage of bilayer composed of a vacuole-like phospholipid mixture, leakage was approximately five times higher for potato saposin-like domain compared to the others. In terms of fusogenic activity, distinctions between particle size profiles were noted among the four proteins, particularly for potato saposin-like domain. Bilayer fusion assays in reducing conditions resulted in altered fusion profiles except in the case of cardoon saposin-like domain which was virtually unchanged. Secondary structure profiles were similar across all four proteins under different pH conditions, although cardoon saposin-like domain appeared to have higher overall helix structure. Furthermore, increases in Trp emission upon protein-bilayer interactions suggested that protein structure rearrangements equilibrated with half-times ranging from 52 to 120s, with cardoon saposin-like domain significantly slower than the other three species. Overall, the present findings serve as a foundation for future studies seeking to delineate protein structural features and motifs in protein-bilayer interactions based upon variability in plant aspartic protease saposin-like domain structures. Copyright © 2017 Elsevier B.V. All rights reserved.
Penetration of HIV-1 Tat47-57 into PC/PE Bilayers Assessed by MD Simulation and X-ray Scattering.
Neale, Chris; Huang, Kun; García, Angel E; Tristram-Nagle, Stephanie
2015-09-22
The interactions of the basic, cell-penetrating region (Y47GRKKRRQRRR57) of the HIV-1 Tat protein with dioleoylphosphatidylcholine (DOPC) bilayers were previously assessed by comparing experimental X-ray diffuse scattering with atomistic molecular dynamics simulations. Here, we extend this investigation by evaluating the influence of phosphatidylethanolamine (PE) lipids. Using experimental bilayer form factors derivedfrom X-ray diffuse scattering data as a guide, our simulations indicate that Tat peptides localize close to the carbonyl-glycerol group in the headgroup region of bilayers composed of either DOPC or DOPC:DOPE (1:1) lipid. Our results also suggest that Tat peptides may more frequently insert into the hydrophobic core of bilayers composed of PC:PE (1:1) lipids than into bilayers composed entirely of PC lipids. PE lipids may facilitate peptide translocation across a lipid bilayer by stabilizing intermediate states in which hydrated peptides span the bilayer.
Preparation of pH-sensitive anionic liposomes designed for drug delivery system (DDS) application.
Aoki, Asami; Akaboshi, Hikaru; Ogura, Taku; Aikawa, Tatsuo; Kondo, Takeshi; Tobori, Norio; Yuasa, Makoto
2015-01-01
We prepared pH-sensitive anionic liposomes composed solely of anionic bilayer membrane components that were designed to promote efficient release of entrapped agents in response to acidic pH. The pH-sensitive anionic liposomes showed high dispersion stability at neutral pH, but the fluidity of the bilayer membrane was enhanced in an acidic environment. These liposomes were rather simple and were composed of dimyristoylphosphatidylcholine (DMPC), an anionic bilayer membrane component, and polyoxyethylene sorbitan monostearate (Tween 80). In particular, the present pH-sensitive anionic liposomes showed higher temporal stability than those of conventional DMPC/DPPC liposomes. We found that pHsensitive properties strongly depended on the molecular structure, pKa value, and amount of an incorporated anionic bilayer membrane component, such as sodium oleate (SO), dimyristoylphosphatidylserine (DMPS), or sodium β-sitosterol sulfate (SS). These results provide an opportunity to manipulate liposomal stability in a pH-dependent manner, which could lead to the formulation of a high performance drug delivery system (DDS).
Wu, Heng-Liang; Tong, Yujin; Peng, Qiling; Li, Na; Ye, Shen
2016-01-21
The phase transition behaviors of a supported bilayer of dipalmitoylphosphatidyl-choline (DPPC) have been systematically evaluated by in situ sum frequency generation (SFG) vibrational spectroscopy and atomic force microscopy (AFM). By using an asymmetric bilayer composed of per-deuterated and per-protonated monolayers, i.e., DPPC-d75/DPPC and a symmetric bilayer of DPPC/DPPC, we were able to probe the molecular structural changes during the phase transition process of the lipid bilayer by SFG spectroscopy. It was found that the DPPC bilayer is sequentially melted from the top (adjacent to the solution) to bottom leaflet (adjacent to the substrate) over a wide temperature range. The conformational ordering of the supported bilayer does not decrease (even slightly increases) during the phase transition process. The conformational defects in the bilayer can be removed after the complete melting process. The phase transition enthalpy for the bottom leaflet was found to be approximately three times greater than that for the top leaflet, indicating a strong interaction of the lipids with the substrate. The present SFG and AFM observations revealed similar temperature dependent profiles. Based on these results, the temperature-induced structural changes in the supported lipid bilayer during its phase transition process are discussed in comparison with previous studies.
Direct growth of graphene-dielectric bi-layer structure on device substrates from Si-based polymer
NASA Astrophysics Data System (ADS)
Seo, Hong-Kyu; Kim, Kyunghun; Min, Sung-Yong; Lee, Yeongjun; Eon Park, Chan; Raj, Rishi; Lee, Tae-Woo
2017-06-01
To facilitate the utilization of graphene films in conventional semiconducting devices (e.g. transistors and memories) which includes an insulating layer such as gate dielectric, facile synthesis of bi-layers composed of a graphene film and an insulating layer by one-step thermal conversion will be very important. We demonstrate a simple, inexpensive, scalable and patternable process to synthesize graphene-dielectric bi-layer films from solution-processed polydimethylsiloxane (PDMS) under a Ni capping layer. This method fabricates graphene-dielectric bi-layer structure simultaneously directly on substrate by thermal conversion of PDMS without using additional graphene transfer and patterning process or formation of an expensive dielectric layer, which makes the device fabrication process much easier. The graphene-dielectric bi-layer on a conducting substrate was used in bottom-contact pentacene field-effect transistors that showed ohmic contact and small hysteresis. Our new method will provide a way to fabricate flexible electronic devices simply and inexpensively.
Magnetically Assisted Bilayer Composites for Soft Bending Actuators.
Jang, Sung-Hwan; Na, Seon-Hong; Park, Yong-Lae
2017-06-12
This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics.
Magnetically Assisted Bilayer Composites for Soft Bending Actuators
Jang, Sung-Hwan; Na, Seon-Hong; Park, Yong-Lae
2017-01-01
This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics. PMID:28773007
Breathable NIPAAm Network with Controllable Hydration Supports Model Lipid Membrane
NASA Astrophysics Data System (ADS)
Jablin, Michael; Smith, Hillary; Zhernenkov, Mikhail; Vidyasagar, Ajay; Toomey, Ryan; Saiz, Jessica; Toperverg, Boris; Watkins, Erik; Kuhl, Tonya; Hurd, Alan; Majewski, Jaroslaw
2009-03-01
The interaction of a model lipid bilayer composed of DPPC with a surface-tethered poly(N-isopropylacrylamide) (NIPAAm) was explored with neutron reflectometry (NR). The Langmuir-Blodgett / Langmuir-Schaeffer method was used to deposit a lipid bilayer onto the polymer. NR measurements were used to probe the in- and out-of-plane structure of the system as a function of temperature. NR with fluorescence microscopy show that the polymer supports a lipid bilayer, and hydration of the support can be controlled. At low temp. the membrane develops out-of-plane undulations visible in off-specular scattering. Analysis of the off-specular reveals in-plane correlation of the bilayer fluctuations. The separation of the lipid bilayer from the solid support of a substrate constitutes a significant step towards a more realistic model of biological membranes.
A theoretical study of diffusional transport over the alveolar surfactant layer.
Aberg, Christoffer; Sparr, Emma; Larsson, Marcus; Wennerström, Håkan
2010-10-06
In this communication, we analyse the passage of oxygen and carbon dioxide over the respiratory membrane. The lung surfactant membrane at the alveolar interface can have a very special arrangement, which affects the diffusional transport. We present a theoretical model for the diffusion of small molecules in membranes with a complex structure, and we specifically compare a membrane composed of a tubular bilayer network with a membrane consisting of a stack of bilayers. Oxygen and carbon dioxide differ in terms of their solubility in the aqueous and the lipid regions of the membrane, and we show that this difference clearly influences their transport properties in the different membrane structures. During normal respiration, the rate-limiting step for carbon dioxide transport is in the gas phase of the different compartments in the lung. For oxygen, on the other hand, the rate is limited by the transport between alveoli and the capillary blood vessels, including the lung surfactant membrane. In a membrane with a structure of a continuous tubular lipid network, oxygen transport is facilitated to a significant extent compared with the structure of aligned lipid bilayers. The model calculations in the present study show that transport of oxygen through the tubular structure is indeed ca 30 per cent faster than transport through a membrane composed of stacked bilayers. The tubular network will also facilitate the transport of apolar substances between the gas phase and the blood. Important examples are ethanol and other volatile liquids that can leave the blood through the lungs, and gaseous anaesthetics or volatile solvents that are inhaled. This exemplifies a new physiological role of a tubular lipid network in the lung surfactant membrane.
Schuy, Steffen; Faiss, Simon; Yoder, Nicholas C.; Kalsani, Venkateshwarlu; Kumar, Krishna; Janshoff, Andreas; Vogel, Reiner
2008-01-01
Lipid bilayers consisting of lipids with terminally perfluoroalkylated chains have remarkable properties. They exhibit increased stability and phase-separated nanoscale patterns in mixtures with nonfluorinated lipids. In order to understand the bilayer properties that are responsible for this behavior, we have analyzed the structure of solid-supported bilayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and of a DPPC analogue with 6 terminal perfluorinated methylene units (F6-DPPC). Polarized attenuated total reflection Fourier-transform infrared spectroscopy indicates that for F6-DPPC, the tilt of the lipid acyl chains to the bilayer normal is increased to 39° as compared to 21° for native DPPC, for both lipids in the gel phase. This substantial increase of the tilt angle is responsible for a decrease of the bilayer thickness from 5.4 nm for DPPC to 4.5 nm for F6-DPPC, as revealed by temperature-controlled imaging ellipsometry on microstructured lipid bilayers and solution atomic force microscopy. During the main phase transition from the gel to the fluid phase, both the relative bilayer thickness change and the relative area change are substantially smaller for F6-DPPC than for DPPC. In light of these structural and thermotropic data, we propose a model in which the higher acyl-chain tilt angle in F6-DPPC is the result of a conformational rearrangement to minimize unfavorable fluorocarbon–hydrocarbon interactions in the center of the bilayer due to chain staggering. PMID:18563929
Rational Design of ZnO:H/ZnO Bilayer Structure for High-Performance Thin-Film Transistors.
Abliz, Ablat; Huang, Chun-Wei; Wang, Jingli; Xu, Lei; Liao, Lei; Xiao, Xiangheng; Wu, Wen-Wei; Fan, Zhiyong; Jiang, Changzhong; Li, Jinchai; Guo, Shishang; Liu, Chuansheng; Guo, Tailiang
2016-03-01
The intriguing properties of zinc oxide-based semiconductors are being extensively studied as they are attractive alternatives to current silicon-based semiconductors for applications in transparent and flexible electronics. Although they have promising properties, significant improvements on performance and electrical reliability of ZnO-based thin film transistors (TFTs) should be achieved before they can be applied widely in practical applications. This work demonstrates a rational and elegant design of TFT, composed of poly crystalline ZnO:H/ZnO bilayer structure without using other metal elements for doping. The field-effect mobility and gate bias stability of the bilayer structured devices have been improved. In this device structure, the hydrogenated ultrathin ZnO:H active layer (∼3 nm) could provide suitable carrier concentration and decrease the interface trap density, while thick pure-ZnO layer could control channel conductance. Based on this novel structure, a high field-effect mobility of 42.6 cm(2) V(-1) s(-1), a high on/off current ratio of 10(8) and a small subthreshold swing of 0.13 V dec(-1) have been achieved. Additionally, the bias stress stability of the bilayer structured devices is enhanced compared to the simple single channel layer ZnO device. These results suggest that the bilayer ZnO:H/ZnO TFTs have a great potential for low-cost thin-film electronics.
NASA Astrophysics Data System (ADS)
Hossain, Anowar; Mandal, Tripti; Mitra, Monojit; Manna, Prankrishna; Bauzá, Antonio; Frontera, Antonio; Seth, Saikat Kumar; Mukhopadhyay, Subrata
2017-12-01
A Co(II)-based coordination polymer with tetranuclear cobalt(II)-malonate cluster has been easily generated by aqueous medium self-assembly from Cobalt(II) chloride hexahydrate and malonic acid. The structure exhibits a non-interpenetrating, highly undulating two-dimensional (2D) bi-layer network with (4,4) topology. The crystal structure is composed of infinite interdigitated 2D metal-organic bi-layers which extended to an intricate 3D framework through the interbilayer hydrogen bonds. We have studied energetically by means of Density Functional Theory (DFT) calculations the H-bonding interactions that connect the 2D metal-organic bi-layers. The finite theoretical models have been used to compute conventional O‒H•••O and unconventional C‒H•••O interactions which plays a key role to build 3D architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Jianjun; Cheng, Xiaolin; Monticelli, Luca
2014-01-01
Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of themore » simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.« less
Effects of beta-cyclodextrin on the structure of sphingomyelin/cholesterol model membranes.
Jablin, Michael S; Flasiński, Michał; Dubey, Manish; Ratnaweera, Dilru R; Broniatowski, Marcin; Dynarowicz-Łatka, Patrycja; Majewski, Jarosław
2010-09-08
The interaction of beta-cyclodextrin (beta-CD) with mixed bilayers composed of sphingomylein and cholesterol (Chol) above and below the accepted stable complexation ratio (67:33) was investigated. Membranes with the same (symmetric) and different (asymmetric) compositions in their inner and outer leaflets were deposited at surface pressures of 20, 30, and 40 mN/m at the solid-liquid interface. Using neutron reflectometry, membranes of various global molar ratios (defined as the sum of the molar ratios of the inner and outer leaflets), were characterized before and after beta-CD was added to the subphase. The structure of bilayers with global molar ratios at or above the stable complexation ratio was unchanged by beta-CD, indicating that beta-CD is unable to remove sphingomyelin or complexed Chol. However, beta-CD removed all uncomplexed Chol from bilayers composed of global molar ratios below the stable complexation ratio. The removal of Chol by beta-CD was independent of the initial structure of the membranes as deposited, suggesting that asymmetric membranes homogenize by the exchange of molecules between leaflets. The interaction of beta-CD with the aforementioned membranes was independent of the deposition surface pressure except for a symmetric 50:50 membrane deposited at 40 mN/m. The scattering from 50:50 bilayers with higher packing densities (deposited at 40 mN/m) was unaffected by beta-CD, suggesting that the removal of Chol can depend on both the composition and packing density of the membrane. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Rinaldi, F; Lin, M; Shapiro, M J; Petersheim, M
1997-01-01
D-Penicillamine(2,5)-enkephalin (DPDPE) is a potent opioid peptide that exhibits a high selectivity for the delta-opiate receptors. This zwitterionic peptide has been shown, by pulsed-field gradient 1H NMR diffusion studies, to have significant affinity for a zwitterionic phospholipid bilayer. The bilayer lipid is in the form of micelles composed of dihexanoylphosphatidylcholine (DHPC) and dimyristoylphosphatidylcholine (DMPC) mixtures, where the DMPC forms the bilayer structure. At high lipid concentration (25% w/w) these micelles orient in the magnetic field of an NMR spectrometer. The resulting 1H-13C dipolar couplings and chemical shift changes in the natural abundance 13C resonances for the Tyr and Phe aromatic rings were used to characterize the orientations in the bilayer micelles of these two key pharmacophores. Images FIGURE 1 FIGURE 8 PMID:9414244
Aggregation of Aß(25-35) on DOPC and DOPC/DHA bilayers: an atomic force microscopy study.
Sublimi Saponetti, Matilde; Grimaldi, Manuela; Scrima, Mario; Albonetti, Cristiano; Nori, Stefania Lucia; Cucolo, Annamaria; Bobba, Fabrizio; D'Ursi, Anna Maria
2014-01-01
β amyloid peptide plays an important role in both the manifestation and progression of Alzheimer disease. It has a tendency to aggregate, forming low-molecular weight soluble oligomers, higher-molecular weight protofibrillar oligomers and insoluble fibrils. The relative importance of these single oligomeric-polymeric species, in relation to the morbidity of the disease, is currently being debated. Here we present an Atomic Force Microscopy (AFM) study of Aβ(25-35) aggregation on hydrophobic dioleoylphosphatidylcholine (DOPC) and DOPC/docosahexaenoic 22∶6 acid (DHA) lipid bilayers. Aβ(25-35) is the smallest fragment retaining the biological activity of the full-length peptide, whereas DOPC and DOPC/DHA lipid bilayers were selected as models of cell-membrane environments characterized by different fluidity. Our results provide evidence that in hydrophobic DOPC and DOPC/DHA lipid bilayers, Aβ(25-35) forms layered aggregates composed of mainly annular structures. The mutual interaction between annular structures and lipid surfaces end-results into a membrane solubilization. The presence of DHA as a membrane-fluidizing agent is essential to protect the membrane from damage caused by interactions with peptide aggregates; to reduces the bilayer defects where the delipidation process starts.
Interaction of the Antimicrobial Peptide Aurein 1.2 and Charged Lipid Bilayer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Durgesh K.; Qian, Shuo
Aurein 1.2 is a potent antimicrobial peptide secreted by frog Litoria aurea. As a short membrane-active peptide with only 13 amino acids in sequence, it has been found to be residing on the surface of lipid bilayer and permeabilizing bacterial membranes at high concentration. However, the detail at the molecular level is largely unknown. Here in this study, we investigated the action of Aurein 1.2 in charged lipid bilayers composed of DMPC/DMPG. Oriented Circular Dichroism results showed that the peptide was on the surface of lipid bilayer regardless of the charged lipid ratio. Only at a very high peptide-to-lipid ratiomore » (~1/10), the peptide became perpendicular to the bilayer, however no pore was detected by neutron in-plane scattering. To further understand how it interacted with charged lipid bilayers, we employed Small Angle Neutron Scattering to probe lipid distribution across bilayer leaflets in lipid vesicles. The results showed that Aurein 1.2 interacted strongly with negatively charged DMPG, causing strong asymmetry in lipid bilayer. At high concentration, while the vesicles were intact, we found additional structure feature on the bilayer. Finally, our study provides a glimpse into how Aurein 1.2 disturbs anionic lipid-containing membranes without pore formation.« less
Interaction of the Antimicrobial Peptide Aurein 1.2 and Charged Lipid Bilayer
Rai, Durgesh K.; Qian, Shuo
2017-06-16
Aurein 1.2 is a potent antimicrobial peptide secreted by frog Litoria aurea. As a short membrane-active peptide with only 13 amino acids in sequence, it has been found to be residing on the surface of lipid bilayer and permeabilizing bacterial membranes at high concentration. However, the detail at the molecular level is largely unknown. Here in this study, we investigated the action of Aurein 1.2 in charged lipid bilayers composed of DMPC/DMPG. Oriented Circular Dichroism results showed that the peptide was on the surface of lipid bilayer regardless of the charged lipid ratio. Only at a very high peptide-to-lipid ratiomore » (~1/10), the peptide became perpendicular to the bilayer, however no pore was detected by neutron in-plane scattering. To further understand how it interacted with charged lipid bilayers, we employed Small Angle Neutron Scattering to probe lipid distribution across bilayer leaflets in lipid vesicles. The results showed that Aurein 1.2 interacted strongly with negatively charged DMPG, causing strong asymmetry in lipid bilayer. At high concentration, while the vesicles were intact, we found additional structure feature on the bilayer. Finally, our study provides a glimpse into how Aurein 1.2 disturbs anionic lipid-containing membranes without pore formation.« less
Behavior of Bilayer Leaflets in Asymmetric Model Membranes: Atomistic Simulation Studies
Tian, Jianhui; Nickels, Jonathan; Katsaras, John; ...
2016-04-27
Spatial organization within lipid bilayers is an important feature for a range of biological processes. Leaflet compositional asymmetry and lateral lipid organization are just two of the ways in which membrane structure appears to be more complex than initially postulated by the fluid mosaic model. This raises the question of how the phase behavior in one bilayer leaflet may affect the apposing leaflet and how one begins to construct asymmetric model systems to investigate these interleaflet interactions. In this paper, we report on all-atom molecular dynamics simulations (a total of 4.1 μs) of symmetric and asymmetric bilayer systems composed ofmore » liquid-ordered (Lo) or liquid-disordered (Ld) leaflets, based on the nanodomain-forming POPC/DSPC/cholesterol system. We begin by analyzing an asymmetric bilayer with leaflets derived from simulations of symmetric Lo and Ld bilayers. In this system, we observe that the properties of the Lo and Ld leaflets are similar to those of the Lo and Ld leaflets in corresponding symmetric systems. However, it is not obvious that mixing the equilibrium structures of their symmetric counterparts is the most appropriate way to construct asymmetric bilayers nor that these structures will manifest interleaflet couplings that lead to domain registry/antiregistry. We therefore constructed and simulated four additional asymmetric bilayer systems by systematically adding or removing lipids in the Ld leaflet to mimic potential density fluctuations. We find that the number of lipids in the Ld leaflet affects its own properties, as well as those of the apposing Lo leaflet. Collectively, the simulations reveal the presence of weak acyl chain interdigitation across bilayer leaflets, suggesting that interdigitation alone does not contribute significantly to the interleaflet coupling in nonphase-separated bilayers of this chemical composition. Finally, however, the properties of both leaflets appear to be sensitive to changes in in-plane lipid packing, possibly providing a mechanism for interleaflet coupling by modulating local density and/or curvature fluctuations.« less
Krylova, Oxana O; Jahnke, Nadin; Keller, Sandro
2010-08-01
We have studied the solubilisation and reconstitution of lipid membranes composed of either synthetic phosphatidylcholine or Escherichia. coli polar lipid extract by the non-ionic detergent octylglucoside. For both lipid systems, composition-dependent transformations of unilamellar vesicles into micelles or vice versa were followed by high-sensitivity isothermal titration calorimetry. Data obtained over a range of detergent and lipid concentrations could be rationalised in terms of a three-stage phase separation model involving bilayer, bilayer/micelle coexistence, and micellar ranges, yielding the detergent/lipid phase diagrams and the bilayer-to-micelle partition coefficients of both detergent and lipid. The most notable difference between the lipids investigated was a substantial widening of the bilayer/micelle coexistence range for E. coli lipid, which was due to an increased preference of the detergent and a decreased affinity of the lipid for the micellar phase as compared with the bilayer phase. These effects on the bilayer-to-micelle partition coefficients could be explained by the high proportion in E. coli membranes of lipids possessing negative spontaneous curvature, which hampers both their transfer into strongly curved micellar structures as well as the insertion of detergent into condensed bilayers.
Investigating structural details of lipid-cholesterol-A β interactions
NASA Astrophysics Data System (ADS)
Rai, Durgesh; Anunciado, Divina; Heller, William; O'Neill, Hugh; Urban, Volker; Qian, Shuo
2015-03-01
Alzheimer's disease (AD) is the most common form of dementia and is predicted to affect 1 in 85 people around the world by 2050. Amyloid beta (A β) -peptide, a peptide composed of 40- 42 amino acids that is the product of cleavage from the amyloid precursor protein (APP), is regarded to play a major role in the development of AD. In addition, accumulating evidence points to a positive association between cholesterol and AD. Here, we present results from our studies about A β-peptide and cholesterol in bilayer by small-angle neutron scattering (SANS) using a combination of dimyristoyl, phosphocholine (DMPC) and partially deuterated cholesterol (cholesterol-d7) with and without A β. We compare the results using grazing incidence and transmission SANS on lipid bilayer films and unilamellar vesicles respectively. The structural details on vesicles and bilayers work in conjunction with the circular dichroism on peptide in solution and oriented circular dichroism in bilayer films. The studies confirm a positive association of A β with the membrane layers. The results from different studies will be compared and contrasted in presentation.
Effects of Ether vs. Ester Linkage on Lipid Bilayer Structure and Water Permeability
Guler, S. Deren; Ghosh, D. Dipon; Pan, Jianjun; Matthai, John C.; Zeidel, Mark L.; Nagle, John F.; Tristram-Nagle, Stephanie
2009-01-01
The structure and water permeability of bilayers composed of the ether linked lipid, dihexadecylphosphatidylcholine (DHPC), were studied and compared with the ester linked lipid, dipalmitoylphosphaditdylcholine (DPPC). Wide angle x-ray scattering on oriented bilayers in the fluid phase indicate that the area per lipid A is slightly larger for DHPC than for DPPC. Low angle x-ray scattering yields A=65.1Å2 for DHPC at 48°C. LAXS data provide the bending modulus, KC=4.2×10−13erg, and the Hamaker parameter H=7.2×10−14erg for the van der Waals attractive interaction between neighboring bilayers. For the low temperature phases with ordered hydrocarbon chains, we confirm the transition from a tilted Lß’ gel phase to an untilted, interdigitated LßI phase as the sample hydrates at 20°C. Our measurement of water permeability, Pf=0.022 cm/s at 48 °C for fluid phase DHPC is slightly smaller than that of DPPC, (Pf=0.027 cm/s) at 50 °C, consistent with our triple slab theory of permeability. PMID:19416724
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Jianhui; Nickels, Jonathan; Katsaras, John
Spatial organization within lipid bilayers is an important feature for a range of biological processes. Leaflet compositional asymmetry and lateral lipid organization are just two of the ways in which membrane structure appears to be more complex than initially postulated by the fluid mosaic model. This raises the question of how the phase behavior in one bilayer leaflet may affect the apposing leaflet and how one begins to construct asymmetric model systems to investigate these interleaflet interactions. In this paper, we report on all-atom molecular dynamics simulations (a total of 4.1 μs) of symmetric and asymmetric bilayer systems composed ofmore » liquid-ordered (Lo) or liquid-disordered (Ld) leaflets, based on the nanodomain-forming POPC/DSPC/cholesterol system. We begin by analyzing an asymmetric bilayer with leaflets derived from simulations of symmetric Lo and Ld bilayers. In this system, we observe that the properties of the Lo and Ld leaflets are similar to those of the Lo and Ld leaflets in corresponding symmetric systems. However, it is not obvious that mixing the equilibrium structures of their symmetric counterparts is the most appropriate way to construct asymmetric bilayers nor that these structures will manifest interleaflet couplings that lead to domain registry/antiregistry. We therefore constructed and simulated four additional asymmetric bilayer systems by systematically adding or removing lipids in the Ld leaflet to mimic potential density fluctuations. We find that the number of lipids in the Ld leaflet affects its own properties, as well as those of the apposing Lo leaflet. Collectively, the simulations reveal the presence of weak acyl chain interdigitation across bilayer leaflets, suggesting that interdigitation alone does not contribute significantly to the interleaflet coupling in nonphase-separated bilayers of this chemical composition. Finally, however, the properties of both leaflets appear to be sensitive to changes in in-plane lipid packing, possibly providing a mechanism for interleaflet coupling by modulating local density and/or curvature fluctuations.« less
Structure and functions of simple membrane-water interfaces. [Abstract only
NASA Technical Reports Server (NTRS)
Pohorille, A.; Wilson, M. A.
1994-01-01
The structure and functions of the earliest ancestors of contemporary cells are focal points in studies of the origin of life. Probably the first cell-like structures were vesicles - closed, spheroidal structures with aqueous medium trapped inside. The membranous walls of vesicles were most likely bilayers composed of simple amphiphilic material available on early earth. The membrane studied was composed of glycerol 1-monooleate (GMO). Glycerol forms the polar head group and the oily tail contains 18 carbon atoms. All head groups have been found to be located in two narrow regions at the interfaces with water. The membrane interior, formed by the hydrophobic tails, is quite fluid with chain disorder increasing towards the center of the bilayer. These results are in agreement with x-ray and neutron scattering data from related bilayers. The width of the membrane is not constant, but fluctuates in time and space. Occasional thinning defects in the membrane, observed during the course of the simulations, may have a significant influence on rates of passive transport of small molecules across membranes. It has been found that water penetrates the head group region but not the oily interior of the membrane. Water molecules near the interface are oriented by dipoles of the head groups. The resulting electrostatic potential across the interface, determined in our simulations, has been found to be markedly larger than across the water-oil interface. This quantity has been implicated as the source of selectivity, with respect to the sign of the charge, as an ion approaches the interface and during transport of hydrophobic ions across membranes.
The effect of the protein corona on the interaction between nanoparticles and lipid bilayers.
Di Silvio, Desirè; Maccarini, Marco; Parker, Roger; Mackie, Alan; Fragneto, Giovanna; Baldelli Bombelli, Francesca
2017-10-15
It is known that nanoparticles (NPs) in a biological fluid are immediately coated by a protein corona (PC), composed of a hard (strongly bounded) and a soft (loosely associated) layers, which represents the real nano-interface interacting with the cellular membrane in vivo. In this regard, supported lipid bilayers (SLB) have extensively been used as relevant model systems for elucidating the interaction between biomembranes and NPs. Herein we show how the presence of a PC on the NP surface changes the interaction between NPs and lipid bilayers with particular care on the effects induced by the NPs on the bilayer structure. In the present work we combined Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) and Neutron Reflectometry (NR) experimental techniques to elucidate how the NP-membrane interaction is modulated by the presence of proteins in the environment and their effect on the lipid bilayer. Our study showed that the NP-membrane interaction is significantly affected by the presence of proteins and in particular we observed an important role of the soft corona in this phenomenon. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Yuxian; Zhao, Weidong; Wen, Jiahui; Li, Jinming; Yang, Zhou; Wang, Dong; Cao, Hui; Quan, Maohua
2017-05-21
A new type of electric- or thermal-responsive multilayer device composed of SiO 2 bilayer inverse opal (IOP) and chiral nematic liquid crystals (N*LCs) was developed. Bilayer IOP was fabricated by layer-by-layer assembly of polystyrene (PS) spheres with two different sizes and showed a reflectance in an extended range of the near-infrared region. Furthermore, the electrically or thermally tunable reflectance of the bilayer-IOP-N*LC device was investigated. The device exhibited the photonic bandgap (PBG) of the N*LC-IOP composite structure with the application of an electric field (voltage-on), while it presented the reflectance of N*LCs without an electric field (voltage-off) and the electrically-responsive behaviour could be reversibly switched. Besides, the device exhibited a gradient redshift of reflectance as temperature increased below the clearing point (T C ) while it showed the PBG of the N*LC-IOP composite structure when the temperature was above T C .
Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Mingtian; Li, Baohui, E-mail: dliang@pku.edu.cn, E-mail: baohui@nankai.edu.cn; Zhou, Jihan
Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are notmore » identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar mass and the order of density of complexes observed from the three experimental systems are qualitatively in agreement with those predicted from the simulations.« less
NASA Astrophysics Data System (ADS)
Huang, Fong-yin; Chiu, Chi-cheng
2017-01-01
Ion pair amphiphile (IPA), a molecular complex composed of a pair of cationic and anionic surfactants, has been proposed as a novel phospholipid substitute. Controlling the physical stability of IPA vesicles is important for its application developments such as cosmetic and drug deliveries. To investigate the effects of IPA alkyl chain combinations and the cholesterol additive on the structural and mechanical properties of IPA vesicular bilayers, we conducted a series of molecular dynamics studies on the hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS) and dodecyltrimethylammonium-hexadecylsulfate (DTMA-HS) IPA bilayers with cholesterol. We found that both IPA bilayers are in the gel phase at 298 K, consistent with experimental observations. Compared with the HTMA-DS system, the DTMA-HS bilayer has more disordered alkyl chains in the hydrophobic region. When adding cholesterol, it induces alkyl chain ordering around its rigid sterol ring. Yet, cholesterol increases the molecular areas for all species and disturbs the molecular packing near the hydrophilic region and the bilayer core. Cholesterol also promotes the alkyl chain mismatch between the IPA moieties, especially for the DTMA-HS bilayer. The combined effects lead to non-monotonically enhancement of the membrane mechanical moduli for both IPA-cholesterol systems. Furthermore, cholesterol can form H-bonds with the alkylsulfate and thus enhance the contribution of alkylsulfate to the overall mechanical moduli. Combined results provide valuable molecular insights into the roles of each IPA component and the cholesterol on modulating the IPA bilayer properties.
Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane
NASA Astrophysics Data System (ADS)
Mohapatra, Monalisa; Mishra, Ashok K.
2012-03-01
Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (<= 1 mM) concentrations of the bile salts. The incorporation and location of fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, William T.; Rai, Durgesh K.
HIV-1, like other enveloped viruses, undergoes fusion with the cell membrane to infect it. Viral coat proteins are thought to bind the virus to the membrane and actively fuse the viral and cellular membranes together. The actual molecular mechanism of fusion is challenging to visualize, resulting in the use of model systems. In this paper, the bilayer curvature modifying properties of a synthetic variant of the HIV-1 gp41 fusion peptide with lipid bilayer vesicles composed of a mixture of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) were studied. In 7:3 DMPC:DMPS vesicles made with deuterium-labeled DMPC, the peptide was observedmore » to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet. Through the use of small-angle neutron scattering (SANS) and selective deuterium labeling, it was revealed that conformational transition of the peptide is also accompanied by a transition in the structure of the lipid bilayer. In addition to changes in the distribution of the lipid between the leaflets of the vesicle, the SANS data are consistent with two regions having different thicknesses. Finally, of the two different bilayer structures, the one corresponding to the smaller area fraction, being ~8% of the vesicle area, is much thicker than the remainder of the vesicle, which suggests that there are regions of localized negative curvature similar to what takes place at the point of contact between two membranes immediately preceding fusion.« less
Redondo-Morata, Lorena; Oncins, Gerard; Sanz, Fausto
2012-01-01
How do metal cations affect the stability and structure of phospholipid bilayers? What role does ion binding play in the insertion of proteins and the overall mechanical stability of biological membranes? Investigators have used different theoretical and microscopic approaches to study the mechanical properties of lipid bilayers. Although they are crucial for such studies, molecular-dynamics simulations cannot yet span the complexity of biological membranes. In addition, there are still some experimental difficulties when it comes to testing the ion binding to lipid bilayers in an accurate way. Hence, there is a need to establish a new approach from the perspective of the nanometric scale, where most of the specific molecular phenomena take place. Atomic force microscopy has become an essential tool for examining the structure and behavior of lipid bilayers. In this work, we used force spectroscopy to quantitatively characterize nanomechanical resistance as a function of the electrolyte composition by means of a reliable molecular fingerprint that reveals itself as a repetitive jump in the approaching force curve. By systematically probing a set of bilayers of different composition immersed in electrolytes composed of a variety of monovalent and divalent metal cations, we were able to obtain a wealth of information showing that each ion makes an independent and important contribution to the gross mechanical resistance and its plastic properties. This work addresses the need to assess the effects of different ions on the structure of phospholipid membranes, and opens new avenues for characterizing the (nano)mechanical stability of membranes. PMID:22225799
Heller, William T.; Rai, Durgesh K.
2017-01-16
HIV-1, like other enveloped viruses, undergoes fusion with the cell membrane to infect it. Viral coat proteins are thought to bind the virus to the membrane and actively fuse the viral and cellular membranes together. The actual molecular mechanism of fusion is challenging to visualize, resulting in the use of model systems. In this paper, the bilayer curvature modifying properties of a synthetic variant of the HIV-1 gp41 fusion peptide with lipid bilayer vesicles composed of a mixture of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) were studied. In 7:3 DMPC:DMPS vesicles made with deuterium-labeled DMPC, the peptide was observedmore » to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet. Through the use of small-angle neutron scattering (SANS) and selective deuterium labeling, it was revealed that conformational transition of the peptide is also accompanied by a transition in the structure of the lipid bilayer. In addition to changes in the distribution of the lipid between the leaflets of the vesicle, the SANS data are consistent with two regions having different thicknesses. Finally, of the two different bilayer structures, the one corresponding to the smaller area fraction, being ~8% of the vesicle area, is much thicker than the remainder of the vesicle, which suggests that there are regions of localized negative curvature similar to what takes place at the point of contact between two membranes immediately preceding fusion.« less
The influence of hyaluronan on the structure of a DPPC-bilayer under high pressures.
Zander, Thomas; Wieland, D C Florian; Raj, Akanksha; Wang, Min; Nowak, Benedikt; Krywka, Christina; Dėdinaitė, Andra; Claesson, Per Martin; Garamus, Vasil M; Schreyer, Andreas; Willumeit-Römer, Regine
2016-06-01
The superior lubrication properties of synovial joints have inspired many studies aiming at uncovering the molecular mechanisms which give rise to low friction and wear. However, the mechanisms are not fully understood yet, and, in particular, it has not been elucidated how the biolubricants present at the interface of cartilage respond to high pressures, which arise during high loads of joints. In this study we utilize a simple model system composed of two biomolecules that have been implied as being important for joint lubrication. It consists of a solid supported dipalmitoylphosphatidylcholin (DPPC) bilayer, which was formed via vesicles fusion on a flat Si wafer, and the anionic polysaccharide hyaluronan (HA). We first characterized the structure of the HA layer that adsorbed to the DPPC bilayers at ambient pressure and different temperatures using X-ray reflectivity (XRR) measurements. Next, XRR was utilized to evaluate the response of the system to high hydrostatic pressures, up to 2kbar (200MPa), at three different temperatures. By means of fluorescence microscopy images the distribution of DPPC and HA on the surface was visualized. Our data suggest that HA adsorbs to the headgroup region that is oriented towards the water side of the supported bilayer. Phase transitions of the bilayer in response to temperature and pressure changes were also observed in presence and absence of HA. Our results reveal a higher stability against high hydrostatic pressures for DPPC/HA composite layers compared to that of the DPPC bilayer in absence of HA. Copyright © 2016 Elsevier B.V. All rights reserved.
Geometrical aspects of the frustration in the cubic phases of lyotropic liquid crystals.
Anderson, D M; Gruner, S M; Leibler, S
1988-01-01
Bicontinuous cubic phases, composed of bilayers arranged in the geometries of periodic minimal surfaces, are found in a variety of different lipid/water systems. It has been suggested recently that these cubic structures arrive as the result of competition between two free-energy terms: the curvature energy of each monolayer and the stretching energy of the lipid chains. This scenario, closely analogous to the one that explains the origin of the hexagonal phases, is investigated here by means of simple geometrical calculations. It is first assumed that the lipid bilayer is of constant thickness and the distribution of the (local) mean curvature of the phospholipid-water interfaces is calculated. Then, assuming the mean curvature of these interfaces is constant, the distribution of the bilayer's thickness is calculated. Both calculations quantify the fact that the two energy terms are frustrated and cannot be satisfied simultaneously. However, the amount of the frustration can be smaller for the cubic phase than for the lamellar and hexagonal structures. Therefore, this phase can appear in the phase diagram between the other two, as observed in many recent experiments. PMID:3399497
Assembly of RNA nanostructures on supported lipid bilayers
Dabkowska, Aleksandra P.; Michanek, Agnes; Jaeger, Luc; Rabe, Michael; Chworos, Arkadiusz; Höök, Fredrik; Nylander, Tommy; Sparr, Emma
2014-01-01
The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nanostructures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces. PMID:25417592
Assembly of RNA nanostructures on supported lipid bilayers
NASA Astrophysics Data System (ADS)
Dabkowska, Aleksandra P.; Michanek, Agnes; Jaeger, Luc; Rabe, Michael; Chworos, Arkadiusz; Höök, Fredrik; Nylander, Tommy; Sparr, Emma
2014-12-01
The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces.The assembly of nucleic acid nanostructures with controlled size and shape has large impact in the fields of nanotechnology, nanomedicine and synthetic biology. The directed arrangement of nano-structures at interfaces is important for many applications. In spite of this, the use of laterally mobile lipid bilayers to control RNA three-dimensional nanostructure formation on surfaces remains largely unexplored. Here, we direct the self-assembly of RNA building blocks into three-dimensional structures of RNA on fluid lipid bilayers composed of cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or mixtures of zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) and cationic sphingosine. We demonstrate the stepwise supramolecular assembly of discrete building blocks through specific and selective RNA-RNA interactions, based on results from quartz crystal microbalance with dissipation (QCM-D), ellipsometry, fluorescence recovery after photobleaching (FRAP) and total internal reflection fluorescence microscopy (TIRF) experiments. The assembly can be controlled to give a densely packed single layer of RNA polyhedrons at the fluid lipid bilayer surface. We show that assembly of the 3D structure can be modulated by sequence specific interactions, surface charge and changes in the salt composition and concentration. In addition, the tertiary structure of the RNA polyhedron can be controllably switched from an extended structure to one that is dense and compact. The versatile approach to building up three-dimensional structures of RNA does not require modification of the surface or the RNA molecules, and can be used as a bottom-up means of nanofabrication of functionalized bio-mimicking surfaces. Electronic supplementary information (ESI) available: Table with sequences of tRNA units used in this study; schematic structures of the RNA polyhedron and its building blocks; gel electrophoresis characterization of the RNA polyhedron and squares; AFM characterization of RNA tectosquare; schematic structures of RNA-9 and RNA-10 and their association with lipid bilayers; QCM-D frequency and dissipation data (as function of time) for adsorption of RNA polyhedrons, RNA squares and RNA9-10 TIRF images of RNA with Gelstar after photobleaching with analysis; Correlation plot in change of shear viscosity for TS3 and TO3-4 models for the stoichiometry of TS; QCM-D dissipation data for the sequential experiment in Fig. 5a; QCM-D and for the assembly of building blocks at the bilayer scaffold at varying bulk concentrations; QCM-D of adsorption of TS3. See DOI: 10.1039/c4nr05968a
Penny, William M; Steele, Harmen B; Ross, J B Alexander; Palmer, Christopher P
2017-03-01
Phospholipid bilayer nanodiscs composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and synthetic maleic acid-styrene copolymer belts have been introduced as a pseudostationary phase (PSP) in electrokinetic chromatography and demonstrated good performance. The nanodiscs provide a suitable migration range and high theoretical plate counts. Using this nanodisc pseudostationary phase, the affinity of the bilayer structure for probe solutes was determined and characterized. Good correlation is observed between retention factors and octanol water partition coefficients for particular categories of solutes, but the general correlation is weak primarily because the nanodiscs show stronger affinity than octanol for hydrogen bond donors. This suggests that a more appropriate application of this technology is to measure and characterize interactions between solutes and lipid bilayers directly. Linear solvation energy relationship analysis of the nanodisc-solute interactions in this study demonstrates that the nanodiscs provide a solvation environment with low cohesivity and weak hydrogen bond donating ability, and provide relatively strong hydrogen bond acceptor strength. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, Shuo; Heller, William T
2011-01-01
Cellular membranes are complex mixtures of lipids, proteins, and other small molecules that provide functional, dynamic barriers between the cell and its environment, as well as between environments within the cell. The lipid composition of the membrane is highly specific and controlled in terms of both content and lipid localization. The membrane structure results from the complex interplay between the wide varieties of molecules present. Here, small-angle neutron scattering and selective deuterium labeling were used to probe the impact of the membrane-active peptides melittin and alamethicin on the structure of lipid bilayers composed of a mixture of the lipids dimyristoylmore » phosphatidylglycerol (DMPG) and chain-perdeuterated dimyristoyl phosphatidylcholine (DMPC). We found that both peptides enriched the outer leaflet of the bilayer with the negatively charged DMPG, creating an asymmetric distribution of lipids. The level of enrichment is peptide concentration-dependent and is stronger for melittin than it is for alamethicin. The enrichment between the inner and outer bilayer leaflets occurs at very low peptide concentrations and increases with peptide concentration, including when the peptide adopts a membrane-spanning, pore-forming state. The results suggest that these membrane-active peptides may have a secondary stressful effect on target cells at low concentrations that results from a disruption of the lipid distribution between the inner and outer leaflets of the bilayer that is independent of the formation of transmembrane pores.« less
Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination.
Liu, Keng-Ku; Jiang, Qisheng; Tadepalli, Sirimuvva; Raliya, Ramesh; Biswas, Pratim; Naik, Rajesh R; Singamaneni, Srikanth
2017-03-01
Solar steam generation is a highly promising technology for harvesting solar energy, desalination and water purification. We introduce a novel bilayered structure composed of wood and graphene oxide (GO) for highly efficient solar steam generation. The GO layer deposited on the microporous wood provides broad optical absorption and high photothermal conversion resulting in rapid increase in the temperature at the liquid surface. On the other hand, wood serves as a thermal insulator to confine the photothermal heat to the evaporative surface and to facilitate the efficient transport of water from the bulk to the photothermally active space. Owing to the tailored bilayer structure and the optimal thermo-optical properties of the individual components, the wood-GO composite structure exhibited a solar thermal efficiency of ∼83% under simulated solar excitation at a power density of 12 kW/m 2 . The novel composite structure demonstrated here is highly scalable and cost-efficient, making it an attractive material for various applications involving large light absorption, photothermal conversion and heat localization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokorna, Sarka; Jurkiewicz, Piotr; Hof, Martin, E-mail: martin.hof@jh-inst.cas.cz
2014-12-14
Time-dependent fluorescence shift (TDFS) of Laurdan embedded in phospholipid bilayers reports on hydration and mobility of the phospholipid acylgroups. Exchange of H{sub 2}O with D{sub 2}O prolongs the lifetime of lipid-water and lipid-water-lipid interactions, which is reflected in a significantly slower TDFS kinetics. Combining TDFS measurements in H{sub 2}O and D{sub 2}O hydrated bilayers with atomistic molecular dynamics (MD) simulations provides a unique tool for characterization of the hydrogen bonding at the acylgroup level of lipid bilayers. In this work, we use this approach to study the influence of fluoride anions on the properties of cationic bilayers composed of trimethylammonium-propanemore » (DOTAP). The results obtained for DOTAP are confronted with those for neutral phosphatidylcholine (DOPC) bilayers. Both in DOTAP and DOPC H{sub 2}O/D{sub 2}O exchange prolongs hydrogen-bonding lifetime and does not disturb bilayer structure. These results are confirmed by MD simulations. TDFS experiments show, however, that for DOTAP this effect is cancelled in the presence of fluoride ions. We interpret these results as evidence that strongly hydrated fluoride is able to steal water molecules that bridge lipid carbonyls. Consequently, when attracted to DOTAP bilayer, fluoride disrupts the local hydrogen-bonding network, and the differences in TDFS kinetics between H{sub 2}O and D{sub 2}O hydrated bilayers are no longer observed. A distinct behavior of fluoride is also evidenced by MD simulations, which show different lipid-ion binding for Cl{sup −} and F{sup −}.« less
Aguayo, Daniel; González-Nilo, Fernando D; Chipot, Christophe
2012-05-08
Simulation of three models of cardiolipin (CL) containing membranes using a new set of parameters for tetramyristoyl and tetraoleoyl CLs has been developed in the framework of the united-atom CHARMM27-UA and the all-atom CHARMM36 force fields with the aim of performing molecular dynamics (MD) simulations of cardiolipin-containing mixed-lipid membranes. The new parameters use a hybrid representation of all-atom head groups in conjunction with implicit-hydrogen united-atom (UA) to describe the oleoyl and myristoyl chains of the CLs, in lieu of the fully atomistic description, thereby allowing longer simulations to be undertaken. The physicochemical properties of the bilayers were determined and compared with previously reported data. Furthermore, using tetramyristoyl CL mixed with POPG and POPE lipids, a mitochondrial membrane was simulated. The results presented here show the different behavior of the bilayers as a result of the lipid composition, where the length of the acyl chain and the conformation of the headgroup can be associated with the mitochondrial membrane properties. The new hybrid CL parameters prove to be well suited for the simulation of the molecular structure of CL-containing bilayers and can be extended to other lipid bilayers composed of CLs with different acyl chains or alternate head groups.
Novel bilayer bacterial nanocellulose scaffold supports neocartilage formation in vitro and in vivo.
Martínez Ávila, Héctor; Feldmann, Eva-Maria; Pleumeekers, Mieke M; Nimeskern, Luc; Kuo, Willy; de Jong, Willem C; Schwarz, Silke; Müller, Ralph; Hendriks, Jeanine; Rotter, Nicole; van Osch, Gerjo J V M; Stok, Kathryn S; Gatenholm, Paul
2015-03-01
Tissue engineering provides a promising alternative therapy to the complex surgical reconstruction of auricular cartilage by using ear-shaped autologous costal cartilage. Bacterial nanocellulose (BNC) is proposed as a promising scaffold material for auricular cartilage reconstruction, as it exhibits excellent biocompatibility and secures tissue integration. Thus, this study evaluates a novel bilayer BNC scaffold for auricular cartilage tissue engineering. Bilayer BNC scaffolds, composed of a dense nanocellulose layer joined with a macroporous composite layer of nanocellulose and alginate, were seeded with human nasoseptal chondrocytes (NC) and cultured in vitro for up to 6 weeks. To scale up for clinical translation, bilayer BNC scaffolds were seeded with a low number of freshly isolated (uncultured) human NCs combined with freshly isolated human mononuclear cells (MNC) from bone marrow in alginate and subcutaneously implanted in nude mice for 8 weeks. 3D morphometric analysis showed that bilayer BNC scaffolds have a porosity of 75% and mean pore size of 50 ± 25 μm. Furthermore, endotoxin analysis and in vitro cytotoxicity testing revealed that the produced bilayer BNC scaffolds were non-pyrogenic (0.15 ± 0.09 EU/ml) and non-cytotoxic (cell viability: 97.8 ± 4.7%). This study demonstrates that bilayer BNC scaffolds offer a good mechanical stability and maintain a structural integrity while providing a porous architecture that supports cell ingrowth. Moreover, bilayer BNC scaffolds provide a suitable environment for culture-expanded NCs as well as a combination of freshly isolated NCs and MNCs to form cartilage in vitro and in vivo as demonstrated by immunohistochemistry, biochemical and biomechanical analyses. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bechinger, B.; Seelig, J.
1991-04-23
Phloretin, 4-hydroxyvalerophenone, and 2-hydroxy-{omega}-phenylpropiophenone are lipophilic dipolar substances that modify ionic conductances of bilayer membranes. The structural changes at the level of the head groups and the hydrocarbon chains as induced by the incorporation of phloretin and its analogues were investigated with deuterium and phosphorus nuclear magnetic resonance. Membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were selectively deuterated at the choline head group and at the hydrocarbon chains, and {sup 2}H and {sup 31}P NMR spectra were recorded with varying concentrations of dipolar agents. Incorporation of phloretin leaves the bilayer structure intact, induces only a small disordering of the hydrocarbon chains andmore » has no significant effect on the head-group dynamics. On the other hand, quite distinct structural changes are observed for the phosphocholine head group. In addition to this structural change, phloretin also modifies the hydration layer at the lipid-water interface. Much less {sup 2}H{sub 2} is adsorbed to the membrane surface when the bilayer contains phloretin, 4-hydroxyvalerophenone, or 2-hydroxy-{omega}-phenylpropiophenone. Moreover, a rather large change in the residual phosphorus chemical shielding anisotropy argues in favor of hydrogen-bond formation between the phosphate segment and the phloretin hydroxyl groups.« less
Cation Valence Control in La0.7Sr0.3Co0.5Mn0.5O3 Thin Films and Bilayers
NASA Astrophysics Data System (ADS)
Kane, Alex; Chopdekar, Rajesh; Arenholz, Elke; Mehta, Apurva; Takamura, Yayoi
The unique interplay between spin, orbital, charge, and lattice degrees of freedom at interfaces in perovskite oxides makes them model systems to probe and exert magnetic control at the nanoscale. Previous work revealed exchange coupling in bilayers composed of a hard ferromagnetic (FM) La0.7Sr0.3CoO3 (LSCO) layer and a soft FM La0.7Sr0.3MnO3 (LSMO) layer, coincident with charge transfer across the LSCO/LSMO interface. An interfacial Co2+-rich LSCO layer produced a FM superexchange interaction with Mn4+ ions in the adjacent LSMO layer, mimicking the behavior of ordered Co2+/Mn4 + ions in the double perovskite La2CoMnO6. In an attempt to manipulate the extent of charge transfer in this system, La0.7Sr0.3Co0.5Mn0.5O3 (LSCMO)/LSMO and LSCMO/LSCO bilayers were deposited by pulsed laser deposition. Bulk magnetometry and soft x-ray magnetic spectroscopy were used to investigate the Mn/Co magnetic and electronic structures, comparing the surface/interface dominant effects vs. the film average. The LSCMO/LSMO bilayer enhanced the magnetically soft Co2+ population at the interface, while the LSCMO/LSCO bilayers strongly suppressed the Co2+ state in the LSCMO layer.
Aligning nanodiscs at the air-water interface, a neutron reflectivity study.
Wadsäter, Maria; Simonsen, Jens B; Lauridsen, Torsten; Tveten, Erlend Grytli; Naur, Peter; Bjørnholm, Thomas; Wacklin, Hanna; Mortensen, Kell; Arleth, Lise; Feidenhans'l, Robert; Cárdenas, Marité
2011-12-20
Nanodiscs are self-assembled nanostructures composed of a belt protein and a small patch of lipid bilayer, which can solubilize membrane proteins in a lipid bilayer environment. We present a method for the alignment of a well-defined two-dimensional layer of nanodiscs at the air-water interface by careful design of an insoluble surfactant monolayer at the surface. We used neutron reflectivity to demonstrate the feasibility of this approach and to elucidate the structure of the nanodisc layer. The proof of concept is hereby presented with the use of nanodiscs composed of a mixture of two different lipid (DMPC and DMPG) types to obtain a net overall negative charge of the nanodiscs. We find that the nanodisc layer has a thickness or 40.9 ± 2.6 Å with a surface coverage of 66 ± 4%. This layer is located about 15 Å below a cationic surfactant layer at the air-water interface. The high level of organization within the nanodiscs layer is reflected by a low interfacial roughness (~4.5 Å) found. The use of the nanodisc as a biomimetic model of the cell membrane allows for studies of single membrane proteins isolated in a confined lipid environment. The 2D alignment of nanodiscs could therefore enable studies of high-density layers containing membrane proteins that, in contrast to membrane proteins reconstituted in a continuous lipid bilayer, remain isolated from influences of neighboring membrane proteins within the layer. © 2011 American Chemical Society
Henshaw, J B; Olsen, C A; Farnbach, A R; Nielson, K H; Bell, J D
1998-07-28
Bilayers composed of phosphatidylcholine initially resist catalysis by phospholipase A2. However, after a latency period, they become susceptible when sufficient reaction products (lysolecithin and fatty acid) accumulate in the membrane. Temperature near the main bilayer phase transition and calcium concentration modulate the effectiveness of the reaction products. The purpose of this study was to examine the individual contributions of lysolecithin and palmitic acid to the susceptibility of dipalmitoylphosphatidylcholine vesicles and to rationalize the effects of temperature and calcium. Various fluorescent probes (Prodan, Laurdan, pyrene-labeled fatty acid, and dansyl-labeled phospholipid) were used to assess changes in the ability of the reaction products to perturb the bilayer and to affect the interactions with the enzyme. Un-ionized palmitic acid decreased bilayer polarity and perturbed the membrane surface exposing some of the Prodan to bulk water. Lysolecithin increased bilayer polarity and the rate of dipolar relaxation in response to the excited states of Laurdan and Prodan. A combination of the individual contributions of each product was observed when palmitic acid and lysolecithin were present together at low calcium, and the effects of lysolecithin dominated at high calcium. Palmitic acid, but not lysolecithin, promoted the binding of phospholipase A2 to the bilayer surface in the absence of calcium. Lysolecithin reduced the ability of fatty acid to enhance binding apparently by altering the structure of fatty acid domains in the membrane. Furthermore, increased temperature and ionization of the fatty acid tended to cause segregation of bound phospholipase A2 into domains poor in phospholipid content which presumably impeded bilayer hydrolysis. In contrast, un-ionized palmitic acid and lysolecithin promoted hydrolysis by augmenting a step distal to the adsorption of enzyme to the bilayer. This kinetic response to lysolecithin was calcium-dependent. A model accounting for these varied influences of the reaction products is presented.
Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling.
Pera, H; Kleijn, J M; Leermakers, F A M
2014-02-14
To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus kc and k̄ and the preferred monolayer curvature J(0)(m), and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of kc and the area compression modulus kA are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k̄ and J(0)(m) can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k̄ and J(0)(m) change sign with relevant parameter changes. Although typically k̄ < 0, membranes can form stable cubic phases when the Gaussian bending modulus becomes positive, which occurs with membranes composed of PC lipids with long tails. Similarly, negative monolayer curvatures appear when a small head group such as PE is combined with long lipid tails, which hints towards the stability of inverse hexagonal phases at the cost of the bilayer topology. To prevent the destabilisation of bilayers, PG lipids can be mixed into these PC or PE lipid membranes. Progressive loading of bilayers with PG lipids lead to highly charged membranes, resulting in J(0)(m) > 0, especially at low ionic strengths. We anticipate that these changes lead to unstable membranes as these become vulnerable to pore formation or disintegration into lipid disks.
Reusable biocompatible interface for immobilization of materials on a solid support
Salamon, Zdzislaw; Schmidt, Richard A.; Tollin, Gordon; Macleod, H. Angus
1996-01-01
A method for the formation of a biocompatible film composed of a self-assembled bilayer membrane deposited on a planar surface. This bilayer membrane is capable of immobilizing materials to be analyzed in an environment very similar to their native state. Materials so immobilized may be subject to any of a number of analytical techniques.
Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.
Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A
2017-10-25
Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.
NASA Astrophysics Data System (ADS)
Park, Beom-Kyeong; Song, Rak-Hyun; Lee, Seung-Bok; Lim, Tak-Hyoung; Park, Seok-Joo; Jung, WooChul; Lee, Jong-Won
2017-04-01
Solid oxide fuel cells (SOFCs) require low-cost metallic components for current collection from electrodes as well as electrical connection between unit cells; however, the degradation of their electrical properties and surface stability associated with high-temperature oxidation is of great concern. It is thus important to develop protective conducting oxide coatings capable of mitigating the degradation of metallic components under SOFC operating conditions. Here, we report a conformal bi-layered coating composed of perovskite and spinel oxides on a metallic wire network fabricated by a facile electrodeposition-based route. A highly dense, crack-free, and adhesive bi-layered LaMnO3/Co3O4 coating of ∼1.2 μm thickness is conformally formed on the surfaces of wires with ∼100 μm diameter. We demonstrate that the bi-layered LaMnO3/Co3O4 coating plays a key role in improving the power density and durability of a tubular SOFC by stabilizing the surface of the metallic wire network used as a cathode current collector. The electrodeposition-based technique presented in this study offers a low-cost and scalable process to fabricate conformal multi-layered coatings on various metallic structures.
Early Stages of Oxidative Stress-Induced Membrane Permeabilization: A Neutron Reflectometry Study
Smith, Hillary L.; Howland, Michael C.; Szmodis, Alan W.; Li, Qijuan; Daemen, Luke L.; Parikh, Atul N.; Majewski, Jaroslaw
2009-01-01
Neutron reflectometry was used to probe in situ the structure of supported lipid bilayers at the solid–liquid interface during the early stages of UV-induced oxidative degradation. Single-component supported lipid bilayers composed of gel phase, dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), and fluid phase, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), phospholipids were exposed to low-dose oxidative stress generated by UV light and their structures were examined by neutron reflectometry. An interrupted illumination mode, involving exposures in 15 min increments with 2 h intervals between subsequent exposures, and a continuous mode involving a single 60 (or 90) min exposure period were employed. In both cases, pronounced differences in the structure of the lipid bilayer after exposure were observed. Interrupted exposure led to a substantial decrease in membrane coverage but preserved its total thickness at reduced scattering length densities. These results indicate that the initial phase during UV-induced membrane degradation involves the formation of hydrophilic channels within the membrane. This is consistent with the loss of some lipid molecules we observe and attendant reorganization of residual lipids forming hemimicellar edges of the hydrophilic channels. In contrast, continuous illumination produced a graded interface of continuously varied scattering length density (and hence hydrocarbon density) extending 100–150 Å into the liquid phase. Exposure of a DPPC bilayer to UV light in the presence of a reservoir of unfused vesicles showed low net membrane disintegration during oxidative stress, presumably because of surface back-filling from the bulk reservoir. Chemical evidence for membrane degradation was obtained by mass spectrometry and Fourier transform infrared spectroscopy. Further evidence for the formation of hydrophilic channels was furnished by fluorescence microscopy and imaging ellipsometry data. PMID:19275260
NASA Astrophysics Data System (ADS)
Lee, Hwankyu; Malmstadt, Noah
2018-04-01
Lipid bilayers composed of saturated and unsaturated lipids, oxidized lipids, and cholesterol at concentrations of 0–18 mol% oxidized lipid were simulated, showing that the presence of oxidized lipid increases bilayer disorder, curvature, and lateral dynamics at low oxidized-lipid concentrations of 18 mol% or less. The aldehyde terminal of a shortened oxidized-lipid tail tends to interact with water and thus bends toward the bilayer-water interface, in agreement with previous experiments and simulations. In particular, water molecules pass through the oxidized bilayer without pore formation, implying passive permeability. A single nanoparticle, which consists of 300 polystyrene (PS) chains with cationic terminals, added to this bilayer simulation induces negative bilayer curvature and inserts to the bilayer, regardless of the oxidized-lipid concentration. Hydrophobic monomers and cationic terminals of the PS particle interact respectively with lipid tails and headgroups, leading to the wrapping of either lipid monolayer or bilayer along the particle surface. These results indicate that lipid oxidation increases membrane curvature and permeability even at such a low concentration of oxidized lipid, which supports the experimental observations regarding the passive permeability of oxidized bilayer, and also that oxidized lipids of low concentration do not significantly influence the insertion of a cationic PS particle to the bilayer.
Reusable biocompatible interface for immobilization of materials on a solid support
Salamon, Z.; Schmidt, R.A.; Tollin, G.; Macleod, H.A.
1996-05-28
A method is presented for the formation of a biocompatible film composed of a self-assembled bilayer membrane deposited on a planar surface. This bilayer membrane is capable of immobilizing materials to be analyzed in an environment very similar to their native state. Materials so immobilized may be subject to any of a number of analytical techniques. 3 figs.
Padilha, J E; Fazzio, A; da Silva, Antônio J R
2015-02-13
In this Letter, we study the structural and electronic properties of single-layer and bilayer phosphorene with graphene. We show that both the properties of graphene and phosphorene are preserved in the composed heterostructure. We also show that via the application of a perpendicular electric field, it is possible to tune the position of the band structure of phosphorene with respect to that of graphene. This leads to control of the Schottky barrier height and doping of phosphorene, which are important features in the design of new devices based on van der Waals heterostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeltik, Aydan; Guzelturk, Burak; Akhavan, Shahab
2013-12-23
We report enhanced sensitization of silicon through nonradiative energy transfer (NRET) of the excitons in an energy-gradient structure composed of a cascaded bilayer of green- and red-emitting CdTe quantum dots (QDs) on bulk silicon. Here NRET dynamics were systematically investigated comparatively for the cascaded energy-gradient and mono-dispersed QD structures at room temperature. We show experimentally that NRET from the QD layer into silicon is enhanced by 40% in the case of an energy-gradient cascaded structure as compared to the mono-dispersed structures, which is in agreement with the theoretical analysis based on the excited state population-depopulation dynamics of the QDs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melby, Eric S.; Mensch, Arielle C.; Lohse, Samuel E.
2016-01-01
The cell membrane represents an important biological interface that nanoparticles may encounter after being released into the environment. Interaction of nanoparticles with cellular membranes may alter membrane structure and function, lead to their uptake into cells, and elicit adverse biological responses. Supported lipid bilayers have proven to be valuable ex vivo models for biological membranes, allowing investigation of their mechanisms of interaction with nanoparticles with a degree of control impossible in living cells. To date, the majority of research on nanoparticle interaction with supported lipid bilayers has employed membranes composed of single or binary mixtures of phospholipids. Cellular membranes containmore » a wide variety of lipids and exhibit lateral organization. Ordered membrane domains enriched in specific membrane components are referred to as lipid rafts and have not been explored with respect to their interaction with nanoparticles. Here we develop model lipid raft-containing membranes amenable to investigation by a variety of surface-sensitive analytical techniques and demonstrate that lipid rafts influence the extent of nanoparticle attachment to model membranes. We determined conditions that allow reliable formation of bilayers containing rafts enriched in sphingomyelin and cholesterol and confirmed their morphology by structured illumination and atomic force microscopies. We demonstrate that lipid rafts increase attachment of cationic gold nanoparticles to model membranes under near physiological ionic strength conditions (0.1 M NaCl) at pH 7.4. We anticipate that these results will serve as the foundation for and motivate further study of nanoparticle interaction with compositionally varied lipid rafts.« less
NASA Astrophysics Data System (ADS)
Yin, Xin; Guan, Yingli; Song, Lixin; Xie, Xueyao; Du, Pingfan; Xiong, Jie
2018-04-01
A bi-layer photoanode is successfully fabricated for dye-sensitized solar cells (DSSCs) composed of P25/TiO2 nanorod (P25/TNR) as the underlayer and TiO2 nanosheet spheres (TNSs) as the light-scattering layer. Notably, the P25-TNR provides multiple functions, including more dye loading, more efficient charge transport and a lower electron recombination rate for the photoanode. Besides, the unique structure of TNS can significantly improve the light-harvesting capacity, boosting the light-harvesting efficiency. Therefore, an enhanced short-circuit current and power conversion efficiency of 18.04 mA cm-2 and 5.99%, respectively, were achieved for the P25/TNR-TNS-based DSSC, which was better than that of the P25-TNS-based (15.17 mA cm-2, 5.36%) and bare TNS-based (11.43 mA cm-2, 4.14%) DSSCs. This indicates that this bi-layer structure effectively combines the advantages of the one-dimensional (1D) nanostructure and three-dimensional (3D) hierarchical structure. In short, this work demonstrates the possibility of fabricating desirable photoanodes for high-performance DSSCs by rational design of nanostructures and effective combination of multi-functional components.
Alves, Ana Catarina; Ribeiro, Daniela; Horta, Miguel; Lima, José L F C; Nunes, Cláudia; Reis, Salette
2017-08-01
Daunorubicin is extensively used in chemotherapy for diverse types of cancer. Over the years, evidence has suggested that the mechanisms by which daunorubicin causes cytotoxic effects are also associated with interactions at the membrane level. The aim of the present work was to study the interplay between daunorubicin and mimetic membrane models composed of different ratios of 1,2-dimyristoyl- sn -glycero- 3 -phosphocholine (DMPC), sphingomyelin (SM) and cholesterol (Chol). Several biophysical parameters were assessed using liposomes as mimetic model membranes. Thereby, the ability of daunorubicin to partition into lipid bilayers, its apparent location within the membrane and its effect on membrane fluidity were investigated. The results showed that daunorubicin has higher affinity for lipid bilayers composed of DMPC, followed by DMPC : SM, DMPC : Chol and lastly by DMPC : SM : Chol. The addition of SM or Chol into DMPC membranes not only increases the complexity of the model membrane but also decreases its fluidity, which, in turn, reduces the amount of anticancer drug that can partition into these mimetic models. Fluorescence quenching studies suggest a broad distribution of the drug across the bilayer thickness, with a preferential location in the phospholipid tails. The gathered data support that daunorubicin permeates all types of membranes to different degrees, interacts with phospholipids through electrostatic and hydrophobic bonds and causes alterations in the biophysical properties of the bilayers, namely in membrane fluidity. In fact, a decrease in membrane fluidity can be observed in the acyl region of the phospholipids. Ultimately, such outcomes can be correlated with daunorubicin's biological action, where membrane structure and lipid composition have an important role. In fact, the results indicate that the intercalation of daunorubicin between the phospholipids can also take place in rigid domains, such as rafts that are known to be involved in different receptor processes, which are important for cellular function. © 2017 The Author(s).
The Lγ Phase of Pulmonary Surfactant.
Kumar, Kamlesh; Chavarha, Mariya; Loney, Ryan W; Weiss, Thomas M; Rananavare, Shankar B; Hall, Stephen B
2018-06-05
To determine how different components affect the structure of pulmonary surfactant, we measured X-ray scattering by samples derived from calf surfactant. The surfactant phospholipids demonstrated the essential characteristics of the L γ phase: a unit cell with a lattice constant appropriate for two bilayers, and crystalline chains detected by wide-angle X-ray scattering (WAXS). The electron density profile, obtained from scattering by oriented films at different relative humidities (70-97%), showed that the two bilayers, arranged as mirror images, each contain two distinct leaflets with different thicknesses and profiles. The detailed structures suggest one ordered leaflet that would contain crystalline chains and one disordered monolayer likely to contain the anionic compounds, which constitute ∼10% of the surfactant phospholipids. The spacing and temperature dependence detected by WAXS fit with an ordered leaflet composed of dipalmitoyl phosphatidylcholine. Physiological levels of cholesterol had no effect on this structure. Removing the anionic phospholipids prevented formation of the L γ phase. The cationic surfactant proteins inhibited L γ structures, but at levels unlikely related to charge. Because the L γ phase, if arranged properly, could produce a self-assembled ordered interfacial monolayer, the structure could have important functional consequences. Physiological levels of the proteins, however, inhibit formation of the L γ structures at high relative humidities, making their physiological significance uncertain.
Thermodynamic study of benzocaine insertion into different lipid bilayers
NASA Astrophysics Data System (ADS)
Cascales, J. J. López; Costa, S. D. Oliveira; Porasso, R. D.
2011-10-01
Despite the general consensus concerning the role played by sodium channels in the molecular mechanism of local anesthetics, the potency of anaesthetic drugs also seems to be related with their solubility in lipid bilayers. In this respect, this work represents a thermodynamic study of benzocaine insertion into lipid bilayers of different compositions by means of molecular dynamics simulation. Thus, the free energy profiles associated with benzocaine insertion into symmetric lipid bilayers composed of different proportions of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine were studied. From the simulation results, a maximum in the free energy (ΔG) profile was measured in the region of the lipid/solution interface. This free energy barrier appears to be very much dependent on the lipid composition of the membrane. On the other hand, the minimum free energy (ΔG) within the bilayer remained almost independent of the lipid composition of the bilayer. By repeating the study at different temperatures, it was seen how the spontaneity of benzocaine insertion into the lipid bilayer is due to an increase in the entropy associated with the process.
Thermodynamic study of benzocaine insertion into different lipid bilayers.
