Science.gov

Sample records for bile acid conjugates

  1. Structural Determinants for Transport Across the Intestinal Bile Acid Transporter Using C-24 Bile Acid Conjugates

    PubMed Central

    Rais, Rana; Acharya, Chayan; MacKerell, Alexander D.; Polli, James E.

    2010-01-01

    The human apical sodium dependent bile acid transporter (hASBT) re-absorbs gram quantities of bile acid daily and is a potential prodrug target to increase oral drug absorption. In the absence of a high resolution hASBT crystal structure, 3D-QSAR modeling may prove beneficial in designing prodrug targets to hASBT. The objective was to derive a conformationally sampled pharmacophore 3D–QSAR (CSP-SAR) model for the uptake of bile acid conjugates by hASBT. A series of bile acid conjugates of glutamyl chenodeoxycholate were evaluated in terms of Km and normalized Vmax(normVmax) using hASBT-MDCK cells. All mono-anionic conjugates were potent substrates. Dianions, cations and zwitterions, which bound with a high affinity, were not substrates. CSP-SAR models were derived using structural and physicochemical descriptors, and evaluated via cross-validation. The best CSP-SAR model for Km included two structural and two physiochemical descriptors, where substrate hydrophobicity enhanced affinity. A best CSP-SAR model for Km/normVmax employed one structural and three physicochemical descriptors, also indicating hydrophobicity enhanced efficiency. Overall, the bile acid C-24 region accommodated a range of substituted anilines, provided a single negative charge was present near C-24. In comparing uptake findings to prior inhibition results, increased hydrophobicity enhanced activity, with dianions and zwitterions hindering activity. PMID:20939504

  2. Bile Acids Conjugation in Human Bile Is Not Random: New Insights from 1H-NMR Spectroscopy at 800 MHz

    PubMed Central

    Shanaiah, Narasimhamurthy; Cooper, Amanda; Raftery, Daniel

    2017-01-01

    Bile acids constitute a group of structurally closely related molecules and represent the most abundant constituents of human bile. Investigations of bile acids have garnered increased interest owing to their recently discovered additional biological functions including their role as signaling molecules that govern glucose, fat and energy metabolism. Recent NMR methodological developments have enabled single-step analysis of several highly abundant and common glycine- and taurine- conjugated bile acids, such as glycocholic acid, glycodeoxycholic acid, glycochenodeoxycholic acid, taurocholic acid, taurodeoxycholic acid, and taurochenodeoxycholic acid. Investigation of these conjugated bile acids in human bile employing high field (800 MHz) 1H-NMR spectroscopy reveals that the ratios between two glycine-conjugated bile acids and their taurine counterparts correlate positively (R2 = 0.83–0.97; p = 0.001 × 10−2–0.006 × 10−7) as do the ratios between a glycine-conjugated bile acid and its taurine counterpart (R2 = 0.92–0.95; p = 0.004 × 10−3–0.002 × 10−10). Using such correlations, concentration of individual bile acids in each sample could be predicted in good agreement with the experimentally determined values. These insights into the pattern of bile acid conjugation in human bile between glycine and taurine promise useful clues to the mechanism of bile acids’ biosynthesis, conjugation and enterohepatic circulation, and may improve our understanding of the role of individual conjugated bile acids in health and disease. PMID:19373503

  3. Fatty acid bile acid conjugates (FABACs)—New molecules for the prevention of cholesterol crystallisation in bile

    PubMed Central

    Gilat, T; Somjen, G; Mazur, Y; Leikin-Frenkel, A; Rosenberg, R; Halpern, Z; Konikoff, F.

    2001-01-01

    BACKGROUND—Cholesterol gall stones are a frequent disease for which at present surgery is the usual therapy. Despite the importance of bile acids it has become evident that phospholipids are the main cholesterol solubilisers in bile. Even phospholipid components, such as fatty acids, have anticrystallising activity.
AIM—To synthesise fatty acid bile acid conjugates (FABACs) and study their effects on cholesterol crystallisation in bile in vitro and in vivo.
METHODS—FABACs were prepared by conjugation of cholic acid at position 3 with saturated fatty acids of variable chain length using an amide bond. Cholesterol crystallisation and its kinetics (crystal observation time, crystal mass) were studied in model bile, pooled enriched human bile, and fresh human bile using FABACs with saturated fatty acids of varying chain length (C-6 to C-22). Absorption of FABACs into blood and bile was tested in hamsters. Prevention of biliary cholesterol crystallisation in vivo was tested in hamsters and inbred mice.
RESULTS—FABACs strongly inhibited cholesterol crystallisation in model as well as native bile. The FABACs with longer acyl chains (C-16 to C-22) were more effective. At a concentration of 5 mM, FABACs almost completely inhibited cholesterol crystallisation in fresh human bile for 21 days. FABACs were absorbed and found in both portal and heart blood of hamsters. Levels in bile were 2-3 times higher than in blood, indicating active secretion. Appreciable levels were found in the systemic circulation 24-48 hours after a single administration. Ingested FABACs completely prevented the formation of cholesterol crystals in the gall bladders of hamsters and mice fed a lithogenic diet.
CONCLUSIONS—FABACs are potent inhibitors of cholesterol crystallisation in bile. They are absorbed and secreted into bile and prevent the earliest step of cholesterol gall stone formation in animals. These compounds may be of potential use in cholesterol gall stone disease in

  4. Non chromatographic colorimetric assay for total taurine-conjugated bile acids: application of measurements of glycine: taurine ratio in bile.

    PubMed

    Christie, W H; Macdonald, I A; Williams, C N

    1975-03-01

    A direct colorimetric assay for total conjugated taurine from bile-rich duodenal aspirates is described. The method is based on complete acetylation of the free hydroxyl groups by acetic anhydride at 100 degrees C. of both the tri- and di-hydroxy bile acids in Folch extracted bile samples. Taurine-conjugated bile acids are measured by ion pair formation with Azure A and subsequent extraction of the complex into the organic phase of a biphasic system. Absorption at 645 nm. of this complex directly quantifies total taurine-conjugated bile acid. Total bile acids are then estimated by the 3alpha-hydroxysteroid dehydrogenase assay. The difference between the concentration of the total conjugated bile acid and of the total conjugated taurine determines the concentration of glycine conjugates and the glycine:taurine ratio. Potentially interfering materials such as sulphalipids, certain phospholipids, and unconjugated bile acids are removed by Folch extraction. The 3-hydroxysteroid sulfates (cholesteryl sulfate, lithocholate sulfate, and glycocholate sulfate) are not measurable by heating in acetic anhydride and do not interfere. Taurolithocholate-3-sulfate, under identical conditions, gives a measurable but very low color yield and in normal physiologic concentrations would contribute negligible color. As previously reported, this assay under prescribed conditions is selective for long-chain amphipathic sulfates or sulfonates with no measurable color yield with glycine conjugates, unconjugated bile acids, free fatty acids, or lecithin. Values for glycine:taurine ratios by the above-described method in both normal bile extracts and extracts from patients with either elevated or depressed ratios relate closely to those determined by thin-layer chromatography.

  5. Hydroxylation, conjugation and sulfation of bile acids in primary monolayer cultures of rat hepatocytes

    SciTech Connect

    Princen, H.M.; Meijer, P.

    1988-08-15

    Hydroxylation of lithocholic, chenodeoxycholic, deoxycholic and cholic acids was studied in monolayers of rat hepatocytes cultured for 76 h. The majority of added lithocholic and chenodeoxycholic acids was metabolized to beta-muricholic acid (56-76%). A small part of these bile acids (9%), however, and a considerable amount of deoxycholic and cholic acids (21%) were converted into metabolites more polar than cholic acid in the first culture period. Formation of these compounds decreased during the last day of culture. Bile acids synthesized after addition of (4-/sup 14/C)-cholesterol were almost entirely (97%) sulfated and/or conjugated, predominantly with taurine (54-66%), during culture. Sulfated bile acids were mainly composed of free bile acids. The ability of hepatocytes to sulfurylate bile acids declined with culture age. Thus, rat hepatocytes in primary monolayer culture are capable to sulfurylate bile acids and to hydroxylate trihydroxylated bile acids, suggesting formation of polyhydroxylated metabolites.

  6. Conjugated bile acid replacement therapy reduces urinary oxalate excretion in short bowel syndrome.

    PubMed

    Emmett, Michael; Guirl, Michael J; Santa Ana, Carol A; Porter, Jack L; Neimark, Sidney; Hofmann, Alan F; Fordtran, John S

    2003-01-01

    Patients with short bowel syndrome (SBS) have steatorrhea, in part because of bile acid malabsorption that causes decreased bile acid secretion into the duodenum and consequent fat maldigestion. In SBS patients with colon in continuity, luminal calcium forms calcium fatty acid soaps rather than precipitating as insoluble calcium oxalate. Soluble oxalate is hyperabsorbed by the colon leading to hyperoxaluria and an increased risk for renal calcium oxalate stones and deposits. The authors hypothesized that oral ingestion of conjugated bile acids would increase fat absorption and thereby decrease calcium fatty acid soap formation and oxalate hyperabsorption. The effect of conjugated bile acid replacement therapy (9 g/d) on fecal fat excretion and urine oxalate excretion was measured in an appropriate patient, utilizing the metabolic balance technique. The effects of chronic bile acid replacement therapy on oxalate excretion and nutritional status also were measured in a 3-month outpatient study. Natural conjugated bile acid replacement therapy reduced fecal fat excretion from 119 to 79 g/d (Delta40 g/d), and urinary oxalate excretion from 87 to 64 mg/d (966 to 710 micromol/d; Delta23 mg/d). Cholylsarcosine, a synthetic conjugated bile acid, had similar but less powerful effects. During a 3-month outpatient trial of natural conjugated bile acids (9 g/d), urine oxalate decreased to normal levels (27 mg/d) in association with weight gain, decreased hunger, and decreased hyperphagia. Conjugated bile acid replacement therapy reduced fecal fat excretion, reduced urinary oxalate excretion, and improved nutritional status in a patient with SBS with colon in continuity, hyperoxaluria, and oxalate nephrolithiasis. Copyright 2003 by the National Kidney Foundation, Inc.

  7. Gelation of self-assembed bile acid-PEG conjugates

    NASA Astrophysics Data System (ADS)

    Strandman, Satu; Le Devedec, Frantz; Zhu, X. X.

    2012-02-01

    The aggregation of macromolecules and low-molar-mass compounds into elongated self-assemblies such as wormlike micelles, fibers, or tubules increases the viscosity of the solutions and often leads to gelation due to network formation, even in organic solvents. Such one-dimensional nanostructures are promising candidates for drug delivery vehicles, packing materials for separation, templates for metal nanowires, biocides, and photo- or biocatalysis. An interesting group of compounds capable of this type of self-organization are bile acids, which are endogeneous steroids known to form gels at high concentrations and appropriate pH conditions. Grafting poly(ethylene oxide) on bile acids via anionic polymerization brings along thermoresponsiveness represented by lower critical solution temperature (LCST), while self-assembling occurs below another threshold temperature leading to a gelation at high concentrations, as shown by rheological experiments. The latter transition is assigned to the nanotube formation of pegylated bile acids, visualized by electron microscopy.

  8. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3

    PubMed Central

    Suga, Takahiro; Sato, Toshihiro; Maekawa, Masamitsu; Goto, Junichi; Mano, Nariyasu

    2017-01-01

    Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74–14.7 μM for OATP1B1 and 0.47–15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3. PMID:28060902

  9. Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3.

    PubMed

    Suga, Takahiro; Yamaguchi, Hiroaki; Sato, Toshihiro; Maekawa, Masamitsu; Goto, Junichi; Mano, Nariyasu

    2017-01-01

    Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74-14.7 μM for OATP1B1 and 0.47-15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3.

  10. Molecular Switch Controlling the Binding of Anionic Bile Acid Conjugates to Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Rais, Rana; Acharya, Chayan; Tririya, Gasirat; MacKerell, Alexander D.; Polli, James E.

    2010-01-01

    The human apical sodium-dependent bile acid transporter (hASBT) may serve as a prodrug target for oral drug absorption. Synthetic, biological, NMR and computational approaches identified the structure-activity relationships of mono- and dianionic bile acid conjugates for hASBT binding. Experimental data combined with a conformationally-sampled pharmacophore/QSAR modeling approach (CSP-SAR) predicted that dianionic substituents with intramolecular hydrogen bonding between hydroxyls on the cholane skeleton and the acid group on the conjugate's aromatic ring increased conjugate hydrophobicity and improved binding affinity. Notably, the model predicted the presence of a conformational molecular switch, where shifting the carboxylate substituent on an aromatic ring by a single position controlled binding affinity. Model validation was performed by effectively shifting the spatial location of the carboxylate by inserting a methylene adjacent to the aromatic ring, resulting in the predicted alteration in binding affinity. This work illustrates conformation as a determinant of ligand binding affinity to a biological transporter. PMID:20504026

  11. Serum bile acids and their conjugates in breast-fed infants with prolonged jaundice.

    PubMed

    Tazawa, Y; Yamada, M; Nakagawa, M; Konno, T; Tada, K

    1985-05-01

    Serum bile acids and their conjugates were analysed in 20 breast-fed infants with prolonged jaundice. The mean total bile acid levels in serum were increased in the breast-fed infants with jaundice, as compared with those in either breast- or bottle-fed infants without jaundice. However, there were no significant differences between the groups. All the breast-fed infants examined, regardless of association with jaundice, had a bile acid pattern dominated by taurine conjugates (the ratio of glycine- to taurine-conjugated bile acid, G/T ratio, less than 1.00). In contrast, the bottle-fed infants without jaundice had a pattern dominated by glycine conjugates (G/T ratio, more than 1.00). Among the breast-fed infants with jaundice, the mean G/T ratio in those who had serum bilirubin levels over 10 mg/100 ml was significantly lower than that in those who had serum bilirubin levels of less than 10 mg/100 ml. The altered bile acid metabolism might be associated with the pathology of breast milk jaundice.

  12. Effect of Glycine-Conjugated Bile Acids with and without Lecithin on Water and Glucose Absorption in Perfused Human Jejunum

    PubMed Central

    Wingate, David L.; Phillips, Sidney F.; Hofmann, Alan F.

    1973-01-01

    Perfusion studies were performed in healthy volunteers to test whether the secretory effect of conjugated bile acids, previously shown for the colon, was also present in the jejunum. A perfusion system with a proximal occlusive balloon (and continuous aspiration of duodenal secretions) was used; isotonic test solutions contained glycine-conjugated bile acids with or without lecithin. Fluid movement was measured by changes in the concentration of polyethylene glycol (PEG, mol wt 4,000). Conjugated dihydroxy bile acids inhibited electrolyte and fluid absorption and, at higher concentrations, evoked secretion of an isotonic fluid. Glucose absorption continued, despite fluid secretion, but its rate decreased. The secretory effects of bile acids were abolished by the addition of lecithin to the bile acid solutions. A trihydroxy bile acid (cholylglycine) had no effect on jejunal absorption. Small amounts (6-9%) of conjugated bile acids were absorbed in the jejunum; lecithin was well absorbed (72-90%). The results indicate that dihydroxy bile acids influence salt and water transport in the human jejunum but that this effect may be abolished when a polar lipid such as lecithin is present. We speculate that this effect of bile acids may modify fluid movement in the small intestine postprandially after fat absorption has occurred. Images PMID:4700493

  13. Synthesis of conjugated bile acids/azastilbenes as potential antioxidant and photoprotective agents.

    PubMed

    dos Santos, Juliana Alves; Polonini, Hudson Caetano; Suzuki, Érika Yoko; Raposo, Nádia R B; da Silva, Adilson David

    2015-06-01

    A series of 14 bile acids/azastilbenes conjugates (1a-g and 2a-g) was prepared through the condensation of bile amides (1 and 2) and aromatic aldehydes. The newly synthesized conjugates were evaluated in vitro for their antioxidant and photoprotective activities. Six compounds (1, 1a, 1b, 2, 2a and 2b) showed promising antioxidant activity with IC50 values of 19.60-31.83 μg mL(-1). The synthesized compounds presented a varied photoprotection profile, with the SPF ranging from 2 to 9. Among the 16 compounds tested for the protection against UVB sunrays, 3 compounds (2c, 2e and 2g) presented more significant protection than resveratrol and the free azastilbene 3; while the UVAPF increased from 2 in resveratrol and 5 in 3 to 5-11 in the majority of the conjugates.

  14. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2

    PubMed Central

    Liu, Runping; Zhao, Renping; Zhou, Xiqiao; Liang, Xiuyin; Campbell, Deanna JW; Zhang, Xiaoxuan; Zhang, Luyong; Shi, Ruihua; Wang, Guangji; Pandak, William M; Sirica, Alphonse E; Hylemon, Phillip B; Zhou, Huiping

    2014-01-01

    Cholangiocarcinoma (CCA) is an often fatal primary malignancy of the intra- and extrahepatic biliary tract that is commonly associated with chronic cholestasis and significantly elevated levels of primary and conjugated bile acids (CBAs), which are correlated with bile duct obstruction (BDO). BDO has also recently been shown to promote CCA progression. However, whereas there is increasing evidence linking chronic cholestasis and abnormal bile acid profiles to CCA development and progression, the specific mechanisms by which bile acids may be acting to promote cholangiocarcinogenesis and invasive biliary tumor growth have not been fully established. Recent studies have shown that CBAs, but not free bile acids, stimulate CCA cell growth, and that an imbalance in the ratio of free to CBAs may play an important role in the tumorigenesis of CCA. Also, CBAs are able to activate extracellular signal-regulated kinase (ERK)1/2- and phosphatidylinositol-3-kinase/protein kinase B (AKT)-signaling pathways through sphingosine 1-phosphate receptor 2 (S1PR2) in rodent hepatocytes. In the current study, we demonstrate S1PR2 to be highly expressed in rat and human CCA cells, as well as in human CCA tissues. We further show that CBAs activate the ERK1/2- and AKT-signaling pathways and significantly stimulate CCA cell growth and invasion in vitro. Taurocholate (TCA)-mediated CCA cell proliferation, migration, and invasion were significantly inhibited by JTE-013, a chemical antagonist of S1PR2, or by lentiviral short hairpin RNA silencing of S1PR2. In a novel organotypic rat CCA coculture model, TCA was further found to significantly increase the growth of CCA cell spheroidal/“duct-like” structures, which was blocked by treatment with JTE-013. Conclusion: Our collective data support the hypothesis that CBAs promote CCA cell-invasive growth through S1PR2. PMID:24700501

  15. Thermodynamic and solution state NMR characterization of the binding of secondary and conjugated bile acids to STARD5.

    PubMed

    Létourneau, Danny; Lorin, Aurélien; Lefebvre, Andrée; Cabana, Jérôme; Lavigne, Pierre; LeHoux, Jean-Guy

    2013-11-01

    STARD5 is a member of the STARD4 sub-family of START domain containing proteins specialized in the non-vesicular transport of lipids and sterols. We recently reported that STARD5 binds primary bile acids. Herein, we report on the biophysical and structural characterization of the binding of secondary and conjugated bile acids by STARD5 at physiological concentrations. We found that the absence of the 7α-OH group and its epimerization increase the affinity of secondary bile acids for STARD5. According to NMR titration and molecular modeling, the affinity depends mainly on the number and positions of the steroid ring hydroxyl groups and to a lesser extent on the presence or type of bile acid side-chain conjugation. Primary and secondary bile acids have different binding modes and display different positioning within the STARD5 binding pocket. The relative STARD5 affinity for the different bile acids studied is: DCA>LCA>CDCA>GDCA>TDCA>CA>UDCA. TCA and GCA do not bind significantly to STARD5. The impact of the ligand chemical structure on the thermodynamics of binding is discussed. The discovery of these new ligands suggests that STARD5 is involved in the cellular response elicited by bile acids and offers many entry points to decipher its physiological role.

  16. Shortcut access to peptidosteroid conjugates: building blocks for solid-phase bile acid scaffold decoration by convergent ligation.

    PubMed

    Verzele, Dieter; Figaroli, Sara; Madder, Annemieke

    2011-12-07

    We present three versatile solid-supported scaffold building blocks based on the (deoxy)cholic acid framework and decorated with handles for further derivatization by modern ligation techniques such as click chemistry, Staudinger ligation or native chemical ligation. Straightforward procedures are presented for the synthesis and analysis of the steroid constructs. These building blocks offer a new, facile and shorter access route to bile acid-peptide conjugates on solid-phase with emphasis on heterodipodal conjugates with defined spatial arrangements. As such, we provide versatile new synthons to the toolbox for bile acid decoration.

  17. Radiosynthesis of N-¹¹C-Methyl-Taurine-Conjugated Bile Acids and Biodistribution Studies in Pigs by PET/CT.

    PubMed

    Schacht, Anna Christina; Sørensen, Michael; Munk, Ole Lajord; Frisch, Kim

    2016-04-01

    During cholestasis, accumulation of conjugated bile acids may occur in the liver and lead to hepatocellular damage. Inspired by our recent development of N-(11)C-methyl-glycocholic acid-that is, (11)C-cholylsarcosine-a tracer for PET of the endogenous glycine conjugate of cholic acid, we report here a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids and biodistribution studies in pigs by PET/CT. A radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids was developed and used to prepare N-(11)C-methyl-taurine conjugates derived from cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic acid. The lipophilicity of these new tracers was determined by reversed-phase thin-layer chromatography. The effect of lipophilicity and structure on the biodistribution was investigated in pigs by PET/CT using the tracers derived from cholic acid (3α-OH, 7α-OH, 12α-OH), ursodeoxycholic acid (3α-OH, 7β-OH), and lithocholic acid (3α-OH). The radiosyntheses of the N-(11)C-methyl-taurine-conjugated bile acids proceeded with radiochemical yields of 61% (decay-corrected) or greater and radiochemical purities greater than 99%. PET/CT in pigs revealed that the tracers were rapidly taken up by the liver and secreted into bile. There was no detectable radioactivity in urine. Significant reflux of N-(11)C-methyl-taurolithocholic acid into the stomach was observed. We have successfully developed a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids. These tracers behave in a manner similar to endogenous taurine-conjugated bile acids in vivo and are thus promising for functional PET of patients with cholestatic diseases. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. Improved synthesis of glycine, taurine and sulfate conjugated bile acids as reference compounds and internal standards for ESI-MS/MS urinary profiling of inborn errors of bile acid synthesis.

    PubMed

    Donazzolo, Elena; Gucciardi, Antonina; Mazzier, Daniela; Peggion, Cristina; Pirillo, Paola; Naturale, Mauro; Moretto, Alessandro; Giordano, Giuseppe

    2017-04-01

    Bile acid synthesis defects are rare genetic disorders characterized by a failure to produce normal bile acids (BAs), and by an accumulation of unusual and intermediary cholanoids. Measurements of cholanoids in urine samples by mass spectrometry are a gold standard for the diagnosis of these diseases. In this work improved methods for the chemical synthesis of 30 BAs conjugated with glycine, taurine and sulfate were developed. Diethyl phosphorocyanidate (DEPC) and diphenyl phosphoryl azide (DPPA) were used as coupling reagents for glycine and taurine conjugation. Sulfated BAs were obtained by sulfur trioxide-triethylamine complex (SO3-TEA) as sulfating agent and thereafter conjugated with glycine and taurine. All products were characterized by NMR, IR spectroscopy and high resolution mass spectrometry (HRMS). The use of these compounds as internal standards allows an improved accuracy of both identification and quantification of urinary bile acids. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Toxicity and intracellular accumulation of bile acids in sandwich-cultured rat hepatocytes: role of glycine conjugates.

    PubMed

    Chatterjee, Sagnik; Bijsmans, Ingrid T G W; van Mil, Saskia W C; Augustijns, Patrick; Annaert, Pieter

    2014-03-01

    Excessive intrahepatic accumulation of bile acids (BAs) is a key mechanism underlying cholestasis. The aim of this study was to quantitatively explore the relationship between cytotoxicity of BAs and their intracellular accumulation in sandwich-cultured rat hepatocytes (SCRH). Following exposure of SCRH (on day-1 after seeding) to various BAs for 24h, glycine-conjugated BAs were most potent in exerting toxicity. Moreover, unconjugated BAs showed significantly higher toxicity in day-1 compared to day-3 SCRH. When day-1/-3 SCRH were exposed (0.5-4h) to 5-100μM (C)DCA, intracellular levels of unconjugated (C)DCA were similar, while intracellular levels of glycine conjugates were up to 4-fold lower in day-3 compared to day-1 SCRH. Sinusoidal efflux was by far the predominant efflux pathway of conjugated BAs both in day-1 and day-3 SCRH, while canalicular BA efflux showed substantial interbatch variability. After 4h exposure to (C)DCA, intracellular glycine conjugate levels were at least 10-fold higher than taurine conjugate levels. Taken together, reduced BA conjugate formation in day-3 SCRH results in lower intracellular glycine conjugate concentrations, explaining decreased toxicity of (C)DCA in day-3 versus day-1 SCRH. Our data provide for the first time a direct link between BA toxicity and glycine conjugate exposure in SCRH.

  20. Bile Acids and the Gut Microbiome

    PubMed Central

    Ridlon, Jason M.; Kang, Dae Joong; Hylemon, Phillip B.; Bajaj, Jasmohan S.

    2014-01-01

    Purpose of the review We examine the latest research on the emerging bile acid-gut microbiome axis and its role in health and disease. Our focus revolves around two key microbial pathways for degrading bile salts, and the impact of bile acid composition in the gut on the gut microbiome and host physiology. Recent findings Bile acid pool size has recently been shown to be a function of microbial metabolism of bile acids in the intestines. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. Bile acids are emerging as regulators of the gut microbiome at the highest taxomic levels. The role of bile acids as hormones and potentiators of liver cancer are also emerging. Summary The host and microbiome appear to regulate bile acid pool size. The host produces a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of FXR in intestine and liver. Members of the microbiome utilize bile acids and their conjugates resulting in agonism of FXR in intestine and liver resulting in a smaller, unconjugated hydrophobic bile acid pool. Hydrophilicity of the bile acid pool is associated with disease states. Reduced bile acid levels in the gut are associated with bacterial overgrowth and inflammation. Diet, antibiotic therapy, and disease states affect the balance of the microbiome-bile acid pool. PMID:24625896

  1. Rapid quantification of conjugated and unconjugated bile acids and C27 precursors in dried blood spots and small volumes of serum.

    PubMed

    Janzen, N; Sander, S; Terhardt, M; Das, A M; Sass, J O; Kraetzner, R; Rosewich, H; Rosevich, H; Peter, M; Sander, J

    2010-06-01

    The aim of the study was to develop a method for fast and reliable diagnosis of peroxisomal diseases and to facilitate differential diagnosis of cholestatic hepatopathy. For the quantification of bile acids and their conjugates as well as C(27) precursors di- and trihydroxycholestanoic acid (DHCA, THCA), in small pediatric blood samples we combined HPLC separation on a reverse-phase C18 column with ESI-MS/MS analysis in the negative ion mode. Analysis was done with good precision (CV 3,7%-11.1%) and sufficient sensitivity (LOQ: 11-91 nmol/L) without derivatization. Complete analysis of 17 free and conjugated bile acids from dried blood spots and 10 microL serum samples, respectively, was performed within 12 min. Measurement of conjugated primary bile acids plus DHCA and THCA as well as ursodeoxycholic acid was done in 4.5 min. In blood spots of healthy newborns, conjugated primary bile acids were found in the range of 0.01 to 2.01 micromol/L. Concentrations of C(27) precursors were below the detection limit in normal controls. DHCA and THCA were specifically elevated in cases of peroxysomal defects and one Zellweger patient.

  2. Rapid quantification of conjugated and unconjugated bile acids and C27 precursors in dried blood spots and small volumes of serum[S

    PubMed Central

    Janzen, N.; Sander, S.; Terhardt, M.; Das, A. M.; Sass, J. O.; Kraetzner, R.; Rosewich, H.; Peter, M.; Sander, J.

    2010-01-01

    The aim of the study was to develop a method for fast and reliable diagnosis of peroxisomal diseases and to facilitate differential diagnosis of cholestatic hepatopathy. For the quantification of bile acids and their conjugates as well as C27 precursors di- and trihydroxycholestanoic acid (DHCA, THCA), in small pediatric blood samples we combined HPLC separation on a reverse-phase C18 column with ESI-MS/MS analysis in the negative ion mode. Analysis was done with good precision (CV 3,7%–11.1%) and sufficient sensitivity (LOQ: 11–91 nmol/L) without derivatization. Complete analysis of 17 free and conjugated bile acids from dried blood spots and 10 µL serum samples, respectively, was performed within 12 min. Measurement of conjugated primary bile acids plus DHCA and THCA as well as ursodeoxycholic acid was done in 4.5 min. In blood spots of healthy newborns, conjugated primary bile acids were found in the range of 0.01 to 2.01 µmol/L. Concentrations of C27 precursors were below the detection limit in normal controls. DHCA and THCA were specifically elevated in cases of peroxysomal defects and one Zellweger patient. PMID:20093478

  3. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  4. Bile acid transporters.

    PubMed

    Dawson, Paul A; Lan, Tian; Rao, Anuradha

    2009-12-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na(+) taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTalpha-OSTbeta. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers.

  5. Fecal free and conjugated bile acids and neutral sterols in vegetarians, omnivores, and patients with colorectal cancer.

    PubMed

    Korpela, J T; Adlercreutz, H; Turunen, M J

    1988-04-01

    Increased excretion and intestinal bacterial metabolism of bile acids and neutral sterols have been suggested to be associated with an increased risk of colorectal cancer. We determined fecal neutral sterol and bile acid profiles by new capillary column gas-liquid chromatographic methods in 18 patients with colorectal cancer, 10 omnivores, and 10 vegetarians. The methods also determine concentrations of esterified neutral sterols and saponifiable bile acids formed by intestinal bacterial action. Patients with colorectal cancer had the highest concentrations of neutral animal sterols, the lowest degree of esterification of neutral sterols, the lowest relative amount of saponifiable bile acids, and the highest concentrations of unconjugated primary bile acids. These differences were statistically significant (p less than 0.05) and more profound when the patients were compared with vegetarians than with omnivores. Since epidemiologic studies suggest that vegetarians have a lower risk of colorectal cancer than omnivores, these differences are discussed as possible risk factors for colorectal cancer.

  6. Postprandial concentrations of free and conjugated bile acids down the length of the normal human small intestine

    PubMed Central

    Northfield, T. C.; McColl, I.

    1973-01-01

    Small intestinal samples were obtained by intubation from multiple sites along the small intestine in 11 subjects with no known gastrointestinal disease eating a normal diet and at laparotomy in a further three subjects. Free (unconjugated) bile acids were consistently demonstrated in ileal samples, and occasionally in lower jejunal samples, by thin-layer chromatography, supplemented in some cases by gas/liquid chromatography and by infrared spectroscopy. The free bile acid concentration, measured enzymically following thin-layer chromatography, reached a maximum (1 mM) in the lower ileum, where it represented half the total bile acid concentration. Following ampicillin, the concentration of free bile acids decreased markedly, suggesting that they resulted from bacterial deconjugation; at the same time the total bile acid concentration increased, suggesting impaired absorption due to the reduced concentration of the more rapidly absorbed free bile acids. Our results indicate that the presence of free bile acids in lower jejunal and ileal samples is a normal finding, and cannot be taken as evidence of abnormal bacterial overgrowth. They also suggest that bacterial deconjugation at these sites may be a factor contributing to the remarkable efficiency of bile salt reabsorption. ImagesFig 2 PMID:4729918

  7. Inducement of G-quadruplex DNA forming and down-regulation of oncogene c-myc by bile acid-amino acid conjugate-BAA.

    PubMed

    Tian, Mingyue; Zhang, Xiufeng; Li, Yan; Ju, Yong; Xiang, Junfeng; Zhao, Changqi; Tang, Yalin

    2010-03-01

    Human c-myc gene is a central regulator of cellular proliferation and cell growth, and G-quadruplexes have been proven to be the transcriptional controller of this gene. In this study, the interaction of bile acid-amino acid conjugate (BAA) with G-quadruplexes in c-myc was investigated by circular dichroism spectroscopy, nuclear magnetic resonance (NMR) measurement, and quantitative real-time polymerase chain reaction (PCR) assay. The experimental results indicated that BAA has the ability to selectively induce the formation of parallel G-quadruplexes in c-myc, which leads to down-regulation of c-myc transcription in the human breast cancer cell MCF-7.

  8. [Correlations of bile acids in the bile of rats in conditions of alloxan induced diabetes melitus].

    PubMed

    Danchenko, N M; Vesel'skyĭ, S P; Tsudzevych, B O

    2014-01-01

    The ratio of bile acids in the bile of rats with alloxan diabetes was investigated using the method of thin-layer chromatography. Changes of coefficients of conjugation and hydroxylation of bile acids were calculated and analyzed in half-hour samples of bile obtained during the 3-hour experiment. It has been found that the processes of conjugation of cholic acid with glycine and taurine are inhibited in alloxan diabetes. At the same time a significant increase of free threehydroxycholic and dixydroxycholic bile acids and conjugates of the latter ones with taurine has been registered. Coefficients of hydroxylation in alloxan diabetes show the domination of "acidic" pathway in bile acid biosynthesis that is tightly connected with the activity of mitochondrial enzymes.

  9. Effect of twice-daily oral administration of hydrocortisone on the bile acids composition of gallbladder bile in dogs.

    PubMed

    Kook, Peter H; Schellenberg, Stefan; Rentsch, Katharina M; Reusch, Claudia E; Glaus, Tony M

    2011-12-01

    To investigate the effects of twice-daily oral administration of hydrocortisone on the bile acids composition of gallbladder bile in dogs. 6 placebo-treated control dogs and 6 hydrocortisone-treated dogs. Dogs received hydrocortisone (median dose, 8.5 mg/kg) or a gelatin capsule (control group) orally every 12 hours for 84 days. Gallbladder bile samples were obtained via percutaneous ultrasound-guided cholecystocentesis from each dog before (day 0 [baseline]), during (days 28, 56, and 84), and after (days 28p, 56p, and 84p) treatment for differentiated quantification of unconjugated bile acids and taurine-conjugated and glycine-conjugated bile acids via high-performance liquid chromatography-tandem mass spectrometry. Treatment with hydrocortisone for 84 days resulted in significant and reversible increases in the concentrations of unconjugated bile acids (ie, cholic, chenodeoxycholic, and deoxycholic acids) and a significant and reversible decrease in the concentration of total taurine-conjugated bile acids, compared with baseline or control group values. Treatment with hydrocortisone had no effect on bile concentrations of glycine-conjugated bile acids. In dogs, hydrocortisone administration caused reversible shifts toward higher concentrations of the more hydrophobic unconjugated bile acids (chenodeoxycholic acid and deoxycholic acid) and toward lower concentrations of the amphipathic taurine-conjugated bile acids in gallbladder bile. These data suggest that similar bile acids changes could cause major alterations in gallbladder structure or function over time in hypercortisolemic dogs.

  10. Bile acid formation in primary human hepatocytes

    PubMed Central

    Einarsson, Curt; Ellis, Ewa; Abrahamsson, Anna; Ericzon, Bo-Göran; Björkhem, Ingemar; Axelson, Magnus

    2000-01-01

    AIM: To evaluate a culture system for bile acid formation in primary human hepatocytes in comparison with HepG2 cells. METHODS: Hepatocytes were isolated from normal human liver tissue and were cultured in serum-free William’s E medium. The medium was collected and re newed every 24 h. Bile acids and their precursors in media were finally analysed by gas chromatography-mass spectrometry. RESULTS: Cholic acid (CA) and chenodeoxycholic acid (CDCA) conjugated with glycine or taurine accounted for 70% and 25% of total steroids. A third of CDC A was also conjugated with sulphuric acid. Dexamethasone and thyroid hormone alone or in combination did not significantly effect bile acid formation. The addit ion of cyclosporin A (10 μmol/L) inhibited the synthesis of CA and CDCA by about 13% and 30%, respectively. CONCLUSION: Isolated human hepatocytes in primary culture behave as in the intact liver by converting cholesterol to conjugated CA and CDCA. This is in contrast to cultured HepG2 cells, which release large amounts of bile acid precursors and unconjugated bile acids into the medium. PMID:11819640

  11. Bile acids: regulation of synthesis.

    PubMed

    Chiang, John Y L

    2009-10-01

    Bile acids are physiological detergents that generate bile flow and facilitate intestinal absorption and transport of lipids, nutrients, and vitamins. Bile acids also are signaling molecules and inflammatory agents that rapidly activate nuclear receptors and cell signaling pathways that regulate lipid, glucose, and energy metabolism. The enterohepatic circulation of bile acids exerts important physiological functions not only in feedback inhibition of bile acid synthesis but also in control of whole-body lipid homeostasis. In the liver, bile acids activate a nuclear receptor, farnesoid X receptor (FXR), that induces an atypical nuclear receptor small heterodimer partner, which subsequently inhibits nuclear receptors, liver-related homolog-1, and hepatocyte nuclear factor 4alpha and results in inhibiting transcription of the critical regulatory gene in bile acid synthesis, cholesterol 7alpha-hydroxylase (CYP7A1). In the intestine, FXR induces an intestinal hormone, fibroblast growth factor 15 (FGF15; or FGF19 in human), which activates hepatic FGF receptor 4 (FGFR4) signaling to inhibit bile acid synthesis. However, the mechanism by which FXR/FGF19/FGFR4 signaling inhibits CYP7A1 remains unknown. Bile acids are able to induce FGF19 in human hepatocytes, and the FGF19 autocrine pathway may exist in the human livers. Bile acids and bile acid receptors are therapeutic targets for development of drugs for treatment of cholestatic liver diseases, fatty liver diseases, diabetes, obesity, and metabolic syndrome.

  12. Bile Acid Metabolism and Signaling

    PubMed Central

    Chiang, John Y. L.

    2015-01-01

    Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. PMID:23897684

  13. Effect of Tween Series on Growth and cis-9, trans-11 Conjugated Linoleic Acid Production of Lactobacillus acidophilus F0221 in the Presence of Bile Salts

    PubMed Central

    Li, Jing-Yan; Zhang, Lan-Wei; Du, Ming; Han, Xue; Yi, Hua-Xi; Guo, Chun-Feng; Zhang, Ying-Chun; Luo, Xue; Zhang, Yan-He; Shan, Yu-Juan; Hou, Ai-Ju

    2011-01-01

    Cis-9, trans-11 conjugated linoleic acid (c9, t11 CLA) producing bacteria have attracted much attention as novel probiotics which have shown beneficial effects on host health. However, bile salts are able to inhibit bacterial growth and c9, t11 CLA production. For recovering growth and c9, t11 CLA production of Lactobacillus acidophilus F0221 in the presence of bile salts, Tween series (Tween 20, Tween 40, Tween 60 and Tween 80) were added in growth culture containing 0.3% oxgall. Results showed that the viable counts were significantly (P < 0.05) recovered to 8.58–8.75 log CFU/mL in the presence of all Tween treatments. However, recovery of c9, t11 CLA production was only demonstrated in the presence of Tween 80 (72.89 μg/mL). Stepwise increasing oxgall in a concentrations range from 0.1% to 0.9% according to human intestinal physiological environments, Tween 80 still showed significant (P < 0.05) recovery ability on growth (8.91–8.04 log CFU/mL) and c9, t11 CLA (69.22–34.27 μg/mL) production. The effect of Tween 80 on growth and production was also investigated in the presence of different types of bile salts (sodium salts of cholic acid (CA), deoxycholic acid (DCA), chendeoxycholic acid (CDCA), glycocholic acid (GCA) and taurocholic acid (TCA)). Results showed that Tween 80 could significantly (P < 0.05) recover c9, t11 CLA production in the presence of all types of bile salts, but the Tween 80 could only significantly (P < 0.05) recover viable counts of the strain in the presence of CA, DCA and CDCA. This recovery ability could be attributed to the protection of leakage of intracellular material. Additionally, although bile salts inhibited growth and c9, t11 CLA production by the growing cell, it promoted the c9, t11 CLA production by the resting cell. PMID:22272124

  14. Effect of tween series on growth and Cis-9, trans-11 conjugated linoleic acid production of Lactobacillus acidophilus F0221 in the presence of bile salts.

    PubMed

    Li, Jing-Yan; Zhang, Lan-Wei; Du, Ming; Han, Xue; Yi, Hua-Xi; Guo, Chun-Feng; Zhang, Ying-Chun; Luo, Xue; Zhang, Yan-He; Shan, Yu-Juan; Hou, Ai-Ju

    2011-01-01

    Cis-9, trans-11 conjugated linoleic acid (c9, t11 CLA) producing bacteria have attracted much attention as novel probiotics which have shown beneficial effects on host health. However, bile salts are able to inhibit bacterial growth and c9, t11 CLA production. For recovering growth and c9, t11 CLA production of Lactobacillus acidophilus F0221 in the presence of bile salts, Tween series (Tween 20, Tween 40, Tween 60 and Tween 80) were added in growth culture containing 0.3% oxgall. Results showed that the viable counts were significantly (P < 0.05) recovered to 8.58-8.75 log CFU/mL in the presence of all Tween treatments. However, recovery of c9, t11 CLA production was only demonstrated in the presence of Tween 80 (72.89 μg/mL). Stepwise increasing oxgall in a concentrations range from 0.1% to 0.9% according to human intestinal physiological environments, Tween 80 still showed significant (P < 0.05) recovery ability on growth (8.91-8.04 log CFU/mL) and c9, t11 CLA (69.22-34.27 μg/mL) production. The effect of Tween 80 on growth and production was also investigated in the presence of different types of bile salts (sodium salts of cholic acid (CA), deoxycholic acid (DCA), chendeoxycholic acid (CDCA), glycocholic acid (GCA) and taurocholic acid (TCA)). Results showed that Tween 80 could significantly (P < 0.05) recover c9, t11 CLA production in the presence of all types of bile salts, but the Tween 80 could only significantly (P < 0.05) recover viable counts of the strain in the presence of CA, DCA and CDCA. This recovery ability could be attributed to the protection of leakage of intracellular material. Additionally, although bile salts inhibited growth and c9, t11 CLA production by the growing cell, it promoted the c9, t11 CLA production by the resting cell.

  15. Glucuronic acid conjugates of bilirubin-IXα in normal bile compared with post-obstructive bile. Transformation of the 1-O-acylglucuronide into 2-, 3-, and 4-O-acylglucuronides

    PubMed Central

    Compernolle, Frans; Van Hees, Gustaaf P.; Blanckaert, Norbert; Heirwegh, Karel P. M.

    1978-01-01

    Structures have been determined for bilirubin-IXα conjugates in freshly collected bile of normal rats, dogs and man and in post-obstructive bile of man and rats. The originally secreted conjugate has been characterized as azopigment (I), i.e. a 1-O-acyl-β-d-glucopyranuronic acid glycoside. Conversion of the acetylated methyl ester of azopigment (I) into methyl 2,3,4-tri-O-acetyl-1-bromo-1-deoxy-β-d-glucopyranuronate (V) indicates the pyranose ring structure for the carbohydrate and a C-1 attachment for the bilirubin-IXα acyl group. Alternative procedures for deconjugation of azopigment (I) and its derivatives are also described. In post-obstructive bile, the 1-O-acylglucuronide is converted into 2-, 3- and 4-O-acylglucuronides via sequential intramolecular migrations of the bilirubin acyl group. The following approach was utilized. (1) The tetrapyrrole conjugates were cleaved to dipyrrolic aniline and ethyl anthranilate azopigments, and the azopigments were separated as the acids or methyl esters. (2) The isomeric methyl esters were characterized by mass spectral analysis of the acetates and silyl ethers. (3) The free glycosidic function was demonstrated by 1-oxime and 1-methoxime derivative formation. (4) The position of the dipyrrolic O-acyl group was determined for the methyl esters by protecting the free hydroxyl groups of the glucuronic acid moieties as the acetals formed with ethyl vinyl ether and by further conversion of the carbohydrates into partially methylated alditol acetates. These were analysed by using g.l.c.–mass spectrometry. The relevance of the present results with regard to previous reports on disaccharidic conjugates is discussed. Details of procedures for the formation of chemical derivatives for g.l.c. and mass spectrometry have been deposited as Supplementary Publication SUP 50081 (15 pages) at the British Library Lending Division, Boston Spa, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in

  16. Bile acid metabolism and signaling in cholestasis, inflammation and cancer

    PubMed Central

    Apte, Udayan

    2015-01-01

    Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid soluble vitamins. Bile acid synthesis, transport and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration and carcinogenesis. PMID:26233910

  17. Therapeutic targeting of bile acids

    PubMed Central

    Gores, Gregory J.

    2015-01-01

    The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466

  18. Quantitative profiling of 19 bile acids in rat plasma, liver, bile and different intestinal section contents to investigate bile acid homeostasis and the application of temporal variation of endogenous bile acids.

    PubMed

    Yang, Tingting; Shu, Ting; Liu, Guanlan; Mei, Huifang; Zhu, Xiaoyu; Huang, Xin; Zhang, Luyong; Jiang, Zhenzhou

    2017-09-01

    Bile acid homeostasis is maintained by liver synthesis, bile duct secretion, microbial metabolism and intestinal reabsorption into the blood. When drug insults result in liver damage, the variances of bile acids (BAs) are related to the physiological status of the liver. Here, we established a method to simultaneously quantify 19 BAs in rat plasma, liver, bile and different intestinal section contents (duodenum, jejunum, ileum, cecum and colon) using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) to reveal the pattern of bile acid homeostasis in the enterohepatic circulation of bile acids in physiological situations. Dynamic changes in bile acid composition appeared throughout the enterohepatic circulation of the BAs; taurine- and glycine-conjugated BAs and free BAs had different dynamic homeostasis levels in the circulatory system. cholic acid (CA), beta-muricholic acid (beta-MCA), lithocholic acid (LCA), glycocholic acid (GCA) and taurocholic acid (TCA) greatly fluctuated in the bile acid pool under physiological conditions. Taurine- and glycine-conjugated bile acids constituted more than 90% in the bile and liver, whereas GCA and TCA accounted for more than half of the total bile acids and the secretion of bile mainly via conjugating with taurine. While over 80% of BAs in plasma were unconjugated bile acids, CA and HDCA were the most abundant elements. Unconjugated bile acids constituted more than 90% in the intestine, and CA, beta-MCA and HDCA were the top three bile acids in the duodenum, jejunum and ileum content, but LCA and HDCA were highest in the cecum and colon content. As the main secondary bile acid converted by microflora in the intestine, LCA was enriched in the cecum and DCA mostly in the colon. As endogenous substances, the concentrations of plasma BAs were closely related to time rhythm and diet. In conclusion, analyzing detailed BA profiles in the enterohepatic circulation of bile acids in a single run is possible

  19. Upregulation of UGT2B4 Expression by 3′-Phosphoadenosine-5′-Phosphosulfate Synthase Knockdown: Implications for Coordinated Control of Bile Acid Conjugation

    PubMed Central

    Barrett, Kathleen G.; Fang, Hailin; Cukovic, Daniela; Dombkowski, Alan A.; Kocarek, Thomas A.