Cascales, J J López; Costa, S D Oliveira; Porasso, R D
2011-10-07
Despite the general consensus concerning the role played by sodium channels in the molecular mechanism of local anesthetics, the potency of anaesthetic drugs also seems to be related with their solubility in lipid bilayers. In this respect, this work represents a thermodynamic study of benzocaine insertion into lipid bilayers of different compositions by means of molecular dynamics simulation. Thus, the free energy profiles associated with benzocaine insertion into symmetric lipid bilayers composed of different proportions of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylserine were studied. From the simulation results, a maximum in the free energy (ΔG) profile was measured in the region of the lipid/solution interface. This free energy barrier appears to be very much dependent on the lipid composition of the membrane. On the other hand, the minimum free energy (ΔG) within the bilayer remained almost independent of the lipid composition of the bilayer. By repeating the study at different temperatures, it was seen how the spontaneity of benzocaine insertion into the lipid bilayer is due to an increase in the entropy associated with the process. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Novak, Brian; Astete, Carlos; Sabliov, Cristina; Moldovan, Dorel
2012-02-01
Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable polymer. Nanoparticles of PLGA are commonly used for drug delivery applications. The interaction of the nanoparticles with the cell membrane may influence the rate of their uptake by cells. Both PLGA and cell membranes are negatively charged, so adding positively charged polymers such as trimethyl chitosan (TMC) which adheres to the PLGA particles improves their cellular uptake. The interaction of 3 nm PLGA and TMC-modified-PLGA nanoparticles with lipid bilayers composed of mixtures of phosphatidylcholine and phosphatidylserine lipids was studied using molecular dynamics simulations. The free energy profiles as function of nanoparticles position along the normal direction to the bilayers were calculated, the distribution of phosphatidylserine lipids as a function of distance of the particle from the bilayer was calculated, and the time scale for particle motion in the directions parallel to the bilayer surface was estimated.
Meunier, Cédric; Andersen, Ann C; Bruneaux, Matthieu; Le Guen, Dominique; Terrier, Peran; Leize-Wagner, Emmanuelle; Zal, Franck
2010-01-01
Siboglinids are symbiotic polychete annelids having hemoglobins as essential oxygen- and sulfide-carriers for their endosymbiotic bacteria. We analyzed the structure of the hemoglobins from two species of siboglinids: the monilifera Sclerolinum contortum and the frenulata Oligobrachia webbi (i.e. haakonmosbiensis) from Norwegian cold seeps. Measured by Multi-Angle Laser Light Scattering (MALLS), Sclerolinum shows a 3190+/-50 kDa hexagonal bilayer hemoglobin (HBL-Hb) and a 461+/-46 kDa ring-Hb, just as vestimentifera, whereas Oligobrachia has a 409+/-3.7 kDa ring-Hb only. Electrospray Ionization-Mass Spectrometry (ESI-MS) showed Sclerolinum HBL-Hb composed of seven monomeric globins (15-16 kDa), three disulfide-bonded globin heterodimers and three linkers. The heterodimers always contain globin-b (15814.4+/-1.5 Da). Sclerolinum ring-Hb is composed of globins and dimers with identical masses as its HBL-Hb, but lacks linkers. Oligobrachia ring-Hb has three globin monomers (14-15 kDa) only, with no disulfide-bonded dimers. Comparison of Sclerolinum hemoglobins between Storegga and Haakon Mosby Mud Volcano, using the normalized height of deconvoluted ESI-MS peaks, shows differences in globin monomers abundances that could reflect genetic differences or differential gene expression between distinct seep populations. The discovery of HBL-Hb in Sclerolinum is a new element supporting the hypothesis of monilifera being phylogenetically more closely related to vestimentifera, than to frenulata.
Bilayered Films Based on Novel Polymer Derivative for Improved Ocular Therapy of Gatifloxacin
Aher, Naval Dinesh; Nair, Hema Ajit
2014-01-01
Context. Thiomers could prove to be suitable mucoadhesives for fabrication of ocular inserts. Objective. The study intends to explore the application of thiolated sodium alginate (TSA) to the preparation of bilayered ocular inserts of gatifloxacin. Methods. Cysteine moieties were grafted onto sodium alginate (SA) and the resultant thiomer was characterized for relevant physicochemical properties. Bilayered inserts were fabricated with a mucoadhesive immediate release layer composed of either SA or TSA and a sustained release layer composed of acrylates. Films were prepared by solvent evaporation and evaluated for mechanical properties, drug content, and in vitro release. Results and Discussion. The synthesized TSA possessed 248.80 ± 49.7 μmol thiol groups/gm and its solutions thickened on standing due to disulphide bridging. Its films showed improved mucoadhesion and also a strikingly beneficial property of resisting erosion and remaining as a hydrated adhesive layer for the duration of drug release. The bilayered films were found to be flexible, with good folding endurance, uniform thickness, and appropriate drug content, and showed a release of about 80% of loaded gatifloxacin in 12 h. Conclusion. The study demonstrates promise in employing thiolated polymer in conjunction with acrylates for the design of ocular inserts for twice a day therapy with gatifloxacin. PMID:24516362
Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology.
Galneder, R; Kahl, V; Arbuzova, A; Rebecchi, M; Rädler, J O; McLaughlin, S
2001-05-01
We describe an apparatus that combines microelectrophoresis and laser trap technologies to monitor the activity of phosphoinositide-specific phospholipase C-delta1 (PLC-delta) on a single bilayer-coated silica bead with a time resolution of approximately 1 s. A 1-microm-diameter bead was coated with a phospholipid bilayer composed of electrically neutral phosphatidylcholine (PC) and negatively charged phosphatidylinositol 4,5-bisphosphate (2% PIP2) and captured in a laser trap. When an AC field was applied (160 Hz, 20 V/cm), the electrophoretic force produced a displacement of the bead, Delta(x), from its equilibrium position in the trap; Delta(x), which was measured using a fast quadrant diode detector, is proportional to the zeta potential and thus to the number of PIP2 molecules on the outer leaflet (initially, approximately 10(5)). When a solution containing PLC-delta flows past the bead, the enzyme adsorbs to the surface and hydrolyzes PIP2 to form the neutral lipid diacylglycerol. We observed a nonexponential decay of PIP2 on the bead with time that is consistent with a model based on the known structural properties of PLC-delta.
A study on the resistance switching of Ag2Se and Ta2O5 heterojunctions using structural engineering
NASA Astrophysics Data System (ADS)
Lee, Tae Sung; Lee, Nam Joo; Abbas, Haider; Hu, Quanli; Yoon, Tae-Sik; Lee, Hyun Ho; Le Shim, Ee; Kang, Chi Jung
2018-01-01
The resistive random access memory (RRAM) devices with heterostuctures have been investigated due to cycling stability, nonlinear switching, complementary resistive switching and self-compliance. The heterostructured devices can modulate the resistive switching (RS) behavior appropriately by bilayer structure with a variety of materials. In this study, the bipolar resistive switching characteristics of the bilayer structures composed of Ta2O5 and Ag2Se, which are transition-metal oxide (TMO) and silver chalcogenide, were investigated. The bilayer devices of Ta2O5 deposited on Ag2Se (Ta2O5/Ag2Se) and Ag2Se deposited on Ta2O5 (Ag2Se/Ta2O5) were fabricated for investigation of the RS characteristics by stacking sequence of Ta2O5 and Ag2Se. All operating voltages were applied to the Ag top electrode with the Pt bottom electrode grounded. The Ta2O5/Ag2Se device showed that a negative voltage sweep switched the device from high resistance state (HRS) to low resistance state (LRS) and a positive voltage sweep switched the device from LRS to HRS. On the contrary, for the Ag2Se/Ta2O5 device a positive voltage sweep switched the device from HRS to LRS, and a negative voltage sweep switched it from LRS to HRS. The polarity dependence of RS was attributed to the stacking sequence of Ta2O5 and Ag2Se. In addition, the combined heterostructured device of both bilayer stacks, Ta2O5/Ag2Se and Ag2Se/Ta2O5, exhibited the complementary switching characteristics. By using threshold switching devices, sneak path leakage can be reduced without additional selectors. The bilayer heterostructures of Ta2O5 and Ag2Se have various advantages such as self-compliance, reproducibility and forming-free stable RS. It confirms the possible applications of TMO and silver chalcogenide heterostructures in RRAM.
Lee, Hwankyu; Kim, Hyun Ryoung; Park, Jae Chan
2014-02-28
Lipid bilayers, which consist of dipalmitoylglycerophosphocholines (DPPCs), PEGylated lipids, cholesterols, and elastin-like polypeptides (ELPs; [VPGVG]3) at different molar ratios, were simulated. Simulations were carried out for 2 μs using the coarse-grained (CG) model that had captured the experimentally observed phase behavior of PEGylated lipids and lateral diffusivity of DPPC bilayers. Starting with the initial position of ELPs on the bilayer surface, ELPs insert into the hydrophobic region of the bilayer because of their interaction with lipid tails, consistent with previous all-atom simulations. Lateral diffusion coefficients of DPPCs significantly increase in the bilayer composed of more ELPs and less cholesterols, showing their opposite effects on the bilayer dynamics. In particular, ELPs modulate the dynamics and phase for the disordered liquid bilayer, but not for the ordered gel bilayer, indicating that ELPs can destabilize only the disordered bilayer. In the ordered bilayer, ELP chains tend to have a spherical shape and slowly diffuse, while they are extended and diffuse faster in the disordered bilayer, indicating the effect of the bilayer phase on the conformation and diffusivity of ELPs. These findings explain the experimental observation that the ELP-conjugated liposomes are stable at 310 K (ordered phase) but become unstable and release the encapsulated drugs at 315 K (disordered phase), which suggests the effects of ELPs and cholesterols. Since the cholesterol-stabilized bilayer can be destabilized by the extended shaped ELPs only in the disordered phase (not in the ordered phase), the inclusion of cholesterols is required to safely shield drugs at 310 K as well as allow ELPs to disrupt lipids and destabilize the liposomes at 315 K.
NASA Astrophysics Data System (ADS)
Mari, M.; Mouras, R.; Downes, A.; Elfick, A.
2011-06-01
We have used a versatile and powerful microscope[1] for multi-modal biomedical imaging on which we combine Coherent Anti-Stokes Raman Scattering (CARS) with Two Photon Excitation Fluorescence (TPEF) using a Nd: YVO4 pump laser. We acquired 2PEF, CARS, and phase contrast images of Multilamellar Vesicles (MLVs) and Giant Unilamellar Vesicles (GUVs), as well as Raman spectra of the constituent lipids. A wide range of peptides are harmful to cells by altering the structure of the biological membranes. This effect depends on the composition of the membrane and the chemical structure of the peptide. The peptide we studied is the beta amyloid Aβ which is a major component of the amyloid plaques deposited on neuronal membranes of Alzheimer's disease (AD) patients. AD is neurodegenerative disorder in which the hallmark symptoms include cognitive decline and dementia[2] and is characterized by the formation of extracellular amyloid fibrils on the neuronal membranes of the brain. Many questions still remain unanswered concerning the destabilization of cellular ionic homeostasis due to pores formed during the interactions of lipid membranes with peptides. In this project, biomimics of cell membranes are used. The structures that best mimic the plasma membranes are MLVs or GUVs. These vesicles are formed using the gentle hydration technique[3] or the electroformation technique[4] respectively and are composed of phospholipids such as DOPC, DPPC, D62PPC and their binary mixtures. The MLVs and GUVs imaging by CARS and TPEF microscopy not only permits the direct imaging of the leakage phenomenon caused by the toxic peptide (Aβ) on the lipid bilayer, but also records simultaneously the lateral structure of the bilayer and peptide distribution in the plane across the membrane.
Laser Fabrication of Polymer Ferroelectric Nanostructures for Nonvolatile Organic Memory Devices.
Martínez-Tong, Daniel E; Rodríguez-Rodríguez, Álvaro; Nogales, Aurora; García-Gutiérrez, Mari-Cruz; Pérez-Murano, Francesc; Llobet, Jordi; Ezquerra, Tiberio A; Rebollar, Esther
2015-09-09
Polymer ferroelectric laser-induced periodic surface structures (LIPSS) have been prepared on ferroelectric thin films of a poly(vinylidene fluoride-trifluoroethylene) copolymer. Although this copolymer does not absorb light at the laser wavelength, LIPSS on the copolymer can be obtained by forming a bilayer with other light-absorbing polymers. The ferroelectric nature of the structured bilayer was proven by piezoresponse force microscopy measurements. Ferroelectric hysteresis was found on both the bilayer and the laser-structured bilayer. We show that it is possible to write ferroelectric information at the nanoscale. The laser-structured ferroelectric bilayer showed an increase in the information storage density of an order of magnitude, in comparison to the original bilayer.
Charged particle layers in the Debye limit.
Golden, Kenneth I; Kalman, Gabor J; Kyrkos, Stamatios
2002-09-01
We develop an equivalent of the Debye-Hückel weakly coupled equilibrium theory for layered classical charged particle systems composed of one single charged species. We consider the two most important configurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided by the classical fluctuation-dissipation theorem between the random-phase approximation response functions and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and polarization potentials, static structure functions, and static response functions are calculated. The importance of the perfect screening and compressibility sum rules in determining the overall behavior of the system, especially in the r--> infinity limit, is emphasized. The similarities and differences between the quasi-two-dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by the individual layers exhibit a marked nonmonotonic dependence on the layer separation.
Martins, Patrícia T; Velazquez-Campoy, Adrian; Vaz, Winchil L C; Cardoso, Renato M S; Valério, Joana; Moreno, Maria João
2012-03-07
Passive transport across cell membranes is the major route for the permeation of xenobiotics through tight endothelia such as the blood–brain barrier. The rate of passive permeation through lipid bilayers for a given drug is therefore a critical step in the prediction of its pharmacodynamics. We describe a detailed study on the kinetics and thermodynamics for the interaction of chlorpromazine (CPZ), an antipsychotic drug used in the treatment of schizophrenia, with neutral and negatively charged lipid bilayers. Isothermal titration calorimetry was used to study the partition and translocation of CPZ in lipid membranes composed of pure POPC, POPC:POPS (9:1), and POPC:Chol:POPS (6:3:1). The membrane charge due to the presence of POPS as well as the additional charge resulting from the introduction of CPZ in the membrane were taken into account, allowing the calculation of the intrinsic partition coefficients (K(P)) and the enthalpy change (ΔH) associated with the process. The enthalpy change upon partition to all lipid bilayers studied is negative, but a significant entropy contribution was also observed for partition to the neutral membrane. Because of the positive charge of CPZ, the presence of negatively charged lipids in the bilayer increases both the observed amount of CPZ that partitions to the membrane (KP(obs)) and the magnitude of ΔH. However, when the electrostatic effects are discounted, the intrinsic partition coefficient was smaller, indicating that the hydrophobic contribution was less significant for the negatively charged membrane. The presence of cholesterol strongly decreases the affinity of CPZ for the bilayer in terms of both the amount of CPZ that associates with the membrane and the interaction enthalpy. A quantitative characterization of the rate of CPZ translocation through membranes composed of pure POPC and POPC:POPS (9:1) was also performed using an innovative methodology developed in this work based on the kinetics of the heat evolved due to the interaction of CPZ with the membranes. © 2012 American Chemical Society
Initial Steps of Rubicene Film Growth on Silicon Dioxide.
Scherwitzl, Boris; Lukesch, Walter; Hirzer, Andreas; Albering, Jörg; Leising, Günther; Resel, Roland; Winkler, Adolf
2013-02-28
The film growth of the conjugated organic molecule rubicene on silicon dioxide was studied in detail. Since no structural data of the condensed material were available, we first produced high quality single crystals from solution and determined the crystal structure. This high purity material was used to prepare ultrathin films under ultrahigh vacuum conditions, by physical vapor deposition. Thermal desorption spectroscopy (TDS) was applied to delineate the adsorption and desorption kinetics. It could be shown that the initial sticking coefficient is only 0.2 ± 0.05, but the sticking coefficient increases with increasing coverage. TDS further revealed that first a closed, weakly bound bilayer develops (wetting layer), which dewets after further deposition of rubicene, leading to an island-like layer. These islands are crystalline and exhibit the same structure as the solution grown crystals. The orientation of the crystallites is with the (001) plane parallel to the substrate. A dewetting of the closed bilayer was also observed when the film was exposed to air. Furthermore, Ostwald ripening of the island-like film takes place under ambient conditions, leading to films composed of few, large crystallites. From TDS, we determined the heat of evaporation from the multilayer islands to be 1.47 eV, whereas the desorption energy from the first layer is only 1.25 eV.
Initial Steps of Rubicene Film Growth on Silicon Dioxide
2013-01-01
The film growth of the conjugated organic molecule rubicene on silicon dioxide was studied in detail. Since no structural data of the condensed material were available, we first produced high quality single crystals from solution and determined the crystal structure. This high purity material was used to prepare ultrathin films under ultrahigh vacuum conditions, by physical vapor deposition. Thermal desorption spectroscopy (TDS) was applied to delineate the adsorption and desorption kinetics. It could be shown that the initial sticking coefficient is only 0.2 ± 0.05, but the sticking coefficient increases with increasing coverage. TDS further revealed that first a closed, weakly bound bilayer develops (wetting layer), which dewets after further deposition of rubicene, leading to an island-like layer. These islands are crystalline and exhibit the same structure as the solution grown crystals. The orientation of the crystallites is with the (001) plane parallel to the substrate. A dewetting of the closed bilayer was also observed when the film was exposed to air. Furthermore, Ostwald ripening of the island-like film takes place under ambient conditions, leading to films composed of few, large crystallites. From TDS, we determined the heat of evaporation from the multilayer islands to be 1.47 eV, whereas the desorption energy from the first layer is only 1.25 eV. PMID:23476720
Nakagawa, Yasuharu; Nakazawa, Hiromitsu; Kato, Satoru
2016-07-12
We investigated the effect of dielectric properties of the aqueous medium on the novel type of hydrogel composed of a crude lecithin mixture (PC70) and hexadecanol (HD), in which charged sheet-like bilayers are kept far apart due to interbilayer repulsive interaction. We used dipropylene glycol (DPG) as a modifier of the dielectric properties and examined its effect on the hydrogel by synchrotron X-ray diffraction, differential scanning calorimetry (DSC), polarized optical microscopy, and freeze-fracture electron microscopy. We found that at a DPG weight fraction in the aqueous medium WDPG ≈ 0.4, the bilayer organization is transformed into unusually large flat bilayer stacks with a regular lamellar spacing of 6.25 nm and consequently disintegration of the hydrogel takes place. Semiquantitative calculation of the interbilayer interaction energy based on the Deyaguin-Landau-Verwey-Overbeek (DLVO) theory suggested that the reduction of the aqueous medium dielectric constant ε by DPG may lower the energy barrier preventing flat bilayers from coming closer together. We inferred that the size of the bilayer sheet increases because the reduction of ε promotes protonation of acidic lipids that work as edge-capping molecules.
Selective nucleation of iron phthalocyanine crystals on micro-structured copper iodide.
Rochford, Luke A; Ramadan, Alexandra J; Heutz, Sandrine; Jones, Tim S
2014-12-14
Morphological and structural control of organic semiconductors through structural templating is an efficient route by which to tune their physical properties. The preparation and characterisation of iron phthalocyanine (FePc)-copper iodide (CuI) bilayers at elevated substrate temperatures is presented. Thin CuI(111) layers are prepared which are composed of isolated islands rather than continuous films previously employed in device structures. Nucleation in the early stages of FePc growth is observed at the edges of islands rather than on the top (111) faces with the use of field emission scanning electron microscopy (FE-SEM). Structural measurements show two distinct polymorphs of FePc, with CuI islands edges nucleating high aspect ratio FePc crystallites with modified intermolecular spacing. By combining high substrate temperature growth and micro-structuring of the templating CuI(111) layer structural and morphological control of the organic film is demonstrated.
NASA Technical Reports Server (NTRS)
Pohorille, Andrew; Wilson, Michael A.
1995-01-01
Molecular dynamics computer simulations of the structure and functions of a simple membrane are performed in order to examine whether membranes provide an environment capable of promoting protobiological evolution. Our model membrane is composed of glycerol 1-monooleate. It is found that the bilayer surface fluctuates in time and space, occasionally creating thinning defects in the membrane. These defects are essential for passive transport of simple ions across membranes because they reduce the Born barrier to this process by approximately 40%. Negative ions are transferred across the bilayer more readily than positive ions due to favorable interactions with the electric field at the membrane-water interface. Passive transport of neutral molecules is, in general, more complex than predicted by the solubility-diffusion model. In particular, molecules which exhibit sufficient hydrophilicity and lipophilicity concentrate near membrane surfaces and experience 'interfacial resistance' to transport. The membrane-water interface forms an environment suitable for heterogeneous catalysis. Several possible mechanisms leading to an increase of reaction rates at the interface are discussed. We conclude that vesicles have many properties that make them very good candidates for earliest protocells. Some potentially fruitful directions of experimental and theoretical research on this subject are proposed.
Study of the Interaction of the HIV-1 Fusion Peptide with Lipid Bilayer Membranes
NASA Astrophysics Data System (ADS)
Heller, William; Rai, Durgesh
HIV-1 undergoes fusion with the cell membrane through interactions between its coat proteins and the target cell. Visualization of fusion with sufficient detail to determine the molecular mechanism remains elusive. Here, the interaction between a synthetic variant of the HIV-1 gp41 fusion peptide with vesicles composed of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) was studied. The peptide was observed to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet that is accompanied by a transition in the structure of the lipid bilayer vesicle. The peptide changes the distribution of lipids between the vesicle leaflets. Further, it creates two regions having different thicknesses. The results shed new light on how the peptide modifies the membrane structure to favor fusion. A portion of this research was sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. Research at Oak Ridge National Laboratory's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, U. S. Department of Energy.
NASA Astrophysics Data System (ADS)
Sarafopoulos, D. V.
2010-02-01
For the first time we identify a bi-layer structure of energetic electron fluxes in the Earth's magnetotail and establish (using datasets mainly obtained by the Geotail Energetic Particles and Ion Composition (EPIC/ICS) instrument) that it actually provides strong evidence for a purely spatial structure. Each bi-layer event is composed of two distinct layers with counterstreaming energetic electron fluxes, parallel and antiparallel to the local ambient magnetic field lines; in particular, the tailward directed fluxes always occur in a region adjacent to the lobes. Adopting the X-line as a standard reconnection model, we determine the occurrence of bi-layer events relatively to the neutral point, in the substorm frame; four (out of the shown seven) events are observed earthward and three tailward, a result implying that four events probably occurred with the substorm's local recovery phase. We discuss the bi-layer events in terms of the X-line model; they add more constraints for any candidate electron acceleration mechanism. It should be stressed that until this time, none proposed electron acceleration mechanism has discussed or predicted these layered structures with all their properties. Then we discuss the bi-layer events in terms of the much promising "akis model", as introduced by Sarafopoulos (2008). The akis magnetic field topology is embedded in a thinned plasma sheet and is potentially causing charge separation. We assume that as the Rc curvature radius of the magnetic field line tends to become equal to the ion gyroradius rg, then the ions become non-adiabatic. At the limit Rc=rg the demagnetization process is also under way and the frozen-in magnetic field condition is violated by strong wave turbulence; hence, the ion particles in this geometry are stochastically scattered. In addition, ion diffusion probably takes place across the magnetic field, since an intense pressure gradient is directed earthward; hence, ions are ejected tailward of akis. This way, in front of akis an "ion capsule region" is formed with net positive charge. In between them a distinct region with an electric field E⊥ orthogonal to the magnetic field is emerged; E⊥ in front of akis is directed earthward. The field-aligned and highly anisotropic energetic electron populations have probably resulted via spatially separated antiparallel and field-aligned electric fields being the very heart of the acceleration source. We assume that the ultimate cause for the field-aligned electric fields are the net positive capsule charge and the net negative charge trapped at the tip of akis; both charges will be eventually neutralized through field aligned currents, but they remain unshielded for sufficient time to produce the observed events.
Takahashi, Kei; Toyota, Taro
2017-03-07
The transformation of the supported lipid bilayer (SLB) membrane by extracted cytosol from living resources, has recently drawn much attention. It enables us to address the question of whether the purified phospholipid SLB membrane, including lipids related to amoeba locomotion, which was discussed in many previous studies, exhibits membrane deformation in the presence of cytosol extracted from amoeba; Methods: In this report, a method for reconstituting a supported lipid bilayer (SLB) membrane, composed of purified phospholipids and cytosol extracted from Dictyostelium discoideum , is described. This technique is a new reconstitution method combining the artificial constitution of membranes with the reconstitution using animate cytosol (without precise purification at a molecular level), contributing to membrane deformation analysis; Results: The morphology transition of a SLB membrane composed of phosphatidylcholines, after the addition of cytosolic extract, was traced using a confocal laser scanning fluorescence microscope. As a result, pore formation in the SLB membrane was observed and phosphatidylinositides incorporated into the SLB membrane tended to suppress pore formation and expansion; Conclusions: The current findings imply that phosphatidylinositides have the potential to control cytoplasm activity and bind to a phosphoinositide-containing SLB membrane.
Thermodynamics and kinetics of vesicles formation processes.
Guida, Vincenzo
2010-12-15
Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.
Tran, Ich C.; Tunuguntla, Ramya H.; Kim, Kyunghoon; ...
2016-06-20
Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. Furthermore, in order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers.more » These results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs.« less
Cheng, Sara Y.; Chou, George; Buie, Creighton; Vaughn, Mark W.; Compton, Campbell; Cheng, Kwan H.
2016-01-01
We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein–lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein–protein but weaker protein–lipid interactions for a dimeric protein on membrane surfaces. PMID:26827904
Smith, Kathryn A.; Conboy, John C.
2011-01-01
The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 bindingin DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner. PMID:21376014
NASA Astrophysics Data System (ADS)
Singh, Sadhana; Kumar, Dileep; Bhagat, Babli; Choudhary, R. J.; Reddy, V. R.; Gupta, Ajay
2018-02-01
The applied magnetic field (H APP) dependence of the exchange bias (EB) is studied in an exchange-coupled thin-film bilayer composed of a hard ferromagnetic FePt layer in the proximity of a soft ferromagnetic FeCo layer. FePt/FeCo structure is deposited in an ultra-high vacuum chamber, where the FePt layer was first annealed at 823 K for 30 min and subsequently cooled to room temperature in the presence of an in-plane magnetic field, H MAX ~ 1.5 kOe to promote L10-ordered hard magnetic phase with magnetic moments aligned in one of the in-plane directions in the FePt layer. In-situ magneto-optical Kerr effect measurements during different stages of bilayer growth and detailed ex-situ superconducting quantum interference device-vibrating sample magnetometer measurements jointly revealed that due to the interplay between exchange coupling at the interface and dipolar energies of the saturated hard FePt layer, a hysteresis loop of FeCo layer shifts along the magnetic field axis. A clear dependence of EB field (H EB) on increasing maximum value of the H APP during the hysteresis loop measurement is understood in terms of the magnetic state of soft and hard magnetic layers, where EB increases with increasing H APP until the hard layer moment remains undisturbed in its remanence state. As soon as the field was sufficient to rotate the spins of the FePt layer, the loop became symmetric with respect to the field axis.
Magnetic properties of magnetic bilayer Kekulene structure: A Monte Carlo study
NASA Astrophysics Data System (ADS)
Jabar, A.; Masrour, R.
2018-06-01
In the present work, we have studied the magnetic properties of magnetic bilayer Kekulene structure with mixed spin-5/2 and spin-2 Ising model using Monte Carlo study. The magnetic phase diagrams of mixed spins Ising model have been given. The thermal total, partial magnetization and magnetic susceptibilities of the mixed spin-5/2 and spin-2 Ising model on a magnetic bilayer Kekulene structure are obtained. The transition temperature has been deduced. The effect of crystal field and exchange interactions on the this bilayers has been studied. The partial and total magnetic hysteresis cycles of the mixed spin-5/2 and spin-2 Ising model on a magnetic bilayer Kekulene structure have been given. The superparamagnetism behavior is observed in magnetic bilayer Kekulene structure. The magnetic coercive field decreases with increasing the exchange interactions between σ-σ and temperatures values and increases with increasing the absolute value of exchange interactions between σ-S. The multiple hysteresis behavior appears.
Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.
Panigrahi, Rashmi; Lemieux, M Joanne
2015-01-01
Intramembrane proteases are membrane embedded enzymes that cleave transmembrane substrates. This interesting class of enzyme and its water mediated substrate cleavage mechanism occurring within the hydrophobic lipid bilayer has drawn the attention of researchers. Rhomboids are a family of ubiquitous serine intramembrane proteases. Bacterial forms of rhomboid proteases are mainly composed of six transmembrane helices that are preceded by a soluble N-terminal domain. Several crystal structures of the membrane domain of the E. coli rhomboid protease ecGlpG have been solved. Independently, the ecGlpG N-terminal cytoplasmic domain structure was solved using both NMR and protein crystallography. Despite these structures, we still do not know the structure of the full-length protein, nor do we know the functional role of these domains in the cell. This chapter will review the structural and functional roles of the different domains associated with prokaryotic rhomboid proteases. Lastly, we will address questions remaining in the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradshaw, Nathan P.; Severt, Sean Y.; Wang, Zhaoying
Biocompatible materials capable of controlled actuation under biologically relevant conditions are in high demand for use in a number of biomedical applications. Recently, we demonstrated that a composite material composed of silk biopolymer and the conducting polymer poly(pyrrole) can bend under an applied voltage using a simple bilayer device. Here we present further characterization of these bilayer actuators using time of flight secondary ion mass spectrometry, and provide clarification on the mechanism of actuation and factors affecting device performance and stability. We will discuss the results of this study in the context of strategies for optimization of device performance.
Penny, William M; Palmer, Christopher P
2018-03-01
Styrene-maleic acid polymer-bound lipid bilayer nanodiscs have been investigated and characterized by electrokinetic chromatography. Linear solvation energy relationship analysis was employed to characterize the changes in solvation environment of nanodiscs of varied belt to lipid ratio, belt polymer chemistry and molecular weight, and lipid composition. Increases in the lipid to belt polymer ratio resulted in smaller, more cohesive nanodiscs with greater electrophoretic mobility. Nanodisc structures with belt polymers of different chemistry and molecular weight were compared and showed only minor changes in solvent characteristics and selectivity consistent with changes in structure of the lipid bilayer. Seven phospholipid and sphingomyelin nanodiscs of different lipid composition were characterized. Changes in lipid head group structure had a significant effect on bilayer-solute interactions. In most cases, changes in alkyl tail structure had no discernible effect on solvation environment aside from those explained by changes in the gel-liquid transition temperature. Comparison to vesicles of similar lipid composition show only minor differences in solvation environment, likely due to differences in lipid composition and bilayer curvature. Together these results provide evidence that the dominant solute-nanodisc interactions are with the lipid bilayer and that head group chemistry has a greater impact on bilayer-solute interactions than alkyl tail or belt polymer structure. Nanodisc electrokinetic chromatography is demonstrated to allow characterization of solute interactions with lipid bilayers of varied composition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-assembled PCBM bilayers on graphene and HOPG examined by AFM and STM
NASA Astrophysics Data System (ADS)
Li, Yanlong; Chen, Chuanhui; Burton, John; Park, Kyungwha; Heflin, James R.; Tao, Chenggang
2018-05-01
In this work we report fabrication and characterization of phenyl-C61-butyric acid methyl ester (PCBM) bilayer structures on graphene and highly oriented pyrolytic graphite (HOPG). Through careful control of the PCBM solution concentration (from 0.1 to 2 mg ml-1) and the deposition conditions, we demonstrate that PCBM molecules self-assemble into bilayer structures on graphene and HOPG substrates. Interestingly, the PCBM bilayers are formed with two distinct heights on HOPG, but only one unique representative height on graphene. At elevated annealing temperatures, edge diffusion allows neighboring vacancies to merge into a more ordered structure. This is, to the best of our knowledge, the first experimental realization of PCBM bilayer structures on graphene. This work could provide valuable insight into fabrication of new hybrid, ordered structures for applications to organic solar cells.
Self-assembled PCBM bilayers on graphene and HOPG examined by AFM and STM.
Li, Yanlong; Chen, Chuanhui; Burton, John; Park, Kyungwha; Heflin, James R; Tao, Chenggang
2018-05-04
In this work we report fabrication and characterization of phenyl-C61-butyric acid methyl ester (PCBM) bilayer structures on graphene and highly oriented pyrolytic graphite (HOPG). Through careful control of the PCBM solution concentration (from 0.1 to 2 mg ml -1 ) and the deposition conditions, we demonstrate that PCBM molecules self-assemble into bilayer structures on graphene and HOPG substrates. Interestingly, the PCBM bilayers are formed with two distinct heights on HOPG, but only one unique representative height on graphene. At elevated annealing temperatures, edge diffusion allows neighboring vacancies to merge into a more ordered structure. This is, to the best of our knowledge, the first experimental realization of PCBM bilayer structures on graphene. This work could provide valuable insight into fabrication of new hybrid, ordered structures for applications to organic solar cells.
Biocompatible silk-conducting polymer composite trilayer actuators
NASA Astrophysics Data System (ADS)
Fengel, Carly V.; Bradshaw, Nathan P.; Severt, Sean Y.; Murphy, Amanda R.; Leger, Janelle M.
2017-05-01
Biocompatible materials capable of controlled actuation are in high demand for use in biomedical applications such as dynamic tissue scaffolding, valves, and steerable surgical tools. Conducting polymer actuators are of interest because they operate in aqueous electrolytes at low voltages and can generate stresses similar to natural muscle. Recently, our group has demonstrated a composite material of silk and poly(pyrrole) (PPy) that is mechanically robust, made from biocompatible materials, and bends under an applied voltage when incorporated into a simple bilayer device architecture and actuated using a biologically relevant electrolyte. Here we present trilayer devices composed of two silk-PPy composite layers separated by an insulating silk layer. The trilayer architecture allows one side to expand while the other contracts, resulting in improved performance over bilayer devices. Specifically, this configuration shows a larger angle of deflection per volt applied than the analogous bilayer system, while maintaining a consistent current response throughout cycling. In addition, the overall motion of the trilayer devices is more symmetric than that of the bilayer analogs, allowing for fully reversible operation.
Seo, Jin-Suk; Bae, Byeong-Soo
2014-09-10
We fabricated active single- and bilayer structure thin film transistors (TFTs) with aluminum or gallium doped (IZO:Al or IZO:Ga) and undoped indium zinc oxide (IZO) thin film layers using an aqueous solution process. The electrical performance and bias stability of these active single- and bilayer structure TFTs were investigated and compared to reveal the effects of Al/Gal doping and bilayer structure. The single-layer structure IZO TFT shows a high mobility of 19 cm(2)/V · s with a poor positive bias stability (PBS) of ΔVT + 3.4 V. However, Al/Ga doped in IZO TFT reduced mobility to 8.5-9.9 cm(2)/V · s but improved PBS to ΔVT + 1.6-1.7 V due to the reduction of oxygen vacancy. Thus, it is found the bilayer structure TFTs with a combination of bottom- and top-layer compositions modify both the mobility and bias stability of the TFTs to be optimized. The bilayer structure TFT with an IZO:X bottom layer possess high mobility and an IZO bottom layer improves the PBS.
Cheng, Sara Y; Chou, George; Buie, Creighton; Vaughn, Mark W; Compton, Campbell; Cheng, Kwan H
2016-03-01
We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein-lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein-protein but weaker protein-lipid interactions for a dimeric protein on membrane surfaces. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Circumferentially aligned fibers guided functional neoartery regeneration in vivo.
Zhu, Meifeng; Wang, Zhihong; Zhang, Jiamin; Wang, Lina; Yang, Xiaohu; Chen, Jingrui; Fan, Guanwei; Ji, Shenglu; Xing, Cheng; Wang, Kai; Zhao, Qiang; Zhu, Yan; Kong, Deling; Wang, Lianyong
2015-08-01
An ideal vascular graft should have the ability to guide the regeneration of neovessels with structure and function similar to those of the native blood vessels. Regeneration of vascular smooth muscle cells (VSMCs) with circumferential orientation within the grafts is crucial for functional vascular reconstruction in vivo. To date, designing and fabricating a vascular graft with well-defined geometric cues to facilitate simultaneously VSMCs infiltration and their circumferential alignment remains a great challenge and scarcely reported in vivo. Thus, we have designed a bi-layered vascular graft, of which the internal layer is composed of circumferentially aligned microfibers prepared by wet-spinning and an external layer composed of random nanofibers prepared by electrospinning. While the internal circumferentially aligned microfibers provide topographic guidance for in vivo regeneration of circumferentially aligned VSMCs, the external random nanofibers can offer enhanced mechanical property and prevent bleeding during and after graft implantation. VSMCs infiltration and alignment within the scaffold was then evaluated in vitro and in vivo. Our results demonstrated that the circumferentially oriented VSMCs and longitudinally aligned ECs were successfully regenerated in vivo after the bi-layered vascular grafts were implanted in rat abdominal aorta. No formation of thrombosis or intimal hyperplasia was observed up to 3 month post implantation. Further, the regenerated neoartery exhibited contraction and relaxation property in response to vasoactive agents. This new strategy may bring cell-free small diameter vascular grafts closer to clinical application. Copyright © 2015 Elsevier Ltd. All rights reserved.
Farag, Michael M; Abd El Malak, Nevine S; Yehia, Soad A
2018-05-05
The aim of this study was to develop a novel buccal bi-layered chronopatch capable of eliciting pulsatile release pattern of drugs treating diseases with circadian rhythm related manifestation. Zaleplon (ZLP) was used as a model drug intended to induce sleep and to treat middle of night insomnia. The chronopatch was prepared adopting double casting technique. The first layer was composed of a controlled release patch containing ZLP-Precirol melt granules intended to release ZLP in a sustained manner to maintain sleep and to prevent early morning awakening. The second layer was composed of a fast release lyophilized buccal disc containing ZLP loaded SNEDDS (Z-SNEDDS) intended for rapid sleep induction. Pharmacokinetic parameters of ZLP from the chronopatch were compared to those of the immediate release capsule, Siesta®, as reference in Mongrel dogs using a randomized crossover design. The appearance of two peaks having two C max and T max proved the pulsatile release pattern. The increase in relative bioavailability of ZLP from the chronopatch was 2.63 folds. The results revealed the ability of the developed ZLP loaded bi-layered chronopatch to be a candidate for overcoming early morning awakening without middle of night dose administration. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Alper, C.; Ionescu, A. M.
2015-06-29
We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of themore » inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I{sub ON} levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures.« less
Form follows function: the importance of endoplasmic reticulum shape.
Westrate, L M; Lee, J E; Prinz, W A; Voeltz, G K
2015-01-01
The endoplasmic reticulum (ER) has a remarkably complex structure, composed of a single bilayer that forms the nuclear envelope, along with a network of sheets and dynamic tubules. Our understanding of the biological significance of the complex architecture of the ER has improved dramatically in the last few years. The identification of proteins and forces required for maintaining ER shape, as well as more advanced imaging techniques, has allowed the relationship between ER shape and function to come into focus. These studies have also revealed unexpected new functions of the ER and novel ER domains regulating alterations in ER dynamics. The importance of ER structure has become evident as recent research has identified diseases linked to mutations in ER-shaping proteins. In this review, we discuss what is known about the maintenance of ER architecture, the relationship between ER structure and function, and diseases associated with defects in ER structure.
Bernsdorff, C; Wolf, A; Winter, R; Gratton, E
1997-01-01
The effect of high hydrostatic pressure on the lipid bilayer hydration, the mean order parameter, and rotational dynamics of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) cholesterol vesicles has been studied by time-resolved fluorescence spectroscopy up to 1500 bar. Whereas the degree of hydration in the lipid headgroup and interfacial region was assessed from fluorescence lifetime data using the probe 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH), the corresponding information in the upper acyl chain region was estimated from its effect on the fluorescence lifetime of and 3-(diphenylhexatrienyl)propyl-trimethylammonium (TMAP-DPH). The lifetime data indicate a greater level of interfacial hydration for DPPC bilayers than for POPC bilayers, but there is no marked difference in interchain hydration of the two bilayer systems. The addition of cholesterol at levels from 30 to 50 mol% to DPPC has a greater effect on the increase of hydrophobicity in the interfacial region of the bilayer than the application of hydrostatic pressure of several hundred to 1000 bar. Although the same trend is observed in the corresponding system, POPC/30 mol% cholesterol, the observed effects are markedly less pronounced. Whereas the rotational correlation times of the fluorophores decrease in passing the pressure-induced liquid-crystalline to gel phase transition of DPPC, the wobbling diffusion coefficient remains essentially unchanged. The wobbling diffusion constant of the two fluorophores changes markedly upon incorporation of 30 mol% cholesterol, and increases at higher pressures, also in the case of POPC/30 mol% cholesterol. The observed effects are discussed in terms of changes in the rotational characteristics of the fluorophores and the phase-state of the lipid mixture. The results demonstrate the ability of cholesterol to adjust the structural and dynamic properties of membranes composed of different phospholipid components, and to efficiently regulate the motional freedom and hydrophobicity of membranes, so that they can withstand even drastic changes in environmental conditions, such as high external hydrostatic pressure. PMID:9138572
Lewis, R N; McElhaney, R N
2000-01-01
The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase. Our results also suggest that shorter chain homologues form L(c) phases that are structurally related to, but more ordered than, those formed by the longer chain homologues, but that these L(c) phases are less ordered than those formed by other phospholipids. These studies also suggest that polar/apolar interfaces of the phosphatidylserine bilayers are more hydrated than those of other glycerolipid bilayers, possibly because of interactions between the polar headgroup and carbonyl groups of the fatty acyl chains. PMID:11023908
Ibarguren, Maitane; Sot, Jesús; Montes, L Ruth; Vasil, Adriana I; Vasil, Michael L; Goñi, Félix M; Alonso, Alicia
2013-01-01
When giant unilamellar vesicles (GUVs) composed of sphingomyelin, phosphatidylcholine, phosphatidylethanolamine, and cholesterol are treated with PlcHR(2), a phospholipase C/sphingomyelinase from Pseudomonas aeruginosa, the initial stages of lipid hydrolysis do not cause large changes in vesicle morphology (Ibarguren et al., 2011). However, when hydrolysis progresses confocal fluorescence microscopy reveals the formation of lipid aggregates, whose morphology is not compatible with that of bilayers. Smaller vesicles or droplets can also be seen inside the GUV. Our studies indicate that these aggregates or droplets are enriched in the non-lamellar lipid ceramide, an end-product of PlcHR(2) reaction. Moreover, the aggregates/droplets appear enriched in the hydrolytic enzyme PlcHR(2). At a final stage GUVs containing the enzyme-enriched droplets disintegrate and vanish from the microscope field. The observed non-lamellar enzyme-rich structures may be related to intermediates in the process of aggregation and fusion although the experimental design prevents vesicle free diffusion in the aqueous medium, thus actual aggregation or fusion cannot be observed. 2012 Elsevier Ireland Ltd. All rights reserved
NASA Astrophysics Data System (ADS)
Xia, Qiang-sheng; Ding, Hong-ming; Ma, Yu-qiang
2018-03-01
Efficient delivery of nanoparticles into specific cell interiors is of great importance in biomedicine. Recently, the pH-responsive micelle has emerged as one potential nanocarrier to realize such purpose since there exist obvious pH differences between normal tissues and tumors. Herein, by using dissipative particle dynamics simulation, we investigate the interaction of the pH-sensitive triblock copolymer micelles composed of ligand (L), hydrophobic block (C) and polyelectrolyte block (P) with cell membrane. It is found that the structure rearrangement of the micelle can facilitate its penetration into the lower leaflet of the bilayer. However, when the ligand-receptor specific interaction is weak, the micelles may just fuse with the upper leaflet of the bilayer. Moreover, the ionization degree of polyelectrolyte block and the length of hydrophobic block also play a vital role in the penetration efficiency. Further, when the sequence of the L, P, C beads in the copolymers is changed, the translocation pathways of the micelles may change from direct penetration to Janus engulfment. The present study reveals the relationship between the molecular structure of the copolymer and the uptake of the pH-sensitive micelles, which may give some significant insights into the experimental design of responsive micellar nanocarriers for highly efficient cellular delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heberle, Frederick A; Pan, Jianjun; Standaert, Robert F
2012-01-01
Some of our recent work has resulted in the detailed structures of fully hydrated, fluid phase phosphatidylcholine (PC) and phosphatidylglycerol (PG) bilayers. These structures were obtained from the joint refinement of small-angle neutron and X-ray data using the scattering density profile (SDP) models developed by Ku erka et al. (Ku erka et al. 2012; Ku erka et al. 2008). In this review, we first discuss models for the standalone analysis of neutron or X-ray scattering data from bilayers, and assess the strengths and weaknesses inherent in these models. In particular, it is recognized that standalone data do not contain enoughmore » information to fully resolve the structure of inherently disordered fluid bilayers, and therefore may not provide a robust determination of bilayer structural parameters, including the much sought after area per lipid. We then discuss the development of matter density-based models (including the SDP model) that allow for the joint refinement of different contrast neutron and X-ray data sets, as well as the implementation of local volume conservation in the unit cell (i.e., ideal packing). Such models provide natural definitions of bilayer thicknesses (most importantly the hydrophobic and Luzzati thicknesses) in terms of Gibbs dividing surfaces, and thus allow for the robust determination of lipid areas through equivalent slab relationships between bilayer thickness and lipid volume. In the final section of this review, we discuss some of the significant findings/features pertaining to structures of PC and PG bilayers as determined from SDP model analyses.« less
Magneto-optical properties of PdCo based multilayered films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, K.; Tsunashima, S.; Iwata, S.
1989-09-01
Magneto-optical and magnetic properties of multilayered films composed of PdCo alloy and other noble metal (Pd, Pt or Cu) layers are investigated. Multilayered films were prepared by RF magnetron sputtering method. Kerr rotation spectra (275nm-800nm) of Pd/Co multilayered films resemble those of PdCo alloys. In the films composed of PdCo alloy and Pt bilayers, the Kerr rotation increases with increasing Pt content while the perpendicular anisotropy decreases.
Formation of droplet interface bilayers in a Teflon tube
NASA Astrophysics Data System (ADS)
Walsh, Edmond; Feuerborn, Alexander; Cook, Peter R.
2016-09-01
Droplet-interface bilayers (DIBs) have applications in disciplines ranging from biology to computing. We present a method for forming them manually using a Teflon tube attached to a syringe pump; this method is simple enough it should be accessible to those without expertise in microfluidics. It exploits the properties of interfaces between three immiscible liquids, and uses fluid flow through the tube to pack together drops coated with lipid monolayers to create bilayers at points of contact. It is used to create functional nanopores in DIBs composed of phosphocholine using the protein α-hemolysin (αHL), to demonstrate osmotically-driven mass transfer of fluid across surfactant-based DIBs, and to create arrays of DIBs. The approach is scalable, and thousands of DIBs can be prepared using a robot in one hour; therefore, it is feasible to use it for high throughput applications.
Examining protein-lipid interactions in model systems with a new squarylium fluorescent dye.
Ioffe, Valeriya M; Gorbenko, Galyna P; Tatarets, Anatoliy L; Patsenker, Leonid D; Terpechnig, Ewald A
2006-07-01
The applicability of newly synthesized squarylium dye Sq to probing the changes in physical characteristics of lipid bilayer on the formation of protein-lipid complexes has been evaluated. Lipid vesicles composed of zwitterionic phospholipid phosphatidylcholine (PC) and its mixtures with positively charged detergent cetyltrimethylammonium bromide (CTAB), anionic phospholipid cardiolipin (CL), and cholesterol (Chol) were employed as lipid component of model membrane systems while protein constituent was represented by lysozyme (Lz). Fluorescence intensity of Sq was found to decrease on Lz association with lipid bilayer. This effect was observed in all kinds of model systems suggesting that Sq is sensitive to modification of lipid bilayer physical properties on hydrophobic protein-lipid interactions. It was found that Sq spectral response to variations in Chol content depends on relative contributions of electrostatic and hydrophobic components of Lz-membrane binding.
Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less
Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models
Clifton, Luke A.; Skoda, Maximilian W. A.; Le Brun, Anton P.; ...
2014-12-09
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg 2+ and Ca 2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-raymore » and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca 2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration.« less
Effect of Divalent Cation Removal on the Structure of Gram-Negative Bacterial Outer Membrane Models
2014-01-01
The Gram-negative bacterial outer membrane (GNB-OM) is asymmetric in its lipid composition with a phospholipid-rich inner leaflet and an outer leaflet predominantly composed of lipopolysaccharides (LPS). LPS are polyanionic molecules, with numerous phosphate groups present in the lipid A and core oligosaccharide regions. The repulsive forces due to accumulation of the negative charges are screened and bridged by the divalent cations (Mg2+ and Ca2+) that are known to be crucial for the integrity of the bacterial OM. Indeed, chelation of divalent cations is a well-established method to permeabilize Gram-negative bacteria such as Escherichia coli. Here, we use X-ray and neutron reflectivity (XRR and NR, respectively) techniques to examine the role of calcium ions in the stability of a model GNB-OM. Using XRR we show that Ca2+ binds to the core region of the rough mutant LPS (RaLPS) films, producing more ordered structures in comparison to divalent cation free monolayers. Using recently developed solid-supported models of the GNB-OM, we study the effect of calcium removal on the asymmetry of DPPC:RaLPS bilayers. We show that without the charge screening effect of divalent cations, the LPS is forced to overcome the thermodynamically unfavorable energy barrier and flip across the hydrophobic bilayer to minimize the repulsive electrostatic forces, resulting in about 20% mixing of LPS and DPPC between the inner and outer bilayer leaflets. These results reveal for the first time the molecular details behind the well-known mechanism of outer membrane stabilization by divalent cations. This confirms the relevance of the asymmetric models for future studies of outer membrane stability and antibiotic penetration. PMID:25489959
Sacchi, Mattia; Balleza, Daniel; Vena, Giulia; Puia, Giulia; Facci, Paolo; Alessandrini, Andrea
2015-05-01
Amphiphilic molecules which have a biological effect on specific membrane proteins, could also affect lipid bilayer properties possibly resulting in a modulation of the overall membrane behavior. In light of this consideration, it is important to study the possible effects of amphiphilic molecule of pharmacological interest on model systems which recapitulate some of the main properties of the biological plasma membranes. In this work we studied the effect of a neurosteroid, Allopregnanolone (3α,5α-tetrahydroprogesterone or Allo), on a model bilayer composed by the ternary lipid mixture DOPC/bSM/chol. We chose ternary mixtures which present, at room temperature, a phase coexistence of liquid ordered (Lo) and liquid disordered (Ld) domains and which reside near to a critical point. We found that Allo, which is able to strongly partition in the lipid bilayer, induces a marked increase in the bilayer area and modifies the relative proportion of the two phases favoring the Ld phase. We also found that the neurosteroid shifts the miscibility temperature to higher values in a way similarly to what happens when the cholesterol concentration is decreased. Interestingly, an isoform of Allo, isoAllopregnanolone (3β,5α-tetrahydroprogesterone or isoAllo), known to inhibit the effects of Allo on GABAA receptors, has an opposite effect on the bilayer properties. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular dynamics simulation of sodium dodecylsulfate (SDS) bilayers.
Zhang, Hongshu; Yuan, Shiling; Sun, Jichao; Liu, Jianqiang; Li, Haiping; Du, Na; Hou, Wanguo
2017-11-15
Sodium dodecylsulfate (SDS) - a simple single tailed surfactant (STS) can form stable vesicles from its micellar solution without any additives under the mediation of solid surfaces. To further understand the mechanism of this transition on the molecular level, molecular dynamics simulations are performed to study segments of SDS bilayers (as part of vesicles) in the bulk solution systematically, at the moment that the lower leaflet of bilayers already detached from solid surfaces. The SDS membrane would rather keep their bilayers structure than return to micelles when the initial interdigitated degree (δ i ) between alkyl chains is more than 8.0±1.4%. And the interdigitated degree is always approaching to 31.7±2.0% while the equilibrium is reached. The aggregates behave as curved bilayers, planar bilayers, perforated bilayers, and micelles with the increase of the lower leaflet cross-sectional area. Besides, the structures of salt bridge and water bridge structures are formed between DS - and Na + ions or water molecules, which contribute to the stability of SDS bilayers. The distribution difference of the salt bridges along the direction of S-O axis between the two leaflets leads to the asymmetry of the bilayers, which plays supplementary role to the formation of bilayers curvature. We expect that this work help to shed light on the understanding of interface phenomena and the mechanism of simple single-tailed surfactant vesicle self-assembly on the molecular level. Copyright © 2017 Elsevier Inc. All rights reserved.
Voltage-Gated Channel Mechanosensitivity: Fact or Friction?
Morris, Catherine E.
2011-01-01
The heart is a continually active pulsatile fluid pump. It generates appropriate forces by precisely timed and spaced engagement of its contractile machinery. Largely, it makes its own control signals, the most crucial of which are precisely timed and spaced fluxes of ions across the sarcolemma, achieved by the timely opening and closing of diverse voltage-gated channels (VGC). VGCs have four voltage sensors around a central ion-selective pore that opens and closes under the influence of membrane voltage. Operation of any VGC is secondarily tuned by the mechanical state (i.e., structure) of the bilayer in which it is embedded. Rates of opening and closing, in other words, vary with bilayer structure. Thus, in the intensely mechanical environment of the myocardium and its vasculature, VGCs kinetics might be routinely modulated by reversible and irreversible nano-scale changes in bilayer structure. If subtle bilayer deformations are routine in the pumping heart, VGCs could be subtly transducing bilayer mechanical signals, thereby tuning cardiac rhythmicity, collectively contributing to mechano-electric feedback. Reversible bilayer deformations would be expected with changing shear flows and tissue distension, while irreversible bilayer restructuring occurs with ischemia, inflammation, membrane remodeling, etc. I suggest that tools now available could be deployed to help probe whether/how the inherent mechanosensitivity of VGCs – an attribute substantially reflecting the dependence of voltage sensor stability on bilayer structure – contributes to cardiac rhythmicity. Chief among these tools are voltage sensor toxins (whose inhibitory efficacy varies with the mechanical state of bilayer) and arrhythmia-inducing VGC mutants with distinctive mechano-phenotypes. PMID:21660289
Pippa, Natassa; Chountoulesi, Maria; Kyrili, Aimilia; Meristoudi, Anastasia; Pispas, Stergios; Demetzos, Costas
2016-09-01
This study is focused on chimeric advanced drug delivery nanosystems and specifically on pH-sensitive liposomes, combining lipids and pH-responsive amphiphilic block copolymers. Chimeric liposomes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and two different forms of block copolymers, i.e. poly(n-butylacrylate)-b-poly(acrylic acid) (PnBA-b-PAA) at 70 and 85% content of PAA at six different molar ratios, each form respectively. PAA block exhibits pH-responsiveness, because of the regulative group of -COOH. -COOH is protonated under acidic pH (pKa ca. 4.2), while remains ionized under basic or neutral pH, leading to liposomes repulse and eventually stability. Lipid bilayers were prepared composed of DPPC and PnBA-b-PAA. Experiments were carried out using differential scanning calorimetry (DSC) in order to investigate their thermotropic properties. DSC indicated disappearance of pre-transition at all chimeric lipid bilayers and slight thermotropic changes of the main transition temperature. Chimeric liposomes have been prepared and their physicochemical characteristics have been explored by measuring the size, size distribution and ζ-potential, owned to the presence of pH-responsive polymer. At percentages containing medium to high amounts of the polymer, chimeric liposomes were found to retain their size during the stability studies. These results were well correlated with those indicated in the DSC measurements of lipid bilayers incorporating polymers in order to explain their physicochemical behavior. The incorporation of the appropriate amount of these novel pH-responsive block copolymers affects thus the cooperativity, the liposomal stabilization and imparts pH-responsiveness.
NASA Technical Reports Server (NTRS)
Talham, Daniel R.; Adair, James H.
1999-01-01
There is a growing need for inorganic anisotropic particles in a variety of materials science applications. Structural, optical, and electrical properties can be greatly augmented by the fabrication of composite materials with anisotropic microstructures or with anisotropic particles uniformly dispersed in an isotropic matrix. Examples include structural composites, magnetic and optical recording media, photographic film, certain metal and ceramic alloys, and display technologies including flat panel displays. While considerable progress has been made toward developing an understanding of the synthesis of powders composed of monodispersed, spherical particles, these efforts have not been transferred to the synthesis of anisotropic nanoparticles. The major objective of the program is to develop a fundamental understanding of the growth of anisotropic particles at organic templates, with emphasis on the chemical and structural aspects of layered organic assemblies that contribute to the formation of anisotropic inorganic particles.
Use of the gram stain in microbiology.
Beveridge, T J
2001-05-01
The Gram stain differentiates bacteria into two fundamental varieties of cells. Bacteria that retain the initial crystal violet stain (purple) are said to be "gram-positive," whereas those that are decolorized and stain red with carbol fuchsin (or safranin) are said to be "gram-negative." This staining response is based on the chemical and structural makeup of the cell walls of both varieties of bacteria. Gram-positives have a thick, relatively impermeable wall that resists decolorization and is composed of peptidoglycan and secondary polymers. Gram-negatives have a thin peptidoglycan layer plus an overlying lipid-protein bilayer known as the outer membrane, which can be disrupted by decolorization. Some bacteria have walls of intermediate structure and, although they are officially classified as gram-positives because of their linage, they stain in a variable manner. One prokaryote domain, the Archaea, have such variability of wall structure that the Gram stain is not a useful differentiating tool.
Pressure-induced enhancement in the thermoelectric properties of monolayer and bilayer SnSe2
NASA Astrophysics Data System (ADS)
Zou, Daifeng; Yu, Chuanbin; Li, Yuhao; Ou, Yun; Gao, Yongyi
2018-03-01
The electronic structures of monolayer and bilayer SnSe2 under pressure were investigated by using first-principles calculations including van der Waals interactions. For monolayer SnSe2, the variation of electronic structure under pressure is controlled by pressure-dependent lattice parameters. For bilayer SnSe2, the changes in electronic structure under pressure are dominated by intralayer and interlayer atomic interactions. The n-type thermoelectric properties of monolayer and bilayer SnSe2 under pressure were calculated on the basis of the semi-classical Boltzmann transport theory. It was found that the electrical conductivity of monolayer and bilayer SnSe2 can be enhanced under pressure, and such dependence can be attributed to the pressure-induced changes of the Se-Sn antibonding states in conduction band. Finally, the doping dependence of power factors of n-type monolayer and bilayer SnSe2 at three different pressures were estimated, and the results unveiled that thermoelectric performance of n-type monolayer and bilayer SnSe2 can be improved by applying external pressure. This study benefits to understand the nature of the transport properties for monolayer and bilayer SnSe2 under pressure, and it offers valuable insight for designing high-performance thermoelectric few-layered SnSe2 through strain engineering induced by external pressure.
Pressure-induced enhancement in the thermoelectric properties of monolayer and bilayer SnSe2.
Zou, Daifeng; Yu, Chuanbin; Li, Yuhao; Ou, Yun; Gao, Yongyi
2018-03-01
The electronic structures of monolayer and bilayer SnSe 2 under pressure were investigated by using first-principles calculations including van der Waals interactions. For monolayer SnSe 2 , the variation of electronic structure under pressure is controlled by pressure-dependent lattice parameters. For bilayer SnSe 2 , the changes in electronic structure under pressure are dominated by intralayer and interlayer atomic interactions. The n -type thermoelectric properties of monolayer and bilayer SnSe 2 under pressure were calculated on the basis of the semi-classical Boltzmann transport theory. It was found that the electrical conductivity of monolayer and bilayer SnSe 2 can be enhanced under pressure, and such dependence can be attributed to the pressure-induced changes of the Se-Sn antibonding states in conduction band. Finally, the doping dependence of power factors of n -type monolayer and bilayer SnSe 2 at three different pressures were estimated, and the results unveiled that thermoelectric performance of n -type monolayer and bilayer SnSe 2 can be improved by applying external pressure. This study benefits to understand the nature of the transport properties for monolayer and bilayer SnSe 2 under pressure, and it offers valuable insight for designing high-performance thermoelectric few-layered SnSe 2 through strain engineering induced by external pressure.
Midtgaard, Søren Roi; Pedersen, Martin Cramer; Arleth, Lise
2015-01-01
Structural and functional aspects of high-density lipoproteins have been studied for over half a century. Due to the plasticity of this highly complex system, new aspects continue to be discovered. Here, we present a structural study of the human Apolipoprotein A1 (ApoA1) and investigate the role of its N-terminal domain, the so-called globular domain of ApoA1, in discoidal complexes with phospholipids and increasing amounts of cholesterol. Using a combination of solution-based small-angle x-ray scattering (SAXS) and molecular constrained data modeling, we show that the ApoA1-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)-based particles are disk shaped with an elliptical cross section and composed by a central lipid bilayer surrounded by two stabilizing ApoA1 proteins. This structure is very similar to the particles formed in the so-called nanodisc system, which is based on N-terminal truncated ApoA1 protein. Although it is commonly agreed that the nanodisc is plain disk shaped, several more advanced structures have been proposed for the full-length ApoA1 in combination with POPC and cholesterol. This prompted us to make a detailed comparative study of the ApoA1 and nanodisc systems upon cholesterol uptake. Based on the presented SAXS analysis it is found that the N-terminal domains of ApoA1-POPC-cholesterol particles are not globular but instead an integrated part of the protein belt stabilizing the particles. Upon incorporation of increasing amounts of cholesterol, the presence of the N-terminal domain allows the bilayer thickness to increase while maintaining an overall flat bilayer structure. This is contrasted by the energetically more strained and less favorable lens shape required to fit the SAXS data from the N-terminal truncated nanodisc system upon cholesterol incorporation. This suggests that the N-terminal domain of ApoA1 actively participates in the stabilization of the ApoA1-POPC-cholesterol discoidal particle and allows for a more optimal lipid packing upon cholesterol uptake. PMID:26200866
Shigematsu, Taiki; Koshiyama, Kenichiro; Wada, Shigeo
2015-01-01
Rupture of biological cell membrane under mechanical stresses is critical for cell viability. It is triggered by local rearrangements of membrane molecules. We investigated the effects of stretching speed on mechanical rupture of phospholipid/cholesterol bilayers using unsteady molecular dynamics simulations. We focused on pore formation, the trigger of rupture, in a 40 mol% cholesterol-including bilayer. The unsteady stretching was modeled by proportional and temporal scaling of atom positions at stretching speeds from 0.025 to 30 m/s. The effects of the stretching speed on the critical areal strain, where the pore forms, is composed of two regimes. At low speeds (<1.0 m/s), the critical areal strain is insensitive to speed, whereas it significantly increases at higher speeds. Also, the strain is larger than that of a pure bilayer, regardless of the stretching speeds, which qualitatively agrees with available experimental data. Transient recovery of the cholesterol and phospholipid molecular orientations was evident at lower speeds, suggesting the formation of a stretch-induced interdigitated gel-like phase. However, this recovery was not confirmed at higher speeds or for the pure bilayer. The different responses of the molecular orientations may help explain the two regimes for the effect of stretching speed on pore formation. PMID:26471872
Brenner, D S; Drachenberg, C B; Papadimitriou, J C
2001-02-01
Hematoidin crystals (HC) are found in tissues where extravasated erythrocytes undergo degradation. Previous studies have determined that hematoidin is composed, in part, of a bilirubin-like pigment. In a previous study (Papadimitriou and Drachenberg, Ultrastruct. Pathol. 16, 413-421, 1992), we demonstrated that giant cell asteroid bodies (AB) are formed by membrane lipid bilayers. We evaluated three cases in which HC developed within splenic infarcts. The crystals were analyzed by light microscopy (LM), electron microscopy (EM), and X-ray microanalysis. A case of sarcoidosis with multiple epithelioid granulomas containing AB was studied for comparison. By LM the HC demonstrated intense, golden-color, fine threads, both intracellularly and extracellularly, in small and large clusters, and in radiating, star-shape patterns ranging in size from 2 to 200 microm. By EM the HC were composed of a core of empty clefts, consistent with dissolved lipids, suggestive of cholesterol crystals, and were surrounded by myelinoid membrane aggregates. The AB showed by LM significant morphological similarities with the intracellular HC. By EM, the AB were composed of a core of dense phospholipid bilayer tubes surrounded by a halo of myelinoid membranes. No accumulation of specific elements was found in either HC or AB by X-ray microanalysis. HC and AB show a similar star-shape morphology by both LM and EM. We postulate that this shape is due to the physicochemical properties of the accumulated lipids which originate from superfluous cell membranes created during cell fusion in the case of AB and after cellular (predominantly red cell) breakdown in the case of HC. The golden color of the HC likely results from adsorption of hydrophobic bilirubin-like pigments left over from erythrocyte breakdown into the accumulated lipids. Thus, this study shows two different (patho)physiological processes that lead to a markedly similar morphological end-product and provides further support to our proposed mechanism for AB formation.
NASA Astrophysics Data System (ADS)
Davtyan, Arman; Biermanns, Andreas; Loffeld, Otmar; Pietsch, Ullrich
2016-06-01
Coherent x-ray diffraction imaging is used to measure diffraction patterns from individual highly defective nanowires, showing a complex speckle pattern instead of well-defined Bragg peaks. The approach is tested for nanowires of 500 nm diameter and 500 nm height predominately composed by zinc-blende (ZB) and twinned zinc-blende (TZB) phase domains. Phase retrieval is used to reconstruct the measured 2-dimensional intensity patterns recorded from single nanowires with 3.48 nm and 0.98 nm spatial resolution. Whereas the speckle amplitudes and distribution are perfectly reconstructed, no unique solution could be obtained for the phase structure. The number of phase switches is found to be proportional to the number of measured speckles and follows a narrow number distribution. Using data with 0.98 nm spatial resolution the mean number of phase switches is in reasonable agreement with estimates taken from TEM. However, since the resolved phase domain still is 3-4 times larger than a single GaAs bilayer we explain the non-ambiguous phase reconstruction by the fact that depending on starting phase and sequence of subroutines used during the phase retrieval the retrieved phase domain host a different sequence of randomly stacked bilayers. Modelling possible arrangements of bilayer sequences within a phase domain demonstrate that the complex speckle patterns measured can indeed be explained by the random arrangement of the ZB and TZB phase domains.
Pham, Quoc Dat; Topgaard, Daniel; Sparr, Emma
2015-10-13
Monoterpenes are abundant in essential oils extracted from plants. These relatively small and hydrophobic molecules have shown important biological functions, including antimicrobial activity and membrane penetration enhancement. The interaction between the monoterpenes and lipid bilayers is considered important to the understanding of the biological functions of monoterpenes. In this study, we investigated the effect of cyclic and linear monoterpenes on the structure and dynamics of lipids in model membranes. We have studied the ternary system 1,2-dimyristoyl-sn-glycero-3-phosphocholine-monoterpene-water as a model with a focus on dehydrated conditions. By combining complementary techniques, including differential scanning calorimetry, solid-state nuclear magnetic resonance, and small- and wide-angle X-ray scattering, bilayer structure, phase transitions, and lipid molecular dynamics were investigated at different water contents. Monoterpenes cause pronounced melting point depression and phase segregation in lipid bilayers, and the extent of these effects depends on the hydration conditions. The addition of a small amount of thymol to the fluid bilayer (volume fraction of 0.03 in the bilayer) leads to an increased order in the acyl chain close to the bilayer interface. The findings are discussed in relation to biological systems and lipid formulations.
Ferro, Yves; Fernandez, Nicolas; Allouche, Alain; Linsmeier, Christian
2013-01-09
We herein investigate the interaction of beryllium with a graphene sheet and in a bilayer of graphite by means of periodic DFT calculations. In all cases, we find the beryllium atoms to be more weakly bonded on graphene than in the bilayer. Be(2) forms both magnetic and non-magnetic structures on graphene depending on the geometrical configuration of adsorption. We find that the stability of the Be/bilayer system increases with the size of the beryllium clusters inserted into the bilayer of graphite. We also find a charge transfer from beryllium to the graphite layers. All these results are analysed in terms of electronic structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Liang; Dongare, Avinash M., E-mail: dongare@uconn.edu; Namburu, Raju R.
2014-02-03
The strain dependence of the electronic properties of bilayer sheets of 2H-MoS{sub 2} is studied using ab initio simulations based on density functional theory. An indirect band gap for bilayer MoS{sub 2} is observed for all variations of strain along the basal plane. Several transitions for the indirect band gap are observed for various strains for the bilayer structure. The variation of the band gap and the carrier effective masses for the holes and the electrons for the bilayer MoS{sub 2} structure under conditions of uniaxial strain, biaxial strain, as well as uniaxial stress is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guo-zhen; Canadian Centre of Electron Microscopy and Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1; Majdi, Tahereh
2014-12-08
A unique metal/oxide interfacial bilayer formed between Au nanoparticles and MgAl{sub 2}O{sub 4} substrates following thermal treatment is reported. Associated with the formation of the bilayer was the onset of an abnormal epitaxial growth of the substrate under the nanoparticle. According to the redistribution of atoms and the changes of their electronic structure probed across the interface by a transmission electron microscopy, we suggest two possible atomic models of the interfacial bilayer.
Examining the origins of the hydration force between lipid bilayers using all-atom simulations.
Gentilcore, Anastasia N; Michaud-Agrawal, Naveen; Crozier, Paul S; Stevens, Mark J; Woolf, Thomas B
2010-05-01
Using 237 all-atom double bilayer simulations, we examined the thermodynamic and structural changes that occur as a phosphatidylcholine lipid bilayer stack is dehydrated. The simulated system represents a micropatch of lipid multilayer systems that are studied experimentally using surface force apparatus, atomic force microscopy and osmotic pressure studies. In these experiments, the hydration level of the system is varied, changing the separation between the bilayers, in order to understand the forces that the bilayers feel as they are brought together. These studies have found a curious, strongly repulsive force when the bilayers are very close to each other, which has been termed the "hydration force," though the origins of this force are not clearly understood. We computationally reproduce this repulsive, relatively free energy change as bilayers come together and make qualitative conclusions as to the enthalpic and entropic origins of the free energy change. This analysis is supported by data showing structural changes in the waters, lipids and salts that have also been seen in experimental work. Increases in solvent ordering as the bilayers are dehydrated are found to be essential in causing the repulsion as the bilayers come together.
The Effects of Polyunsaturated Lipid Components on bilayer Structure
NASA Astrophysics Data System (ADS)
Pramudya, Y.; Kiss, A.; Nguyen, Lam T.; Yuan, J.; Hirst, Linda S.