    2015-01-01

    During cholestasis, the bile acid–conjugating enzymes, SULT2A1 and UGT2B4, work in concert to prevent the accumulation of toxic bile acids. To understand the impact of sulfotransferase deficiency on human hepatic gene expression, we knocked down 3′-phosphoadenosine-5′-phosphosulfate synthases (PAPSS) 1 and 2, which catalyze synthesis of the obligate sulfotransferase cofactor, in HepG2 cells. PAPSS knockdown caused no change in SULT2A1 expression; however, UGT2B4 expression increased markedly (∼41-fold increase in UGT2B4 mRNA content). Knockdown of SULT2A1 in HepG2 cells also increased UGT2B4 expression. To investigate the underlying mechanism, we transfected PAPSS-deficient HepG2 cells with a luciferase reporter plasmid containing ∼2 Kb of the UGT2B4 5′-flanking region, which included a response element for the bile acid–sensing nuclear receptor, farnesoid X receptor (FXR). FXR activation or overexpression increased UGT2B4 promoter activity; however, knocking down FXR or mutating or deleting the FXR response element did not significantly decrease UGT2B4 promoter activity. Further evaluation of the UGT2B4 5′-flanking region indicated the presence of distal regulatory elements between nucleotides −10090 and −10037 that negatively and positively regulated UGT2B4 transcription. Pulse-chase analysis showed that increased UGT2B4 expression in PAPSS-deficient cells was attributable to both increased mRNA synthesis and stability. Transfection analysis demonstrated that the UGT2B4 3′-untranslated region decreased luciferase reporter expression less in PAPSS-deficient cells than in control cells. These data indicate that knocking down PAPSS increases UGT2B4 transcription and mRNA stability as a compensatory response to the loss of SULT2A1 activity, presumably to maintain bile acid–conjugating activity. PMID:25948711

  20. Bile acids and bariatric surgery.

    PubMed

    Albaugh, Vance L; Banan, Babak; Ajouz, Hana; Abumrad, Naji N; Flynn, Charles R

    2017-08-01

    Bariatric surgery, specifically Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), are the most effective and durable treatments for morbid obesity and potentially a viable treatment for type 2 diabetes (T2D). The resolution rate of T2D following these procedures is between 40 and 80% and far surpasses that achieved by medical management alone. The molecular basis for this improvement is not entirely understood, but has been attributed in part to the altered enterohepatic circulation of bile acids. In this review we highlight how bile acids potentially contribute to improved lipid and glucose homeostasis, insulin sensitivity and energy expenditure after these procedures. The impact of altered bile acid levels in enterohepatic circulation is also associated with changes in gut microflora, which may further contribute to some of these beneficial effects. We highlight the beneficial effects of experimental surgical procedures in rodents that alter bile secretory flow without gastric restriction or altering nutrient flow. This information suggests a role for bile acids beyond dietary fat emulsification in altering whole body glucose and lipid metabolism strongly, and also suggests emerging roles for the activation of the bile acid receptors farnesoid x receptor (FXR) and G-protein coupled bile acid receptor (TGR5) in these improvements. The limitations of rodent studies and the current state of our understanding is reviewed and the potential effects of bile acids mediating the short- and long-term metabolic improvements after bariatric surgery is critically examined. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Bile Acid-Induced Suicidal Erythrocyte Death.

    PubMed

    Lang, Elisabeth; Pozdeev, Vitaly I; Gatidis, Sergios; Qadri, Syed M; Häussinger, Dieter; Kubitz, Ralf; Herebian, Diran; Mayatepek, Ertan; Lang, Florian; Lang, Karl S; Lang, Philipp A

    2016-01-01

    In nucleated cells, bile acids may activate cation channels subsequently leading to entry of Ca2+. In erythrocytes, increase of cytosolic Ca2+ activity triggers eryptosis, the suicidal death of erythrocytes characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis is triggered by bile duct ligation, an effect partially attributed to conjugated bilirubin. The present study explored, whether bile acids may stimulate eryptosis. Phosphatidylserine exposing erythrocytes have been identified utilizing annexin V binding, cell volume estimated from forward scatter, cytosolic Ca2+ activity determined using Fluo-3 fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. The exposure of human erythrocytes to glycochenodesoxycholic (GCDC) and taurochenodesoxycholic (TCDC) acid was followed by a significant decrease of forward scatter and significant increase of Fluo-3 fluorescence, ceramide abundance as well as annexin V binding. The effect on annexin V binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Bile acids stimulate suicidal cell death, an effect paralleled by and in part due to Ca2+ entry and ceramide. The bile acid induced eryptosis may in turn lead to accelerated clearance of circulating erythrocytes and, thus, may contribute to anemia in cholestatic patients. © 2016 The Author(s) Published by S. Karger AG, Basel.

  2. Identification of quinone imine containing glutathione conjugates of diclofenac in rat bile.

    PubMed

    Waldon, Daniel J; Teffera, Yohannes; Colletti, Adria E; Liu, Jingzhou; Zurcher, Danielle; Copeland, Katrina W; Zhao, Zhiyang

    2010-12-20

    High-resolution accurate MS with an LTQ-Orbitrap was used to identify quinone imine metabolites derived from the 5-hydroxy (5-OH) and 4 prime-hydroxy (4'-OH) glutathione conjugates of diclofenac in rat bile. The initial quinone imine metabolites formed by oxidation of diclofenac have been postulated to be reactive intermediates potentially involved in diclofenac-mediated hepatotoxicity; while these metabolites could be formed using in vitro systems, they have never been detected in vivo. This report describes the identification of secondary quinone imine metabolites derived from 5-OH and 4'-OH diclofenac glutathione conjugates in rat bile. To verify the proposed structures, the diclofenac quinone imine GSH conjugate standards were prepared synthetically and enzymatically. The novel metabolite peaks displayed the identical retention times, accurate mass MS/MS spectra, and the fragmentation patterns as the corresponding authentic standards. The formation of these secondary quinone metabolites occurs only under conditions where bile salt homeostasis was experimentally altered. Standard practice in biliary excretion experiments using bile duct-cannulated rats includes infusion of taurocholic acid and/or other bile acids to replace those lost due to continuous collection of bile; for this experiment, the rats received no replacement bile acid infusion. High-resolution accurate mass spectrometry data and comparison with chemically and enzymatically prepared quinone imines of diclofenac glutathione conjugates support the identification of these metabolites. A mechanism for the formation of these reactive quinone imine containing glutathione conjugates of diclofenac is proposed.

  3. Diglucuronide: a novel bile acid metabolite

    SciTech Connect

    Radominska-Pyrek, A.; Shattuck, K.E.; Zimniak, P.; Lester, R.; Pyrek, J.S.

    1986-05-01

    Bile acids can be glucuronidated on steroidal hydroxyl groups. Recent results from the laboratory also documented the formation of carboxyl-linked glucuronides as the major type of conjugation for short-chain bile acids. Now they report the identification of a short-chain bile acid glucuronidated on both the carboxyl and hydroxyl group. (3-/sup 3/H)Norlithocholate was administered to rats prepared with a biliary fistula and its metabolites were identified. 75% of the metabolites found in bile were glucuronides, the ratio of hydroxyl-linked to carboxyl-linked being 2:1. The assignment of a compound to one of these two classes of conjugate can be made based on their NMR spectra, which differ characteristically in the chemical shifts of several hydrogens. One metabolite, homogeneous by chromatographic and spectral criteria and accounting for 11% of the biliary radioactivity, exhibited NMR signals of both types of glucuronide in a ratio of 1:1. This, and TLC comparison with a chemically synthesized standard, allowed the assignment of the diglucuronide structure to this compound. Further confirmation was obtained from in vitro experiments. Norlithocholate glucuronide, when incubated with UDP-(/sup 14/C)-glucuronic acid and rat liver microsomes, is converted to a radioactive product, presumably the diglucuronide. Under identical conditions, lithocholate glucuronide does not give rise to a radiolabeled product.

  4. New insights into bile acid malabsorption.

    PubMed

    Johnston, Ian; Nolan, Jonathan; Pattni, Sanjeev S; Walters, Julian R F

    2011-10-01

    Bile acid malabsorption occurs when there is impaired absorption of bile acids in the terminal ileum, so interrupting the normal enterohepatic circulation. The excess bile acids in the colon cause diarrhea, and treatment with bile acid sequestrants is beneficial. The condition can be diagnosed with difficulty by measuring fecal bile acids, or more easily by retention of selenohomocholyltaurine (SeHCAT), where this is available. Chronic diarrhea caused by primary bile acid diarrhea appears to be common, but is under-recognized where SeHCAT testing is not performed. Measuring excessive bile acid synthesis with 7α-hydroxy-4-cholesten-3-one may be an alternative means of diagnosis. It appears that there is no absorption defect in primary bile acid diarrhea but, instead, an overproduction of bile acids. Fibroblast growth factor 19 (FGF19) inhibits hepatic bile acid synthesis. Defective production of FGF19 from the ileum may be the cause of primary bile acid diarrhea.

  5. Impaired uptake of conjugated bile acids and hepatitis b virus pres1-binding in na+-taurocholate cotransporting polypeptide knockout mice

    PubMed Central

    Slijepcevic, Davor; Kaufman, Christina; Wichers, Catharina GK; Gilglioni, Eduardo H; Lempp, Florian A; Duijst, Suzanne; de Waart, Dirk R; Oude Elferink, Ronald PJ; Mier, Walter; Stieger, Bruno; Beuers, Ulrich; Urban, Stephan; van de Graaf, Stan FJ

    2015-01-01

    The Na+-taurocholate cotransporting polypeptide (NTCP) mediates uptake of conjugated bile acids (BAs) and is localized at the basolateral membrane of hepatocytes. It has recently been recognized as the receptor mediating hepatocyte-specific entry of hepatitis B virus and hepatitis delta virus. Myrcludex B, a peptide inhibitor of hepatitis B virus entry, is assumed to specifically target NTCP. Here, we investigated BA transport and Myrcludex B binding in the first Slc10a1-knockout mouse model (Slc10a1 encodes NTCP). Primary Slc10a1−/− hepatocytes showed absence of sodium-dependent taurocholic acid uptake, whereas sodium-independent taurocholic acid uptake was unchanged. In vivo, this was manifested as a decreased serum BA clearance in all knockout mice. In a subset of mice, NTCP deficiency resulted in markedly elevated total serum BA concentrations, mainly composed of conjugated BAs. The hypercholanemic phenotype was rapidly triggered by a diet supplemented with ursodeoxycholic acid. Biliary BA output remained intact, while fecal BA excretion was reduced in hypercholanemic Slc10a1−/− mice, explained by increased Asbt and Ostα/β expression. These mice further showed reduced Asbt expression in the kidney and increased renal BA excretion. Hepatic uptake of conjugated BAs was potentially affected by down-regulation of OATP1A1 and up-regulation of OATP1A4. Furthermore, sodium-dependent taurocholic acid uptake was inhibited by Myrcludex B in wild-type hepatocytes, while Slc10a1−/− hepatocytes were insensitive to Myrcludex B. Finally, positron emission tomography showed a complete abrogation of hepatic binding of labeled Myrcludex B in Slc10a1-/- mice. Conclusion: The Slc10a1-knockout mouse model supports the central role of NTCP in hepatic uptake of conjugated BAs and hepatitis B virus preS1/Myrcludex B binding in vivo; the NTCP-independent hepatic BA uptake machinery maintains a (slower) enterohepatic circulation of BAs, although it is occasionally

  6. The continuing importance of bile acids in liver and intestinal disease.

    PubMed

    Hofmann, A F

    Bile acids, the water-soluble, amphipathic end products of cholesterol metabolism, are involved in liver, biliary, and intestinal disease. Formed in the liver, bile acids are absorbed actively from the small intestine, with each molecule undergoing multiple enterohepatic circulations before being excreted. After their synthesis from cholesterol, bile acids are conjugated with glycine or taurine, a process that makes them impermeable to cell membranes and permits high concentrations to persist in bile and intestinal content. The relation between the chemical structure and the multiple physiological functions of bile acids is reviewed. Bile acids induce biliary lipid secretion and solubilize cholesterol in bile, promoting its elimination. In the small intestine, bile acids solubilize dietary lipids promoting their absorption. Bile acids are cytotoxic when present in abnormally high concentrations. This may occur intracellularly, as occurs in the hepatocyte in cholestasis, or extracellularly, as occurs in the colon in patients with bile acid malabsorption. Disturbances in bile acid metabolism can be caused by (1) defective biosynthesis from cholesterol or defective conjugation, (2) defective membrane transport in the hepatocyte or ileal enterocyte, (3) defective transport between organs or biliary diversion, and (4) increased bacterial degradation during enterohepatic cycling. Bile acid therapy involves bile acid replacement in deficiency states or bile acid displacement by ursodeoxycholic acid, a noncytotoxic bile acid. In cholestatic liver disease, administration of ursodeoxycholic acid decreases hepatocyte injury by retained bile acids, improving liver tests, and slowing disease progression. Bile acid malabsorption may lead to high concentrations of bile acids in the colon and impaired colonic mucosal function; bile acid sequestrants provide symptomatic benefit for diarrhea. A knowledge of bile acid physiology and the perturbations of bile acid metabolism in liver

  7. Biliary bile acids in birds of the Cotingidae family: taurine-conjugated (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α,7α-dihydroxy-5β-cholestan-27-oic acid.

    PubMed

    Hagey, Lee R; Iida, Takashi; Ogawa, Shoujiro; Adachi, Yuuki; Une, Mizuho; Mushiake, Kumiko; Maekawa, Masamitsu; Shimada, Miki; Mano, Nariyasu; Hofmann, Alan F

    2011-01-01

    Three C(27) bile acids were found to be major biliary bile acids in the capuchinbird (Perissocephalus tricolor) and bare-throated bellbird (Procnias nudicollis), both members of the Cotingidae family of the order Passeriformes. The individual bile acids were isolated by preparative RP-HPLC, and their structures were established by RP-HPLC, LC/ESI-MS/MS and NMR as well as by a comparison of their chromatographic properties with those of authentic reference standards of their 12α-hydroxy derivatives. The most abundant bile acid present in the capuchinbird bile was the taurine conjugate of C(27) (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid, a diastereomer not previously identified as a natural bile acid. The four diastereomers of taurine-conjugated (24ξ,25ξ)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid could be distinguished by NMR and were resolved by RP-HPLC. The RRT of the diastereomers (with taurocholic acid as 1.0) were found to be increased in the following order: (24R,25R)<(24S,25R)<(24S,25S)<(24R,25S). Two epimers (25R and 25S) of C(27) 3α,7α-dihydroxy-5β-cholestan-27-oic acid were also present (as the taurine conjugates) in both bird species. Epimers of the two compounds could be distinguished by their NMR spectra and resolved by RP-HPLC with the (25S)-epimer eluting before the (25R)-epimer. Characterization of the taurine-conjugated (24R,25R)-3α,7α,24-trihydroxy-5β-cholestan-27-oic acid and two epimers (25R and 25S) of 3α,7α-dihydroxy-5β-cholestan-27-oic acid should facilitate their detection in peroxisomal disease and inborn errors of bile acid biosynthesis.

  8. Aerobic catabolism of bile acids.

    PubMed Central

    Leppik, R A; Park, R J; Smith, M G

    1982-01-01

    Seventy-eight stable cultures obtained by enrichment on media containing ox bile or a single bile acid were able to utilize one or more bile acids, as well as components of ox bile, as primary carbon sources for growth. All isolates were obligate aerobes, and most (70) were typical (48) or atypical (22) Pseudomonas strains, the remainder (8) being gram-positive actinomycetes. Of six Pseudomonas isolates selected for further study, five produced predominantly acidic catabolites after growth on glycocholic acid, but the sixth, Pseudomonas sp. ATCC 31752, accumulated as the principal product a neutral steroid catabolite. Optimum growth of Pseudomonas sp. ATCC 31752 on ox bile occurred at pH 7 to 8 and from 25 to 30 degrees C. No additional nutrients were required to sustain good growth, but growth was stimulated by the addition of ammonium sulfate and yeast extract. Good growth was obtained with a bile solids content of 40 g/liter in shaken flasks. A near-theoretical yield of neutral steroid catabolites, comprising a major (greater than 50%) and three minor products, was obtained from fermentor growth of ATCC 31752 in 6.7 g of ox bile solids per liter. The possible commercial exploitation of these findings to produce steroid drug intermediates for the pharmaceutical industry is discussed. PMID:7149711

  9. Bile acid sequestrants for cholesterol

    MedlinePlus

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  10. Bile Acid Responses in Methane and Non-Methane Producers to Standard Breakfast Meals

    USDA-ARS?s Scientific Manuscript database

    Bile acids and their conjugates are important regulators of glucose homeostasis. Previous research has revealed the ratio of cholic acid to deoxycholic acid to affect insulin resistance in humans. Bile acid de-conjugation and intestinal metabolism depend on gut microbes which may be affected by hos...

  11. Intracellular delivery of desulfated heparin with bile acid conjugation alleviates T cell-mediated inflammatory arthritis via inhibition of RhoA-dependent transcellular diapedesis.

    PubMed

    Kang, Jin Hee; Hwang, Seung Rim; Sung, Shijin; Jang, Ji Ae; Alam, Md Mahmudul; Sa, Keum Hee; Kim, Sang-Yeob; Kim, In San; Byun, Young Ro; Kang, Young Mo

    2014-06-10

    Heparin has a potential regulatory role in inflammatory diseases. However, the anticoagulant activity and poor oral bioavailability of heparin limit its use as an anti-inflammatory agent. Conjugation of bis-deoxycholic acid to 6-O-desulfated low molecular weight heparin (6DSHbD) was efficiently internalized by activated endothelial cells via a 2-step model, in which heparin attaches to adhesion molecules that facilitate accessibility of the bile acid conjugate to membrane transporters. The critical role of P-selectin during endothelial cell uptake of 6DSHbD by arthritic tissue was confirmed in p-selectin(-/-) arthritic mice. Intracellular 6DSHbD inhibited transcellular diapedesis of T cells through activated endothelial cells and impaired both the formation of ICAM-1-rich docking structures at the T cell contact surface and subsequent cytoskeletal rearrangement. Furthermore, 6DSHbD blocked activation of RhoA-GTPase and phosphorylation of ezrin/radixin/moesin induced by ICAM-1 cross-linking on activated endothelial cells, thereby impairing lymphocyte transcellular transmigration. After oral administration 6DSHbD was preferentially delivered to inflamed joint tissue, particularly in and around post-capillary venular endothelium and inhibited effector T cell homing to arthritic joints. Aggravation of collagen-induced arthritis conferred by the transfer of effector T cells was suppressed by oral 6DSHbD. Thus, intracellular heparin exerts anti-inflammatory effects through the inhibition of RhoA-dependent transendothelial recruitment of T cells and may have applications in the treatment of chronic inflammatory arthritis.

  12. Fasting Serum Taurine-Conjugated Bile Acids Are Elevated in Type 2 Diabetes and Do Not Change With Intensification of Insulin

    PubMed Central

    Wewalka, Marlene; Patti, Mary-Elizabeth; Barbato, Corinne; Houten, Sander M.

    2014-01-01

    Context: Bile acids (BAs) are newly recognized signaling molecules in glucose and energy homeostasis. Differences in BA profiles with type 2 diabetes mellitus (T2D) remain incompletely understood. Objective: The objective of the study was to assess serum BA composition in impaired glucose-tolerant, T2D, and normal glucose-tolerant persons and to monitor the effects of improving glycemia on serum BA composition in T2D patients. Design and Setting: This was a cross-sectional cohort study in a general population (cohort 1) and nonrandomized intervention (cohort 2). Patients and Interventions: Ninety-nine volunteers underwent oral glucose tolerance testing, and 12 persons with T2D and hyperglycemia underwent 8 weeks of intensification of treatment. Main Outcome Measures: Serum free BA and respective taurine and glycine conjugates were measured by HPLC tandem mass spectrometry. Results: Oral glucose tolerance testing identified 62 normal-, 25 impaired glucose-tolerant, and 12 T2D persons. Concentrations of total taurine-conjugated BA were higher in T2D and intermediate in impaired- compared with normal glucose-tolerant persons (P = .009). Univariate regression revealed a positive association between total taurine-BA and fasting glucose (R = 0.37, P < .001), postload glucose (R = 0.31, P < .002), hemoglobin A1c (R = 0.26, P < .001), fasting insulin (R = 0.21, P = .03), and homeostatic model assessment-estimated insulin resistance (R = 0.26, P = .01) and an inverse association with oral disposition index (R = −0.36, P < .001). Insulin-mediated glycemic improvement in T2D patients did not change fasting serum total BA or BA composition. Conclusion: Fasting taurine-conjugated BA concentrations are higher in T2D and intermediate in impaired compared with normal glucose-tolerant persons and are associated with fasting and postload glucose. Serum BAs are not altered in T2D in response to improved glycemia. Further study may elucidate whether this pattern of taurine

  13. Fasting serum taurine-conjugated bile acids are elevated in type 2 diabetes and do not change with intensification of insulin.

    PubMed

    Wewalka, Marlene; Patti, Mary-Elizabeth; Barbato, Corinne; Houten, Sander M; Goldfine, Allison B

    2014-04-01

    Bile acids (BAs) are newly recognized signaling molecules in glucose and energy homeostasis. Differences in BA profiles with type 2 diabetes mellitus (T2D) remain incompletely understood. The objective of the study was to assess serum BA composition in impaired glucose-tolerant, T2D, and normal glucose-tolerant persons and to monitor the effects of improving glycemia on serum BA composition in T2D patients. This was a cross-sectional cohort study in a general population (cohort 1) and nonrandomized intervention (cohort 2). Ninety-nine volunteers underwent oral glucose tolerance testing, and 12 persons with T2D and hyperglycemia underwent 8 weeks of intensification of treatment. Serum free BA and respective taurine and glycine conjugates were measured by HPLC tandem mass spectrometry. Oral glucose tolerance testing identified 62 normal-, 25 impaired glucose-tolerant, and 12 T2D persons. Concentrations of total taurine-conjugated BA were higher in T2D and intermediate in impaired- compared with normal glucose-tolerant persons (P = .009). Univariate regression revealed a positive association between total taurine-BA and fasting glucose (R = 0.37, P < .001), postload glucose (R = 0.31, P < .002), hemoglobin A1c (R = 0.26, P < .001), fasting insulin (R = 0.21, P = .03), and homeostatic model assessment-estimated insulin resistance (R = 0.26, P = .01) and an inverse association with oral disposition index (R = -0.36, P < .001). Insulin-mediated glycemic improvement in T2D patients did not change fasting serum total BA or BA composition. Fasting taurine-conjugated BA concentrations are higher in T2D and intermediate in impaired compared with normal glucose-tolerant persons and are associated with fasting and postload glucose. Serum BAs are not altered in T2D in response to improved glycemia. Further study may elucidate whether this pattern of taurine-BA conjugation can be targeted to provide novel therapeutic approaches to treat T2D.

  14. Bile

    MedlinePlus

    ... the digestive tract. Bile contains: Mostly cholesterol Bile acids (also called bile salts) Bilirubin (a breakdown product or red blood cells) It also contains: Water Body salts (such as potassium and sodium) Copper ...