2007-03-01
Polyunsaturated fatty acids (PUFAs), such as DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) have been the focus of much research attention in recent years, due to their apparent health benefits and effects on cell physiology. They are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, particularly in the retinal rod cells and the central nervous system. In this work lipid bilayer structure has been investigated in lipid mixtures, incorporating polyunsaturated fatty acid moieties. The structural effects of increasing concentrations of both symmetric and asymmetric PUFA materials on the bilayer structure are investigated via synchrotron x-ray diffraction on solution samples. We observe bilayer spacings to increase with the percentage of unsaturated fatty acid lipid in the membrane, whilst the degree of ordering significantly decreases. In fact above 20% of fatty acid, well defined bilayers are no longer observed to form. Evidence of phase separation can be clearly seen from these x-ray results and in combination with AFM measurements.
NASA Astrophysics Data System (ADS)
Krotkus, Simonas; Nehm, Frederik; Janneck, Robby; Kalkura, Shrujan; Zakhidov, Alex A.; Schober, Matthias; Hild, Olaf R.; Kasemann, Daniel; Hofmann, Simone; Leo, Karl; Reineke, Sebastian
2015-03-01
Recently, bilayer resist processing combined with development in hydrofluoroether (HFE) solvents has been shown to enable single color structuring of vacuum-deposited state-of-the-art organic light-emitting diodes (OLED). In this work, we focus on further steps required to achieve multicolor structuring of p-i-n OLEDs using a bilayer resist approach. We show that the green phosphorescent OLED stack is undamaged after lift-off in HFEs, which is a necessary step in order to achieve RGB pixel array structured by means of photolithography. Furthermore, we investigate the influence of both, double resist processing on red OLEDs and exposure of the devices to ambient conditions, on the basis of the electrical, optical and lifetime parameters of the devices. Additionally, water vapor transmission rates of single and bilayer system are evaluated with thin Ca film conductance test. We conclude that diffusion of propylene glycol methyl ether acetate (PGMEA) through the fluoropolymer film is the main mechanism behind OLED degradation observed after bilayer processing.
Lee, Jonathan R. I.; Bagge-Hansen, Michael; Tunuguntla, Ramya; ...
2015-04-15
Here, phospholipid bilayer coated Si nanowires are one-dimensional (1D) composites that provide versatile bio-nanoelectronic functionality via incorporation of a wide variety of biomolecules into the phospholipid matrix. The physiochemical behaviour of the phospholipid bilayer is strongly dependent on its structure and, as a consequence, substantial modelling and experimental efforts have been directed at the structural characterization of supported bilayers and unsupported phospholipid vesicles; nonetheless, the experimental studies conducted to date have exclusively involved volume-averaged techniques, which do not allow for the assignment of spatially resolved structural variations that could critically impact the performance of the 1D phospholipid-Si NW composites. Inmore » this manuscript, we use scanning transmission X-ray microscopy (STXM) to probe bond orientation and bilayer thickness as a function of position with a spatial resolution of ~30 nm for Δ9-cis 1,2-dioleoyl-sn-glycero-3-phosphocholine layers prepared Si NWs. When coupled with small angle X-ray scattering measurements, the STXM data reveal structural motifs of the Si NWs that give rise to multi-bilayer formation and enable assignment of the orientation of specific bonds known to affect the order and rigidity of phospholipid bilayers.« less
Larsson, Marcus; Larsson, Kåre
2014-03-01
The existence of infinite periodic lipid bilayer structures in biological systems was first demonstrated in cell membrane assemblies. Such periodicity is only possible in symmetric bilayers, and their occurrence is discussed here in relation to the asymmetry of cell membranes in vivo. A periodic membrane conformation in the prolamellar body of plants corresponds to a dormant state without photosynthesis. A similar reversible formation of a dormant state has also been observed in the mitochondria of the amoeba Chaos. In these cases the energy production has become insufficient to maintain the membrane asymmetry. Formation of membranes that are symmetric over the bilayer is proposed to be a principal mechanism behind formation of cubic membrane systems. Another type of bicontinuous minimal surface structure is considered to form the alveolar lining of mammals at normal breathing conditions. The CLP surface corresponds to such a tetragonal surface phase. It is also a symmetric bilayer and in a state of zero energy expenditure. Structural alternatives of the bilayer conformation in this latter system are also discussed here. © 2013 Elsevier B.V. All rights reserved.
Effect of lipid structure on the dipole potential of phosphatidylcholine bilayers.
Clarke, R J
1997-07-25
A fluorescent ratio method utilizing styrylpyridinium dyes has recently been suggested for the measurement of the membrane dipole potential. Up to now only qualititative measurements have been possible. Here the fluorescence excitation ratio of the dye di-8-ANEPPS has been measured in lipid vesicles composed of a range of saturated and unsaturated phosphatidylcholines. It has been found that the fluorescence ratio is inversely proportional to the surface area occupied by the lipid in its fully hydrated state. This finding allows, by extra- and interpolation, the packing density to be estimated of phosphatidylcholines for which X-ray crystallographic data are not yet available. Comparison of the fluorescence data with literature data of the dipole potential from electrical measurements on monolayers and bilayers allows a calibration curve to be constructed, so that a quantitative determination of the dipole potential using di-8-ANEPPS is possible. It has been found that the value of the dipole potential decreases with increasing unsaturation and, in the case of unsaturated lipids, with increasing length of the hydrocarbon chains. This effect can be explained by the effects of chain packing on the spacing between the headgroups. In addition to the effects of lipid structure on membrane fluidity, these measurements demonstrate the possibility of a direct electrical mechanism for lipid regulation of protein function, in particular of ion transport proteins.
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2016-09-01
Monolayer α-graphyne is a new two-dimensional carbon allotrope with many special features. In this work the electronic properties of AA- and AB-stacked bilayers of this material and then the optical properties are studied, using first principle plane wave method. The electronic spectrum has two Dirac cones for AA stacked bilayer α-graphyne. For AB-stacked bilayer, the interlayer interaction changes the linear bands into parabolic bands. The optical spectra of the most stable AB-stacked bilayer closely resemble to that of the monolayer, except for small shifts of peak positions and increasing of their intensity. For AB-stacked bilayer, a pronounced peak has been found at low energies under the perpendicular polarization. This peak can be clearly ascribed to the transitions at the Dirac point as a result of the small degeneracy lift in the band structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, Ich C.; Tunuguntla, Ramya H.; Kim, Kyunghoon
Carbon nanotube porins (CNTPs), small segments of carbon nanotubes capable of forming defined pores in lipid membranes, are important future components for bionanoelectronic devices as they could provide a robust analog of biological membrane channels. Furthermore, in order to control the incorporation of these CNT channels into lipid bilayers, it is important to understand the structure of the CNTPs before and after insertion into the lipid bilayer as well as the impact of such insertion on the bilayer structure. Here we employed a noninvasive in situ probe, small-angle X-ray scattering, to study the integration of CNT porins into dioleoylphosphatidylcholine bilayers.more » These results show that CNTPs in solution are stabilized by a monolayer of lipid molecules wrapped around their outer surface. We also demonstrate that insertion of CNTPs into the lipid bilayer results in decreased bilayer thickness with the magnitude of this effect increasing with the concentration of CNTPs.« less
Synthesis and Characterization of Novel Anchorlipids for Tethered Bilayer Lipid Membranes.
Andersson, Jakob; Knobloch, Jacqueline J; Perkins, Michael V; Holt, Stephen A; Köper, Ingo
2017-05-09
Tethered bilayer lipid membranes are versatile solid-supported model membrane systems. Core to these systems is an anchorlipid that covalently links a lipid bilayer to a support. The molecular structure of these lipids can have a significant impact on the properties of the resulting bilayer. Here, the synthesis of anchorlipids containing ester groups in the tethering part is described. The lipids are used to form bilayer membranes, and the resulting structures are compared with membranes formed using conventional anchorlipids or sparsely tethered membranes. All membranes showed good electrical sealing properties; the disulphide-terminated anchorlipids could be used in a sparsely tethered system without significantly reducing the sealing properties of the lipid bilayers. The sparsely tethered systems also allowed for higher ion transport across the membrane, which is in good correlation with higher hydration of the spacer region as seen by neutron scattering.
NASA Technical Reports Server (NTRS)
Sadleir, John E.
2010-01-01
We have recently shown that normal-metal/superconductor (N/S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior. Our measurements were explained in terms of a longitudinal proximity effect model in which superconducting order from the higher transition temperature leads is induced into the TES bilayer plane over remarkably long distances (up to 290 micron). Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We explain our results of an effect converse to the longitudinal proximity effect (LoPE), the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. We present resistance and critical current measurements as a function of temperature and magnetic field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130 micron with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperature scale approximately as the inverse square of the in-plane N-structure separation distance, without appreciable broadening of the transition width. We find TESs with added Au structures exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 x 10(exp -10) s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition
NASA Technical Reports Server (NTRS)
Sadleir, John E.
2010-01-01
We have recently shown that normal-metal/superconductor (N /S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior. Our measurements were explained in terms of a longitudinal proximity effect model in which superconducting order from the higher transition temperature leads is induced into the TES bilayer plane over remarkably long distances (up to 290 micron). Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We explain our results in terms of an effect converse to the longitudinal proximity effect (LoPE), the lateral inverse proximity effect (LaiPE), for which the order parameter in the N /S bilayer is reduced due to the neighboring N structures. We present resistance and critical current measurements as a function of temperature and magnetic field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130 micron with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperatures scale approximately as the inverse square of the in-plane N-structure separation distance, without appreciable broadening of the transition width. We find TESs with added Au structures exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 x 10(exp -10) s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition.
Single-Molecule Resolution of Antimicrobial Peptide Interactions with Supported Lipid A Bilayers.
Nelson, Nathaniel; Schwartz, Daniel K
2018-06-05
The molecular interactions between antimicrobial peptides (AMPs) and lipid A-containing supported lipid bilayers were probed using single-molecule total internal reflection fluorescence microscopy. Hybrid supported lipid bilayers with lipid A outer leaflets and phospholipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE)) inner leaflets were prepared and characterized, and the spatiotemporal trajectories of individual fluorescently labeled LL37 and Melittin AMPs were determined as they interacted with the bilayer surfaces comprising either monophosphoryl or diphosphoryl lipid A (from Escherichia coli) to determine the impact of electrostatic interactions. Large numbers of trajectories were obtained and analyzed to obtain the distributions of surface residence times and the statistics of the spatial trajectories. Interestingly, the AMP species were sensitive to subtle differences in the charge of the lipid, with both peptides diffusing more slowly and residing longer on the diphosphoryl lipid A. Furthermore, the single-molecule dynamics indicated a qualitative difference between the behavior of AMPs on hybrid Lipid A bilayers and on those composed entirely of DOPE. Whereas AMPs interacting with a DOPE bilayer exhibited two-dimensional Brownian diffusion with a diffusion coefficient of ∼1.7 μm 2 /s, AMPs adsorbed to the lipid A surface exhibited much slower apparent diffusion (on the order of ∼0.1 μm 2 /s) and executed intermittent trajectories that alternated between two-dimensional Brownian diffusion and desorption-mediated three-dimensional flights. Overall, these findings suggested that bilayers with lipid A in the outer leaflet, as it is in bacterial outer membranes, are valuable model systems for the study of the initial stage of AMP-bacterium interactions. Furthermore, single-molecule dynamics was sensitive to subtle differences in electrostatic interactions between cationic AMPs and monovalent or divalent anionic lipid A moieties. Copyright © 2018 Biophysical Society. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yeonho; Lee, Ji Hye; Hwang, Hoon
Potential of mean force (PMF) profiles and position-dependent diffusion coefficients of Na + and K + are calculated to elucidate the translocation of ions through a cyclic peptide nanotube, composed of 8 × cyclo[-(D-Leu-Trp) 4-] rings, in water and in hydrated DMPC bilayers. The PMF profiles and PMF decomposition analysis for the monovalent cations show that favorable interactions of the cations with the CPN as well as the lipid bilayer and dehydration free energy penalties are two major competing factors which determine the free energy surface for ion transport through CPNs both in water and lipid bilayers, and that themore » selectivity of CPNs to cations mainly arises from favorable interaction energies of cations with CPNs and lipid bilayers that are more dominant than the dehydration penalties. Calculations of the position-dependent diffusion coefficients and dynamic friction kernels of the cations indicate that the dehydration process along with the molecular rearrangements occurring outside the channel and the coupling of the ion motions with the chain-structured water movements inside the channel lead to decrease of the diffusion coefficients far away from the channel entrance and also reduced coefficients inside the channel. Here the PMF and diffusivity profiles for Na + and K + reveal that the energetics of ion transport through the CPN are governed by global interactions of ions with all the components in the system while the diffusivity of ions through the channel is mostly determined by local interactions of ions with the confined water molecules inside the channel. Comparison of Na + and K + ion distributions based on overdamped Brownian dynamics simulations based on the PMF and diffusivity profiles with the corresponding results from molecular dynamics shows good agreement, indicating accuracy of the Bayesian inference method for determining diffusion coefficients in this application. In addition this work shows that position-dependent diffusion coefficients of ions are required to explain the dynamics and conductance of ions through the CPN properly.« less
Song, Yeonho; Lee, Ji Hye; Hwang, Hoon; ...
2016-11-04
Potential of mean force (PMF) profiles and position-dependent diffusion coefficients of Na + and K + are calculated to elucidate the translocation of ions through a cyclic peptide nanotube, composed of 8 × cyclo[-(D-Leu-Trp) 4-] rings, in water and in hydrated DMPC bilayers. The PMF profiles and PMF decomposition analysis for the monovalent cations show that favorable interactions of the cations with the CPN as well as the lipid bilayer and dehydration free energy penalties are two major competing factors which determine the free energy surface for ion transport through CPNs both in water and lipid bilayers, and that themore » selectivity of CPNs to cations mainly arises from favorable interaction energies of cations with CPNs and lipid bilayers that are more dominant than the dehydration penalties. Calculations of the position-dependent diffusion coefficients and dynamic friction kernels of the cations indicate that the dehydration process along with the molecular rearrangements occurring outside the channel and the coupling of the ion motions with the chain-structured water movements inside the channel lead to decrease of the diffusion coefficients far away from the channel entrance and also reduced coefficients inside the channel. Here the PMF and diffusivity profiles for Na + and K + reveal that the energetics of ion transport through the CPN are governed by global interactions of ions with all the components in the system while the diffusivity of ions through the channel is mostly determined by local interactions of ions with the confined water molecules inside the channel. Comparison of Na + and K + ion distributions based on overdamped Brownian dynamics simulations based on the PMF and diffusivity profiles with the corresponding results from molecular dynamics shows good agreement, indicating accuracy of the Bayesian inference method for determining diffusion coefficients in this application. In addition this work shows that position-dependent diffusion coefficients of ions are required to explain the dynamics and conductance of ions through the CPN properly.« less
Effects of van der Waals interaction and electric field on the electronic structure of bilayer MoS2.
Xiao, Jin; Long, Mengqiu; Li, Xinmei; Zhang, Qingtian; Xu, Hui; Chan, K S
2014-10-08
The modification of the electronic structure of bilayer MoS2 by an external electric field can have potential applications in optoelectronics and valleytronics. Nevertheless, the underlying physical mechanism is not clearly understood, especially the effects of the van der Waals interaction. In this study, the spin orbit-coupled electronic structure of bilayer MoS2 has been investigated using the first-principle density functional theory. We find that the van der Waals interaction as well as the interlayer distance has significant effects on the band structure. When the interlayer distance of bilayer MoS2 increases from 0.614 nm to 0.71 nm, the indirect gap between the Γ and Λ points increases from 1.25 eV to 1.70 eV. Meanwhile, the energy gap of bilayer MoS2 transforms from an indirect one to a direct one. An external electric field can shift down (up) the energy bands of the bottom (top) MoS2 layer and also breaks the inversion symmetry of bilayer MoS2. As a result, the electric field can affect the band gaps, the spin-orbit interaction and splits the valance bands into two groups. The present study can help us understand more about the electronic structures of MoS2 materials for potential applications in electronics and optoelectronics.
Liu, Yingzhe; Yu, Tao; Lai, Weipeng; Kang, Ying; Ge, Zhongxue
2015-03-01
The structural characteristics involving thermal stabilities of liquid nitromethane (NM)—one of the simplest energetic materials—confined within a graphene (GRA) bilayer were investigated by means of all-atom molecular dynamics simulations and density functional theory calculations. The results show that ordered and layered structures are formed at the confinement of the GRA bilayer induced by the van der Waals attractions of NM with GRA and the dipole-dipole interactions of NM, which is strongly dependent on the confinement size, i.e., the GRA bilayer distance. These unique intermolecular arrangements and preferred orientations of confined NM lead to higher stabilities than bulk NM revealed by bond dissociation energy calculations.
Proximity Effects and Nonequilibrium Superconductivity in Transition-Edge Sensors
NASA Technical Reports Server (NTRS)
Sadleir, John E.; Smith, Stephen J.; Robinson, Ian K.; Finkbeiner, Fred M.; Chervenak, James A.; Bandler, Simon R.; Eckart, Megan E.; Kilbourne, Caroline A.
2011-01-01
We have recently shown that normal-metal/superconductor (N/S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior.l Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We find TESs with added Au structures also exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We explain our results in terms of an effect converse to the longitudinal proximity effect (LoPE) 1, the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. Resistance and critical current measurements are presented as a function of temperature and magnetic field taken on square Mol Au bilayer TESs with lengths ranging from 8 to 130 {\\mu}m with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperatures scale approximately as the inverse square of the in- plane N-structure separation distance, without appreciable broadening of the transition width. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 \\times 10-10 s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayer's steep resistive transition.
Bi-layer plate-type acoustic metamaterials with Willis coupling
NASA Astrophysics Data System (ADS)
Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui
2018-01-01
Dynamic effective negative parameters are principal to the representation of the physical properties of metamaterials. In this paper, a bi-layer plate-type unit was proposed with both a negative mass density and a negative bulk modulus; moreover, through analysis of these bi-layer structures, some important problems about acoustic metamaterials were studied. First, dynamic effective mass densities and the bulk modulus of the bi-layer plate-type acoustic structure were clarified through both the direct and the retrieval methods, and, in addition, the intrinsic relationship between the sound transmission (absorption) characteristics and the effective parameters was analyzed. Furthermore, the properties of dynamic effective parameters for an asymmetric bi-layer acoustic structure were further considered through an analysis of experimental data, and the modified effective parameters were then obtained through consideration of the Willis coupling in the asymmetric passive system. In addition, by taking both the clamped and the periodic boundary conditions into consideration in the bi-layer plate-type acoustic system, new perspectives were presented for study on the effective parameters and sound insulation properties in the range below the cut-off frequency. The special acoustic properties established by these effective parameters could enrich our knowledge and provide guidance for the design and installation of acoustic metamaterial structures in future sound engineering practice.
Neutron reflecting supermirror structure
Wood, James L.
1992-01-01
An improved neutron reflecting supermirror structure comprising a plurality of stacked sets of bilayers of neutron reflecting materials. The improved neutron reflecting supermirror structure is adapted to provide extremely good performance at high incidence angles, i.e. up to four time the critical angle of standard neutron mirror structures. The reflection of neutrons striking the supermirror structure at a high critical angle provides enhanced neutron throughput, and hence more efficient and economical use of neutron sources. One layer of each set of bilayers consist of titanium, and the second layer of each set of bilayers consist of an alloy of nickel with carbon interstitially present in the nickel alloy.
Free energy simulations of amylin I26P mutation in a lipid bilayer.
Jalili, Seifollah; Maleki, Afsaneh; Akhavan, Mojdeh; Najafi, Bijan; Schofield, Jeremy
2015-02-01
The amylin peptide in a dioleoylphosphatidylcholine (DOPC) bilayer is studied using united atom molecular dynamics (MD) simulations. Dynamics and transport properties of the peptide and the phospholipid bilayer are investigated. The lateral diffusion of DOPC is in the order of 10(-8) cm(2) s(-1), which is in agreement with the experimental results. The order parameter and density profile for phospholipid molecules in the bilayer are calculated. The secondary structure of amylin peptide shows that the amino acids in two terminals are structureless and two α-helical segments in the peptide are connected through an unstructured link. This structure is similar to the experimental structure in the membrane-mimicking media. Free energy calculations of the Ile26 → Pro mutation in the amylin peptide are performed in the bilayer and in aqueous solution using molecular dynamics simulations and a thermodynamic cycle. It is shown that in the mutated peptide in aqueous solution, the α-helix structure changes to a 5-helix, whereas this configuration is preserved in the bilayer environment. It is interesting that the accessible surface area increases for hydrophobic residues in the bilayer and for hydrophilic residues in aqueous solution as the coupling parameter changes from 0 to 1. These results are significant to understanding the aggregation mechanism of human amylin monomers in membranes to the dimers, trimers, oligomers, and fibrils associated with the type 2 diabetes at the atomic level.
Velikonja, Aljaž; Perutkova, Šarka; Gongadze, Ekaterina; Kramar, Peter; Polak, Andraž; Maček-Lebar, Alenka; Iglič, Aleš
2013-01-01
The lipid bilayer is a basic building block of biological membranes and can be pictured as a barrier separating two compartments filled with electrolyte solution. Artificial planar lipid bilayers are therefore commonly used as model systems to study the physical and electrical properties of the cell membranes in contact with electrolyte solution. Among them the glycerol-based polar phospholipids which have dipolar, but electrically neutral head groups, are most frequently used in formation of artificial lipid bilayers. In this work the electrical properties of the lipid layer composed of zwitterionic lipids with non-zero dipole moments are studied theoretically. In the model, the zwitterionic lipid bilayer is assumed to be in contact with aqueous solution of monovalent salt ions. The orientational ordering of water, resulting in spatial variation of permittivity, is explicitly taken into account. It is shown that due to saturation effect in orientational ordering of water dipoles the relative permittivity in the zwitterionic headgroup region is decreased, while the corresponding electric potential becomes strongly negative. Some of the predictions of the presented mean-field theoretical consideration are critically evaluated using the results of molecular dynamics (MD) simulation. PMID:23434651
The effect of cholesterol on the partitioning of 1-octanol into POPC vesicles
NASA Astrophysics Data System (ADS)
Zakariaee Kouchaksaraee, Roja
Microcalorimetry has become a method of choice for sensitive characterization of biomolecular interactions. In this study, isothermal titration calorimetry (ITC) was used to measure the partitioning of 1-octanol into lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a semi-unsaturated lipid, and cholesterol, a steroid, as a function of cholesterol molar concentration. The ITC instrument measures the heat evolved or absorbed upon titration of a liposome dispersion, at concentrations ranging from 0 to 40% cholesterol, into a suspension of 1-octanol in water. A model function was fit to the data in order to determine the partition coefficient of octanol into POPC bilayers and the enthalpy of interaction. I found that the partition coefficient increases and the heat of interaction becomes less negative with increasing cholesterol content, in contrast to results found by other groups for partitioning of alcohols into lipid-cholesterol bilayers containing saturated lipids. The heat of dilution of vesicles was also measured. Keywords: Partition coefficient; POPC; 1-Octanol; Cholesterol; Isothermal titration calorimetry; Lipid-alcohol interactions. Subject Terms: Calorimetry; Membranes (Biology); Biophysics; Biology -- Technique; Bilayer lipid membranes -- Biotechnology; Lipid membranes -- Biotechnology.
NASA Astrophysics Data System (ADS)
Cheng, Kwan; Cheng, Sara
We used molecular dynamics simulations to examine the effects of transbilayer distribution of lipid molecules, particularly anionic lipids with negatively charged headgroups, on the structure and binding kinetics of an amyloidogenic protein on the membrane surface and subsequent protein-induced structural disruption of the membrane. Our systems consisted of a model beta-sheet rich dimeric protein absorbed on asymmetric bilayers with neutral and anionic lipids and symmetric bilayers with neutral lipids. We observed larger folding, domain aggregation, and tilt angle of the absorbed protein on the asymmetric bilayer surfaces. We also detected more focused bilayer thinning in the asymmetric bilayer due to weak lipid-protein interactions. Our results support the mechanism that the higher lipid packing in the protein-contacting lipid leaflet promotes stronger protein-protein but weaker protein-lipid interactions of an amyloidogenic protein on the membrane surface. We speculate that the observed surface-induced structural and protein-lipid interaction of our model amyloidogenic protein may play a role in the early membrane-associated amyloid cascade pathway that leads to membrane structural damage of neurons in Alzheimer's disease. NSF ACI-1531594.
Dey, Sanjay; Chattopadhyay, Sankha; Mazumder, Bhaskar
2014-01-01
The objective of the present study was to develop bilayer tablets of atorvastatin and atenolol that are characterized by initial fast-release of atorvastatin in the stomach and comply with the release requirements of sustained-release of atenolol. An amorphous, solvent evaporation inclusion complex of atorvastatin with β-cyclodextrin, present in 1 : 3 (drug/cyclodextrin) molar ratio, was employed in the fast-release layer to enhance the dissolution of atorvastatin. Xanthan gum and guar gum were integrated in the sustained-release layer. Bilayer tablets composed of sustained-release layer (10% w/w of xanthan gum and guar gum) and fast-release layer [1 : 3 (drug/cyclodextrin)] showed the desired release profile. The atorvastatin contained in the fast-release layer showed an initial fast-release of more than 60% of its drug content within 2 h, followed by sustained release of the atenolol for a period of 12 h. The pharmacokinetic study illustrated that the fast absorption and increased oral bioavailability of atorvastatin as well as therapeutic concentration of atenolol in blood were made available through adoption of formulation strategy of bilayer tablets. It can be concluded that the bilayer tablets of atorvastatin and atenolol can be successfully employed for the treatment of hypertension and hypercholesterolemia together through oral administration of single tablet. PMID:24527446
NASA Astrophysics Data System (ADS)
Cui, Jianxun; Adams, John G. M.; Zhu, Yong
2018-05-01
Bending pre-designed flat sheets into three-dimensional (3D) structures is attracting much interest, as it provides a simple approach to make 3D devices. Here we report controlled bending and folding of a bilayer structure consisting of a heat shrinkable polymer sheet and a thin stiff film (not thermally responsive). Upon heating, the prestrained polymer sheet shrinks, leading to bending or folding of the bilayer. We studied the effect of relative dimensions of the two layers on the bending behavior and demonstrated the transition from longitudinal bending to transverse bending of the bilayer strip. Transverse bending was utilized to fold origami structures, including several flat letters, a crane, and a corrugated metal sheet via Miura-ori folding. We developed a method to further control the bending orientation based on bio-inspired anisotropic bending stiffness. By bending the metal foil in different orientations, several structures were obtained, including cylindrical surfaces and left-handed/right-handed helical structures.
NASA Astrophysics Data System (ADS)
Siahlo, Andrei I.; Poklonski, Nikolai A.; Lebedev, Alexander V.; Lebedeva, Irina V.; Popov, Andrey M.; Vyrko, Sergey A.; Knizhnik, Andrey A.; Lozovik, Yurii E.
2018-03-01
Single-layer and bilayer carbon and hexagonal boron nitride nanoscrolls as well as nanoscrolls made of bilayer graphene/hexagonal boron nitride heterostructure are considered. Structures of stable states of the corresponding nanoscrolls prepared by rolling single-layer and bilayer rectangular nanoribbons are obtained based on the analytical model and numerical calculations. The lengths of nanoribbons for which stable and energetically favorable nanoscrolls are possible are determined. Barriers to rolling of single-layer and bilayer nanoribbons into nanoscrolls and barriers to nanoscroll unrolling are calculated. Based on the calculated barriers nanoscroll lifetimes in the stable state are estimated. Elastic constants for bending of graphene and hexagonal boron nitride layers used in the model are found by density functional theory calculations.
Optical stretching as a tool to investigate the mechanical properties of lipid bilayers.
Solmaz, Mehmet E; Sankhagowit, Shalene; Biswas, Roshni; Mejia, Camilo A; Povinelli, Michelle L; Malmstadt, Noah
2013-10-07
Measurements of lipid bilayer bending modulus by various techniques produce widely divergent results. We attempt to resolve some of this ambiguity by measuring bending modulus in a system that can rapidly process large numbers of samples, yielding population statistics. This system is based on optical stretching of giant unilamellar vesicles (GUVs) in a microfluidic dual-beam optical trap (DBOT). The microfluidic DBOT system is used here to measure three populations of GUVs with distinct lipid compositions. We find that gel-phase membranes are significantly stiffer than liquid-phase membranes, consistent with previous reports. We also find that the addition of cholesterol does not alter the bending modulus of membranes composed of a monounsaturated phospholipid.
Knechtel, Johann
2017-01-01
Abstract We have developed a novel approach for creating membrane-spanning protein-based pores. The construction principle is based on using well-defined, circular DNA nanostructures to arrange a precise number of pore-forming protein toxin monomers. We can thereby obtain, for the first time, protein pores with specifically set diameters. We demonstrate this principle by constructing artificial alpha-hemolysin (αHL) pores. The DNA/αHL hybrid nanopores composed of twelve, twenty or twenty-six monomers show stable insertions into lipid bilayers during electrical recordings, along with steady, pore size-dependent current levels. Our approach successfully advances the applicability of nanopores, in particular towards label-free studies of single molecules in large nanoscaled biological structures. PMID:29088457
Confocal mapping of myelin figures with micro-Raman spectroscopy
NASA Astrophysics Data System (ADS)
Huang, Jung-Ren; Cheng, Yu-Che; Huang, Hung Ji; Chiang, Hai-Pang
2018-01-01
We employ confocal micro-Raman spectroscopy (CMRS) with submicron spatial resolution to study the myelin structures (cylindrical lamellae) composed of nested surfactant C12E3 or lipid DMPC bilayers. The CMRS mapping indicates that for a straight C12E3 myelin, the surfactant concentration increases with the myelin width and is higher in the center region than in the peripheral region. For a curved C12E3 myelin, the convex side has a higher surfactant concentration than the corresponding concave side. The spectrum of DMPC myelins undergoes a qualitative change as the temperature increases above 60 °C, suggesting that the surfactant molecules may be damaged. Our work demonstrates the utility of CMRS in bio-soft material research.
Molecular structure of the dioctadecyldimethylammonium bromide (DODAB) bilayer.
Jamróz, Dorota; Kepczynski, Mariusz; Nowakowska, Maria
2010-10-05
Dioctadecyldimethylammonium bromide (DODAB) is a double-chained quaternary ammonium surfactant that assembles in water into bilayer structures. This letter reports the molecular dynamics (MD) computer simulations of the DODAB bilayer at 25 °C. The simulations show that the surfactant membrane arranges spontaneously into the rippled phase (P(β)(')) at that temperature. The ordering within the chain fragment closest to the hydrophilic head (carbon atoms 1-5) is relatively low. It grows significantly for the carbon atoms located in the center of the membrane (atoms 6-17). The C6-C17 chain fragments are well aligned and tilted by ca. 15° with respect to the bilayer normal.
A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures
NASA Astrophysics Data System (ADS)
Cui, Yun; Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Li, Yuhang; Xing, Yufeng; Yu, Cunjiang; Song, Jizhou
2018-02-01
The bilayer structure consisting of thermal-responsive liquid crystal elastomers (LCEs) and other polymer materials with stretchable heaters has attracted much attention in applications of soft actuators and soft robots due to its ability to generate large deformations when subjected to heat stimuli. A simple analytical thermo-mechanical model, accounting for the non-uniform feature of the temperature/strain distribution along the thickness direction, is established for this type of bilayer structure. The analytical predictions of the temperature and bending curvature radius agree well with finite element analysis and experiments. The influences of the LCE thickness and the heat generation power on the bending deformation of the bilayer structure are fully investigated. It is shown that a thinner LCE layer and a higher heat generation power could yield more bending deformation. These results may help the design of soft actuators and soft robots involving thermal responsive LCEs.
Structure of Sphingomyelin Bilayers: A Simulation Study
Chiu, S. W.; Vasudevan, S.; Jakobsson, Eric; Mashl, R. Jay; Scott, H. Larry
2003-01-01
We have carried out a molecular dynamics simulation of a hydrated 18:0 sphingomyelin lipid bilayer. The bilayer contained 1600 sphingomyelin (SM) molecules, and 50,592 water molecules. After construction and initial equilibration, the simulation was run for 3.8 ns at a constant temperature of 50°C and a constant pressure of 1 atm. We present properties of the bilayer calculated from the simulation, and compare with experimental data and with properties of dipalmitoyl phosphatidylcholine (DPPC) bilayers. The SM bilayers are significantly more ordered and compact than DPPC bilayers at the same temperature. SM bilayers also exhibit significant intramolecular hydrogen bonding between phosphate ester oxygen and hydroxyl hydrogen atoms. This results in a decreased hydration in the polar region of the SM bilayer compared with DPPC. Since our simulation system is very large we have calculated the power spectrum of bilayer undulation and peristaltic modes, and we compare these data with similar calculations for DPPC bilayers. We find that the SM bilayer has significantly larger bending modulus and area compressibility compared to DPPC. PMID:14645055
NASA Astrophysics Data System (ADS)
Dong, B. W.; Miao, Jun; Han, J. Z.; Shao, F.; Yuan, J.; Meng, K. K.; Wu, Y.; Xu, X. G.; Jiang, Y.
2018-03-01
An novel heterostructure composed of multiferroic Bi(Fe0.95Cr0.05)O3 (BFCO) and high-K ZrO2 (ZO) layers is investigated. Ferroelectric and electrical properties of the BFZO/ZO heterostructure have been investigated. A pronounced bipolar ferroelectric resistive switching characteristic was achieved in the heterostructure at room temperature. Interestingly, the BFCO/ZO structures exhibit a reproducible resistive switching with a high On/Off resistance ratio ∼2×103 and long retention time. The relationship between polarization and band structure at the interface of BFCO/ZO bilayer under the positive and negative sweepings has been discussed. As a result, the BFCO/ZO multiferroic/high-K heterostructure with high On/Off resistance ratio and long retention characterizes, exhibits a potential in future nonvolatile memory application.
Vesicular perylene dye nanocapsules as supramolecular fluorescent pH sensor systems.
Zhang, Xin; Rehm, Stefanie; Safont-Sempere, Marina M; Würthner, Frank
2009-11-01
Water-soluble, self-assembled nanocapsules composed of a functional bilayer membrane and enclosed guest molecules can provide smart (that is, condition responsive) sensors for a variety of purposes. Owing to their outstanding optical and redox properties, perylene bisimide chromophores are interesting building blocks for a functional bilayer membrane in a water environment. Here, we report water-soluble perylene bisimide vesicles loaded with bispyrene-based energy donors in their aqueous interior. These loaded vesicles are stabilized by in situ photopolymerization to give nanocapsules that are stable over the entire aqueous pH range. On the basis of pH-tunable spectral overlap of donors and acceptors, the donor-loaded polymerized vesicles display pH-dependent fluorescence resonance energy transfer from the encapsulated donors to the bilayer dye membrane, providing ultrasensitive pH information on their aqueous environment with fluorescence colour changes covering the whole visible light range. At pH 9.0, quite exceptional white fluorescence could be observed for such water-soluble donor-loaded perylene vesicles.
A Neutron View of Proteins in Lipid Bilayers
NASA Astrophysics Data System (ADS)
White, Stephen
2012-02-01
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1-S4 voltage- sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. We have used neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field.
Sarras, Michael P
2012-01-01
The body wall of Hydra is organized as an epithelial bilayer (ectoderm and endoderm) with an intervening extracellular matrix (ECM), termed mesoglea by early biologists. Morphological studies have determined that Hydra ECM is composed of two basal lamina layers positioned at the base of each epithelial layer with an intervening interstitial matrix. Molecular and biochemical analyses of Hydra ECM have established that it contains components similar to those seen in more complicated vertebrate species. These components include such macromolecules as laminin, type IV collagen, and various fibrillar collagens. These components are synthesized in a complicated manner involving cross-talk between the epithelial bilayer. Any perturbation to ECM biogenesis leads to a blockage in Hydra morphogenesis. Blockage in ECM/cell interactions in the adult polyp also leads to problems in epithelial transdifferentiation processes. In terms of biophysical parameters, Hydra ECM is highly flexible; a property that facilitates continuous movements along the organism's longitudinal and radial axis. This is in contrast to the more rigid matrices often found in vertebrates. The flexible nature of Hydra ECM can in part now be explained by the unique structure of the organism's type IV collagen and fibrillar collagens. This review will focus on Hydra ECM in regard to: 1) its general structure, 2) its molecular composition, 3) the biophysical basis for the flexible nature of Hydra's ECM, 4) the relationship of the biogenesis of Hydra ECM to regeneration of body form, and 5) the functional role of Hydra ECM during pattern formation and cell differentiation.
Stark, Brigitte; Debbage, Paul; Andreae, Fritz; Mosgoeller, Wilhelm; Prassl, Ruth
2007-03-01
A polymer-grafted liposomal formulation that has the potential to be developed for aerosolic pulmonary delivery of vasoactive intestinal peptide (VIP), a potent vasodilatory neuropeptide, is described. As VIP is prone to rapid proteolytic degradation in the microenvironment of the lung a proper delivery system is required to increase the half-life and bioavailability of the peptide. Here we investigate structural parameters of unilamellar liposomes composed of palmitoyl-oleoyl-phosphatidylcholine, lyso-stearyl-phosphatidylglycerol and distearyl-phosphatidyl-ethanolamine covalently linked to polyethylene glycol 2000, and report on VIP-lipid interaction mechanisms. We found that the cationic VIP is efficiently entrapped by the negatively charged spherical liposomes and becomes converted to an amphipathic alpha-helix. By fluorescence spectroscopy using single Trp-modified VIP we could show that VIP is closely associated to the membrane. Our data suggest that the N-terminal random-coiled domain is embedded in the interfacial headgroup region of the phospholipid bilayer. By doing so, neither the bilayer thickness of the lipid membrane nor the mobility of the phospholipid acyl chains are affected as shown by small angle X-ray scattering and electron spin resonance spectroscopy. Finally, in an ex vivo lung arterial model system we found that liposomal-associated VIP is recognized by its receptors to induce vasodilatory effects with comparable high relaxation efficiency as free VIP but with a significantly retarded dilatation kinetics. In conclusion, we have designed and characterized a liposomal formulation that is qualified to entrap biologically active VIP and displays structural features to be considered for delivery of VIP to the lung.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleveland, Thomas E.; He, Wei; Evans, Angela C.
Nanolipoprotein particles (NLPs), composed of membrane scaffold proteins and lipids, have been used to support membrane proteins in a native-like bilayer environment for biochemical and structural studies. Traditionally, these NLPs have been prepared by the controlled removal of detergent from a detergent-solubilized protein-lipid mixture. Recently, an alternative method has been developed using direct cell-free expression of the membrane scaffold protein in the presence of preformed lipid vesicles, which spontaneously produces NLPs without the need for detergent at any stage. Using SANS/SAXS, we show here that NLPs produced by this cell-free expression method are structurally indistinguishable from those produced using detergentmore » removal methodologies. This further supports the utility of single step cell-free methods for the production of lipid binding proteins. Lastly, in addition, detailed structural information describing these NLPs can be obtained by fitting a capped core-shell cylinder type model to all SANS/SAXS data simultaneously.« less
Cleveland, Thomas E.; He, Wei; Evans, Angela C.; ...
2018-02-13
Nanolipoprotein particles (NLPs), composed of membrane scaffold proteins and lipids, have been used to support membrane proteins in a native-like bilayer environment for biochemical and structural studies. Traditionally, these NLPs have been prepared by the controlled removal of detergent from a detergent-solubilized protein-lipid mixture. Recently, an alternative method has been developed using direct cell-free expression of the membrane scaffold protein in the presence of preformed lipid vesicles, which spontaneously produces NLPs without the need for detergent at any stage. Using SANS/SAXS, we show here that NLPs produced by this cell-free expression method are structurally indistinguishable from those produced using detergentmore » removal methodologies. This further supports the utility of single step cell-free methods for the production of lipid binding proteins. Lastly, in addition, detailed structural information describing these NLPs can be obtained by fitting a capped core-shell cylinder type model to all SANS/SAXS data simultaneously.« less
Pan, Jianjun; Cheng, Xiaolin; Sharp, Melissa; ...
2014-10-29
We report that the detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density.
López Cascales, J J; Otero, T F; Fernandez Romero, A J; Camacho, L
2006-06-20
Understanding the lipid phase transition of lipid bilayers is of great interest from biophysical, physicochemical, and technological points of view. With the aim of elucidating the structural changes that take place in a DPPC phospholipid bilayer induced by an external isotropic surface pressure, five computer simulations were carried out in a range from 0.1 to 40 mN/m. Molecular dynamics simulations provided insight into the structural changes that took place in the lipid structure. It was seen that low pressures ranging from 0.1 to 1 mN/m had hardly any effect on the structure, electrical properties, or hydration of the lipid bilayer. However, for pressures above 40 mN/m, there was a sharp change in the lipid-lipid interactions, hydrocarbon lipid fluidity, and electrostatic potential, corresponding to the mesomorphic transition from a liquid crystalline state (L(alpha)) to its gel state (P'(beta)). The head lipid orientation remained almost unaltered, parallel to the lipid layer, as the surface pressure was increased, although a noticeable change in its angular distribution function was evident with the phase transition.
Membrane architectures for ion-channel switch-based electrochemical biosensors
Sansinena, Jose-Maria; Redondo, Antonio; Swanson, Basil I.; Yee, Chanel Kitmon; Sapuri/Butti, Annapoorna R.; Parikh, Atul N.; Yang, Calvin
2008-10-28
The present invention is directed to a process of forming a bilayer lipid membrane structure by depositing an organic layer having a defined surface area onto an electrically conductive substrate, removing portions of said organic layer upon said electrically conductive substrate whereby selected portions of said organic layer are removed to form defined voids within said defined surface area of said organic layer and defined islands of organic layer upon said electrically conductive substrate, and, depositing a bilayer lipid membrane over the defined voids and defined islands of organic layer upon said substrate whereby aqueous reservoirs are formed between said electrically conductive substrate and said bilayer lipid membrane, said bilayer lipid membrane characterized as spanning across the defined voids between said defined islands. A lipid membrane structure is also described together with an array of such lipid membrane structure.
Lipopolysaccharide Membrane Building and Simulation
Jo, Sunhwan; Wu, Emilia L.; Stuhlsatz, Danielle; Klauda, Jeffery B.; Widmalm, Göran; Im, Wonpil
2015-01-01
Summary While membrane simulations are widely employed to study the structure and dynamics of various lipid bilayers and membrane proteins in the bilayers, simulations of lipopolysaccharides (LPS) in membrane environments have been limited due to its structural complexity, difficulties in building LPS-membrane systems, and lack of appropriate molecular force field. In this work, as a first step to extend CHARMM-GUI Membrane Builder to incorporate LPS molecules and to explore their structures and dynamics in membrane environments using molecular dynamics simulations, we describe step-by-step procedures to build LPS bilayer systems using CHARMM and the recently developed CHARMM carbohydrate and lipid force fields. Such procedures are illustrated by building various bilayers of Escherichia coli O6 LPS and their preliminary simulation results are given in terms of per-LPS area and density distributions of various components along the membrane normal. PMID:25753722
Theoretical investigation of structural and optical properties of semi-fluorinated bilayer graphene
NASA Astrophysics Data System (ADS)
Xiao-Jiao, San; Bai, Han; Jing-Geng, Zhao
2016-03-01
We have studied the structural and optical properties of semi-fluorinated bilayer graphene using density functional theory. When the interlayer distance is 1.62 Å, the two graphene layers in AA stacking can form strong chemical bonds. Under an in-plane stress of 6.8 GPa, this semi-fluorinated bilayer graphene becomes the energy minimum. Our calculations indicate that the semi-fluorinated bilayer graphene with the AA stacking sequence and rectangular fluorinated configuration is a nonmagnetic semiconductor (direct gap of 3.46 eV). The electronic behavior at the vicinity of the Fermi level is mainly contributed by the p electrons of carbon atoms forming C=C double bonds. We compare the optical properties of the semi-fluorinated bilayer graphene with those of bilayer graphene stacked in the AA sequence and find that the semi-fluorinated bilayer graphene is anisotropic for the polarization vector on the basal plane of graphene and a red shift occurs in the [010] polarization, which makes the peak at the low-frequency region located within visible light. This investigation is useful to design polarization-dependence optoelectronic devices. Project supported by the Program of Educational Commission of Heilongjiang Province, China (Grant No. 12541131).
Ultra-high vacuum surface analysis study of rhodopsin incorporation into supported lipid bilayers.
Michel, Roger; Subramaniam, Varuni; McArthur, Sally L; Bondurant, Bruce; D'Ambruoso, Gemma D; Hall, Henry K; Brown, Michael F; Ross, Eric E; Saavedra, S Scott; Castner, David G
2008-05-06
Planar supported lipid bilayers that are stable under ambient atmospheric and ultra-high-vacuum conditions were prepared by cross-linking polymerization of bis-sorbylphosphatidylcholine (bis-SorbPC). X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to investigate bilayers that were cross-linked using either redox-initiated radical polymerization or ultraviolet photopolymerization. The redox method yields a more structurally intact bilayer; however, the UV method is more compatible with incorporation of transmembrane proteins. UV polymerization was therefore used to prepare cross-linked bilayers with incorporated bovine rhodopsin, a light-activated, G-protein-coupled receptor (GPCR). A previous study (Subramaniam, V.; Alves, I. D.; Salgado, G. F. J.; Lau, P. W.; Wysocki, R. J.; Salamon, Z.; Tollin, G.; Hruby, V. J.; Brown, M. F.; Saavedra, S. S. J. Am. Chem. Soc. 2005, 127, 5320-5321) showed that rhodopsin retains photoactivity after incorporation into UV-polymerized bis-SorbPC, but did not address how the protein is associated with the bilayer. In this study, we show that rhodopsin is retained in supported bilayers of poly(bis-SorbPC) under ultra-high-vacuum conditions, on the basis of the increase in the XPS nitrogen concentration and the presence of characteristic amino acid peaks in the ToF-SIMS data. Angle-resolved XPS data show that the protein is inserted into the bilayer, rather than adsorbed on the bilayer surface. This is the first study to demonstrate the use of ultra-high-vacuum techniques for structural studies of supported proteolipid bilayers.
A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure
NASA Astrophysics Data System (ADS)
Lu, Bin; Wang, Haitao; Shen, Jun; Yang, Jun; Mao, Hongyan; Xia, Liangping; Zhang, Weiguo; Wang, Guodong; Peng, Xiao-Yu; Wang, Deqiang
2016-02-01
We designed a new style of broadband terahertz (THz) polarizer with double-bilayer wire grid structure by fabricating them on both sides of silicon substrate. This THz polarizer shows a high average extinction ratio of 60dB in 0.5 to 2.0 THz frequency range and the maximum of 87 dB at 1.06 THz, which is much higher than that of conventional monolayer wire grid polarizers and single-bilayer wire grid ones.
Stability of model membranes in extreme environments.
Namani, Trishool; Deamer, David W
2008-08-01
The first forms of cellular life required a source of amphiphilic compounds capable of assembling into stable boundary structures. Membranes composed of fatty acids have been proposed as model systems of primitive membranes, but their bilayer structure is stable only within a narrow pH range and low ionic strength. They are particularly sensitive to aggregating effects of divalent cations (Mg+2, Ca+2, Fe+2) that would be present in Archaean sea water. Here we report that mixtures of alkyl amines and fatty acids form vesicles at strongly basic and acidic pH ranges which are resistant to the effects of divalent cations up to 0.1 M. Vesicles formed by mixtures of decylamine and decanoic acid (1:1 mole ratio) are relatively permeable to pyranine, a fluorescent anionic dye, but permeability could be reduced by adding 2 mol% of a polycyclic aromatic hydrocarbon such as pyrene. Permeability to the dye was also reduced by increasing the chain length of the amphiphiles. For instance, 1:1 mole ratio mixtures of dodecylamine and dodecanoic acid were able to retain pyranine dye during and following gel filtration. We conclude that primitive cell membranes were likely to be composed of mixtures of amphiphilic and hydrophobic molecules that manifested increased stability over pure fatty acid membranes.
Method for obtaining structure and interactions from oriented lipid bilayers
Lyatskaya, Yulia; Liu, Yufeng; Tristram-Nagle, Stephanie; Katsaras, John; Nagle, John F.
2009-01-01
Precise calculations are made of the scattering intensity I(q) from an oriented stack of lipid bilayers using a realistic model of fluctuations. The quantities of interest include the bilayer bending modulus Kc , the interbilayer interaction modulus B, and bilayer structure through the form factor F(qz). It is shown how Kc and B may be obtained from data at large qz where fluctuations dominate. Good estimates of F(qz) can be made over wide ranges of qz by using I(q) in q regions away from the peaks and for qr≠0 where details of the scattering domains play little role. Rough estimates of domain sizes can also be made from smaller qz data. Results are presented for data taken on fully hydrated, oriented DOPC bilayers in the Lα phase. These results illustrate the advantages of oriented samples compared to powder samples. PMID:11304287
Entanglement entropy and entanglement spectrum of Bi1-xSbx (111) bilayers.
Brzezińska, Marta; Bieniek, Maciej; Woźniak, Tomasz; Potasz, Paweł; Wójs, Arkadiusz
2018-02-14
We study topological properties of Bi$_{1-x}$Sb$_{x}$ bilayers in the (111) plane using entanglement measures. Electronic structures are investigated within multi-orbital tight-binding model and structural stability is confirmed through first-principles calculations. Topologically non-trivial nature of bismuth bilayer is proved by the presence of spectral flow in the entanglement spectrum. We consider topological phase transitions driven by a composition change x, an applied external electric field in Bi bilayer and strain in Sb bilayer. Composition- and strain-induced phase transitions reveal a finite discontinuity in the entanglement entropy. This quantity remains a continuous function of the electric field strength, but shows a finite discontinuity in the first derivative. We relate the difference in behavior of the entanglement entropy to the breaking of inversion symmetry in the last case. © 2018 IOP Publishing Ltd.
Entanglement entropy and entanglement spectrum of Bi1-x Sb x (1 1 1) bilayers.
Brzezińska, Marta; Bieniek, Maciej; Woźniak, Tomasz; Potasz, Paweł; Wójs, Arkadiusz
2018-02-28
We study topological properties of Bi 1-x Sb x bilayers in the (1 1 1) plane using entanglement measures. Electronic structures are investigated within multi-orbital tight-binding model and structural stability is confirmed through first-principles calculations. The topologically non-trivial nature of the bismuth bilayer is proved by the presence of spectral flow in the entanglement spectrum. We consider topological phase transitions driven by a composition change x, an applied external electric field in Bi bilayers and strain in Sb bilayers. Composition- and strain-induced phase transitions reveal a finite discontinuity in the entanglement entropy. This quantity remains a continuous function of the electric field strength, but shows a finite discontinuity in the first derivative. We relate the difference in behavior of the entanglement entropy to the breaking of inversion symmetry in the last case.
NASA Astrophysics Data System (ADS)
Ade, Ramesh; Sambasiva, V.; Kolte, Jayant; Karthik, T.; Kulkarni, Ajit R.; Venkataramani, N.
2018-03-01
In this work, room temperature magnetoelectric (ME) properties of 0.50Pb(Ni1/3Nb2/3)O3-0.35PbTiO3-0.15PbZrO3 (PNNZT)/NiFe2O4 (NFO) 2-2 bilayer thin films grown on Pt/Ti/SiO2/Si substrate, using pulsed laser deposition technique, are reported. Structural studies confirm single phase PNNZT/NFO 2-2 bilayer structure formation. PNNZT/NFO 2-2 bilayer thin film shows a maximum ME voltage coefficient (α E ) of ~0.70 V cm-1. Oe-1 at a frequency of 1 kHz. The present study reveals that PNNZT/NFO bilayer thin film can be a potential candidate for technological applications.
NASA Astrophysics Data System (ADS)
Chou, George; Vaughn, Mark; Cheng, K.
2011-10-01
Multicomponent lipid bilayers represent an important model system for studying cell membranes. At present, an ordered multicomponent phospholipid/cholesterol bilayer system involving charged lipid is still not available. Using a lipid superlattice (SL) model, a 13 x 15 x 15 nm^3 ternary phosphatidylcholine/phosphatidylserine/cholesterol bilayer system in water with simultaneous headgroup SL and acyl chain SL at different depths, or epitaxial SL, of the bilayer has been designed with atomistic detail. The arrangements of this epitaxial SL system were optimized by only two molecular parameters, lattice space and rotational angle of the lipids. Using atomistic MD simulations, we demonstrated the stability of the ordered structures for more than 100 ns. A positional restrained system was also used as a control. This system will provide new insights into understanding the nanodomain structures of cell membranes at the molecular level.
Structural Degradation and Swelling of Lipid Bilayer under the Action of Benzene.
Odinokov, Alexey; Ostroumov, Denis
2015-12-03
Benzene and other nonpolar organic solvents can accumulate in the lipid bilayer of cellular membranes. Their effect on the membrane structure and fluidity determines their toxic properties and antibiotic action of the organic solvents on the bacteria. We performed molecular dynamics simulations of the interaction of benzene with the dimyristoylphosphatidylcholine (DMPC) bilayer. An increase in the membrane surface area and fluidity was clearly detected. Changes in the acyl chain ordering, tilt angle, and overall bilayer thickness were, however, much less marked. The dependence of all computed quantities on the benzene content showed two regimes separated by the solubility limit of benzene in water. When the amount of benzene exceeded this point, a layer of almost pure benzene started to grow between the membrane leaflets. This process corresponds to the nucleation of a new phase and provides a molecular mechanism for the mechanical rupture of the bilayer under the action of nonpolar compounds.
NASA Astrophysics Data System (ADS)
Vishwanath, Sujaya Kumar; Woo, Hyunsuk; Jeon, Sanghun
2018-06-01
Atomic switches are considered to be building blocks for future non-volatile data storage and internet of things. However, obtaining device structures capable of ultrahigh density data storage, high endurance, and long data retention, and more importantly, understanding the switching mechanisms are still a challenge for atomic switches. Here, we achieved improved resistive switching performance in a bilayer structure containing aluminum oxide, with an oxygen-deficient oxide as the top switching layer and stoichiometric oxide as the bottom switching layer, using atomic layer deposition. This bilayer device showed a high on/off ratio (105) with better endurance (∼2000 cycles) and longer data retention (104 s) than single-oxide layers. In addition, depending on the compliance current, the bilayer device could be operated in four different resistance states. Furthermore, the depth profiles of the hourglass-shaped conductive filament of the bilayer device was observed by conductive atomic force microscopy.
Entanglement entropy and entanglement spectrum of Bi1-x Sb x (1 1 1) bilayers
NASA Astrophysics Data System (ADS)
Brzezińska, Marta; Bieniek, Maciej; Woźniak, Tomasz; Potasz, Paweł; Wójs, Arkadiusz
2018-03-01
We study topological properties of Bi1-x Sb x bilayers in the (1 1 1) plane using entanglement measures. Electronic structures are investigated within multi-orbital tight-binding model and structural stability is confirmed through first-principles calculations. The topologically non-trivial nature of the bismuth bilayer is proved by the presence of spectral flow in the entanglement spectrum. We consider topological phase transitions driven by a composition change x, an applied external electric field in Bi bilayers and strain in Sb bilayers. Composition- and strain-induced phase transitions reveal a finite discontinuity in the entanglement entropy. This quantity remains a continuous function of the electric field strength, but shows a finite discontinuity in the first derivative. We relate the difference in behavior of the entanglement entropy to the breaking of inversion symmetry in the last case.
Topological magnetic phase in LaMnO3 (111) bilayer
NASA Astrophysics Data System (ADS)
Weng, Yakui; Huang, Xin; Yao, Yugui; Dong, Shuai
2015-11-01
Candidates for correlated topological insulators, originated from the spin-orbit coupling as well as the Hubbard-type correlation, are expected in the (111) bilayer of perovskite-structural transition-metal oxides. Based on the first-principles calculation and tight-binding model, the electronic structure of a LaMnO3 (111) bilayer sandwiched in LaScO3 barriers has been investigated. For the ideal undistorted perovskite structure, the Fermi energy of LaMnO3 (111) bilayer just stays at the Dirac point, rendering a semimetal (graphenelike) which is also a half metal [different from graphene or the previously studied LaNiO3 (111) bilayer]. The Dirac cone can be opened by the spin-orbit coupling, giving rise to nontrivial topological bands corresponding to the (quantized) anomalous Hall effect. For the realistic orthorhombic distorted lattice, the Dirac point moves with increasing Hubbard repulsion (or equivalent Jahn-Teller distortion). Finally, a Mott gap opens, establishing a phase boundary between the Mott insulator and topological magnetic insulator. Our calculation finds that the gap opened by spin-orbit coupling is much smaller in the orthorhombic distorted lattice (˜1.7 meV) than the undistorted one (˜11 meV). Therefore, to suppress the lattice distortion can be helpful to enhance the robustness of the topological phase in perovskite (111) bilayers.
Toxins and antimicrobial peptides: interactions with membranes
NASA Astrophysics Data System (ADS)
Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.
2009-08-01
The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of <200-nm bilayer vesicles composed of anionic and neutral lipids as well as cholesterol. Vesicle disruption, or peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.
Perico, Angelo; Manning, Gerald S
2014-11-01
We formulate and analyze a minimal model, based on condensation theory, of the lamellar cationic lipid (CL)-DNA complex of alternately charged lipid bilayers and DNA monolayers in a salt solution. Each lipid bilayer, composed by a random mixture of cationic and neutral lipids, is assumed to be a rigid uniformly charged plane. Each DNA monolayer, located between two lipid bilayers, is formed by the same number of parallel DNAs with a uniform separation distance. For the electrostatic calculation, the model lipoplex is collapsed to a single plane with charge density equal to the net lipid and DNA charge. The free energy difference between the lamellar lipoplex and a reference state of the same number of free lipid bilayers and free DNAs, is calculated as a function of the fraction of CLs, of the ratio of the number of CL charges to the number of negative charges of the DNA phosphates, and of the total number of planes. At the isoelectric point the free energy difference is minimal. The complex formation, already favoured by the decrease of the electrostatic charging free energy, is driven further by the free energy gain due to the release of counterions from the DNAs and from the lipid bilayers, if strongly charged. This minimal model compares well with experiment for lipids having a strong preference for planar geometry and with major features of more detailed models of the lipoplex. © 2014 Wiley Periodicals, Inc.
Lewis, Ruthven N A H; Kiricsi, Monika; Prenner, Elmar J; Hodges, Robert S; McElhaney, Ronald N
2003-01-21
Cyclo[VKLdKVdYPLKVKLdYP] (GS14dK(4)), a synthetic tetradecameric ring-size analogue of the naturally occurring antimicrobial peptide gramicidin S (GS), retains the strong antimicrobial activity of GS but is 15-20 times less hemolytic. To characterize its interaction with lipid membranes and to understand the molecular basis of its capacity to lyse bacterial cells, in preference to erythrocytes, we have investigated the interactions of GS14dK(4) with detergent micelles and with lipid bilayer model membranes by Fourier transform infrared spectroscopy and compared our results with those of a similar study of GS [Lewis, R. N. A. H., et al. (1999) Biochemistry 38, 15193-15203]. In both aqueous and organic solvent solutions, GS14dK(4) adopts a beta-sheet conformation that is somewhat distorted and more sensitive to the polarity of its environment than GS. Like GS, GS14dK(4) is completely or partially excluded from gel-state lipid bilayers but interacts strongly with liquid-crystalline lipid bilayers and detergent micelle, and interacts more strongly with more fluid liquid-crystalline lipid systems. However, its interactions are more strongly influenced by membrane lipid order and fluidity, and unlike GS, it is essentially excluded from cholesterol-containing phospholipid bilayers. Also, GS14dK(4) is excluded from cationic lipid bilayers, but partitions more strongly and/or penetrates more deeply into anionic lipid bilayers than into those composed of either zwitterionic or nonionic lipids. Anionic lipids also facilitate GS14dK(4) interactions with multicomponent lipid bilayers which are predominantly zwitterionic or nonionic. Although GS14dK(4) generally penetrates and/or partitions into zwitterionic or uncharged lipid bilayers less strongly than does GS, its greater size and altered distribution of positive charges make it intrinsically more perturbing with regard to membrane organization once associated with lipid bilayers. This fact, combined with its relatively strong interactions with anionic phospholipids, may explain why GS14dK(4) retains relatively high antimicrobial activity. However, its low hemolytic activity is probably largely attributable to its low propensity to penetrate and/or partition into cholesterol-containing zwitterionic lipid membranes.
Benz, Ryan W.; Nanda, Hirsh; Castro-Román, Francisco; White, Stephen H.; Tobias, Douglas J.
2006-01-01
We have recently shown that current molecular dynamics (MD) atomic force fields are not yet able to produce lipid bilayer structures that agree with experimentally-determined structures within experimental errors. Because of the many advantages offered by experimentally validated simulations, we have developed a novel restraint method for membrane MD simulations that uses experimental diffraction data. The restraints, introduced into the MD force field, act upon specified groups of atoms to restrain their mean positions and widths to values determined experimentally. The method was first tested using a simple liquid argon system, and then applied to a neat dioleoylphosphatidylcholine (DOPC) bilayer at 66% relative humidity and to the same bilayer containing the peptide melittin. Application of experiment-based restraints to the transbilayer double-bond and water distributions of neat DOPC bilayers led to distributions that agreed with the experimental values. Based upon the experimental structure, the restraints improved the simulated structure in some regions while introducing larger differences in others, as might be expected from imperfect force fields. For the DOPC-melittin system, the experimental transbilayer distribution of melittin was used as a restraint. The addition of the peptide caused perturbations of the simulated bilayer structure, but which were larger than observed experimentally. The melittin distribution of the simulation could be fit accurately to a Gaussian with parameters close to the observed ones, indicating that the restraints can be used to produce an ensemble of membrane-bound peptide conformations that are consistent with experiments. Such ensembles pave the way for understanding peptide-bilayer interactions at the atomic level. PMID:16950837
NASA Astrophysics Data System (ADS)
Wang, Yue'e.; Li, Zhi; Hu, Fangrong
2018-01-01
We designed a bilayer-double-H-metamaterials (BDHM) composed of two layers of metal and two layers of dielectric to analog a spectral response of electromagnetically induced transparency (EIT) at terahertz frequency. By changing the incident angle, the BDHM exhibits an EIT-like spectral response. The tunable spectral performances and modulation mechanism of the transparent peak are theoretically investigated using full-wave electromagnetic simulation software. The physical mechanism of the EIT-like effect is based on the constructive and destructive interference between the induced electrical dipoles. Our work provides a new way to realize the EIT-like effect only by changing the incident angles of the metamaterials. The potential applications include tunable filters, sensors, attenuators, switches, and so on.
Brazzelli, V; Berardesca, E; Rona, C; Borroni, G
2008-01-01
The purpose of this placebo-controlled right-left intra-individual pre/post comparison study was to evaluate the efficacy of a new bi-layer composite membrane, composed of a layer of knitted cotton and a layer of semi-permeable polyurethane, developed in order to improve skin hydration. Eighteen healthy subjects entered the study. A T-shirt, dedicated to this study, was prepared and it was worn for 8 h, mimicking overnight wearing. Before and at the removal of the T-shirt an objective quantification of skin parameters was performed by measuring hydration, transepidermal water loss (TEWL) and skin surface pH, bilaterally, on the inner side of the forearm. Measurements were performed both at the interface between the skin and the bi-layer composite membrane or cotton and on the outer side of the membrane (to assess permeation of water and occlusive properties of the product) with and without a single application of a moisturizer. A statistically significant improvement of skin hydration, recorded on the stratum corneum underneath the bi-layer membrane versus cotton alone, was measured both with (p < 0.0001) and without application of the moisturizer (p < 0.002). TEWL was shown to decrease significantly on the side of the bi-layer membrane, if compared with cotton (p < 0.008), after application of the moisturizer. TEWL through the membrane showed no significant differences as compared to placebo, confirming the permeability of the fabric. Our data suggest that this bi-layer composite membrane can promote the hydration process of the stratum corneum, increasing the hydrating properties of the moisturizer agent. (c) 2007 S. Karger AG, Basel
Quantifying the bending of bilayer temperature-sensitive hydrogels
NASA Astrophysics Data System (ADS)
Dong, Chenling; Chen, Bin
2017-04-01
Stimuli-responsive hydrogels can serve as manipulators, including grippers, sensors, etc., where structures can undergo significant bending. Here, a finite-deformation theory is developed to quantify the evolution of the curvature of bilayer temperature-sensitive hydrogels when subjected to a temperature change. Analysis of the theory indicates that there is an optimal thickness ratio to acquire the largest curvature in the bilayer and also suggests that the sign or the magnitude of the curvature can be significantly affected by pre-stretches or small pores in the bilayer. This study may provide important guidelines in fabricating temperature-responsive bilayers with desirable mechanical performance.
Ge, Chenhao; Orosz, Kristina S.; Armstrong, Neal R.; Saavedra, S. Scott
2011-01-01
Facilitated ion transport across an artificial lipid bilayer coupled to a solid substrate is a function common to several types of bioelectronic devices based on supported membranes, including biomimetic fuel cells and ion channel biosensors. Described here is fabrication of a pH-sensitive transducer composed of a porous sol-gel layer derivatized with poly(aniline) (PANI) nanowires grown from an underlying planar indium-tin oxide (ITO) electrode. The upper sol-gel surface is hydrophilic, smooth, and compatible with deposition of a planar supported lipid bilayer (PSLB) formed via vesicle fusion. Conducting tip AFM was used to show that the PANI wires are connected to the ITO, which convert this electrode into a potentiometric pH sensor. The response to changes in the pH of the buffer contacting the PANI nanowire/sol-gel/ITO electrode is blocked by the very low ion permeability of the overlying, fluid PSLB. The feasibility of using this assembly to monitor facilitated proton transport across the PSLB was demonstrated by doping the membrane with lipophilic ionophores that respond to a transmembrane pH gradient, which produced an apparent proton permeability several orders of magnitude greater than values measured for undoped lipid bilayers. PMID:21707069
Functional liposomes and supported lipid bilayers: towards the complexity of biological archetypes.
Berti, Debora; Caminati, Gabriella; Baglioni, Piero
2011-05-21
This perspective paper provides some illustrative examples on the interplay between information gathered on planar supported lipid bilayers (SLB) and unilamellar lipid vesicles (ULV) to get an integrated description of phenomena occurring at the nanoscale that involve locally bilayered structures. Similarities and differences are underlined and critically compared in terms of biomimetic fidelity and instrumental accessibility to structural and dynamical parameters, focusing on some recent reports that either explicitly address this comparison or introducing some studies that separately investigate the same process in SLB and lipid vesicles. Despite the structural similarity on the nanoscale, the different topology implies radically different characterization techniques that have evolved in sectorial and separated approaches. The quest for increasing levels of compositional complexity for bilayered systems should not result in a loss of structural and dynamical control: this is the central challenge of future research in this area, where the integrated approach highlighted in this contribution would enable improved levels of understanding. © The Owner Societies 2011
NASA Astrophysics Data System (ADS)
Ranjbar, R.; Suzuki, K. Z.; Sugihara, A.; Ando, Y.; Miyazaki, T.; Mizukami, S.
2017-07-01
The thickness dependencies of the structural and magnetic properties for bilayers of cubic Co-based Heusler alloys (CCHAs: Co2FeAl (CFA), Co2FeSi (CFS), Co2MnAl (CMA), and Co2MnSi (CMS)) and D022-MnGa were investigated. Epitaxy of the B2 structure of CCHAs on a MnGa film was achieved; the smallest thickness with the B2 structure was found for 3-nm-thick CMS and CFS. The interfacial exchange coupling (Jex) was antiferromagnetic (AFM) for all of the CCHAs/MnGa bilayers except for unannealed CFA/MnGa samples. A critical thickness (tcrit) at which perpendicular magnetization appears of approximately 4-10 nm for the CMA/MnGa and CMS/MnGa bilayers was observed, whereas this thickness was 1-3 nm for the CFA/MnGa and CFS/MnGa films. The critical thickness for different CCHAs materials is discussed in terms of saturation magnetization (Ms) and the Jex .
Topological Valley Transport at Bilayer Graphene Domain Walls
2015-04-22
2015. Published online 22 April 2015. 1. McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene . Phys. Rev. B 74, 161403 (2006...6. Yao, W., Yang, S. A. & Niu, Q. Edge states in graphene : from gapped flat- band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009). 7...induced in bilayer graphene by an external electric field1–5, and such gapped bilayer graphene is predicted to be a topo- logical insulating phase
Mechanical properties of drug loaded diblock copolymer bilayers: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Grillo, Damián A.; Albano, Juan M. R.; Mocskos, Esteban E.; Facelli, Julio C.; Pickholz, Mónica; Ferraro, Marta B.
2018-06-01
In this work, we present results of coarse-grained simulations to study the encapsulation of prilocaine (PLC), both neutral and protonated, on copolymer bilayers through molecular dynamics simulations. Using a previously validated membrane model, we have simulated loaded bilayers at different drug concentrations and at low (protonated PLC) and high (neutral PLC) pH levels. We have characterized key structural parameters of the loaded bilayers in order to understand the effects of encapsulation of PLC on the bilayer structure and mechanical properties. Neutral PLC was encapsulated in the hydrophobic region leading to a thickness increase, while the protonated species partitioned between the water phase and the poly(ethylene oxide)-poly(butadiene) (PBD) interface, relaxing the PBD region and leading to a decrease in the thickness. The tangential pressures of the studied systems were calculated, and their components were decomposed in order to gain insights on their compensation. In all cases, it is observed that the loading of the membrane does not significantly decrease the stability of the bilayer, indicating that the system could be used for drug delivery.
Mechanical properties of drug loaded diblock copolymer bilayers: A molecular dynamics study.
Grillo, Damián A; Albano, Juan M R; Mocskos, Esteban E; Facelli, Julio C; Pickholz, Mónica; Ferraro, Marta B
2018-06-07
In this work, we present results of coarse-grained simulations to study the encapsulation of prilocaine (PLC), both neutral and protonated, on copolymer bilayers through molecular dynamics simulations. Using a previously validated membrane model, we have simulated loaded bilayers at different drug concentrations and at low (protonated PLC) and high (neutral PLC) pH levels. We have characterized key structural parameters of the loaded bilayers in order to understand the effects of encapsulation of PLC on the bilayer structure and mechanical properties. Neutral PLC was encapsulated in the hydrophobic region leading to a thickness increase, while the protonated species partitioned between the water phase and the poly(ethylene oxide)-poly(butadiene) (PBD) interface, relaxing the PBD region and leading to a decrease in the thickness. The tangential pressures of the studied systems were calculated, and their components were decomposed in order to gain insights on their compensation. In all cases, it is observed that the loading of the membrane does not significantly decrease the stability of the bilayer, indicating that the system could be used for drug delivery.