  15. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption

    PubMed Central

    Xie, Guoxiang; Zhong, Wei; Li, Houkai; Li, Qiong; Qiu, Yunping; Zheng, Xiaojiao; Chen, Huiyuan; Zhao, Xueqing; Zhang, Shucha; Zhou, Zhanxiang; Zeisel, Steven H.; Jia, Wei

    2013-01-01

    Our understanding of the bile acid metabolism is limited by the fact that previous analyses have primarily focused on a selected few circulating bile acids; the bile acid profiles of the liver and gastrointestinal tract pools are rarely investigated. Here, we determined how chronic ethanol consumption altered the bile acids in multiple body compartments (liver, gastrointestinal tract, and serum) of rats. Rats were fed a modified Lieber-DeCarli liquid diet with 38% of calories as ethanol (the amount equivalent of 4–5 drinks in humans). While conjugated bile acids predominated in the liver (98.3%), duodenum (97.8%), and ileum (89.7%), unconjugated bile acids comprised the largest proportion of measured bile acids in serum (81.2%), the cecum (97.7%), and the rectum (97.5%). In particular, taurine-conjugated bile acids were significantly decreased in the liver and gastrointestinal tract of ethanol-treated rats, while unconjugated and glycine-conjugated species increased. Ethanol consumption caused increased expression of genes involved in bile acid biosynthesis, efflux transport, and reduced expression of genes regulating bile acid influx transport in the liver. These results provide an improved understanding of the systemic modulations of bile acid metabolism in mammals through the gut-liver axis.—Xie, G., Zhong, W., Li, H., Li, Q., Qiu, Y., Zheng, X., Chen, H., Zhao, X., Zhang, S., Zhou, Z., Zeisel, S. H., Jia, W. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. PMID:23709616

  16. Impaired Bile Acid Homeostasis in Children with Severe Acute Malnutrition

    PubMed Central

    Zhang, Ling; Voskuijl, Wieger; Mouzaki, Marialena; Groen, Albert K.; Alexander, Jennifer; Bourdon, Celine; Wang, Alice; Versloot, Christian J.; Di Giovanni, Valeria; Wanders, Ronald J. A.; Bandsma, Robert

    2016-01-01

    Objective Severe acute malnutrition (SAM) is a major cause of mortality in children under 5 years and is associated with hepatic steatosis. Bile acids are synthesized in the liver and participate in dietary fat digestion, regulation of energy expenditure, and immune responses. The aim of this work was to investigate whether SAM is associated with clinically relevant changes in bile acid homeostasis. Design An initial discovery cohort with 5 healthy controls and 22 SAM-patients was used to identify altered bile acid homeostasis. A follow up cohort of 40 SAM-patients were then studied on admission and 3 days after clinical stabilization to assess recovery in bile acid metabolism. Recruited children were 6–60 months old and admitted for SAM in Malawi. Clinical characteristics, feces and blood were collected on admission and prior to discharge. Bile acids, 7α-hydroxy-4-cholesten-3-one (C4) and FGF-19 were quantified. Results On admission, total serum bile acids were higher in children with SAM than in healthy controls and glycine-conjugates accounted for most of this accumulation with median and interquartile range (IQR) of 24.6 μmol/L [8.6–47.7] compared to 1.9 μmol/L [1.7–3.3] (p = 0.01) in controls. Total serum bile acid concentrations did not decrease prior to discharge. On admission, fecal conjugated bile acids were lower and secondary bile acids higher at admission compared to pre- discharge, suggesting increased bacterial conversion. FGF19 (Fibroblast growth factor 19), a marker of intestinal bile acid signaling, was higher on admission and was associated with decreased C4 concentrations as a marker of bile acid synthesis. Upon recovery, fecal calprotectin, a marker of intestinal inflammation, was lower. Conclusion SAM is associated with increased serum bile acid levels despite reduced synthesis rates. In SAM, there tends to be increased deconjugation of bile acids and conversion from primary to secondary bile acids, which may contribute to the

  17. Bile Acids, Obesity, and the Metabolic Syndrome

    PubMed Central

    Ma, Huijuan; Patti, Mary Elizabeth

    2014-01-01

    Bile acids are increasingly recognized as key regulators of systemic metabolism. While bile acids have long been known to play important and direct roles in nutrient absorption, bile acids also serve as signaling molecules. Bile acid interactions with the nuclear hormone receptor farnesoid X receptor (FXR) and the membrane receptor G-protein-coupled bile acid receptor 5 (TGR5) can regulate incretin hormone and fibroblast growth factor 19 (FGF19) secretion, cholesterol metabolism, and systemic energy expenditure. Bile acid levels and distribution are altered in type 2 diabetes and increased following bariatric procedures, in parallel with reduced body weight and improved insulin sensitivity and glycemic control. Thus, modulation of bile acid levels and signaling, using bile acid binding resins, TGR5 agonists, and FXR agonists, may serve as a potent therapeutic approach for the treatment of obesity, type 2 diabetes, and other components of the metabolic syndrome in humans. PMID:25194176

  18. Identification of bile acid-CoA: amino acid N-acyltransferase in rat kidney.

    PubMed Central

    Kwakye, J B; Johnson, M R; Barnes, S; Grizzle, W E; Diasio, R B

    1991-01-01

    A novel location of the bile-acid-conjugating enzyme bile acid-CoA:amino acid N-acyltransferase (BAT) has been discovered in the cytosolic fraction of rat kidney. Both taurine and glycine were utilized as substrates. Formation of bile acid N-acyl amidates was verified by h.p.l.c. by comparison with authentic standards and by specific hydrolysis using cholylglycine hydrolase. Immunoblot analysis using a human liver anti-BAT polyclonal antibody indicated that rat kidney BAT has the same molecular mass as rat liver BAT. These findings suggest that the kidney has a role in bile acid metabolism and physiology. Images Fig. 6. PMID:1764044

  19. Structure and Functional Characterization of a Bile Acid 7α Dehydratase BaiE in Secondary Bile Acid Synthesis

    PubMed Central

    Bhowmik, Shiva; Chiu, Hsien-Po; Jones, David H.; Chiu, Hsiu-Ju; Miller, Mitchell D.; Xu, Qingping; Farr, Carol L.; Ridlon, Jason M.; Wells, James E.; Elsliger, Marc-André; Wilson, Ian A.; Hylemon, Phillip B.; Lesley, Scott A.

    2015-01-01

    Conversion of the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) to the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) is performed by a few species of intestinal bacteria in the genus Clostridium through a multistep biochemical pathway that removes a 7α-hydroxyl group. The rate-determining enzyme in this pathway is bile acid 7α-dehydratase (baiE). In this study, we report crystal structures of apo-BaiE and its putative product-bound (3-oxo-Δ4,6- lithocholyl-Coenzyme A (CoA)) complex. BaiE is a trimer with a twisted α+β barrel fold with similarity to the Nuclear Transport Factor 2 (NTF2) superfamily. Tyr30, Asp35 and His83 form a catalytic triad that is conserved across this family. Site-directed mutagenesis of BaiE from Clostridium scindens VPI 12708 confirmed that these residues are essential for catalysis and also confirmed the importance of other conserved residues, Tyr54 and Arg146, which are involved in substrate binding and affect catalytic turnover. Steady state kinetic studies revealed that the BaiE homologs are able to turn over 3-oxo-Δ4-bile acid and CoA-conjugated 3-oxo-Δ4-bile acid substrates with comparable efficiency questioning the role of CoA-conjugation in the bile acid metabolism pathway. PMID:26650892

  20. Ursodeoxycholic acid in the Ursidae: biliary bile acids of bears, pandas, and related carnivores.

    PubMed

    Hagey, L R; Crombie, D L; Espinosa, E; Carey, M C; Igimi, H; Hofmann, A F

    1993-11-01

    The biliary bile acid composition of gallbladder bile obtained from six species of bears (Ursidae), the Giant panda, the Red panda, and 11 related carnivores were determined by reversed phase liquid chromatography and gas chromatography-mass spectrometry. Bile acids were conjugated solely with taurine (in N-acyl linkage) in all species. Ursodeoxycholic acid (3 alpha, 7 beta-dihydroxy-5 beta-cholan-24-oic acid) was present in all Ursidae, averaging 1-39% of biliary bile acids depending on the species; it was not detected or present as a trace constituent (< 0.5%) in all other species, including the Giant panda. Ursodeoxycholic acid was present in 73 of 75 American Black bears, and its proportion averaged 34% (range 0-62%). Ursodeoxycholic acid averaged 17% of biliary bile acids in the Polar bear (n = 4) and 18% in the Brown bear (n = 6). Lower proportions (1-8%) were present in the Sun bear (n = 2), Ceylon Sloth bear (n = 1), and the Spectacled bear (n = 1). Bile of all species contained taurine-conjugated chenodeoxycholic acid and cholic acid. In some related carnivores, deoxycholic acid, the 7-dehydroxylation product of cholic acid, was also present. To determine whether the 7 beta hydroxy group of ursodeoxycholic acid was formed by hepatic or bacterial enzymes, bile acids were determined in hepatic bile obtained from bears with chronic biliary fistulae. Fistula bile samples contained ursodeoxycholic acid, chenodeoxycholic acid, and a trace amount of cholic acid, all as taurine conjugates, indicating that ursodeoxycholic acid is a primary bile acid formed in the liver in Ursidae.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Pregnancy and bile acid disorders.

    PubMed

    Pataia, Vanessa; Dixon, Peter H; Williamson, Catherine

    2017-07-01

    During pregnancy, extensive adaptations in maternal metabolic and immunological physiology occur. Consequently, preexisting disease may be exacerbated or attenuated, and new disease susceptibility may be unmasked. Cholestatic diseases, characterized by a supraphysiological raise in bile acid levels, require careful monitoring during pregnancy. This review describes the latest advances in the knowledge of intrahepatic cholestasis of pregnancy (ICP), the most common bile acid disorder specific to pregnancy, with a focus on the disease etiology and potential mechanisms of ICP-associated adverse pregnancy outcomes, including fetal demise. The course of preexisting cholestatic conditions in pregnancy is considered, including primary sclerosing cholangitis, primary biliary cholangitis, biliary atresia, and Alagille syndrome. The currently accepted treatments for cholestasis in pregnancy and promising new therapeutics for the condition are described. Copyright © 2017 the American Physiological Society.

  2. Bile Acids in Neurodegenerative Disorders

    PubMed Central

    Ackerman, Hayley D.; Gerhard, Glenn S.

    2016-01-01

    Bile acids, a structurally related group of molecules derived from cholesterol, have a long history as therapeutic agents in medicine, from treatment for primarily ocular diseases in ancient Chinese medicine to modern day use as approved drugs for certain liver diseases. Despite evidence supporting a neuroprotective role in a diverse spectrum of age-related neurodegenerative disorders, including several small pilot clinical trials, little is known about their molecular mechanisms or their physiological roles in the nervous system. We review the data reported for their use as treatments for neurodegenerative diseases and their underlying molecular basis. While data from cellular and animal models and clinical trials support potential efficacy to treat a variety of neurodegenerative disorders, the relevant bile acids, their origin, and the precise molecular mechanism(s) by which they confer neuroprotection are not known delaying translation to the clinical setting. PMID:27920719

  3. Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity

    PubMed Central

    Nehra, D; Howell, P; Williams, C; Pye, J; Beynon, J

    1999-01-01

    BACKGROUND—Bile acid toxicity has been shown in the gastric, colonic, and hepatic tissues; the effect on oesophageal mucosa is less well known. 
AIMS—To determine the spectrum of bile acids refluxing in patients with gastro-oesophageal reflux disease and its relation to oesophageal pH using a new technique of combined oesophageal aspiration and pH monitoring. 
METHODS—Ten asymptomatic subjects and 30 patients with symptoms of gastro-oesophageal reflux disease (minimal mucosal injury, erosive oesophagitis (grade 2 or 3 Savary-Miller), Barrett's oesophagus/stricture; n=10 in each group) underwent 15 hour continuous oesophageal aspiration with simultaneous pH monitoring. Bile acid assay of the oesophageal samples was performed using modified high performance liquid chromatography. 
RESULTS—The peak bile acid concentration and DeMeester acid scores were significantly higher in the patients with oesophagitis (median bile acid concentration 124 µmol/l; acid score 20.2) and Barrett's oesophagus/stricture (181 µmol/l; 43.3) than patients with minimal injury (14 µmol/l; 12.5) or controls (0 µmol/l; 11.1). The predominant bile acids detected were cholic, taurocholic, and glycocholic acids but there was a significantly greater proportion of secondary bile acids, deoxycholic and taurodeoxycholic acids, in patients with erosive oesophagitis and Barrett's oesophagus/stricture. Although bile acid reflux episodes occurred at variable pH, a temporal relation existed between reflux of taurine conjugates and oesophageal acid exposure (r=0.58, p=0.009). 
CONCLUSION—Toxic secondary bile acid fractions have been detected in patients with extensive mucosal damage. Mixed reflux is more harmful than acid reflux alone with possible toxic synergism existing between the taurine conjugates and acid. 

 Keywords: bile acids; reflux oesophagitis; Barrett's oesophagus PMID:10205192

  4. Longitudinal profiles of 15 serum bile acids in patients with intrahepatic cholestasis of pregnancy.

    PubMed

    Tribe, Rachel M; Dann, Anthony T; Kenyon, Anna P; Seed, Paul; Shennan, Andrew H; Mallet, Anthony

    2010-03-01

    Increased maternal serum bile acids are implicated in intrahepatic cholestasis of pregnancy. Individual bile acid profiles and their relationship with disease progression, however, remain unknown. The purpose of this prospective study was to determine the temporal changes in bile acids in normal pregnancy and in pregnancies complicated with intrahepatic cholestasis of pregnancy and pruritus gravidarum. A validated method for the evaluation of 15 bile acids (conjugated and unconjugated) in a single serum sample was developed using high-performance liquid chromatography/mass spectrometry (HPLC-MS) with an electrospray interface. Bile acid concentrations were assessed in samples (16 weeks of gestation to 4 weeks postpartum) from women with, or who later developed, intrahepatic cholestasis of pregnancy (n=63) and were compared with those from normal pregnant women (n=26) and from women with pruritus gravidarum (n=43). Intrahepatic cholestasis of pregnancy was associated with a predominant increase in cholic acid conjugated with taurine and glycine, from 24 weeks of pregnancy. Ursodeoxycholic acid (UDCA) treatment (> or =21 days, n=15) significantly reduced serum taurocholic and taurodeoxycholic acid concentrations (P<0.01). Bile acid profiles were similar in normal pregnancy and pregnancy associated with pruritus gravidarum. The bile acid profiles and effects of treatment by UDCA implicate a role for taurine-conjugated bile acids in the syndrome of intrahepatic cholestasis of pregnancy. [corrected] With regard to individual bile acid profiles, pruritus gravidarum is a disorder quite distinct from intrahepatic cholestasis of pregnancy.

  5. Intestinal transport and metabolism of bile acids

    PubMed Central

    Dawson, Paul A.; Karpen, Saul J.

    2015-01-01

    In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150

  6. Impact of Gut Microbiota-Mediated Bile Acid Metabolism on the Solubilization Capacity of Bile Salt Micelles and Drug Solubility.

    PubMed

    Enright, Elaine F; Joyce, Susan A; Gahan, Cormac G M; Griffin, Brendan T

    2017-04-03

    In recent years, the gut microbiome has gained increasing appreciation as a determinant of the health status of the human host. Bile salts that are secreted into the intestine may be biotransformed by enzymes produced by the gut bacteria. To date, bile acid research at the host-microbe interface has primarily been directed toward effects on host metabolism. The aim of this work was to investigate the effect of changes in gut microbial bile acid metabolism on the solubilization capacity of bile salt micelles and consequently intraluminal drug solubility. First, the impact of bile acid metabolism, mediated in vivo by the microbial enzymes bile salt hydrolase (BSH) and 7α-dehydroxylase, on drug solubility was assessed by comparing the solubilization capacity of (a) conjugated vs deconjugated and (b) primary vs secondary bile salts. A series of poorly water-soluble drugs (PWSDs) were selected as model solutes on the basis of an increased tendency to associate with bile micelles. Subsequently, PWSD solubility and dissolution was evaluated in conventional biorelevant simulated intestinal fluid containing host-derived bile acids, as well as in media modified to contain microbial bile acid metabolites. The findings suggest that deconjugation of the bile acid steroidal core, as dictated by BSH activity, influences micellar solubilization capacity for some PWSDs; however, these differences appear to be relatively minor. In contrast, the extent of bile acid hydroxylation, regulated by microbial 7α-dehydroxylase, was found to significantly affect the solubilization capacity of bile salt micelles for all nine drugs studied (p < 0.05). Subsequent investigations in biorelevant media containing either the trihydroxy bile salt sodium taurocholate (TCA) or the dihydroxy bile salt sodium taurodeoxycholate (TDCA) revealed altered drug solubility and dissolution. Observed differences in biorelevant media appeared to be both drug- and amphiphile (bile salt/lecithin) concentration

  7. The effect of bile, bile acids and detergents on calcium absorption in the chick

    PubMed Central

    Webling, D. D'A.; Holdsworth, E. S.

    1965-01-01

    1. Bile from rachitic or normal chicks causes an immediate increase in the intestinal absorption of soluble calcium in rachitic and vitamin D3-treated chicks as tested in vivo by intestinal-loop and oral-dosing methods. 2. This effect is apparently solely due to the taurine-conjugated bile acids present in the bile and is independent of the action of vitamin D. 3. Chick bile and bile acids can increase the solubility and the absorption of calcium presented as sparingly soluble calcium hydrogen phosphate. 4. In addition, bile is necessary to some extent at least for the intestinal absorption of vitamin D3 in the chick and this would indirectly enhance the absorption of calcium. 5. Thus bile is capable of a threefold action in the absorption of calcium in the chick. It is suggested that the direct action on sparingly soluble forms of calcium is of considerable physiological importance since most of the calcium in the normal bird's diet would be in this form. 6. Bile acids enhance the absorption of calcium in all regions of the small intestine of the chick. 7. Of a range of bile acids and detergents tested for enhancement of calcium absorption, various taurine-conjugated bile acids and sodium lauryl sulphate, an anionic detergent, are effective. A non-ionic detergent (Tween 80) and a cationic detergent (Zephiran) are without effect. 8. The ability of a substance to increase directly the intestinal absorption of soluble calcium appears to depend to some extent on an anionic detergent action, i.e. the ability to form a salt or complex soluble to some extent in both aqueous and lipid phases. 9. In chicks the immediate deposition of calcium (45Ca) in the bones closely reflects any increase in plasma calcium radioactivity regardless of the cause of the increase and regardless of the vitamin D3 status. Although sodium lauryl sulphate can increase markedly the calcium absorption from the gut and the immediate deposition in the bones it has no significant effect on rickets

  8. Individual bile acids have differential effects on bile acid signaling in mice

    SciTech Connect

    Song, Peizhen Rockwell, Cheryl E. Cui, Julia Yue Klaassen, Curtis D.

    2015-02-15

    Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In the liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and

  9. Bile acid malabsorption in inflammatory bowel disease.

    PubMed

    Vítek, Libor

    2015-02-01

    Bile acid malabsorption (BAM) is a common but an underestimated and often neglected sign of inflammatory bowel diseases (IBDs), especially those affecting the distal ileum. Clinically relevant BAM is most often present in patients with Crohn's ileitis and particularly in ileal-resected Crohn's disease patients. However, deterioration of bile acid (BA) metabolism occurs also in patients with IBD without ileal disease or in those in clinical remission, and the role of BAM in these patients is not well appreciated by clinicians. In a majority of cases, BAM in IBD is caused by impaired conjugated BA reabsorption, mediated by apical sodium/BA cotransporting polypeptide, localized at the luminal surface of the ileal enterocytes. As a consequence, numerous pathological sequelae may occur, including the malfunction of lipid digestion with clinical steatorrhea, impaired intestinal motility, and/or significant changes in the intestinal microflora environment. In this review, a detailed description of the pathophysiological mechanisms of BAM-related diarrhea is presented. Although BAM is present in a significant number of patients with Crohn's disease, its laboratory assessment is not routinely included in diagnostic workups, partially because of costs, logistical reasons, or the unavailability of the more sophisticated laboratory equipment needed. Simultaneously, novel findings related to the effects of the BA signaling pathways on immune functions (mediated through TGR5, cell membrane G protein-coupled BA receptor 1, nuclear farnesoid X receptor, nuclear pregnane X receptor, or nuclear vitamin D receptor) are discussed along with intestinal metabolism in its relationship to the pathogenesis of IBD.

  10. Genetics Home Reference: congenital bile acid synthesis defect type 2

    MedlinePlus

    ... bile acid synthesis defect type 2 congenital bile acid synthesis defect type 2 Printable PDF Open All ... view the expand/collapse boxes. Description Congenital bile acid synthesis defect type 2 is a disorder characterized ...

  11. Genetics Home Reference: congenital bile acid synthesis defect type 1

    MedlinePlus

    ... bile acid synthesis defect type 1 congenital bile acid synthesis defect type 1 Printable PDF Open All ... view the expand/collapse boxes. Description Congenital bile acid synthesis defect type 1 is a disorder characterized ...

  12. Circadian dysregulation disrupts bile acid homeostasis

    USDA-ARS?s Scientific Manuscript database

    Bile acids are potentially toxic compounds and their levels of hepatic production, uptake, and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis. Both restricted feedi...

  13. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    SciTech Connect

    Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.; Clarke, Joanna I.; Gholami, Parviz; Li, Feng; Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson; Fan, Fang; Jenkins, Rosalind E.; Park, B. Kevin; Hagenbuch, Bruno; Olyaee, Mojtaba; Jaeschke, Hartmut

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  14. Bile acids in radiation-induced diarrhea

    SciTech Connect

    Arlow, F.L.; Dekovich, A.A.; Priest, R.J.; Beher, W.T.

    1987-10-01

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style.

  15. Transport and biological activities of bile acids.

    PubMed

    Zwicker, Brittnee L; Agellon, Luis B

    2013-07-01

    Bile acids have emerged as important biological molecules that support the solubilization of various lipids and lipid-soluble compounds in the gut, and the regulation of gene expression and cellular function. Bile acids are synthesized from cholesterol in the liver and eventually released into the small intestine. The majority of bile acids are recovered in the distal end of the small intestine and then returned to the liver for reuse. The components of the mechanism responsible for the recycling of bile acids within the enterohepatic circulation have been identified whereas the mechanism for intracellular transport is less understood. Recently, the ileal lipid binding protein (ILBP; human gene symbol FABP6) was shown to be needed for the efficient transport of bile acids from the apical side to the basolateral side of enterocytes in the distal intestine. This review presents an overview of the transport of bile acids between the liver and the gut as well as within hepatocytes and enterocytes. A variety of pathologies is associated with the malfunction of the bile acid transport system.

  16. Purification and Characterization of Conjugated Bile Salt Hydrolase from Bifidobacterium longum BB536

    PubMed Central

    Grill, J.; Schneider, F.; Crociani, J.; Ballongue, J.

    1995-01-01

    Bifidobacterium species deconjugate taurocholic, taurodeoxycholic, taurochenodeoxycholic, glycocholic, glycodeoxycholic, and glycochenodeoxycholic acids. The enzyme level increases in the growth phase. No increase in activity is observed for the cytoplasmic enzyme after addition of conjugated bile acids to a stationary-phase culture. Conjugated bile salt hydrolase (BSH) was purified from Bifidobacterium longum BB536. Its apparent molecular mass in denaturing polyacrylamide gel electrophoresis was ca. 40,000 Da. The intact enzyme had a relative molecular weight of ca. 250,000 as determined by gel filtration chromatography, suggesting that the native BSH of B. longum is probably a hexamer. The purified enzyme is active towards both glycine and taurine conjugates of cholate, deoxycholate, and chenodeoxycholate. The pH optimum is in the range of 5.5 to 6.5. A loss of BSH activity is observed after incubation at temperatures higher than 42(deg)C; at 60(deg)C, 50% of the BSH activity is lost. The importance of free sulfhydryl groups at the enzyme active center is suggested. For B. longum BB536, no significant difference in the initial rate of deconjugation and enzymatic efficiency appears between bile salts. The enzymatic efficiency is higher for B. longum BB536 than for other genera. In this paper, a new method which permits a display of BSH activity directly on polyacrylamide gels is described; this method confirms the molecular weight obtained for B. longum BB536 BSH. PMID:16535071

  17. Quantitative profiling of bile acids in rat bile using ultrahigh-performance liquid chromatography-orbitrap mass spectrometry: Alteration of the bile acid composition with aging.

    PubMed

    Lee, Gakyung; Lee, Hyunbeom; Hong, Jongki; Lee, Soo Hyun; Jung, Byung Hwa

    2016-09-15

    Bile acids (BAs) play important roles in physiological functions, including the homeostasis of cholesterol and lipids and as ligands for G protein-coupled receptors (GPCRs). With the increasing importance of BAs, analytical methods for their quantification and screening have been developed. However, due to the diverse range and variety of BAs with different activation potency, a simple, effective, and sensitive method is required to screen BAs for accurate quantification and identification. This paper presents an application of ultrahigh-performance liquid chromatography-orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS) for profiling BAs in bile. Using this method, along with the accurate quantification of 19 targeted BAs, 22 unknown BAs were detected and characterized by their fragmentation patterns. The method is beneficial for screening most of the BAs (quantitatively and qualitatively) in rat bile with simple preparation in a single run. The sample dilution ranges of each BA were optimized depending on the concentration of BAs in the bile to obtain good peak separation and accurate data. The method validation was performed successfully using charcoal-treated bile and the intra and inter-day coefficients of variation were less than 20% for all BAs while the recovery were above 88.5% except for the lithocholic acid. The method was applied to profile the age-dependent changes in the contents of rat BAs. Through statistical analysis, we found that as the rats aged, unconjugated BAs and glycine-conjugated BAs decreased or were unaffected, while taurine-conjugated BAs were increased in general. Among the unknown BAs, 5 of the taurine-conjugated BAs increased, while a glycine-conjugated BA decreased, in agreement with the trends of the targeted BAs. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Synthesis of bile acid monosulphates by the isolated perfused rat kidney.

    PubMed Central

    Summerfield, J A; Gollan, J L; Billing, B H

    1976-01-01

    Perfusion of an isolated rat kidney with labelled bile acids, in a protein-free medium, resulted in the urinary excretion of the labelled bile acid, 3% being converted into polar metabolities in 1h. These metabolities were neither glycine nor taurine conjugates, nor bile acid glucuronides, and on solovolysis yielded the free bile acid. On t.l.c. the metabolite of [24-14C]lithocholic acid had the mobility of lithocholate 3-sulphate. The principal metabolite of [24-14C]chenodeoxycholic acid had the mobility of chenodeoxycholate 7-sulphate; trace amounts appeared as chenodeoxycholate 3-sulphate. [35S]sulphate was incorporated in chenodeoxycholic acid by the kidney, resulting in a similar pattern of sulphation. No disulphate salt of chenodeoxycholic acid was detected. These findings lend support to the hypothesis that renal synthesis may account for some of the bile acid sulphates present in urine in the cholestatic syndrome in man. PMID:942413

  19. [Analysis on replacement of traditional Chinese medicine bear bile with bile acids based on drug properties].