Calcium and zinc differentially affect the structure of lipid membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kučerka, Norbert; Dushanov, Ermuhammad; Kholmurodov, Kholmirzo T.
Interactions of calcium (Ca 2+) and zinc (Zn 2+) cations with biomimetic membranes made of dipalmitoylphosphatidylcholine (DPPC) were studied by small angle neutron diffraction (SAND). Experiments show that the structure of these lipid bilayers is differentially affected by the two divalent cations. Initially, both Ca 2+ and Zn 2+ cause DPPC bilayers to thicken, while further increases in Ca 2+ concentration result in the bilayer thinning, eventually reverting to having the same thickness as pure DPPC. The binding of Zn 2+, on the other hand, causes the bilayers to swell to a maximum thickness, and the addition of more Znmore » 2+ does not result in a further thickening of the membrane. Agreement between our results obtained using oriented planar membranes and those from vesicular samples implies that the effect of cations on bilayer thickness is the result of electrostatic interactions, rather than geometrical constraints due to bilayer curvature. This notion is further reinforced by MD simulations. Lastly, the radial distribution functions reveal a strong interaction between Ca 2+ and the phosphate oxygens, while Zn 2+ shows a much weaker binding specificity.« less
Calcium and zinc differentially affect the structure of lipid membranes
Kučerka, Norbert; Dushanov, Ermuhammad; Kholmurodov, Kholmirzo T.; ...
2017-03-09
Interactions of calcium (Ca 2+) and zinc (Zn 2+) cations with biomimetic membranes made of dipalmitoylphosphatidylcholine (DPPC) were studied by small angle neutron diffraction (SAND). Experiments show that the structure of these lipid bilayers is differentially affected by the two divalent cations. Initially, both Ca 2+ and Zn 2+ cause DPPC bilayers to thicken, while further increases in Ca 2+ concentration result in the bilayer thinning, eventually reverting to having the same thickness as pure DPPC. The binding of Zn 2+, on the other hand, causes the bilayers to swell to a maximum thickness, and the addition of more Znmore » 2+ does not result in a further thickening of the membrane. Agreement between our results obtained using oriented planar membranes and those from vesicular samples implies that the effect of cations on bilayer thickness is the result of electrostatic interactions, rather than geometrical constraints due to bilayer curvature. This notion is further reinforced by MD simulations. Lastly, the radial distribution functions reveal a strong interaction between Ca 2+ and the phosphate oxygens, while Zn 2+ shows a much weaker binding specificity.« less
Combined NMR and EPR Spectroscopy to Determine Structures of Viral Fusion Domains in Membranes
Tamm, Lukas K.; Lai, Alex L.; Li, Yinling
2008-01-01
Methods are described to determine the structures of viral membrane fusion domains in detergent micelles by NMR and in lipid bilayers by site-directed spin labeling and EPR spectroscopy. Since in favorable cases, the lower-resolution spin label data obtained in lipid bilayers fully support the higher-resolution structures obtained by solution NMR, it is possible to graft the NMR structural coordinates into membranes using the EPR-derived distance restraints to the lipid bilayer. Electron paramagnetic dynamics and distance measurements in bilayers support conclusions drawn from NMR in detergent micelles. When these methods are applied to a structure determination of the influenza virus fusion domain and four point mutations with different functional phenotypes, it is evident that a fixed-angle boomerang structure with a glycine edge on the outside of the N-terminal arm is both necessary and sufficient to support membrane fusion. The human immunodeficiency virus fusion domain forms a straight helix with a flexible C-terminus. While EPR data for this fusion domain are not yet available, it is tentatively speculated that, because of its higher hydrophobicity, a critically tilted insertion may occur even in the absence of a kinked boomerang structure in this case. PMID:17963720
Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer.
Yan, Wei; He, Wen-Yu; Chu, Zhao-Dong; Liu, Mengxi; Meng, Lan; Dou, Rui-Fen; Zhang, Yanfeng; Liu, Zhongfan; Nie, Jia-Cai; He, Lin
2013-01-01
It is well established that strain and geometry could affect the band structure of graphene monolayer dramatically. Here we study the evolution of local electronic properties of a twisted graphene bilayer induced by a strain and a high curvature, which are found to strongly affect the local band structures of the twisted graphene bilayer. The energy difference of the two low-energy van Hove singularities decreases with increasing lattice deformation and the states condensed into well-defined pseudo-Landau levels, which mimic the quantization of massive chiral fermions in a magnetic field of about 100 T, along a graphene wrinkle. The joint effect of strain and out-of-plane distortion in the graphene wrinkle also results in a valley polarization with a significant gap. These results suggest that strained graphene bilayer could be an ideal platform to realize the high-temperature zero-field quantum valley Hall effect.
Polyunsaturated Fatty Acids in Lipid Bilayers and Tubules
NASA Astrophysics Data System (ADS)
Hirst, Linda S.; Yuan, Jing; Pramudya, Yohannes; Nguyen, Lam T.
2007-03-01
Omega-3 polyunsaturated fatty acids (PUFAs) are found in a variety of biological membranes and have been implicated with lipid raft formation and possible function, typical molecules include DHA (Docosahexanoic Acid) and AA (Alphalinoleic Acid) which have been the focus of considerable attention in recent years. We are interested in the phase behavior of these molecules in the lipid bilayer. The addition of lipid molecules with polyunsaturated chains has a clear effect on the fluidity and curvature of the membrane and we investigate the effects the addition of polyunsaturated lipids on bilayer structure and tubule formation. Self-assembled cylindrical lipid tubules have attracted considerable attention because of their interesting structures and potential technological applications. Using x-ray diffraction techniques, Atomic Force Microscopy and confocal fluorescence imaging, both symmetric and mixed chain lipids were incorporated into model membranes and the effects on bilayer structure and tubule formation investigated.
A Self-Folding Hydrogel In Vitro Model for Ductal Carcinoma
Kwag, Hye Rin; Serbo, Janna V.; Korangath, Preethi; Sukumar, Saraswati
2016-01-01
A significant challenge in oncology is the need to develop in vitro models that accurately mimic the complex microenvironment within and around normal and diseased tissues. Here, we describe a self-folding approach to create curved hydrogel microstructures that more accurately mimic the geometry of ducts and acini within the mammary glands, as compared to existing three-dimensional block-like models or flat dishes. The microstructures are composed of photopatterned bilayers of poly (ethylene glycol) diacrylate (PEGDA), a hydrogel widely used in tissue engineering. The PEGDA bilayers of dissimilar molecular weights spontaneously curve when released from the underlying substrate due to differential swelling ratios. The photopatterns can be altered via AutoCAD-designed photomasks so that a variety of ductal and acinar mimetic structures can be mass-produced. In addition, by co-polymerizing methacrylated gelatin (methagel) with PEGDA, microstructures with increased cell adherence are synthesized. Biocompatibility and versatility of our approach is highlighted by culturing either SUM159 cells, which were seeded postfabrication, or MDA-MB-231 cells, which were encapsulated in hydrogels; cell viability is verified over 9 and 15 days, respectively. We believe that self-folding processes and associated tubular, curved, and folded constructs like the ones demonstrated here can facilitate the design of more accurate in vitro models for investigating ductal carcinoma. PMID:26831041
A Self-Folding Hydrogel In Vitro Model for Ductal Carcinoma.
Kwag, Hye Rin; Serbo, Janna V; Korangath, Preethi; Sukumar, Saraswati; Romer, Lewis H; Gracias, David H
2016-04-01
A significant challenge in oncology is the need to develop in vitro models that accurately mimic the complex microenvironment within and around normal and diseased tissues. Here, we describe a self-folding approach to create curved hydrogel microstructures that more accurately mimic the geometry of ducts and acini within the mammary glands, as compared to existing three-dimensional block-like models or flat dishes. The microstructures are composed of photopatterned bilayers of poly (ethylene glycol) diacrylate (PEGDA), a hydrogel widely used in tissue engineering. The PEGDA bilayers of dissimilar molecular weights spontaneously curve when released from the underlying substrate due to differential swelling ratios. The photopatterns can be altered via AutoCAD-designed photomasks so that a variety of ductal and acinar mimetic structures can be mass-produced. In addition, by co-polymerizing methacrylated gelatin (methagel) with PEGDA, microstructures with increased cell adherence are synthesized. Biocompatibility and versatility of our approach is highlighted by culturing either SUM159 cells, which were seeded postfabrication, or MDA-MB-231 cells, which were encapsulated in hydrogels; cell viability is verified over 9 and 15 days, respectively. We believe that self-folding processes and associated tubular, curved, and folded constructs like the ones demonstrated here can facilitate the design of more accurate in vitro models for investigating ductal carcinoma.
Interactions of a hydrophobically modified polycation with zwitterionic lipid membranes.
Kepczynski, Mariusz; Jamróz, Dorota; Wytrwal, Magdalena; Bednar, Jan; Rzad, Ewa; Nowakowska, Maria
2012-01-10
The interactions between synthetic polycations and phospholipid bilayers play an important role in some biophysical applications such as gene delivery or antibacterial usage. Despite extensive investigation into the nature of these interactions, their physical and molecular bases remain poorly understood. In this Article, we present the results of our studies on the impact of a hydrophobically modified strong polycation on the properties of a zwitterionic bilayer used as a model of the mammalian cellular membrane. The study was carried out using a set of complementary experimental methods and molecular dynamic (MD) simulations. A new polycation, poly(allyl-N,N-dimethyl-N-hexylammonium chloride) (polymer 3), was synthesized, and its interactions with liposomes composed of 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) were examined using dynamic light scattering (DLS), zeta potential measurements, and cryo-transmission electron microscopy (cryo-TEM). Our results have shown that polymer 3 can efficiently associate with and insert into the POPC membrane. However, it does not change its lamellar structure, as was demonstrated by cryo-TEM. The influence of polymer 3 on the membrane functionality was studied by leakage experiments applying a fluorescence dye (calcein) encapsulated in the phospholipid vesicles. The MD simulations of model systems reveal that polymer 3 promotes formation of hydrophilic pores in the membrane, thus increasing considerably its permeability.
NASA Astrophysics Data System (ADS)
Kuć, Marta; Cieślik-Boczula, Katarzyna; Rospenk, Maria
2018-06-01
The influence of cholesterol on the structure of the model lipid bilayers treated with inhalation anesthetics (enflurane, isoflurane, sevoflurane and halothane) was investigated employing near-infrared (NIR) spectroscopy combined with the Principal Component Analysis (PCA). The conformational changes occurring in the hydrophobic area of the lipid bilayers were analyzed using the first overtones of symmetric (2νs) and antisymmetric (2νas) stretching vibrations of the CH2 groups of lipid aliphatic chains. The temperature values of chain-melting phase transition (Tm) of anesthetic-mixed dipalmitoylphosphatidylcholine (DPPC)/cholesterol and dipalmitoylphosphatidylglycerol (DPPG)/cholesterol membranes, which were obtained from the PCA analysis, were compared with cholesterol-free DPPC and DPPG bilayers mixed with inhalation anesthetics.
Chernozatonskii, Leonid A.; Demin, Viсtor A.; Bellucci, Stefano
2016-01-01
The latest achievements in 2-dimensional (2D) material research have shown the perspective use of sandwich structures in nanodevices. We demonstrate the following generation of bilayer materials for electronics and optoelectronics. The atomic structures, the stability and electronic properties of Moiré graphene (G)/h-BN bilayers with folded nanoholes have been investigated theoretically by ab-initio DFT method. These perforated bilayers with folded hole edges may present electronic properties different from the properties of both graphene and monolayer nanomesh structures. The closing of the edges is realized by C-B(N) bonds that form after folding the borders of the holes. Stable ≪round≫ and ≪triangle≫ holes organization are studied and compared with similar hole forms in single layer graphene. The electronic band structures of the considered G/BN nanomeshes reveal semiconducting or metallic characteristics depending on the sizes and edge terminations of the created holes. This investigation of the new types of G/BN nanostructures with folded edges might provide a directional guide for the future of this emerging area. PMID:27897237
NASA Astrophysics Data System (ADS)
Ukpong, A. M.; Chetty, N.
2012-05-01
The van der Waals interaction-corrected density functional theory is used in this study to investigate the formation, energetic stability, and inter-layer cohesion in bilayer hexagonal boronitrene. The effect of inter-layer separation on the electronic structure is systematically investigated. The formation and energetic stability of intrinsic defects are also investigated at the equilibrium inter-layer separation. It is found that nonstoichiometric defects, and their complexes, that induce excess nitrogen or excess boron, in each case, are relatively more stable in the atmosphere that corresponds to the excess atomic species. The modifications of the electronic structure due to formation of complexes are also investigated. It is shown that van der Waals density functional theory gives an improved description of the cohesive properties but not the electronic structure in bilayer boronitrene compared to other functionals. We identify energetically favourable topological defects that retain the energy gap in the electronic structure, and discuss their implications for band gap engineering in low-n layer boronitrene insulators. The relative strengths and weaknesses of the functionals in predicting the properties of bilayer boronitrene are also discussed.
[Regulation of immune responses by exosomes derived from antigen presenting cells].
Maravillas-Montero, José Luis; Martínez-Cortés, Ismael
2017-01-01
Cells release several biomolecules to the extracellular environment using them as a communication alternative with neighbor cells. Besides these molecules, cells also release more complex elements, like vesicles; structures composed of a lipidic bilayer with transmembrane proteins that protect a hydrophilic content. Exosomes are a small subtype of vesicles (30-150 nm), produced by many cell types, such as tumor cells, neurons, epithelial cells and immune cells. Included in this last group, antigen presenting cells produce exosomes that contain different types of molecules depending on their activation and/or maturation state. In recent years there has been an exponential interest in exosomes due to the recent evidences that show the immunomodulatory properties of these vesicles and therefore, their great potential in diagnostic approaches and development of therapies for different inflammation-associated pathologies.
Conductive Hybrid Crystal Composed from Polyoxomolybdate and Deprotonatable Ionic-Liquid Surfactant
Kobayashi, Jun; Kawahara, Ryosuke; Uchida, Sayaka; Koguchi, Shinichi; Ito, Takeru
2016-01-01
A polyoxomolybdate inorganic-organic hybrid crystal was synthesized with deprotonatable ionic-liquid surfactant. 1-dodecylimidazolium cation was employed for its synthesis. The hybrid crystal contained δ-type octamolybdate (Mo8) isomer, and possessed alternate stacking of Mo8 monolayers and interdigitated surfactant bilayers. The crystal structure was compared with polyoxomolybdate hybrid crystals comprising 1-dodecyl-3-methylimidazolium surfactant, which preferred β-type Mo8 isomer. The less bulky hydrophilic moiety of the 1-dodecylimidazolium interacted with the δ-Mo8 anion by N–H···O hydrogen bonds, which presumably induced the formation of the δ-Mo8 anion. Anhydrous conductivity of the hybrid crystal was estimated to be 5.5 × 10−6 S·cm−1 at 443 K by alternating current (AC) impedance spectroscopy. PMID:27347926
NASA Astrophysics Data System (ADS)
Kumari, Pratibha; Kaur, Supreet; Sharma, Shobha; Kashyap, Hemant K.
2018-04-01
Modulation of lipid membrane properties due to the permeation of amphiphiles is an important biological process pertaining to many applications in the field of pharmaceutics, toxicology, and biotechnology. Sphingolipids are both structural and functional lipids that constitute an important component of mechanically stable and chemically resistant outer leaflets of plasma membranes. Here, we present an atomistic molecular dynamics simulation study to appreciate the concentration-dependent effects of small amphiphilic molecules, such as ethanol, acetone, and dimethyl sulfoxide (DMSO), on the structure and stability of a fully hydrated homogeneous N-palmitoyl-sphingomyelin (PSM) bilayer. The study reveals an increase in the lateral expansion of the bilayer along with disordering of the hydrophobic lipid tails on increasing the concentration of ethanol. At higher concentrations of ethanol, rupturing of the bilayer is quite evident through the analysis of partial electron density profiles and lipid tail order parameters. For ethanol containing systems, permeation of water molecules in the hydrophobic part of the bilayer is allowed through local defects made due to the entry of ethanol molecules via ethanol-ethanol and ethanol-PSM hydrogen bonds. Moreover, the extent of PSM-PSM hydrogen bonding decreases with increasing ethanol concentration. On the other hand, acetone and DMSO exhibit minimal effects on the stability of the PSM bilayer at their lower concentrations, but at higher concentrations they tend to enhance the stability of the bilayer. The simulated potential of mean force (PMF) profiles for the translocation of the three solutes studied reveal that the free-energy of transfer of an ethanol molecule across the PSM lipid head region is lower than that for acetone and DMSO molecules. However, highest free-energy rise in the core hydrophobic part of the bilayer is observed for the DMSO molecule, whereas the ethanol and acetone PMF profiles show a lower barrier in the hydrophobic region of the bilayer.
Takei, Atsushi; Jin, Lihua; Fujita, Hiroyuki; Takei, A; Fujita, H; Jin, Lihua
2016-09-14
Wrinkles on thin film/elastomer bilayer systems provide functional surfaces. The aspect ratio of these wrinkles is critical to their functionality. Much effort has been dedicated to creating high-aspect-ratio structures on the surface of bilayer systems. A highly prestretched elastomer attached to a thin film has recently been shown to form a high-aspect-ratio structure, called a ridge structure, due to a large strain induced in the elastomer. However, the prestretch requirements of the elastomer during thin film attachment are not compatible with conventional thin film deposition methods, such as spin coating, dip coating, and chemical vapor deposition (CVD). Thus, the fabrication method is complex, and ridge structure formation is limited to planar surfaces. This paper presents a new and simple method for constructing ridge structures on a nonplanar surface using a plastic thin film/elastomer bilayer system. A plastic thin film is attached to a stress-free elastomer, and the resulting bilayer system is highly stretched one- or two-dimensionally. Upon the release of the stretch load, the deformation of the elastomer is reversible, while the plastically deformed thin film stays elongated. The combination of the length mismatch and the large strain induced in the elastomer generates ridge structures. The morphology of the plastic thin film/elastomer bilayer system is experimentally studied by varying the physical parameters, and the functionality and the applicability to a nonplanar surface are demonstrated. Finally, we simulate the effect of plasticity on morphology. This study presents a new technique for generating microscale high-aspect-ratio structures and its potential for functional surfaces.
Effects of Dimethyl Sulfoxide on Surface Water near Phospholipid Bilayers.
Lee, Yuno; Pincus, Philip A; Hyeon, Changbong
2016-12-06
Despite much effort to probe the properties of dimethyl sulfoxide (DMSO) solution, the effects of DMSO on water, especially near plasma membrane surfaces, still remain elusive. By performing molecular dynamics simulations at varying DMSO concentrations (X DMSO ), we study how DMSO affects structural and dynamical properties of water in the vicinity of phospholipid bilayers. As proposed by a number of experiments, our simulations confirm that DMSO induces dehydration from bilayer surfaces and disrupts the H-bond structure of water. However, DMSO-enhanced water diffusivity at solvent-bilayer interfaces, an intriguing discovery reported by a spin-label measurement, is not confirmed in our simulations. To resolve this discrepancy, we examine the location of the spin label (Tempo) relative to the solvent-bilayer interface. In accord with the evidence in the literature, our simulations, which explicitly model Tempo-phosphatidylcholine, find that the Tempo moiety is equilibrated at ∼8-10 Å below the bilayer surface. Furthermore, the DMSO-enhanced surface-water diffusion is confirmed only when water diffusion is analyzed around the Tempo moiety that is immersed below the bilayer surface, which implies that the experimentally detected signal of water using Tempo stems from the interior of bilayers, not from the interface. Our analysis finds that the increase of water diffusion below the bilayer surface is coupled to the increase of area per lipid with an increasing X DMSO (≲10mol%). Underscoring the hydrophobic nature of the Tempo moiety, our study calls for careful re-evaluation of the use of Tempo in measurements on lipid bilayer surfaces. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Multicompartmental Microcapsules from Star Copolymer Micelles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Ikjun; Malak, Sidney T.; Xu, Weinan
2013-02-26
We present the layer-by-layer (LbL) assembly of amphiphilic heteroarm pH-sensitive star-shaped polystyrene-poly(2-pyridine) (PSnP2VPn) block copolymers to fabricate porous and multicompartmental microcapsules. Pyridine-containing star molecules forming a hydrophobic core/hydrophilic corona unimolecular micelle in acidic solution (pH 3) were alternately deposited with oppositely charged linear sulfonated polystyrene (PSS), yielding microcapsules with LbL shells containing hydrophobic micelles. The surface morphology and internal nanopore structure of the hollow microcapsules were comparatively investigated for shells formed from star polymers with a different numbers of arms (9 versus 22) and varied shell thickness (5, 8, and 11 bilayers). The successful integration of star unimers into themore » LbL shells was demonstrated by probing their buildup, surface segregation behavior, and porosity. The larger arm star copolymer (22 arms) with stretched conformation showed a higher increment in shell thickness due to the effective ionic complexation whereas a compact, uniform grainy morphology was observed regardless of the number of deposition cycles and arm numbers. Small-angle neutron scattering (SANS) revealed that microcapsules with hydrophobic domains showed different fractal properties depending upon the number of bilayers with a surface fractal morphology observed for the thinnest shells and a mass fractal morphology for the completed shells formed with the larger number of bilayers. Moreover, SANS provides support for the presence of relatively large pores (about 25 nm across) for the thinnest shells as suggested from permeability experiments. The formation of robust microcapsules with nanoporous shells composed of a hydrophilic polyelectrolyte with a densely packed hydrophobic core based on star amphiphiles represents an intriguing and novel case of compartmentalized microcapsules with an ability to simultaneously store different hydrophilic, charged, and hydrophobic components within shells.« less
In Situ Visualization of Lipid Raft Domains by Fluorescent Glycol Chitosan Derivatives.
Jiang, Yao-Wen; Guo, Hao-Yue; Chen, Zhan; Yu, Zhi-Wu; Wang, Zhifei; Wu, Fu-Gen
2016-07-05
Lipid rafts are highly ordered small microdomains mainly composed of glycosphingolipids, cholesterol, and protein receptors. Optically distinguishing lipid raft domains in cell membranes would greatly facilitate the investigations on the structure and dynamics of raft-related cellular behaviors, such as signal transduction, membrane transport (endocytosis), adhesion, and motility. However, current strategies about the visualization of lipid raft domains usually suffer from the low biocompatibility of the probes, invasive detection, or ex situ observation. At the same time, naturally derived biomacromolecules have been extensively used in biomedical field and their interaction with cells remains a long-standing topic since it is closely related to various fundamental studies and potential applications. Herein, noninvasive visualization of lipid raft domains in model lipid bilayers (supported lipid bilayers and giant unilamellar vesicles) and live cells was successfully realized in situ using fluorescent biomacromolecules: the fluorescein isothiocyanate (FITC)-labeled glycol chitosan molecules. We found that the lipid raft domains in model or real membranes could be specifically stained by the FITC-labeled glycol chitosan molecules, which could be attributed to the electrostatic attractive interaction and/or hydrophobic interaction between the probes and the lipid raft domains. Since the FITC-labeled glycol chitosan molecules do not need to completely insert into the lipid bilayer and will not disturb the organization of lipids, they can more accurately visualize the raft domains as compared with other fluorescent dyes that need to be premixed with the various lipid molecules prior to the fabrication of model membranes. Furthermore, the FITC-labeled glycol chitosan molecules were found to be able to resist cellular internalization and could successfully visualize rafts in live cells. The present work provides a new way to achieve the imaging of lipid rafts and also sheds new light on the interaction between biomacromolecules and lipid membranes.
Fattal, D R; Ben-Shaul, A
1994-01-01
A molecular, mean-field theory of chain packing statistics in aggregates of amphiphilic molecules is applied to calculate the conformational properties of the lipid chains comprising the hydrophobic cores of dipalmitoyl-phosphatidylcholine (DPPC), dioleoyl-phosphatidylcholine (DOPC), and palmitoyl-oleoyl-phosphatidylcholine (POPC) bilayers in their fluid state. The central quantity in this theory, the probability distribution of chain conformations, is evaluated by minimizing the free energy of the bilayer assuming only that the segment density within the hydrophobic region is uniform (liquidlike). Using this distribution we calculate chain conformational properties such as bond orientational order parameters and spatial distributions of the various chain segments. The lipid chains, both the saturated palmitoyl (-(CH2)14-CH3) and the unsaturated oleoyl (-(CH2)7-CH = CH-(CH2)7-CH3) chains are modeled using rotational isomeric state schemes. All possible chain conformations are enumerated and their statistical weights are determined by the self-consistency equations expressing the condition of uniform density. The hydrophobic core of the DPPC bilayer is treated as composed of single (palmitoyl) chain amphiphiles, i.e., the interactions between chains originating from the same lipid headgroup are assumed to be the same as those between chains belonging to different molecules. Similarly, the DOPC system is treated as a bilayer of oleoyl chains. The POPC bilayer is modeled as an equimolar mixture of palmitoyl and oleoyl chains. Bond orientational order parameter profiles, and segment spatial distributions are calculated for the three systems above, for several values of the bilayer thickness (or, equivalently, average area/headgroup) chosen, where possible, so as to allow for comparisons with available experimental data and/or molecular dynamics simulations. In most cases the agreement between the mean-field calculations, which are relatively easy to perform, and the experimental and simulation data is very good, supporting their use as an efficient tool for analyzing a variety of systems subject to varying conditions (e.g., bilayers of different compositions or thicknesses at different temperatures). PMID:7811955
SFG studies on interactions between antimicrobial peptides and supported lipid bilayers.
Chen, Xiaoyun; Chen, Zhan
2006-09-01
The mode of action of antimicrobial peptides (AMPs) in disrupting cell membrane bilayers is of fundamental importance in understanding the efficiency of different AMPs, which is crucial to design antibiotics with improved properties. Recent developments in the field of sum frequency generation (SFG) vibrational spectroscopy have made it a powerful and unique biophysical technique in investigating the interactions between AMPs and a single substrate supported planar lipid bilayer. We will review some of the recent progress in applying SFG to study membrane lipid bilayers and discuss how SFG can provide novel information such as real-time bilayer structure change and AMP orientation during AMP-lipid bilayer interactions in a very biologically relevant manner. Several examples of applying SFG to monitor such interactions between AMPs and a dipalmitoyl phosphatidylglycerol (DPPG) bilayer are presented. Different modes of actions are observed for melittin, tachyplesin I, d-magainin 2, MSI-843, and a synthetic antibacterial oligomer, demonstrating that SFG is very effective in the study of AMPs and AMP-lipid bilayer interactions.
Effect of surface bilayer charges on the magnetic field around ionic channels
NASA Astrophysics Data System (ADS)
Gomes Soares, Marília Amável; Cortez, Celia Martins; Oliveira Cruz, Frederico Alan de; Silva, Dilson
2017-01-01
In this work, we present a physic-mathematical model for representing the ion transport through membrane channels, in special Na+ and K+-channels, and discuss the influence of surface bilayer charges on the magnetic field behavior around the ionic current. The model was composed of a set of equations, including: a nonlinear differential Poisson-Boltzmann equation which usually allows to estimate the surface potentials and electric potential profile across membrane; equations for the ionic flux through channel and the ionic current density based on Armstrong's model for Na+ and K+ permeability and other Physics concepts; and a magnetic field expression derived from the classical Ampère equation. Results from computational simulations using the finite element method suggest that the ionic permeability is strongly dependent of surface bilayer charges, the current density through a K+-channel is very less sensible to temperature changes than the current density through a Na+- channel, active Na+-channels do not directly interfere with the K+-channels around, and vice-versa, since the magnetic perturbation generated by an active channel is of short-range.
The pathological prion protein forms ionic conductance in lipid bilayer.
Paulis, Daniele; Maras, Bruno; Schininà, M Eugenia; di Francesco, Laura; Principe, Serena; Galeno, Roberta; Abdel-Haq, Hanin; Cardone, Franco; Florio, Tullio; Pocchiari, Maurizio; Mazzanti, Michele
2011-08-01
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative pathologies characterized by the accumulation of amyloid fibrils mainly composed of the pathological isoform of the prion protein (PrP(TSE)). PrP(TSE) pre-amyloid fibrils are supposed to induce neurodegenerative lesions possibly through the alteration of membrane permeability. The effect of PrP(TSE) on cellular membranes has been modeled in vitro by synthetic peptides that are, however, only partially representative of PrP(TSE) isoforms found in vivo. In the present work we show that a synthetic membrane exposed to PrP27-30 extracted from TSE-infected hamster brains changes its permeability because of the formation of molecular pores that alter the conductance of the synthetic lipid bilayer. Synthetic membrane challenged with the recombinant prion peptide PrP90-231 shows a much lower conductance. Elevation of calcium ion concentration not only increases the current amplitude due to the action of both PrP27-30 and PrP90-231 on the membrane, but also amplifies the interaction of PrP90-231 with the lipid bilayer. Copyright © 2011 Elsevier B.V. All rights reserved.
Sachs, Jonathan N.; Nanda, Hirsh; Petrache, Horia I.; Woolf, Thomas B.
2004-01-01
The association between monovalent salts and neutral lipid bilayers is known to influence global bilayer structural properties such as headgroup conformational fluctuations and the dipole potential. The local influence of the ions, however, has been unknown due to limited structural resolution of experimental methods. Molecular dynamics simulations are used here to elucidate local structural rearrangements upon association of a series of monovalent Na+ salts to a palmitoyl-oleoyl-phosphatidylcholine bilayer. We observe association of all ion types in the interfacial region. Larger anions, which are meant to rationalize data regarding a Hofmeister series of anions, bind more deeply within the bilayer than either Cl− or Na+. Although the simulations are able to reproduce experimentally measured quantities, the analysis is focused on local properties currently invisible to experiments, which may be critical to biological systems. As such, for all ion types, including Cl−, we show local ion-induced perturbations to headgroup tilt, the extent and direction of which is sensitive to ion charge and size. Additionally, we report salt-induced ordering of the water well beyond the interfacial region, which may be significant in terms of hydration repulsion between stacked bilayers. PMID:15189873
A New Route to Liposil Formation by an Interfacial Sol-Gel Process Confined by Lipid Bilayer.
Shen, Shukun; Yang, Lu; Lu, Yaxing; Chen, Jian-Gang; Song, Shaofei; Hu, Daodao; Parikh, Atul
2015-11-18
We report a new and simple approach to prepare a class of silica-reinforced liposomes with hybrid core-shell nanostructures. The amphiphilic natural structure of lipids was exploited to sequester hydrophobic molecules, namely precursor TEOS and pyrene, in the hydrophobic midplane of liposomal bilayer assemblies in the aqueous phase. Subsequent interfacial hydrolysis of TEOS at the bilayer/water interface and ensuing condensation within the hydrophobic interstices of the lipid bilayer drives silica formation in situ, producing a novel class of silica-lipid hybrid liposils. Structural characterization by scanning- and transmission electron microscopy confirm that the liposils so generated preserve closed topologies and size-monodipersity of the parent lecithin liposomes, and DSC-TGA and XRD measurements provide evidence for the silica coating. Monitoring fluorescence measurements using embedded pyrene yield detailed information on microenvironment changes, which occur during sol-gel process and shed light on the structural evolution during silica formation. We envisage that liposils formed by this simple, new approach, exploiting the hydrophobic core of the lipid bilayer to spatially localize silica-forming precursors enables preparation of stable liposils exhibiting capacity for cargo encapsulation, bicompatibility, and fluorescence monitoring, more generally opening a window for construction of stable, functional hybrid materials.
Topological magnetic phase in LaMnO3 (111) bilayer
NASA Astrophysics Data System (ADS)
Weng, Yakui; Huang, Xin; Yao, Yugui; Dong, Shuai
Candidates for correlated topological insulators, originated from the spin-orbit coupling as well as Hubbard type correlation, are expected in the (111) bilayer of perovskite-structural transition-metal oxides. Based on the first-principles calculation and tight-binding model, the electronic structure of a LaMnO3 (111) bilayer sandwiched in LaScO3 barriers has been investigated. For the ideal undistorted perovskite structure, the Fermi energy of LaMnO3 (111) bilayer just stays at the Dirac point, rendering a semi-metal (graphene-like) which is also a half-metal (different from graphene nor previous studied LaNiO3 (111) bilayer). The Dirac cone can be opened by the spin-orbit coupling, giving rise to nontrivial topological bands corresponding to the (quantized) anomalous Hall effect. For the realistic orthorhombic distorted lattice, the Dirac point moves with increasing Hubbard repulsion (or equivalent Jahn-Teller distortion). Finally, a Mott gap opens, establishing a phase boundary between the Mott insulator and topological magnetic insulator. Our calculation finds that the gap opened by spin-orbit coupling is much smaller in the orthorhombic distorted lattice (~ 1 . 7 meV) than the undistorted one (~11 meV).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Durgesh K.; Sharma, Veerendra K.; Anunciado, Divina
The interaction between lipid bilayers and Amyloid β peptide (Aβ) plays a critical role in proliferation of Alzheimer’s disease (AD). AD is expected to affect one in every 85 humans by 2050, and therefore, deciphering the interplay of Aβ and lipid bilayers at the molecular level is of profound importance. In this work, we applied an array of neutron scattering methods to study the structure and dynamics of Aβ(1–40) interacting 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) bilayers. In the structural investigations of lipid bilayer’s response to Aβ binding, Small Angle Neutron Scattering and Neutron Membrane Diffraction revealed that the Aβ anchors firmly to themore » highly charged DMPG bilayers in the interfacial region between water and hydrocarbon chain, and it doesn’t penetrate deeply into the bilayer. This association mode is substantiated by the dynamics studies with high resolution Quasi-Elastic Neutron Scattering experiments, showing that the addition of Aβ mainly affects the slower lateral motion of lipid molecules, especially in the fluid phase, but not the faster internal motion. The results revealed that Aβ associates with the highly charged membrane in surface with limited impact on the structure, but the altered membrane dynamics could have more influence on other membrane processes.« less
Vranceanu, Marcel; Terinte, Nicoleta; Nirschl, Hermann; Leneweit, Gero
2011-02-01
Bilayer structures are formed by approaching two liquid surfaces with phospholipid monolayers, which are brought into contact by oblique drop impact on a liquid surface. Asymmetric bilayers can be produced by the coupling of drop and target monolayers. In contrast, symmetric bilayers or multilayers are formed by collapse of the compressed target monolayer. We show that under all studied conditions bilayer/multilayer synthesis takes place. The experimental conditions for the synthesis of asymmetric or symmetric bilayers are described quantitatively in terms of the surface rheological (surface elasticity and dilational viscosity) and the hydrodynamical parameters (Weber number and impact angle). The composition and mechanical properties of the phospholipid monolayers strongly influences the patterns of drop impact and the bilayer/multilayer formation. Cholesterol stiffens unsaturated phospholipid monolayers and fluidifies saturated monolayers. All monolayers form asymmetric vesicle-like structures, which are stable in the aqueous medium. Additionally, unsaturated phospholipid monolayers without cholesterol form symmetric vesicles by folding parts of the target monolayer. Sufficient presence of cholesterol in unsaturated phospholipid monolayers inhibits the folding of the target monolayer and the subsequent formation of symmetric bilayers. The rheological properties of saturated and unsaturated phospholipid monolayers and their mixtures with cholesterol are discussed. Based on drop impact results it is shown that the state of a so far undefined region in the DPPC/cholesterol phase diagram is a fluid phase. Copyright © 2010 Elsevier Inc. All rights reserved.
Interaction driven quantum Hall effect in artificially stacked graphene bilayers
Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa
2016-01-01
The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers. PMID:27098387
Interaction driven quantum Hall effect in artificially stacked graphene bilayers.
Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood; Nam, Jungtae; Kim, Keun Soo; Eom, Jonghwa
2016-04-21
The honeycomb lattice structure of graphene gives rise to its exceptional electronic properties of linear dispersion relation and its chiral nature of charge carriers. The exceptional electronic properties of graphene stem from linear dispersion relation and chiral nature of charge carries, originating from its honeycomb lattice structure. Here, we address the quantum Hall effect in artificially stacked graphene bilayers and single layer graphene grown by chemical vapor deposition. The quantum Hall plateaus started to appear more than 3 T and became clearer at higher magnetic fields up to 9 T. Shubnikov-de Hass oscillations were manifestly observed in graphene bilayers texture. These unusual plateaus may have been due to the layers interaction in artificially stacked graphene bilayers. Our study initiates the understanding of interactions between artificially stacked graphene layers.
Wang, Sheng-Wen; Medina, Henry; Hong, Kuo-Bin; Wu, Chun-Chia; Qu, Yindong; Manikandan, Arumugam; Su, Teng-Yu; Lee, Po-Tsung; Huang, Zhi-Quan; Wang, Zhiming; Chuang, Feng-Chuan; Kuo, Hao-Chung; Chueh, Yu-Lun
2017-09-26
Integration of strain engineering of two-dimensional (2D) materials in order to enhance device performance is still a challenge. Here, we successfully demonstrated the thermally strained band gap engineering of transition-metal dichalcogenide bilayers by different thermal expansion coefficients between 2D materials and patterned sapphire structures, where MoS 2 bilayers were chosen as the demonstrated materials. In particular, a blue shift in the band gap of the MoS 2 bilayers can be tunable, displaying an extraordinary capability to drive electrons toward the electrode under the smaller driven bias, and the results were confirmed by simulation. A model to explain the thermal strain in the MoS 2 bilayers during the synthesis was proposed, which enables us to precisely predict the band gap-shifted behaviors on patterned sapphire structures with different angles. Furthermore, photodetectors with enhancement of 286% and 897% based on the strained MoS 2 on cone- and pyramid-patterned sapphire substrates were demonstrated, respectively.
Structural and electro-optical properties of bilayer graphyne like BN sheet
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2016-12-01
The structural, electronic and optical properties of bilayer graphyne like BN sheet (BNyne) with different stacking manners have been explored by the first-principles calculations. The stabilities of α-BNyne bilayers with different stacking manners are compared. The α-BNyne Bilayers have wide band gaps. Compared to the single α-BNyne, the numbers of energy bands are doubled due to the interlayer interactions and the band gap is reduced. The AB-I configuration has a direct band gap while the band gap becomes indirect for AA-II. The calculated ε2 (ω) of bilayer α-BNyne for (Eǁx) is similar to that of the monolayer α-BNyne, except for the small changes of peak positions and increasing of peak intensities. For (Eǁz), the first absorption peak occures at 3.86 eV, and the prominant peak of monolayer at 9.17 eV becomes broadened. These changes are related to the new transitions resulting from the band splitting.
Vishwanath, Sujaya Kumar; Woo, Hyunsuk; Jeon, Sanghun
2018-06-08
Atomic switches are considered to be building blocks for future non-volatile data storage and internet of things. However, obtaining device structures capable of ultrahigh density data storage, high endurance, and long data retention, and more importantly, understanding the switching mechanisms are still a challenge for atomic switches. Here, we achieved improved resistive switching performance in a bilayer structure containing aluminum oxide, with an oxygen-deficient oxide as the top switching layer and stoichiometric oxide as the bottom switching layer, using atomic layer deposition. This bilayer device showed a high on/off ratio (10 5 ) with better endurance (∼2000 cycles) and longer data retention (10 4 s) than single-oxide layers. In addition, depending on the compliance current, the bilayer device could be operated in four different resistance states. Furthermore, the depth profiles of the hourglass-shaped conductive filament of the bilayer device was observed by conductive atomic force microscopy.
Interaction of a Model Peptide with a Water--Bilayer System
NASA Technical Reports Server (NTRS)
Pohorille, A.; Wilson, M. A.
1994-01-01
We discuss a molecular dynamics study of the alanine dipeptide at the interface between water and a glycerol-1-monooleate (GMO) bilayer. The dipeptide is interfacially active and incorporates into the bilayer without disrupting its structure. The interfacial region that is readily penetrated by the dipeptide spans the entire head group portion of the bilayer. The polar groups of the alanine dipeptide mostly remain well solvated by water and the oxygen atoms of GMO, and conformations of the dipeptide are characterized by (phi, psi) angles typical of alpha-helix and beta-sheet structures. When the molecule is deeper in the bilayer, the C(sub 7eq) state also becomes stable. The barrier to the isomerization reaction at the interface is lower than in bulk phases. After 7 ns of trajectories, the system is not fully equilibrated, due to slow collective motions involving GMO head groups. These result in decreased mobility and lower rates of isomerization of the dipeptide at the interface.
Puech, V; Chami, M; Lemassu, A; Lanéelle, M A; Schiffler, B; Gounon, P; Bayan, N; Benz, R; Daffé, M
2001-05-01
With the recent success of the heterologous expression of mycobacterial antigens in corynebacteria, in addition to the importance of these bacteria in biotechnology and medicine, a better understanding of the structure of their cell envelopes was needed. A combination of molecular compositional analysis, ultrastructural appearance and freeze-etch electron microscopy study was used to arrive at a chemical model, unique to corynebacteria but consistent with their phylogenetic relatedness to mycobacteria and other members of the distinctive suprageneric actinomycete taxon. Transmission electron microscopy and chemical analyses showed that the cell envelopes of the representative strains of corynebacteria examined consisted of (i) an outer layer composed of polysaccharides (primarily a high-molecular-mass glucan and arabinomannans), proteins, which include the mycoloyltransferase PS1, and lipids; (ii) a cell wall glycan core of peptidoglycan-arabinogalactan which may contain other sugar residues and was usually esterified by corynomycolic acids; and (iii) a typical plasma membrane bilayer. Freeze-etch electron microscopy showed that most corynomycolate-containing strains exhibited a main fracture plane in their cell wall and contained low-molecular-mass porins, while the fracture occurred within the plasma membrane of strains devoid of both corynomycolate and pore-forming proteins. Importantly, in most strains, the amount of cell wall-linked corynomycolates was not sufficient to cover the bacterial surface; interestingly, the occurrence of a cell wall fracture plane correlated with the amount of non-covalently bound lipids of the strains. Furthermore, these lipids were shown to spontaneously form liposomes, indicating that they may participate in a bilayer structure. Altogether, the data suggested that the cell wall permeability barrier in corynebacteria involved both covalently linked corynomycolates and non-covalently bound lipids of their cell envelopes.
Phospholipid component volumes: determination and application to bilayer structure calculations.
Armen, R S; Uitto, O D; Feller, S E
1998-08-01
We present a new method for the determination of bilayer structure based on a combination of computational studies and laboratory experiments. From molecular dynamics simulations, the volumes of submolecular fragments of saturated and unsaturated phosphatidylcholines in the liquid crystalline state have been extracted with a precision not available experimentally. Constancy of component volumes, both among different lipids and as a function of membrane position for a given lipid, have been examined. The component volumes were then incorporated into the liquid crystallographic method described by Wiener and White (1992. Biophys. J. 61:434-447, and references therein) for determining the structure of a fluid-phase dioleoylphosphatidylcholine bilayer from x-ray and neutron diffraction experiments.
Phospholipid component volumes: determination and application to bilayer structure calculations.
Armen, R S; Uitto, O D; Feller, S E
1998-01-01
We present a new method for the determination of bilayer structure based on a combination of computational studies and laboratory experiments. From molecular dynamics simulations, the volumes of submolecular fragments of saturated and unsaturated phosphatidylcholines in the liquid crystalline state have been extracted with a precision not available experimentally. Constancy of component volumes, both among different lipids and as a function of membrane position for a given lipid, have been examined. The component volumes were then incorporated into the liquid crystallographic method described by Wiener and White (1992. Biophys. J. 61:434-447, and references therein) for determining the structure of a fluid-phase dioleoylphosphatidylcholine bilayer from x-ray and neutron diffraction experiments. PMID:9675175
Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films
NASA Astrophysics Data System (ADS)
Chen, G.; Zhu, J.; Quesada, A.; Li, J.; N'Diaye, A. T.; Huo, Y.; Ma, T. P.; Chen, Y.; Kwon, H. Y.; Won, C.; Qiu, Z. Q.; Schmid, A. K.; Wu, Y. Z.
2013-04-01
Using spin-polarized low energy electron microscopy, we discovered a new type of domain wall structure in perpendicularly magnetized Fe/Ni bilayers grown epitaxially on Cu(100). Specifically, we observed unexpected Néel-type walls with fixed chirality in the magnetic stripe phase. Furthermore, we find that the chirality of the domain walls is determined by the film growth order with the chirality being right handed in Fe/Ni bilayers and left handed in Ni/Fe bilayers, suggesting that the underlying mechanism is the Dzyaloshinskii-Moriya interaction at the film interfaces. Our observations may open a new route to control chiral spin structures using interfacial engineering in transition metal heterostructures.
Do sterols reduce proton and sodium leaks through lipid bilayers?
Haines, T H
2001-07-01
Proton and/or sodium electrochemical gradients are critical to energy handling at the plasma membranes of all living cells. Sodium gradients are used for animal plasma membranes, all other living organisms use proton gradients. These chemical and electrical gradients are either created by a cation pumping ATPase or are created by photons or redox, used to make ATP. It has been established that both hydrogen and sodium ions leak through lipid bilayers at approximately the same rate at the concentration they occur in living organisms. Although the gradients are achieved by pumping the cations out of the cell, the plasma membrane potential enhances the leakage rate of these cations into the cell because of the orientation of the potential. This review proposes that cells use certain lipids to inhibit cation leakage through the membrane bilayers. It assumes that Na(+) leaks through the bilayer by a defect mechanism. For Na(+) leakage in animal plasma membranes, the evidence suggests that cholesterol is a key inhibitor of Na(+) leakage. Here I put forth a novel mechanism for proton leakage through lipid bilayers. The mechanism assumes water forms protonated and deprotonated clusters in the lipid bilayer. The model suggests how two features of lipid structures may inhibit H(+) leakage. One feature is the fused ring structure of sterols, hopanoids and tetrahymenol which extrude water and therefore clusters from the bilayer. The second feature is lipid structures that crowd the center of the bilayer with hydrocarbon. This can be accomplished either by separating the two monolayers with hydrocarbons such as isoprenes or isopranes in the bilayer's cleavage plane or by branching the lipid chains in the center of the bilayers with hydrocarbon. The natural distribution of lipids that contain these features are examined. Data in the literature shows that plasma membranes exposed to extreme concentrations of cations are particularly rich in the lipids containing the predicted qualities. Prokaryote plasma membranes that reside in extreme acids (acidophiles) contain both hopanoids and iso/anteiso- terminal lipid branching. Plasma membranes that reside in extreme base (alkaliphiles) contain both squalene and iso/anteiso- lipids. The mole fraction of squalene in alkaliphile bilayers increases, as they are cultured at higher pH. In eukaryotes, cation leak inhibition is here attributed to sterols and certain isoprenes, dolichol for lysosomes and peroxysomes, ubiquinone for these in addition to mitochondrion, and plastoquinone for the chloroplast. Phytosterols differ from cholesterol because they contain methyl and ethyl branches on the side chain. The proposal provides a structure-function rationale for distinguishing the structures of the phytosterols as inhibitors of proton leaks from that of cholesterol which is proposed to inhibit leaks of Na(+). The most extensively studied of sterols, cholesterol, occurs only in animal cells where there is a sodium gradient across the plasma membrane. In mammals, nearly 100 proteins participate in cholesterol's biosynthetic and degradation pathway, its regulatory mechanisms and cell-delivery system. Although a fat, cholesterol yields no energy on degradation. Experiments have shown that it reduces Na(+) and K(+) leakage through lipid bilayers to approximately one third of bilayers that lack the sterol. If sterols significantly inhibit cation leakage through the lipids of the plasma membrane, then the general role of all sterols is to save metabolic ATP energy, which is the penalty for cation leaks into the cytosol. The regulation of cholesterol's appearance in the plasma membrane and the evolution of sterols is discussed in light of this proposed role.
Effects of Lipid Composition on Bilayer Membranes Quantified by All-Atom Molecular Dynamics.
Ding, Wei; Palaiokostas, Michail; Wang, Wen; Orsi, Mario
2015-12-10
Biological bilayer membranes typically contain varying amounts of lamellar and nonlamellar lipids. Lamellar lipids, such as dioleoylphosphatidylcholine (DOPC), are defined by their tendency to form the lamellar phase, ubiquitous in biology. Nonlamellar lipids, such as dioleoylphosphatidylethanolamine (DOPE), prefer instead to form nonlamellar phases, which are mostly nonbiological. However, nonlamellar lipids mix with lamellar lipids in biomembrane structures that remain overall lamellar. Importantly, changes in the lamellar vs nonlamellar lipid composition are believed to affect membrane function and modulate membrane proteins. In this work, we employ atomistic molecular dynamics simulations to quantify how a range of bilayer properties are altered by variations in the lamellar vs nonlamellar lipid composition. Specifically, we simulate five DOPC/DOPE bilayers at mixing ratios of 1/0, 3/1, 1/1, 1/3, and 0/1. We examine properties including lipid area and bilayer thickness, as well as the transmembrane profiles of electron density, lateral pressure, electric field, and dipole potential. While the bilayer structure is only marginally altered by lipid composition changes, dramatic effects are observed for the lateral pressure, electric field, and dipole potential profiles. Possible implications for membrane function are discussed.
Structural dynamics of lipid bilayers using ultrafast electron crystallography
NASA Astrophysics Data System (ADS)
Chen, Songye; Seidel, Marco; Zewail, Ahmed
2007-03-01
The structures and dynamics of bilayers of crystalline fatty acids and phospholipids were studied using ultrafast electron crystallography (UEC). The systems investigated are arachidic (eicosanoic) acid and dimyristoyl phosphatidic acid (DMPA), deposited on a substrate by the Langmuir-Blodgett technique. The atomic structures under different preparation conditions were determined. The structural dynamics following a temperature jump induced by femtosecond laser on the substrates were obtained and compared to the equilibrium temperature dependence.
Simulations of a Membrane-Anchored Peptide: Structure, Dynamics, and Influence on Bilayer Properties
Jensen, Morten Ø.; Mouritsen, Ole G.; Peters, Günther H.
2004-01-01
A three-dimensional structure of a model decapeptide is obtained by performing molecular dynamics simulations of the peptide in explicit water. Interactions between an N-myristoylated form of the folded peptide anchored to dipalmitoylphosphatidylcholine fluid phase lipid membranes are studied at different applied surface tensions by molecular dynamics simulations. The lipid membrane environment influences the conformational space explored by the peptide. The overall secondary structure of the anchored peptide is found to deviate at times from its structure in aqueous solution through reversible conformational transitions. The peptide is, despite the anchor, highly mobile at the membrane surface with the peptide motion along the bilayer normal being integrated into the collective modes of the membrane. Peptide anchoring moderately alters the lateral compressibility of the bilayer by changing the equilibrium area of the membrane. Although membrane anchoring moderately affects the elastic properties of the bilayer, the model peptide studied here exhibits conformational flexibility and our results therefore suggest that peptide acylation is a feasible way to reinforce peptide-membrane interactions whereby, e.g., the lifetime of receptor-ligand interactions can be prolonged. PMID:15189854
NASA Astrophysics Data System (ADS)
Sawitri, Asti; Miftahul Munir, Muhammad; Edikresnha, Dhewa; Sandi, Ahzab; Fauzi, Ahmad; Rajak, Abdul; Natalia, Dessy; Khairurrijal, Khairurrijal
2018-05-01
Nanofibrous membrane has a potential to use in filtration technology with electrospinning as one of the techniques used in synthesizing nanofibers. Polyacrylonitrile (PAN) nanofibrous membranes with various fibers diameters were electrospun by varying its precursor solution concentration. The average fibers diameters of the PAN nanofibrous membranes obtained from the precursor solution concentrations of 6, 9, 12, and 14 wt% were 341, 534, 1274, and 2107 nm, respectively. Filtration media for apple juice clarification were bilayer-structured membranes made of PAN nanofibrous membranes on commercial cellulose microfibrous membranes. It has been shown that the reduction of apple juice color or turbidity performed by the cellulose microfibrous membrane was well enhanced by the presence of the PAN nanofibrous membrane in the bilayer-structured membrane. In addition, the apple-juice color and turbidity reductions increased with decreasing the average fibers diameter of the PAN nanofibrous membrane. Furthermore, the PAN nanofibrous membrane also helped the cellulose microfibrous membrane in the bilayer-structured membrane enhance the reductions of total phenols, protein, and glucose of the apple juice.
Pereira-Leite, Catarina; Nunes, Cláudia; Bozelli, José C; Schreier, Shirley; Kamma-Lorger, Christina S; Cuccovia, Iolanda M; Reis, Salette
2018-05-23
Nitric oxide (NO)-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) have been developed to overcome the gastrointestinal and cardiovascular toxicity of NSAIDs, by chemically associating a NO-releasing moiety with commercial NSAIDs. Since increasing evidence supports that NSAIDs toxicity is related to their topical actions in membrane lipids, this work aims to evaluate the impact of adding a NO-releasing moiety to parent NSAIDs regarding their effect on lipid bilayers. Thus, the interactions of NO-indomethacin and indomethacin (parent drug) with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers were described herein at pH 3.0 and 7.4. Diverse experimental techniques were combined to characterize the partitioning and location of drugs in DMPC bilayers, and to analyze their effect on the lipid phase transition and the bilayer structure and dynamics. The partitioning of NO-indomethacin into DMPC bilayers was similar to that of charged indomethacin and smaller than that of neutral indomethacin. Both drugs were found to insert the DMPC bilayer and the membrane location of indomethacin was pH-dependent. NO-indomethacin and indomethacin induced a decrease of the main phase transition temperature of DMPC. The effect of these drugs on the bilayer structure and dynamics was dependent on diverse factors, namely drug ionization state, drug:lipid molar ratio, temperature and lipid phase. It is noteworthy that NO-indomethacin induced more pronounced alterations in the biophysical properties of DMPC bilayers than indomethacin, considering equivalent membrane concentrations. Such modifications may have in vivo implications, particularly in the gastric mucosa, where NO-NSAIDs-induced changes in the protective properties of phospholipid layers may contribute to the occurrence of adverse effects. Copyright © 2018 Elsevier B.V. All rights reserved.
Castrati, Luca; Mazel, Vincent; Busignies, Virginie; Diarra, Harona; Rossi, Alessandra; Colombo, Paolo; Tchoreloff, Pierre
2016-11-20
The bilayer tableting technology is gaining more acceptance in the drug industry, due to its ability to improve the drug delivery strategies. It is currently assessed by the European Pharmacopoeia, that the mechanical strength of tablets can be evaluated using a diametral breaking tester. This device applies a force diametrically, and records the tablet breaking point. This approach has been used to measure the structural integrity of single layer tablets as well as bilayer (and multi-layer) tablets. The latter ones, however, have a much complex structure. Therefore, testing a bilayer tablet with the currently used breaking test methodology might not be appropriate. The aim of this work was to compare results from several tests that have been proposed to quantify the interfacial strength of bilayer tablets. The obtained results would provide an indication on which tests are appropriate to evaluate the robustness of a bilayer tablet. Bilayer tablets were fabricated using a model formulation: Microcrystalline Cellulose (MCC) for the first layer, and spray dried lactose (SDLac) as second layer. Each set of tablets were tested using the following tests: Diametral Test, Shear Test and Indentation Test. The tablets were examined before and after the breaking test using Scanning Electron Microscopy (SEM). When a bilayer tablet was subjected to shearing or indentation, it showed signs of clear delamination. Differently, using the diametral test system, the tablets showed no clear difference, before and after the testing. However, when examining each layer via SEM, it was clear that a fracture occurred in the layer made of SDLac. Thus, the diametral test is a measure of the strength of one of the two layers and therefore it is not suited to test the mechanical strength of bilayer tablets. Copyright © 2016 Elsevier B.V. All rights reserved.
Kitt, Jay P; Bryce, David A; Minteer, Shelley D; Harris, Joel M
2018-06-05
The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this work, we employ in situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayers deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically trapped phospholipid vesicle membranes. Additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.
West, Ana; Ma, Kevin; Chung, Jonathan L; Kindt, James T
2013-08-15
Molecular dynamics simulations of lipid bilayer ribbons have been performed to investigate the structures and line tensions associated with free bilayer edges. Simulations carried out for dioleoyl phosphatidylcholine with three different force-field parameter sets yielded edge line tensions of 45 ± 2 pN, over 50% greater than the most recently reported experimentally determined value for this lipid. Edge tensions obtained from simulations of a series of phosphatidylcholine lipid bilayer ribbons with saturated acyl tails of length 12-16 carbons and with monounsaturated acyl tails of length 14-18 carbons could be correlated with the excess area associated with forming the edge, through a two-parameter fit. Saturated-tail lipids underwent local thickening near the edge, producing denser packing that correlated with lower line tensions, while unsaturated-tail lipids showed little or no local thickening. In a dipalmitoyl phosphatidylcholine ribbon initiated in a tilted gel-phase structure, lipid headgroups tended to tilt toward the nearer edge producing a herringbone pattern, an accommodation that may account for the reported edge-induced stabilization of an ordered structure at temperatures near a lipid gel-fluid phase transition.
Multilayer composites and manufacture of same
Holesinger, Terry G.; Jia, Quanxi
2006-02-07
The present invention is directed towards a process of depositing multilayer thin films, disk-shaped targets for deposition of multilayer thin films by a pulsed laser or pulsed electron beam deposition process, where the disk-shaped targets include at least two segments with differing compositions, and a multilayer thin film structure having alternating layers of a first composition and a second composition, a pair of the alternating layers defining a bi-layer wherein the thin film structure includes at least 20 bi-layers per micron of thin film such that an individual bi-layer has a thickness of less than about 100 nanometers.
Solid oxide fuel cells with bi-layered electrolyte structure
NASA Astrophysics Data System (ADS)
Zhang, Xinge; Robertson, Mark; Decès-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave
In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 μm SSZ and 4 μm SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm -2 at 650 °C and 0.85 W cm -2 at 700 °C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R el) and electrode polarization resistance (R p,a+c) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O 2- x during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R el value (0.32 Ω cm 2) at 650 °C, which is almost one order of magnitude higher than the calculated value.
Seo, J H; Pedersen, T M; Chang, G S; Moewes, A; Yoo, K-H; Cho, S J; Whang, C N
2007-08-16
The electronic structure of rubrene/pentacene and pentacene/rubrene bilayers has been investigated using soft X-ray absorption spectroscopy, resonant X-ray emission spectroscopy, and density-functional theory calculations. X-ray absorption and emission measurements reveal that it has been possible to alter the lowest unoccupied and the highest occupied molecular orbital states of rubrene in rubrene/pentacene bilayer. In the reverse case, one gets p* molecular orbital states originating from the pentacene layer. Resonant X-ray emission spectra suggest a reduction in the hole-transition probabilities for the pentacene/rubrene bilayer in comparison to reference pentacene layer. For the rubrenepentacene structure, the hole-transition probability shows an increase in comparison to the rubrene reference. We also determined the energy level alignment of the pentacene-rubrene interface by using X-ray and ultraviolet photoelectron spectroscopy. From these comparisons, it is found that the electronic structure of the pentacene-rubrene interface has a strong dependence on interface characteristics which depends on the order of the layers used.
López Cascales, J J; Otero, T F; Smith, Bradley D; González, Carlos; Márquez, M
2006-02-09
The study of asymmetric lipid bilayers is of a crucial importance due to the great number of biological process in which they are involved such as exocytosis, intracellular fusion processes, phospholipid-protein interactions, and signal transduction pathway. In addition, the loss of this asymmetry is a hallmark of the early stages of apoptosis. In this regard, a model of an asymmetric lipid bilayer composed of DPPC and DPPS was simulated by molecular dynamics simulation. Thus, the asymmetric membrane was modeled by 264 lipids, of which 48 corresponded to DPPS- randomly distributed in the same leaflet with 96 DPPC. In the other leaflet, 120 DPPC were placed without DPPS-. Due to the presence of a net charge of -1 for the DPPS- in physiological conditions, 48 Na+ were introduced into the system to balance the charge. To ascertain whether the presence of the DPPS- in only one of the two leaflets perturbs the properties of the DPPC in the other leaflet composed only of DPPC, different properties were studied, such as the atomic density of the different components across the membrane, the electrostatic potential across the membrane, the translational diffusion of DPPC and DPPS, the deuterium order parameters, lipid hydration, and lipid-lipid charge bridges. Thus, we obtained that certain properties such as the surface area lipid molecule, lipid head orientation, order parameter, translational diffusion coefficient, or lipid hydration of DPPC in the leaflet without DPPS remain unperturbed by the presence of DPPS in the other leaflet, compared with a DPPC bilayer. On the other hand, in the leaflet containing DPPS, some of the DPPC properties were strongly affected by the presence of DPPS such as the order parameter or electrostatic potential.
Mechanism of unassisted ion transport across membrane bilayers
NASA Technical Reports Server (NTRS)
Wilson, M. A.; Pohorille, A.
1996-01-01
To establish how charged species move from water to the nonpolar membrane interior and to determine the energetic and structural effects accompanying this process, we performed molecular dynamics simulations of the transport of Na+ and Cl- across a lipid bilayer located between two water lamellae. The total length of molecular dynamics trajectories generated for each ion was 10 ns. Our simulations demonstrate that permeation of ions into the membrane is accompanied by the formation of deep, asymmetric thinning defects in the bilayer, whereby polar lipid head groups and water penetrate the nonpolar membrane interior. Once the ion crosses the midplane of the bilayer the deformation "switches sides"; the initial defect slowly relaxes, and a defect forms in the outgoing side of the bilayer. As a result, the ion remains well solvated during the process; the total number of oxygen atoms from water and lipid head groups in the first solvation shell remains constant. A similar membrane deformation is formed when the ion is instantaneously inserted into the interior of the bilayer. The formation of defects considerably lowers the free energy barrier to transfer of the ion across the bilayer and, consequently, increases the permeabilities of the membrane to ions, compared to the rigid, planar structure, by approximately 14 orders of magnitude. Our results have implications for drug delivery using liposomes and peptide insertion into membranes.
Modulation of KvAP Unitary Conductance and Gating by 1-Alkanols and Other Surface Active Agents
Finol-Urdaneta, Rocio K.; McArthur, Jeffrey R.; Juranka, Peter F.; French, Robert J.; Morris, Catherine E.
2010-01-01
Abstract The actions of alcohols and anesthetics on ion channels are poorly understood. Controversy continues about whether bilayer restructuring is relevant to the modulatory effects of these surface active agents (SAAs). Some voltage-gated K channels (Kv), but not KvAP, have putative low affinity alcohol-binding sites, and because KvAP structures have been determined in bilayers, KvAP could offer insights into the contribution of bilayer mechanics to SAA actions. We monitored KvAP unitary conductance and macroscopic activation and inactivation kinetics in PE:PG/decane bilayers with and without exposure to classic SAAs (short-chain 1-alkanols, cholesterol, and selected anesthetics: halothane, isoflurane, chloroform). At levels that did not measurably alter membrane specific capacitance, alkanols caused functional changes in KvAP behavior including lowered unitary conductance, modified kinetics, and shifted voltage dependence for activation. A simple explanation is that the site of SAA action on KvAP is its entire lateral interface with the PE:PG/decane bilayer, with SAA-induced changes in surface tension and bilayer packing order combining to modulate the shape and stability of various conformations. The KvAP structural adjustment to diverse bilayer pressure profiles has implications for understanding desirable and undesirable actions of SAA-like drugs and, broadly, predicts that channel gating, conductance and pharmacology may differ when membrane packing order differs, as in raft versus nonraft domains. PMID:20197029
Heberle, Frederick A.; Marquardt, Drew; Doktorova, Milka; ...
2016-04-29
Cell membranes possess a complex three-dimensional architecture, including nonrandom lipid lateral organization within the plane of a bilayer leaflet, and compositional asymmetry between the two leaflets. As a result, delineating the membrane structure–function relationship has been a highly challenging task. Even in simplified model systems, the interactions between bilayer leaflets are poorly understood, due in part to the difficulty of preparing asymmetric model membranes that are free from the effects of residual organic solvent or osmotic stress. To address these problems, we have modified a technique for preparing asymmetric large unilamellar vesicles (aLUVs) via cyclodextrin-mediated lipid exchange in order tomore » produce tensionless, solvent-free aLUVs suitable for a range of biophysical studies. Leaflet composition and structure were characterized using isotopic labeling strategies, which allowed us to avoid the use of bulky labels. NMR and gas chromatography provided precise quantification of the extent of lipid exchange and bilayer asymmetry, while small-angle neutron scattering (SANS) was used to resolve bilayer structural features with subnanometer resolution. Isotopically asymmetric POPC vesicles were found to have the same bilayer thickness and area per lipid as symmetric POPC vesicles, demonstrating that the modified exchange protocol preserves native bilayer structure. Partial exchange of DPPC into the outer leaflet of POPC vesicles produced chemically asymmetric vesicles with a gel/fluid phase-separated outer leaflet and a uniform, POPC-rich inner leaflet. SANS was able to separately resolve the thicknesses and areas per lipid of coexisting domains, revealing reduced lipid packing density of the outer leaflet DPPC-rich phase compared to typical gel phases. Lastly, our finding that a disordered inner leaflet can partially fluidize ordered outer leaflet domains indicates some degree of interleaflet coupling, and invites speculation on a role for bilayer asymmetry in modulating membrane lateral organization.« less
LDRD final report on light-powered nanovehicles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shelnutt, John Allen; van Swol, Frank B.; Miller, James Edward
2003-11-01
We have investigated the possibility of constructing nanoscale metallic vehicles powered by biological motors or flagella that are activated and powered by visible light. The vehicle's body is to be composed of the surfactant bilayer of a liposome coated with metallic nanoparticles or nanosheets grown together into a porous single crystal. The diameter of the rigid metal vesicles is from about 50 nm to microns. Illumination with visible light activates a photosynthetic system in the bilayer that can generate a pH gradient across the liposomal membrane. The proton gradient can fuel a molecular motor that is incorporated into the membrane.more » Some molecular motors require ATP to fuel active transport. The protein ATP synthase, when embedded in the membrane, will use the pH gradient across the membrane to produce ATP from ADP and inorganic phosphate. The nanoscale vehicle is thus composed of both natural biological components (ATPase, flagellum; actin-myosin, kinesin-microtubules) and biomimetic components (metal vehicle casing, photosynthetic membrane) as functional units. Only light and storable ADP, phosphate, water, and weak electron donor are required fuel components. These nano-vehicles are being constructed by self-assembly and photocatalytic and autocatalytic reactions. The nano-vehicles can potentially respond to chemical gradients and other factors such as light intensity and field gradients, in a manner similar to the way that magnetic bacteria navigate. The delivery package might include decision-making and guidance components, drugs or other biological and chemical agents, explosives, catalytic reactors, and structural materials. We expected in one year to be able only to assess the problems and major issues at each stage of construction of the vehicle and the likely success of fabricating viable nanovehicles with our biomimetic photocatalytic approach. Surprisingly, we have been able to demonstrate that metallized photosynthetic liposomes can indeed be made. We have completed the synthesis of metallized liposomes with photosynthetic function included and studied these structures by electron microscopy. Both platinum and palladium nanosheeting have been used to coat the micelles. The stability of the vehicles to mechanical stress and the solution environment is enhanced by the single-crystalline platinum or palladium coating on the vesicle. With analogous platinized micelles, it is possible to dry the vehicles and re-suspend them with full functionality. However, with the liposomes drying on a TEM grid may cause the platinized liposomes to collapse, although probably stay viable in solution. It remains to be shown whether a proton motive force across the metallized bilayer membrane can be generated and whether we will also be able to incorporate various functional capabilities including ATP synthesis and functional molecular motors. Future tasks to complete the nanovehicles would be the incorporation of ATP synthase into metallized liposomes and the incorporation of a molecular motor into metallized liposomes.« less
Maturation of the Gag core decreases the stability of retroviral lipid membranes.
Davidoff, Candice; Payne, Riley J; Willis, Sharon H; Doranz, Benjamin J; Rucker, Joseph B
2012-11-25
To better understand how detergents disrupt enveloped viruses, we monitored the biophysical stability of murine leukemia virus (MLV) virus-like particles (VLPs) against a panel of commonly used detergents using real-time biosensor measurements. Although exposure to many detergents, such as Triton X-100 and Empigen, results in lysis of VLP membranes, VLPs appeared resistant to complete membrane lysis by a significant number of detergents, including Tween 20, Tween 80, Lubrol, and Saponin. VLPs maintained their structural integrity after exposure to Tween 20 at concentrations up to 500-fold above its CMC. Remarkably, VLPs containing immature cores composed of unprocessed (uncleaved) Gag polyprotein were significantly more resistant to detergent lysis than VLPs with mature cores. Although the maturity of retroviral Gag is known to influence the stability of the protein core structure itself, our studies suggest that the maturity of the Gag core also influences the stability of the lipid bilayer surrounding the core. Copyright © 2012 Elsevier Inc. All rights reserved.
Maturation of the Gag core decreases the stability of retroviral lipid membranes
Davidoff, Candice; Payne, Riley; Willis, Sharon H.; Doranz, Benjamin J.; Rucker, Joseph B.
2012-01-01
To better understand how detergents disrupt enveloped viruses, we monitored the biophysical stability of murine leukemia virus (MLV) virus-like particles (VLPs) against a panel of commonly used detergents using real-time biosensor measurements. Although exposure to many detergents, such as Triton X-100 and Empigen, results in lysis of VLP membranes, VLPs appeared resistant to complete membrane lysis by a significant number of detergents, including Tween 20, Tween 80, Lubrol, and Saponin. VLPs maintained their structural integrity after exposure to Tween 20 at concentrations up to 500-fold above its CMC. Remarkably, VLPs containing immature cores composed of unprocessed (uncleaved) Gag polyprotein were significantly more resistant to detergent lysis than VLPs with mature cores. Although the maturity of retroviral Gag is known to influence the stability of the protein core structure itself, our studies suggest that the maturity of the Gag core also influences the stability of the lipid bilayer surrounding the core. PMID:22995186
Trusova, Valeriya M; Gorbenko, Galyna P
2017-07-10
Using the molecular dynamics simulation, the role of lipids in the lysozyme transition into the aggregation-competent conformation has been clarified. Analysis of the changes of lysozyme secondary structure upon its interactions with the model bilayer membranes composed of phosphatidylcholine and its mixtures with phosphatidylglycerol (10, 40, and 80 mol%) within the time interval of 100 ns showed that lipid-bound protein is characterized by the increased content of β-structures. Along with this, the formation of protein-lipid complexes was accompanied by the increase in the gyration radius and the decrease in RMSD of polypeptide chain. The results obtained were interpreted in terms of the partial unfolding of lysozyme molecule on the lipid matrix, with the magnitude of this effect being increased with increasing the fraction of anionic lipids. Based on the results of molecular dynamics simulation, a hypothetical model of the nucleation of lysozyme amyloid fibrils in a membrane environment was suggested.