    PubMed

    Yuan, Bin; Ren, Ying-Long; Ma, Li; Gu, Hao; Wang, Yun; Qiao, Yan-Jiang

    2014-02-01

    To discuss the rationality of the clinical replacement of traditional Chinese medicine (TCM) bear bile with bile acid constituents, and analyze the difference between these constituents and bear bile in drug properties. Summarizing the drug properties of bear bile by reference to medical literatures for drug properties of TCM bear bile and Science of Traditional Chinese Medicine (China Press of Traditional Chinese Medicine, 2007). Analyzing and summarizing the pharmacological effects of main bile acid constituents according to relevant literatures for studies on pharmacological effects of main bile acid constituents in CNKI database. Predicating the drug properties of these bile acid constituents by using the drug property predication model established by the study group according the pharmacological effects of main bile acid constituents in the paper, and compare the prediction results with the drug properties of bear bile. Bile acid constituents in bear bile were mostly cold in property, bitter in taste, and the combination of their drug properties could reflect the combined drug properties of bear bile. All of these bile acid constituents in bear bile could show part of effects of bear bile. Attention shall be given to regulate the medication scheme in clinical application according to actual conditions.

  20. Hepatoprotective bile acid 'ursodeoxycholic acid (UDCA)' Property and difference as bile acids.

    PubMed

    Ishizaki, Kaoru; Imada, Teruaki; Tsurufuji, Makoto

    2005-10-01

    Ursodeoxycholic acid (UDCA) is a bile acid, which is present in human bile at a low concentration of only 3% of total bile acids. It is a 7beta-hydroxy epimer of the primary bile acid chenodeoxycholic acid (CDCA). UDCA is isolated from the Chinese drug 'Yutan' a powder preparation derived from the dried bile of adult bears. For centuries, Yutan has been used in the treatment of hepatobiliary disorders. In Japan, it has also been in widespread use as a folk medicine from the mid-Edo period. In Japan, not only basic studies such as isolation, crystallization, definition of the chemical structure and establishment of the synthesis of UDCA have been conducted but clinical studies have been conducted. First reports on the effects of UDCA in patients with liver diseases came from Japan as early as 1961. In the 1970s, the first prospective study of patients with gallbladder stones treated with UDCA demonstrating gallstone dissolution was reported. In late 1980s, a number of controlled trials on the use of UDCA in primary biliary cirrhosis (PBC) were reported. Since then, a variety of clinical studies have shown the beneficial effect of UDCA in liver disease worldwide. To date, UDCA is utilized for the treatment of PBC for which it is the only drug approved by the U.S. Food and Drug Administration (FDA). In recent years, with the advent of molecular tools, the mechanisms of action of bile acids and UDCA have been investigated, and various bioactivities and pharmacological effects have been revealed. Based on the results of these studies, the bioactive substances in bile acids that are involved in digestive absorption may play important roles in signal transduction pathways. Furthermore, the mechanisms of action of UDCA is evidently involved. We reveal the physicochemical properties of UDCA as bile acid and overview the established pharmacological effects of UDCA from its metabolism. Furthermore, we overview the current investigations into the mechanism of action of UDCA in

  1. Effect of sodium taurolithocholate on bile flow and bile acid excretion

    PubMed Central

    Javitt, Norman B.; Emerman, Sidney

    1968-01-01

    Sodium taurolithocholate and sodium taurocholenate were infused intravenously into rats and hamsters. Each bile acid salt was given alone or in combination with varying amounts of a primary bile salt, either sodium taurocholate or sodium taurochenodeoxycholate. Bile flow, total bile acid salt excretion, and the excretion of sodium taurolithocholate were quantitatively determined. In addition, mannitol excretion in bile was determined at various flow rates. Sodium taurolithocholate was found to be rapidly excreted in bile in concentrations greater than its aqueous solubility. When the endogenous excretion rate of bile salt or the infusion of primary bile salt was less than the molar amount of administered sodium taurolithocholate, cholestasis always occurred. Increasing molar amounts of primary bile salt prevented cholestasis and enhanced the excretion rate of sodium taurolithocholate. Infusion of sodium taurocholenate, a nonhemolytic bile salt, caused an effect on bile flow and bile acid salt excretion qualitatively similar to sodium taurolithocholate. The induction of cholestasis can be attributed to the physical properties of these poorly water soluble bile salts. The reduction in bile flow could not be shown to be related to water reabsorption from the biliary tree since there was no increase in mannitol concentration in bile during cholestasis. Reduction in bile flow may be related to obstruction of segments of the biliary tree by precipitates of sodium taurolithocholate and possibly to a decrease in water entry into the biliary tree during infusion of this bile acid salt. PMID:5645847

  2. Role of the Intestinal Bile Acid Transporters in Bile Acid and Drug Disposition

    PubMed Central

    Dawson, Paul A.

    2011-01-01

    Membrane transporters expressed by the hepatocyte and enterocyte play critical roles in maintaining the enterohepatic circulation of bile acids, an effective recycling and conservation mechanism that largely restricts these potentially cytotoxic detergents to the intestinal and hepatobiliary compartments. In doing so, the hepatic and enterocyte transport systems ensure a continuous supply of bile acids to be used repeatedly during the digestion of multiple meals throughout the day. Absorption of bile acids from the intestinal lumen and export into the portal circulation is mediated by a series of transporters expressed on the enterocyte apical and basolateral membranes. The ileal apical sodium-dependent bile acid cotransporter (abbreviated ASBT; gene symbol, SLC10A2) is responsible for the initial uptake of bile acids across the enterocyte brush border membrane. The bile acids are then efficiently shuttled across the cell and exported across the basolateral membrane by the heteromeric Organic Solute Transporter, OSTα-OSTβ. This chapter briefly reviews the tissue expression, physiology, genetics, pathophysiology, and transport properties of the ASBT and OSTα-OSTα. In addition, the chapter discusses the relationship between the intestinal bile acid transporters and drug metabolism, including development of ASBT inhibitors as novel hypocholesterolemic or hepatoprotective agents, prodrug targeting of the ASBT to increase oral bioavailability, and involvement of the intestinal bile acid transporters in drug absorption and drug-drug interactions. PMID:21103970

  3. Differences in phosphatidylcholine and bile acids in bile from Egyptian and UK patients with and without cholangiocarcinoma.

    PubMed

    Hashim Abdalla, Mohamed S; Taylor-Robinson, Simon D; Sharif, Amar W; Williams, Horace R T; Crossey, Mary M E; Badra, Gamal A; Thillainayagam, Andrew V; Bansi, Devinder S; Thomas, Howard C; Waked, Imam A; Khan, Shahid A

    2011-06-01

    Cholangiocarcinoma (CC) is a fatal malignancy, the incidence of which is increasing worldwide, with substantial regional variation. Current diagnostic techniques to distinguish benign from malignant biliary disease are unsatisfactory. Metabolic profiling of bile may help to differentiate benign from malignant disease. No previous studies have compared the metabolic profiles of bile from two geographically and racially distinct groups of CC patients. This study aimed to compare metabolic profiles of bile, using in vitro proton magnetic resonance spectroscopy, from CC patients from Egypt and the UK, and from patients with CC and patients with non-malignant biliary disease. A total of 29 bile samples, collected at cholangiography, were analysed using an 11.7-T system. Samples were from eight CC patients in either Egypt (n = 4) or the UK (n = 4) and 21 patients with benign biliary disease (choledocholithiasis [n = 8], sphincter of Oddi dysfunction [n = 8], primary sclerosing cholangitis [n = 5]). Bile phosphatidylcholine (PtC) was significantly reduced in CC patients. Egyptian CC patients had significantly lower biliary PtC levels compared with UK patients. Taurine- and glycine-conjugated bile acids (H-26 and H-25 protons, respectively) were significantly elevated in bile from patients with CC compared with bile from patients with benign diseases (P = 0.013 and P < 0.01, respectively). Biliary PtC levels potentially differentiate CC from benign biliary disease. Reduced biliary PtC in Egyptian compared with UK patients may reflect underlying carcinogenic mechanisms. © 2011 International Hepato-Pancreato-Biliary Association.

  4. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD.

    PubMed

    Jiao, Na; Baker, Susan S; Chapa-Rodriguez, Adrian; Liu, Wensheng; Nugent, Colleen A; Tsompana, Maria; Mastrandrea, Lucy; Buck, Michael J; Baker, Robert D; Genco, Robert J; Zhu, Ruixin; Zhu, Lixin

    2017-08-03

    Bile acids are regulators of lipid and glucose metabolism, and modulate inflammation in the liver and other tissues. Primary bile acids such as cholic acid and chenodeoxycholic acid (CDCA) are produced in the liver, and converted into secondary bile acids such as deoxycholic acid (DCA) and lithocholic acid by gut microbiota. Here we investigated the possible roles of bile acids in non-alcoholic fatty liver disease (NAFLD) pathogenesis and the impact of the gut microbiome on bile acid signalling in NAFLD. Serum bile acid levels and fibroblast growth factor 19 (FGF19), liver gene expression profiles and gut microbiome compositions were determined in patients with NAFLD, high-fat diet-fed rats and their controls. Serum concentrations of primary and secondary bile acids were increased in patients with NAFLD. In per cent, the farnesoid X receptor (FXR) antagonistic DCA was increased, while the agonistic CDCA was decreased in NAFLD. Increased mRNA expression for cytochrome P450 7A1, Na(+)-taurocholate cotransporting polypeptide and paraoxonase 1, no change in mRNA expression for small heterodimer partner and bile salt export pump, and reduced serum FGF19 were evidence of impaired FXR and fibroblast growth factor receptor 4 (FGFR4)-mediated signalling in NAFLD. Taurine and glycine metabolising bacteria were increased in the gut of patients with NAFLD, reflecting increased secondary bile acid production. Similar changes in liver gene expression and the gut microbiome were observed in high-fat diet-fed rats. The serum bile acid profile, the hepatic gene expression pattern and the gut microbiome composition consistently support an elevated bile acid production in NAFLD. The increased proportion of FXR antagonistic bile acid explains, at least in part, the suppression of hepatic FXR-mediated and FGFR4-mediated signalling. Our study suggests that future NAFLD intervention may target the components of FXR signalling, including the bile acid converting gut microbiome. © Article

  5. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats.

    PubMed

    Murakami, Shigeru; Fujita, Michiko; Nakamura, Masakazu; Sakono, Masanobu; Nishizono, Shoko; Sato, Masao; Imaizumi, Katsumi; Mori, Mari; Fukuda, Nobuhiro

    2016-03-01

    This study was designed to investigate the effects of dietary taurine on cholesterol metabolism in high-cholesterol-fed rats. Male Sprague-Dawley rats were randomly divided into two dietary groups (n = 6 in each group): a high-cholesterol diet containing 0.5% cholesterol and 0.15% sodium cholate, and a high-cholesterol diet with 5% (w/w) taurine. The experimental diets were given for 2 weeks. Taurine supplementation reduced the serum and hepatic cholesterol levels by 37% and 32%, respectively. Faecal excretion of bile acids was significantly increased in taurine-treated rats, compared with untreated rats. Biliary bile acid concentrations were also increased by taurine. Taurine supplementation increased taurine-conjugated bile acids by 61% and decreased glycine-conjugated bile acids by 53%, resulting in a significant decrease in the glycine/taurine (G/T) ratio. Among the taurine-conjugated bile acids, cholic acid and deoxycholic acid were significantly increased. In the liver, taurine supplementation increased the mRNA expression and enzymatic activity of hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme for bile acid synthesis, by three- and two-fold, respectively. Taurine also decreased the enzymatic activity of acyl-CoA:cholesterol acyltransferase (ACAT) and microsomal triglyceride transfer protein (MTP). These observations suggest that taurine supplementation increases the synthesis and excretion of taurine-conjugated bile acids and stimulates the catabolism of cholesterol to bile acid by elevating the expression and activity of CYP7A1. This may reduce cholesterol esterification and lipoprotein assembly for very low density lipoprotein (VLDL) secretion, leading to reductions in the serum and hepatic cholesterol levels. © 2016 John Wiley & Sons Australia, Ltd.

  6. Regulation of bile acid synthesis in rat hepatocyte monolayer cultures

    SciTech Connect

    Kubaska, W.M.

    1986-01-01

    Primary hepatocyte monolayer cultures (PHC) were prepared and incubated in serum free media. Cells from a cholestyramine fed rat converted exogenous (/sup 14/C)-cholesterol into (/sup 14/C)-bile acids at a 3-fold greater rate than rats fed a normal diet. PHC synthesize bile acids (BA) at a rate of approximately 0.06 ..mu..g/mg protein/h. The major bile acid composition, as determined by GLC, was ..beta..-muricholic acid (BMC) and cholic acid (CA) in a 3:1 ratio, respectively. PHC rapidly converted free BA and BA intermediates into taurine conjugated trihydroxy-BA up to 87h after plating. 3-Hydroxy-3-methylglutaryl-coenzyme A-reductase activity assayed in microsomes prepared from PHC, decreased during the initial 48h, then remained constant. Cholesterol 7..cap alpha..-hydroxylase activity decreased during the initial 48h, then increased during the next 48h. This occurred while whole cells produced BA at a linear rate. The effect of individual BA on bile acid synthesis (BAS) was also studied. Relative rates of BAS were measured as the conversion of (/sup 14/C)-cholesterol into (/sup 14/C)-BA. BA combinations were tested in order to simulate the composition of the enterohepatic circulation. The addition of TCA (525 ..mu..M) plus TCDCA (80..mu..M), in concentrations which greatly exceed the concentration of BA (60..mu..M) in rate portal blood, failed to inhibit BAS. BA plus phospholipid and/or cholesterol also did not inhibit BAS. Surprisingly, crude rat bile with a final concentration comparable to those in the synthetic mix inhibited (/sup 14/C)-cholesterol conversion into (/sup 14/C)-BA.

  7. Specific bile acids inhibit hepatic fatty acid uptake

    PubMed Central

    Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas

    2012-01-01

    Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947

  8. Developmental pattern of 3-oxo-Δ4 bile acids in neonatal bile acid metabolism

    PubMed Central

    Inoue, T.; Kimura, A.; Aoki, K.; Tohma, M.; Kato, H.

    1997-01-01

    AIMS—To investigate whether a fetal pathway of bile acid synthesis persists in neonates and infants.
METHODS—3-oxo-Δ4 bile acids were determined qualitatively and quantitatively in the urine, meconium, and faeces of healthy neonates and infants, using gas chromatography-mass spectrometry.
RESULTS—The mean percentage of 3-oxo-Δ4 bile acids in total bile acids in urine at birth was significantly higher than that at 3 or 7 days, and at 1 or 3 months of age. The concentration of this component in meconium was significantly higher than that in faeces at 7 days and at 1 or 3 months of age.
CONCLUSIONS—The presence of large amounts of urinary 3-oxo-Δ4 bile acids may indicate immaturity in the activity of hepatic 3-oxo-Δ4-steroid 5β-reductase in the first week of postnatal life. Large amounts of this component in meconium may be due to the ingestion of amniotic fluid by the fetus during pregnancy.

 Keywords: ketonic bile acid; 3-oxo-Δ4 bile acid; 3-oxo-Δ4-steroid 5β-reductase; meconium; gas chromatography-mass spectrometry PMID:9279184

  9. Gut microbiota, cirrhosis and alcohol regulate bile acid metabolism in the gut

    PubMed Central

    Ridlon, Jason M.; Kang, Dae-Joong; Hylemon, Phillip B.; Bajaj, Jasmohan S

    2015-01-01

    The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of FXR in intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic and disease progression in cirrhosis, metabolic syndrome and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa and increasing production of deoxycholic acid (DCA). Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide insight into the pathogenesis

  10. Gut microbiota, cirrhosis, and alcohol regulate bile acid metabolism in the gut.

    PubMed

    Ridlon, Jason M; Kang, Dae-Joong; Hylemon, Phillip B; Bajaj, Jasmohan S

    2015-01-01

    The understanding of the complex role of the bile acid-gut microbiome axis in health and disease processes is evolving rapidly. Our focus revolves around the interaction of the gut microbiota with liver diseases, especially cirrhosis. The bile acid pool size has recently been shown to be a function of microbial metabolism of bile acid, and regulation of the microbiota by bile acids is important in the development and progression of several liver diseases. Humans produce a large, conjugated hydrophilic bile acid pool, maintained through positive-feedback antagonism of farnesoid X receptor (FXR) in the intestine and liver. Microbes use bile acids, and via FXR signaling this results in a smaller, unconjugated hydrophobic bile acid pool. This equilibrium is critical to maintain health. The challenge is to examine the manifold functions of gut bile acids as modulators of antibiotic, probiotic, and disease progression in cirrhosis, metabolic syndrome, and alcohol use. Recent studies have shown potential mechanisms explaining how perturbations in the microbiome affect bile acid pool size and composition. With advancing liver disease and cirrhosis, there is dysbiosis in the fecal, ileal, and colonic mucosa, in addition to a decrease in bile acid concentration in the intestine due to the liver problems. This results in a dramatic shift toward the Firmicutes, particularly Clostridium cluster XIVa, and increasing production of deoxycholic acid. Alcohol intake speeds up these processes in the subjects with and without cirrhosis without significant FXR feedback. Taken together, these pathways can impact intestinal and systemic inflammation while worsening dysbiosis. The interaction between bile acids, alcohol, cirrhosis, and dysbiosis is an important relationship that influences intestinal and systemic inflammation, which in turn determines progression of the overall disease process. These interactions and the impact of commonly used therapies for liver disease can provide

  11. The protective effect of hydrophilic bile acids on bile acid hepatotoxicity in the rat.

    PubMed

    Kitani, K

    1995-09-01

    Taurochenodeoxycholate (TCDC) (or taurocholate, TC) excessively i.v. infused in rats causes an acute cholestasis accompanied by an excessive excretion of various proteins (lactate dehydrogenase, LDH, albumin, etc.) into the bile. This cholestasis was initially found to be effectively prevented by a simultaneous infusion of tauroursodeoxycholate (TUDC). Later this property was found to be shared by glycoursodeoxycholate (GUDC) and tauro (and glyco) alpha and beta-muricholate (MC) all known to be relatively hydrophilic. The extent of the preventative effect appears to be comparable for taurine and glycine conjugates of all three bile salts (UDC, alpha-MC and beta-MC). An albumin leakage into the bile enhanced by TCDC infusion appears to be mainly from albumin in the serum, since i.v. injected 125I-human serum albumin excretion into the bile paralled the rat albumin excretion. Despite very drastic biochemical abnormalities induced by TCDC infusion, morphological correlates in the liver are scarce both from light and electron microscopic examinations, the only correlate with biochemical parameters being a sporadic necrosis of hepatocytes, especially in the periportal areas. Although there is not sufficient morphological evidence, it appears that TCDC infusion causes a direct communication between serum and bile leading to a rapid leakage of large molecules such as albumin and even gamma-globulin. Conjugates of hydrophilic bile salts such as UDC, alpha-MC and beta-MC efficiently prevent such bile abnormalities but their hydrophilicity is not the sole determinant of this property since a more hydrophilic bile salt such as taurodehydrocholate does not possess this property. The underlying mechanism(s) for this protective property remains uncertain.

  12. Effect of coprophagy on bile acid metabolism in the rabbit.

    PubMed

    Yahiro, K; Setoguchi, T; Katsuki, T

    1979-12-01

    The effect of coprophagy on the 7 alpha-dehydroxylation of biliary bile acids was studied in the rabbit. Bile acid composition of bile and intestinal contents was analyzed by gas-liquid chromatography and thin layer chromatography. Biliary bile acid composition of normal rabbits (n = 5) was: deoxycholic acid, 95.3 +/- 1.0SE % and cholic acid, 2.3 +/- 1.1SE %. When coprophagy was prevented, significant alterations were observed in biliary bile acid composition, including a considerable decrease in deoxycholic acid (82.5 +/- 2.8SE %, p less than 0.01) and a marked increase in cholic acid (15.2 +/- 3.0SE %, p less than 0.002). These results indicate that coprophagy is a factor causing an increase of the 7 alpha-dehydroxylated bile acid, deoxycholic acid (and lithocholic acid when the animals were fed chenodeoxycholic acid) in rabbit bile.

  13. Facile synthesis of 5β-cholane- sym-triazine conjugates starting from metformin and bile acid methyl esters: Liquid and solid state NMR characterization and single crystal structure of lithocholyl triazine

    NASA Astrophysics Data System (ADS)

    Ikonen, Satu; Takala, Salla; Nonappa; Kolehmainen, Erkki

    2009-11-01

    Four bile acid-triazine conjugates: N2', N2'-dimethyl-6'-(3α-hydroxy-5β-24-norcholyl)-1',3',5'-triazine-2',4'-diamine (lithocholyl triazine, 4a), N2', N2'-dimethyl-6'-(3α,7α-dihydroxy-5β-24-norcholyl)-1',3',5'-triazine-2',4'-diamine (chenodeoxycholyl triazine, 4b), N2', N2'-dimethyl-6'6'-(3α,12α-dihydroxy-5β-24-norcholyl)-1',3',5'-triazine-2',4'-diamine (deoxycholyl triazine) ( 4c), and N2', N2'-dimethyl-6'-(3α,7α,12α-trihydroxy-5β-24-norcholyl)-1',3',5'-triazine-2',4'-diamine (cholyl triazine) ( 4d) have been prepared and characterized by liquid and solid state NMR. An improved synthetic method produced better yields and an easier purification procedure for 4d than reported in the literature. Single crystal structure of 4a is reported: empirical formula C 28H 47N 5O, monoclinic P2 1 space group with unit cell dimensions, a 18.7135(5) Å, b 7.4510(2) Å, c 19.3073(5) Å, β 95.7290(10)°, volume 2678.65(12) Å 3.

  14. Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades

    PubMed Central

    Hofmann, Alan F.; Hagey, Lee R.

    2014-01-01

    During the last 80 years there have been extraordinary advances in our knowledge of the chemistry and biology of bile acids. We present here a brief history of the major achievements as we perceive them. Bernal, a physicist, determined the X-ray structure of cholesterol crystals, and his data together with the vast chemical studies of Wieland and Windaus enabled the correct structure of the steroid nucleus to be deduced. Today, C24 and C27 bile acids together with C27 bile alcohols constitute most of the bile acid “family”. Patterns of bile acid hydroxylation and conjugation are summarized. Bile acid measurement encompasses the techniques of GC, HPLC, and MS, as well as enzymatic, bioluminescent, and competitive binding methods. The enterohepatic circulation of bile acids results from vectorial transport of bile acids by the ileal enterocyte and hepatocyte; the key transporters have been cloned. Bile acids are amphipathic, self-associate in solution, and form mixed micelles with polar lipids, phosphatidylcholine in bile, and fatty acids in intestinal content during triglyceride digestion. The rise and decline of dissolution of cholesterol gallstones by the ingestion of 3,7-dihydroxy bile acids is chronicled. Scientists from throughout the world have contributed to these achievements. PMID:24838141

  15. The gut microbiome, probiotics, bile acids axis, and human health.

    PubMed

    Jones, Mitchell Lawrence; Tomaro-Duchesneau, Catherine; Prakash, Satya

    2014-06-01

    The human gut microbiome produces potent ligands to bile acid receptors, and probiotics could act as therapeutics of bile acid dysmetabolism. A recent study in Cell Reports demonstrates that probiotic VSL#3 affects bile acid deconjugation and excretion, as well as the gut-liver FXR-FGF15 axis.

  16. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity

    PubMed Central

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury. PMID:26208104

  17. Comparison of Bile Acids and Acetaminophen Protein Adducts in Children and Adolescents with Acetaminophen Toxicity.

    PubMed

    James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard

    2015-01-01

    Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.