Cardiolipin effects on membrane structure and dynamics.
Unsay, Joseph D; Cosentino, Katia; Subburaj, Yamunadevi; García-Sáez, Ana J
2013-12-23
Cardiolipin (CL) is a lipid with unique properties solely found in membranes generating electrochemical potential. It contains four acyl chains and tends to form nonlamellar structures, which are believed to play a key role in membrane structure and function. Indeed, CL alterations have been linked to disorders such as Barth syndrome and Parkinson's disease. However, the molecular effects of CL on membrane organization remain poorly understood. Here, we investigated the structure and physical properties of CL-containing membranes using confocal microscopy, fluorescence correlation spectroscopy, and atomic force microscopy. We found that the fluidity of the lipid bilayer increased and its mechanical stability decreased with CL concentration, indicating that CL decreases the packing of the membrane. Although the presence of up to 20% CL gave rise to flat, stable bilayers, the inclusion of 5% CL promoted the formation of flowerlike domains that grew with time. Surprisingly, we often observed two membrane-piercing events in atomic force spectroscopy experiments with CL-containing membranes. Similar behavior was observed with a lipid mixture mimicking the mitochondrial outer membrane composition. This suggests that CL promotes the formation of membrane areas with apposed double bilayers or nonlamellar structures, similar to those proposed for mitochondrial contact sites. All together, we show that CL induces membrane alterations that support the role of CL in facilitating bilayer structure remodeling, deformation, and permeabilization.
α-tocopherol is well designed to protect polyunsaturated phospholipids: MD simulations
Leng, Xiaoling; Kinnun, Jacob A.; Marquardt, Drew; ...
2015-10-20
Here, the presumptive function for alpha-tocopherol (αtoc) in membranes is to protect polyunsaturated lipids against oxidation. Although the chemistry of the process is well established, the role played by molecular structure that we address here with atomistic molecular-dynamics simulations remains controversial. The simulations were run in the constant particle NPT ensemble on hydrated lipid bilayers composed of SDPC (1-stearoyl-2-docosahexaenoylphosphatidylcholine, 18:0-22:6PC) and SOPC (1-stearoyl-2-oleoylphosphatidylcholine, 18:0-18:1PC) in the presence of 20 mol % αtoc at 37°C. SDPC with SA (stearic acid) for the sn-1 chain and DHA (docosahexaenoic acid) for the sn-2 chain is representative of polyunsaturated phospholipids, while SOPC with OAmore » (oleic acid) substituted for the sn-2 chain serves as a monounsaturated control. Solid-state 2H nuclear magnetic resonance and neutron diffraction experiments provide validation. The simulations demonstrate that high disorder enhances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, whereby they encounter the chromanol group on αtoc molecules. This behavior is reflected in the van der Waals energy of interaction between αtoc and acyl chains, and illustrated by density maps of distribution for acyl chains around αtoc molecules that were constructed. An ability to more easily penetrate deep into the bilayer is another attribute conferred upon the chromanol group in αtoc by the high disorder possessed by DHA. By examining the trajectory of single molecules, we found that αtoc flip-flops across the SDPC bilayer on a submicrosecond timescale that is an order-of-magnitude greater than in SOPC. Our results reveal mechanisms by which the sacrificial hydroxyl group on the chromanol group can trap lipid peroxyl radicals within the interior and near the surface of a polyunsaturated membrane. At the same time, water-soluble reducing agents that regenerate αtoc can access the chromanol group when it locates at the surface.« less
α-Tocopherol Is Well Designed to Protect Polyunsaturated Phospholipids: MD Simulations
Leng, Xiaoling; Kinnun, Jacob J.; Marquardt, Drew; Ghefli, Mikel; Kučerka, Norbert; Katsaras, John; Atkinson, Jeffrey; Harroun, Thad A.; Feller, Scott E.; Wassall, Stephen R.
2015-01-01
The presumptive function for alpha-tocopherol (αtoc) in membranes is to protect polyunsaturated lipids against oxidation. Although the chemistry of the process is well established, the role played by molecular structure that we address here with atomistic molecular-dynamics simulations remains controversial. The simulations were run in the constant particle NPT ensemble on hydrated lipid bilayers composed of SDPC (1-stearoyl-2-docosahexaenoylphosphatidylcholine, 18:0-22:6PC) and SOPC (1-stearoyl-2-oleoylphosphatidylcholine, 18:0-18:1PC) in the presence of 20 mol % αtoc at 37°C. SDPC with SA (stearic acid) for the sn-1 chain and DHA (docosahexaenoic acid) for the sn-2 chain is representative of polyunsaturated phospholipids, while SOPC with OA (oleic acid) substituted for the sn-2 chain serves as a monounsaturated control. Solid-state 2H nuclear magnetic resonance and neutron diffraction experiments provide validation. The simulations demonstrate that high disorder enhances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, whereby they encounter the chromanol group on αtoc molecules. This behavior is reflected in the van der Waals energy of interaction between αtoc and acyl chains, and illustrated by density maps of distribution for acyl chains around αtoc molecules that were constructed. An ability to more easily penetrate deep into the bilayer is another attribute conferred upon the chromanol group in αtoc by the high disorder possessed by DHA. By examining the trajectory of single molecules, we found that αtoc flip-flops across the SDPC bilayer on a submicrosecond timescale that is an order-of-magnitude greater than in SOPC. Our results reveal mechanisms by which the sacrificial hydroxyl group on the chromanol group can trap lipid peroxyl radicals within the interior and near the surface of a polyunsaturated membrane. At the same time, water-soluble reducing agents that regenerate αtoc can access the chromanol group when it locates at the surface. PMID:26488652
α-Tocopherol Is Well Designed to Protect Polyunsaturated Phospholipids: MD Simulations.
Leng, Xiaoling; Kinnun, Jacob J; Marquardt, Drew; Ghefli, Mikel; Kučerka, Norbert; Katsaras, John; Atkinson, Jeffrey; Harroun, Thad A; Feller, Scott E; Wassall, Stephen R
2015-10-20
The presumptive function for alpha-tocopherol (αtoc) in membranes is to protect polyunsaturated lipids against oxidation. Although the chemistry of the process is well established, the role played by molecular structure that we address here with atomistic molecular-dynamics simulations remains controversial. The simulations were run in the constant particle NPT ensemble on hydrated lipid bilayers composed of SDPC (1-stearoyl-2-docosahexaenoylphosphatidylcholine, 18:0-22:6PC) and SOPC (1-stearoyl-2-oleoylphosphatidylcholine, 18:0-18:1PC) in the presence of 20 mol % αtoc at 37°C. SDPC with SA (stearic acid) for the sn-1 chain and DHA (docosahexaenoic acid) for the sn-2 chain is representative of polyunsaturated phospholipids, while SOPC with OA (oleic acid) substituted for the sn-2 chain serves as a monounsaturated control. Solid-state (2)H nuclear magnetic resonance and neutron diffraction experiments provide validation. The simulations demonstrate that high disorder enhances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, whereby they encounter the chromanol group on αtoc molecules. This behavior is reflected in the van der Waals energy of interaction between αtoc and acyl chains, and illustrated by density maps of distribution for acyl chains around αtoc molecules that were constructed. An ability to more easily penetrate deep into the bilayer is another attribute conferred upon the chromanol group in αtoc by the high disorder possessed by DHA. By examining the trajectory of single molecules, we found that αtoc flip-flops across the SDPC bilayer on a submicrosecond timescale that is an order-of-magnitude greater than in SOPC. Our results reveal mechanisms by which the sacrificial hydroxyl group on the chromanol group can trap lipid peroxyl radicals within the interior and near the surface of a polyunsaturated membrane. At the same time, water-soluble reducing agents that regenerate αtoc can access the chromanol group when it locates at the surface. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Vogl, M.; Pankratov, O.; Shallcross, S.
2017-07-01
We present a tractable and physically transparent semiclassical theory of matrix-valued Hamiltonians, i.e., those that describe quantum systems with internal degrees of freedoms, based on a generalization of the Gutzwiller trace formula for a n ×n dimensional Hamiltonian H (p ̂,q ̂) . The classical dynamics is governed by n Hamilton-Jacobi (HJ) equations that act in a phase space endowed with a classical Berry curvature encoding anholonomy in the parallel transport of the eigenvectors of H (p ,q ) ; these vectors describe the internal structure of the semiclassical particles. At the O (ℏ1) level and for nondegenerate HJ systems, this curvature results in an additional semiclassical phase composed of (i) a Berry phase and (ii) a dynamical phase resulting from the classical particles "moving through the Berry curvature". We show that the dynamical part of this semiclassical phase will, generally, be zero only for the case in which the Berry phase is topological (i.e., depends only on the winding number). We illustrate the method by calculating the Landau spectrum for monolayer graphene, the four-band model of AB bilayer graphene, and for a more complicated matrix Hamiltonian describing the silicene band structure. Finally, we apply our method to an inhomogeneous system consisting of a strain engineered one-dimensional moiré in bilayer graphene, finding localized states near the Dirac point that arise from electron trapping in a semiclassical moiré potential. The semiclassical density of states of these localized states we show to be in perfect agreement with an exact quantum mechanical calculation of the density of states.
Convergence of Free Energy Profile of Coumarin in Lipid Bilayer
2012-01-01
Atomistic molecular dynamics (MD) simulations of druglike molecules embedded in lipid bilayers are of considerable interest as models for drug penetration and positioning in biological membranes. Here we analyze partitioning of coumarin in dioleoylphosphatidylcholine (DOPC) bilayer, based on both multiple, unbiased 3 μs MD simulations (total length) and free energy profiles along the bilayer normal calculated by biased MD simulations (∼7 μs in total). The convergences in time of free energy profiles calculated by both umbrella sampling and z-constraint techniques are thoroughly analyzed. Two sets of starting structures are also considered, one from unbiased MD simulation and the other from “pulling” coumarin along the bilayer normal. The structures obtained by pulling simulation contain water defects on the lipid bilayer surface, while those acquired from unbiased simulation have no membrane defects. The free energy profiles converge more rapidly when starting frames from unbiased simulations are used. In addition, z-constraint simulation leads to more rapid convergence than umbrella sampling, due to quicker relaxation of membrane defects. Furthermore, we show that the choice of RESP, PRODRG, or Mulliken charges considerably affects the resulting free energy profile of our model drug along the bilayer normal. We recommend using z-constraint biased MD simulations based on starting geometries acquired from unbiased MD simulations for efficient calculation of convergent free energy profiles of druglike molecules along bilayer normals. The calculation of free energy profile should start with an unbiased simulation, though the polar molecules might need a slow pulling afterward. Results obtained with the recommended simulation protocol agree well with available experimental data for two coumarin derivatives. PMID:22545027
Convergence of Free Energy Profile of Coumarin in Lipid Bilayer.
Paloncýová, Markéta; Berka, Karel; Otyepka, Michal
2012-04-10
Atomistic molecular dynamics (MD) simulations of druglike molecules embedded in lipid bilayers are of considerable interest as models for drug penetration and positioning in biological membranes. Here we analyze partitioning of coumarin in dioleoylphosphatidylcholine (DOPC) bilayer, based on both multiple, unbiased 3 μs MD simulations (total length) and free energy profiles along the bilayer normal calculated by biased MD simulations (∼7 μs in total). The convergences in time of free energy profiles calculated by both umbrella sampling and z-constraint techniques are thoroughly analyzed. Two sets of starting structures are also considered, one from unbiased MD simulation and the other from "pulling" coumarin along the bilayer normal. The structures obtained by pulling simulation contain water defects on the lipid bilayer surface, while those acquired from unbiased simulation have no membrane defects. The free energy profiles converge more rapidly when starting frames from unbiased simulations are used. In addition, z-constraint simulation leads to more rapid convergence than umbrella sampling, due to quicker relaxation of membrane defects. Furthermore, we show that the choice of RESP, PRODRG, or Mulliken charges considerably affects the resulting free energy profile of our model drug along the bilayer normal. We recommend using z-constraint biased MD simulations based on starting geometries acquired from unbiased MD simulations for efficient calculation of convergent free energy profiles of druglike molecules along bilayer normals. The calculation of free energy profile should start with an unbiased simulation, though the polar molecules might need a slow pulling afterward. Results obtained with the recommended simulation protocol agree well with available experimental data for two coumarin derivatives.
Probing protein-lipid interactions by FRET between membrane fluorophores
NASA Astrophysics Data System (ADS)
Trusova, Valeriya M.; Gorbenko, Galyna P.; Deligeorgiev, Todor; Gadjev, Nikolai
2016-09-01
Förster resonance energy transfer (FRET) is a powerful fluorescence technique that has found numerous applications in medicine and biology. One area where FRET proved to be especially informative involves the intermolecular interactions in biological membranes. The present study was focused on developing and verifying a Monte-Carlo approach to analyzing the results of FRET between the membrane-bound fluorophores. This approach was employed to quantify FRET from benzanthrone dye ABM to squaraine dye SQ-1 in the model protein-lipid system containing a polycationic globular protein lysozyme and negatively charged lipid vesicles composed of phosphatidylcholine and phosphatidylglycerol. It was found that acceptor redistribution between the lipid bilayer and protein binding sites resulted in the decrease of FRET efficiency. Quantification of this effect in terms of the proposed methodology yielded both structural and binding parameters of lysozyme-lipid complexes.
Potassium-doped n-type bilayer graphene
NASA Astrophysics Data System (ADS)
Yamada, Takatoshi; Okigawa, Yuki; Hasegawa, Masataka
2018-01-01
Potassium-doped n-type bilayer graphene was obtained. Chemical vapor deposited bilayer and single layer graphene on copper (Cu) foils were used. After etching of Cu foils, graphene was dipped in potassium hydroxide aqueous solutions to dope potassium. Graphene on silicon oxide was characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. Both XPS and EDX spectra indicated potassium incorporation into the bilayer graphene via intercalation between the graphene sheets. The downward shift of the 2D peak position of bilayer graphene after the potassium hydroxide (KOH) treatment was confirmed in Raman spectra, indicating that the KOH-treated bilayer graphene was doped with electrons. Electrical properties were measured using Hall bar structures. The Dirac points of bilayer graphene were shifted from positive to negative by the KOH treatment, indicating that the KOH-treated bilayer graphene was n-type conduction. For single layer graphene after the KOH treatment, although electron doping was confirmed from Raman spectra, the peak of potassium in the X-ray photoelectron spectroscopy (XPS) spectrum was not detected. The Dirac points of single layer graphene with and without the KOH treatment showed positive.
Assessment of bilayer silicene to probe as quantum spin and valley Hall effect
NASA Astrophysics Data System (ADS)
Rehman, Majeed Ur; Qiao, Zhenhua
2018-02-01
Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.
Morigaki, Kenichi; Mizutani, Kazuyuki; Saito, Makoto; Okazaki, Takashi; Nakajima, Yoshihiro; Tatsu, Yoshiro; Imaishi, Hiromasa
2013-02-26
We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay.
Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.
Sun, Qinjun; Zhao, Huanbin; Zhou, Miao; Gao, Liyan; Hao, Yuying
2016-04-01
An effective composite bilayer cathode buffer structure is proposed for use in small molecular solar cells. CsF was doped in Alq3 to form the first cathode buffer, leading to small serial resistances. BCP was used as the second cathode buffer to block the holes to the electrode. The optimized bilayer cathode buffer significantly increased the short circuit and fill factor of devices. By integrating this bilayer cathode buffer, the CuPc/C60 small molecular heterojunction cell exhibited a power conversion efficiency of up to 0.8%, which was an improvement of 56% compared to a device with only the Alq3 cathode buffer. Meanwhile, the bilayer cathode buffer still has a good protective effect on the performance of the device.
Ameen, Sadia; Akhtar, M Shaheer; Kimi, Young Soon; Yang, O-Bong; Shin, Hyung-Shik
2011-04-01
A heterostructure was fabricated using p-type plasma polymerized polyaniline (PANI) and n-type (single and bilayer) titanium dioxide (TiO2) thin film on FTO glass. The deposition of single and bilayer TiO2 thin film on FTO substrate was achieved through doctor blade followed by dip coating technique before subjected to plasma enhanced polymerization. To fabricate p-n heterostructure, a plasma polymerization of aniline was conducted using RF plasma at 13.5 MHz and at the power of 120 W on the single and bilayer TiO2 thin film electrodes. The morphological, optical and the structural characterizations revealed the formation of p-n heterostructures between PANI and TiO2 thin film. The PANI/bilayer TiO2 heterostructure showed the improved current-voltage (I-V) characteristics due to the substantial deposition of PANI molecules into the bilayer TiO2 thin film which provided good conducting pathway and reduced the degree of excitons recombination. The change of linear I-V behavior of PANI/TiO2 heterostructure to non linear behavior with top Pt contact layer confirmed the formation of Schottky contact at the interfaces of Pt layer and PANI/TiO2 thin film layers.
How does ytterbium chloride interact with DMPC bilayers? A computational and experimental study.
Gonzalez, Miguel A; Barriga, Hanna M G; Richens, Joanna L; Law, Robert V; O'Shea, Paul; Bresme, Fernando
2017-03-29
Lanthanide salts have been studied for many years, primarily in Nuclear Magnetic Resonance (NMR) experiments of mixed lipid-protein systems and more recently to study lipid flip-flop in model membrane systems. It is well recognised that lanthanide salts can influence the behaviour of both lipid and protein systems, however a full molecular level description of lipid-lanthanide interactions is still outstanding. Here we present a study of lanthanide-bilayer interactions, using molecular dynamics computer simulations, fluorescence electrostatic potential experiments and nuclear magnetic resonance. Computer simulations reveal the microscopic structure of DMPC lipid bilayers in the presence of Yb 3+ , and a surprising ability of the membranes to adsorb significant concentrations of Yb 3+ without disrupting the overall membrane structure. At concentrations commonly used in NMR experiments, Yb 3+ ions bind strongly to 5 lipids, inducing a small decrease of the area per lipid and a slight increase of the ordering of the aliphatic chains and the bilayer thickness. The area compressibility modulus increases by a factor of two, with respect to the free-salt case, showing that Yb 3+ ions make the bilayer more rigid. These modifications of the bilayer properties should be taken into account in the interpretation of NMR experiments.
Low operational current spin Hall nano-oscillators based on NiFe/W bilayers
NASA Astrophysics Data System (ADS)
Mazraati, Hamid; Chung, Sunjae; Houshang, Afshin; Dvornik, Mykola; Piazza, Luca; Qejvanaj, Fatjon; Jiang, Sheng; Le, Tuan Q.; Weissenrieder, Jonas; Åkerman, Johan
2016-12-01
We demonstrate highly efficient spin Hall nano-oscillators (SHNOs) based on NiFe/β-W bilayers. Thanks to the very high spin Hall angle of β-W, we achieve more than a 60% reduction in the auto-oscillation threshold current compared to NiFe/Pt bilayers. The structural, electrical, and magnetic properties of the bilayers, as well as the microwave signal generation properties of the SHNOs, have been studied in detail. Our results provide a promising path for the realization of low-current SHNO microwave devices with highly efficient spin-orbit torque from β-W.
McAllister, Chris T; Seville, R Scott; Duszynski, Donald W; Bush, Sarah E; Fisher, Robert N; Austin, Christopher C
2013-10-01
Two new species of Eimeria Schneider, 1875, from emerald tree skinks, Lamprolepis smaragdina (Lesson) are described from specimens collected in Papua New Guinea (PNG) and the Philippines. Oöcysts of Eimeria nuiailan n. sp. from the only L. smaragdina from PNG are ovoidal, with a smooth, colourless, bi-layered wall, measure 23.7 × 19.1 μm, and have a length/width (L/W) ratio of 1.3; both micropyle and oöcyst residuum are absent, but a fragmented polar granule is present. Sporocysts are ovoidal to ellipsoidal, 11.9 × 7.0 μm, L/W 1.7, and the wall is composed of two valves joined by a longitudinal suture; neither Stieda nor sub-Stieda bodies are present; a sporocyst residuum is present as a compact mass of granules. Sporozoites are elongate, 14.6 × 2.6 μm, and contain anterior and posterior refractile bodies with a nucleus between them. Oöcysts of Eimeria auffenbergi n. sp. from L. smaragdina collected in the Philippines are ovoidal, with a smooth, colourless, bi-layered wall, measure 19.9 × 15.8 μm, L/W 1.3; both micropyle and oöcyst residuum are absent, but one to four polar granules are present. Sporocysts are ovoidal to ellipsoidal, 10.3 × 5.8 μm, L/W 1.8, and the wall is composed of two valves joined by a longitudinal suture; neither Stieda nor sub-Stieda bodies are present; a sporocyst residuum is composed of dispersed granules.
McAllister, Chris T.; Seville, R. Scott; Duszynski, Donald W.; Bush, Sarah E.; Fisher, Robert N.; Austin, Christopher C.
2014-01-01
Two new species of Eimeria Schneider, 1875, from emerald tree skinks, Lamprolepis smaragdina (Lesson) are described from specimens collected in Papua New Guinea (PNG) and the Philippines. Oöcysts of Eimeria nuiailan sp. n. from the only L. smaragdina from PNG are ovoidal, with a smooth, colourless, bilayered wall, measure 23.7 × 19.1 μm, and have a length/width (L/W) ratio of 1.3; both micropyle and oöcyst residuum are absent, but a fragmented polar granule is present. Sporocysts are ovoidal to ellipsoidal, 11.9 × 7.0 μm, L/W 1.7, and the wall is composed of 2 valves joined by a longitudinal suture; neither Stieda nor sub-Stieda bodies are present; a sporocyst residuum is present as a compact mass of granules. Sporozoites are elongate, 14.6 × 2.6 μm, and contain anterior and posterior refractile bodies with a nucleus between them. Oöcysts of Eimeria auffenbergi sp. n. from both L. smaragdina we collected in the Philippines are ovoidal, with a smooth, colorless, bilayered wall, measure 19.9 × 15.8 μm, L/W 1.3; both micropyle and oöcyst residuum are absent, but 1–4 polar granules are present. Sporocysts are ovoidal to ellipsoidal, 10.3 × 5.8 μm, L/W 1.8, and the wall is composed of 2 valves joined by a longitudinal suture; neither Stieda nor sub-Stieda bodies are present; a sporocyst residuum is composed of dispersed granules. PMID:24048748
McAllister, Chris T.; Seville, R. Scott; Duszynski, Donald W.; Bush, Sarah E.; Fisher, Robert N.; Austin, Christopher C.
2013-01-01
Two new species of Eimeria Schneider, 1875, from emerald tree skinks, Lamprolepis smaragdina (Lesson) are described from specimens collected in Papua New Guinea (PNG) and the Philippines. Oöcysts of Eimeria nuiailan n. sp. from the only L. smaragdina from PNG are ovoidal, with a smooth, colourless, bi-layered wall, measure 23.7 × 19.1 μm, and have a length/width (L/W) ratio of 1.3; both micropyle and oöcyst residuum are absent, but a fragmented polar granule is present. Sporocysts are ovoidal to ellipsoidal, 11.9 × 7.0 μm, L/W 1.7, and the wall is composed of two valves joined by a longitudinal suture; neither Stieda nor sub-Stieda bodies are present; a sporocyst residuum is present as a compact mass of granules. Sporozoites are elongate, 14.6 × 2.6 μm, and contain anterior and posterior refractile bodies with a nucleus between them. Oöcysts of Eimeria auffenbergi n. sp. from L. smaragdina collected in the Philippines are ovoidal, with a smooth, colourless, bi-layered wall, measure 19.9 × 15.8 μm, L/W 1.3; both micropyle and oöcyst residuum are absent, but one to four polar granules are present. Sporocysts are ovoidal to ellipsoidal, 10.3 × 5.8 μm, L/W 1.8, and the wall is composed of two valves joined by a longitudinal suture; neither Stieda nor sub-Stieda bodies are present; a sporocyst residuum is composed of dispersed granules.
Interfacial Structure and Chemistry of GaN on Ge(111)
NASA Astrophysics Data System (ADS)
Zhang, Siyuan; Zhang, Yucheng; Cui, Ying; Freysoldt, Christoph; Neugebauer, Jörg; Lieten, Ruben R.; Barnard, Jonathan S.; Humphreys, Colin J.
2013-12-01
The interface of GaN grown on Ge(111) by plasma-assisted molecular beam epitaxy is resolved by aberration corrected scanning transmission electron microscopy. A novel interfacial structure with a 5∶4 closely spaced atomic bilayer is observed that explains why the interface is flat, crystalline, and free of GeNx. Density functional theory based total energy calculations show that the interface bilayer contains Ge and Ga atoms, with no N atoms. The 5∶4 bilayer at the interface has a lower energy than a direct stacking of GaN on Ge(111) and enables the 5∶4 lattice-matching growth of GaN.
NASA Astrophysics Data System (ADS)
Jabar, A.; Masrour, R.
2018-05-01
The magnetic properties of magnetic bilayers of Kekulene structure separate by a nonmagnetic layer with Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interactions with Ising spin model have been studied using Monte Carlo simulations. The RKKY interaction between the bilayers of Kekulene is considered for different distances. The transition temperature has been deduced from the magnetizations and magnetic susceptibilities partial for a fixed value of nonmagnetic layer. The reduced transition temperatures are also deduced from the total magnetization and total magnetic susceptibilities with different values of L. The magnetic hysteresis cycles of systems have been determined.
Enhanced Circular Dichroism of Gold Bilayered Slit Arrays Embedded with Rectangular Holes.
Zhang, Hao; Wang, Yongkai; Luo, Lina; Wang, Haiqing; Zhang, Zhongyue
2017-01-01
Gold bilayered slit arrays with rectangular holes embedded into the metal surface are designed to enhance the circular dichroism (CD) effect of gold bilayered slit arrays. The rectangular holes in these arrays block electric currents and generate localized surface plasmons around these holes, thereby strengthening the CD effect. The CD enhancement factor depends strongly on the rotational angle and the structural parameters of the rectangular holes; this factor can be enhanced further by drilling two additional rectangular holes into the metal surfaces of the arrays. These results help facilitate the design of chiral structures to produce a strong CD effect and large electric fields.
Strain solitons and topological defects in bilayer graphene
Alden, Jonathan S.; Tsen, Adam W.; Huang, Pinshane Y.; Hovden, Robert; Brown, Lola; Park, Jiwoong; Muller, David A.; McEuen, Paul L.
2013-01-01
Bilayer graphene has been a subject of intense study in recent years. The interlayer registry between the layers can have dramatic effects on the electronic properties: for example, in the presence of a perpendicular electric field, a band gap appears in the electronic spectrum of so-called Bernal-stacked graphene [Oostinga JB, et al. (2007) Nature Materials 7:151–157]. This band gap is intimately tied to a structural spontaneous symmetry breaking in bilayer graphene, where one of the graphene layers shifts by an atomic spacing with respect to the other. This shift can happen in multiple directions, resulting in multiple stacking domains with soliton-like structural boundaries between them. Theorists have recently proposed that novel electronic states exist at these boundaries [Vaezi A, et al. (2013) arXiv:1301.1690; Zhang F, et al. (2013) arXiv:1301.4205], but very little is known about their structural properties. Here we use electron microscopy to measure with nanoscale and atomic resolution the widths, motion, and topological structure of soliton boundaries and related topological defects in bilayer graphene. We find that each soliton consists of an atomic-scale registry shift between the two graphene layers occurring over 6–11 nm. We infer the minimal energy barrier to interlayer translation and observe soliton motion during in situ heating above 1,000 °C. The abundance of these structures across a variety of samples, as well as their unusual properties, suggests that they will have substantial effects on the electronic and mechanical properties of bilayer graphene. PMID:23798395
Electronic, Mechanical, and Dielectric Properties of Two-Dimensional Atomic Layers of Noble Metals
NASA Astrophysics Data System (ADS)
Kapoor, Pooja; Kumar, Jagdish; Kumar, Arun; Kumar, Ashok; Ahluwalia, P. K.
2017-01-01
We present density functional theory-based electronic, mechanical, and dielectric properties of monolayers and bilayers of noble metals (Au, Ag, Cu, and Pt) taken with graphene-like hexagonal structure. The Au, Ag, and Pt bilayers stabilize in AA-stacked configuration, while the Cu bilayer favors the AB stacking pattern. The quantum ballistic conductance of the noble-metal mono- and bilayers is remarkably increased compared with their bulk counterparts. Among the studied systems, the tensile strength is found to be highest for the Pt monolayer and bilayer. The noble metals in mono- and bilayer form show distinctly different electron energy loss spectra and reflectance spectra due to the quantum confinement effect on going from bulk to the monolayer limit. Such tunability of the electronic and dielectric properties of noble metals by reducing the degrees of freedom of electrons offers promise for their use in nanoelectronics and optoelectronics applications.
RNA and DNA interactions with zwitterionic and charged lipid membranes - a DSC and QCM-D study.
Michanek, Agnes; Kristen, Nora; Höök, Fredrik; Nylander, Tommy; Sparr, Emma
2010-04-01
The aim of the present study is to establish under which conditions tRNA associates with phospholipid bilayers, and to explore how this interaction influences the lipid bilayer. For this purpose we have studied the association of tRNA or DNA of different sizes and degrees of base pairing with a set of model membrane systems with varying charge densities, composed of zwitterionic phosphatidylcholines (PC) in mixtures with anionic phosphatidylserine (PS) or cationic dioctadecyl-dimethyl-ammoniumbromide (DODAB), and with fluid or solid acyl-chains (oleoyl, myristoyl and palmitoyl). To prove and quantify the attractive interaction between tRNA and model-lipid membrane we used quartz crystal microbalance with dissipation (QCM-D) monitoring to study the tRNA adsorption to deposit phospholipid bilayers from solutions containing monovalent (Na(+)) or divalent (Ca(2+)) cations. The influence of the adsorbed polynucleic acids on the lipid phase transitions and lipid segregation was studied by means of differential scanning calorimetry (DSC). The basic findings are: i) tRNA adsorbs to zwitterionic liquid-crystalline and gel-phase phospholipid bilayers. The interaction is weak and reversible, and cannot be explained only on the basis of electrostatic attraction. ii) The adsorbed amount of tRNA is higher for liquid-crystalline bilayers compared to gel-phase bilayers, while the presence of divalent cations show no significant effect on the tRNA adsorption. iii) The adsorption of tRNA can lead to segregation in the mixed 1,2-dimyristoyl-sn-glycerol-3-phosphatidylcholine (DMPC)-1,2-dimyristoyl-sn-glycero-3-phosphatidylserine (DMPS) and DMPC-DODAB bilayers, where tRNA is likely excluded from the anionic DMPS-rich domains in the first system, and associated with the cationic DODAB-rich domains in the second system. iv) The addition of shorter polynucleic acids influence the chain melting transition and induce segregation in a mixed DMPC-DMPS system, while larger polynucleic acids do not influence the melting transition in these system. The results in this study on tRNA-phospholipid interactions can have implications for understanding its biological function in, e.g., the cell nuclei, as well as in applications in biotechnology and medicine. Copyright 2010 Elsevier B.V. All rights reserved.
Interaction of two overlapped synthetic peptides from GB virus C with charged mono and bilayers.
Alay, M; Haro, I; Alsina, M A; Girona, V; Prat, J; Busquets, M A
2013-05-01
The physical chemistry properties and interactions of E2 (125-139) and E2 (120-139) peptide sequences from GB virus C with model cell membranes were investigated by means of several biophysical techniques in order to gain better understanding of the effect of peptide length and lipid charge on membrane binding. The peptides, having one net negative charge at the pH of the assays, interacted with monolayers of all the phospholipids regardless of the charge but with more extent with the cationic DPTAP thus indicating that the interaction had both a hydrophobic and an electrostatic component as has been observed for other peptides of the same family. The peptides were able to leakage contents of liposomes and showed fluorescence energy transfer in vesicles depending on the vesicles lipid composition. On another hand, circular dichroism has shown that the peptides exist mainly as a mixture of disordered structure and β-type conformations in aqueous solution but diminished its unstructured content, folding preferentially into α-helical conformation upon interaction with hydrophobic solvents or positively charged lipid surfaces. Altogether, results of this work indicate that the peptides interact at a surface level, penetrate into bilayers composed of fluid lipids and that conformational changes could be responsible for this effect. Copyright © 2012 Elsevier B.V. All rights reserved.
Coupling between the Dynamics of Water and Surfactants in Lyotropic Liquid Crystals.
McDaniel, Jesse G; Yethiraj, Arun
2017-05-18
Bilayers composed of lipid or surfactant molecules are central to biological membranes and lamellar lyotropic liquid crystalline (LLC) phases. Common to these systems are phases that exhibit either ordered or disordered packing of the hydrophobic tails. In this work, we study the impact of surfactant ordering, i.e., disordered L α and ordered L β LLC phases, on the dynamics of water and sodium ions in the lamellar phases of dicarboxylate gemini surfactants. We study the different phases at identical hydration levels by changing the length of the hydrophobic tails; surfactants with shorter tails form L α phases and those with longer tails form L β phases. We find that the L α phases exhibit lower density and greater compressibility than the L β phases, with a hydration-dependent headgroup surface area. These structural differences significantly affect the relative dynamic properties of the phases, primarily the mobility of the surfactant molecules tangential to the bilayer surface, as well as the rates of water and ion diffusion. We find ∼20-50% faster water diffusion in the L α phases compared to the L β phases, with the differences most pronounced at low hydration. This coupling between water dynamics and surfactant mobility is verified using additional simulations in which the surfactant tails are frozen. Our study indicates that gemini surfactant LLCs provide an important prototypical system for characterizing properties shared with more complex biological lipid membranes.
Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.
1997-08-05
A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.
Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.
1997-01-01
A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.
NASA Astrophysics Data System (ADS)
Chang, Chun-Chieh; Huang, Li; Nogan, John; Chen, Hou-Tong
2018-05-01
We experimentally demonstrate high-performance narrowband terahertz (THz) bandpass filters through cascading multiple bilayer metasurface antireflection structures. Each bilayer metasurface, consisting of a square array of silicon pillars with a self-aligned top gold resonator-array and a complementary bottom gold slot-array, enables near-zero reflection and simultaneously close-to-unity single-band transmission at designed operational frequencies in the THz spectral region. The THz bandpass filters based on stacked bilayer metasurfaces allow a fairly narrow, high-transmission passband, and a fast roll-off to an extremely clean background outside the passband, thereby providing superior bandpass performance. The demonstrated scheme of narrowband THz bandpass filtering is of great importance for a variety of applications where spectrally clean, high THz transmission over a narrow bandwidth is desired, such as THz spectroscopy and imaging, molecular detection and monitoring, security screening, and THz wireless communications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chun-Chieh; Huang, Li; Nogan, John
We experimentally demonstrate high-performance narrowband terahertz (THz) bandpass filters through cascading multiple bilayer metasurface antireflection structures. Each bilayer metasurface, consisting of a square array of silicon pillars with a self-aligned top gold resonator-array and a complementary bottom gold slot-array, enables near-zero reflection and simultaneously close-to-unity single-band transmission at designed operational frequencies in the THz spectral region. The THz bandpass filters based on stacked bilayer metasurfaces allow a fairly narrow, high-transmission passband, and a fast roll-off to an extremely clean background outside the passband, thereby providing superior bandpass performance. The demonstrated scheme of narrowband THz bandpass filtering is of great importancemore » for a variety of applications where spectrally clean, high THz transmission over a narrow bandwidth is desired, such as THz spectroscopy and imaging, molecular detection and monitoring, security screening, and THz wireless communications.« less
Chang, Chun-Chieh; Huang, Li; Nogan, John; ...
2018-02-01
We experimentally demonstrate high-performance narrowband terahertz (THz) bandpass filters through cascading multiple bilayer metasurface antireflection structures. Each bilayer metasurface, consisting of a square array of silicon pillars with a self-aligned top gold resonator-array and a complementary bottom gold slot-array, enables near-zero reflection and simultaneously close-to-unity single-band transmission at designed operational frequencies in the THz spectral region. The THz bandpass filters based on stacked bilayer metasurfaces allow a fairly narrow, high-transmission passband, and a fast roll-off to an extremely clean background outside the passband, thereby providing superior bandpass performance. The demonstrated scheme of narrowband THz bandpass filtering is of great importancemore » for a variety of applications where spectrally clean, high THz transmission over a narrow bandwidth is desired, such as THz spectroscopy and imaging, molecular detection and monitoring, security screening, and THz wireless communications.« less
Ab initio studies of hydrogen adatoms on bilayer graphene
NASA Astrophysics Data System (ADS)
Mapasha, R. E.; Ukpong, A. M.; Chetty, N.
2012-05-01
We present a comparative density functional study of the adsorption of hydrogen on bilayer graphene. Six different exchange-correlation functionals are employed to explore the possible configurations of hydrogen adsorption at 50% coverage. Using the four variants of the nonlocal van der Waals density functional, we identify three distinct competing configurations that retain the coupled bilayer structure at 0 K. One of the configurations undergoes a spontaneous transformation from hexagonal to tetrahedral structure, under hydrogenation, with heat of formation ranging between -0.03 eV (vdW-DF) and -0.37 eV (vdW-DFC09x). This configuration has a finite band gap of around 3 eV, whereas all other competing configurations are either semimetallic or metallic. We also find two unique low-energy competing configurations of decoupled bilayer graphene, and therefore suggest the possibility of graphene exfoliation by hydrogen intercalation.
Pu, Juan; Komvopoulos, Kyriakos
2014-06-01
Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Challenges in the Development of Functional Assays of Membrane Proteins
Tiefenauer, Louis; Demarche, Sophie
2012-01-01
Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.
Cheng, H.-W.; Dienemann, J.-N.; Stock, P.; Merola, C.; Chen, Y.-J.; Valtiner, M.
2016-01-01
Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations. PMID:27452615
Cheng, H-W; Dienemann, J-N; Stock, P; Merola, C; Chen, Y-J; Valtiner, M
2016-07-25
Tuning chemical structure and molecular layering of ionic liquids (IL) at solid interfaces offers leverage to tailor performance of ILs in applications such as super-capacitors, catalysis or lubrication. Recent experimental interpretations suggest that ILs containing cations with long hydrophobic tails form well-ordered bilayers at interfaces. Here we demonstrate that interfacial bilayer formation is not an intrinsic quality of hydrophobic ILs. In contrast, bilayer formation is triggered by boundary conditions including confinement, surface charging and humidity present in the IL. Therefore, we performed force versus distance profiles using atomic force microscopy and the surface forces apparatus. Our results support models of disperse low-density bilayer formation in confined situations, at high surface charging and/or in the presence of water. Conversely, interfacial structuring of long-chain ILs in dry environments and at low surface charging is disordered and dominated by bulk structuring. Our results demonstrate that boundary conditions such as charging, confinement and doping by impurities have decisive influence on structure formation of ILs at interfaces. As such, these results have important implications for understanding the behavior of solid/IL interfaces as they significantly extend previous interpretations.
Hybrid lipid-based nanostructures
NASA Astrophysics Data System (ADS)
Dayani, Yasaman
Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and then, using a sonication process, a uniform lipid bilayer that supports the incorporation of membrane proteins is formed. These bilayer-coated carbon nanotubes are highly dispersible and stable in aqueous solution, and they can be used in development of various biosensors and energy producing devices. In the other hybrid nanostructure, the lipid bilayer of a liposome is covalently anchored to a biocompatible poly(ethylene) glycol (PEG) hydrogel core using double-stranded DNA (dsDNA) linkers. Release studies shows that nano-size hydrogel-anchored liposomes are exceptionally stable, and they can be used as biomimetic model membranes that mimic the connectivity between the cytoskeleton and the plasma membrane. After lipid bilayer removal, dsDNA linkers can provide programmable nanogels decorated with oligonucleotides with potential sites for further molecular assembly. These stable nanostructures can be useful for oligonucleotide and drug delivery applications. The developed hydrogel-anchored liposomes are exploited for encapsulation and intracellular delivery of therapeutic peptide. Peptides with anti-cancer properties are successfully encapsulated in hydrogel core of pH-sensitive liposomes during rehydration process. Liposomes release their cargo at acidic pH. Confocal microscopy confirms the intracellular delivery of liposomes through an endocytotic pathway.
Woolf, T B
1997-11-01
Understanding the role of the lipid bilayer in membrane protein structure and dynamics is needed for tertiary structure determination methods. However, the molecular details are not well understood. Molecular dynamics computer calculations can provide insight into these molecular details of protein:lipid interactions. This paper reports on 10 simulations of individual alpha-helices in explicit lipid bilayers. The 10 helices were selected from the bacteriorhodopsin structure as representative alpha-helical membrane folding components. The bilayer is constructed of dimyristoyl phosphatidylcholine molecules. The only major difference between simulations is the primary sequence of the alpha-helix. The results show dramatic differences in motional behavior between alpha-helices. For example, helix A has much smaller root-mean-squared deviations than does helix D. This can be understood in terms of the presence of aromatic residues at the interface for helix A that are not present in helix D. Additional motions are possible for the helices that contain proline side chains relative to other amino acids. The results thus provide insight into the types of motion and the average structures possible for helices within the bilayer setting and demonstrate the strength of molecular simulations in providing molecular details that are not directly visualized in experiments.
Structure and hydration of membranes embedded with voltage-sensing domains.
Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J Alfredo; Schow, Eric V; Worcester, David L; Gawrisch, Klaus; Tobias, Douglas J; White, Stephen H; Swartz, Kenton J
2009-11-26
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.
Structure and hydration of membranes embedded with voltage-sensing domains
Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J. Alfredo; Schow, Eric V.; Worcester, David L.; Gawrisch, Klaus; Tobias, Douglas; White, Stephen H.; Swartz, Kenton J.
2009-01-01
Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1–S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1–S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field. PMID:19940918
Huang, Zhe; Parrott, Edward P J; Park, Hongkyu; Chan, Hau Ping; Pickwell-MacPherson, Emma
2014-02-15
A thin-film terahertz polarizer is proposed and realized via a tunable bilayer metal wire-grid structure to achieve high extinction ratios and good transmission. The polarizer is fabricated on top of a thin silica layer by standard micro-fabrication techniques to eliminate the multireflection effects. The tunable alignment of the bilayer aluminum-wire grid structure enables tailoring of the extinction ratio and transmission characteristics. Using terahertz time-domain spectroscopy (THz-TDS), a fabricated polarizer is characterized, with extinction ratios greater than 50 dB and transmission losses below 1 dB reported in the 0.2-1.1 THz frequency range. These characteristics can be improved by further tuning the polarizer parameters such as the pitch, metal film thickness, and lateral displacement.
Liao, Xiangbiao; Xiao, Hang; Lu, Xiaobo; Chen, Youlong; Shi, Xiaoyang; Chen, Xi
2018-02-23
A new phosphorous allotrope, closed-edged bilayer phosphorene nanoribbon, is proposed via radially deforming armchair phosphorene nanotubes. Using molecular dynamics simulations, the transformation pathway from round PNTs falls into two types of collapsed structures: arc-like and sigmoidal bilayer nanoribbons, dependent on the number of phosphorene unit cells. The fabricated nanoribbions are energetically more stable than their parent nanotubes. It is also found via ab initio calculations that the band structure along tube axis substantially changes with the structural transformation. The direct-to-indirect transition of band gap is highlighted when collapsing into the arc-like nanoribbons but not the sigmoidal ones. Furthermore, the band gaps of these two types of nanoribbons show significant size-dependence of the nanoribbon width, indicative of wider tunability of their electrical properties.
Kleinschmidt, J H; Tamm, L K
1999-04-20
The mechanism of insertion and folding of an integral membrane protein has been investigated with the beta-barrel forming outer membrane protein A (OmpA) of Escherichia coli. This work describes a new approach to this problem by combining structural information obtained from tryptophan fluorescence quenching at different depths in the lipid bilayer with the kinetics of the refolding process. Experiments carried out over a temperature range between 2 and 40 degrees C allowed us to detect, trap, and characterize previously unidentified folding intermediates on the pathway of OmpA insertion and folding into lipid bilayers. Three membrane-bound intermediates were found in which the average distances of the Trps were 14-16, 10-11, and 0-5 A, respectively, from the bilayer center. The first folding intermediate is stable at 2 degrees C for at least 1 h. A second intermediate has been isolated at temperatures between 7 and 20 degrees C. The Trps move 4-5 A closer to the center of the bilayer at this stage. Subsequently, in an intermediate that is observable at 26-28 degrees C, the Trps move another 5-10 A closer to the center of the bilayer. The final (native) structure is observed at higher temperatures of refolding. In this structure, the Trps are located on average about 9-10 A from the bilayer center. Monitoring the evolution of Trp fluorescence quenching by a set of brominated lipids during refolding at various temperatures therefore allowed us to identify and characterize intermediate states in the folding process of an integral membrane protein.
Using a patterned grating structure to create lipid bilayer platforms insensitive to air bubbles.
Han, Chung-Ta; Chao, Ling
2015-01-07
Supported lipid bilayers (SLBs) have been used for various biosensing applications. The bilayer structure enables embedded lipid membrane species to maintain their native orientation, and the two-dimensional fluidity is crucial for numerous biomolecular interactions to occur. The platform integrated with a microfluidic device for reagent transport and exchange has great potential to be applied with surface analytical tools. However, SLBs can easily be destroyed by air bubbles during assay reagent transport and exchange. Here, we created a patterned obstacle grating structured surface in a microfluidic channel to protect SLBs from being destroyed by air bubbles. Unlike all of the previous approaches using chemical modification or adding protection layers to strengthen lipid bilayers, the uniqueness of this approach is that it uses the patterned obstacles to physically trap water above the bilayers to prevent the air-water interface from directly coming into contact with and peeling the bilayers. We showed that our platform with certain grating geometry criteria can provide promising protection to SLBs from air bubbles. The required obstacle distance was found to decrease when we increased the air-bubble movement speed. In addition, the interaction assay results from streptavidin and biotinylated lipids in the confined SLBs suggested that receptors at the SLBs retained the interaction ability after air-bubble treatment. The results showed that the developed SLB platform can preserve both high membrane fluidity and high accessibility to the outside environment, which have never been simultaneously achieved before. Incorporating the built platforms with some surface analytical tools could open the bottleneck of building highly robust in vitro cell-membrane-related bioassays.
High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene
Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng
2012-01-01
Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199
Edge effects on band gap energy in bilayer 2H-MoS{sub 2} under uniaxial strain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Liang; Wang, Jin; Dongare, Avinash M., E-mail: dongare@uconn.edu
2015-06-28
The potential of ultrathin MoS{sub 2} nanostructures for applications in electronic and optoelectronic devices requires a fundamental understanding in their electronic structure as a function of strain. Previous experimental and theoretical studies assume that an identical strain and/or stress state is always maintained in the top and bottom layers of a bilayer MoS{sub 2} film. In this study, a bilayer MoS{sub 2} supercell is constructed differently from the prototypical unit cell in order to investigate the layer-dependent electronic band gap energy in a bilayer MoS{sub 2} film under uniaxial mechanical deformations. The supercell contains an MoS{sub 2} bottom layer andmore » a relatively narrower top layer (nanoribbon with free edges) as a simplified model to simulate the as-grown bilayer MoS{sub 2} flakes with free edges observed experimentally. Our results show that the two layers have different band gap energies under a tensile uniaxial strain, although they remain mutually interacting by van der Waals interactions. The deviation in their band gap energies grows from 0 to 0.42 eV as the uniaxial strain increases from 0% to 6% under both uniaxial strain and stress conditions. The deviation, however, disappears if a compressive uniaxial strain is applied. These results demonstrate that tensile uniaxial strains applied to bilayer MoS{sub 2} films can result in distinct band gap energies in the bilayer structures. Such variations need to be accounted for when analyzing strain effects on electronic properties of bilayer or multilayered 2D materials using experimental methods or in continuum models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitt, Jay P.; Bryce, David A.; Minteer, Shelley D.
The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this paper, we employ in-situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayersmore » deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically-trapped phospholipid vesicle membranes. Finally and additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.« less
Kitt, Jay P.; Bryce, David A.; Minteer, Shelley D.; ...
2018-05-14
The phospholipid-water partition coefficient is a commonly measured parameter that correlates with drug efficacy, small-molecule toxicity, and accumulation of molecules in biological systems in the environment. Despite the utility of this parameter, methods for measuring phospholipid-water partition coefficients are limited. This is due to the difficulty of making quantitative measurements in vesicle membranes or supported phospholipid bilayers, both of which are small-volume phases that challenge the sensitivity of many analytical techniques. In this paper, we employ in-situ confocal Raman microscopy to probe the partitioning of a model membrane-active compound, 2-(4-isobutylphenyl) propionic acid or ibuprofen, into both hybrid- and supported-phospholipid bilayersmore » deposited on the pore walls of individual chromatographic particles. The large surface-area-to-volume ratio of chromatographic silica allows interrogation of a significant lipid bilayer area within a very small volume. The local phospholipid concentration within a confocal probe volume inside the particle can be as high as 0.5 M, which overcomes the sensitivity limitations of making measurements in the limited membrane areas of single vesicles or planar supported bilayers. Quantitative determination of ibuprofen partitioning is achieved by using the phospholipid acyl-chains of the within-particle bilayer as an internal standard. This approach is tested for measurements of pH-dependent partitioning of ibuprofen into both hybrid-lipid and supported-lipid bilayers within silica particles, and the results are compared with octanol-water partitioning and with partitioning into individual optically-trapped phospholipid vesicle membranes. Finally and additionally, the impact of ibuprofen partitioning on bilayer structure is evaluated for both within-particle model membranes and compared with the structural impacts of partitioning into vesicle lipid bilayers.« less
Nagle, J F; Wiener, M C
1989-01-01
Three relations are derived that connect low angle diffraction/scattering results obtained from lipid bilayers to other structural quantities of interest. The first relates the area along the surface of the bilayer, the measured specific volume, and the zeroth order structure factor, F(0). The second relates the size of the trough in the center of the electron density profile, the volume of the terminal methyl groups, and the volume of the methylene groups in the fatty acid chains. The third relates the size of the headgroup electron density peak, the volume of the headgroup, and the volumes of water and hydrocarbon in the headgroup region. These relations, which are easily modified for neutron diffraction, are useful for obtaining structural quantities from electron density profiles obtained by fitting model profiles to measured low angle x-ray intensities. PMID:2713444
NASA Astrophysics Data System (ADS)
Yong, Huadong; Zhao, Meng; Jing, Ze; Zhou, Youhe
2014-09-01
In this paper, the electromagnetic response and shielding behaviour of superconductor-ferromagnetic bilayer structure are studied. The magnetomechanical coupling in ferromagnetic materials is also considered. Based on the linear piezomagnetic coupling model and anti-plane shear deformation, the current density and magnetic field in superconducting strip are obtained firstly. The effect of shear stress on the magnetization of strip is discussed. Then, we consider the magnetic cloak for superconductor-ferromagnetic bilayer structure. The magnetic permeability of ferromagnetic material is obtained for perfect cloaking in uniform magnetic field with magnetomechanical coupling in ferromagnet. The simulation results show that the electromagnetic response in superconductors will change by applying the stress only to the ferromagnetic material. In addition, the performance of invisibility of structure for non-uniform field will be affected by mechanical stress. It may provide a method to achieve tunability of superconducting properties with mechanical loadings.
NASA Astrophysics Data System (ADS)
Inakazu, Fumi; Noma, Yusuke; Ogomi, Yuhei; Hayase, Shuzi
2008-09-01
Dye-sensitized solar cells (DSCs) containing dye-bilayer structure of black dye and NK3705 (3-carboxymethyl-5-[3-(4-sulfobutyl)-2(3H)-bezothiazolylidene]-2-thioxo-4-thiazolidinone, sodium salt) in one TiO2 layer (2-TiO-BD-NK) are reported. The 2-TiO-BD-NK structure was fabricated by staining one TiO2 layer with these two dyes, step by step, under a pressurized CO2 condition. The dye-bilayer structure was observed by using a confocal laser scanning microscope. The short circuit current (Jsc) and the incident photon to current efficiency of the cell (DSC-2-TiO-BD-NK) was almost the sum of those of DSC stained with black dye only (DSC-1-TiO-BD) and DSC stained with NK3705 only (DSC-1-TiO-NK).
Rheology of Membrane-Attached Minimal Actin Cortices.
Nöding, Helen; Schön, Markus; Reinermann, Corinna; Dörrer, Nils; Kürschner, Aileen; Geil, Burkhard; Mey, Ingo; Heussinger, Claus; Janshoff, Andreas; Steinem, Claudia
2018-04-26
The actin cortex is a thin cross-linked network attached to the plasma membrane, which is responsible for the cell's shape during migration, division, and growth. In a reductionist approach, we created a minimal actin cortex (MAC) attached to a lipid membrane to correlate the filamentous actin architecture with its viscoelastic properties. The system is composed of a supported 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine bilayer doped with the receptor lipid phosphatidylinositol(4,5)-bisphosphate (PtdIns(4,5)P 2 ) to which a constitutively active mutant of ezrin, which is a direct membrane-cytoskeleton linker, is bound. The formation of the MAC on the supported lipid bilayer is analyzed as a function of increasing PtdIns(4,5)P 2 /ezrin pinning points, revealing an increase in the intersections between actin filaments, that is, the node density of the MAC. Bead tracking microrheology on the membrane-attached actin network provides information about its viscoelastic properties. The results show that ezrin serves as a dynamic cross-linker for the actin cortex attached to the lipid bilayer and that the stiffness of the network is influenced by the pinning point density, relating the plateau storage modulus G 0 to the node density of the MAC.
Campos, Paula P; Dunne, Aishling; Delaney, Colm; Moloney, Cara; Moulton, Simon E; Benito-Lopez, Fernando; Ferreira, Marystela; Diamond, Dermot; Florea, Larisa
2018-04-10
Herein, we present the synthesis of linear photochromic norbornene polymers bearing spiropyran side groups (poly(SP-R)) and their assembly into layer-by-layer (LbL) films on glass substrates when converted to poly(MC-R) under UV irradiation. The LbL films were composed of bilayers of poly(allylamine hydrochloride) (PAH) and poly(MC-R), forming (PAH/poly(MC-R)) n coatings. The merocyanine (MC) form presents a significant absorption band in the visible spectral region, which allowed tracking of the LbL deposition process by UV-vis spectroscopy, which showed a linear increase of the characteristic MC absorbance band with increasing number of bilayers. The thickness and morphology of the (PAH/poly(MC-R)) n films were characterized by ellipsometry and scanning electron microscopy, respectively, with a height of ∼27.5 nm for the first bilayer and an overall height of ∼165 nm for the (PAH/poly(MC-R)) 5 multilayer film. Prolonged white light irradiation (22 h) resulted in a gradual decrease of the MC band by 90.4 ± 2.9% relative to the baseline, indicating the potential application of these films as coatings for photocontrolled delivery systems.
Interplay of Structure and Dynamics in Biomaterials
NASA Astrophysics Data System (ADS)
Vodnala, Preeti
Study of structure and dynamic behavior is essential to understand molecular motions in biological systems. In this work, two biomaterials were studied to address membrane properties and protein diffusion. For the first project, we studied the structure of liposomes, artificial vesicles that are used for drug encapsulation and administration of pharmaceuticals or cellular nutrients. Small-angle x-ray scattering (SAXS) was used to determine the structural properties of different liposomes composed of egg-PC and cholesterol bilayer. We examined the location of cholesterol by labelling cholesterol with bromine molecule and reveal that cholesterol is located one side of the leaflet adjusting itself to the curvature of a liposome. In my second project, we studied the dynamics of concentrated suspensions of alpha crystallin, one of the most abundant proteins in the human eye lens using X-ray photon correlation spectroscopy (XPCS). An improved understanding of dynamics could point the way towards treatments presbyopia and cataract. The dynamics were measured at volume fraction close to the critical volume fraction for the glass transition, where the intermediate scattering function, ƒ(q,T) could be well fit using a double exponential decay. The measured relaxation is in reasonable agreement with published molecular dynamics simulations for the relaxation times of hard-sphere colloids.
Xiang, T X; Anderson, B D
1997-01-01
Solubility-diffusion theory, which treats the lipid bilayer membrane as a bulk lipid solvent into which permeants must partition and diffuse across, fails to account for the effects of lipid bilayer chain order on the permeability coefficient of any given permeant. This study addresses the scaling factor that must be applied to predictions from solubility-diffusion theory to correct for chain ordering. The effects of bilayer chemical composition, temperature, and phase structure on the permeability coefficient (Pm) of acetic acid were investigated in large unilamellar vesicles by a combined method of NMR line broadening and dynamic light scattering. Permeability values were obtained in distearoylphosphatidylcholine, dipalmitoylphosphatidylcholine, dimyristoylphosphatidylcholine, and dilauroylphosphatidylcholine bilayers, and their mixtures with cholesterol, at various temperatures both above and below the gel-->liquid-crystalline phase transition temperatures (Tm). A new scaling factor, the permeability decrement f, is introduced to account for the decrease in permeability coefficient from that predicted by solubility-diffusion theory owing to chain ordering in lipid bilayers. Values of f were obtained by division of the observed Pm by the permeability coefficient predicted from a bulk solubility-diffusion model. In liquid-crystalline phases, a strong correlation (r = 0.94) between f and the normalized surface density sigma was obtained: in f = 5.3 - 10.6 sigma. Activation energies (Ea) for the permeability of acetic acid decreased with decreasing phospholipid chain length and correlated with the sensitivity of chain ordering to temperature, [symbol: see text] sigma/[symbol: see text](1/T), as chain length was varied. Pm values decreased abruptly at temperatures below the main phase transition temperatures in pure dipalmitoylphosphatidylcholine and dimyristoylphosphatidylcholine bilayers (30-60-fold) and below the pretransition in dipalmitoylphosphatidylcholine bilayers (8-fold), and the linear relationship between in f and sigma established for liquid-crystalline bilayers was no longer followed. However, in both gel and liquid-crystalline phases in f was found to exhibit an inverse correlation with free surface area (in f = -0.31 - 29.1/af, where af is the average free area (in square angstroms) per lipid molecule). Thus, the lipid bilayer permeability of acetic acid can be predicted from the relevant chain-packing properties in the bilayer (free surface area), regardless of whether chain ordering is varied by changes in temperature, lipid chain length, cholesterol concentration, or bilayer phase structure, provided that temperature effects on permeant dehydration and diffusion and the chain-length effects on bilayer barrier thickness are properly taken into account. PMID:8994607
Feller, S E; Yin, D; Pastor, R W; MacKerell, A D
1997-01-01
A potential energy function for unsaturated hydrocarbons is proposed and is shown to agree well with experiment, using molecular dynamics simulations of a water/octene interface and a dioleoyl phosphatidylcholine (DOPC) bilayer. The simulation results verify most of the assumptions used in interpreting the DOPC experiments, but suggest a few that should be reconsidered. Comparisons with recent results of a simulation of a dipalmitoyl phosphatidylcholine (DPPC) lipid bilayer show that disorder is comparable, even though the temperature, hydration level, and surface area/lipid for DOPC are lower. These observations highlight the dramatic effects of unsaturation on bilayer structure. Images FIGURE 3 PMID:9370424
Rai, Durgesh K.; Sharma, Veerendra K.; Anunciado, Divina; ...
2016-08-09
The interaction between lipid bilayers and Amyloid β peptide (Aβ) plays a critical role in proliferation of Alzheimer’s disease (AD). AD is expected to affect one in every 85 humans by 2050, and therefore, deciphering the interplay of Aβ and lipid bilayers at the molecular level is of profound importance. In this work, we applied an array of neutron scattering methods to study the structure and dynamics of Aβ(1–40) interacting 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) bilayers. In the structural investigations of lipid bilayer’s response to Aβ binding, Small Angle Neutron Scattering and Neutron Membrane Diffraction revealed that the Aβ anchors firmly to themore » highly charged DMPG bilayers in the interfacial region between water and hydrocarbon chain, and it doesn’t penetrate deeply into the bilayer. This association mode is substantiated by the dynamics studies with high resolution Quasi-Elastic Neutron Scattering experiments, showing that the addition of Aβ mainly affects the slower lateral motion of lipid molecules, especially in the fluid phase, but not the faster internal motion. The results revealed that Aβ associates with the highly charged membrane in surface with limited impact on the structure, but the altered membrane dynamics could have more influence on other membrane processes.« less
Tokue, Hiroshi; Oyaizu, Kenichi; Sukegawa, Takashi; Nishide, Hiroyuki
2014-03-26
A couple of totally reversible redox-active molecules, which are different in redox potentials, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) and viologen (V(2+)), were employed to give rise to a rectified redox conduction effect. Single-layer and bilayer devices were fabricated using polymers containing these sites as pendant groups per repeating unit. The devices were obtained by sandwiching the redox polymer layer(s) with indium tin oxide (ITO)/glass and Pt foil electrodes. Electrochemical measurements of the single-layer device composed of polynorbornene-bearing TEMPO (PTNB) exhibited a diffusion-limited current-voltage response based on the TEMPO(+)/TEMPO exchange reaction, which was almost equivalent to a redox gradient through the PTNB layer depending upon the thickness. The bilayer device gave rise to the current rectification because of the thermodynamically favored cross-reaction between TEMPO(+) and V(+) at the polymer/polymer interface. A current-voltage response obtained for the bilayer device demonstrated a two-step diffusion-limited current behavior as a result of the concurrent V(2+)/V(+) and V(+)/V(0) exchange reactions according to the voltage and suggested that the charge transport process through the device was most likely to be rate-determined by a redox gradient in the polymer layer. Current collection experiments revealed a charge transport balance throughout the device, as a result of the electrochemical stability and robustness of the polymers in both redox states.
Xu, Wenlong; Song, Aixin; Dong, Shuli; Chen, Jingfei; Hao, Jingcheng
2013-10-08
Vesicles are the most common form of bilayer structures in fatty acid/soap mixtures in aqueous solutions; however, a peculiar bilayer structure called a "planar sheet" was found for the first time in the mixtures. In the past few decades, considerable research has focused on the formation theory of bilayers in fatty acid/soap mixtures. The hydrogen bond theory has been widely accepted by scientists to explain the formation of bilayers. However, except for the hydrogen bond, no other driving forces were proposed systematically. In this work, three kinds of weak interactions were investigated in detail, which could perfectly demonstrate the formation mechanism of bilayer structures in the fatty acid/soap mixtures in aqueous solutions. (i) The influence of hydrophobic interaction was detected by changing the chain length of fatty acid (C(n)H(2n+1)COOH), in which n = 10 to 18, the phase behavior was investigated, and the phase region was presented. With the help of cryogenic transmission electron microscopy (cryo-TEM) observations, deuterium nuclear magnetic resonance ((2)H NMR), and X-ray diffraction (XRD) measurements, the vesicles and planar sheets were determined. The chain length of C(n)H(2n+1)COOH has an important effect on the physical state of the hydrophobic chain, resulting in an obvious difference in the viscoelasticity of the solution samples. (ii) The existence of hydrogen bonds between fatty acids and their soaps in aqueous solutions was demonstrated by Fourier transform infrared (FT-IR) spectroscopy and molecule dynamical simulation. From the pH measurements, the pH ranges of the bilayer formation were at the pKa values of fatty acids, respectively. (iii) Counterions can be embedded in the stern layer of the bilayers and screen the electrostatic repulsion between the COO(-) anionic headgroups. FT-IR characterization demonstrated a bidentate bridging coordination mode between counterions and carboxylates. The conductivity measurements provided the degree of counterion binding (β = 0.854), indicating the importance of the counterions.
Controlling the shape of membrane protein polyhedra
NASA Astrophysics Data System (ADS)
Li, Di; Kahraman, Osman; Haselwandter, Christoph A.
2017-03-01
Membrane proteins and lipids can self-assemble into membrane protein polyhedral nanoparticles (MPPNs). MPPNs have a closed spherical surface and a polyhedral protein arrangement, and may offer a new route for structure determination of membrane proteins and targeted drug delivery. We develop here a general analytic model of how MPPN self-assembly depends on bilayer-protein interactions and lipid bilayer mechanical properties. We find that the bilayer-protein hydrophobic thickness mismatch is a key molecular control parameter for MPPN shape that can be used to bias MPPN self-assembly towards highly symmetric and uniform MPPN shapes. Our results suggest strategies for optimizing MPPN shape for structural studies of membrane proteins and targeted drug delivery.
Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale
NASA Astrophysics Data System (ADS)
Hauptmann, Nadine; Dupé, Melanie; Hung, Tzu-Chao; Lemmens, Alexander K.; Wegner, Daniel; Dupé, Bertrand; Khajetoorians, Alexander A.
2018-03-01
We image simultaneously the geometric, the electronic, and the magnetic structures of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX) to independently characterize the geometric as well as the electronic and magnetic structures of nonflat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the electronic structure at the atomic level and the correlation with the resultant spin-spiral ground state. By additionally utilizing adatom manipulation, we reveal the chiral magnetic ground state of portions of the unit cell that were not previously imaged with spin-polarized scanning tunneling microscopy alone. Using density functional theory, we investigate the structural and electronic properties of the reconstructed bilayer and identify the favorable stoichiometry regime in agreement with our experimental result.
Structure stability of lytic peptides during their interactions with lipid bilayers.
Chen, H M; Lee, C H
2001-10-01
In this work, molecular dynamics simulations were used to examine the consequences of a variety of analogs of cecropin A on lipid bilayers. Analog sequences were constructed by replacing either the N- or C-terminal helix with the other helix in native or reverse sequence order, by making palindromic peptides based on both the N- and C-terminal helices, and by deleting the hinge region. The structure of the peptides was monitored throughout the simulation. The hinge region appeared not to assist in maintaining helical structure but help in motion flexibility. In general, the N-terminal helix of peptides was less stable than the C-terminal one during the interaction with anionic lipid bilayers. Sequences with hydrophobic helices tended to regain helical structure after an initial loss while sequences with amphipathic helices were less able to do this. The results suggests that hydrophobic design peptides have a high structural stability in an anionic membrane and are the candidates for experimental investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Ryan W.; Brozik, James A.; Brozik, Susan Marie
2007-03-01
The introduction of functional transmembrane proteins into supported bilayer-based biomimetic systems presents a significant challenge for biophysics. Among the various methods for producing supported bilayers, liposomal fusion offers a versatile method for the introduction of membrane proteins into supported bilayers on a variety of substrates. In this study, the properties of protein containing unilamellar phosphocholine lipid bilayers on nanoporous silica microspheres are investigated. The effects of the silica substrate, pore structure, and the substrate curvature on the stability of the membrane and the functionality of the membrane protein are determined. Supported bilayers on porous silica microspheres show a significant increasemore » in surface area on surfaces with structures in excess of 10 nm as well as an overall decrease in stability resulting from increasing pore size and curvature. Comparison of the liposomal and detergent-mediated introduction of purified bacteriorhodopsin (bR) and the human type 3 serotonin receptor (5HT3R) are investigated focusing on the resulting protein function, diffusion, orientation, and incorporation efficiency. In both cases, functional proteins are observed; however, the reconstitution efficiency and orientation selectivity are significantly enhanced through detergent-mediated protein reconstitution. The results of these experiments provide a basis for bulk ionic and fluorescent dye-based compartmentalization assays as well as single-molecule optical and single-channel electrochemical interrogation of transmembrane proteins in a biomimetic platform.« less
Hu, Yuan; Sinha, Sudipta Kumar
2015-01-01
Cell-penetrating and antimicrobial peptides show remarkable ability to translocate across physiological membranes. Along with factors such as electric potential induced-perturbations of membrane structure and surface tension effects, experiments invoke pore-like membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a non-trivial free energy cost, thus necessitating consideration of the factors associated with pore formation and attendant free energetics. Due to experimental and modeling challenges related to the long timescales of the translocation process, we use umbrella-sampling molecular dynamics simulations with a lipid-density based order parameter to investigate membrane pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of head-groups, charge states, acyl chain lengths and saturation. We probe the dependence of pore-formation barriers on area per lipid, lipid bilayer thickness, membrane bending rigidities in three different lipid classes. The pore formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. Pore formation free energy is higher in peptide-lipid systems relative to the peptide-free lipid systems due to penalties to maintain solvation of charged hydrophilic solutes within the membrane environment. PMID:25614183
Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep
2015-06-23
Cell-penetrating and antimicrobial peptides show a remarkable ability to translocate across physiological membranes. Along with factors such as electric-potential-induced perturbations of membrane structure and surface tension effects, experiments invoke porelike membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a nontrivial free-energy cost, thus necessitating a consideration of the factors associated with pore formation and the attendant free energies. Because of experimental and modeling challenges related to the long time scales of the translocation process, we use umbrella sampling molecular dynamics simulations with a lipid-density-based order parameter to investigate membrane-pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of headgroups, charge states, acyl chain lengths, and saturation. We probe the dependence of pore-formation barriers on the area per lipid, lipid bilayer thickness, and membrane bending rigidities in three different lipid classes. The pore-formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. The pore-formation free energy is higher in peptide-lipid systems than in peptide-free lipid systems due to penalties to maintain the solvation of charged hydrophilic solutes within the membrane environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Li; Thompson, Gregory, E-mail: gthompson@eng.ua.edu
A series of 40–2 nm bilayer spacing Ti/Fe multilayers were sputter-deposited. As the length scale of individual Ti layers equaled to 2 nm, Ti phase transforms from a hexagonal close packed (hcp)-to-body centered cubic (bcc) crystal structures for equal layer thicknesses in Ti/Fe multilayers. Further equal reductions in bilayer spacing to less than 1 nm resulted in an additional transformation from a crystalline to amorphous structure. Atom probe tomography reveals significant intermixing between layers which contributes to the observed phase transformations. Real-time, intrinsic growth stress measurements were also performed to relate the adatom mobility to these phase transformations. For the hcp Ti/bcc Femore » multilayers of equivalent volume fractions, the multilayers undergo an overall tensile stress state to a compressive stress state with decreasing bilayer thickness for the multilayers. When the above phase transformations occurred, a modest reduction in the overall compressive stress of the multilayer was noted. Depending on the Fe thickness, the Ti growth was observed to be a tensile to compressive growth change to a purely compressive growth for thinner bilayer spacing. Fe retained a tensile growth stress regardless of the bilayer spacing studied.« less
Tuning the energy gap of bilayer α-graphyne by applying strain and electric field
NASA Astrophysics Data System (ADS)
Yang, Hang; Wu, Wen-Zhi; Jin, Yu; Wan-Lin, Guo
2016-02-01
Our density functional theory calculations show that the energy gap of bilayer α-graphyne can be modulated by a vertically applied electric field and interlayer strain. Like bilayer graphene, the bilayer α-graphyne has electronic properties that are hardly changed under purely mechanical strain, while an external electric field can open the gap up to 120 meV. It is of special interest that compressive strain can further enlarge the field induced gap up to 160 meV, while tensile strain reduces the gap. We attribute the gap variation to the novel interlayer charge redistribution between bilayer α-graphynes. These findings shed light on the modulation of Dirac cone structures and potential applications of graphyne in mechanical-electric devices. Project supported by the National Key Basic Research Program of China (Grant Nos. 2013CB932604 and 2012CB933403), the National Natural Science Foundation of China (Grant Nos. 51472117 and 51535005), the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures, China (Grant No. 0414K01), the Nanjing University of Aeronautics and Astronautics (NUAA) Fundamental Research Funds, China (Grant No. NP2015203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Raft-like membrane domains in pathogenic microorganisms.