  18. Conjugated Fatty Acid Synthesis

    PubMed Central

    Rawat, Richa; Yu, Xiao-Hong; Sweet, Marie; Shanklin, John

    2012-01-01

    Conjugated linolenic acids (CLNs), 18:3 Δ9,11,13, lack the methylene groups found between the double bonds of linolenic acid (18:3 Δ9,12,15). CLNs are produced by conjugase enzymes that are homologs of the oleate desaturases FAD2. The goal of this study was to map the domain(s) within the Momordica charantia conjugase (FADX) responsible for CLN formation. To achieve this, a series of Momordica FADX-Arabidopsis FAD2 chimeras were expressed in the Arabidopsis fad3fae1 mutant, and the transformed seeds were analyzed for the accumulation of CLN. These experiments identified helix 2 and the first histidine box as a determinant of conjugase product partitioning into punicic acid (18:3 Δ9cis,11trans,13cis) or α-eleostearic acid (18:3 Δ9cis,11trans,13trans). This was confirmed by analysis of a FADX mutant containing six substitutions in which the sequence of helix 2 and first histidine box was converted to that of FAD2. Each of the six FAD2 substitutions was individually converted back to the FADX equivalent identifying residues 111 and 115, adjacent to the first histidine box, as key determinants of conjugase product partitioning. Additionally, expression of FADX G111V and FADX G111V/D115E resulted in an approximate doubling of eleostearic acid accumulation to 20.4% and 21.2%, respectively, compared with 9.9% upon expression of the native Momordica FADX. Like the Momordica conjugase, FADX G111V and FADX D115E produced predominantly α-eleostearic acid and little punicic acid, but the FADX G111V/D115E double mutant produced approximately equal amounts of α-eleostearic acid and its isomer, punicic acid, implicating an interactive effect of residues 111 and 115 in punicic acid formation. PMID:22451660

  19. Herbert Falk: a vital force in the renaissance of bile acid research and bile acid therapy.

    PubMed

    Hofmann, Alan F

    2011-01-01

    Herbert Falk died on August 8, 2008, after a long illness. It was his vision that initiated the Bile Acid Meetings and brought to market chenodeoxycholic acid and ursodeoxycholic acid for the dissolution of cholesterol gallstones as well as the successful treatment of cholestatic liver disease. The 1st Bile Acid Meeting was a small workshop held at the University Hospital of Freiburg in 1970. Great interest in the topic was evident at that small meeting and led to a larger meeting in 1972, whose scope included both the basic and clinical aspects of bile acids. These meetings have continued at biennial intervals, the 2010 meeting being the 21st. The program has always included discussions of the most fundamental aspects of bile acid biosynthesis and metabolism as well as clinical applications of bile acid therapy. The meetings featured brief presentations, ample time for discussion, and imaginative social programs. They have always been flawlessly organized. Social programs usually included a hike through the beautiful countryside of the Black Forest followed by dinner in a rustic restaurant. Herbert Falk took part in these programs, personally welcoming every participant. In the warm glow of the 'Badische' hospitality, friendships developed, and scientific collaborations were often arranged. From a scientific standpoint, there has been enormous progress in understanding the chemistry and biology of bile acids. Herbert Falk established the Windaus Prize in 1978, and the prize has been given to individuals whose contributions moved the field forward. These bile acid meetings have been marvelous, rewarding experiences. We must all be grateful to Herbert Falk's vision in establishing the Falk Foundation that has so generously sponsored these meetings. We also express our gratitude to his widow, Ursula Falk, who continues this worthy tradition.

  20. Characterization of bile acids and fatty acids from ox bile in oil paintings by gas chromatography-mass spectrometry.

    PubMed

    Casas-Catalán, M J; Doménech-Carbó, M T; Mateo-Castro, R; Gimeno-Adelantado, J V; Bosch-Reig, F

    2004-02-06

    Characterization of ox bile, traditionally used in painting, is of interest in the fields of archaeometry and conservation and restoration of works of art. Bile acids, fatty acids (F), and cholesterol found in ox bile have been identified using a derivatization method that combines the formation of ethyl esters from the carboxylic groups and the trimethylsilyl ethers from hydroxyl groups. This method of analysis is consistent with these others proposed by the authors to analyze drying oils, proteins, and diterpenic resins usually used as binders and varnishes by the painters. Bile acids from binary samples such as animal glue/ox bile, casein/ox bile and Arabic gum/ox bile have been successfully analyzed using the proposed method. Finally, a method of analysis of mixtures of drying oil and ox bile has been also proposed attempting to quantitatively characterize samples in which ox bile was added to the drying oil for increasing the surfactant properties.

  1. Bile Acids Act as Soluble Host Restriction Factors Limiting Cytomegalovirus Replication in Hepatocytes

    PubMed Central

    Schupp, Anna-Kathrin; Trilling, Mirko; Rattay, Stephanie; Le-Trilling, Vu Thuy Khanh; Haselow, Katrin; Stindt, Jan; Zimmermann, Albert; Häussinger, Dieter

    2016-01-01

    ABSTRACT The liver constitutes a prime site of cytomegalovirus (CMV) replication and latency. Hepatocytes produce, secrete, and recycle a chemically diverse set of bile acids, with the result that interactions between bile acids and cytomegalovirus inevitably occur. Here we determined the impact of naturally occurring bile acids on mouse CMV (MCMV) replication. In primary mouse hepatocytes, physiological concentrations of taurochenodeoxycholic acid (TCDC), glycochenodeoxycholic acid, and to a lesser extent taurocholic acid significantly reduced MCMV-induced gene expression and diminished the generation of virus progeny, while several other bile acids did not exert antiviral effects. The anticytomegalovirus activity required active import of bile acids via the sodium-taurocholate-cotransporting polypeptide (NTCP) and was consistently observed in hepatocytes but not in fibroblasts. Under conditions in which alpha interferon (IFN-α) lacks antiviral activity, physiological TCDC concentrations were similarly effective as IFN-γ. A detailed investigation of distinct steps of the viral life cycle revealed that TCDC deregulates viral transcription and diminishes global translation in infected cells. IMPORTANCE Cytomegaloviruses are members of the Betaherpesvirinae subfamily. Primary infection leads to latency, from which cytomegaloviruses can reactivate under immunocompromised conditions and cause severe disease manifestations, including hepatitis. The present study describes an unanticipated antiviral activity of conjugated bile acids on MCMV replication in hepatocytes. Bile acids negatively influence viral transcription and exhibit a global effect on translation. Our data identify bile acids as site-specific soluble host restriction factors against MCMV, which may allow rational design of anticytomegalovirus drugs using bile acids as lead compounds. PMID:27170759

  2. Bile acid signaling in metabolic disease and drug therapy.

    PubMed

    Li, Tiangang; Chiang, John Y L

    2014-10-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid-activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein-coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver.

  3. Beyond intestinal soap--bile acids in metabolic control.

    PubMed

    Kuipers, Folkert; Bloks, Vincent W; Groen, Albert K

    2014-08-01

    Over the past decade, it has become apparent that bile acids are involved in a host of activities beyond their classic functions in bile formation and fat absorption. The identification of the farnesoid X receptor (FXR) as a nuclear receptor directly activated by bile acids and the discovery that bile acids are also ligands for the membrane-bound, G-protein coupled bile acid receptor 1 (also known as TGR5) have opened new avenues of research. Both FXR and TGR5 regulate various elements of glucose, lipid and energy metabolism. Consequently, a picture has emerged of bile acids acting as modulators of (postprandial) metabolism. Therefore, strategies that interfere with either bile acid metabolism or signalling cascades mediated by bile acids may represent novel therapeutic approaches for metabolic diseases. Synthetic modulators of FXR have been designed and tested, primarily in animal models. Furthermore, the use of bile acid sequestrants to reduce plasma cholesterol levels has unexpected benefits. For example, treatment of patients with type 2 diabetes mellitus (T2DM) with sequestrants causes substantial reductions in plasma levels of glucose and HbA1c. This Review aims to provide an overview of the molecular mechanisms by which bile acids modulate glucose and energy metabolism, particularly focusing on the glucose-lowering actions of bile acid sequestrants in insulin resistant states and T2DM.

  4. Bile acids and intestinal microbiota in autoimmune cholestatic liver diseases.

    PubMed

    Li, You; Tang, Ruqi; Leung, Patrick S C; Gershwin, M Eric; Ma, Xiong

    2017-09-01

    Autoimmune cholestatic liver diseases, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), are manifested as an impairment of normal bile flow and excessive accumulation of potentially toxic bile acids. Endogenous bile acids are involved in the pathogenesis and progression of cholestasis. Consequently, chronic cholestasis affects the expression of bile acid transporters and nuclear receptors, and results in liver injury. Several lines of evidence suggest that intestinal microbiota plays an important role in the etiopathogenesis of cholestatic liver diseases by regulating metabolism and immune responses. However, progression of the disease may also affect the composition of gut microbiota, which in turn exacerbates the progression of cholestasis. In addition, the interaction between intestinal microbiota and bile acids is not unidirectional. Bile acids can shape the gut microbiota community, and in turn, intestinal microbes are able to alter bile acid pool. In general, gut microbiota actively communicates with bile acids, and together play an important role in the pathogenesis of PBC and PSC. Targeting the link between bile acids and intestinal microbiota offers exciting new perspectives for the treatment of those cholestatic liver diseases. This review highlights current understanding of the interactions between bile acids and intestinal microbiota and their roles in autoimmune cholestatic liver diseases. Further, we postulate a bile acids-intestinal microbiota-cholestasis triangle in the pathogenesis of autoimmune cholestatic liver diseases and potential therapeutic strategies by targeting this triangle. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Bilirubin conjugates in bile of man and rat in the normal state and in liver disease

    PubMed Central

    Fevery, J.; Damme, B. Van; Michiels, R.; Groote, J. De; Heirwegh, K. P. M.

    1972-01-01

    Conjugates of bilirubin were studied in normal bile of man and rat, and in bile of liver patients. In general human bile was obtained by duodenal intubation. In addition T-tube bile was examined in patients operated on for mechanical obstruction. The bile pigment compositions of duodenal and T-tube bile were similar in two patients where comparison was possible. Obstruction of the bile duct in rats was used as an animal model for obstructive jaundice. Diazotized ethyl anthranilate was used for determination of total conjugated bile pigment and for thin-layer chromatography (t.l.c.) analysis of the derived azopigments. The available t.l.c. procedures are versatile and allow rapid and quantitative analysis. A variety of conjugated azopigments can be distinguished. With chloroform, negligible amounts of unconjugated bilirubin are extracted from bile of man. Therefore, the percentage of monoconjugated bile pigments present in the initial bile sample can be calculated from the percentage of azodipyrrole found after diazotization. Normal bile from man and rat yields similar azopigment patterns. The dominant component is azopigment-δ (azodipyrrole β-D-monoglucuronoside). Small amounts of azopigments with complex conjugating structures (γ-azopigments) are present in both cases. Human bile further yields small amounts of azopigments containing xylose or glucose (called azopigments-α2 and -α3, respectively). Monoconjugated bilirubin (estimated from the percentage of azodipyrrole) amounts of 22% of total bile pigments in human bile and to 39% in murine bile. In both, the bulk of bile pigment is bilirubin diglucuronoside. From bile of patients with acquired liver diseases a new azopigment group (β-azopigment) was derived. The γ-azopigment group was increased; the δ-azopigment group (containing azodipyrrole β-D-monoglucuronoside) was decreased. No differentiation was possible between intra- and extrahepatic cholestasis. The percentage of β-azopigment showed a positive

  6. Obesity diabetes and the role of bile acids in metabolism

    PubMed Central

    Owens, Daphne

    2016-01-01

    Abstract Bile acids have many activities over and above their primary function in aiding absorption of fat and fat soluble vitamins. Bile acids are synthesized from cholesterol, and thus are involved in cholesterol homeostasis. Bile acids stimulate glucagon-like peptide 1 (GLP1) production in the distal small bowel and colon, stimulating insulin secretion, and therefore, are involved in carbohydrate and fat metabolism. Bile acids through their insulin sensitising effect play a part in insulin resistance and type 2 diabetes. Bile acid metabolism is altered in obesity and diabetes. Both dietary restriction and weight loss due to bariatric surgery, alter the lipid carbohydrate and bile acid metabolism. Recent research suggests that the forkhead transcription factor FOXO is a central regulator of bile, lipid, and carbohydrate metabolism, but conflicting studies mean that our understanding of the complexity is not yet complete. PMID:28191525

  7. Bile Acid Signaling in Metabolic Disease and Drug Therapy

    PubMed Central

    Li, Tiangang

    2014-01-01

    Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467

  8. The ulcerogenic effect of bile and bile acid in rats during immobilization stress

    NASA Technical Reports Server (NTRS)

    Weisener, J.

    1980-01-01

    The effect of different concentrations of oxen bile and individual bile acids or their sodium salts on the gastric mucosa of rats was investigated in combination with immobilization stress. A statistically significant higher frequency of ulcers was only determined in the application of 10% oxen bile. Dosages on 10% sodium glycocholic acid demonstrated strong toxic damage with atonic dilation of the stomach and extensive mucosal bleeding.

  9. /sup 13/C NMR spectroscopy in the analysis of conjugate metabolites in the bile of fish exposed to petroleum

    SciTech Connect

    Hellou, J.; Banoub, J.H.; Payne, J.F.

    1986-01-01

    The first natural abundance /sup 13/C NMR investigation of a complex mixture of conjugate metabolites obtained from the gall bladder bile of fish exposed to hydrocarbons is presented. Cunners were exposed to water accommodated No. 2 fuel oil containing about 68% saturates and 22% aromatics. Spectral analysis indicated that the hydrocarbon derivatives were present predominantly as ..beta..-glucuronides, with the oxygen at carbon-1 of glucuronic acid preferentially attached to an aliphatic carbon. The conjugate metabolites were enriched in aromatic-type carbons when compared to the fuel oil or the aromatic fraction of oil.

  10. The reversed feto-maternal bile acid gradient in intrahepatic cholestasis of pregnancy is corrected by ursodeoxycholic acid.

    PubMed

    Geenes, Victoria; Lövgren-Sandblom, Anita; Benthin, Lisbet; Lawrance, Dominic; Chambers, Jenny; Gurung, Vinita; Thornton, Jim; Chappell, Lucy; Khan, Erum; Dixon, Peter; Marschall, Hanns-Ulrich; Williamson, Catherine

    2014-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA). This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18), UDCA-treated ICP (n = 46) and uncomplicated pregnancy (n = 15) cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = <0.0001 and <0.05, respectively), predominantly due to increased levels of conjugated cholic and chenodeoxycholic acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = <0.0001), thereby reducing the feto-maternal transplacental gradient. UDCA-treatment does not cause a clinically important increase in lithocholic acid (LCA) concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels.

  11. The Reversed Feto-Maternal Bile Acid Gradient in Intrahepatic Cholestasis of Pregnancy Is Corrected by Ursodeoxycholic Acid

    PubMed Central

    Geenes, Victoria; Lövgren-Sandblom, Anita; Benthin, Lisbet; Lawrance, Dominic; Chambers, Jenny; Gurung, Vinita; Thornton, Jim; Chappell, Lucy; Khan, Erum; Dixon, Peter; Marschall, Hanns-Ulrich; Williamson, Catherine

    2014-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA). This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18), UDCA-treated ICP (n = 46) and uncomplicated pregnancy (n = 15) cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = <0.0001 and <0.05, respectively), predominantly due to increased levels of conjugated cholic and chenodeoxycholic acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = <0.0001), thereby reducing the feto-maternal transplacental gradient. UDCA-treatment does not cause a clinically important increase in lithocholic acid (LCA) concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels. PMID:24421907

  12. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione.

    PubMed

    Rius, Maria; Hummel-Eisenbeiss, Johanna; Hofmann, Alan F; Keppler, Dietrich

    2006-04-01

    The multidrug resistance protein ABCC4 (MRP4), a member of the ATP-binding cassette superfamily, mediates ATP-dependent unidirectional efflux of organic anions out of cells. Previous studies showed that human ABCC4 is localized to the sinusoidal membrane of hepatocytes and mediates, among other substrates, the cotransport of reduced glutathione (GSH) with bile acids. In the present study, using inside-out membrane vesicles, we demonstrated that human ABCC4 in the presence of physiological concentrations of GSH has a high affinity for the taurine and glycine conjugates of the common natural bile acids as well as the unconjugated bile acid cholate. Chenodeoxycholyltaurine and chenodeoxycholylglycine were the GSH cosubstrates with the highest affinities for ABCC4, with K(m) values of 3.6 and 5.9 microM, respectively. Ursodeoxycholyltaurine and ursodeoxycholylglycine were cotransported together with GSH by ABCC4 with K(m) values of 7.8 and 12.5 microM, respectively, but no transport of ursodeoxycholate and deoxycholate was observed. The simultaneous transport of labeled GSH and cholyltaurine or cholylglycine was demonstrated in double-labeled cotransport experiments with a bile acid-to-GSH ratio of approximately 1:22. K(m) values of the bile acids for ABCC4 were in a range similar to those reported for the canalicular bile salt export pump ABCB11. Under physiological conditions, the sinusoidal ABCC4 may compete with canalicular ABCB11 for bile acids and thereby play a key role in determining the hepatocyte concentration of bile acids. In cholestatic conditions, ABCC4 may become a key pathway for efflux of bile acids from hepatocytes into blood.

  13. Protective effect of bile acid derivatives in phalloidin-induced rat liver toxicity

    SciTech Connect

    Herraez, Elisa; Macias, Rocio I.R.; Vazquez-Tato, Jose; Hierro, Carlos; Monte, Maria J.; Marin, Jose J.G.

    2009-08-15

    Phalloidin causes severe liver damage characterized by marked cholestasis, which is due in part to irreversible polymerization of actin filaments. Liver uptake of this toxin through the transporter OATP1B1 is inhibited by the bile acid derivative BALU-1, which does not inhibit the sodium-dependent bile acid transporter NTCP. The aim of the present study was to investigate whether BALU-1 prevents liver uptake of phalloidin without impairing endogenous bile acid handling and hence may have protective effects against the hepatotoxicity induced by this toxin. In anaesthetized rats, i.v. administration of BALU-1 increased bile flow more than taurocholic acid (TCA). Phalloidin administration decreased basal (- 60%) and TCA-stimulated bile flow (- 55%) without impairing bile acid output. Phalloidin-induced cholestasis was accompanied by liver necrosis, nephrotoxicity and haematuria. In BALU-1-treated animals, phalloidin-induced cholestasis was partially prevented. Moreover haematuria was not observed, which was consistent with histological evidences of BALU-1-prevented injury of liver and kidney tissue. HPLC-MS/MS analysis revealed that BALU-1 was secreted in bile mainly in non-conjugated form, although a small proportion (< 5%) of tauro-BALU-1 was detected. BALU-1 did not inhibit the biliary secretion of endogenous bile acids. When highly choleretic bile acids, - ursodeoxycholic (UDCA) and dehydrocholic acid (DHCA) - were administered, they were found less efficient than BALU-1 in preventing phalloidin-induced cholestasis. Biliary phalloidin elimination was low but it was increased by BALU-1 > TCA > DHCA > UDCA. In conclusion, BALU-1 is able to protect against phalloidin-induced hepatotoxicity, probably due to an inhibition of the liver uptake and an enhanced biliary secretion of this toxin.

  14. Potential role of conjugated bilirubin and copper in the metabolism of lipid peroxides in bile.

    PubMed Central

    Stocker, R; Ames, B N

    1987-01-01

    Conjugated bilirubin and copper ions at their physiological concentrations in bile may play an important role in hydroperoxide and other detoxification. Conjugated bilirubin may also be an important chain-breaking antioxidant preventing lipid peroxidation. Bilirubin ditaurine (BR-DT), a water-soluble model compound of conjugated bilirubin, completely prevents the peroxyl radical-induced oxidation of phosphatidylcholine in either multilamellar liposomes or micelles. This antioxidant activity is associated with the bilirubin moiety of BR-DT, since taurine alone is inefficient in scavenging peroxyl radicals. The number of peroxyl radicals trapped per molecule of BR-DT is 1.9, compared to 4.7 trapped per molecule of biliverdin, the water-soluble physiological precursor of bilirubin. Peroxyl radical-induced oxidation of BR-DT results in a spectral shift in maximal absorbance toward shorter wavelengths; biliverdin is not formed as a major oxidation product. BR-DT, but neither taurine nor biliverdin, greatly accelerates the cupric ion-catalyzed decomposition of linoleic acid hydroperoxide. In the presence of ferric ion, BR-DT shows no lipid hydroperoxide-degrading activity. Addition of cupric ion to BR-DT results in formation of a complex with spectral features similar to that of a biliverdin-cupric ion complex, indicating that BR-DT and cupric ion undergo redox reactions. PMID:3479781

  15. Bile Acid diarrhea: prevalence, pathogenesis, and therapy.

    PubMed

    Camilleri, Michael

    2015-05-23

    Bile acid diarrhea (BAD) is usually seen in patients with ileal Crohn's disease or ileal resection. However, 25% to 50% of patients with functional diarrhea or diarrhea-predominant irritable bowel syndrome (IBS-D) also have evidence of BAD. It is estimated that 1% of the population may have BAD. The causes of BAD include a deficiency in fibroblast growth factor 19 (FGF-19), a hormone produced in enterocytes that regulates hepatic bile acid (BA) synthesis. Other potential causes include genetic variations that affect the proteins involved in BA enterohepatic circulation and synthesis or in the TGR5 receptor that mediates the actions of BA in colonic secretion and motility. BAs enhance mucosal permeability, induce water and electrolyte secretion, and accelerate colonic transit partly by stimulating propulsive high-amplitude colonic contractions. There is an increased proportion of primary BAs in the stool of patients with IBS-D, and some changes in the fecal microbiome have been described. There are several methods of diagnosing BAD, such as (75)selenium homotaurocholic acid test retention, serum C4, FGF-19, and fecal BA measurement; presently, therapeutic trials with BA sequestrants are most commonly used for diagnosis. Management involves the use of BA sequestrants including cholestyramine, colestipol, and colesevelam. FXR agonists such as obeticholic acid constitute a promising new approach to treating BAD.

  16. Effect of acute bile acid pool depletion on total and ionized calcium concentrations in human bile.

    PubMed

    Gleeson, D; Murphy, G M; Dowling, R H

    1995-04-01

    Although calcium salts are important components of gallstones, there are few data on the total and ionized calcium content of human bile. Therefore, in 14 fasting T-tube patients studied 7-11 days after cholecystectomy, we measured bile flow, bile acid [BA], total [CaTOT] and free ionized [Ca++] calcium concentrations, in 20-30 min bile collections during acute BA pool depletion induced by 6-8 h of continuous bile drainage. During washout of the BA pool there were parallel falls in bile flow, BA output and total calcium output (correlation coefficients ranging from 0.59 to 0.99; P < 0.02-0.001). In 12 of the 14 patients, [CaTOT] also fell (from 1.84 +/- 0.29 to 1.32 +/- 0.34 mmol L-1) in parallel with [BA] (from 34.0 +/- 14.0 to 8.2 +/- 8.0 mmol L-1; r = 0.75-0.98; P < 0.005). In contrast, biliary [Ca++] remained virtually unchanged. These data suggest that the BAs are linked to the bound, rather than to the free, ionized, fraction of biliary calcium, which is consistent with in vivo calcium binding by BAs. A model is proposed in which BA-induced biliary calcium secretion results from (i) bile acid-induced water flow via solvent drag; and (ii) calcium binding in the bile canaliculus by bile acids, which induces paracellular diffusion of Ca++, thereby maintaining [Ca++] independent of [BA].

  17. Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities.

    PubMed

    Kohli, Rohit; Kirby, Michelle; Setchell, Kenneth D R; Jha, Pinky; Klustaitis, Kori; Woollett, Laura A; Pfluger, Paul T; Balistreri, William F; Tso, Patrick; Jandacek, Ronald J; Woods, Stephen C; Heubi, James E; Tschoep, Matthias H; D'Alessio, David A; Shroyer, Noah F; Seeley, Randy J

    2010-09-01

    Surgical interposition of distal ileum into the proximal jejunum is a bariatric procedure that improves the metabolic syndrome. Changes in intestinal and hepatic physiology after ileal interposition (transposition) surgery (IIS) are not well understood. Our aim was to elucidate the adaptation of the interposed ileum, which we hypothesized, would lead to early bile acid reabsorption in the interposed ileum, thus short circuiting enterohepatic bile acid recycling to more proximal bowel segments. Rats with diet-induced obesity were randomized to IIS, with 10 cm of ileum repositioned distal to the duodenum, or sham surgery. A subgroup of sham rats was pair-fed to IIS rats. Physiological parameters were measured until 6 wk postsurgery. IIS rats ate less and lost more weight for the first 2 wk postsurgery. At study completion, body weights were not different, but IIS rats had reversed components of the metabolic syndrome. The interposed ileal segment adapted to a more jejunum-like villi length, mucosal surface area, and GATA4/ILBP mRNA. The interposed segment retained capacity for bile acid reabsorption and anorectic hormone secretion with the presence of ASBT and glucagon-like-peptide-1-positive cells in the villi. IIS rats had reduced primary bile acid levels in the proximal intestinal tract and higher primary bile acid levels in the serum, suggesting an early and efficient reabsorption of primary bile acids. IIS rats also had increased taurine and glycine-conjugated serum bile acids and reduced fecal bile acid loss. There was decreased hepatic Cyp27A1 mRNA with no changes in hepatic FXR, SHP, or NTCP expression. IIS protects against the metabolic syndrome through short-circuiting enterohepatic bile acid recycling. There is early reabsorption of primary bile acids despite selective "jejunization" of the interposed ileal segment. Changes in serum bile acids or bile acid enterohepatic recycling may mediate the metabolic benefits seen after bariatric surgery.