Farnoud, Amir M; Toledo, Alvaro M; Konopka, James B; Del Poeta, Maurizio; London, Erwin
2015-01-01
The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids, commonly known as lipid rafts, are believed to exist, and reports on the presence of sterol- or protein-mediated microdomains in bacterial cell membranes are also appearing. Despite increasing attention, little is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and bacteria. The current literature on characterization of microdomains in pathogens is reviewed, and their potential role in growth, pathogenesis, and drug resistance is discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of their pathogenesis and development of raft-mediated approaches for therapy. Copyright © 2015 Elsevier Inc. All rights reserved.
Influence of Lipid Membrane Rigidity on Properties of Supporting Polymer
Jablin, Michael S.; Dubey, Manish; Zhernenkov, Mikhail; Toomey, Ryan; Majewski, Jarosław
2011-01-01
Temperature-sensitive hydrogel polymers are utilized as responsive layers in various applications. Although the polymer's native characteristics have been studied extensively, details concerning its properties during interaction with biorelated structures are lacking. This work investigates the interaction between a thermoresponsive polymer cushion and different lipid membrane capping layers probed by neutron reflectometry. N-isopropylacrylamide copolymerized with methacroylbenzophenone first supported a lipid bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and subsequently 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). The polymer-membrane systems were investigated above and below the polymer transition temperature (37 and 25°C). Although the same cushion supported each lipid membrane, the polymer hydration profile and thickness were markedly different for DPPE and DPPC systems. Because DPPE and DPPC have different bending rigidities, these results establish that the polymer-membrane interaction is critically mediated by the mechanics of the membrane, providing better insight into cell-hydrogel interactions. PMID:21723822
Monoamine oxidase B layer-by-layer film fabrication and characterization toward dopamine detection.
Miyazaki, Celina Massumi; Pereira, Tamyris Paschoal; Mascagni, Daniela Branco Tavares; de Moraes, Marli Leite; Ferreira, Marystela
2016-01-01
In this work nanostructured film composites of the monoamine oxidase B (MAO-B) enzyme, free or encapsulated in liposomes, were fabricated by the layer-by-layer (LbL) self-assembly technique, employing polyethylene imine (PEI) as polycation. Initially, the MAO-B enzyme was incorporated into liposomes in order to preserve its enzymatic structure ensuring their activity and catalytic stability. The LbL film growth was monitored by surface plasmon resonance (SPR) by gold resonance angle shift analysis after each bilayer deposition. Subsequently, the films were applied as amperometric biosensors for dopamine detection using Prussian Blue (PB) as the electron mediator. The biosensor fabricated by MAO-B incorporated into liposomes composed of DPPG:POPG in the ratio (1:4) (w/w) showed the best performance with a sensitivity of 0.86 (μA cm(-2))/(mmol L(-1)) and a detection limit of 0.33 mmol L(-1).
Correlated lateral phase separations in stacks of lipid membranes
NASA Astrophysics Data System (ADS)
Hoshino, Takuma; Komura, Shigeyuki; Andelman, David
2015-12-01
Motivated by the experimental study of Tayebi et al. [Nat. Mater. 11, 1074 (2012)] on phase separation of stacked multi-component lipid bilayers, we propose a model composed of stacked two-dimensional Ising spins. We study both its static and dynamical features using Monte Carlo simulations with Kawasaki spin exchange dynamics that conserves the order parameter. We show that at thermodynamical equilibrium, due to strong inter-layer correlations, the system forms a continuous columnar structure for any finite interaction across adjacent layers. Furthermore, the phase separation shows a faster dynamics as the inter-layer interaction is increased. This temporal behavior is mainly due to an effective deeper temperature quench because of the larger value of the critical temperature, Tc, for larger inter-layer interaction. When the temperature ratio, T/Tc, is kept fixed, the temporal growth exponent does not increase and even slightly decreases as a function of the increased inter-layer interaction.
2017-01-01
We demonstrate the growth of overlapping grain boundaries in continuous, polycrystalline hexagonal boron nitride (h-BN) monolayer films via scalable catalytic chemical vapor deposition. Unlike the commonly reported atomically stitched grain boundaries, these overlapping grain boundaries do not consist of defect lines within the monolayer films but are composed of self-sealing bilayer regions of limited width. We characterize this overlapping h-BN grain boundary structure in detail by complementary (scanning) transmission electron microscopy techniques and propose a catalytic growth mechanism linked to the subsurface/bulk of the process catalyst and its boron and nitrogen solubilities. Our data suggest that the overlapping grain boundaries are comparatively resilient against deleterious pinhole formation associated with grain boundary defect lines and thus may reduce detrimental breakdown effects when polycrystalline h-BN monolayer films are used as ultrathin dielectrics, barrier layers, or separation membranes. PMID:28410557
Fully solution-processed, transparent organic power-generating polarizer
NASA Astrophysics Data System (ADS)
Chou, Wei-Yu; Hsu, Fang-Chi; Chen, Yang-Fang
2017-03-01
We fabricate transparent organic power-generating polarizer by all solution process. Based on the conventional indium-tin-oxide-coated glass as the bottom cathode, the subsequent layers are prepared by a combination of solution processing methods. Sprayed silver nanowires film serves as the top anode and can transmit greater than 80% of the visible light with sheet resistance of 16 Ω/□. By adopting the quasi-bilayer structure for the photoactive layer composed of rubbed polymer donors to produce anisotropic optical property underneath fullerene acceptors, the finished device demonstrates a power conversion efficiency of 1.36% with unpolarized light, a dichroic ratio of 3.2, and a high short circuit current ratio of 2.6 with polarized light. Our proposed fabrication procedures of devices take into account not only the cost-effective production, but also the flexibility of devices for applying in flexible, scalable circuits to advance the development of future technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A.; Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009
Using the space-resolved Brillouin light scattering spectroscopy we study the transformation of dynamic magnetization patterns in a bilayer multiferroic structure. We show that in the comparison with a single yttrium iron garnet (YIG) film magnetization distribution is transformed in the bilayer structure due to the coupling of waves propagating both in an YIG film (magnetic layer) and in a barium strontium titanate slab (ferroelectric layer). We present a simple electrodynamic model using the numerical finite element method to show the transformation of eigenmode spectrum of confined multiferroic. In particular, we demonstrate that the control over the dynamic magnetization and themore » transformation of spatial profiles of transverse modes in magnetic film of the bilayer structure can be performed by the tuning of the wavevectors of transverse modes. The studied confined multiferroic stripe can be utilized for fabrication of integrated dual tunable functional devices for magnonic applications.« less
Method of making organic light emitting devices
Shiang, Joseph John [Niskayuna, NY; Janora, Kevin Henry [Schenectady, NY; Parthasarathy, Gautam [Saratoga Springs, NY; Cella, James Anthony [Clifton Park, NY; Chichak, Kelly Scott [Clifton Park, NY
2011-03-22
The present invention provides a method for the preparation of organic light-emitting devices comprising a bilayer structure made by forming a first film layer comprising an electroactive material and an INP precursor material, and exposing the first film layer to a radiation source under an inert atmosphere to generate an interpenetrating network polymer composition comprising the electroactive material. At least one additional layer is disposed on the reacted first film layer to complete the bilayer structure. The bilayer structure is comprised within an organic light-emitting device comprising standard features such as electrodes and optionally one or more additional layers serving as a bipolar emission layer, a hole injection layer, an electron injection layer, an electron transport layer, a hole transport layer, exciton-hole transporting layer, exciton-electron transporting layer, a hole transporting emission layer, or an electron transporting emission layer.
NASA Astrophysics Data System (ADS)
Weng, Yakui; Dong, Shuai
2015-05-01
In this study, the magnetism and electronic structure of LaTiO3 bilayers along both the (001) and (111) orientations are calculated using the density functional theory. The band insulator LaScO3 is chosen as the barrier layer and substrate to obtain the isolating LaTiO3 bilayer. For both the (001)- and (111)-oriented cases, LaTiO3 demonstrates the G-type antiferromagnetism as the ground state, similar to the bulk material. However, the electronic structure is significantly changed. The occupied bands of Ti are much narrower in the (111) case, giving a nearly flat band. As a result, the exchange coupling between nearest-neighbor Ti ions is reformed in these superlattices, which will affect the Néel temperature significantly.
Interplay of local structure, charge, and spin in bilayered manganese perovskites
NASA Astrophysics Data System (ADS)
Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz; Kapusta, Czesław; Mitchell, John F.
2018-03-01
Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. Here, we show results of high-energy resolution x-ray absorption and emission spectroscopies on a La2 -2 xSr1 +2 xMn2O7 family of bilayered manganites in a broad doping range (0.5 ≤x ≤1 ). We established a relation between local Mn charge and Mn-O distances as a function of doping. Based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Andrew; Dergunov, Sergey; Ganus, Bill
2011-01-01
Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scatteringmore » (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Andrew G.; Dergunov, Sergey A.; Ganus, Bill
2011-03-10
Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scatteringmore » (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Finally, pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.« less
Stress Transfer and Structural Failure of Bilayered Material Systems
NASA Astrophysics Data System (ADS)
Prieto-Munoz, Pablo Arthur
Bilayered material systems are common in naturally formed or artificially engineered structures. Understanding how loads transfer within these structural systems is necessary to predict failure and develop effective designs. Existing methods for evaluating the stress transfer in bilayered materials are limited to overly simplified models or require experimental calibration. As a result, these methods have failed to accurately account for such structural failures as the creep induced roofing panel collapse of Boston's I-90 connector tunnel, which was supported by adhesive anchors. The one-dimensional stress analyses currently used for adhesive anchor design cannot account for viscoelastic creep failure, and consequently results in dangerously under-designed structural systems. In this dissertation, a method for determining the two-dimensional stress and displacement fields for a generalized bilayered material system is developed, and proposes a closed-form analytical solution. A general linear-elastic solution is first proposed by decoupling the elastic governing equations from one another through the so-called plane assumption. Based on this general solution, an axisymmetric problem and a plane strain problem are formulated. These are applied to common bilayered material systems such as: (1) concrete adhesive anchors, (2) material coatings, (3) asphalt pavements, and (4) layered sedimentary rocks. The stress and displacement fields determined by this analytical analysis are validated through the use of finite element models. Through the correspondence principle, the linear-elastic solution is extended to consider time-dependent viscoelastic material properties, thus facilitating the analysis of adhesive anchors and asphalt pavements while incorporating their viscoelastic material behavior. Furthermore, the elastic stress analysis can explain the fracturing phenomenon of material coatings, pavements, and layered rocks, successfully predicting their fracture saturation ratio---which is the ratio of fracture spacing to the thickness of the weak layer where an increase in load will not cause any new fractures to form. Moreover, these specific material systems are looked at in the context of existing and novel experimental results, further demonstrating the advantage of the stress transfer analysis proposed. This research provides a closed-form stress solution for various structural systems that is applied to different failure analyses. The versatility of this method is in the flexibility and the ease upon which the stress and displacement field results can be applied to existing stress- or displacement-based structural failure criteria. As presented, this analysis can be directly used to: (1) design adhesive anchoring systems for long-term creep loading, (2) evaluate the fracture mechanics behind bilayered material coatings and pavement overlay systems, and (3) determine the fracture spacing to layer thickness ratio of layered sedimentary rocks. As is shown in the four material systems presented, this general solution has far reaching applications in facilitating design and analysis of typical bilayered structural systems.
Quantitative visualization of passive transport across bilayer lipid membranes
Grime, John M. A.; Edwards, Martin A.; Rudd, Nicola C.; Unwin, Patrick R.
2008-01-01
The ability to predict and interpret membrane permeation coefficients is of critical importance, particularly because passive transport is crucial for the effective delivery of many pharmaceutical agents to intracellular targets. We present a method for the quantitative measurement of the permeation coefficients of protonophores by using laser confocal scanning microscopy coupled to microelectrochemistry, which is amenable to precise modeling with the finite element method. The technique delivers well defined and high mass transport rates and allows rapid visualization of the entire pH distribution on both the cis and trans side of model bilayer lipid membranes (BLMs). A homologous series of carboxylic acids was investigated as probe molecules for BLMs composed of soybean phosphatidylcholine. Significantly, the permeation coefficient decreased with acyl tail length contrary to previous work and to Overton's rule. The reasons for this difference are considered, and we suggest that the applicability of Overton's rule requires re-evaluation. PMID:18787114
Ultrafast relaxation dynamics in BiFeO 3/YBa 2Cu 3O 7 bilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, D.; Nair, Saritha K.; He, Mi
The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO 3 (BFO) and superconducting YBa 2Cu 3O 7 (YBCO) grown on (001) SrTiO 3 substrate is studied by time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCOinterface as observed inmagnetization data. An extensionmore » of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.« less
Ultrafast relaxation dynamics in BiFeO 3/YBa 2Cu 3O 7 bilayers
Springer, D.; Nair, Saritha K.; He, Mi; ...
2016-02-12
The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO 3 (BFO) and superconducting YBa 2Cu 3O 7 (YBCO) grown on (001) SrTiO 3 substrate is studied by time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCOinterface as observed inmagnetization data. An extensionmore » of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.« less
NASA Astrophysics Data System (ADS)
Kaneko, Tomoaki; Saito, Riichiro
2017-11-01
Energetics and electronic structures of alkali metal (Li, Na, K, Rb, and Cs) and alkaline earth metal (Be, Mg, Ca, Sr, and Ba) atoms intercalated bilayer graphene are systematically investigated using first-principles calculations based on density functional theory. Formation of alkali and alkaline earth metal atoms intercalated bilayer graphene is exothermic except for Be and Mg. The interlayer state between two graphene layers is occupied for K, Rb, Cs, Ca, Sr, and Ba. We find that the energetic position of the interlayer states between bilayer graphene monotonically shifts downward with increasing of interlayer distance. The interlayer distances of more than 4.5 Å and 4.0 Å, respectively, are necessary for the occupation of the interlayer state in bilayer graphene for alkali and alkaline earth metal atoms, which is almost independent of the intercalant metal species. We discuss the relevance to occurrence of superconductivity for the metal intercalated bilayer graphene in terms of the occupation of the interlayer state and the phonon frequency of metal ions.
Chemin, Caroline; Bourgaux, Claudie; Péan, Jean-Manuel; Pabst, Georg; Wüthrich, Patrick; Couvreur, Patrick; Ollivon, Michel
2008-06-01
For drug delivery purpose the anticancer drug S12363 was loaded into ESM/Chol-liposomes using either a pH or an ammonium gradient. Association between the drug and the liposome depends markedly on the liposome membrane structure. Thus, ESM and ESM/Chol bilayer organization had been characterized by coupled DSC and XRDT as a function of both cholesterol concentration and aqueous medium composition. ESM bilayers exhibited a ripple lamellar gel phase P(beta') below the melting temperature and adopted a L(beta)-like gel phase upon Chol insertion. Supramolecular organization of ESM and ESM/Chol bilayers was not modified by citrate buffer or ammonium sulfate solution whatever the pH (3< or = pH < or =7). Nevertheless, in ESM bilayer, ammonium sulfate salt induced a peculiar organization of head groups, leading to irregular d-spacing and weakly correlated bilayers. Moreover, in the presence of salts, a weakening of van der Waals attraction forces was seen and led to a swelling of the water layer.
Li, Xufan; Basile, Leonardo; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A; Lee, Jaekwang; Idrobo, Juan C; Chi, Miaofang; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai
2015-02-23
Characterizing and controlling the interlayer orientations and stacking orders of two-dimensional (2D) bilayer crystals and van der Waals (vdW) heterostructures is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) crystals that result from different layer stackings provide an ideal platform to study the stacking configurations in 2D bilayer crystals. Through a controllable vapor-phase deposition method, bilayer GaSe crystals were selectively grown and their two preferred 0° or 60° interlayer rotations were investigated. The commensurate stacking configurations (AA' and AB stacking) in as-grown bilayer GaSe crystals are clearly observed at the atomic scale, and the Ga-terminated edge structure was identified using scanning transmission electron microscopy. Theoretical analysis reveals that the energies of the interlayer coupling are responsible for the preferred orientations among the bilayer GaSe crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Strain, stabilities and electronic properties of hexagonal BN bilayers
NASA Astrophysics Data System (ADS)
Fujimoto, Yoshitaka; Saito, Susumu
Hexagonal boron nitride (h-BN) atomic layers have been regarded as fascinating materials both scientifically and technologically due to the sizable band gap. This sizable band-gap nature of the h-BN atomic layers would provide not only new physical properties but also novel nano- and/or opto-electronics applications. Here, we study the first-principles density-functional study that clarifies the biaxial strain effects on the energetics and the electronic properties of h-BN bilayers. We show that the band gaps of the h-BN bilayers are tunable by applying strains. Furthermore, we show that the biaxial strains can produce a transition from indirect to direct band gaps of the h-BN bilayer. We also discuss that both AA and AB stacking patterns of h-BN bilayer become feasible structures because h-BN bilayers possess two different directions in the stacking patterns. Supported by MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy, JSPS KAKENHI Grant Numbers JP26390062 and JP25107005.
Zimmermann, Kerstin; Eells, Rebecca; Heinrich, Frank; Rintoul, Stefanie; Josey, Brian; Shekhar, Prabhanshu; Lösche, Mathias; Stern, Lawrence J
2017-10-27
Interactions between lipid bilayers and the membrane-proximal regions of membrane-associated proteins play important roles in regulating membrane protein structure and function. The T-cell antigen receptor is an assembly of eight single-pass membrane-spanning subunits on the surface of T lymphocytes that initiates cytosolic signaling cascades upon binding antigens presented by MHC-family proteins on antigen-presenting cells. Its ζ-subunit contains multiple cytosolic immunoreceptor tyrosine-based activation motifs involved in signal transduction, and this subunit by itself is sufficient to couple extracellular stimuli to intracellular signaling events. Interactions of the cytosolic domain of ζ (ζ cyt ) with acidic lipids have been implicated in the initiation and regulation of transmembrane signaling. ζ cyt is unstructured in solution. Interaction with acidic phospholipids induces structure, but its disposition when bound to lipid bilayers is controversial. Here, using surface plasmon resonance and neutron reflection, we characterized the interaction of ζ cyt with planar lipid bilayers containing mixtures of acidic and neutral lipids. We observed two binding modes of ζ cyt to the bilayers in dynamic equilibrium: one in which ζ cyt is peripherally associated with lipid headgroups and one in which it penetrates deeply into the bilayer. Such an equilibrium between the peripherally bound and embedded forms of ζ cyt apparently controls accessibility of the immunoreceptor tyrosine-based activation signal transduction pathway. Our results reconcile conflicting findings of the ζ structure reported in previous studies and provide a framework for understanding how lipid interactions regulate motifs to tyrosine kinases and may regulate the T-cell antigen receptor biological activities for this cell-surface receptor system.
TEM and TED investigation of Ag/PbTe thin film bilayers.
NASA Astrophysics Data System (ADS)
Mandrino, Đorđe; Marinković, V.
Morphology and phase structure of Ag/PbTe thin film bilayers were investigated. This system was of particular interest because of interfacial reaction observed previously in an analogous Ag/SnTe system. Reaction products due to the interdiffusion of Ag with the substrate were determined as well as their orientations. They were discussed in view of the reaction products' structural relations to the PbTe.
Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane
Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas
2011-01-01
The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624
Surfactant-assisted growth and optical properties of ZnO hexagonal bilayer disk-like microstructures
NASA Astrophysics Data System (ADS)
Zhu, Q. P.; Shen, X. Y.; Wang, L. L.; Zhu, L. P.; Wang, L. J.; Liao, G. H.
2018-01-01
ZnO hexagonal bilayer disk-like microstructures are successfully fabricated using a simple solvothermal method assisted with surfactant. The structure and morphology were investigated by XRD, SEM, and EDS. XRD result indicated that the as-obtained samples were well-crystallized wurtzite hexagonal ZnO structure. SEM images showed that the ZnO hexagonal bilayer disk-like assembles consist of two uniform and smooth disks with an average edge length of 6 μm and thickness of ˜4 μm. UV-vis spectrum reveals that ZnO sampls show an appreciable red shift and the band gap energy of the obtained ZnO samples were about 3.15 eV. A very strong UV emission at the ultraviolet (UV) region was observed in the photoluminescence (PL) spectrum of the as-prepared ZnO samples tested at room-temperature. A possible growth process of the ZnO hexagonal bilayer disk-like microstructures was schematically illustrated.
NASA Astrophysics Data System (ADS)
Ishmukhametov, Robert R.; Russell, Aidan N.; Berry, Richard M.
2016-10-01
An important goal in synthetic biology is the assembly of biomimetic cell-like structures, which combine multiple biological components in synthetic lipid vesicles. A key limiting assembly step is the incorporation of membrane proteins into the lipid bilayer of the vesicles. Here we present a simple method for delivery of membrane proteins into a lipid bilayer within 5 min. Fusogenic proteoliposomes, containing charged lipids and membrane proteins, fuse with oppositely charged bilayers, with no requirement for detergent or fusion-promoting proteins, and deliver large, fragile membrane protein complexes into the target bilayers. We demonstrate the feasibility of our method by assembling a minimal electron transport chain capable of adenosine triphosphate (ATP) synthesis, combining Escherichia coli F1Fo ATP-synthase and the primary proton pump bo3-oxidase, into synthetic lipid vesicles with sizes ranging from 100 nm to ~10 μm. This provides a platform for the combination of multiple sets of membrane protein complexes into cell-like artificial structures.
Structural and electronic transformation in low-angle twisted bilayer graphene
NASA Astrophysics Data System (ADS)
Gargiulo, Fernando; Yazyev, Oleg V.
2018-01-01
Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moiré pattern inherent to twisted bilayer graphene taking place at twist angles θ below a crossover angle θ\\star=1.2\\circ . The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.
Orosz, Kristina S; Jones, Ian W; Keogh, John P; Smith, Christopher M; Griffin, Kaitlyn R; Xu, Juhua; Comi, Troy J; Hall, H K; Saavedra, S Scott
2016-02-16
Polymerization of substrate-supported bilayers composed of dienoylphosphatidylcholine (PC) lipids is known to greatly enhance their chemical and mechanical stability; however, the effects of polymerization on membrane fluidity have not been investigated. Here planar supported lipid bilayers (PSLBs) composed of dienoyl PCs on glass substrates were examined to assess the degree to which UV-initiated polymerization affects lateral lipid mobility. Fluorescence recovery after photobleaching (FRAP) was used to measure the diffusion coefficients (D) and mobile fractions of rhodamine-DOPE in unpolymerized and polymerized PSLBs composed of bis-sorbyl phosphatidylcholine (bis-SorbPC), mono-sorbyl-phosphatidylcholine (mono-SorbPC), bis-dienoyl-phosphatidylcholine (bis-DenPC), and mono-dienoyl phosphatidylcholine (mono-DenPC). Polymerization was performed in both the Lα and Lβ phase for each lipid. In all cases, polymerization reduced membrane fluidity; however, measurable lateral diffusion was retained which is attributed to a low degree of polymerization. The D values for sorbyl lipids were less than those of the denoyl lipids; this may be a consequence of the distal location of polymerizable group in the sorbyl lipids which may facilitate interleaflet bonding. The D values measured after polymerization were 0.1-0.8 of those measured before polymerization, a range that corresponds to fluidity intermediate between that of a Lα phase and a Lβ phase. This D range is comparable to ratios of D values reported for liquid-disordered (Ld) and liquid-ordered (Lo) lipid phases and indicates that the effect of UV polymerization on lateral diffusion in a dienoyl PSLB is similar to the transition from a Ld phase to a Lo phase. The partial retention of fluidity in UV-polymerized PSLBs, their enhanced stability, and the activity of incorporated transmembrane proteins and peptides is discussed.
Orosz, Kristina S.; Jones, Ian W.; Keogh, John P.; Smith, Christopher M.; Griffin, Kaitlyn R.; Xu, Juhua; Comi, Troy J.; Hall, H. K.
2016-01-01
Polymerization of substrate-supported bilayers composed of dienoyl phosphatidylcholine (PC) lipids is known to greatly enhance their chemical and mechanical stability, however the effects of polymerization on membrane fluidity have not been investigated. Here planar supported lipid bilayers (PSLBs) composed of dienoyl PCs on glass substrates were examined to assess the degree to which UV-initiated polymerization affects lateral lipid mobility. Fluorescence recovery after photobleaching (FRAP) was used to measure the diffusion coefficients (D) and mobile fractions of rhodamine-DOPE in unpolymerized and polymerized PSLBs composed of bis-sorbyl phosphatidylcholine (bis-SorbPC), mono-sorbyl phosphatidylcholine (mono-SorbPC), bis-dienoyl phosphatidylcholine (bis-DenPC) and mono-dienoyl phosphatidylcholine (mono-DenPC). Polymerization was performed in both the Lα and Lβ phase for each lipid. In all cases, polymerization reduced membrane fluidity, however measurable lateral diffusion was retained which is attributed to a low degree of polymerization. The D values for sorbyl lipids were less than those of the denoyl lipids; this may be a consequence of the distal location of polymerizable group in the sorbyl lipids which may facilitate inter-leaflet bonding. The D values measured after polymerization were 0.1 to 0.8 of those measured before polymerization, a range that corresponds to fluidity intermediate between that of a Lα phase and a Lβ phase. This D range is comparable to ratios of D values reported for liquid-disordered (Ld) and liquid-ordered (Lo) lipid phases, and indicates that the effect of UV polymerization on lateral diffusion in a dienoyl PSLB is similar to the transition from a Ld phase to a Lo phase. The partial retention of fluidity in UV polymerized PSLBs, their enhanced stability, and the activity of incorporated transmembrane proteins and peptides is discussed. PMID:26794208
Li, Xufan; Basile Carrasco, Leonardo A.; Yoon, Mina; ...
2015-01-21
Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0° or 60° interlayer rotations. The commensurate stacking configurations (AA' and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale andmore » the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. Here, the combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.« less
Effect of Alcohol on Interaction of Model Biological Membrane with Steroids
NASA Astrophysics Data System (ADS)
Pinna, Marco; Mura, Manuela; Famili, Marjan; Zhou, Yuhua; Zvelindovsky, Andrei
2014-03-01
The effect of alcohol in the lipid bilayer changes the gel-phase structure of the lipid bilayer. Interactions between the alcohol molecules and the lipid bilayer were investigated using molecular dynamics. Alcohols such as ethanol and methanol are often used in drug delivery application. Ethanol is used to dissolve hydrophobic steroidal drugs such as Beclamethasone dipropionate, Fluticasone propionate and Prednisone. All the systems considered were equilibrated at 310K and ran for 100ns in the presence of dimyristoylphosphatidylcholine (DMPC) lipid bilayer. In addition the simulations were performed to investigate the behaviour of anti-asthma drugs such as Beclamethasone dipropionate in the water environment and 2.5% of ethanol.
Structure and organization of nanosized-inclusion-containing bilayer membranes
NASA Astrophysics Data System (ADS)
Ren, Chun-Lai; Ma, Yu-Qiang
2009-07-01
Based on a considerable amount of experimental evidence for lateral organization of lipid membranes which share astonishingly similar features in the presence of different inclusions, we use a hybrid self-consistent field theory (SCFT)/density-functional theory (DFT) approach to deal with bilayer membranes embedded by nanosized inclusions and explain experimental findings. Here, the hydrophobic inclusions are simple models of hydrophobic drugs or other nanoparticles for biomedical applications. It is found that lipid/inclusion-rich domains are formed at moderate inclusion concentrations and disappear with the increase in the concentration of inclusions. At high inclusion content, chaining of inclusions occurs due to the effective depletion attraction between inclusions mediated by lipids. Meanwhile, the increase in the concentration of inclusions can also cause thickening of the membrane and the distribution of inclusions undergoes a layering transition from one-layer structure located in the bilayer midplane to two-layer structure arranged into the two leaflets of a bilayer. Our theoretical predictions address the complex interactions between membranes and inclusions suggesting a unifying mechanism which reflects the competition between the conformational entropy of lipids favoring the formation of lipid- and inclusion-rich domains in lipids and the steric repulsion of inclusions leading to the uniform dispersion.
NASA Astrophysics Data System (ADS)
Li, Hao; Xie, Mingling; Zhang, Guangan; Fan, Xiaoqiang; Li, Xia; Zhu, Minhao; Wang, Liping
2018-03-01
The Pb-Ti/MoS2 nanoscaled multilayer films with different bilayer period were deposited by unbalanced magnetron sputtering system. The morphology, microstructure, mechanical and tribological properties of the films were investigated. It was found that the film changed from multilayer structure to composite structure as the bilayer period decreased from 25 nm to 6 nm, due to the diffusion effect. The multilayer film showed a pronounced (002) diffraction peak, the growth of the MoS2 platelets below the interface were affected by Pb and Ti, and the c-axis of MoS2 platelets were inclined to the substrate at an angle of -30° to 30°. The hardness of the film ranged from 5.9 to 7.2 GPa depending on the bilayer period. The tribological behavior of the films was performed under vacuum, and the friction coefficient were typically below 0.25. Furthermore, the nanoscale multilayer film with a bilayer period of 20 nm exhibits much better mechanical and tribological properties than pure MoS2. The result indicates that the nanoscale multilayer is a design methodology for developing high basal plane oriented and vacuum solid lubricating MoS2 based materials.
Structured Water Layers Adjacent to Biological Membranes
Higgins, Michael J.; Polcik, Martin; Fukuma, Takeshi; Sader, John E.; Nakayama, Yoshikazu; Jarvis, Suzanne P.
2006-01-01
Water amid the restricted space of crowded biological macromolecules and at membrane interfaces is essential for cell function, though the structure and function of this “biological water” itself remains poorly defined. The force required to remove strongly bound water is referred to as the hydration force and due to its widespread importance, it has been studied in numerous systems. Here, by using a highly sensitive dynamic atomic force microscope technique in conjunction with a carbon nanotube probe, we reveal a hydration force with an oscillatory profile that reflects the removal of up to five structured water layers from between the probe and biological membrane surface. Further, we find that the hydration force can be modified by changing the membrane fluidity. For 1,2-dipalmitoyl-sn-glycero-3-phosphocholine gel (Lβ) phase bilayers, each oscillation in the force profile indicates the force required to displace a single layer of water molecules from between the probe and bilayer. In contrast, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine fluid (Lα) phase bilayers at 60°C and 1,2-dioleoyl-sn-glycero-3-phosphocholine fluid (Lα) phase bilayers at 24°C seriously disrupt the molecular ordering of the water and result predominantly in a monotonic force profile. PMID:16798815
Two-dimensional silica opens new perspectives
NASA Astrophysics Data System (ADS)
Büchner, Christin; Heyde, Markus
2017-12-01
In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science, catalysis and the field of 2D materials, a large number of theoretical and experimental studies on silica bilayers have been reported in the last years. This review aims to provide an overview on the insights gained on this material and to point out opportunities for further discovery in various fields.
Gupta, S.; Dura, J.A.; Freites, J.A.; Tobias, D.J.; Blasie, J. K.
2012-01-01
The voltage-sensor domain (VSD) is a modular 4-helix bundle component that confers voltage sensitivity to voltage-gated cation channels in biological membranes. Despite extensive biophysical studies and the recent availability of x-ray crystal structures for a few voltage-gated potassium (Kv-) channels and a voltage-gate sodium (Nav-) channel, a complete understanding of the cooperative mechanism of electromechanical coupling, interconverting the closed-to-open states (i.e. non-conducting to cation conducting) remains undetermined. Moreover, the function of these domains is highly dependent on the physical-chemical properties of the surrounding lipid membrane environment. The basis for this work was provided by a recent structural study of the VSD from a prokaryotic Kv-channel vectorially-oriented within a single phospholipid (POPC; 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane investigated by x-ray interferometry at the solid/moist He (or solid/vapor) and solid/liquid interfaces thus achieving partial to full hydration, respectively (Gupta et. al. Phys. Rev E. 2011, 84). Here, we utilize neutron interferometry to characterize this system in substantially greater structural detail at the sub-molecular level, due to its inherent advantages arising from solvent contrast variation coupled with the deuteration of selected sub-molecular membrane components, especially important for the membrane at the solid/liquid interface. We demonstrate the unique vectorial orientation of the VSD and the retention of its molecular conformation manifest in the asymmetric profile structure of the protein within the profile structure of this single bilayer membrane system. We definitively characterize the asymmetric phospholipid bilayer solvating the lateral surfaces of the VSD protein within the membrane. The profile structures of both the VSD protein and phospholipid bilayer depend upon the hydration state of the membrane. We also determine the distribution of water and exchangeable hydrogen throughout the profile structure of both the VSD itself and the VSD:POPC membrane. These two experimentally-determined water and exchangeable hydrogen distribution profiles are in good agreement with molecular dynamics simulations of the VSD protein vectorially-oriented within a fully hydrated POPC bilayer membrane, supporting the existence of the VSD’s water pore. This approach was extended to the full-length Kv-channel (KvAP) at solid/liquid interface, providing the separate profile structures of the KvAP protein and the POPC bilayer within the reconstituted KvAP:POPC membrane. PMID:22686684
Pan, Jianjun; Tristram-Nagle, Stephanie; Kucerka, Norbert; Nagle, John F
2008-01-01
X-ray diffuse scattering was measured from oriented stacks and unilamellar vesicles of dioleoylphosphatidylcholine lipid bilayers to obtain the temperature dependence of the structure and of the material properties. The area/molecule, A, was 75.5 A(2) at 45 degrees C, 72.4 A(2) at 30 degrees C, and 69.1 A(2) at 15 degrees C, which gives the area expansivity alpha(A) = 0.0029/deg at 30 degrees C, and we show that this value is in excellent agreement with the polymer brush theory. The bilayer becomes thinner with increasing temperature; the contractivity of the hydrocarbon portion was alpha(Dc) = 0.0019/deg; the difference between alpha(A) and alpha(Dc) is consistent with the previously measured volume expansivity alpha(Vc) = 0.0010/deg. The bending modulus K(C) decreased as exp(455/T) with increasing T (K). Our area compressibility modulus K(A) decreased with increasing temperature by 5%, the same as the surface tension of dodecane/water, in agreement again with the polymer brush theory. Regarding interactions between bilayers, the compression modulus B as a function of interbilayer water spacing D'(W) was found to be nearly independent of temperature. The repulsive fluctuation pressure calculated from B and K(C) increased with temperature, and the Hamaker parameter for the van der Waals interaction was nearly independent of temperature; this explains why the fully hydrated water spacing, D'(W), that we obtain from our structural results increases with temperature.
Zou, Yu; Sun, Yunxiang; Zhu, Yuzhen; Ma, Buyong; Nussinov, Ruth; Zhang, Qingwen
2016-03-16
The aggregation of the copper-zinc superoxide dismutase (SOD1) protein is linked to familial amyotrophic lateral sclerosis, a progressive neurodegenerative disease. A recent experimental study has shown that the (147)GVIGIAQ(153) SOD1 C-terminal segment not only forms amyloid fibrils in isolation but also accelerates the aggregation of full-length SOD1, while substitution of isoleucine at site 149 by proline blocks its fibril formation. Amyloid formation is a nucleation-polymerization process. In this study, we investigated the oligomerization and the nucleus structure of this heptapeptide. By performing extensive replica-exchange molecular dynamics (REMD) simulations and conventional MD simulations, we found that the GVIGIAQ hexamers can adopt highly ordered bilayer β-sheets and β-barrels. In contrast, substitution of I149 by proline significantly reduces the β-sheet probability and results in the disappearance of bilayer β-sheet structures and the increase of disordered hexamers. We identified mixed parallel-antiparallel bilayer β-sheets in both REMD and conventional MD simulations and provided the conformational transition from the experimentally observed parallel bilayer sheets to the mixed parallel-antiparallel bilayer β-sheets. Our simulations suggest that the critical nucleus consists of six peptide chains and two additional peptide chains strongly stabilize this critical nucleus. The stabilized octamer is able to recruit additional random peptides into the β-sheet. Therefore, our simulations provide insights into the critical nucleus formation and the smallest stable nucleus of the (147)GVIGIAQ(153) peptide.
Interplay of local structure, charge, and spin in bilayered manganese perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz
Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. In this paper, we show results of high-energy resolution x-ray absorption and emission spectroscopies on amore » $${\\mathrm{La}}_{2{-}2x}{\\mathrm{Sr}}_{1+2x}{\\mathrm{Mn}}_{2}{\\mathrm{O}}_{7}$$ family of bilayered manganites in a broad doping range $$(0.5{\\le}x{\\le}1)$$. We established a relation between local Mn charge and Mn-O distances as a function of doping. Finally, based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.« less
Interplay of local structure, charge, and spin in bilayered manganese perovskites
Rybicki, Damian; Sikora, Marcin; Przewoznik, Janusz; ...
2018-03-27
Chemical doping is a reliable method of modification of the electronic properties of transition metal compounds. In manganese perovskites, it leads to charge transfer and peculiar ordering phenomena. However, depending on the interplay of the local crystal structure and electronic properties, synthesis of stable compounds in the entire doping range is often impossible. In this paper, we show results of high-energy resolution x-ray absorption and emission spectroscopies on amore » $${\\mathrm{La}}_{2{-}2x}{\\mathrm{Sr}}_{1+2x}{\\mathrm{Mn}}_{2}{\\mathrm{O}}_{7}$$ family of bilayered manganites in a broad doping range $$(0.5{\\le}x{\\le}1)$$. We established a relation between local Mn charge and Mn-O distances as a function of doping. Finally, based on a comparison of such relation with other manganites, we suggest why stable structures cannot be realized for certain doping levels of bilayered compounds.« less
Structure refinement of membrane proteins via molecular dynamics simulations.
Dutagaci, Bercem; Heo, Lim; Feig, Michael
2018-07-01
A refinement protocol based on physics-based techniques established for water soluble proteins is tested for membrane protein structures. Initial structures were generated by homology modeling and sampled via molecular dynamics simulations in explicit lipid bilayer and aqueous solvent systems. Snapshots from the simulations were selected based on scoring with either knowledge-based or implicit membrane-based scoring functions and averaged to obtain refined models. The protocol resulted in consistent and significant refinement of the membrane protein structures similar to the performance of refinement methods for soluble proteins. Refinement success was similar between sampling in the presence of lipid bilayers and aqueous solvent but the presence of lipid bilayers may benefit the improvement of lipid-facing residues. Scoring with knowledge-based functions (DFIRE and RWplus) was found to be as good as scoring using implicit membrane-based scoring functions suggesting that differences in internal packing is more important than orientations relative to the membrane during the refinement of membrane protein homology models. © 2018 Wiley Periodicals, Inc.
Lipid bilayers: thermodynamics, structure, fluctuations, and interactions.
Tristram-Nagle, Stephanie; Nagle, John F
2004-01-01
This article, adapted from our acceptance speech of the Avanti Award in Lipids at the 47th Biophysical Society meeting in San Antonio, 2003, summarizes over 30 years of research in the area of lipid bilayers. Beginning with a theoretical model of the phase transition (J.F.N.), we have proceeded experimentally using dilatometry and density centrifugation to study volume, differential scanning calorimetry to study heat capacity, and X-ray scattering techniques to study structure of lipid bilayers as a function of temperature. Electron density profiles of the gel and ripple phases have been obtained as well as profiles from several fluid phase lipids, which lead to many structural results that compliment molecular dynamics simulations from other groups. Using the theory of liquid crystallography plus oriented lipid samples, we are the first group to obtain both material parameters (KC and B) associated with the fluctuations in fluid phase lipids. This allows us to use fully hydrated lipid samples, as in vivo, to obtain the structure.
New group-V elemental bilayers: A tunable structure model with four-, six-, and eight-atom rings
NASA Astrophysics Data System (ADS)
Kong, Xiangru; Li, Linyang; Leenaerts, Ortwin; Liu, Xiong-Jun; Peeters, François M.
2017-07-01
Two-dimensional group-V elemental materials have attracted widespread attention due to their nonzero band gap while displaying high electron mobility. Using first-principles calculations, we propose a series of new elemental bilayers with group-V elements (Bi, Sb, As). Our study reveals the dynamical stability of four-, six-, and eight-atom ring structures, demonstrating their possible coexistence in such bilayer systems. The proposed structures for Sb and As are large-gap semiconductors that are potentially interesting for applications in future nanodevices. The Bi structures have nontrivial topological properties with a direct nontrivial band gap. The nontrivial gap is shown to arise from a band inversion at the Brillouin zone center due to the strong intrinsic spin-orbit coupling in Bi atoms. Moreover, we demonstrate the possibility of tuning the properties of these materials by enhancing the ratio of six-atom rings to four- and eight-atom rings, which results in wider nontrivial band gaps and lower formation energies.
Lipid bilayers: thermodynamics, structure, fluctuations, and interactions
Tristram-Nagle, Stephanie; Nagle, John F.
2009-01-01
This article, adapted from our acceptance speech of the Avanti Award in Lipids at the 47th Biophysical Society meeting in San Antonio, 2003, summarizes over 30 years of research in the area of lipid bilayers. Beginning with a theoretical model of the phase transition (J.F.N.), we have proceeded experimentally using dilatometry and density centrifugation to study volume, differential scanning calorimetry to study heat capacity, and X-ray scattering techniques to study structure of lipid bilayers as a function of temperature. Electron density profiles of the gel and ripple phases have been obtained as well as profiles from several fluid phase lipids, which lead to many structural results that compliment molecular dynamics simulations from other groups. Using the theory of liquid crystallography plus oriented lipid samples, we are the first group to obtain both material parameters (KC and B) associated with the fluctuations in fluid phase lipids. This allows us to use fully hydrated lipid samples, as in vivo, to obtain the structure. PMID:14706737
Permeability and electrical properties of planar lipid membranes from thylakoid lipids.
Fuks, B; Homblé, F
1994-01-01
Electrical measurements were carried out on planar lipid membranes from thylakoid lipids. The specific capacitance of membranes formed from decane-containing monogalactosyldiacylglycerol (MGDG), which accounts for 57% of the total lipid content of thylakoids, showed that it adopted a bilayer structure. Solvent-free bilayers of MGDG were not formed, with very rare exceptions, indicating that decane is required to stabilize the planar conformation. However, this cone-shaped lipid produces bilayer structures in combination with other cylindrical thylakoid lipids even in the absence of organic solvent. We compared the properties of solvent-free and decane-containing bilayers from MGDG, soybean lecithin, and the quaternary mixture of lipids similar to that found in vivo. The conductance of decane-MGDG was 26 times higher than that of decane-lecithin. The flux through the decane-lecithin bilayer was found to be slightly dependent on pH, whereas the decane-MGDG membrane was not. The specific conductance of bilayers formed from the quaternary mixture of lipids was 5 to 10 times larger than lecithin (with alkane or not). Further experiments with bilayers made in the presence of a KCl gradient showed that decane-MGDG, decane-MGDG/DGDG/SQDG/PG, and solvent-free MGDG/DGDG/SQDG/PG were cation-selective. The permeability coefficient for potassium ranged from 4.9 to 8.3 x 10(-11) cm s-1. The permeability coefficient for protons in galactolipids, however, was determined to be about six orders of magnitude higher than the value for potassium ions. The HCl permeation mechanism through the lipid membranes was determined from diffusion potentials measured in HCl gradients. Our results suggest that HCl was not transported as neutral molecules. The data is discussed with regard to the function of galactolipids in the ion transport through thylakoid membranes. PMID:8061192
Hayden, Steven C.; Junghans, Ann; Majewski, Jaroslaw; ...
2017-02-22
Neutron reflectometry was used to monitor structural variations in surface supported DMPC bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the co-addition of a membrane spanning non-ionic amphiphilic triblock copolymer, (PEO 117-PPO 47-PE O117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC: Tritonmore » X-100 bilayer increases the complexity (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.2 ± 0.2 Å. Temperature driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10 – 27 Å) is achieved at room temperature (22 – 25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayden, Steven C.; Junghans, Ann; Majewski, Jaroslaw
Neutron reflectometry was used to monitor structural variations in surface supported DMPC bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the co-addition of a membrane spanning non-ionic amphiphilic triblock copolymer, (PEO 117-PPO 47-PE O117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC: Tritonmore » X-100 bilayer increases the complexity (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.2 ± 0.2 Å. Temperature driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10 – 27 Å) is achieved at room temperature (22 – 25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.« less
Influence of ester-modified lipids on bilayer structure.
Villanueva, Diana Y; Lim, Joseph B; Klauda, Jeffery B
2013-11-19
Lipid membranes function as barriers for cells to prevent unwanted chemicals from entering the cell and wanted chemicals from leaving. Because of their hydrophobic interior, membranes do not allow water to penetrate beyond the headgroup region. We performed molecular simulations to examine the effects of ester-modified lipids, which contain ester groups along their hydrocarbon chains, on bilayer structure. We chose two lipids from those presented in Menger et al. [J. Am. Chem. Soc. 2006, 128, 14034] with ester groups in (1) the upper half of the lipid chain (MEPC) and (2) the middle and end of the lipid chain (MGPC). MGPC (30%)/POPC bilayers formed stable water pores of diameter 5-7 Å, but MGPC (22%)/POPC and MEPC (30%)/POPC bilayers did not form these defects. These pores were similar to those formed during electroporation; i.e., the head groups lined the pore and allowed water and ions to transport across the bilayer. However, we found that lateral organization of the MGPC lipids into clusters, instead of an electric field or charge disparity as in electroporation, was essential for pore formation. On the basis of this, we propose an overall mechanism for pore formation. The similarities between the ester-modified lipids and byproducts of lipid peroxidation with multiple hydrophilic groups in the middle of the chain suggest that free radical reactions with unsaturated lipids and sterols result in fundamental changes that may be similar to what is seen in bilayers with ester-modified lipids.
NASA Astrophysics Data System (ADS)
Cho, Sung Woon; Yun, Myeong Gu; Ahn, Cheol Hyoun; Kim, So Hee; Cho, Hyung Koun
2015-03-01
Zinc oxide (ZnO)-based bi-layers, consisting of ZnO and Al-doped ZnO (AZO) layers grown by atomic layer deposition, were utilized as the channels of oxide thin-film transistors (TFTs). Thin AZO layers (5 nm) with different Al compositions (5 and 14 at. %) were deposited on top of and beneath the ZnO layers in a bi-layer channel structure. All of the bi-layer channel TFTs that included the AZO layers showed enhanced stability (Δ V Th ≤ 3.2 V) under a positive bias stress compared to the ZnO single-layer channel TFT (Δ V Th = 4.0 V). However, the AZO/ZnO bi-layer channel TFTs with an AZO interlayer between the gate dielectric and the ZnO showed a degraded field effect mobility (0.3 cm2/V·s for 5 at. % and 1.8 cm2/V·s for 14 at. %) compared to the ZnO single-layer channel TFT (5.5 cm2/V·s) due to increased scattering caused by Al-related impurities near the gate dielectric/channel interface. In contrast, the ZnO/AZO bi-layer channel TFTs with an AZO layer on top of the ZnO layer exhibited an improved field effect mobility (7.8 cm2/V·s for 14 at. %) and better stability. [Figure not available: see fulltext.
Acemetacin-phosphatidylcholine interactions are determined by the drug ionization state.
Pereira-Leite, Catarina; Nunes, Cláudia; Grahl, Débora; Bozelli, José C; Schreier, Shirley; Kamma-Lorger, Christina S; Cuccovia, Iolanda M; Reis, Salette
2018-05-17
Gastrointestinal (GI) toxicity is a major drawback of the chronic use of nonsteroidal anti-inflammatory drugs (NSAIDs). The NSAIDs topical actions on the protective phospholipid layers of the GI mucosa seem to be a central toxicity mechanism of these pharmaceuticals. This work describes the interactions of acemetacin, a commercialized NSAID, with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers at pH 3.0, 5.0, and 7.4. This pH range was chosen to mimic the pH gradient found in the gastric mucosa, and to ultimately gain insights into the mechanisms underlying the acemetacin-induced gastric toxicity. Various experimental techniques were combined to characterize the partitioning of acemetacin in DMPC bilayers, and its effects on the phase transition behavior, as well as the structure and dynamics of DMPC bilayers. The acemetacin-DMPC interactions were clearly pH-dependent. The neutral (protonated) form of acemetacin had more affinity for the DMPC bilayer than the negatively charged form. Due to the higher affinity of neutral acemetacin, the drug effects on the phase transition and the structure and dynamics of the DMPC bilayer were more pronounced at lower pH values. In general, acemetacin decreased the temperature and the cooperativity of the lipid phase transition and induced changes in the packing and dynamics of the DMPC bilayer. These results support the hypothesis that acemetacin-induced gastric toxicity may be related to its effects on the protective phospholipid layers of the mucosal barrier.
NASA Astrophysics Data System (ADS)
Noshin, Maliha; Intisar Khan, Asir; Subrina, Samia
2018-05-01
Recently, stanene and silicene based nanostructures with low thermal conductivity have incited noteworthy interest due to their prospect in thermoelectrics. Aiming at the possibility of extracting lower thermal conductivity, in this study, we have proposed and modeled stanene/silicene heterobilayer nanoribbons, a new heterostructure and subsequently characterized their thermal transport by using an equilibrium molecular dynamics simulation. In addition, the thermal transport in bilayer stanene is also studied and compared. We have computed the thermal conductivity of the stanene/silicene and bilayer stanene nanostructures to characterize their thermal transport phenomena. The studied nanostructures show good thermal stability within the temperature range of 100-600 K. The room temperature thermal conductivities of pristine 10 nm × 3 nm stanene/silicene hetero-bilayer and stanene bilayer are estimated to be 3.63 ± 0.27 W m-1 K-1 and 1.31 ± 0.34 W m-1 K-1, respectively, which are smaller than that of silicene, graphene and some other 2D monolayers as well as heterobilayers such as stanene/graphene and silicene/graphene. In the temperature range of 100-600 K, the thermal conductivity of our studied bilayer nanoribbons decreases with an increase in the temperature. Furthermore, we have investigated the dependence of our estimated thermal conductivity on the size of the considered nanoribbons. The thermal conductivities of both the nanoribbons are found to increase with an increase in the width of the structure. The thermal conductivity shows a similar increasing trend with the increase in the ribbon length, as well. Our results suggest that, the low thermal conductivity of our studied bilayer structures can be further decreased by nanostructuring. The significantly low thermal conductivity of the stanene/silicene heterobilayer and stanene bilayer nanoribbons realized in our study would provide a good insight and encouragement into their appealing prospect in the thermoelectric applications.
Noshin, Maliha; Khan, Asir Intisar; Subrina, Samia
2018-05-04
Recently, stanene and silicene based nanostructures with low thermal conductivity have incited noteworthy interest due to their prospect in thermoelectrics. Aiming at the possibility of extracting lower thermal conductivity, in this study, we have proposed and modeled stanene/silicene heterobilayer nanoribbons, a new heterostructure and subsequently characterized their thermal transport by using an equilibrium molecular dynamics simulation. In addition, the thermal transport in bilayer stanene is also studied and compared. We have computed the thermal conductivity of the stanene/silicene and bilayer stanene nanostructures to characterize their thermal transport phenomena. The studied nanostructures show good thermal stability within the temperature range of 100-600 K. The room temperature thermal conductivities of pristine 10 nm × 3 nm stanene/silicene hetero-bilayer and stanene bilayer are estimated to be 3.63 ± 0.27 W m -1 K -1 and 1.31 ± 0.34 W m -1 K -1 , respectively, which are smaller than that of silicene, graphene and some other 2D monolayers as well as heterobilayers such as stanene/graphene and silicene/graphene. In the temperature range of 100-600 K, the thermal conductivity of our studied bilayer nanoribbons decreases with an increase in the temperature. Furthermore, we have investigated the dependence of our estimated thermal conductivity on the size of the considered nanoribbons. The thermal conductivities of both the nanoribbons are found to increase with an increase in the width of the structure. The thermal conductivity shows a similar increasing trend with the increase in the ribbon length, as well. Our results suggest that, the low thermal conductivity of our studied bilayer structures can be further decreased by nanostructuring. The significantly low thermal conductivity of the stanene/silicene heterobilayer and stanene bilayer nanoribbons realized in our study would provide a good insight and encouragement into their appealing prospect in the thermoelectric applications.
The effect of spontaneous curvature on a two-phase vesicle
Cox, Geoffrey; Lowengrub, John
2015-01-01
Vesicles are membrane-bound structures commonly known for their roles in cellular transport and the shape of a vesicle is determined by its surrounding membrane (lipid bilayer). When the membrane is composed of different lipids, it is natural for the lipids of similar molecular structure to migrate towards one another (via spinodal decomposition), creating a multi-phase vesicle. In this article, we consider a two-phase vesicle model which is driven by nature’s propensity to maintain a minimal state of elastic energy. The model assumes a continuum limit, thereby treating the membrane as a closed three-dimensional surface. The main purpose of this study is to reveal the complexity of the Helfrich two-phase vesicle model with non-zero spontaneous curvature and provide further evidence to support the relevance of spontaneous curvature as a modelling parameter. In this paper, we illustrate the complexity of the Helfrich two-phase model by providing multiple examples of undocumented solutions and energy hysteresis. We also investigate the influence of spontaneous curvature on morphological effects and membrane phenomena such as budding and fusion. PMID:26097287
Rai, Durgesh K.; Qian, Shuo; Heller, William T.
2016-08-13
We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine andmore » phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.« less
Rai, Durgesh K; Qian, Shuo; Heller, William T
2016-11-01
Membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine and phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L=1/500, but membrane thinning results when P/L=1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. The results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Choubey, Amit
Biological cell membranes provide mechanical stability to cells and understanding their structure, dynamics and mechanics are important biophysics problems. Experiments coupled with computational methods such as molecular dynamics (MD) have provided insight into the physics of membranes. We use long-time and large-scale MD simulations to study the structure, dynamics and mechanical behavior of membranes. We investigate shock-induced collapse of nanobubbles in water using MD simulations based on a reactive force field. We observe a focused jet at the onset of bubble shrinkage and a secondary shock wave upon bubble collapse. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. We also investigate molecular mechanisms of poration in lipid bilayers due to shock-induced collapse of nanobubbles. Our multimillion-atom MD simulations reveal that the jet impact generates shear flow of water on bilayer leaflets and pressure gradients across them. This transiently enhances the bilayer permeability by creating nanopores through which water molecules translocate rapidly across the bilayer. Effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. The second research project focuses on cholesterol (CHOL) dynamics in phospholipid bilayers. Several experimental and computational studies have been performed on lipid bilayers consisting of dipalmitoylphosphatidylcholine (DPPC) and CHOL molecules. CHOL interleaflet transport (flip-flop) plays an important role in interleaflet coupling and determining CHOL flip-flop rate has been elusive. Various studies report that the rate ranges between milliseconds to seconds. We calculate CHOL flip-flop rates by performing a 15 mus all-atom MD simulation of a DPPC-CHOL bilayer. We find that the CHOL flip-flop rates are on the sub microsecond timescale. These results are verified by performing various independent parallel replica (PR) simulations. Our PR simulations provide significant boost in sampling of the flip-flop events. We observe that the CHOL flip-flop can induce membrane order, regulate membrane-bending energy, and facilitate membrane relaxation. The rapid flip-flop rates reported here have important implications for the role of CHOL in mechanical properties of cell membranes, formation of domains, and maintaining CHOL concentration asymmetry in plasma membrane. Our PR approach can reach submillisecond time scales and bridge the gap between MD simulations and Nuclear Magnetic Resonance (NMR) experiments on CHOL flip-flop dynamics in membranes. The last project deals with transfection barriers encountered by a bare small interfering RNA (siRNA) in a phospholipid bilayer. SiRNA molecules play a pivotal role in therapeutic applications. A key limitation to the widespread implementation of siRNA-based therapeutics is the difficulty of delivering siRNA-based drugs to cells. We have examined structural and mechanical barriers to siRNA passage across a phospholipid bilayer using all-atom MD simulations. We find that the electrostatic interaction between the anionic siRNA and head groups of phospholipid molecules induces a phase transformation from the liquid crystalline to ripple phase. Steered MD simulations reveal that the siRNA transfection through the ripple phase requires a force of ˜ 1.5 nN.
Coupling between the Dynamics of Water and Surfactants in Lyotropic Liquid Crystals
McDaniel, Jesse G.; Yethiraj, Arun
2017-04-26
Bilayers composed of lipid or surfactant molecules are central to biological membranes and lamellar lyotropic liquid crystalline (LLC) phases. Common to these systems are phases that exhibit either ordered or disordered packing of the hydrophobic tails. In this work, we study the impact of surfactant ordering, i.e., disordered L α and ordered L β LLC phases, on the dynamics of water and sodium ions in the lamellar phases of dicarboxylate gemini surfactants. We study the different phases at identical hydration levels by changing the length of the hydrophobic tails; surfactants with shorter tails form L α phases and those withmore » longer tails form L β phases. We find that the L α phases exhibit lower density and greater compressibility than the L β phases, with a hydration-dependent headgroup surface area. These structural differences significantly affect the relative dynamic properties of the phases, primarily the mobility of the surfactant molecules tangential to the bilayer surface, as well as the rates of water and ion diffusion. We find ~20–50% faster water diffusion in the L α phases compared to the L β phases, with the differences most pronounced at low hydration. This coupling between water dynamics and surfactant mobility is verified using additional simulations in which the surfactant tails are frozen. Our study indicates that gemini surfactant LLCs provide an important prototypical system for characterizing properties shared with more complex biological lipid membranes.« less
Eita, Mohamed; Arwin, Hans; Granberg, Hjalmar; Wågberg, Lars
2011-11-15
Over the last decade, the use of nanocellulose in advanced technological applications has been promoted both due the excellent properties of this material in combination with its renewability. In this study, multilayered thin films composed of nanofibrillated cellulose (NFC), polyvinyl amine (PVAm) and silica nanoparticles were fabricated on polydimethylsiloxane (PDMS) using a layer-by-layer adsorption technique. The multilayer build-up was followed in situ by quartz crystal microbalance with dissipation, which indicated that the PVAm-SiO(2)-PVAm-NFC system adsorbs twice as much wet mass material compared to the PVAm-NFC system for the same number of bilayers. This is accompanied with a higher viscoelasticity for the PVAm-SiO(2)-PVAm-NFC system. Ellipsometry indicated a dry-state thickness of 2.2 and 3.4 nm per bilayer for the PVAm-NFC system and the PVAm-SiO(2)-PVAm-NFC system, respectively. Atomic force microscopy height images indicate that in both systems, a porous network structure is achieved. Young's modulus of these thin films was determined by the Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) technique. The Young's modulus of the PVAm/NFC films was doubled, from 1 to 2 GPa, upon incorporation of silica nanoparticles in the films. The introduction of the silica nanoparticles lowered the refractive index of the films, most probably due to an increased porosity of the films. Copyright © 2011 Elsevier Inc. All rights reserved.
Matsubara, Teruhiko; Nishihara, Masaya; Yasumori, Hanaki; Nakai, Mako; Yanagisawa, Katsuhiko; Sato, Toshinori
2017-12-05
Ganglioside-enriched microdomains in the presynaptic neuronal membrane play a key role in the initiation of amyloid ß-protein (Aß) assembly related to Alzheimer's disease. We previously isolated lipids from a detergent-resistant membrane microdomain fraction of synaptosomes prepared from aged mouse brain and found that spherical Aß assemblies were formed on Aß-sensitive ganglioside nanoclusters (ASIGN) of reconstituted lipid bilayers in the synaptosomal fraction. In the present study, we investigated the role of oligosaccharides in Aß fibril formation induced by ganglioside-containing mixed lipid membranes that mimic the features of ASIGN. Ganglioside nanoclusters were constructed as ternary mixed lipid bilayers composed of ganglioside (GM1, GM2, GM3, GD1a, or GT1b), sphingomyelin, and cholesterol, and their surface topography was visualized by atomic force microscopy. Aß fibril formation on the nanocluster was strongly induced in the presence of 10 mol % ganglioside, and Aß-sensitive features were observed at cholesterol contents of 35-55 mol %. GM1-, GD1a-, and GT1b-containing membranes induced longer fibrils than those containing GD1b and GM2, indicating that the terminal galactose of GM1 along with N-acetylneuraminic acid accelerates protofibril elongation. These results demonstrate that Aß fibril formation is induced by ASIGN that are highly enriched ganglioside nanoclusters with a limited number of components and that the generation and elongation of Aß protofibrils are regulated by the oligosaccharide structure of gangliosides.
Patterned free-standing conductive nanofilms for ultraconformable circuits and smart interfaces.
Greco, Francesco; Zucca, Alessandra; Taccola, Silvia; Mazzolai, Barbara; Mattoli, Virgilio
2013-10-09
A process is presented for the fabrication of patterned ultrathin free-standing conductive nanofilms based on an all-polymer bilayer structure composed of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) and poly(lactic acid) (PEDOT:PSS/PLA). Based on the strategy recently introduced by our group for producing large area free-standing nanofilms of conductive polymers with ultrahigh conformability, here an inkjet subtractive patterning technique was used, with localized overoxidation of PEDOT:PSS that caused the local irreversible loss of electrical conductivity. Different pattern geometries (e.g., interdigitated electrodes with various spacing, etc.) were tested for validating the proposed process. The fabrication of individually addressable microelectrodes and simple circuits on nanofilm having thickness ∼250 nm has been demonstrated. Using this strategy, mechanically robust, conformable ultrathin polymer films could be produced that can be released in water as free-standing nanofilms and/or collected on surfaces with arbitrary shapes, topography and compliance, including human skin. The patterned bilayer nanofilms were characterized as regards their morphology, thickness, topography, conductivity, and electrochemical behavior. In addition, the electrochemical switching of surface properties has been evaluated by means of contact angle measurements. These novel conductive materials can find use as ultrathin, conformable electronic devices and in many bioelectrical applications. Moreover, by exploiting the electrochemical properties of conducting polymers, they can act as responsive smart biointerfaces and in the field of conformable bioelectronics, for example, as electrodes on tissues or smart conductive substrates for cell culturing and stimulation.
Development of an automation technique for the establishment of functional lipid bilayer arrays
NASA Astrophysics Data System (ADS)
Hansen, J. S.; Perry, M.; Vogel, J.; Vissing, T.; Hansen, C. R.; Geschke, O.; Emnéus, J.; Nielsen, C. H.
2009-02-01
In the present work, a technique for establishing multiple black lipid membranes (BLMs) in arrays of micro structured ethylene tetrafluoroethylene (ETFE) films, and supported by a micro porous material was developed. Rectangular 8 × 8 arrays with apertures having diameters of 301 ± 5 µm were fabricated in ETFE Teflon film by laser ablation using a carbon dioxide laser. Multiple lipid membranes could be formed across the micro structured 8 × 8 array ETFE partitions. Success rates for the establishment of cellulose-supported BLMs across the multiple aperture arrays were above 95%. However, the time course of the membrane thinning process was found to vary considerably between multiple aperture bilayer experiments. An airbrush partition pretreatment technique was developed to increase the reproducibility of the multiple lipid bilayers formation during the time course from the establishment of the lipid membranes to the formation of bilayers. The results showed that multiple lipid bilayers could be reproducible formed across the airbrush-pretreated 8 × 8 rectangular arrays. The ionophoric peptide valinomycin was incorporated into established membrane arrays, resulting in ionic currents that could be effectively blocked by tetraethylammonium. This shows that functional bimolecular lipid membranes were established, and furthermore outlines that the established lipid membrane arrays could host functional membrane-spanning molecules.
Direct Imaging of Individual Intrinsic Hydration Layers on Lipid Bilayers at Ångstrom Resolution
Fukuma, Takeshi; Higgins, Michael J.; Jarvis, Suzanne P.
2007-01-01
The interactions between water and biological molecules have the potential to influence the structure, dynamics, and function of biological systems, hence the importance of revealing the nature of these interactions in relation to the local biochemical environment. We have investigated the structuring of water at the interface of supported dipalmitoylphosphatidylcholine bilayers in the gel phase in phosphate buffer solution using frequency modulation atomic force microscopy (FM-AFM). We present experimental results supporting the existence of intrinsic (i.e., surface-induced) hydration layers adjacent to the bilayer. The force versus distance curves measured between the bilayer and the AFM tip show oscillatory force profiles with a peak spacing of 0.28 nm, indicative of the existence of up to two hydration layers next to the membrane surface. These oscillatory force profiles reveal the molecular-scale origin of the hydration force that has been observed between two apposing lipid bilayers. Furthermore, FM-AFM imaging at the water/lipid interface visualizes individual hydration layers in three dimensions, with molecular-scale corrugations corresponding to the lipid headgroups. The results demonstrate that the intrinsic hydration layers are stable enough to present multiple energy barriers to approaching nanoscale objects, such as proteins and solvated ions, and are expected to affect membrane permeability and transport. PMID:17325013
Bilayer synergetic coupling double negative acoustic metasurface and cloak.
Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui
2018-04-12
In this paper, we propose a bilayer plate-type lightweight double negative metasurface based on a new synergetic coupling design concept, by which the perfect absorption, double negative bands, free manipulation of phase shifts with a 2π span and acoustic cloak can be successively realized. Firstly, the synergetic behavior between resonant and anti-resonant plates is presented to construct a bilayer unit in which each component respectively provides a pre-defined function in realizing the perfect absorption. Based on this bilayer structure, a double negative band with simultaneously negative effective mass density and bulk modulus is obtained, which, as a metasurface, can obtain continuous phase shifts almost completely covering a 2π range, thus facilitating the design of a three-dimensional (3D) acoustic cloak. In addition, based on this strong sound absorption concept, a two-dimensional (2D) omnidirectional broadband acoustical dark skin, covering between 800 to 6000 Hz, is also demonstrated through the proposed bilayer plate-type structure form. The proposed design concepts and metasurfaces have widespread potential application values in strong sound attenuation, filtering, superlens, imaging, cloak, and extraordinary wave steering, in which the attributes of strong absorption, double negative parameters or continuous phase shifts with full 2π span are required to realize the expected extraordinary physical features.
Impact of cholesterol on voids in phospholipid membranes
NASA Astrophysics Data System (ADS)
Falck, Emma; Patra, Michael; Karttunen, Mikko; Hyvönen, Marja T.; Vattulainen, Ilpo
2004-12-01
Free volume pockets or voids are important to many biological processes in cell membranes. Free volume fluctuations are a prerequisite for diffusion of lipids and other macromolecules in lipid bilayers. Permeation of small solutes across a membrane, as well as diffusion of solutes in the membrane interior are further examples of phenomena where voids and their properties play a central role. Cholesterol has been suggested to change the structure and function of membranes by altering their free volume properties. We study the effect of cholesterol on the properties of voids in dipalmitoylphosphatidylcholine (DPPC) bilayers by means of atomistic molecular dynamics simulations. We find that an increasing cholesterol concentration reduces the total amount of free volume in a bilayer. The effect of cholesterol on individual voids is most prominent in the region where the steroid ring structures of cholesterol molecules are located. Here a growing cholesterol content reduces the number of voids, completely removing voids of the size of a cholesterol molecule. The voids also become more elongated. The broad orientational distribution of voids observed in pure DPPC is, with a 30% molar concentration of cholesterol, replaced by a distribution where orientation along the bilayer normal is favored. Our results suggest that instead of being uniformly distributed to the whole bilayer, these effects are localized to the close vicinity of cholesterol molecules.
Bifurcation of self-folded polygonal bilayers
NASA Astrophysics Data System (ADS)
Abdullah, Arif M.; Braun, Paul V.; Hsia, K. Jimmy
2017-09-01
Motivated by the self-assembly of natural systems, researchers have investigated the stimulus-responsive curving of thin-shell structures, which is also known as self-folding. Self-folding strategies not only offer possibilities to realize complicated shapes but also promise actuation at small length scales. Biaxial mismatch strain driven self-folding bilayers demonstrate bifurcation of equilibrium shapes (from quasi-axisymmetric doubly curved to approximately singly curved) during their stimulus-responsive morphing behavior. Being a structurally instable, bifurcation could be used to tune the self-folding behavior, and hence, a detailed understanding of this phenomenon is appealing from both fundamental and practical perspectives. In this work, we investigated the bifurcation behavior of self-folding bilayer polygons. For the mechanistic understanding, we developed finite element models of planar bilayers (consisting of a stimulus-responsive and a passive layer of material) that transform into 3D curved configurations. Our experiments with cross-linked Polydimethylsiloxane samples that change shapes in organic solvents confirmed our model predictions. Finally, we explored a design scheme to generate gripper-like architectures by avoiding the bifurcation of stimulus-responsive bilayers. Our research contributes to the broad field of self-assembly as the findings could motivate functional devices across multiple disciplines such as robotics, artificial muscles, therapeutic cargos, and reconfigurable biomedical devices.
Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering
Kučerka, Norbert; Heberle, Frederick A.; Pan, Jianjun; ...
2015-09-21
In this paper, we review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach producesmore » robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). Finally, from model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc.).« less
Comparison of Extruded and Sonicated Vesicles for Planar Bilayer Self-Assembly
Cho, Nam-Joon; Hwang, Lisa Y.; Solandt, Johan J.R.; Frank, Curtis W.
2013-01-01
Lipid vesicles are an important class of biomaterials that have a wide range of applications, including drug delivery, cosmetic formulations and model membrane platforms on solid supports. Depending on the application, properties of a vesicle population such as size distribution, charge and permeability need to be optimized. Preparation methods such as mechanical extrusion and sonication play a key role in controlling these properties, and yet the effects of vesicle preparation method on vesicular properties and integrity (e.g., shape, size, distribution and tension) remain incompletely understood. In this study, we prepared vesicles composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid by either extrusion or sonication, and investigated the effects on vesicle size distribution over time as well as the concomitant effects on the self-assembly of solid-supported planar lipid bilayers. Dynamic light scattering (DLS), quartz crystal microbalance with dissipation (QCM-D) monitoring, fluorescence recovery after photobleaching (FRAP) and atomic force microscopy (AFM) experiments were performed to characterize vesicles in solution as well as their interactions with silicon oxide substrates. Collectively, the data support that sonicated vesicles offer more robust control over the self-assembly of homogenous planar lipid bilayers, whereas extruded vesicles are vulnerable to aging and must be used soon after preparation. PMID:28811437
Barriga, Hanna M G; Booth, Paula; Haylock, Stuart; Bazin, Richard; Templer, Richard H; Ces, Oscar
2014-09-06
Droplet interface bilayers (DIBs) provide an exciting new platform for the study of membrane proteins in stable bilayers of controlled composition. To date, the successful reconstitution and activity measurement of membrane proteins in DIBs has relied on the use of the synthetic lipid 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC). We report the functional reconstitution of the mechanosensitive channel of large conductance (MscL) into DIBs composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), a lipid of significantly greater biological relevance than DPhPC. MscL functionality has been demonstrated using a fluorescence-based assay, showing that dye flow occurs across the DIB when MscL is gated by the cysteine reactive chemical 2-(trimethylammonium)ethyl methane thiosulfonate bromide (MTSET). MscL has already been the subject of a number of studies investigating its interaction with the membrane. We propose that this method will pave the way for future MscL studies looking in detail at the effects of controlled composition or membrane asymmetry on MscL activity using biologically relevant lipids and will also be applicable to other lipid-protein systems, paving the way for the study of membrane proteins in DIBs with biologically relevant lipids.
Artificial multiferroic structures using soft magnetostrictive bilayers on Pb(Mg1/3Nb2/3)-PbTiO3
NASA Astrophysics Data System (ADS)
Miskevich, E.; Alshammari, F. K.; Yang, W.-G.; Sharp, J.; Baco, S.; Leong, Z.; Abbas, Q. A.; Morley, N. A.
2018-02-01
Artificial multiferroic structures are of great interest as they combine two or more functionalities together. One example of these structures is magnetostrictive films grown on top of piezoelectric substrates; allowing the magnetisation hysteresis loop of the magnetostrictive film to be manipulated using an electric field across the structure rather than a magnetic field. In this paper, we have studied the multiferroic structure NiFe/FeCo/Ti/Pb(Mg1/3Nb2/3)-PbTiO3 (PMN-PT) as a function of the electric and magnetic field. Soft magnetostrictive bilayer films (NiFe/FeCo) are studied, as often applications require soft magnetic properties (small coercive and anisotropy fields) combined with larger magnetostrictive constants. Unfortunately, FeCo films can have coercive fields that are too large, while NiFe films’ magnetostriction constants are almost zero; thus, combining the two together should produce the ‘ideal’ soft magnetostrictive film. It was found that the addition of a thin NiFe film onto the FeCo film reduced the coercive field and remnant magnetisation on the application of an applied voltage in comparison to just the FeCo film. It was also determined that for the NiFe/FeCo bilayer the magnetisation switchability was ~100% on the application of 8 kV cm-m, which was higher than the monolayer FeCo films at the same applied field, demonstrating improvement of the multiferroic behaviour by the soft magnetic/magnetostrictive bilayer.
Tunable mesoporous bilayer photonic resins with chiral nematic structures and actuator properties.
Khan, Mostofa K; Hamad, Wadood Y; Maclachlan, Mark J
2014-04-16
Chiral nematic structures with different helical pitch from layer to layer are embedded into phenol-formaldehyde bilayer resin composite films using cellulose nanocrystals (CNCs) as templates. Selective removal of CNCs results in mesoporous resins with different pore size and helical pitch between the layers. Consequently, these materials exhibit photonic properties by selectively reflecting lights of two different wavelengths and concomitant actuation properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal Response Analysis of Phospholipid Bilayers Using Ellipsometric Techniques.
González-Henríquez, Carmen M; Villegas-Opazo, Vanessa A; Sagredo-Oyarce, Dallits H; Sarabia-Vallejos, Mauricio A; Terraza, Claudio A
2017-08-18
Biomimetic planar artificial membranes have been widely studied due to their multiple applications in several research fields. Their humectation and thermal response are crucial for reaching stability; these characteristics are related to the molecular organization inside the bilayer, which is affected by the aliphatic chain length, saturations, and molecule polarity, among others. Bilayer stability becomes a fundamental factor when technological devices are developed-like biosensors-based on those systems. Thermal studies were performed for different types of phosphatidylcholine (PC) molecules: two pure PC bilayers and four binary PC mixtures. These analyses were carried out through the detection of slight changes in their optical and structural parameters via Ellipsometry and Surface Plasmon Resonance (SPR) techniques. Phospholipid bilayers were prepared by Langmuir-Blodgett technique and deposited over a hydrophilic silicon wafer. Their molecular inclination degree, mobility, and stability of the different phases were detected and analyzed through bilayer thickness changes and their optical phase-amplitude response. Results show that certain binary lipid mixtures-with differences in its aliphatic chain length-present a co-existence of two thermal responses due to non-ideal mixing.
Neutron Reflectivity as a Tool for Physics-Based Studies of Model Bacterial Membranes.
Barker, Robert D; McKinley, Laura E; Titmuss, Simon
2016-01-01
The principles of neutron reflectivity and its application as a tool to provide structural information at the (sub-) molecular unit length scale from models for bacterial membranes are described. The model membranes can take the form of a monolayer for a single leaflet spread at the air/water interface, or bilayers of increasing complexity at the solid/liquid interface. Solid-supported bilayers constrain the bilayer to 2D but can be used to characterize interactions with antimicrobial peptides and benchmark high throughput lab-based techniques. Floating bilayers allow for membrane fluctuations, making the phase behaviour more representative of native membranes. Bilayers of varying levels of compositional accuracy can now be constructed, facilitating studies with aims that range from characterizing the fundamental physical interactions, through to the characterization of accurate mimetics for the inner and outer membranes of Gram-negative bacteria. Studies of the interactions of antimicrobial peptides with monolayer and bilayer models for the inner and outer membranes have revealed information about the molecular control of the outer membrane permeability, and the mode of interaction of antimicrobials with both inner and outer membranes.
NASA Astrophysics Data System (ADS)
Liu, Xiaolei; Cui, Hongtao; Hao, Xiaojing; Huang, Shujuan; Conibeer, Gavin
2017-12-01
Molybdenum (Mo) thin films are still a dominant choice for the back contact layer of Cu(In,Ga)Se2 (CIGS) and Cu2ZnSnS4 (CZTS) solar cells. This paper presents a review of Mo back contacts for CIGS and CZTS solar cells, including the requirements for a good back contact, the reason for the choice of Mo, and post-treatment. Additionally, a Mo bilayer back contact was fabricated by varying the argon (Ar) pressure during sputtering to provide both low resistivity and good adhesion to the soda-lime glass substrate. The effects of vacuum thermal annealing on the electrical, morphological and structural properties of the Mo bilayer were also investigated. Vacuum thermal annealing was seen to densify the Mo bilayer, reduce the sheet resistance, and improve the bilayer's adhesion to the soda-lime glass. The Mo bilayer back contact with a low sheet resistance of 0.132 Ω/□ and strong adhesion was made for chalcogenide- and kesterite-based solar cells.
The electronic transport properties of defected bilayer sliding armchair graphene nanoribbons
NASA Astrophysics Data System (ADS)
Mohammadi, Amin; Haji-Nasiri, Saeed
2018-04-01
By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of perfect and defected bilayer armchair graphene nanoribbons (BAGNRs) under finite bias. Two typical defects which are placed in the middle of top layer (i.e. single vacancy (SV) and stone wale (SW) defects) are examined. The results reveal that in both perfect and defected bilayers, the maximum current refers to β-AB, AA and α-AB stacking orders, respectively, since the intermolecular interactions are stronger in them. Moreover it is observed that a SV decreases the current in all stacking orders, but the effects of a SW defect is nearly unpredictable. Besides, we introduced a sequential switching behavior and the effects of defects on the switching performance is studied as well. We found that a SW defect can significantly improve the switching behavior of a bilayer system. Transmission spectrum, band structure, molecular energy spectrum and molecular projected self-consistent Hamiltonian (MPSH) are analyzed subsequently to understand the electronic transport properties of these bilayer devices which can be used in developing nano-scale bilayer systems.
NASA Astrophysics Data System (ADS)
Zhang, Meili; Ren, Yixia; Chen, Xiaoli
2014-10-01
Two new Zn(II) complexes, [Zn2(L)(H2O)3]ṡH2O (1) and [Zn3(HL)2(bpp)2(Hbpp)2]ṡ10H2Oṡ2ClO4 (2) (H4L = cis,cis,cis,cis-1,2,3,4-cyclopentanetracarboxylic acid, bpp = 1,3-bis(4-pyridyl)propane), have been synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction techniques. The structure indicates that the complex 1 crystallizes in triclinic, space group Pī, in which, the four carboxylate groups of L ligand adopt μ2-η1:η0, μ2-η1:η1, μ1-η1:η1 coordination modes, respectively, bridging Zn(II) atoms to generate a (4,6)-connected 2D bilayer network. The structure indicates that the complex 2 crystallizes in monoclinic, space group C2/c, in which, three deprotonated carboxylate groups of L ligand adopt uniform μ1-η1:η0 coordination mode linking Zn(II) atoms to form a 1D polymeric ribbon, the bpp ligands further extend such ribbon giving rised to a (3,4)-connected 2D bilayer network. The most striking feature of 1 and 2 is that both of bilayer networks contain 1D solvent channel, where water molecules are located. In additional, luminescent properties of two complexes have also been studied.
Subterahertz Longitudinal Phonon Modes Propagating in a Lipid Bilayer Immersed in an Aqueous Medium
NASA Astrophysics Data System (ADS)
Zakhvataev, V. E.
2018-04-01
The properties of subterahertz longitudinal acoustic phonon modes in the hydrophobic region of a lipid bilayer immersed in a compressible viscous aqueous medium are investigated theoretically. An approximate expression is obtained for the Mandelstam-Brillouin components of the dynamic structure factor of a bilayer. The analysis is based on a generalized hydrodynamic model of the "two-dimensional lipid bilayer + three-dimensional fluid medium" system, as well as on known sharp estimates for the frequencies and lifetimes of long-wavelength longitudinal acoustic phonons in a free hydrated lipid bilayer and in water, obtained from inelastic X-ray scattering experiments and molecular dynamics simulations. It is shown that, for characteristic values of the parameters of the membrane system, subterahertz longitudinal phonon-like excitations in the hydrophobic part of the bilayer are underdamped. In this case, the contribution of the viscous flow of the aqueous medium to the damping of a longitudinal membrane mode is small compared with the contribution of the lipid bilayer. Quantitative estimates of the damping ratio agree well with the experimental results for the vibration mode of the enzyme lysozyme in aqueous solution [1]. It is also shown that a coupling between longitudinal phonon modes of the bilayer and relaxation processes in its fluid environment gives rise to an additional peak in the scattering spectrum, which corresponds to a non-propagating mode.
Coexistence of a two-states organization for a cell-penetrating peptide in lipid bilayer.
Plénat, Thomas; Boichot, Sylvie; Dosset, Patrice; Milhiet, Pierre-Emmanuel; Le Grimellec, Christian
2005-12-01
Primary amphipathic cell-penetrating peptides transport cargoes across cell membranes with high efficiency and low lytic activity. These primary amphipathic peptides were previously shown to form aggregates or supramolecular structures in mixed lipid-peptide monolayers, but their behavior in lipid bilayers remains to be characterized. Using atomic force microscopy, we have examined the interactions of P(alpha), a primary amphipathic cell-penetrating peptide which remains alpha-helical whatever the environment, with dipalmitoylphosphatidylcholine (DPPC) bilayers. Addition of P(alpha) at concentrations up to 5 mol % markedly modified the supported bilayers topography. Long and thin filaments lying flat at the membrane surface coexisted with deeply embedded peptides which induced a local thinning of the bilayer. On the other hand, addition of P(alpha) only exerted very limited effects on the corresponding liposome's bilayer physical state, as estimated from differential scanning calorimetry and diphenylhexatriene fluorescence anisotropy experiments. The use of a gel-fluid phase separated supported bilayers made of a dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine mixture confirmed both the existence of long filaments, which at low peptide concentration were preferentially localized in the fluid phase domains and the membrane disorganizing effects of 5 mol % P(alpha). The simultaneous two-states organization of P(alpha), at the membrane surface and deeply embedded in the bilayer, may be involved in the transmembrane carrier function of this primary amphipathic peptide.
Salt-induced effects on natural and inverse DPPC lipid membranes: Molecular dynamics simulation.
Rezaei Sani, Seyed Mojtaba; Akhavan, Mojdeh; Jalili, Seifollah
2018-08-01
Molecular dynamics (MD) simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer and its neutral inverse-phosphocholine equivalent (DPCPe) were performed to find salt-induced effects on their surface structure and the nature of ion-lipid interactions. We found that the area per lipid is not considerably affected by the inversion, but the deuterium order parameter of carbon atoms in the region of carbonyl carbons changes dramatically. MD simulations indicate that Ca 2+ ions can bind to the surface of both DPPC and DPCPe membranes, but K + ions do not bind to them. In the case of Na + , however, the ions can bind to natural lipids but not to the inverse ones. Also, our results demonstrate that the hydration level of CPe bilayers is substantially lower than PC bilayers and the averaged orientation of water dipoles in the region of CPe headgroups is effectively inverted compared to PC lipids. This might be important in the interaction of the bilayer with its biological environment. Furthermore, it was found for the CPe bilayers that the enhanced peaks of the electrostatic potential profiles shift further away from the bilayer center relative to those of PC bilayers. This behavior makes the penetration of cations into the bilayer more difficult and possibly explains the experimentally observed enhanced release rates of anionic compounds in the CPe membrane. Copyright © 2018 Elsevier B.V. All rights reserved.
Trilleras, Jorge; Quiroga, Jairo; Cobo, Justo; Glidewell, Christopher
2009-06-01
In the title compound, C(12)H(9)N(3)O(2)S, the thienyl substituent is disordered over two sets of sites with occupancies of 0.749 (3) and 0.251 (3). A combination of N-H...O, C-H...O and C-H...pi hydrogen bonds links the molecules into bilayers and these bilayers are themselves linked into a continuous structure by pi-pi stacking interactions.
Optical Pulling and Pushing Forces in Bilayer P T -Symmetric Structures
NASA Astrophysics Data System (ADS)
Alaee, Rasoul; Christensen, Johan; Kadic, Muamer
2018-01-01
We investigate the optical force exerted on a parity-time-symmetric bilayer made of balanced gain and loss. We show that an asymmetric optical pulling or pushing force can be exerted on this system depending on the direction of impinging light. The optical pulling or pushing force has a direct physical link to the optical characteristics embedded in the non-Hermitian bilayer. Furthermore, we suggest taking advantage of the optically generated asymmetric force to launch vibrations of an arbitrary shape, which is useful for the contactless probing of mechanical deformations.
Lai, Alex L; Tamm, Lukas K
2010-11-26
Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation.
Lai, Alex L.; Tamm, Lukas K.
2010-01-01
Our previous studies showed that an angled boomerang-shaped structure of the influenza hemagglutinin (HA) fusion domain is critical for virus entry into host cells by membrane fusion. Because the acute angle of ∼105° of the wild-type fusion domain promotes efficient non-leaky membrane fusion, we asked whether different angles would still support fusion and thus facilitate virus entry. Here, we show that the G13A fusion domain mutant produces a new leaky fusion phenotype. The mutant fusion domain structure was solved by NMR spectroscopy in a lipid environment at fusion pH. The mutant adopted a boomerang structure similar to that of wild type but with a shallower kink angle of ∼150°. G13A perturbed the structure of model membranes to a lesser degree than wild type but to a greater degree than non-fusogenic fusion domain mutants. The strength of G13A binding to lipid bilayers was also intermediate between that of wild type and non-fusogenic mutants. These membrane interactions provide a clear link between structure and function of influenza fusion domains: an acute angle is required to promote clean non-leaky fusion suitable for virus entry presumably by interaction of the fusion domain with the transmembrane domain deep in the lipid bilayer. A shallower angle perturbs the bilayer of the target membrane so that it becomes leaky and unable to form a clean fusion pore. Mutants with no fixed boomerang angle interacted with bilayers weakly and did not promote any fusion or membrane perturbation. PMID:20826788
Zhang, Mingzhen; Ren, Baiping; Liu, Yonglan; Liang, Guizhao; Sun, Yan; Xu, Lijian; Zheng, Jie
2017-08-16
Interaction of human islet amyloid polypeptide (hIAPP) peptides with cell membrane is crucial for the understanding of amyloid toxicity associated with Type II diabetes (T2D). While it is known that the hIAPP-membrane interactions are considered to promote hIAPP aggregation into fibrils and induce membrane disruption, the membrane-induced conformation, orientation, aggregation, and adsorption behaviors of hIAPP peptides have not been well understood at the atomic level. Herein, we perform all-atom explicit-water molecular dynamics (MD) simulations to study the adsorption, orientation, and surface interaction of hIAPP aggregates with different sizes (monomer to tetramer) and conformations (monomer with α-helix and tetramer with β-sheet-rich U-turn) upon adsorption on the lipid bilayers composed of both pure zwitterionic POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and mixed anionic POPC/POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine) (3:1) lipids. MD simulation results show that hIAPP monomer with α-helical conformation and hIAPP pentamer with β-sheet conformation can adsorb on both POPC and POPC/POPE bilayers via a preferential orientation of N-terminal residues facing toward the bilayer surface. The hIAPP aggregates show stronger interactions with mixed POPC/POPE lipids than pure POPC lipids, consistent with experimental observation that hIAPP adsorption and fibrililation are enhanced on mixed lipid bilayers. While electrostatic interactions are main attractive forces to drive the hIAPP aggregates to adsorb on both bilayers, the introduction of the more hydrophilic head groups of POPE lipids further promote the formation of the interfacial hydrogen bonds. Complement to our previous studies of hIAPP aggregates in bulk solution, this computational work increases our knowledge about the mechanism of amyloid peptide-membrane interactions that is central to the understanding the progression of all amyloid diseases.
Do, Tien T T; Dao, Uyen P N; Bui, Huong T; Nguyen, Trang T
2017-10-01
The interaction between a drug molecule and lipid bilayers is highly important regarding the pharmaceutical activity of the drug. In this study, the interaction of fluoxetine, a well-known selective serotonin reuptake inhibitor antidepressant and lipid bilayers composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) was studied from the aspect of electrostatics using second derivative spectrophotometry and Fourier transform infrared spectroscopy (FTIR) in order to provide insights into the drug behavior. Changing pH from 7.4 to 9.5 to increases the neutral state of fluoxetine, the partitioning of fluoxetine into the zwitterionic DPPC large unilamellar vesicles (LUVs) was increased whereas it was reduced into the negatively charged DPPG LUVs. Fluoxetine was found to exhibit a disordering effect on the acyl chains of DPPC and DPPG bilayers upon its partitioning. In addition, increasing concentration of NaCl lessened the binding of fluoxetine into DPPG bilayers due to the reduction in electrostatic attraction between positively charged fluoxetine and negatively charged DPPG LUVs. In addition, the FTIR study revealed that increasing the NaCl concentration could trigger the shift to higher frequency of the CH 2 stretching as well as the notable blue shift in the PO 2 - regions of DPPG, indicating that fluoxetine had deeper penetration into DPPG LUVs. The differences in the NaCl concentration showed a negligible effect on the incorporation of fluoxetine into the zwitterionic DPPC LUVs. In summary, the electrostatic interaction plays an important role on the partitioning of a cationic amphiphilic SSIR drug into the lipid bilayers and the drug partitioning induces the lipids' conformational change. These imply a possible influence on the drug pharmacology. Copyright © 2017 Elsevier B.V. All rights reserved.
Abu-Baker, Shadi; Lorigan, Gary A.
2008-01-01
Phospholamban (PLB) is a 52-amino acid integral membrane protein that helps to regulate the flow of Ca2+ ions in cardiac muscle cells. Recent structural studies on the PLB pentamer and the functionally active monomer (AFA-PLB) debate whether its cytoplasmic domain, in either the phosphorylated or dephosphorylated states, is α-helical in structure as well as whether it associates with the lipid head groups [Oxenoid, K. (2005) Proc Natl. Acad. Sci. USA 102, 10870–10875, Karim, C. B. (2004) Proc. Natl. Acad. Sci. USA 101, 14437–14442, Andronesi, C.A. (2005) J. Am. Chem. Soc. 127, 12965–12974, Li, J. (2003) Biochemistry 42, 10674–10682, Metcalfe, E. E. (2005) Biochemistry 44, 4386–4396, Clayton, J. C. (2005) Biochemistry 44, 17016–17026]. Comparing the secondary structure of the PLB pentamer and its phosphorylated form (P-PLB) as well as their interaction with the lipid bilayer is crucial in order to understand its regulatory function. Therefore, in this study, the full-length wild-type (WT)-PLB and P-PLB were incorporated into 1-palmitoyl-2-oleoyl-sn-glycero-phosphocholine (POPC) phospholipid bilayers and studied utilizing solid-state NMR spectroscopy. The analysis of the 2H and 31P solid-state NMR data of PLB and P-PLB in POPC multilamellar vesicles (MLVs) indicates that a direct interaction takes place between both proteins and the phospholipid head groups. However, the interaction of P-PLB with POPC bilayers was less significant when compared to PLB. Moreover, the secondary structure using 13C=O site-specific isotopically labeled Ala15-PLB and Ala15-P-PLB in POPC bilayers suggests that this residue, located in the cytoplasmic domain, is a part of an α-helical structure for both PLB and P-PLB. PMID:17073452
2015-01-01
Structural mechanisms and underlying thermodynamic determinants of efficient internalization of charged cationic peptides (cell-penetrating peptides, CPPs) such as TAT, polyarginine, and their variants, into cells, cellular constructs, and model membrane/lipid bilayers (large and giant unilamellar or multilamelar vesicles) continue to garner significant attention. Two widely held views on the translocation mechanism center on endocytotic and nonendocytotic (diffusive) processes. Espousing the view of a purely diffusive internalization process (supported by recent experimental evidence, [Säälik, P.; et al. J. Controlled Release2011, 153, 117–125]), we consider the underlying free energetics of the translocation of a nonaarginine peptide (Arg9) into a model DPPC bilayer. In the case of the Arg9 cationic peptide, recent experiments indicate a higher internalization efficiency of the cyclic structure (cyclic Arg9) relative to the linear conformer. Furthermore, recent all-atom resolution molecular dynamics simulations of cyclic Arg9 [Huang, K.; et al. Biophys. J., 2013, 104, 412–420] suggested a critical stabilizing role of water- and lipid-constituted pores that form within the bilayer as the charged Arg9 translocates deep into the bilayer center. Herein, we use umbrella sampling molecular dynamics simulations with coarse-grained Martini lipids, polarizable coarse-grained water, and peptide to explore the dependence of translocation free energetics on peptide structure and conformation via calculation of potentials of mean force along preselected reaction paths allowing and preventing membrane deformations that lead to pore formation. Within the context of the coarse-grained force fields we employ, we observe significant barriers for Arg9 translocation from bulk aqueous solution to bilayer center. Moreover, we do not find free-energy minima in the headgroup–water interfacial region, as observed in simulations using all-atom force fields. The pore-forming paths systematically predict lower free-energy barriers (ca. 90 kJ/mol lower) than the non pore-forming paths, again consistent with all-atom force field simulations. The current force field suggests no preference for the more compact or covalently cyclic structures upon entering the bilayer. Decomposition of the PMF into the system’s components indicates that the dominant stabilizing contribution along the pore-forming path originates from the membrane as both layers of it deformed due to the formation of pore. Furthermore, our analysis revealed that although there is significant entropic stabilization arising from the enhanced configurational entropy exposing more states as the peptide moves through the bilayer, the enthalpic loss (as predicted by the interactions of this coarse-grained model) far outweighs any former stabilization, thus leading to significant barrier to translocation. Finally, we observe reduction in the translocation free-energy barrier for a second Arg9 entering the bilayer in the presence of an initial peptide restrained at the center, again, in qualitative agreement with all-atom force fields. PMID:24506488
NASA Astrophysics Data System (ADS)
Jacak, Janusz; Jacak, Lucjan
2016-01-01
The structure of the filling rate hierarchy referred to as the fractional quantum Hall effect is studied in higher Landau levels using the commensurability condition. The hierarchy of fillings that are derived in this manner is consistent with the experimental observations of the first three Landau levels in conventional semiconductor Hall systems. The relative poverty of the fractional structure in higher Landau levels compared with the lowest Landau level is explained using commensurability topological arguments. The commensurability criterion for correlated states for higher Landau levels (with n≥slant 1) including the paired states at half fillings of the spin-subbands of these levels is formulated. The commensurability condition is applied to determine the hierarchy of the fractional fillings of Landau levels in the monolayer and bilayer graphene. Good agreement with current experimental observations of fractional quantum Hall effect in the graphene monolayer and bilayer is achieved. The presence of even denominator rates in the hierarchy for fractional quantum Hall effect in the bilayer graphene is also explained.
Han, Xue; Mihailescu, Mihaela; Hristova, Kalina
2006-01-01
Achondroplasia, the most common form of human dwarfism, is due to a G380R mutation in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) in >97% of the studied cases. While the molecular mechanism of pathology induction is under debate, the structural consequences of the mutation have not been studied. Here we use neutron diffraction to determine the disposition of FGFR3 transmembrane domain in fluid lipid bilayers, and investigate whether the G380R mutation affects the topology of the protein in the bilayer. Our results demonstrate that, in a model system, the G380R mutation induces a shift in the segment that is embedded in the membrane. The center of the hydrocarbon core-embedded segment in the mutant is close to the midpoint between R380 and R397, supporting previous measurements of arginine insertion energetics into the endoplasmic reticulum. The presented results further our knowledge about basic amino-acid insertion into bilayers, and may lead to new insights into the mechanism of pathogenesis in achondroplasia. PMID:16950849
Lipid bilayers suspended on microfabricated supports
NASA Astrophysics Data System (ADS)
Ogier, Simon D.; Bushby, Richard J.; Cheng, Yaling; Cox, Tim I.; Evans, Stephen D.; Knowles, Peter F.; Miles, Robert E.; Pattison, Ian
2001-03-01
The plasma membrane, that exists as part of many animal and plant cells, is a regulator for the transport of ions and small molecules across cell boundaries. Two main components involved are the phospholipid bilayer and the transport proteins. This paper details the construction of a micromachined support for bilayers (MSB) as a first step towards the development of highly selective and highly sensitive ion-channel based biosensors. The device consists of a ~100 micrometer hole in a polymeric support above a cavity that can hold ~25 nL of electrolyte. Electrodes attached to the structure allow the resistance of the membranes to be measured using d.c. conductivity. The MSB is made in two halves, using SU8 ultra-thick resist, which are subsequently bonded together to make the final structure. A layer of gold, surrounding the aperture, enables self-assembled monolayers of alkanethiols to be used to make the polymeric structure biocompatible. Lipid membranes have been formed over these holes with resistances comparable with those of natural membranes >10 MOhmcm^2. The ion-channel gramicidin has successfully been incorporated into the bilayer and its activity monitored. It is proposed that this type of device could be used not only for studying membrane transport phenomena but also as part of an ion-channel based biosensor.
Zhao, Lingyun; Feng, Si-Shen; Kocherginsky, Nikolai; Kostetski, Iouri
2007-06-29
Differential scanning calorimetry (DSC) and electron paramagnetic resonance spectroscopy (EPR) were applied to investigate effects of cholesterol component on molecular interactions between paclitaxel, which is one of the best antineoplastic agents found from nature, and dipalmitoylphosphatidylcholine (DPPC) within lipid bilayer vesicles (liposomes), which could also be used as a model cell membrane. DSC analysis showed that incorporation of paclitaxel into the DPPC bilayer causes a reduction in the cooperativity of bilayer phase transition, leading to a looser and more flexible bilayer structure. Including cholesterol component in the DPPC/paclitaxel mixed bilayer can facilitate the molecular interaction between paclitaxel and lipid and make the tertiary system more stable. EPR analysis demonstrated that both of paclitaxel and cholesterol have fluidization effect on the DPPC bilayer membranes although cholesterol has more significant effect than paclitaxel does. The reduction kinetics of nitroxides by ascorbic acid showed that paclitaxel can inhibit the reaction by blocking the diffusion of either the ascorbic acid or nitroxide molecules since the reaction is tested to be a first order one. Cholesterol can remarkably increase the reduction reaction speed. This research may provide useful information for optimizing liposomal formulation of the drug as well as for understanding the pharmacology of paclitaxel.
Measuring excess free energies of self-assembled membrane structures.
Norizoe, Yuki; Daoulas, Kostas Ch; Müller, Marcus
2010-01-01
Using computer simulation of a solvent-free, coarse-grained model for amphiphilic membranes, we study the excess free energy of hourglass-shaped connections (i.e., stalks) between two apposed bilayer membranes. In order to calculate the free energy by simulation in the canonical ensemble, we reversibly transfer two apposed bilayers into a configuration with a stalk in three steps. First, we gradually replace the intermolecular interactions by an external, ordering field. The latter is chosen such that the structure of the non-interacting system in this field closely resembles the structure of the original, interacting system in the absence of the external field. The absence of structural changes along this path suggests that it is reversible; a fact which is confirmed by expanded-ensemble simulations. Second, the external, ordering field is changed as to transform the non-interacting system from the apposed bilayer structure to two-bilayers connected by a stalk. The final external field is chosen such that the structure of the non-interacting system resembles the structure of the stalk in the interacting system without a field. On the third branch of the transformation path, we reversibly replace the external, ordering field by non-bonded interactions. Using expanded-ensemble techniques, the free energy change along this reversible path can be obtained with an accuracy of 10(-3)k(B)T per molecule in the n VT-ensemble. Calculating the chemical potential, we obtain the free energy of a stalk in the grandcanonical ensemble, and employing semi-grandcanonical techniques, we calculate the change of the excess free energy upon altering the molecular architecture. This computational strategy can be applied to compute the free energy of self-assembled phases in lipid and copolymer systems, and the excess free energy of defects or interfaces.
Preparation and Characterization of Stable α-Synuclein Lipoprotein Particles.
Eichmann, Cédric; Campioni, Silvia; Kowal, Julia; Maslennikov, Innokentiy; Gerez, Juan; Liu, Xiaoxia; Verasdonck, Joeri; Nespovitaya, Nadezhda; Choe, Senyon; Meier, Beat H; Picotti, Paola; Rizo, Josep; Stahlberg, Henning; Riek, Roland
2016-04-15
Multiple neurodegenerative diseases are caused by the aggregation of the human α-Synuclein (α-Syn) protein. α-Syn possesses high structural plasticity and the capability of interacting with membranes. Both features are not only essential for its physiological function but also play a role in the aggregation process. Recently it has been proposed that α-Syn is able to form lipid-protein particles reminiscent of high-density lipoproteins. Here, we present a method to obtain a stable and homogeneous population of nanometer-sized particles composed of α-Syn and anionic phospholipids. These particles are called α-Syn lipoprotein (nano)particles to indicate their relationship to high-density lipoproteins formed by human apolipoproteins in vivo and of in vitro self-assembling phospholipid bilayer nanodiscs. Structural investigations of the α-Syn lipoprotein particles by circular dichroism (CD) and magic angle solid-state nuclear magnetic resonance (MAS SS-NMR) spectroscopy establish that α-Syn adopts a helical secondary structure within these particles. Based on cryo-electron microscopy (cryo-EM) and dynamic light scattering (DLS) α-Syn lipoprotein particles have a defined size with a diameter of ∼23 nm. Chemical cross-linking in combination with solution-state NMR and multiangle static light scattering (MALS) of α-Syn particles reveal a high-order protein-lipid entity composed of ∼8-10 α-Syn molecules. The close resemblance in size between cross-linked in vitro-derived α-Syn lipoprotein particles and a cross-linked species of endogenous α-Syn from SH-SY5Y human neuroblastoma cells indicates a potential functional relevance of α-Syn lipoprotein nanoparticles. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Electronic compressibility of bilayer graphene
NASA Astrophysics Data System (ADS)
Henriksen, Erik
2011-03-01
We have recently measured the electronic compressibility of bilayer graphene, allowing exploration of the thermodynamic density of states as a function of applied electric and magnetic fields. Utilizing dual-gated field-effect devices, we can independently vary both the carrier density and the size of the tunable band gap. An oscillating voltage applied to a back gate generates corresponding signals in the top gate via electric fields lines which penetrate the graphene, thereby allowing a direct measurement of the inverse compressibility, K-1 , of the bilayer. We have mapped K-1 , which is proportional to the inverse density of states, as a function of the top and back gate voltages in zero and finite magnetic field. A sharp increase in K-1 near zero density is observed with increasing electric field strength, signaling the controlled opening of a band gap. At high magnetic fields, broad Landau level (LL) oscillations are observed, directly revealing the doubled degeneracy of the lowest LL and allowing for a determination of the disorder broadening of the levels. We compare our results to tight-binding calculations of the bilayer band structure, and to recent theoretical studies of the compressibility of bilayer graphene. Together, these clearly illustrate the unusual hyperbolic nature of the low energy band structure, reveal a sizeable electron-hole asymmetry, and suggest that many-body interactions play only a small role in bilayer-on-substrate devices. This work is a collaboration with J. P. Eisenstein of Caltech, and is supported by the NSF under Grant No. DMR-0552270 and the DOE under Grant No. DE-FG03-99ER45766.
Karami, Leila; Jalili, Seifollah
2015-01-01
Liposomal cytarabine, DepoCyt, is a chemotherapy agent which is used in cancer treatment. This form of cytarabine has more efficacy and fewer side effects relative to the other forms. Since DepoCyt contains the cytarabine encapsulated within phosphatidylcholine and the sterol molecules, we modeled dioleoylphosphatidylcholine (DOPC)/cholesterol bilayer membrane as a carrier for cytarabine to study drug-bilayer interactions. For this purpose, we performed a series of united-atom molecular dynamics (MD) simulations for 25 ns to investigate the interactions between cytarabine and cholesterol-containing DOPC lipid bilayers. Only the uncharged form of cytarabine molecule was investigated. In this study, different levels of the cholesterol content (0, 20, and 40%) were used. MD simulations allowed us to determine dynamical and structural properties of the bilayer membrane and to estimate the preferred location and orientation of the cytarabine molecule inside the bilayer membrane. Properties such as membrane thickness, area per lipid, diffusion coefficient, mass density, bilayer packing, order parameters, and intermolecular interactions were examined. The results show that by increasing the cholesterol concentration in the lipid bilayers, the bilayer thickness increases and area per lipid decreases. Moreover, in accordance with the experiments, our calculations show that cholesterol molecules have ordering effect on the hydrocarbon acyl chains. Furthermore, the cytarabine molecule preferentially occupies the polar region of the lipid head groups to form specific interactions (hydrogen bonds). Our results fully support the experimental data. Our finding about drug-bilayer interaction is crucial for the liposomal drug design.
Molecular Dynamics of a Water-Lipid Bilayer Interface
NASA Technical Reports Server (NTRS)
Wilson, Michael A.; Pohorille, Andrew
1994-01-01
We present results of molecular dynamics simulations of a glycerol 1-monooleate bilayer in water. The total length of analyzed trajectories is 5ns. The calculated width of the bilayer agrees well with the experimentally measured value. The interior of the membrane is in a highly disordered fluid state. Atomic density profile, orientational and conformational distribution functions, and order parameters indicate that disorder increases toward the center of the bilayer. Analysis of out-of-plane thermal fluctuations of the bilayer surfaces occurring at the time scale of the present calculations reveals that the distribution of modes agrees with predictions of the capillary wave model. Fluctuations of both bilayer surfaces are uncorrelated, yielding Gaussian distribution of instantaneous widths of the membrane. Fluctuations of the width produce transient thinning defects in the bilayer which occasionally span almost half of the membrane. The leading mechanism of these fluctuations is the orientational and conformational motion of head groups rather than vertical motion of the whole molecules. Water considerably penetrates the head group region of the bilayer but not its hydrocarbon core. The total net excess dipole moment of the interfacial water points toward the aqueous phase, but the water polarization profile is non-monotonic. Both water and head groups significantly contribute to the surface potential across the interface. The calculated sign of the surface potential is in agreement with that from experimental measurements, but the value is markedly overestimated. The structural and electrical properties of the water-bilayer system are discussed in relation to membrane functions, in particular transport of ions and nonelectrolytes across membranes.
Hezaveh, Samira; Samanta, Susruta; De Nicola, Antonio; Milano, Giuseppe; Roccatano, Danilo
2012-12-13
In this paper, we present a computational model of the adsorption and percolation mechanism of poloxamers (poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) triblock copolymers) across a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid bilayer. A coarse-grained model was used to cope with the long time scale of the percolation process. The simulations have provided details of the interaction mechanism of Pluronics with lipid bilayer. In particular, the results have shown that polymer chains containing a PPO block with a length comparable to the DMPC bilayer thickness, such as P85, tends to percolate across the lipid bilayer. On the contrary, Pluronics with a shorter PPO chain, such as L64 and F38, insert partially into the membrane with the PPO block part while the PEO blocks remain in water on one side of the lipid bilayer. The percolation of the polymers into the lipid tail groups reduces the membrane thickness and increases the area per lipid. These effects are more evident for P85 than L64 or F38. Our findings are qualitatively in good agreement with published small-angle X-ray scattering experiments that have evidenced a thinning effect of Pluronics on the lipid bilayer as well as the role of the length of the PPO block on the permeation process of the polymer through the lipid bilayer. Our theoretical results complement the experimental data with a detailed structural and dynamic model of poloxamers at the interface and inside the lipid bilayer.
Nanoscale patterning controls inorganic-membrane interface structure
NASA Astrophysics Data System (ADS)
Almquist, Benjamin D.; Verma, Piyush; Cai, Wei; Melosh, Nicholas A.
2011-02-01
The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a `fused' interface and a `T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces.The ability to non-destructively integrate inorganic structures into or through biological membranes is essential to realizing full bio-inorganic integration, including arrayed on-chip patch-clamps, drug delivery, and biosensors. Here we explore the role of nanoscale patterning on the strength of biomembrane-inorganic interfaces. AFM measurements show that inorganic probes functionalized with hydrophobic bands with thicknesses complimentary to the hydrophobic lipid bilayer core exhibit strong attachment in the bilayer. As hydrophobic band thickness increases to 2-3 times the bilayer core the interfacial strength decreases, comparable to homogeneously hydrophobic probes. Analytical calculations and molecular dynamics simulations predict a transition between a `fused' interface and a `T-junction' that matches the experimental results, showing lipid disorder and defect formation for thicker bands. These results show that matching biological length scales leads to more intimate bio-inorganic junctions, enabling rational design of non-destructive membrane interfaces. Electronic supplementary information (ESI) available: Breakthrough rate as a function of force plots for 5 nm, 10 nm and ∞-probes.. See DOI: 10.1039/c0nr00486c
Self-assembled lipid bilayer materials
Sasaki, Darryl Y.; Waggoner, Tina A.; Last, Julie A.
2005-11-08
The present invention is a self-assembling material comprised of stacks of lipid bilayers formed in a columnar structure, where the assembly process is mediated and regulated by chemical recognition events. The material, through the chemical recognition interactions, has a self-regulating system that corrects the radial size of the assembly creating a uniform diameter throughout most of the structure. The materials form and are stable in aqueous solution. These materials are useful as structural elements for the architecture of materials and components in nanotechnology, efficient light harvesting systems for optical sensing, chemical processing centers, and drug delivery vehicles.
Tunneling Spectroscopy of Quantum Hall States in Bilayer Graphene
NASA Astrophysics Data System (ADS)
Wang, Ke; Harzheim, Achim; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip
In the quantum Hall (QH) regime, ballistic conducting paths along the physical edges of a sample appear, leading to quantized Hall conductance and vanishing longitudinal magnetoconductance. These QH edge states are often described as ballistic compressible strips separated by insulating incompressible strips, the spatial profiles of which can be crucial in understanding the stability and emergence of interaction driven QH states. In this work, we present tunneling transport between two QH edge states in bilayer graphene. Employing locally gated device structure, we guide and control the separation between the QH edge states in bilayer graphene. Using resonant Landau level tunneling as a spectroscopy tool, we measure the energy gap in bilayer graphene as a function of displacement field and probe the emergence and evolution of incompressible strips.
Inducing morphological changes in lipid bilayer membranes with microfabricated substrates
NASA Astrophysics Data System (ADS)
Liu, Fangjie; Collins, Liam F.; Ashkar, Rana; Heberle, Frederick A.; Srijanto, Bernadeta R.; Collier, C. Patrick
2016-11-01
Lateral organization of lipids and proteins into distinct domains and anchoring to a cytoskeleton are two important strategies employed by biological membranes to carry out many cellular functions. However, these interactions are difficult to emulate with model systems. Here we use the physical architecture of substrates consisting of arrays of micropillars to systematically control the behavior of supported lipid bilayers - an important step in engineering model lipid membrane systems with well-defined functionalities. Competition between attractive interactions of supported lipid bilayers with the underlying substrate versus the energy cost associated with membrane bending at pillar edges can be systematically investigated as functions of pillar height and pitch, chemical functionalization of the microstructured substrate, and the type of unilamellar vesicles used for assembling the supported bilayer. Confocal fluorescent imaging and AFM measurements highlight correlations that exist between topological and mechanical properties of lipid bilayers and lateral lipid mobility in these confined environments. This study provides a baseline for future investigations into lipid domain reorganization on structured solid surfaces and scaffolds for cell growth.
Interaction of Aspirin (Acetylsalicylic Acid) with Lipid Membranes
Barrett, Matthew A.; Zheng, Songbo; Roshankar, Golnaz; Alsop, Richard J.; Belanger, Randy K. R.; Huynh, Chris; Kučerka, Norbert; Rheinstädter, Maikel C.
2012-01-01
We studied the interaction of Aspirin (acetylsalicylic acid) with lipid membranes using x-ray diffraction for bilayers containing up to 50 mol% of aspirin. From 2D x-ray intensity maps that cover large areas of reciprocal space we determined the position of the ASA molecules in the phospholipid bilayers and the molecular arrangement of the molecules in the plane of the membranes. We present direct experimental evidence that ASA molecules participate in saturated lipid bilayers of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and preferably reside in the head group region of the membrane. Up to 50 mol% ASA molecules can be dissolved in this type of bilayer before the lateral membrane organization is disturbed and the membranes are found to form an ordered, 2D crystal-like structure. Furthermore, ASA and cholesterol were found to co-exist in saturated lipid bilayers, with the ASA molecules residing in the head group region and the cholesterol molecules participating in the hydrophobic membrane core. PMID:22529913
AB-stacked square-like bilayer ice in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Bai, Jaeil; Zeng, Xiao Cheng; Wu, HengAn
2016-08-10
Water, when constrained between two graphene sheets and under ultrahigh pressure, can manifest dramatic differences from its bulk counterparts such as the van der Waals pressure induced water-to-ice transformation, known as the metastability limit of two-dimensional (2D) liquid. Here, we present result of a new crystalline structure of bilayer ice with the AB-stacking order, observed from molecular dynamics simulations of constrained water. This AB-stacked bilayer ice (BL-ABI) is transformed from the puckered monolayer square-like ice (pMSI) under higher lateral pressure in the graphene nanocapillary at ambient temperature. BL-ABI is a proton-ordered ice with square-like pattern. The transition from pMSI to BL-ABI is through crystal-to-amorphous-to-crystal pathway with notable hysteresis-loop in the potential energy during the compression/decompression process, reflecting the compression/tensile limit of the 2D monolayer/bilayer ice. In a superheating process, the BL-ABI transforms into the AB-stacked bilayer amorphous ice with the square-like pattern.
Burn, D M; Hase, T P A; Atkinson, D
2014-06-11
Modification of the magnetic properties in a thin-film ferromagnetic/non-magnetic bilayer system by low-dose focused ion-beam (FIB) induced intermixing is demonstrated. The highly localized capability of FIB may be used to locally control magnetic behaviour at the nanoscale. The magnetic, electronic and structural properties of NiFe/Au bilayers were investigated as a function of the interfacial structure that was actively modified using focused Ga(+) ion irradiation. Experimental work used MOKE, SQUID, XMCD as well as magnetoresistance measurements to determine the magnetic behavior and grazing incidence x-ray reflectivity to elucidate the interfacial structure. Interfacial intermixing, induced by low-dose irradiation, is shown to lead to complex changes in the magnetic behavior that are associated with monotonic structural evolution of the interface. This behavior may be explained by changes in the local atomic environment within the interface region resulting in a combination of processes including the loss of moment on Ni and Fe, an induced moment on Au and modifications to the spin-orbit coupling between Au and NiFe.
CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin
van Pee, Katharina; Neuhaus, Alexander; D'Imprima, Edoardo; Mills, Deryck J; Kühlbrandt, Werner; Yildiz, Özkan
2017-01-01
Many pathogenic bacteria produce pore-forming toxins to attack and kill human cells. We have determined the 4.5 Å structure of the ~2.2 MDa pore complex of pneumolysin, the main virulence factor of Streptococcus pneumoniae, by cryoEM. The pneumolysin pore is a 400 Å ring of 42 membrane-inserted monomers. Domain 3 of the soluble toxin refolds into two ~85 Å β-hairpins that traverse the lipid bilayer and assemble into a 168-strand β-barrel. The pore complex is stabilized by salt bridges between β-hairpins of adjacent subunits and an internal α-barrel. The apolar outer barrel surface with large sidechains is immersed in the lipid bilayer, while the inner barrel surface is highly charged. Comparison of the cryoEM pore complex to the prepore structure obtained by electron cryo-tomography and the x-ray structure of the soluble form reveals the detailed mechanisms by which the toxin monomers insert into the lipid bilayer to perforate the target membrane. DOI: http://dx.doi.org/10.7554/eLife.23644.001 PMID:28323617
Saito, Hiroaki; Shinoda, Wataru
2011-12-29
Water permeability of two different lipid bilayers of dipalmitoylphosphatidylcholine (DPPC) and palmitoylsphingomyelin (PSM) in the absence and presence of cholesterol (0-50 mol %) have been studied by molecular dynamics simulations to elucidate the molecular mechanism of the reduction in water leakage across the membranes by the addition of cholesterol. An enhanced free energy barrier was observed in these membranes with increased cholesterol concentration, and this was explained by the reduced cavity density around the cholesterol in the hydrophobic membrane core. There was an increase of trans conformers in the hydrophobic lipid chains adjacent to the cholesterol, which reduced the cavity density. The enhanced free energy barrier was found to be the main reason to reduce the water permeability with increased cholesterol concentration. At low cholesterol concentrations the PSM bilayer exhibited a higher free energy barrier than the DPPC bilayer for water permeation, while at greater than 30 mol % of cholesterol the difference became minor. This tendency for the PSM and DPPC bilayers to resemble each other at higher cholesterol concentrations was similar to commonly observed trends in several structural properties, such as order parameters, cross-sectional area per molecule, and cavity density profiles in the hydrophobic regions of bilayer membranes. These results demonstrate that DPPC and PSM bilayers with high cholesterol contents possess similar physical properties, which suggests that the solubility of cholesterol in these lipid bilayers has importance for an understanding of multicomponent lipid membranes with cholesterol. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Zhou, Jihan; Liang, Dehai; Contera, Sonia
2015-10-01
Penetration and partition of C60 to the lipid bilayer core are both relevant to C60 toxicity, and useful to realise C60 biomedical potential. A key aspect is the effect of C60 on bilayer mechanical properties. Here, we present an experimental study on the mechanical effect of the incorporation of C60 into the hydrophobic core of fluid and gel phase zwitterionic phosphatidylcholine (PC) lipid bilayers. We demonstrate its incorporation inside the hydrophobic lipid core and the effect on the packing of the lipids and the vesicle size using a combination of infrared (IR) spectroscopy, atomic force microscopy (AFM) and laser light scattering. Using AFM we measured the Young's modulus of elasticity (E) of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) in the absence (presence) of intra-membranous C60 at 24.5 °C. E of fluid phase supported bilayers is not altered by C60, but E increases with incorporation of C60 in gel phase bilayers. The increase is higher for longer hydrocarbon chains: 1.6 times for DPPC and 2 times for DSPC. However the mechanical resistance of gel phase bilayers of curved bilayered structures decreases with the incorporation of C60. Our combined results indicate that C60 causes a decrease in gel phase lipid mobility, i.e. an increase in membrane viscosity.
Electrophoretic deposition of bi-layered LSM/LSM-YSZ cathodes for solid oxide fuel cell
NASA Astrophysics Data System (ADS)
Itagaki, Yoshiteru; Watanabe, Shinji; Yamaji, Tsuyoshi; Asamoto, Makiko; Yahiro, Hidenori; Sadaoka, Yoshihiko
2012-09-01
Bi-layered cathodes with the LSM/LSM-YSZ structure for solid oxide fuel cells were successfully formed on the carbon-sputtered surface of a YSZ sheet by electrophoretic deposition (EPD). The thicknesses of the first layer of LSM-YSZ (LY) and the second layer of La0.8Sr0.2MnO3 (LSM) could be controlled by adjusting the deposition time in the EPD process. The cathodic properties of the bi-layered structures were superior to those of the mono-layered structures, and were dependent on the thickness of each layer. Decreasing the thickness of the first layer and increasing that of the second layer tended to reduce both polarization and ohmic resistances. The optimal thickness of the first layer at the operating temperature of 600 °C was 4 μm, suggesting that an effective three-phase boundary was extended from the interface between the electrolyte and cathode film to around 4 μm thickness.
Coherent assembly of heterostructures in ternary and quaternary carbonitrides
NASA Astrophysics Data System (ADS)
Caicedo, J. C.; Aperador, W.; Saldarriaga, W.
2018-05-01
In this study, ternary and quaternary carbonitride heterostructure systems were grown on silicon (100) substrates in order to investigate coherent assembly in TiCN/TiNbCN. The heterostructure films were grown using the reactive r. f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n), while maintaining a constant total coating thickness (∼3 μm). The heterostructures were characterized by high angle X-ray diffraction (HA-XRD) and low angle X-ray diffraction, while the TiCN and TiNbCN layers were analyzed by X-ray photoelectron spectroscopy and transmission electron microscopy. The HA-XRD results indicated preferential growth in the face-centered cubic (111) crystal structure for the [TiCN/TiNbCN]n heterostructures. The maximum coherent assembly was observed with the presence of satellite peaks. Thus, ternary and quaternary carbonitride films were designed and deposited on Si (100) substrates with bilayer periods (Λ) in a broad range from nanometers to hundreds of nanometers in order to study the structural evolution and coherent assembly progress as the bilayer thickness decreased. We determined physical properties comprising the critical angle (θc) (0.362°), electronic density (ρe) (0.521 × 1033 el/m3), dispersion coefficient (δ) (0.554 el/m3), and refractive index (n) (0.999944) as functions of the number of bilayers (n).
Xenon-ion-induced and thermal mixing of Co/Si bilayers and their interplay
NASA Astrophysics Data System (ADS)
Novaković, M.; Zhang, K.; Popović, M.; Bibić, N.; Hofsäss, H.; Lieb, K. P.
2011-05-01
Studies on ion-irradiated transition-metal/silicon bilayers demonstrate that interface mixing and silicide phase formation depend sensitively on the ion and film parameters, including the structure of the metal/Si interface. Thin Co layers e-gun evaporated to a thickness of 50 nm on Si(1 0 0) wafers were bombarded at room temperature with 400-keV Xe + ions at fluences of up to 3 × 10 16 cm -2. We used either crystalline or pre-amorphized Si wafers the latter ones prepared by 1.0-keV Ar-ion implantation. The as-deposited or Xe-ion-irradiated samples were then isochronally annealed at temperatures up to 700 °C. Changes of the bilayer structures induced by ion irradiation and/or annealing were investigated with RBS, XRD and HRTEM. The mixing rate for the Co/c-Si couples, Δ σ2/ Φ = 3.0(4) nm 4, is higher than the value expected for ballistic mixing and about half the value typical for spike mixing. Mixing of pre-amorphized Si is much weaker relative to crystalline Si wafers, contrary to previous results obtained for Fe/Si bilayers. Annealing of irradiated samples produces very similar interdiffusion and phase formation patterns above 400 °C as in the non-irradiated Co/Si bilayers: the phase evolution follows the sequence Co 2Si → CoSi → CoSi 2.
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries.
Zhu, YinBo; Wang, FengChao; Wu, HengAn
2016-08-07
Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates that the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the "buckling failure" of the square-ice-nanotube columns, which is dominated by the lateral pressure.
D IR Line Shapes for Determining the Structure of a Peptide in a Bilayer
NASA Astrophysics Data System (ADS)
Woys, Ann Marie; Lin, Y. S.; Skinner, J. S.; Zanni, M. T.; Reddy, A. S.; de Pablo, J. J.
2010-06-01
Structure of the antimicrobial peptide, ovispirin, on a lipid bilayer was determined using 2D IR spectroscopy and spectra calculated from molecular dynamics simulations. Ovispirin is an 18 residue amphipathic peptide that binds parallel to the membrane in a mostly alpha helical conformation. 15 of the 18 residues were ^1^3C^1^8O isotopically labeled on the backbone to isolate the amide I vibration at each position. 2D IR spectra were collected for each labeled peptide in 3:1 POPC/POPG vesicles, and peak width along the diagonal was measured. The diagonal line width is sensitive to the vibrator's electrostatic environment, which varies through the bilayer. We observe an oscillatory line width spanning 10 to 24 cm-1 and with a period of nearly 3.6 residues. To further investigate the position of ovispirin in a bilayer, molecular dynamics simulations determined the peptide depth to be just below the lipid headgroups. The trajectory of ovispirin at this depth was used to calculate 2D IR spectra, from which the diagonal line width is measured. Both experimental and simulated line widths are similar in periodicity and suggest a kink in the peptide backbone and the tilt in the bilayer. A. Woys, Y. S. Lin, A. S. Reddy, W. Xiong, J. J. de Pablo, J. S. Skinner, and M. T. Zanni, JACS 132, 2832-2838 (2010).
Optical and Structural Characterization of ZnO/TiO2 Bilayer Thin Films Grown by Sol-Gel Spin Coating
NASA Astrophysics Data System (ADS)
Gareso, P. L.; Musfitasari; Juarlin, Eko
2018-03-01
Structural and optical properties of ZnO/TiO2 bilayers thin films have been investigated using x-ray diffraction (X-RD), scanning electron microscopy (SEM), and optical transmittance UV-Vis measurements. ZnO thin films were prepared by dissolving zinc acetate dehydrated into a solvent of ethanol and then added triethanolamin. In the case of TiO2 layers, tetraisoproxide was dissolved into ethanol and then added an acetate acid. The layer of ZnO was deposited first followed by TiO2 layer on a glass substrate using a spin coating technique. The ZnO/TiO2 bilayers were annealed at various temperatures from 300°C until 600°C for 60 minutes. The X-ray diffraction results show that there was an enhancement of the x-ray spectra as annealed temperature increased to 600°C in comparison to the samples that were annealed at 300°C. Based on the optical measurement of UV-Vis, the band gap energy of ZnO/TiO2 bilayer is around 3.2 eV at temperature of 300°C. This value is similar to the band gap energy of ZnO. SEM results show that there is no cluster in the surface of ZnO/TiO2 bilayer.
Hattori, Azusa N; Okamoto, Takeshi; Sadakuni, Shun; Murata, Junji; Oi, Hideo; Arima, Kenta; Sano, Yasuhisa; Hattori, Ken; Daimon, Hiroshi; Endo, Katsuyoshi; Yamauchi, Kazuto
2011-04-01
Monolayer and bilayer graphene films with a few hundred nm domain size were grown on ultraprecision figured 4H-SiC(0001) on-axis and 8 degrees -off surfaces by annealing in ultra-high vacuum. Using X-ray photoelectron spectroscopy (XPS), atomic force microscopy, reflection high-energy electron diffraction, low-energy electron diffraction (LEED), Raman spectroscopy, and scanning tunneling microscopy, we investigated the structure, number of graphene layers, and chemical bonding of the graphene surfaces. Moreover, the magnetic property of the monolayer graphene was studied using in-situ surface magneto-optic Kerr effect at 40 K. LEED spots intensity distribution and XPS spectra for monolayer and bilayer graphene films could become an obvious and accurate fingerprint for the determination of graphene film thickness on SiC surface.
Generalization of the swelling method to measure the intrinsic curvature of lipids
NASA Astrophysics Data System (ADS)
Barragán Vidal, I. A.; Müller, M.
2017-12-01
Via computer simulation of a coarse-grained model of two-component lipid bilayers, we compare two methods of measuring the intrinsic curvatures of the constituting monolayers. The first one is a generalization of the swelling method that, in addition to the assumption that the spontaneous curvature linearly depends on the composition of the lipid mixture, incorporates contributions from its elastic energy. The second method measures the effective curvature-composition coupling between the apposing leaflets of bilayer structures (planar bilayers or cylindrical tethers) to extract the spontaneous curvature. Our findings demonstrate that both methods yield consistent results. However, we highlight that the two-leaflet structure inherent to the latter method has the advantage of allowing measurements for mixed lipid systems up to their critical point of demixing as well as in the regime of high concentration (of either species).
Pal, Sandeep; Milano, Giuseppe; Roccatano, Danilo
2006-12-28
The understanding of interactions of poly(ethylene glycol) (PEG) or poly(ethylene oxide) (PEO) with biological interfaces has important technological application in industry and in medicine. In this paper, structural and dynamical properties of PEO at the dimyristoylphospatidylcholine (DMPC) bilayer/water interface have been investigated by molecular dynamics (MD) and steered molecular dynamics (SMD) simulations. The structural properties of a PEO chain in bulk water, at the water/vacuum interface, and in the presence of the membrane were compared with available experimental data. The presence of a barrier for the PEO penetration into the DMPC bilayer has been found. A qualitative estimation of the barrier provided a value equal to approximately 19 kJ/mol, that is, 7 times the value of kT at 310 K.
Solvent-assisted lipid bilayer formation on silicon dioxide and gold.
Tabaei, Seyed R; Choi, Jae-Hyeok; Haw Zan, Goh; Zhdanov, Vladimir P; Cho, Nam-Joon
2014-09-02
Planar lipid bilayers on solid supports mimic the fundamental structure of biological membranes and can be investigated using a wide range of surface-sensitive techniques. Despite these advantages, planar bilayer fabrication is challenging, and there are no simple universal methods to form such bilayers on diverse material substrates. One of the novel methods recently proposed and proven to form a planar bilayer on silicon dioxide involves lipid deposition in organic solvent and solvent exchange to influence the phase of adsorbed lipids. To scrutinize the specifics of this solvent-assisted lipid bilayer (SALB) formation method and clarify the limits of its applicability, we have developed a simplified, continuous solvent-exchange version to form planar bilayers on silicon dioxide, gold, and alkanethiol-coated gold (in the latter case, a lipid monolayer is formed to yield a hybrid bilayer) and varied the type of organic solvent and rate of solvent exchange. By tracking the SALB formation process with simultaneous quartz crystal microbalance-dissipation (QCM-D) and ellipsometry, it was determined that the acoustic, optical, and hydration masses along with the acoustic and optical thicknesses, measured at the end of the process, are comparable to those observed by employing conventional fabrication methods (e.g., vesicle fusion). As shown by QCM-D measurements, the obtained planar bilayers are highly resistant to protein adsorption, and several, but not all, water-miscible organic solvents could be successfully used in the SALB procedure, with isopropanol yielding particularly high-quality bilayers. In addition, fluorescence recovery after photobleaching (FRAP) measurements demonstrated that the coefficient of lateral lipid diffusion in the fabricated bilayers corresponds to that measured earlier in the planar bilayers formed by vesicle fusion. With increasing rate of solvent exchange, it was also observed that the bilayer became incomplete and a phenomenological model was developed in order to explain this feature. The results obtained allowed us to clarify and discriminate likely steps of the SALB formation process as well as determine the corresponding influence of organic solvent type and flow conditions on these steps. Taken together, the findings demonstrate that the SALB formation method can be adapted to a continuous solvent-exchange procedure that is technically minimal, quick, and efficient to form planar bilayers on solid supports.
Interfacial exchange interactions and magnetism of Ni2MnAl /Fe bilayers
NASA Astrophysics Data System (ADS)
Yanes, R.; Simon, E.; Keller, S.; Nagyfalusi, B.; Khmelevsky, S.; Szunyogh, L.; Nowak, U.
2017-08-01
Based on multiscale calculations combining ab initio methods with spin dynamics simulations, we perform a detailed study of the magnetic behavior of Ni2MnAl /Fe bilayers. Our simulations show that such a bilayer exhibits a small exchange bias effect when the Ni2MnAl Heusler alloy is in a disordered B2 phase. Additionally, we present an effective way to control the magnetic structure of the Ni2MnAl antiferromagnet, in the pseudo-ordered B2-I as well as the disordered B2 phases, via a spin-flop coupling to the Fe layer.
Catte, Andrea; White, Gaye F; Wilson, Mark R; Oganesyan, Vasily S
2018-06-02
Of the many biophysical techniques now being brought to bear on studies of membranes, electron paramagnetic resonance (EPR) of nitroxide spin probes was the first to provide information about both mobility and ordering in lipid membranes. Here, we report the first prediction of variable temperature EPR spectra of model lipid bilayers in the presence and absence of cholesterol from the results of large scale fully atomistic molecular dynamics (MD) simulations. Three types of structurally different spin probes were employed in order to study different parts of the bilayer. Our results demonstrate very good agreement with experiment and thus confirm the accuracy of the latest lipid force fields. The atomic resolution of the simulations allows the interpretation of the molecular motions and interactions in terms of their impact on the sensitive EPR line shapes. Direct versus indirect effects of cholesterol on the dynamics of spin probes are analysed. Given the complexity of structural organisation in lipid bilayers, the advantage of using a combined MD-EPR simulation approach is two-fold. Firstly, prediction of EPR line shapes directly from MD trajectories of actual phospholipid structures allows unambiguous interpretation of EPR spectra of biological membranes in terms of complex motions. Secondly, such an approach provides an ultimate test bed for the up-to-date MD simulation models employed in the studies of biological membranes, an area that currently attracts great attention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kalli, Antreas C; Rog, Tomasz; Vattulainen, Ilpo; Campbell, Iain D; Sansom, Mark S P
2017-08-01
Integrins are heterodimeric (αβ) cell surface receptors that are potential therapeutic targets for a number of diseases. Despite the existence of structural data for all parts of integrins, the structure of the complete integrin receptor is still not available. We have used available structural data to construct a model of the complete integrin receptor in complex with talin F2-F3 domain. It has been shown that the interactions of integrins with their lipid environment are crucial for their function but details of the integrin/lipid interactions remain elusive. In this study an integrin/talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin/talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2-F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction across cell membranes.
Membrane alternatives in worlds without oxygen: Creation of an azotosome.
Stevenson, James; Lunine, Jonathan; Clancy, Paulette
2015-02-01
The lipid bilayer membrane, which is the foundation of life on Earth, is not viable outside of biology based on liquid water. This fact has caused astronomers who seek conditions suitable for life to search for exoplanets within the "habitable zone," the narrow band in which liquid water can exist. However, can cell membranes be created and function at temperatures far below those at which water is a liquid? We take a step toward answering this question by proposing a new type of membrane, composed of small organic nitrogen compounds, that is capable of forming and functioning in liquid methane at cryogenic temperatures. Using molecular simulations, we demonstrate that these membranes in cryogenic solvent have an elasticity equal to that of lipid bilayers in water at room temperature. As a proof of concept, we also demonstrate that stable cryogenic membranes could arise from compounds observed in the atmosphere of Saturn's moon, Titan, known for the existence of seas of liquid methane on its surface.
Si nanowires/Cu nanowires bilayer fabric as a lithium ion capacitor anode with excellent performance
NASA Astrophysics Data System (ADS)
Lai, Chien-Ming; Kao, Tzu-Lun; Tuan, Hsing-Yu
2018-03-01
A light and binder-free bilayer fabric electrode composed of silicon nanowires and copper nanowires for lithium-ion capacitors (LICs) is reported. A lithium ion capacitor is proposed employing pre-lithiated silicon/copper nanowire fabric and activated carbon as the anode and the cathode, respectively. These LICs show remarkable performance with a specific capacitance of 156 F g-1 at 0.1 A g-1, which is approximately twice of that of activated carbon in electric double-layer capacitors (EDLCs), and still exhibit a fine specific capacitance of 68 F g-1 even at a high current density of 20 A g-1. At a low power density of 193 W kg-1, the Si/Cu fabric//AC LIC can achieve high energy density of 210 W h kg-1. As the power density is increased to 99 kW kg-1, the energy density still remains at 43 W h kg-1, showing the prominent rate performance.
Acoustic scattering reduction using layers of elastic materials
NASA Astrophysics Data System (ADS)
Dutrion, Cécile; Simon, Frank
2017-02-01
Making an object invisible to acoustic waves could prove useful for military applications or measurements in confined space. Different passive methods have been proposed in recent years to avoid acoustic scattering from rigid obstacles. These techniques are exclusively based on acoustic phenomena, and use for instance multiple resonators or scatterers. This paper examines the possibility of designing an acoustic cloak using a bi-layer elastic cylindrical shell to eliminate the acoustic field scattered from a rigid cylinder hit by plane waves. This field depends on the dimensional and mechanical characteristics of the elastic layers. It is computed by a semi-analytical code modelling the vibrations of the coating under plane wave excitation. Optimization by genetic algorithm is performed to determine the characteristics of a bi-layer material minimizing the scattering. Considering an external fluid consisting of air, realistic configurations of elastic coatings emerge, composed of a thick internal orthotopic layer and a thin external isotropic layer. These coatings are shown to enable scattering reduction at a precise frequency or over a larger frequency band.
Experimental Investigation of the Electronic Properties of Twisted Bilayer Graphene by STM and STS
NASA Astrophysics Data System (ADS)
Yin, Longjing; Qiao, Jiabin; Wang, Wenxiao; Zuo, Weijie; He, Lin
The electronic properties of graphene multilayers depend sensitively on their stacking order. A twisted angle is treated as a unique degree of freedom to tune the electronic properties of graphene system. Here we study electronic structures of the twisted bilayers by scanning tunneling microscopy (STM) and spectroscopy (STS). We demonstrate that the interlayer coupling strength affects both the Van Hove singularities and the Fermi velocity of twisted bilayers dramatically. This removes the discrepancy about the Fermi velocity renormalization in the twisted bilayers and provides a consistent interpretation of all current data. Moreover, we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by STM and STS. At a magic twisted angle, about 1.11°, a pronounced sharp peak is observed in the tunnelling spectra due to the action of the non-Abelian gauge fields. Because of the effective non-Abelian gauge fields, the rotation angle could transfer the charge carriers in the twisted bilayers from massless Dirac fermions into well localized electrons, or vice versa, efficiently. This provides a new route to tune the electronic properties of graphene systems, which will be essential in future graphene nanoelectronics.
Carr, Rogan; Weinstock, Ira A; Sivaprasadarao, Asipu; Müller, Achim; Aksimentiev, Aleksei
2008-11-01
Porous polyoxometalate nanocapsules of Keplerate type are known to exhibit the functionality of biological ion channels; however, their use as an artificial ion channel is tempered by the high negative charge of the capsules, which renders their spontaneous incorporation into a lipid bilayer membrane unlikely. In this Letter we report coarse-grained molecular dynamics simulations that demonstrate a route for embedding negatively charged nanocapsules into lipid bilayer membranes via self-assembly. A homogeneous mixture of water, cationic detergent, and phospholipid was observed to spontaneously self-assemble around the nanocapsule into a layered, liposome-like structure, where the nanocapsule was enveloped by a layer of cationic detergent followed by a layer of phospholipid. Fusion of such a layered liposome with a lipid bilayer membrane was observed to embed the nanocapsule into the lipid bilayer. The resulting assembly was found to remain stable even after the surface of the capsule was exposed to electrolyte. In the latter conformation, water was observed to flow into and out of the capsule as Na(+) cations entered, suggesting that a polyoxometalate nanocapsule can form a functional synthetic ion channel in a lipid bilayer membrane.