  18. Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities

    PubMed Central

    Kirby, Michelle; Setchell, Kenneth D. R.; Jha, Pinky; Klustaitis, Kori; Woollett, Laura A.; Pfluger, Paul T.; Balistreri, William F.; Tso, Patrick; Jandacek, Ronald J.; Woods, Stephen C.; Heubi, James E.; Tschoep, Matthias H.; D'Alessio, David A.; Shroyer, Noah F.; Seeley, Randy J.

    2010-01-01

    Surgical interposition of distal ileum into the proximal jejunum is a bariatric procedure that improves the metabolic syndrome. Changes in intestinal and hepatic physiology after ileal interposition (transposition) surgery (IIS) are not well understood. Our aim was to elucidate the adaptation of the interposed ileum, which we hypothesized, would lead to early bile acid reabsorption in the interposed ileum, thus short circuiting enterohepatic bile acid recycling to more proximal bowel segments. Rats with diet-induced obesity were randomized to IIS, with 10 cm of ileum repositioned distal to the duodenum, or sham surgery. A subgroup of sham rats was pair-fed to IIS rats. Physiological parameters were measured until 6 wk postsurgery. IIS rats ate less and lost more weight for the first 2 wk postsurgery. At study completion, body weights were not different, but IIS rats had reversed components of the metabolic syndrome. The interposed ileal segment adapted to a more jejunum-like villi length, mucosal surface area, and GATA4/ILBP mRNA. The interposed segment retained capacity for bile acid reabsorption and anorectic hormone secretion with the presence of ASBT and glucagon-like-peptide-1-positive cells in the villi. IIS rats had reduced primary bile acid levels in the proximal intestinal tract and higher primary bile acid levels in the serum, suggesting an early and efficient reabsorption of primary bile acids. IIS rats also had increased taurine and glycine-conjugated serum bile acids and reduced fecal bile acid loss. There was decreased hepatic Cyp27A1 mRNA with no changes in hepatic FXR, SHP, or NTCP expression. IIS protects against the metabolic syndrome through short-circuiting enterohepatic bile acid recycling. There is early reabsorption of primary bile acids despite selective “jejunization” of the interposed ileal segment. Changes in serum bile acids or bile acid enterohepatic recycling may mediate the metabolic benefits seen after bariatric surgery. PMID

  19. Association of canalicular membrane enzymes with bile acid micelles and lipid aggregates in human and rat bile.

    PubMed

    Accatino, L; Pizarro, M; Solís, N; Koenig, C S

    1995-01-18

    This study was undertaken to gain insights into the characteristics of the polymolecular association between canalicular membrane enzymes, bile acids, cholesterol and phospholipids in bile and into the celular mechanisms whereby the enzymes are secreted into bile. With this purpose, we studied the distribution of bile acids, cholesterol, phospholipids, proteins and representative canalicular membrane enzymes (alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase), which can be considered specific marker constituents, in bile fractions enriched in phospholipid-cholesterol lamellar structures (multilamellar and unilamellar vesicles) and bile acid-mixed micelles. These fractions were isolated by ultracentrifugation from human hepatic bile, normal rat bile and bile of rats treated with diosgenin, a steroid that induces a marked increase in biliary cholesterol secretion, and were characterized by density, lipid composition and transmission electron microscopy. These studies demonstrate that alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase are secreted into both human and rat bile where they are preferentially associated with bile acid-mixed micelles, suggesting a role for bile acids in both release of these enzymes and lipids from the canalicular membrane and solubilization in bile. In addition, heterogeneous association of these enzymes with nonmicellar, lamellar structures in human and rat bile is consistent with the hypothesis that processes independent of the detergent effects of bile acids might also result in the release of specific intrinsic membrane proteins into bile.

  20. A Surgical Model in Male Obese Rats Uncovers Protective Effects of Bile Acids Post-Bariatric Surgery

    PubMed Central

    Setchell, Kenneth DR; Kirby, Michelle; Myronovych, Andriy; Ryan, Karen K.; Ibrahim, Samar H.; Berger, Jose; Smith, Kathi; Toure, Mouhamadoul; Woods, Stephen C.; Seeley, Randy J.

    2013-01-01

    Bariatric surgery elevates serum bile acids. Conjugated bile acid administration, such as tauroursodeoxycholic acid (TUDCA), improves insulin sensitivity, whereas short-circuiting bile acid circulation through ileal interposition surgery in rats raises TUDCA levels. We hypothesized that bariatric surgery outcomes could be recapitulated by short circuiting the normal enterohepatic bile circulation. We established a model wherein male obese rats underwent either bile diversion (BD) or Sham (SH) surgery. The BD group had a catheter inserted into the common bile duct and its distal end anchored into the middistal jejunum for 4–5 weeks. Glucose tolerance, insulin and glucagon-like peptide-1 (GLP-1) response, hepatic steatosis, and endoplasmic reticulum (ER) stress were measured. Rats post-BD lost significantly more weight than the SH rats. BD rats gained less fat mass after surgery. BD rats had improved glucose tolerance, increased higher postprandial glucagon-like peptide-1 response and serum bile acids but less liver steatosis. Serum bile acid levels including TUDCA concentrations were higher in BD compared to SH pair-fed rats. Fecal bile acid levels were not different. Liver ER stress (C/EBP homologous protein mRNA and pJNK protein) was decreased in BD rats. Bile acid gavage (TUDCA/ursodeoxycholic acid [UDCA]) in diet-induced obese rats, elevated serum TUDCA and concomitantly reduced hepatic steatosis and ER stress (C/EBP homologous protein mRNA). These data demonstrate the ability of alterations in bile acids to recapitulate important metabolic improvements seen after bariatric surgery. Further, our work establishes a model for focused study of bile acids in the context of bariatric surgery that may lead to the identification of therapeutics for metabolic disease. PMID:23592746

  1. ABC transporters, bile acids, and inflammatory stress in liver cancer.

    PubMed

    Wang, Renxue; Sheps, Jonathan A; Ling, Victor

    2011-04-01

    The biliary secretion of bile acids is critical for multiple liver functions including digesting fatty nutrients and driving bile flow. When this process is impaired, the accumulating bile acids cause inflammatory liver injury. Multiple ABC transporters in the liver are key players to safeguard the hepatocyte and avoid toxicity due to bile acid over-accumulation. BSEP provides for efficient secretion of bile acids across the canalicular membrane against a steep concentration gradient. MDR3/Mdr2 and ABCG5/G8 secrete phosphatidylcholine and cholesterol, respectively, in coordination with BSEP-mediated bile acid secretion to mask the detergent/toxic effects of bile acids in the bile ductular space. Several lines of evidence indicate that when these critical steps are compromised, bile acid toxicity in vivo leads to inflammatory liver injury and liver cancer. In bsep-/- mice, liver cancer is rare. These mice display greatly increased expression of alternative bile acid transporters, such as Mdr1a/1b, Mrp3 and Mrp4. We believe these alternative transport systems provide an additional safeguard to avoid bile acid overload in liver. Such backup systems appear to be under-utilized in humans, as defects in BSEP and MDR3 lead to severe, often fatal childhood diseases. It is possible, therefore, that targeting ABC transporters and modulating the toxicity of the bile acid pool could be vital interventions to alleviate chronic inflammation and reduce the incidence of liver cancer in high-risk populations. The combination of an alternative ABC transporter with a novel substrate may prove an effective chemo-preventive or therapeutic strategy.

  2. Using Multi-fluorinated Bile Acids and In Vivo Magnetic Resonance Imaging to Measure Bile Acid Transport.

    PubMed

    Felton, Jessica; Cheng, Kunrong; Said, Anan; Shang, Aaron C; Xu, Su; Vivian, Diana; Metry, Melissa; Polli, James E; Raufman, Jean-Pierre

    2016-11-27

    Along with their traditional role as detergents that facilitate fat absorption, emerging literature indicates that bile acids are potent signaling molecules that affect multiple organs; they modulate gut motility and hormone production, and alter vascular tone, glucose metabolism, lipid metabolism, and energy utilization. Changes in fecal bile acids may alter the gut microbiome and promote colon pathology including cholerrheic diarrhea and colon cancer. Key regulators of fecal bile acid composition are the small intestinal Apical Sodium-dependent Bile Acid Transporter (ASBT) and fibroblast growth factor-19 (FGF19). Reduced expression and function of ASBT decreases intestinal bile acid up-take. Moreover, in vitro data suggest that some FDA-approved drugs inhibit ASBT function. Deficient FGF19 release increases hepatic bile acid synthesis and release into the intestines to levels that overwhelm ASBT. Either ASBT dysfunction or FGF19 deficiency increases fecal bile acids and may cause chronic diarrhea and promote colon neoplasia. Regrettably, tools to measure bile acid malabsorption and the actions of drugs on bile acid transport in vivo are limited. To understand the complex actions of bile acids, techniques are required that permit simultaneous monitoring of bile acids in the gut and metabolic tissues. This led us to conceive an innovative method to measure bile acid transport in live animals using a combination of proton ((1)H) and fluorine ((19)F) magnetic resonance imaging (MRI). Novel tracers for fluorine ((19)F)-based live animal MRI were created and tested, both in vitro and in vivo. Strengths of this approach include the lack of exposure to ionizing radiation and translational potential for clinical research and practice.

  3. Effects of bile acid administration on bile acid synthesis and its circadian rhythm in man

    SciTech Connect

    Pooler, P.A.; Duane, W.C.

    1988-09-01

    In man bile acid synthesis has a distinct circadian rhythm but the relationship of this rhythm to feedback inhibition by bile acid is unknown. We measured bile acid synthesis as release of 14CO2 from (26-14C)cholesterol every 2 hr in three normal volunteers during five separate 24-hr periods. Data were fitted by computer to a cosine curve to estimate amplitude and acrophase of the circadian rhythm. In an additional six volunteers, we measured synthesis every 2 hr from 8:00 a.m. to 4:00 p.m. only. During the control period, amplitude (expressed as percentage of mean synthesis) averaged 52% and acrophase averaged 6:49 a.m. During administration of ursodeoxycholic acid (15 mg per kg per day), synthesis averaged 126% of baseline (p less than 0.1), amplitude averaged 43% and acrophase averaged 6:20 a.m. During administration of chenodeoxycholic acid (15 mg per kg per day), synthesis averaged 43% of baseline (p less than 0.001), amplitude averaged 53% and acrophase averaged 9:04 a.m. Addition of prednisone to this regimen of chenodeoxycholic acid to eliminate release of 14CO2 from corticosteroid hormone synthesis resulted in a mean amplitude of 62% and a mean acrophase of 6:50 a.m., values very similar to those in the baseline period. Administration of prednisone alone also did not significantly alter the baseline amplitude (40%) or acrophase (6:28 a.m.). We conclude that neither chenodeoxycholic acid nor ursodeoxycholic acid significantly alters the circadian rhythm of bile acid synthesis in man.

  4. Bilirubin conjugates of human bile. Nuclear-magnetic-resonance, infrared and optical spectra of model compounds

    PubMed Central

    Kuenzle, Clive C.

    1970-01-01

    N.m.r., i.r. and optical spectra of model compounds were recorded. These were to help in elucidating the structures of the phenylazo derivatives of bilirubin conjugates isolated from human bile. Model compounds included commercial and human bile bilirubin, mesobilirubin, bilirubin dimethyl ester, dimethoxybilirubin dimethyl ester and the corresponding phenylazo derivatives. The phenylazo derivative of vinylneoxanthobilirubinic acid was also investigated. All compounds were of the type IXα, and no other isomer could be detected with the spectroscopic methods employed. The compounds crystallize as the lactams, except for dimethoxybilirubin dimethyl ester and its phenylazo derivative, which are held in the lactim ether configuration. With all other compounds no tautomeric forms other than the lactams could be detected, although small proportions of bilirubin must exist as the lactim. Bilirubin does not form a betaine, a structure that has been proposed by von Dobeneck & Brunner (1965) to explain the bathochromic shift of its optical spectrum as compared with the expected position of the absorption maximum at 420nm. However, this shift to 453nm can be explained on the basis of internal hydrogen bonds occurring between the carboxylic protons and the pyrrole rings of bilirubin, as proposed by Fog & Jellum (1963), and new evidence for such a bonding has been accumulated. The bilirubin sulphate described by Watson (1958), which is formed by treatment of bilirubin with concentrated sulphuric acid and acetic anhydride, was also investigated. The main product of this reaction was isolated as its phenylazo derivative, and was shown to be 3,18-di(ethylidene sulphate)-2,7,13,17-tetramethylbiladiene-ac-8,12-dipropionic acid. The reaction leading to this compound is an addition of sulphuric acid to the vinyl side chains of bilirubin according to Markownikoff's rule. PMID:5500301

  5. Acetic Acid Sclerotherapy for Treatment of a Bile Leak from an Isolated Bile Duct After Laparoscopic Cholecystectomy

    SciTech Connect

    Choi, Gibok Eun, Choong Ki; Choi, HyunWook

    2011-02-15

    Bile leak after laparoscopic cholecystectomy is not uncommon, and it mainly occurs from the cystic duct stump and can be easily treated by endoscopic techniques. However, treatment for leakage from an isolated bile duct can be troublesome. We report a successful case of acetic acid sclerotherapy for bile leak from an isolated bile duct after laparoscopic cholecystectomy.

  6. Bile components and amino acids affect survival of the newly excysted juvenile Clonorchis sinensis in maintaining media.

    PubMed

    Li, Shunyu; Kim, Tae Im; Yoo, Won Gi; Cho, Pyo Yun; Kim, Tong-Soo; Hong, Sung-Jong

    2008-10-01

    Clonorchis sinensis thrives on bile juice. The effects of bile and bile acids on newly excysted juvenile C. sinensis (CsNEJ) were studied in terms of survival. Survival of CsNEJs maintained in 1x Locke's solution, Dulbecco's modified Eagle's medium, NCTC 109, Eagle's, RPMI 1640, and 0.1% glucose was high, but dropped rapidly in 2x Locke's, 0.85% NaCl, and phosphate-buffered saline. Most amino acids in the media favored CsNEJ survival; however, aspartic and glutamic acids and adenine reduced survival. Survival was also significantly lower in media containing more than 0.1% bile. CsNEJs preconditioned in low bile media survived longer in higher bile media. All bile acids and conjugated bile salts were found to favor CsNEJ survival, except for lithocholic acid (LCA) which was toxic. NCTC 109 medium was found to be optimal for the in vitro maintenance of CsNEJs and 1x Locke's solution to be suitable for analyzing the biological effects of bioactive compounds and molecules. Based on these results, we propose that bile acids enhance activity of CsNEJs, but LCA deteriorate CsNEJs.

  7. Bile acids: analysis in biological fluids and tissues

    PubMed Central

    Griffiths, William J.; Sjövall, Jan

    2010-01-01

    The formation of bile acids/bile alcohols is of major importance for the maintenance of cholesterol homeostasis. Besides their functions in lipid absorption, bile acids/bile alcohols are regulatory molecules for a number of metabolic processes. Their effects are structure-dependent, and numerous metabolic conversions result in a complex mixture of biologically active and inactive forms. Advanced methods are required to characterize and quantify individual bile acids in these mixtures. A combination of such analyses with analyses of the proteome will be required for a better understanding of mechanisms of action and nature of endogenous ligands. Mass spectrometry is the basic detection technique for effluents from chromatographic columns. Capillary liquid chromatography-mass spectrometry with electrospray ionization provides the highest sensitivity in metabolome analysis. Classical gas chromatography-mass spectrometry is less sensitive but offers extensive structure-dependent fragmentation increasing the specificity in analyses of isobaric isomers of unconjugated bile acids. Depending on the nature of the bile acid/bile alcohol mixture and the range of concentration of individuals, different sample preparation sequences, from simple extractions to group separations and derivatizations, are applicable. We review the methods currently available for the analysis of bile acids in biological fluids and tissues, with emphasis on the combination of liquid and gas phase chromatography with mass spectrometry. PMID:20008121

  8. Identification of PAH conjugates in fish bile using high pressure liquid chromatography/electrospray mass spectrometry

    SciTech Connect

    Brand, D.G.; Cretney, W.J.; Ikonomou, M.

    1995-12-31

    Polycyclic aromatic hydrocarbons (PAHs) have been identified in marine sediments and water associated with many types of industrial activities and the presence of PAH metabolites in finfish bile is evidence for recent acute or chronic exposure to these contaminants. Analysis of bile for PAH metabolite conjugates, using reverse phase high pressure liquid chromatography (RP-HPLC) with fluorescence detection and quantification as benzo[a]pyrene (BaP) equivalents, revealed higher concentrations of these metabolites in English sole (pleuronectes verulus) collected from a pulp mill site (Crofton) and an aluminum smelter site (Kitimat) compared to a reference site (Bamfield). The chromatograms of bile from English sole caught at the polluted sites showed different complex mixtures of fluorescent compounds. The portion of biliary metabolite conjugates fluorescing at BaP wavelengths (380nm/430nm) that may be derived from mutagenic or carcinogenic PAHs cannot be determined quantitatively without identification of individual metabolites. Studies are being conducted to identify specific mutagenic or carcinogenic PAH precursors through their metabolite conjugates (glutathiones, glucuronides, sulfates) in bile of English sole by HPLC combined with electrospray mass spectrometry (HPLC/ES-MS). A RP-HPLC method using a Supelcosil LC-ABZ column and gradient elution has been developed that is compatible with ES ionization and still allows separation of PAH metabolite conjugates. Good separation of available glucuronide, sulfate and glutathione standards has been obtained, with the ES-MS operating in the negative ion mode, method detection limits in the pM range have been established from flow injections of individual conjugate standard solutions. HPLC/ESMS measurements of metabolite conjugates in English sole bile from coastal British Columbia sites will be presented.

  9. Transport of fluorescent bile acids by the isolated perfused rat liver: kinetics, sequestration, and mobilization.

    PubMed

    Holzinger, F; Schteingart, C D; Ton-Nu, H T; Cerrè, C; Steinbach, J H; Yeh, H Z; Hofmann, A F

    1998-08-01

    Hepatocyte transport of six fluorescent bile acids containing nitrobenzoxadiazolyl (NBD) or a fluorescein derivative on the side chain was compared with that of natural bile acids using the single-pass perfused rat liver. Compounds were infused at 40 nmol/g liver min for 15 minutes; hepatic uptake and biliary recovery were measured; fractional extraction, intrinsic basolateral clearance, and sequestration (nonrecovery after 45 minutes of additional perfusion) were calculated. Fluorescent bile acids were efficiently extracted during the first 3 minutes (70%-97%), but net extraction decreased with time mostly because of regurgitation into the perfusate. For cholylglycine and ursodeoxycholylglycine (UDC-glycine), extraction was 94% to 99%, and regurgitation did not occur. Intrinsic hepatic clearance of fluorescent bile acids (2-7 mL/g liver x min) was lower than that of cholylglycine (9.0 +/- 0.6; mean +/- SD) and UDC-glycine (21.4 +/- 0.4). Sequestration at 60 minutes was 8% to 26% for fluorescent bile acids with a cholyl moiety (cholylglycylaminofluorescein [CGamF], cholyllysylfluorescein [C-L-F], cholyl-[N epsilon-NBD]-lysine [C-L-NBD], and cholylaminofluorescein [CamF]), 32% for ursodeoxycholylaminofluorescein (UDCamF), and 88% for ursodeoxycholyl-(N epsilon-NBD)lysine (UDC-L-NBD). Cholylglycine and UDC-glycine had <3% retention. Biliary secretion of sequestered UDCamF, but not of UDC-L-NBD, was induced by adding dibutyryl cyclic adenosine monophosphate (DBcAMP) to the perfusate, possibly by translocation to the canaliculus of pericanalicular vesicles containing fluorescent bile acids. Biliary secretion of UDC-L-NBD, but not of UDCamF, was induced by adding cholyltaurine or UDC-taurine, possibly by inhibition of binding to intracellular constituents or of transport into organelles. It is concluded that fluorescent bile acids are efficiently transported across the basolateral membrane, but in contrast to natural conjugated bile acids, are sequestered in the

  10. Simplified quantitative determination of total fecal bile acids.

    PubMed

    de Wael, J; Raaymakers, C E; Endeman, H J

    1977-09-01

    To determine total fecal bile acids, these are extracted with diethyl ether after boiling with a solution of potassium hydroxide in ethanediol. After evaporating the ether and dissolving the residue in methanol, the bile acids are directly determined with 3 alpha-hydroxysteroid dehydrogenase. Values for 9 normals are given.

  11. Differential diagnosis in patients with suspected bile acid synthesis defects

    PubMed Central

    Haas, Dorothea; Gan-Schreier, Hongying; Langhans, Claus-Dieter; Rohrer, Tilman; Engelmann, Guido; Heverin, Maura; Russell, David W; Clayton, Peter T; Hoffmann, Georg F; Okun, Jürgen G

    2012-01-01

    AIM: To investigate the clinical presentations associated with bile acid synthesis defects and to describe identification of individual disorders and diagnostic pitfalls. METHODS: Authors describe semiquantitative determination of 16 urinary bile acid metabolites by electrospray ionization-tandem mass spectrometry. Sample preparation was performed by solid-phase extraction. The total analysis time was 2 min per sample. Authors determined bile acid metabolites in 363 patients with suspected defects in bile acid metabolism. RESULTS: Abnormal bile acid metabolites were found in 36 patients. Two patients had bile acid synthesis defects but presented with atypical presentations. In 2 other patients who were later shown to be affected by biliary atresia and cystic fibrosis the profile of bile acid metabolites was initially suggestive of a bile acid synthesis defect. Three adult patients suffered from cerebrotendinous xanthomatosis. Nineteen patients had peroxisomal disorders, and 10 patients had cholestatic hepatopathy of other cause. CONCLUSION: Screening for urinary cholanoids should be done in every infant with cholestatic hepatopathy as well as in children with progressive neurological disease to provide specific therapy. PMID:22416181

  12. Novel regulator of enterohepatic bile acid signaling protects against hypercholesterolemia.

    PubMed

    Dawson, Paul A

    2013-06-04

    Hypercholesterolemia is a major cause of cardiovascular disease and can be treated by targeting bile acid and cholesterol metabolism. Vergnes et al. (2013) now identify Diet1 as a novel regulator of fibroblast growth factor 15/19 production and bile acid biosynthesis.