Carr, Rogan; Weinstock, Ira A.; Sivaprasadarao, Asipu; Müller, Achim; Aksimentiev, Aleksei
2010-01-01
Porous polyoxometalate nanocapsules of Keplerate type are known to exhibit the functionality of biological ion channels, however, their use as artificial ion channel is tempered by the high negative charge of the capsules, which renders their spontaneous incorporation into a lipid bilayer membrane unlikely. In this letter we report coarse-grained molecular dynamics simulations that demonstrate a route for embedding negatively charged nanocapsules into lipid bilayer membranes via self-assembly. A homogeneous mixture of water, cationic detergent, and phospholipid was observed to spontaneously self-assemble around the nanocapsule into a layered, liposome-like structure, where the nanocapsule was enveloped by a layer of cationic detergent followed by a layer of phospholipid. Fusion of such a layered liposome with a lipid bilayer membrane was observed to embed the nanocapsule into the lipid bilayer. The resulting assembly was found to remain stable even after the surface of the capsule was exposed to electrolyte. In the latter conformation, water was observed to flow into and out of the capsule as Na+ cations entered, suggesting that a polyoxometalate nanocapsule can form a functional synthetic ion channel in a lipid bilayer membrane. PMID:18844424
Xiang, T X
1993-01-01
A novel combined approach of molecular dynamics (MD) and Monte Carlo simulations is developed to calculate various free-volume distributions as a function of position in a lipid bilayer membrane at 323 K. The model bilayer consists of 2 x 100 chain molecules with each chain molecule having 15 carbon segments and one head group and subject to forces restricting bond stretching, bending, and torsional motions. At a surface density of 30 A2/chain molecule, the probability density of finding effective free volume available to spherical permeants displays a distribution with two exponential components. Both pre-exponential factors, p1 and p2, remain roughly constant in the highly ordered chain region with average values of 0.012 and 0.00039 A-3, respectively, and increase to 0.049 and 0.0067 A-3 at the mid-plane. The first characteristic cavity size V1 is only weakly dependent on position in the bilayer interior with an average value of 3.4 A3, while the second characteristic cavity size V2 varies more dramatically from a plateau value of 12.9 A3 in the highly ordered chain region to 9.0 A3 in the center of the bilayer. The mean cavity shape is described in terms of a probability distribution for the angle at which the test permeant is in contact with one of and does not overlap with anyone of the chain segments in the bilayer. The results show that (a) free volume is elongated in the highly ordered chain region with its long axis normal to the bilayer interface approaching spherical symmetry in the center of the bilayer and (b) small free volume is more elongated than large free volume. The order and conformational structures relevant to the free-volume distributions are also examined. It is found that both overall and internal motions have comparable contributions to local disorder and couple strongly with each other, and the occurrence of kink defects has higher probability than predicted from an independent-transition model. Images FIGURE 1 PMID:8241390
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Mary J
Solar energy conversion through biology would provide a renewable and nonpolluting abundance of energy. The bacterium Halobacterium salinarum converts solar to electrical energy by virtue of a transmembrane protein, bacteriorhodopsin. This transmembrane protein pumps protons across a nonconducting bilayer upon irradiation with green light. The bacterium evolved to perform this function inefficiently. If we were able to understand this process to engineer this protein for efficiency, then inexpensive energy production could be achieved. There are tens of thousands of different types of halobacteria, giving the opportunity to study different efficiencies and relating these to the protein structures. Technology does notmore » yet exist to perform such screening. The goal of this research is to generate new separation technology that can ultimately enable such screening. This involves creating a method for separating oriented and functional transmembrane proteins that remain in an electrically insulating lipid bilayer, with aqueous solutions on either side of the bilayer. A pH change across the lipid bilayer upon irradiation of a known concentration of proteins would probe function. Differences in proton pumping efficiency for different proteins variants would provide structure-function information for engineering the proteins. A schematic diagram from the original proposal is shown here. The idea is that (a) a lipid bilayer supported on a hydrophilic polymer film will make the bilayer fluid, and (b) applying an electric field will cause electrophoretic migration of the transmembrane proteins. We demonstrated this concept experimentally in a paper that was published just after this new grant period started (Lipid Bilayers on Polyacrylamide Brushes for Inclusion of Membrane Proteins, Emily A. Smith, Jason W. Coym, Scott M. Cowell, Victor J. Hruby, Henry I. Yamamura, Mary J. Wirth, Langmuir, 21, 9644-9650, 2005). The electrophoretic mobility was slow (10{sup -8} cm{sup 2}/Vs), and we project that a two order of magnitude increase would make this a practical tool. We are investigating two ways of improving electrophoretic mobility: better polymer supports, and a novel nanoporous medium that suspends the bilayer over free solution.« less
Castano, Sabine; Blaudez, Daniel; Desbat, Bernard; Dufourcq, Jean; Wróblewski, Henri
2002-05-03
The surface of spiroplasmas, helically shaped pathogenic bacteria related to the mycoplasmas, is crowded with the membrane-anchored lipoprotein spiralin whose structure and function are unknown. In this work, the secondary structure of spiralin under the form of detergent-free micelles (average Stokes radius, 87.5 A) in water and at the air/water interface, alone or in interaction with lipid monolayers was analyzed. FT-IR and circular dichroism (CD) spectroscopic data indicate that spiralin in solution contains about 25+/-3% of helices and 38+/-2% of beta sheets. These measurements are consistent with a consensus predictive analysis of the protein sequence suggesting about 28% of helices, 32% of beta sheets and 40% of irregular structure. Brewster angle microscopy (BAM) revealed that, in water, the micelles slowly disaggregate to form a stable and homogeneous layer at the air/water interface, exhibiting a surface pressure up to 10 mN/m. Polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) spectra of interfacial spiralin display a complex amide I band characteristic of a mixture of beta sheets and alpha helices, and an intense amide II band. Spectral simulations indicate a flat orientation for the beta sheets and a vertical orientation for the alpha helices with respect to the interface. The combination of tensiometric and PMIRRAS measurements show that, when spiroplasma lipids are used to form a monolayer at the air/water interface, spiralin is adsorbed under this monolayer and its antiparallel beta sheets are mainly parallel to the polar-head layer of the lipids without deep perturbation of the fatty acid chains organization. Based upon these results, we propose a 'carpet model' for spiralin organization at the spiroplasma cell surface. In this model, spiralin molecules anchored into the outer leaflet of the lipid bilayer by their N-terminal lipid moiety are composed of two colinear domains (instead of a single globular domain) situated at the lipid/water interface. Owing to the very high amount of spiralin in the membrane, such carpets would cover most if not all the lipids present in the outer leaflet of the bilayer.
Probing Lipid Bilayers under Ionic Imbalance.
Lin, Jiaqi; Alexander-Katz, Alfredo
2016-12-06
Biological membranes are normally under a resting transmembrane potential (TMP), which originates from the ionic imbalance between extracellular fluids and cytosols, and serves as electric power storage for cells. In cell electroporation, the ionic imbalance builds up a high TMP, resulting in the poration of cell membranes. However, the relationship between ionic imbalance and TMP is not clearly understood, and little is known about the effect of ionic imbalance on the structure and dynamics of biological membranes. In this study, we used coarse-grained molecular dynamics to characterize a dipalmitoylphosphatidylcholine bilayer system under ionic imbalances ranging from 0 to ∼0.06 e charges per lipid (e/Lip). We found that the TMP displayed three distinct regimes: 1) a linear regime between 0 and 0.045 e/Lip, where the TMP increased linearly with ionic imbalance; 2) a yielding regime between ∼0.045 and 0.060 e/Lip, where the TMP displayed a plateau; and 3) a poration regime above ∼0.060 e/Lip, where we observed pore formation within the sampling time (80 ns). We found no structural changes in the linear regime, apart from a nonlinear increase in the area per lipid, whereas in the yielding regime the bilayer exhibited substantial thinning, leading to an excess of water and Na + within the bilayer, as well as significant misalignment of the lipid tails. In the poration regime, lipid molecules diffused slightly faster. We also found that the fluid-to-gel phase transition temperature of the bilayer dropped below the normal value with increased ionic imbalances. Our results show that a high ionic imbalance can substantially alter the essential properties of the bilayer, making the bilayer more fluid like, or conversely, depolarization of a cell could in principle lead to membrane stiffening. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Gallagher, Elyssia S.; Adem, Seid M.; Baker, Christopher A.; Ratnayaka, Saliya N.; Jones, Ian W.; Hall, Henry K.; Saavedra, S. Scott; Aspinwall, Craig A.
2015-01-01
The ability to rapidly screen complex libraries of pharmacological modulators is paramount to modern drug discovery efforts. This task is particularly challenging for agents that interact with lipid bilayers or membrane proteins due to the limited chemical, physical, and temporal stability of conventional lipid-based chromatographic stationary phases. Here, we describe the preparation and characterization of a novel stationary phase material composed of highly stable, polymeric-phospholipid bilayers self-assembled onto silica microparticles. Polymer lipid membranes were prepared by photochemical or redox initiated polymerization of 1,2-bis[10-(2′,4′-hexadieoyloxy)decanoyl]-sn-glycero-2-phosphocholine (bis-SorbPC), a synthetic, polymerizable lipid. The resulting polymerized bis-SorbPC (poly(bis-SorbPC)) stationary phases exhibited enhanced stability compared to particles coated with 1,2-dioleoyl-sn-glycero-phosphocholine (unpolymerized) phospholipid bilayers when exposed to chemical (50mM triton X-100 or 50% acetonitrile) and physical (15 min sonication) insults after 30 days of storage. Further, poly(bis-SorbPC)-coated particles survived slurry packing into fused silica capillaries, compared to unpolymerized lipid membranes, where the lipid bilayer was destroyed during packing. Frontal chromatographic analyses of the lipophilic small molecules acetylsalicylic acid, benzoic acid, and salicylic acid showed > 44% increase in retention times (P < 0.0001) for all analytes on poly(bis-SorbPC)-functionalized stationary phase compared to bare silica microspheres, suggesting a lipophilic retention mechanism. Phospholipid membrane-functionalized stationary phases that withstand the chemical and physical rigors of capillary LC conditions can substantially increase the efficacy of lipid membrane affinity chromatography, and represents a key advance towards the development of robust membrane protein-functionalized chromatographic stationary phases. PMID:25670414
Lu, P; Liu, R; Sharom, F J
2001-03-01
The P-glycoprotein multidrug transporter (Pgp) is an active efflux pump for chemotherapeutic drugs, natural products and hydrophobic peptides. Pgp is envisaged as a 'hydrophobic vacuum cleaner', and drugs are believed to gain access to the substrate binding sites from within the membrane, rather than from the aqueous phase. The intimate association of both Pgp and its substrates with the membrane suggests that its function may be regulated by the biophysical properties of the lipid bilayer. Using the high affinity fluorescent substrate tetramethylrosamine (TMR), we have monitored, in real time, transport in proteoliposomes containing reconstituted Pgp. The TMR concentration gradient generated by Pgp was collapsed by the addition of either the ATPase inhibitor, vanadate, or Pgp modulators. TMR transport by Pgp obeyed Michaelis--Menten kinetics with respect to both of its substrates. The Km for ATP was 0.48 mM, close to the K(m) for ATP hydrolysis, and the K(m) for TMR was 0.3 microM. TMR transport was inhibited in a concentration-dependent fashion by verapamil and cyclosporin A, and activated (probably by a positive allosteric effect) by the transport substrate colchicine. TMR transport by Pgp reconstituted into proteoliposomes composed of two synthetic phosphatidylcholines showed a highly unusual biphasic temperature dependence. The rate of TMR transport was relatively high in the rigid gel phase, reached a maximum at the melting temperature of the bilayer, and then decreased in the fluid liquid crystalline phase. This pattern of temperature dependence suggests that the rate of drug transport by Pgp may be dominated by partitioning of drug into the bilayer.
Engineering plant membranes using droplet interface bilayers.
Barlow, N E; Smpokou, E; Friddin, M S; Macey, R; Gould, I R; Turnbull, C; Flemming, A J; Brooks, N J; Ces, O; Barter, L M C
2017-03-01
Droplet interface bilayers (DIBs) have become widely recognised as a robust platform for constructing model membranes and are emerging as a key technology for the bottom-up assembly of synthetic cell-like and tissue-like structures. DIBs are formed when lipid-monolayer coated water droplets are brought together inside a well of oil, which is excluded from the interface as the DIB forms. The unique features of the system, compared to traditional approaches (e.g., supported lipid bilayers, black lipid membranes, and liposomes), is the ability to engineer multi-layered bilayer networks by connecting multiple droplets together in 3D, and the capability to impart bilayer asymmetry freely within these droplet architectures by supplying droplets with different lipids. Yet despite these achievements, one potential limitation of the technology is that DIBs formed from biologically relevant components have not been well studied. This could limit the reach of the platform to biological systems where bilayer composition and asymmetry are understood to play a key role. Herein, we address this issue by reporting the assembly of asymmetric DIBs designed to replicate the plasma membrane compositions of three different plant species; Arabidopsis thaliana , tobacco, and oats, by engineering vesicles with different amounts of plant phospholipids, sterols and cerebrosides for the first time. We show that vesicles made from our plant lipid formulations are stable and can be used to assemble asymmetric plant DIBs. We verify this using a bilayer permeation assay, from which we extract values for absolute effective bilayer permeation and bilayer stability. Our results confirm that stable DIBs can be assembled from our plant membrane mimics and could lead to new approaches for assembling model systems to study membrane translocation and to screen new agrochemicals in plants.
Adams, Mark; Wang, Eric; Zhuang, Xiaohong; Klauda, Jeffery B
2017-11-21
The lipid composition of bovine and human ocular lens membranes has been probed, and a variety of lipids have been found including phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), and cholesterol (CHOL) with cholesterol being present in particularly high concentrations. In this study, we use the all-atom CHARMM36 force field to simulate binary, ternary, and quaternary mixtures as models of the ocular lens. High concentration of cholesterol, in combination with different and varying diversity of phospholipids (PL) and sphingolipids (SL), affect the structure of the ocular lens lipid bilayer. The following analyses were done for each simulation: surface area per lipid, component surface area per lipid, deuterium order parameters (S CD ), electron density profiles (EDP), membrane thickness, hydrogen bonding, radial distribution functions, clustering, and sterol tilt angle distribution. The S CD show significant bilayer alignment and packing in cholesterol-rich bilayers. The EDP show the transition from liquid crystalline to liquid ordered with the addition of cholesterol. Hydrogen bonds in our systems show the tendency for intramolecular interactions between cholesterol and fully saturated lipid tails for less complex bilayers. But with an increased number of components in the bilayer, the acyl chain of the lipids becomes a less important characteristic, and the headgroup of the lipid becomes more significant. Overall, cholesterol is the driving force of membrane structure of the ocular lens membrane where interactions between cholesterol, PL, and SL determine structure and function of the biomembrane. The goal of this work is to develop a baseline for further study of more physiologically realistic ocular lens lipid membranes. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2017 Elsevier B.V. All rights reserved.
Biotinylated lipid bilayer disks as model membranes for biosensor analyses.
Lundquist, Anna; Hansen, Søren B; Nordström, Helena; Danielson, U Helena; Edwards, Katarina
2010-10-15
The aim of this study was to investigate the potential of polyethylene glycol (PEG)-stabilized lipid bilayer disks as model membranes for surface plasmon resonance (SPR)-based biosensor analyses. Nanosized bilayer disks that included 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene glycol)(2000)] (DSPE-PEG(2000)-biotin) were prepared and structurally characterized by cryo-transmission electron microscopy (cryo-TEM) imaging. The biotinylated disks were immobilized via streptavidin to three different types of sensor chips (CM3, CM4, and CM5) varying in their degree of carboxymethylation and thickness of the dextran matrix. The bilayer disks were found to interact with and bind stably to the streptavidin-coated sensor surfaces. As a first step toward the use of these bilayer disks as model membranes in SPR-based studies of membrane proteins, initial investigations were carried out with cyclooxygenases 1 and 2 (COX 1 and COX 2). Bilayer disks were preincubated with the respective protein and thereafter allowed to interact with the sensor surface. The signal resulting from the interaction was, in both cases, significantly enhanced as compared with the signal obtained when disks alone were injected over the surface. The results of the study suggest that bilayer disks constitute a new and promising type of model membranes for SPR-based biosensor studies. Copyright 2010 Elsevier Inc. All rights reserved.
Shock-induced nanobubble collapse and its applications
NASA Astrophysics Data System (ADS)
Vedadi, Mohammad Hossein
The shock-induced collapse of nanobubbles in water is investigated using molecular dynamics simulations based on a reactive force field. Monitoring the collapse of a cavitation nanobubble, we observe a focused nanojet at the onset of bubble shrinkage and a water hammer shock wave upon bubble collapse. The nanojet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. The shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of approximately 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. Moreover, a substantial number of positive and negative ions appear when the nanojet hits the distal side of the nanobubble and the water hammer shock forms. Furthermore, two promising applications of shock-induced nanobubble collapse have been explored. Our simulations of poration in lipid bilayers due to shock-induced collapse of nanobubbles reveal penetration of nanojets into lipid bilayers. The nanojet impact generates shear flow of water on bilayer leaflets and pressure gradients across them, which transiently enhance the bilayer permeability by creating nanopores through which water molecules translocate across the bilayer. The effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. Finally, the shock-induced collapse of CO2-filled nanobubbles in water is investigated. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water molecules. The dominant pathways through which splitting of water molecules occur are identified.
1986-01-01
Functional calcium channels present in purified skeletal muscle transverse tubules were inserted into planar phospholipid bilayers composed of the neutral lipid phosphatidylethanolamine (PE), the negatively charged lipid phosphatidylserine (PS), and mixtures of both. The lengthening of the mean open time and stabilization of single channel fluctuations under constant holding potentials was accomplished by the use of the agonist Bay K8644. It was found that the barium current carried through the channel saturates as a function of the BaCl2 concentration at a maximum current of 0.6 pA (at a holding potential of 0 mV) and a half-saturation value of 40 mM. Under saturation, the slope conductance of the channel is 20 pS at voltages more negative than -50 mV and 13 pS at a holding potential of 0 mV. At barium concentrations above and below the half-saturation point, the open channel currents were independent of the bilayer mole fraction of PS from XPS = 0 (pure PE) to XPS = 1.0 (pure PS). It is shown that in the absence of barium, the calcium channel transports sodium or potassium ions (P Na/PK = 1.4) at saturating rates higher than those for barium alone. The sodium conductance in pure PE bilayers saturates as a function of NaCl concentration, following a curve that can be described as a rectangular hyperbola with a half-saturation value of 200 mM and a maximum conductance of 68 pS (slope conductance at a holding potential of 0 mV). In pure PS bilayers, the sodium conductance is about twice that measured in PE at concentrations below 100 mM NaCl. The maximum channel conductance at high ionic strength is unaffected by the lipid charge. This effect at low ionic strength was analyzed according to J. Bell and C. Miller (1984. Biophysical Journal. 45:279- 287) and interpreted as if the conduction pathway of the calcium channel were separated from the bilayer lipid by approximately 20 A. This distance thereby effectively insulates the ion entry to the channel from the bulk of the bilayer lipid surface charge. Current vs. voltage curves measured in NaCl in pure PE and pure PS show that similarly small surface charge effects are present in both inward and outward currents. This suggests that the same conduction insulation is present at both ends of the calcium channel. PMID:2425043
Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates
NASA Astrophysics Data System (ADS)
Wang, Qingyan; Zhang, Wenhao; Wang, Lili; He, Ke; Ma, Xucun; Xue, Qikun
2013-03-01
We report on the preparation of large-scale uniform bilayer graphenes on nominally flat Si-polar 6H-SiC(0001) substrates by flash annealing in ultrahigh vacuum. The resulting graphenes have a single thickness of one bilayer and consist of regular terraces separated by the triple SiC bilayer steps on the 6H-SiC(0001) substrates. In situ scanning tunneling microscopy reveals that suppression of pit formation on terraces and uniformity of SiC decomposition at step edges are the key factors to the uniform thickness. By studying the surface morphologies prepared under different annealing rates, it is found that the annealing rate is directly related to SiC decomposition, diffusion of the released Si/C atoms and strain relaxation, which together determine the final step structure and density of defects.
Electronic properties of BN-doped bilayer graphene and graphyne in the presence of electric field
NASA Astrophysics Data System (ADS)
Majidi, R.; Karami, A. R.
2013-11-01
In the present paper, we have used density functional theory to study electronic properties of bilayer graphene and graphyne doped with B and N impurities in the presence of electric field. It has been demonstrated that a band gap is opened in the band structures of the bilayer graphene and graphyne by B and N doping. We have also investigated influence of electric field on the electronic properties of BN-doped bilayer graphene and graphyne. It is found that the band gaps induced by B and N impurities are increased by applying electric field. Our results reveal that doping with B and N, and applying electric field are an effective method to open and control a band gap which is useful to design carbon-based next-generation electronic devices.
Magnetisation reversal in anisotropy graded Co/Pd multilayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, C. W., E-mail: craig.barton-2@postgrad.manchester.ac.uk; Thomson, T.
2015-08-14
We demonstrate high precision controllability of the magnetization reversal nucleation process in [Co/Pd]{sub 8} multilayer films consisting of two sets of bilayers with high and low perpendicular anisotropy, respectively. The anisotropy of the entire film is set by the degree of Co/Pd interfacial mixing during deposition which provides fine control of the anisotropy of an individual bilayer in the multilayer stack. The relative number of each type of bilayer is used to select the magnetisation reversal behavior such that changing one bilayer changes the properties of the entire multilayer through anisotropy averaging. A simple extension to the sputtering protocol wouldmore » provide multilayer films with fully graded anisotropy, while maintaining a constant saturation magnetization opening new possibilities for the creation of highly engineered multilayer structures for spin torque devices and future magnetic recording media.« less
Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates.
Wang, Qingyan; Zhang, Wenhao; Wang, Lili; He, Ke; Ma, Xucun; Xue, Qikun
2013-03-06
We report on the preparation of large-scale uniform bilayer graphenes on nominally flat Si-polar 6H-SiC(0001) substrates by flash annealing in ultrahigh vacuum. The resulting graphenes have a single thickness of one bilayer and consist of regular terraces separated by the triple SiC bilayer steps on the 6H-SiC(0001) substrates. In situ scanning tunneling microscopy reveals that suppression of pit formation on terraces and uniformity of SiC decomposition at step edges are the key factors to the uniform thickness. By studying the surface morphologies prepared under different annealing rates, it is found that the annealing rate is directly related to SiC decomposition, diffusion of the released Si/C atoms and strain relaxation, which together determine the final step structure and density of defects.
Nanoporous Au structures by dealloying Au/Ag thermal- or laser-dewetted bilayers on surfaces
NASA Astrophysics Data System (ADS)
Ruffino, F.; Torrisi, V.; Grillo, R.; Cacciato, G.; Zimbone, M.; Piccitto, G.; Grimaldi, M. G.
2017-03-01
Nanoporous Au attracts great technological interest and it is a promising candidate for optical and electrochemical sensors. In addition to nanoporous Au leafs and films, recently, interest was focused on nanoporous Au micro- and nano-structures on surfaces. In this work we report on the study of the characteristics of nanoporous Au structures produced on surfaces. We developed the following procedures to fabricate the nanoporous Au structures: we deposited thin Au/Ag bilayers on SiO2 or FTO (fluorine-doped tin oxide) substrates with thickness xAu and xAg of the Au and Ag layers; we induced the alloying and dewetting processes of the bilayers by furnace annealing processes of the bilayers deposited on SiO2 and by laser irradiations of the bilayers deposited on FTO; the alloying and dewetting processes result in the formation of AuxAgy alloy sub-micron particles being x and y tunable by xAu and xAg. These particles are dealloyed in HNO3 solution to remove the Ag atoms. We obtain, so, nanoporous sub-micron Au particles on the substrates. Analyzing the characteristics of these particles we find that: a) the size and shape of the particles depend on the nature of the dewetting process (solid-state dewetting on SiO2, molten-state dewetting on FTO); b) the porosity fraction of the particles depends on how the alloying process is reached: about 32% of porosity for the particles fabricated by the furnace annealing at 900 °C, about 45% of porosity for the particles fabricated by the laser irradiation at 0.5 J/cm2, in both cases independently on the Ag concentration in the alloy; c) After the dealloying process the mean volume of the Au particles shrinks of about 39%; d) After an annealing at 400 °C the nanoporous Au particles reprise their initial volume while the porosity fraction is reduced. Arguments to justify these behaviors are presented.
Lúcio, Aline D; Vequi-Suplicy, Cíntia C; Fernandez, Roberto M; Lamy, M Teresa
2010-03-01
The highly hydrophobic fluorophore Laurdan (6-dodecanoyl-2-(dimethylaminonaphthalene)) has been widely used as a fluorescent probe to monitor lipid membranes. Actually, it monitors the structure and polarity of the bilayer surface, where its fluorescent moiety is supposed to reside. The present paper discusses the high sensitivity of Laurdan fluorescence through the decomposition of its emission spectrum into two Gaussian bands, which correspond to emissions from two different excited states, one more solvent relaxed than the other. It will be shown that the analysis of the area fraction of each band is more sensitive to bilayer structural changes than the largely used parameter called Generalized Polarization, possibly because the latter does not completely separate the fluorescence emission from the two different excited states of Laurdan. Moreover, it will be shown that this decomposition should be done with the spectrum as a function of energy, and not wavelength. Due to the presence of the two emission bands in Laurdan spectrum, fluorescence anisotropy should be measured around 480 nm, to be able to monitor the fluorescence emission from one excited state only, the solvent relaxed state. Laurdan will be used to monitor the complex structure of the anionic phospholipid DMPG (dimyristoyl phosphatidylglycerol) at different ionic strengths, and the alterations caused on gel and fluid membranes due to the interaction of cationic peptides and cholesterol. Analyzing both the emission spectrum decomposition and anisotropy it was possible to distinguish between effects on the packing and on the hydration of the lipid membrane surface. It could be clearly detected that a more potent analog of the melanotropic hormone alpha-MSH (Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2)) was more effective in rigidifying the bilayer surface of fluid membranes than the hormone, though the hormone significantly decreases the bilayer surface hydration.
Tadjibaeva, G; Sabirov, R; Tomita, T
2000-08-25
Flammutoxin, a 31-kDa cardiotoxic and cytolytic protein from the edible mushroom Flammulina velutipes, has been shown to assemble into a pore-forming annular oligomer with outer and inner diameters of 10 and 5 nm on the target cells [Tomita et al., Biochem. J. 333 (1998) 129-137]. Here we studied electrophysiological properties of flammutoxin channels using planar lipid bilayer technique, and found that flammutoxin formed two types of moderately cation-selective, voltage-gated channels with smaller and larger current amplitudes (1-4.5 pA and 20-30 pA, respectively, at 20 mV) in the lipid bilayers composed of phospholipid and cholesterol. The larger-conductance single channel showed the properties of a wide water-filled pore such as a linear relationship between channel conductance and salt concentration of the bathing solution. The functional diameter of the larger-conductance channel was estimated to be 4-5 nm by measuring the current conductance in the presence of polyethylene glycols of various sizes. In contrast, the smaller-conductance single channels showed a non-linear current to voltage curve and a saturating conductance to increasing salt concentration. These results suggest that the larger-conductance channel of flammutoxin corresponds to the hemolytic pore complex, while the smaller-conductance channel may reflect the intermediate state(s) of the assembling toxin.
Först, Gesche; Cwiklik, Lukasz; Jurkiewicz, Piotr; Schubert, Rolf; Hof, Martin
2014-08-01
Since pharmacokinetic and pharmacodynamic activities of drugs are often related to their interactions with biomembranes, it is of high interest to establish an approach for the characterization of these interactions at the molecular level. For the present study, beta-blockers (oxprenolol, propranolol, and acebutolol) were selected due to their well described nonspecific membrane effects (NME). Their interactions with model lipid membranes composed of palmitoyloleoylphosphatidylcholine (POPC) were studied using Time-Dependent Fluorescence Shift (TDFS) and Generalized Polarization (GP) as well as molecular dynamics (MD) simulations. Liposomal vesicles were labeled with fluorescent membrane polarity probes (Laurdan, Prodan, and Dtmac). Increasing beta-blocker concentrations (0-10 mM for acebutolol and oxprenolol, and 0-1.5 mM for propranolol) significantly rigidifies the lipid bilayer at the glycerol and headgroup level, which was detected in the steady-state and in the time-resolved fluorescence data. The effects of propranolol were considerably stronger than those of the two other beta-blockers. The addition of fluorescent probes precisely located at different levels within the lipid bilayer revealed the insertion of the beta-blockers into the POPC bilayer at the glycerol backbone level, which was further confirmed by MD simulations in the case of propranolol. Copyright © 2014 Elsevier B.V. All rights reserved.
Amphipathic peptide affects the lateral domain organization of lipid bilayers.
Polozov, I V; Polozova, A I; Molotkovsky, J G; Epand, R M
1997-09-04
Using lipid-specific fluorescent probes, we studied the effects of amphipathic helical, membrane active peptides of the A- and L-type on membrane domain organization. In zwitterionic binary systems composed of mixtures of phosphatidylcholine and phosphatidylethanolamine, both types of peptides associated with the fluid phase. While binding with high affinity to fluid membranes, peptides were unable to penetrate into the lipid membrane in the gel state. If trapped kinetically by cooling from the fluid phase, peptides dissociated from the gel membrane on the time scale of several hours. While the geometrical shape of the alpha-helical peptides determines their interactions with membranes with non-bilayer phase propensity, the shape complementarity mechanism by itself is unable to induce lateral phase separation in a fluid membrane. Charge-charge interactions are capable of inducing lateral domain formation in fluid membranes. Both peptides had affinity for anionic lipids which resulted in about 30% enrichment of acidic lipids within several nanometers of the peptide's tryptophan, but there was no long-range order in peptide-induced lipid demixing. Peptide insertion in fluid acidic membranes was accompanied by only a small increase in bilayer surface and a decrease in polarity in the membrane core. Peptide-lipid charge-charge interactions were also capable of modulating existing domain composition in the course of the main phase transition in mixtures of anionic phosphatidylglycerol with zwitterionic phosphatidylcholine.
Numerical Analysis of Transient Temperature Response of Soap Film
NASA Astrophysics Data System (ADS)
Tanaka, Seiichi; Tatesaku, Akihiro; Dantsuka, Yuki; Fujiwara, Seiji; Kunimine, Kanji
2015-11-01
Measurements of thermophysical properties of thin liquid films are important to understand interfacial phenomena due to film structures composed of amphiphilic molecules in soap film, phospholipid bilayer of biological cell and emulsion. A transient hot-wire technique for liquid films less than 1 \\upmu m thick such as soap film has been proposed to measure the thermal conductivity and diffusivity simultaneously. Two-dimensional heat conduction equations for a solid cylinder with a liquid film have been solved numerically. The temperature of a thin wire with liquid film increases steeply with its own heat generation. The feasibility of this technique is verified through numerical experiments for various thermal conductivities, diffusivities, and film thicknesses. Calculated results indicate that the increase in the volumetric average temperature of the thin wire sufficiently varies with the change of thermal conductivity and diffusivity of the soap film. Therefore, the temperature characteristics could be utilized to evaluate both the thermal conductivity and diffusivity using the Gauss-Newton method.
Two ply tubular scaffolds comprised of proteins/poliglecaprone/polycaprolactone fibers.
Zhang, Xing; Thomas, Vinoy; Vohra, Yogesh K
2010-02-01
Electrospun bi-layer tubular hybrid scaffolds composed of poliglecaprone (PGC), polycaprolactone (PCL), elastin (E), and gelatin (G) were prepared and thereafter crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). Scanning electron microscopic (SEM) images revealed a highly porous micro-structure comprising randomly distributed non-woven fibers with the majority of fibers in submicron diameters. The EDC-crosslinking yielded an average crosslinking degree of 40%. Uni-axial tensile test of hydrated scaffolds in both longitudinal and circumferential directions revealed tensile properties, comparable to those of native arteries. The graft (PGC:PCL = 1:3) did not demonstrate significant difference before and after EDC-crosslinking in tensile strength or % strain in either longitudinal or circumferential directions. However, crosslinking increased the Young's modulus of the graft along the longitudinal direction (from 5.84 to 8.67 MPa). On the contrary, the graft (3:1) demonstrated a significant decrease in maximum strain in both directions. Cyto-assay using human umbilical vein endothelial cells (HUVECs) showed excellent cell viability.
Nonadditive Compositional Curvature Energetics of Lipid Bilayers
NASA Astrophysics Data System (ADS)
Sodt, A. J.; Venable, R. M.; Lyman, E.; Pastor, R. W.
2016-09-01
The unique properties of the individual lipids that compose biological membranes together determine the energetics of the surface. The energetics of the surface, in turn, govern the formation of membrane structures and membrane reshaping processes, and thus they will underlie cellular-scale models of viral fusion, vesicle-dependent transport, and lateral organization relevant to signaling. The spontaneous curvature, to the best of our knowledge, is always assumed to be additive. We describe observations from simulations of unexpected nonadditive compositional curvature energetics of two lipids essential to the plasma membrane: sphingomyelin and cholesterol. A model is developed that connects molecular interactions to curvature stress, and which explains the role of local composition. Cholesterol is shown to lower the number of effective Kuhn segments of saturated acyl chains, reducing lateral pressure below the neutral surface of bending and favoring positive curvature. The effect is not observed for unsaturated (flexible) acyl chains. Likewise, hydrogen bonding between sphingomyelin lipids leads to positive curvature, but only at sufficient concentration, below which the lipid prefers negative curvature.
NASA Astrophysics Data System (ADS)
Niu, Jian; Wang, Dong; Qin, Haili; Xiong, Xiong; Tan, Pengli; Li, Youyong; Liu, Rui; Lu, Xuxing; Wu, Jian; Zhang, Ting; Ni, Weihai; Jin, Jian
2014-02-01
Hydrogels are generally thought to be formed by nano- to micrometre-scale fibres or polymer chains, either physically branched or entangled with each other to trap water. Although there are also anisotropic hydrogels with apparently ordered structures, they are essentially polymer fibre/discrete polymer chains-based network without exception. Here we present a type of polymer-free anisotropic lamellar hydrogels composed of 100-nm-thick water layers sandwiched by two bilayer membranes of a self-assembled nonionic surfactant, hexadecylglyceryl maleate. The hydrogels appear iridescent as a result of Bragg’s reflection of visible light from the periodic lamellar plane. The particular lamellar hydrogel with extremely wide water spacing was used as a soft two-dimensional template to synthesize single-crystalline nanosheets in the confined two-dimensional space. As a consequence, flexible, ultrathin and large area single-crystalline gold membranes with atomically flat surface were produced in the hydrogel. The optical and electrical properties were detected on a single gold membrane.
Dynamic behavior of ultra large graphene-based membranes using electrothermal transduction
NASA Astrophysics Data System (ADS)
Al-mashaal, A. K.; Wood, G. S.; Torin, A.; Mastropaolo, E.; Newton, M. J.; Cheung, R.
2017-12-01
This letter reports an experimental study of an electrothermal actuator made from an ultra-large graphene-based bilayer thin film with a diameter to thickness aspect ratio of ˜10 000. Suspended thin films consisting of multilayer graphene and 350-500 nm-thick Poly(methyl methacrylate) have been transferred over circular cavities with a diameter of 3.5 mm. The use of bilayer materials with different mechanical and thermal properties results in thin film structures that can be induced to vibrate mechanically under the electrothermal transduction mechanism. The dynamic response of the bilayer has been investigated electrothermally by driving the structures with a combination of alternating current and direct current actuation voltages ( Va c and Vd c) and characterizing their resonant frequencies. It has been found that the bilayer thin film structure behaves as a membrane. In addition, the actuation configurations affect not only the amplitude of vibration but also the tuning of the resonant frequency of the vibrating membranes. The existence of Joule heating-induced tension lowers the mechanical stiffness of the membrane and hence shifts the resonant frequency downwards by -108187 ppm. A resonant frequency of 3.26 kHz with a vibration amplitude of 4.34 nm has been achieved for 350 nm-thick membranes under actuation voltages of 1 V of Va c and 8 V of Vd c.
Tang, Zhenhua; Gao, Ziwei; Jia, Shuhai; Wang, Fei; Wang, Yonglin
2017-05-01
3D structure assembly in advanced functional materials is important for many areas of technology. Here, a new strategy exploits IR light-driven bilayer polymeric composites for autonomic origami assembly of 3D structures. The bilayer sheet comprises a passive layer of poly(dimethylsiloxane) (PDMS) and an active layer comprising reduced graphene oxides (RGOs), thermally expanding microspheres (TEMs), and PDMS. The corresponding fabrication method is versatile and simple. Owing to the large volume expansion of the TEMs, the two layers exhibit large differences in their coefficients of thermal expansion. The RGO-TEM-PDMS/PDMS bilayers can deflect toward the PDMS side upon IR irradiation via the cooperative effect of the photothermal effect of the RGOs and the expansion of the TEMs, and exhibit excellent light-driven, a large bending deformation, and rapid responsive properties. The proposed RGO-TEM-PDMS/PDMS composites with excellent light-driven bending properties are demonstrated as active hinges for building 3D geometries such as bidirectionally folded columns, boxes, pyramids, and cars. The folding angle (ranging from 0° to 180°) is well-controlled by tuning the active hinge length. Furthermore, the folded 3D architectures can permanently preserve the deformed shape without energy supply. The presented approach has potential in biomedical devices, aerospace applications, microfluidic devices, and 4D printing.
Probing the mechanism of fusion in a two-dimensional computer simulation.
Chanturiya, Alexandr; Scaria, Puthurapamil; Kuksenok, Oleksandr; Woodle, Martin C
2002-01-01
A two-dimensional (2D) model of lipid bilayers was developed and used to investigate a possible role of membrane lateral tension in membrane fusion. We found that an increase of lateral tension in contacting monolayers of 2D analogs of liposomes and planar membranes could cause not only hemifusion, but also complete fusion when internal pressure is introduced in the model. With a certain set of model parameters it was possible to induce hemifusion-like structural changes by a tension increase in only one of the two contacting bilayers. The effect of lysolipids was modeled as an insertion of a small number of extra molecules into the cis or trans side of the interacting bilayers at different stages of simulation. It was found that cis insertion arrests fusion and trans insertion has no inhibitory effect on fusion. The possibility of protein participation in tension-driven fusion was tested in simulation, with one of two model liposomes containing a number of structures capable of reducing the area occupied by them in the outer monolayer. It was found that condensation of these structures was sufficient to produce membrane reorganization similar to that observed in simulations with "protein-free" bilayers. These data support the hypothesis that changes in membrane lateral tension may be responsible for fusion in both model phospholipid membranes and in biological protein-mediated fusion. PMID:12023230
An ab initio study of the electronic structure of indium and gallium chalcogenide bilayers
NASA Astrophysics Data System (ADS)
Ayadi, T.; Debbichi, L.; Said, M.; Lebègue, S.
2017-09-01
Using first principle calculations, we have studied the structural and electronic properties of two dimensional bilayers of indium and gallium chalcogenides. With density functional theory corrected for van der Waals interactions, the different modes of stacking were investigated in a systematic way, and several of them were found to compete in energy. Then, their band structures were obtained with the GW approximation and found to correspond to indirect bandgap semiconductors with a small dependency on the mode of stacking. Finally, by analysing the electron density, it appeared that GaSe-InS is a promising system for electron-hole separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safronov, V.; Feigin, L.A.; Budovskaya, L.D.
1994-12-31
Langmuir-Blodgett films of amphiphilic fluorinated copolymers were fabricated and studied by X-ray diffraction. Although these films show poor interlayer periodicity, they possess a uniform thickness even in the case of very thin films of one bilayer (22 {angstrom}). This feature was used to obtain complex LB structures (superlattices) with alteration of copolymer and fatty acid bilayers. X-ray diffraction data proved the regular periodical organization of these structures and allowed to calculate electron density distribution across the superlattices.
Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep
2014-10-16
Using the translocation of short, charged cationic oligo-arginine peptides (mono-, di-, and triarginine) from bulk aqueous solution into model DMPC bilayers, we explore the question of the similarity of thermodynamic and structural predictions obtained from molecular dynamics simulations using all-atom and Martini coarse-grain force fields. Specifically, we estimate potentials of mean force associated with translocation using standard all-atom (CHARMM36 lipid) and polarizable and nonpolarizable Martini force fields, as well as a series of modified Martini-based parameter sets. We find that we are able to reproduce qualitative features of potentials of mean force of single amino acid side chain analogues into model bilayers. In particular, modifications of peptide-water and peptide-membrane interactions allow prediction of free energy minima at the bilayer-water interface as obtained with all-atom force fields. In the case of oligo-arginine peptides, the modified parameter sets predict interfacial free energy minima as well as free energy barriers in almost quantitative agreement with all-atom force field based simulations. Interfacial free energy minima predicted by a modified coarse-grained parameter set are -2.51, -4.28, and -5.42 for mono-, di-, and triarginine; corresponding values from all-atom simulations are -0.83, -3.33, and -3.29, respectively, all in units of kcal/mol. We found that a stronger interaction between oligo-arginine and the membrane components and a weaker interaction between oligo-arginine and water are crucial for producing such minima in PMFs using the polarizable CG model. The difference between bulk aqueous and bilayer center states predicted by the modified coarse-grain force field are 11.71, 14.14, and 16.53 kcal/mol, and those by the all-atom model are 6.94, 8.64, and 12.80 kcal/mol; those are of almost the same order of magnitude. Our simulations also demonstrate a remarkable similarity in the structural aspects of the ensemble of configurations generated using the all-atom and coarse-grain force fields. Both resolutions show that oligo-arginine peptides adopt preferential orientations as they translocate into the bilayer. The guiding theme centers on charged groups maintaining coordination with polar and charged bilayer components as well as local water. We also observe similar behaviors related with membrane deformations.
Ashworth Briggs, Esther L; Gomes, Rafael G B; Elhussein, Malaz; Collier, William; Findlow, I Stuart; Khalid, Syma; McCormick, Chris J; Williamson, Philip T F
2015-08-01
The non-structural protein 4B (NS4B) from Hepatitis C virus (HCV) plays a pivotal role in the remodelling of the host cell's membranes, required for the formation of the viral replication complex where genome synthesis occurs. NS4B is an integral membrane protein that possesses a number of domains vital for viral replication. Structural and biophysical studies have revealed that one of these, the second amphipathic N-terminal helix (AH2), plays a key role in these remodelling events. However, there is still limited understanding of the mechanism through which AH2 promotes these changes. Here we report on solid-state NMR and molecular dynamics studies that demonstrate that AH2 promotes the clustering of negatively charged lipids within the bilayer, a process that reduces the strain within the bilayer facilitating the remodelling of the lipid bilayer. Furthermore, the presence of negatively charged lipids within the bilayer appears to promote the disassociation of AH2 oligomers, highlighting a potential role for lipid recruitment in regulating NS protein interactions. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hajiali, M. R.; Hamdi, M.; Roozmeh, S. E.; Mohseni, S. M.
2017-10-01
We study the ac current-driven domain wall motion in bilayer ferromagnetic metal (FM)/nonmagnetic metal (NM) nanowires. The solution of the modified Landau-Lifshitz-Gilbert equation including all the spin transfer torques is used to describe motion of the domain wall in the presence of the spin Hall effect. We show that the domain wall center has a second-harmonic frequency response in addition to the known first-harmonic excitation. In contrast to the experimentally observed second-harmonic response in harmonic Hall measurements of spin-orbit torque in magnetic thin films, this second-harmonic response directly originates from spin-orbit torque driven domain wall dynamics. Based on the spin current generated by domain wall dynamics, the longitudinal spin motive force generated voltage across the length of the nanowire is determined. The second-harmonic response introduces additionally a practical field-free and all-electrical method to probe the effective spin Hall angle for FM/NM bilayer structures that could be applied in experiments. Our results also demonstrate the capability of utilizing FM/NM bilayer structures in domain wall based spin-torque signal generators and resonators.
NASA Astrophysics Data System (ADS)
Li, Yong-Jun; Sun, Qing-Qing; Chen, Lin; Zhou, Peng; Wang, Peng-Fei; Ding, Shi-Jin; Zhang, David Wei
2012-03-01
We proposed intercalation of hexagonal boron nitride (hBN) in multilayer graphene to improve its performance in ultra-scaled interconnects for integrated circuit. The effect of intercalated hBN layer in bilayer graphene is investigated using non-equilibrium Green's functions. We find the hBN intercalated bilayer graphene exhibit enhanced transport properties compared with pristine bilayer ones, and the improvement is attributed to suppression of interlayer scattering and good planar bonding condition of inbetween hBN layer. Based on these results, we proposed a via structure that not only benefits from suppressed interlayer scattering between multilayer graphene, but also sustains the unique electrical properties of graphene when many graphene layers are stacking together. The ideal current density across the structure can be as high as 4.6×109 A/cm2 at 1V, which is very promising for the future high-performance interconnect.
Thylakoid membrane landscape in the sixties: a tribute to Andrew Benson.
Anderson, Jan M
2007-05-01
Prior to the 1960s, the model for the molecular structure of cell membranes consisted of a lipid bilayer held in place by a thin film of electrostatically-associated protein stretched over the bilayer surface: (the Danielli-Davson-Robertson "unit membrane" model). Andrew Benson, an expert in the lipids of chloroplast thylakoid membranes, questioned the relevance of the unit membrane model for biological membranes, especially for thylakoid membranes, instead of emphasizing evidence in favour of hydrophobic interactions of membrane lipids within complementary hydrophobic regions of membrane-spanning proteins. With Elliot Weier, Benson postulated a remarkable subunit lipoprotein monolayer model for thylakoids. Following the advent of freeze fracture microscopy and the fluid lipid-protein mosaic model by Singer and Nicolson, the subunits, membrane-spanning integral proteins, span a dynamic lipid bilayer. Now that high resolution X-ray structures of photosystems I and II are being revealed, the seminal contribution of Andrew Benson can be appreciated.
Mutual adaptation of a membrane protein and its lipid bilayer during conformational changes.
Sonntag, Yonathan; Musgaard, Maria; Olesen, Claus; Schiøtt, Birgit; Møller, Jesper Vuust; Nissen, Poul; Thøgersen, Lea
2011-01-01
The structural elucidation of membrane proteins continues to gather pace, but we know little about their molecular interactions with the lipid environment or how they interact with the surrounding bilayer. Here, with the aid of low-resolution X-ray crystallography, we present direct structural information on membrane interfaces as delineated by lipid phosphate groups surrounding the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) in its phosphorylated and dephosphorylated Ca(2+)-free forms. The protein-lipid interactions are further analysed using molecular dynamics simulations. We find that SERCA adapts to membranes of different hydrophobic thicknesses by inducing local deformations in the lipid bilayers and by undergoing small rearrangements of the amino-acid side chains and helix tilts. These mutually adaptive interactions allow smooth transitions through large conformational changes associated with the transport cycle of SERCA, a strategy that may be of general nature for many membrane proteins.
Interaction of tachykinins with phospholipid membranes: A neutron diffraction study
NASA Astrophysics Data System (ADS)
Darkes, Malcolm J. M.; Davies, Sarah M. A.; Bradshaw, Jeremy P.
Tachykinins are a group of peptides which bind to G-protein-coupled receptors. Receptor affinity appears to depend on different secondary structures of tachykinin which share the same hydrophobic carboxy-terminal sequence, FXGLM. Receptor activation is thought to be due to the carboxy-terminal submerging into the bilayer and the amino-terminal binding on the surface. Binding of tachykinins to phospholipid bilayers may take place both on the aqueous membrane surface and in the hydrophobic region. The two-state equilibrium appears to depend on the surface charge of the membrane. Deuterating substance P and neurokinin A at their carboxy-terminals, our results show two populations of label for each peptide. One is very close to the water-hydrocarbon interface, the other some 13 Å deeper. We report that the bilayer location of the two tachykinins is remarkably similar, thereby inferring that receptor specifity must be controlled by finer levels of structure.
Isolation and analysis of membrane lipids and lipid rafts in common carp (Cyprinus carpio L.).
Brogden, Graham; Propsting, Marcus; Adamek, Mikolaj; Naim, Hassan Y; Steinhagen, Dieter
2014-03-01
Cell membranes act as an interface between the interior of the cell and the exterior environment and facilitate a range of essential functions including cell signalling, cell structure, nutrient uptake and protection. It is composed of a lipid bilayer with integrated proteins, and the inner leaflet of the lipid bilayer comprises of liquid ordered (Lo) and liquid disordered (Ld) domains. Lo microdomains, also named as lipid rafts are enriched in cholesterol, sphingomyelin and certain types of proteins, which facilitate cell signalling and nutrient uptake. Lipid rafts have been extensively researched in mammals and the presence of functional lipid rafts was recently demonstrated in goldfish, but there is currently very little knowledge about their composition and function in fish. Therefore a protocol was established for the analysis of lipid rafts and membranous lipids in common carp (Cyprinus carpio L.) tissues. Twelve lipids were identified and analysed in the Ld domain of the membrane with the most predominant lipids found in all tissues being; triglycerides, cholesterol, phosphoethanolamine and phosphatidylcholine. Four lipids were identified in lipid rafts in all tissues analysed, triglycerides (33-62%) always found in the highest concentration followed by cholesterol (24-32%), phosphatidylcholine and sphingomyelin. Isolation of lipid rafts was confirmed by identifying the presence of the lipid raft associated protein flotillin, present at higher concentrations in the detergent resistant fraction. The data provided here build a lipid library of important carp tissues as a baseline for further studies into virus entry, protein trafficking or environmental stress analysis. Copyright © 2013 Elsevier Inc. All rights reserved.
Antoniades, D; Epivatianos, A; Markopoulos, A; Kolokotronis, A; Zaraboukas, T
2009-01-01
To report 2 cases of coexisting mucous retention cyst and basal cell adenoma arising from the lining epithelium of the cyst. Two cases of painless swellings, well-demarcated, soft to palpation, and located in the submucosa of the upper lip were clinically examined with the provisional diagnosis of mucocele or salivary gland tumor. Histological examination showed the presence of a large unilocular cystic cavity in many parts surrounded by single or bilayered lining epithelium composed of flattened to cuboidal cells, and in other parts surrounded by projections of cells arranged in a trabecular pattern far into the cystic cavity. The trabeculae were composed of basal and low columnar cells that sometimes formed small duct-like structures. Immunohistochemistry showed that the lining epithelium of the cystic cavity and the cells of the projections expressed cytokeratin 7 and high-molecular-weight cytokeratins. The cells of the projections were weakly positive for S-100 protein and negative for vimentin and alpha-smooth muscle actin. Based on the results, a diagnosis of coexisting mucous retention cysts and basal cell adenomas arising from the lining epithelium of cysts was made. The coexistence of mucous retention cysts and basal cell adenomas arising from the lining epithelium of the cyst is reported. Copyright 2009 S. Karger AG, Basel.
Fabrication of TiO2/CuO photoelectrode with enhanced solar water splitting activity
NASA Astrophysics Data System (ADS)
Atabaev, Timur Sh.; Lee, Dae Hun; Hong, Nguyen Hoa
A bilayered TiO2/CuO photoelectrode was fabricated on a fluorine-doped tin oxide FTO substrate by spin-coating and pulsed laser deposition methods. The prepared bilayered system was assessed as a photoelectrode for solar water splitting. The fabricated TiO2/CuO photoelectrode exhibited a higher photocurrent density (0.022mA/cm2 at 1.23V vs. RHE) compared to bare TiO2 photoelectrode (0.013mA/cm2 at 1.23V vs. RHE). This photocurrent density enhancement was attributed to the improved charge separation combined with the improved sunlight harvesting efficiency of a bilayered structure.
Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.
2011-01-01
One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1–S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and indicate retention of the protein’s folded three-dimensional tertiary structure upon completion of membrane bilayer reconstitution. Moreover, the resulting high in-plane density of vectorially oriented protein within a fully hydrated single phospholipid bilayer membrane at the solid-liquid interface will enable investigation of their conformational states as a function of the transmembrane electric potential. PMID:22060407
Failure modes and materials design for biomechanical layer structures
NASA Astrophysics Data System (ADS)
Deng, Yan
Ceramic materials are finding increasing usage in the area of biomechanical replacements---dental crowns, hip and bone implants, etc.---where strength, wear resistance, biocompatibility, chemical durability and even aesthetics are critical issues. Aesthetic ceramic crowns have been widely used in dentistry to replace damaged or missing teeth. However, the failure rates of ceramic crowns, especially all-ceramic crowns, can be 1%˜6% per year, which is not satisfactory to patients. The materials limitations and underlying fracture mechanisms of these prostheses are not well understood. In this thesis, fundamental fracture and damage mechanisms in model dental bilayer and trilayer structures are studied. Principle failure modes are identified from in situ experimentation and confirmed by fracture mechanics analysis. In bilayer structures of ceramic/polycarbonate (representative of ceramic crown/dentin structure), three major damage sources are identified: (i) top-surface cone cracks or (ii) quasiplasticity, dominating in thick ceramic bilayers; (iii) bottom-surface radial cracks, dominating in thin ceramic bilayers. Critical load P for each damage mode are measured in six dental ceramics: Y-TZP zirconia, glass-infiltrated zirconia and alumina (InCeram), glass-ceramic (Empress II), Porcelain (Mark II and Empress) bonded to polymer substrates, as a function of ceramic thickness d in the range of 100 mum to 10 mm. P is found independent of d for mode (i) and (ii), but has a d 2 relations for mode (iii)---bottom surface radial cracking. In trilayer structures of glass/core-ceramic/polycarbonate (representing veneer porcelain/core/dentin structures), three inner fracture origins are identified: radial cracks from the bottom surface in the (i) first and (ii) second layers; and (iii) quasiplasticity in core-ceramic layer. The role of relative veneer/core thickness, d1/d 2 and materials properties is investigated for three core materials with different modulus (114--270GPa) and strength (400--1400MPa): Y-TZP zirconia, InCeram alumina and Empress II glass-ceramic. Explicit relations for the critical loads P to produce these different damage modes in bilayer and trilayer structures are developed in terms of basic material properties (modulus E, strength, hardness H and toughness T) and geometrical variables (thickness d and contact sphere radius r). These experimentally validated relations are used to design of optimal material combinations for improved fracture resistance and to predict mechanical performance of current dental materials.
Atomistic Simulations of Pore Formation and Closure in Lipid Bilayers
Bennett, W. F. Drew; Sapay, Nicolas; Tieleman, D. Peter
2014-01-01
Cellular membranes separate distinct aqueous compartments, but can be breached by transient hydrophilic pores. A large energetic cost prevents pore formation, which is largely dependent on the composition and structure of the lipid bilayer. The softness of bilayers and the disordered structure of pores make their characterization difficult. We use molecular-dynamics simulations with atomistic detail to study the thermodynamics, kinetics, and mechanism of pore formation and closure in DLPC, DMPC, and DPPC bilayers, with pore formation free energies of 17, 45, and 78 kJ/mol, respectively. By using atomistic computer simulations, we are able to determine not only the free energy for pore formation, but also the enthalpy and entropy, which yields what is believed to be significant new insights in the molecular driving forces behind membrane defects. The free energy cost for pore formation is due to a large unfavorable entropic contribution and a favorable change in enthalpy. Changes in hydrogen bonding patterns occur, with increased lipid-water interactions, and fewer water-water hydrogen bonds, but the total number of overall hydrogen bonds is constant. Equilibrium pore formation is directly observed in the thin DLPC lipid bilayer. Multiple long timescale simulations of pore closure are used to predict pore lifetimes. Our results are important for biological applications, including the activity of antimicrobial peptides and a better understanding of membrane protein folding, and improve our understanding of the fundamental physicochemical nature of membranes. PMID:24411253
Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, YinBo; Wang, FengChao, E-mail: wangfc@ustc.edu.cn; Wu, HengAn
Graphene confinement provides a new physical and mechanical environment with ultrahigh van der Waals pressure, resulting in new quasi-two-dimensional phases of few-layer ice. Polymorphic transition can occur in bilayer constrained water/ice system. Here, we perform a comprehensive study of the phase transition of AA-stacked bilayer water constrained within a graphene nanocapillary. The compression-limit and superheating-limit (phase) diagrams are obtained, based on the extensive molecular-dynamics simulations at numerous thermodynamic states. Liquid-to-solid, solid-to-solid, and solid-to-liquid-to-solid phase transitions are observed in the compression and superheating of bilayer water. Interestingly, there is a temperature threshold (∼275 K) in the compression-limit diagram, which indicates thatmore » the first-order and continuous-like phase transitions of bilayer water depend on the temperature. Two obviously different physical processes, compression and superheating, display similar structural evolution; that is, square ice-nanotube arrays (BL-VHDI) will bend first and then transform into bilayer triangular AA stacking ice (BL-AAI). The superheating limit of BL-VHDI exhibits local maxima, while that of BL-AAI increases monotonically. More importantly, from a mechanics point of view, we propose a novel mechanism of the transformation from BL-VHDI to BL-AAI, both for the compression and superheating limits. This structural transformation can be regarded as the “buckling failure” of the square-ice-nanotube columns, which is dominated by the lateral pressure.« less
Sarker, Ashis K; Hong, Jong-Dal
2012-08-28
Multilayer assemblies of uniform ultrathin film electrodes with good electrical conductivity and very large surface areas were prepared for use as electrochemical capacitors. A layer-by-layer self-assembly approach was employed in an effort to improve the processability of highly conducting polyaniline (PANi) and chemically modified graphene. The electrochemical properties of the multilayer film (MF-) electrodes, including the sheet resistance, volumetric capacitance, and charge/discharge ratio, were determined by the morphological modification and the method used to reduce the graphene oxide (GO) to reduced graphene oxide (RGO) in the multilayer films. The PANi and GO concentrations could be modulated to control the morphology of the GO monolayer film in the multilayer assemblies. Optical ellipsometry was used to determine the thickness of the GO film in a single layer (1.32 nm), which agreed well with the literature value (~1.3 nm). Hydroiodic acid (HI), hydrazine, or pyrolysis were tested for the reduction of GO to RGO. HI was found to be the most efficient technique for reducing the GO to RGO in the multilayer assemblies while minimizing damage to the virgin state of the acid-doped PANi. Ultimately, the MF-electrode, which could be optimized by fine-tuning the nanostructure and selecting a suitable reduction method, exhibited an excellent volumetric capacitance, good cycling stability, and a rapid charge/discharge rate, which are required for supercapacitors. A MF-electrode composed of 15 PANi/RGO bilayers yielded a volumetric capacitance of 584 F/cm(3) at a current density of 3.0 A/cm(3). Although this value decreased exponentially as the current density increased, approaching a value of 170 F/cm(3) at 100 A/cm(3), this volumetric capacitance is one of the best yet reported for the other carbon-based materials. The intriguing features of the MF-electrodes composed of PANi/RGO multilayer films offer a new microdimensional design for high energy storage devices for use in small portable electronic devices.
Xiao, Qi; Sherman, Samuel E; Wilner, Samantha E; Zhou, Xuhao; Dazen, Cody; Baumgart, Tobias; Reed, Ellen H; Hammer, Daniel A; Shinoda, Wataru; Klein, Michael L; Percec, Virgil
2017-08-22
A three-component system of Janus dendrimers (JDs) including hydrogenated, fluorinated, and hybrid hydrogenated-fluorinated JDs are reported to coassemble by film hydration at specific ratios into an unprecedented class of supramolecular Janus particles (JPs) denoted Janus dendrimersomes (JDSs). They consist of a dumbbell-shaped structure composed of an onion-like hydrogenated vesicle and an onion-like fluorinated vesicle tethered together. The synthesis of dye-tagged analogs of each JD component enabled characterization of JDS architectures with confocal fluorescence microscopy. Additionally, a simple injection method was used to prepare submicron JDSs, which were imaged with cryogenic transmission electron microscopy (cryo-TEM). As reported previously, different ratios of the same three-component system yielded a variety of structures including homogenous onion-like vesicles, core-shell structures, and completely self-sorted hydrogenated and fluorinated vesicles. Taken together with the JDSs reported herein, a self-sorting pathway is revealed as a function of the relative concentration of the hybrid JD, which may serve to stabilize the interface between hydrogenated and fluorinated bilayers. The fission-like pathway suggests the possibility of fusion and fission processes in biological systems that do not require the assistance of proteins but instead may result from alterations in the ratios of membrane composition.
Pyrene-Labeled Amphiphiles: Dynamic And Structural Probes Of Membranes And Lipoproteins
NASA Astrophysics Data System (ADS)
Pownall, Henry J.; Homan, Reynold; Massey, John B.
1987-01-01
Lipids and proteins are important functional and structural components of living organisms. Although proteins are frequently found as soluble components of plasma or the cell cytoplasm, many lipids are much less soluble and separate into complex assemblies that usually contain proteins. Cell membranes and plasma lipoproteins' are two important macro-molecular assemblies that contain both lipids and proteins. Cell membranes are composed of a variety of lipids and proteins that form an insoluble bilayer array that has relatively little curvature over distances of several nm. Plasma lipoproteins are different in that they are much smaller, water-soluble, and have highly curved surfaces. A model of a high density lipoprotein (HDL) is shown in Figure 1. This model (d - 10 nm) contains a surface of polar lipids and proteins that surrounds a small core of insoluble lipids, mostly triglycerides and cholesteryl esters. The low density (LDL) (d - 25 nm) and very low density (VLDL) (d 90 nm) lipoproteins have similar architectures, except the former has a cholesteryl ester core and the latter a core that is almost exclusively triglyceride (Figure 1). The surface proteins of HDL are amphiphilic and water soluble; the single protein of LDL is insoluble, whereas VLDL contains both soluble and insoluble proteins. The primary structures of all of these proteins are known.
Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof
Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir Branko
2010-04-06
The present invention relates to particle and nanoparticle composites useful as oxygen-reduction electrocatalysts. The particle composites are composed of a palladium or palladium-alloy particle or nanoparticle substrate coated with an atomic submonolayer, monolayer, bilayer, or trilayer of zerovalent platinum atoms. The invention also relates to a catalyst and a fuel cell containing the particle or nanoparticle composites of the invention. The invention additionally includes methods for oxygen reduction and production of electrical energy by using the particle and nanoparticle composites of the invention.
Variations of thermoelectric performance by electric fields in bilayer MX2 (M = W, Mo; X = S, Se).
Wang, Rui-Ning; Dong, Guo-Yi; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long
2017-02-22
A gate electrode is usually used to controllably tune the carrier concentrations, further modulating the electrical conductivity and the Seebeck coefficient to obtain the optimum thermoelectric figure of merit (ZT) in two-dimensional materials. On the other hand, it is necessary to investigate how an electric field induced by a gate voltage affects the electronic structures, further determining the thermoelectric properties. Therefore, by using density functional calculations in combination with Boltzmann theory, the thermoelectric properties of bilayer MX 2 (M = W, Mo; X = S, Se) with or without a 1 V nm -1 perpendicular electric field are comparatively investigated. First of all, the variations of the electrical conductivity (σ), electron thermal conductivity and Seebeck coefficient (S) with the carrier concentration are studied. Due to the trade-off relationship between S and σ, there is an optimum concentration to obtain the maximum ZT, which increases with the temperature due to the enhancement of the Seebeck coefficient. Moreover, N-type bilayers have larger optimum ZTs than P-type bilayers. In addition, the electric field results in the increase of the Seebeck coefficient in low hole-doped MS 2 bilayers and high hole-doped MSe 2 bilayers, thus leading to similar variations in ZT. The optimum ZTs are reduced from 2.11 × 10 -2 , 3.19 × 10 -2 , 2.47 × 10 -2 , and 2.58 × 10 -2 to 1.57 × 10 -2 , 1.51 × 10 -2 , 2.08 × 10 -2 , and 1.43 × 10 -2 for the hole-doped MoS 2 , MoSe 2 , and WSe 2 bilayers, respectively. For N-type bilayers, the electric field shows a destructive effect, resulting in the obvious reduction of the Seebeck coefficient in the MSe 2 layers and the low electron-doped MS 2 bilayers. In electron-doped bilayers, the optimum ZTs will decrease from 3.03 × 10 -2 , 6.64 × 10 -2 , and 6.69 × 10 -2 to 2.81 × 10 -2 , 3.59 × 10 -2 , and 4.39 × 10 -2 for the MoS 2 , MoSe 2 , and WSe 2 bilayers, respectively.
Lipid bilayer thickness determines cholesterol's location in model membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.
Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of differentmore » lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.« less
Flexible bilayers with spontaneous curvature lead to lamellar gels and spontaneous vesicles
Coldren, Bret A.; Warriner, Heidi; van Zanten, Ryan; Zasadzinski, Joseph A.; Sirota, Eric B.
2006-01-01
Mixtures of cetyltrimethylammonium tosylate (CTAT) and sodium dodecylbenzene sulfonate (SDBS) in water form a fluid lamellar phase at ≤40 wt % water but surprisingly turn into viscous gels at higher water fractions. The gels are characterized by spherulite and other bilayer defects consistent with a low bending elasticity, κ ∼ kBT, and a nonzero spontaneous curvature. Caillé analysis of the small-angle x-ray line shape confirms that for 7:3 wt:wt CTAT:SDBS bilayers at 50% water, κ = 0.62 ± 0.09 kBT and κ̄ = −0.9 ± 0.2 kBT. For 13:7 wt:wt CTAT:SDBS bilayers, the measured bending elasticity decreases with increasing water dilution in good agreement with predictions based on renormalization theory, giving κo = 0.28 kBT. These results show that surfactant mixing is sufficient to make κ ∼ kBT, which promotes strong, Helfrich-type repulsion between bilayers that can dominate the van der Waals attraction. These are necessary conditions for spontaneous vesicles formed at even higher water fractions to be equilibrium structures. PMID:16467142
NASA Astrophysics Data System (ADS)
Behzad, Somayeh
2017-11-01
Recently, a new two-dimensional (2D) material, the 2D BC3 crystal, has been synthesized. Here, the mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the biaxial strain is investigated. The electronic structure calculations showed that the strain-free monolayer and bilayer BC3 are indirect band-gap semiconductors with band gap of 0.62 and 0.29 eV, respectively, where the conduction band minimum (CBM) is at the M point whereas the valence band maximum (VBM) is at the Γ point. The doubly degenerated bands in the monolayer BC3 are splitted in the bilayer BC3 due to the interlayer interactions. Both monolayer and bilayer BC3 remain indirect gap semiconductor under biaxial tensile strain and their band gaps increases with strain. On the other hand, by increasing the magnitude of tensile strain, the optical spectra shift to the lower energies and the static dielectric constant increases. These findings suggest the potential of strain-engineered 2D BC3 in electronic and optoelectronic device applications.
Lipid bilayer thickness determines cholesterol's location in model membranes
Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.; ...
2016-10-11
Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of differentmore » lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.« less
Lee, Dong Woog; Banquy, Xavier; Kristiansen, Kai; Kaufman, Yair; Boggs, Joan M.; Israelachvili, Jacob N.
2014-01-01
The surface forces apparatus and atomic force microscope were used to study the effects of lipid composition and concentrations of myelin basic protein (MBP) on the structure of model lipid bilayers, as well as the interaction forces and adhesion between them. The lipid bilayers had a lipid composition characteristic of the cytoplasmic leaflets of myelin from “normal” (healthy) and “disease-like” [experimental allergic encephalomyelitis (EAE)] animals. They showed significant differences in the adsorption mechanism of MBP. MBP adsorbs on normal bilayers to form a compact film (3–4 nm) with strong intermembrane adhesion (∼0.36 mJ/m2), in contrast to its formation of thicker (7–8 nm) swelled films with weaker intermembrane adhesion (∼0.13 mJ/m2) on EAE bilayers. MBP preferentially adsorbs to liquid-disordered submicron domains within the lipid membranes, attributed to hydrophobic attractions. These results show a direct connection between the lipid composition of membranes and membrane–protein adsorption mechanisms that affects intermembrane spacing and adhesion and has direct implications for demyelinating diseases. PMID:24516125
Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating.
Chen, Yanjing; Bose, Arijit; Bothun, Geoffrey D
2010-06-22
Nanoscale assemblies that can be activated and controlled through external stimuli represent a next stage in multifunctional therapeutics. We report the formation, characterization, and release properties of bilayer-decorated magnetoliposomes (dMLs) that were prepared by embedding small hydrophobic SPIO nanoparticles at different lipid molecule to nanoparticle ratios within dipalmitoylphosphatidylcholine (DPPC) bilayers. The dML structure was examined by cryogenic transmission electron microscopy and differential scanning calorimetry, and release was examined by carboxyfluorescein leakage. Nanoparticle heating using alternating current electromagnetic fields (EMFs) operating at radio frequencies provided selective release of the encapsulated molecule at low nanoparticle concentrations and under physiologically acceptable EMF conditions. Without radio frequency heating, spontaneous leakage from the dMLs decreased with increasing nanoparticle loading, consistent with greater bilayer stability and a decrease in the effective dML surface area due to aggregation. With radio frequency heating, the initial rate and extent of leakage increased significantly as a function of nanoparticle loading and electromagnetic field strength. The mechanism of release is attributed to a combination of bilayer permeabilization and partial dML rupture.
Raft-Like Membrane Domains in Pathogenic Microorganisms
Farnoud, Amir M.; Toledo, Alvaro M.; Konopka, James B.; Del Poeta, Maurizio; London, Erwin
2016-01-01
The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids packed in a liquid-ordered state, commonly known as lipid rafts, are believed to exist. While less studied in bacterial cells, reports on the presence of sterol or protein-mediated microdomains in bacterial cell membranes are also appearing with increasing frequency. Recent efforts have been focused on addressing the biophysical and biochemical properties of lipid rafts. However, most studies have been focused on synthetic membranes, mammalian cells, and/or model, non-pathogenic microorganisms. Much less is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and the developing field of microdomains in pathogenic bacteria. The current literature on the structure and function and of microdomains is reviewed and the potential role of microdomains in growth, pathogenesis, and drug resistance of pathogens are discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of the process of pathogenesis and development of raft-mediated approaches for new methods of therapy. PMID:26015285
NASA Astrophysics Data System (ADS)
Liu, Yaru; Liu, Lan; Zhang, Xiao; Wu, Jie
2018-03-01
A Co(II) MOF {[Co3(L)2(H2O)4](DMF)2}n (1) and three Cd(II) MOFs [Cd3(L)2(H2O)7]n (2), [Cd3(L)2(H2O)11]n (3) and [Cd3(L)2(DMF)2(H2O)]n (4) are synthesized based on the promising multifunctional tricarboxylate ligand 6-(3, 5-dicarboxyl phenyl) nicotinic acid (H3L). 1 exhibits a 3D framework with 1D channels which contains opposite-handedness helical chains based on the trinuclear Co(II) clusters. 2-4 are obtained depend on different reaction conditions. 2 displays a 3D framework, which is composed of two kinds of 2D layers linked with each other. 3 shows a rare tongue-and-groove-type bilayer structure. And 4 is an interesting 3D framework containing infinite 1D inorganic Cdsbnd Osbnd Cd chains. In these MOFs, the H3L ligand shows the versatile coordination modes and strong coordination ability. Furthermore, the magnetic and solid-state luminescent properties of the MOFs have been investigated.
Nanostructured ultra-thin patches for ultrasound-modulated delivery of anti-restenotic drug
Vannozzi, Lorenzo; Ricotti, Leonardo; Filippeschi, Carlo; Sartini, Stefania; Coviello, Vito; Piazza, Vincenzo; Pingue, Pasqualantonio; La Motta, Concettina; Dario, Paolo; Menciassi, Arianna
2016-01-01
This work aims to demonstrate the possibility to fabricate ultra-thin polymeric films loaded with an anti-restenotic drug and capable of tunable drug release kinetics for the local treatment of restenosis. Vascular nanopatches are composed of a poly(lactic acid) supporting membrane (thickness: ~250 nm) on which 20 polyelectrolyte bilayers (overall thickness: ~70 nm) are alternatively deposited. The anti-restenotic drug is embedded in the middle of the polyelectrolyte structure, and released by diffusion mechanisms. Nanofilm fabrication procedure and detailed morphological characterization are reported here. Barium titanate nanoparticles (showing piezoelectric properties) are included in the polymeric support and their role is investigated in terms of influence on nanofilm morphology, drug release kinetics, and cell response. Results show an efficient drug release from the polyelectrolyte structure in phosphate-buffered saline, and a clear antiproliferative effect on human smooth muscle cells, which are responsible for restenosis. In addition, preliminary evidences of ultrasound-mediated modulation of drug release kinetics are reported, thus evaluating the influence of barium titanate nanoparticles on the release mechanism. Such data were integrated with quantitative piezoelectric and thermal measurements. These results open new avenues for a fine control of local therapies based on smart responsive materials. PMID:26730191