  13. Deficiency of Capicua disrupts bile acid homeostasis

    PubMed Central

    Kim, Eunjeong; Park, Sungjun; Choi, Nahyun; Lee, Jieon; Yoe, Jeehyun; Kim, Soeun; Jung, Hoe-Yune; Kim, Kyong-Tai; Kang, Hyojin; Fryer, John D.; Zoghbi, Huda Y.; Hwang, Daehee; Lee, Yoontae

    2015-01-01

    Capicua (CIC) has been implicated in pathogenesis of spinocerebellar ataxia type 1 and cancer in mammals; however, the in vivo physiological functions of CIC remain largely unknown. Here we show that Cic hypomorphic (Cic-L-/-) mice have impaired bile acid (BA) homeostasis associated with induction of proinflammatory cytokines. We discovered that several drug metabolism and BA transporter genes were down-regulated in Cic-L-/- liver, and that BA was increased in the liver and serum whereas bile was decreased within the gallbladder of Cic-L-/- mice. We also found that levels of proinflammatory cytokine genes were up-regulated in Cic-L-/- liver. Consistent with this finding, levels of hepatic transcriptional regulators, such as hepatic nuclear factor 1 alpha (HNF1α), CCAAT/enhancer-binding protein beta (C/EBPβ), forkhead box protein A2 (FOXA2), and retinoid X receptor alpha (RXRα), were markedly decreased in Cic-L-/- mice. Moreover, induction of tumor necrosis factor alpha (Tnfα) expression and decrease in the levels of FOXA2, C/EBPβ, and RXRα were found in Cic-L-/- liver before BA was accumulated, suggesting that inflammation might be the cause for the cholestasis in Cic-L-/- mice. Our findings indicate that CIC is a critical regulator of BA homeostasis, and that its dysfunction might be associated with chronic liver disease and metabolic disorders. PMID:25653040

  14. BASIC--a bile acid-sensitive ion channel highly expressed in bile ducts.

    PubMed

    Wiemuth, Dominik; Sahin, Hacer; Falkenburger, Björn H; Lefèvre, Cathérine M T; Wasmuth, Hermann E; Gründer, Stefan

    2012-10-01

    Brain liver intestine Na+ channel (BLINaC) is an ion channel of the DEG/ENaC gene family of unknown function. BLINaC from rats (rBLINaC) and humans (INaC) is inactive at rest, and its mode of activation has remained unclear. Here, we show that the BLINaC protein localizes to cholangiocytes, epithelial cells that line bile ducts. Moreover, we provide evidence that rBLINaC and INaC are robustly activated by bile acids, in particular chenodeoxycholic acid and hyodeoxycholic acid (EC50=2.1±0.05 mM). Thus, BLINaC appears to be an epithelial cation channel of bile ducts sensitive to physiological concentrations of bile acids. BLINaC is related to acid-sensing ion channels (ASICs) and to the epithelial Na+ channel (ENaC) and shares ligand activation with ASICs and epithelial localization with ENaC. Therefore, based on the close homology of BLINaC to ASICs and its activation by bile acids, we propose to rename BLINaC bile acid-sensitive ion channel (BASIC).

  15. Structure-activity relationship studies on natural and synthetic bile acid analogs.

    PubMed

    Roda, A; Grigolo, B; Pellicciari, R; Natalini, B

    1989-12-01

    The objective of our research was to develop ursodiol analogs that are structurally modified to modulate hepatic side-chain amidation and prevent 7-dehydroxylation by intestinal bacteria while at the same time maintaining the critical micellar concentration (CMC) and hydrophilicity of ursodiol. More than 20 naturally occurring bile acids were screened for physicochemical properties. Then, two generations of analogs were studied, and those with physicochemical properties similar to ursodiol's were analyzed for physiologic properties. The first generation of analogs included molecules with steric and/or electronic hindrance on the side chain; the second group consisted of the same molecules conjugated with glycine or taurine and also "pseudoconjugated" analogs (23-hydroxylated, esterified, and amidated with other amino acids). Of the first-generation analogs, only cyclopropane D derivative and trans-olefin were useful to our purposes, being conjugated by the liver and almost completely recovered in bile. These two analogs were deconjugated and 7-dehydroxylated but with slower kinetics. The hydrophilicity of the molecules could be augmented by increasing the polarity of the steroid ring. Among the pseudoconjugated analogs, the CMC values were similar to those of the natural analogs, although hydrophobicity differed among the group. The analogs that were not deconjugated were not 7-dehydroxylated either. All of the pseudoconjugated bile acids were efficiently taken up by the liver, and their recovery in bile was similar to that of glycine and taurine ursodiol. From these studies we now know that side chain configuration and conformation are important in the conjugation and deconjugation processes. Mild modification of the side chain can prevent 7-dehydroxylation and thus yield a bile acid more resistant to intestinal bacteria and more bioavailable. Prevention of hepatic conjugation improves biliary secretion and recovery of many analogs.

  16. Bilirubin conjugates of human bile. Isolation of phenylazo derivatives of bile bilirubin

    PubMed Central

    Kuenzle, Clive C.

    1970-01-01

    A method is presented that allows the isolation of eight different phenylazo derivatives of bile bilirubin. In step I of the isolation procedure, three bilirubin fractions (bilirubin fractions 1, 2 and 3) from human hepatic bile are separated by reverse-phase partition chromatography on silicone-treated Celite with the use of a solvent system prepared from butan-1-ol and 5mm-phosphate buffer, pH6.0. Azo coupling is then performed with diazotized aniline. The three azo pigment mixtures are subjected to step II, in which the above chromatography system is used again. With each azo pigment mixture this step brings about the separation of a non-polar and a polar azo pigment fraction (azo 1A and azo 1B, azo 2A and azo 2B, and azo 3A and azo 3B from bilirubin fractions 1, 2 and 3 respectively). Approximately equal amounts of non-polar and polar pigments are obtained from bilirubin fractions 1 and 2, whereas bilirubin fraction 3 yields azo 3B almost exclusively. In step IIIA the non-polar azo pigment fractions are fractionated further by adsorption chromatography on anhydrous sodium sulphate with the use of chloroform followed by a gradient of ethyl acetate in chloroform. Three azo pigments are thus obtained from both azo 2A (azo 2A1, azo 2A2 and azo 2A3) and azo 3A (azo 3A1, azo 3A2 and azo 3A3). The 2A pigments occur in approximately the following proportions: azo 2A1, 90%; azo 2A2, 10%; azo 2A3, traces. The pigments are purified by crystallization, except for the A3 pigments, which are probably degradation products arising from the corresponding A2 pigments. In step IIIB the polar azo pigment fractions are subjected to reverse-phase partition chromatography on silicone-treated Celite with the use of a solvent system prepared from octan-1-ol–di-isopropyl ether–ethyl acetate–methanol–0.2m-acetic acid (1:2:2:3:4, by vol.). Azo pigment fractions 2B and 3B each yield six azo pigments (azo 2B1 to azo 2B6 and azo 3B1 to azo 3B6 respectively) together with small

  17. Intestinal bile acid physiology and pathophysiology

    PubMed Central

    Martínez-Augustin, Olga; de Medina, Fermín Sánchez

    2008-01-01

    Bile acids (BAs) have a long established role in fat digestion in the intestine by acting as tensioactives, due to their amphipathic characteristics. BAs are reabsorbed very efficiently by the intestinal epithelium and recycled back to the liver via transport mechanisms that have been largely elucidated. The transport and synthesis of BAs are tightly regulated in part by specific plasma membrane receptors and nuclear receptors. In addition to their primary effect, BAs have been claimed to play a role in gastrointestinal cancer, intestinal inflammation and intestinal ionic transport. BAs are not equivalent in any of these biological activities, and structural requirements have been generally identified. In particular, some BAs may be useful for cancer chemoprevention and perhaps in inflammatory bowel disease, although further research is necessary in this field. This review covers the most recent developments in these aspects of BA intestinal biology. PMID:18837078

  18. Promotion of PDT efficacy by bile acids

    NASA Astrophysics Data System (ADS)

    Castelli, Michelle; Reiners, John, Jr.; Kessel, David

    2003-06-01

    We had previously described the use of relatively hydrophobic bile acids, notably UDCA (ursodeoxycholate) for the promotion of the apoptotic response to photodynamic therapy. Further study revealed that this effect occurred only when the target for photodamage was the anti-apoptotic protein Bcl-2. The efficacy of lysosomal photodamage, leading to a cleavage of the protein Bid, was not influenced by UDCA. Moreover, the apoptotic cell death resulting from treatment of cells with the non-peptidic Bcl-2 inhibitor HA 14-1 was also promoted by UDCA. These results are consistent with the proposal that the pro-apoptotic effects of UDCA are directed against Bcl-2, promoting inactivation by HA 14-1 or photodamage.

  19. Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria.

    PubMed

    Wegner, Katrin; Just, Sarah; Gau, Laura; Mueller, Henrike; Gérard, Philippe; Lepage, Patricia; Clavel, Thomas; Rohn, Sascha

    2017-02-01

    Bile acids are important signaling molecules that regulate cholesterol, glucose, and energy homoeostasis and have thus been implicated in the development of metabolic disorders. Their bioavailability is strongly modulated by the gut microbiota, which contributes to generation of complex individual-specific bile acid profiles. Hence, it is important to have accurate methods at hand for precise measurement of these important metabolites. Here, a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous identification and quantitation of primary and secondary bile acids as well as their taurine and glycine conjugates was developed and validated. Applicability of the method was demonstrated for mammalian tissues, biofluids, and cell culture media. The analytical approach mainly consists of a simple and rapid liquid-liquid extraction procedure in presence of deuterium-labeled internal standards. Baseline separation of all isobaric bile acid species was achieved and a linear correlation over a broad concentration range was observed. The method showed acceptable accuracy and precision on intra-day (1.42-11.07 %) and inter-day (2.11-12.71 %) analyses and achieved good recovery rates for representative analytes (83.7-107.1 %). As a proof of concept, the analytical method was applied to mouse tissues and biofluids, but especially to samples from in vitro fermentations with gut bacteria of the family Coriobacteriaceae. The developed method revealed that the species Eggerthella lenta and Collinsella aerofaciens possess bile salt hydrolase activity, and for the first time that the species Enterorhabdus mucosicola is able to deconjugate and dehydrogenate primary bile acids in vitro.

  20. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    SciTech Connect

    Lake, April D.; Novak, Petr; Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D.; Lu, Zhenqiang; Lehman-McKeeman, Lois D.; Cherrington, Nathan J.

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  1. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    SciTech Connect

    Liu, Jie; Lu, Yuan-Fu; Zhang, Youcai; Wu, Kai Connie; Fan, Fang; Klaassen, Curtis D.

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.

  2. Serum Bile Acids in Repaired Tetralogy of Fallot: A Marker for Liver and Heart?

    PubMed

    Grangl, Gernot; Zöhrer, Evelyn; Köstenberger, Martin; Jud, Alexandra; Fauler, Günter; Scharnagl, Hubert; Stojakovic, Tatjana; Marterer, Robert; Gamillscheg, Andreas; Jahnel, Jörg

    2015-01-01

    Patients with repaired tetralogy of Fallot may develop chronic right ventricular dysfunction and hepatic congestion over time. We hypothesized that bile acid metabolism is altered in repaired tetralogy of Fallot patients and therefore sought to correlate right ventricular indices with serum bile acid levels. Indexed right ventricular end diastolic volume, as assessed by cardiac magnetic-resonance imaging, was classified as <100ml/m2 (Group 1, n = 5), 100-150ml/m2 (Group 2, n = 18), and >150ml/m2 (Group 3, n = 6) in 29 patients with repaired tetralogy of Fallot. Pulmonary regurgitation fraction and right ventricular ejection fraction were calculated. The serum bile acid profile, including 15 species, in these patients was determined by liquid chromatography coupled with mass spectrometry. Serum bile acid levels increased from Group 1 to Group 3 (2.5 ± 0.7; 4.1 ± 2.5; 6.0 ± 2.8 μmol/l, respectively) with significantly increased bile acid values in Group 3 compared to Group 1 (p≤0.05). In Group 3, but not in Group 1 and 2, a significant increase in glycine-conjugated bile acids was observed. Pulmonary regurgitation fraction increased (12 ± 1; 28 ± 16; 43 ± 3%, Groups 1-3, respectively) and right ventricular ejection fraction decreased (48.4 ± 6.4; 48.5 ± 6.5; 42.1 ± 5.3%, Groups 1-3, respectively) with rising indexed right ventricular end diastolic volume. These preliminary results suggest that serum bile acid levels are positively correlated with indexed right ventricular end-diastolic volume in patients with repaired tetralogy of Fallot; however, this needs to be confirmed in a larger patient cohort.

  3. Bile acids: emerging role in management of liver diseases

    PubMed Central

    Asgharpour, Amon; Kumar, Divya

    2016-01-01

    Bile acids are well known for their effects on cholesterol homeostasis and lipid digestion. Since the discovery of bile acid receptors, of which there are farnesoid X receptor (FXR), a nuclear receptor, and the plasma membrane G-protein receptor, as well as Takeda G-protein coupled receptor clone 5, further roles have been elucidated for bile acids including glucose and lipid metabolism as well as inflammation. Additionally, treatment with bile acid receptor agonists has shown a decrease in the amount of atherosclerosis plaque formation and decreased portal vascular resistance and portal hypotension in animal models. Furthermore, rodent models have demonstrated antifibrotic activity using bile acid receptor agonists. Early human data using a FXR agonist, obeticholic acid, have shown promising results with improvement of histological activity and even a reduction of fibrosis. Human studies are ongoing and will provide further information on bile acid receptor agonist therapies. Thus, bile acids and their derivatives have the potential for management of liver diseases and potentially other disease states including diabetes and the metabolic syndrome. PMID:26320013

  4. [Structure determination of three novel bile acids from bear bile powder].

    PubMed

    Jian, Long-Hai; Mao, Xiu-Hong; Wang, Ke; Ji, Shen

    2013-08-01

    A method of LC-QTOF/MS combining with chemical synthesis has been used to determine the structures of three novel bile acids from bear bile powder. Reference substances of tauroursodeoxycholic acid and taurochenodeoxycholic acid were oxidized by pyridinium chlorochromate. The products were analyzed by LC-QTOF/MS. Total 4 products including 3 isomers were predicted and identified according to the PCC oxidation theory and LC-QTOF/MS results. Bear bile powder samples were dissolved by methanol and analyzed by LC-QTOF/MS. Three unknown peaks were found and identified as 2-[[(3beta, 5beta)-3-hydroxy-7, 24-dioxocholan-24-yl]amino]-ethanesulfonic acid, 2-[[(5beta)-3, 7, 24-trioxocholan-24-yl]amino]-ethanesulfonic acid and 2-[[(5beta, 7beta)-7-hydroxy-3, 24-dioxocholan-24-yl]amino]-ethanesulfonic acid, separately, by matching their results with that of oxidation products above.

  5. Bile acid inhibition of taurocholate uptake by rat hepatocytes: role of OH groups

    SciTech Connect

    Bellentani, S.; Hardison, W.G.M.; Marchegiano, P.; Zanasi, G.; Manenti, F.

    1987-03-01

    To define further the structural specificity of the taurocholate uptake site, the authors studied the ability of a variety of taurine-conjugated bile acids with differing hydroxyl substituents on the sterol moiety to inhibit (/sup 14/C) taurocholate uptake. Rat hepatocytes isolated by collagenase perfusion were incubated in a tris (hydroxymethyl) aminomethane-phosphate buffer containing (/sup 14/C)taurocholate in the presence or absence of inhibitor bile acid. Stronger inhibitors were studied at a fixed concentration of 5 ..mu..M, weaker ones at 25 ..mu..M. Initial uptake velocity was measured. Uptake velocity could then be related to taurocholate concentration and a V/sub max/ and K/sub m/ could be determined by applying a nonlinear least squares fit to the data obtained with or without inhibitor. The kinetic parameters allowed the determination of the type of inhibition and of inhibition constants (K/sub i/) of the various test bile acids. The data indicate that bile acids containing a 6- or 7-OH group exhibit competitive inhibition, whereas bile acids with no 6- or 7-OH group exhibit noncompetitive inhibition. Of the compounds exhibiting competitive inhibition, K/sub i/ varied with the number of hydroxyl groups on the sterol moiety. They conclude that the presence of absence of a 6- or 7-OH group dictates the mechanism of inhibition; the number of hydroxyl substituents determines the potency of competitive inhibition.

  6. Influence of various bile acids on the metabolism of glycyrrhizin and glycyrrhetic acid by Ruminococcus sp. PO1-3 of human intestinal bacteria.

    PubMed

    Akao, T

    1999-08-01

    Ruminococcus sp. PO1-3, an intestinal bacterium isolated from human feces, metabolized glycyrrhizin (GL) to glycyrrhetic acid (GA) and GA to 3-oxo-glycyrrhetic acid (3-oxo-GA) and possessed GL beta-D-glucuronidase and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) involved in the metabolism of GL. This bacterial growth was enhanced by GL at a concentration of 0.4 mm and was suppressed by GA at concentration of 1.0 mM. Chenodeoxycholic acid, deoxycholic acid and lithocholic acid among the bile acids added to this bacterium suppressed the growth and GL beta-D-glucuronidase activity and 3beta-HSD activity incident to it at a concentration of 1.0 mM, while cholic acid, hyodeoxycholic acid and glycine and taurin conjugates of cholic acid, chenodeoxycholic acid, deoxycholic acid and lithocholic acid had almost no effect on this bacterium at a concentration of 0.2 to 1.0 mm. However, these enzyme activities of this sonicated bacteria were inhibited by all of these bile acids. Although each bile acid and GL added to bacteria at the same time suppressed the growth and the amount of metabolite GA by all bile acids used except cholic acid, taurocholic acid and taurodeoxycholic acid with GL, a combination of each bile acid and GA eased the growth inhibition caused by GA at a concentration of 0.2 mM and enhanced the amount of metabolite 3-oxo-GA by the glycine conjugate of bile acids with GA. GL or GA added after 6 h culture with each of these bile acids and bacteria was metabolized to a relatively large amount of GA by chenodeoxycholic acid and lithocholic acid and their glycine and taurine conjugates, glycocholic acid and taurodeoxycholic acid, or had almost no effect on the amount of metabolite 3-oxo-GA, respectively. These results showed that although GL added after the exposure to bile acid and GA and bile acid added at the same time as bacteria had different bile acid action, these conditions enhanced the amount of metabolite GA from GL and metabolite 3-oxo-GA from GA.

  7. Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders.

    PubMed

    Fiorucci, Stefano; Distrutti, Eleonora

    2015-11-01

    The composition of the bile acid pool is a function of the microbial metabolism of bile acids in the intestine. Perturbations of the microbiota shape the bile acid pool and modulate the activity of bile acid-activated receptors (BARs) even beyond the gastrointestinal tract, triggering various metabolic axes and altering host metabolism. Bile acids, in turn, can also regulate the composition of the gut microbiome at the highest taxonomic levels. Primary bile acids from the host are preferential ligands for the farnesoid X receptor (FXR), while secondary bile acids from the microbiota are ligands for G-protein-coupled bile acid receptor 1 (GPBAR1). In this review, we examine the role of bile acid signaling in the regulation of intestinal microbiota and how changes in bile acid composition affect human metabolism. Bile acids may offer novel therapeutic modalities in inflammation, obesity, and diabetes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Bile Acid Determination after Standardized Glucose Load in Pregnant Women

    PubMed Central

    Adams, April; Jacobs, Katherine; Vogel, Rachel Isaksson; Lupo, Virginia

    2015-01-01

    Objective Intrahepatic cholestasis of pregnancy (ICP) is a rare liver disorder, usually manifesting in the third trimester and associated with increased perinatal morbidity and mortality. The hallmark laboratory abnormality in ICP is elevated fasting serum bile acids; however, there are limited data on whether a nonfasting state affects a pregnant woman's total bile acids. This study assesses fasting and nonfasting bile acid levels in 10 healthy pregnant women after a standardized glucose load to provide insight into the effects of a glucose load on bile acid profiles. Study Design Pilot prospective cohort analysis of serum bile acids in pregnant women. A total of 10 healthy pregnant women from 28 to 32 weeks' gestation were recruited for the study before undergoing a glucose tolerance test. Total serum bile acids were collected for each subject in the overnight fasting state, and 1 and 3 hours after the 100-g glucose load. Results There was a statistically significant difference between fasting versus 3-hour values. There was no statistically significant difference between fasting versus 1-hour and 1-hour versus 3-hour values. Conclusion There is a difference between fasting and nonfasting total serum bile acids after a 100-g glucose load in healthy pregnant women. PMID:26495178

  9. The control of bile acid pool size: Effect of jejunal resection and phenobarbitone on bile acid metabolism in the rat 1

    PubMed Central

    Mok, H. Y. I.; Perry, P. M.; Dowling, R. Hermon

    1974-01-01

    In patients with cholesterol gallstones, there is a diminished bile acid pool and the bile becomes supersaturated with cholesterol. Medical treatment has been aimed at re-expanding the pool to improve cholesterol solubility in bile but as yet the factors controlling the size of the bile acid pool' are unknown. Therefore the role of the liver and intestine in controlling bile acid pool size in the rat was studied and the effect of experimental expansion of the pool on bile acid metabolism and bile lipid composition examined. Bile acid absorption was increased from ileum made hyperplastic by previous jejunectomy and hepatic bile acid synthesis was increased by phenobarbitone treatment. Both jejunal resection and phenobarbitone significantly increased the size of the bile acid pool from 32.2 ± SEM 0.94 μmoles/100 g body weight to 42.2 ± 1.71 and 44.4 ± 2.03 respectively. However, the effects of these experimental manipulations on bile acid secretion rate, enterohepatic cycling frequency, and synthesis rates were quite different. Jejunectomy caused a 56% increase in bile acid secretion and more rapid cycling of the bile acid pool but the enhanced absorption did not depress bile acid synthesis. In contrast, phenobarbitone markedly increased synthesis from 14.5 ± 1.42 μmoles.100 g BW−1. 24 hr−1 to 25.9 ± 3.19 but there was no significant change in bile acid secretion and the choleresis seen after phenobarbitone was mainly due to an increase in the bile acid-independent fraction of bile flow. In these experimental studies in the rat, expansion of the bile acid pool did not significantly change bile lipid composition or cholesterol solubility in bile. PMID:4834548

  10. Measurement of transport activities of 3β-hydroxy-Δ(5)-bile acids in bile salt export pump and multidrug resistance-associated proteins using LC-MS/MS.

    PubMed

    Murai, Tsuyoshi; Oda, Kana; Toyo, Terutake; Nittono, Hiroshi; Takei, Hajime; Muto, Akina; Kimura, Akihiko; Kurosawa, Takao

    2013-01-01

    A method has been developed for the measurement of transport activities in membrane vesicles obtained from Sf9 cells for 3β-hydroxy-Δ(5)-bile acids by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Calibration curves for the bile acids were linear over the range of 10 to 2000 pmol/mL, and the detection limit was less than 1 pmol/mL for 3β-hydroxy-Δ(5)-bile acids using selected reaction monitoring analysis. The analytical method was applied to measurements of transport activities in membrane vesicles obtained from human multidrug resistance-associated protein 2-, 3-, and human bile salt export pump-expressing Sf9 cells for conjugated 3β-hydroxy-Δ(5)-bile acids. The present study demonstrated that human multidrug resistance-associated protein 3 vesicles accepted conjugated 3β-hydroxy-Δ(5)-bile acids along with common bile acids such as glycocholic acid and taurolithocholic acid 3-sulfate.

  11. A tandem mass spectrometric study of bile acids: interpretation of fragmentation pathways and differentiation of steroid isomers.

    PubMed

    Qiao, Xue; Ye, Min; Liu, Chun-fang; Yang, Wen-zhi; Miao, Wen-juan; Dong, Jing; Guo, De-an

    2012-02-01

    Bile acids are steroids with a pentanoic acid substituent at C-17. They are the terminal products of cholesterol excretion, and play critical physiological roles in human and animals. Bile acids are easy to detect but difficult to identify by using mass spectrometry due to their poly-ring structure and various hydroxylation patterns. In this study, fragmentation pathways of 18 free and conjugated bile acids were interpreted by using tandem mass spectrometry. The analyses were conducted on ion trap and triple quadrupole mass spectrometers. Upon collision-induced dissociation, the conjugated bile acids could cleave into glycine or taurine related fragments, together with the steroid skeleton. Fragmentations of free bile acids were further elucidated, especially by atmospheric pressure chemical ionization mass spectrometry in positive ion mode. Aside from universally observed neutral losses, eliminations occurred on bile acid carbon rings were proposed for the first time. Moreover, four isomeric 5β-cholanic acid hydroxyl derivatives (3α,6α-, 3α,7β-, 3α,7α-, and 3α,12α-) were differentiated using electrospray ionization in negative ion mode: 3α,7β-OH substituent inclined to eliminate H(2)O and CH(2)O(2) groups; 3α,6α-OH substituent preferred neutral loss of two H(2)O molecules; 3α,12α-OH substituent apt to lose the carboxyl in the form of CO(2) molecule; and 3α,7α-OH substituent exhibited no further fragmentation after dehydration. This study provided specific interpretation for mass spectra of bile acids. The results could contribute to bile acid analyses, especially in clinical assays and metabonomic studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Real Time Monitoring of Intracellular Bile Acid Dynamics Using a Genetically Encoded FRET-based Bile Acid Sensor.

    PubMed

    Van de Wiel, Sandra; Merkx, Maarten; Van de Graaf, Stan

    2016-01-04

    Förster Resonance Energy Transfer (FRET) has become a powerful tool for monitoring protein folding, interaction and localization in single cells. Biosensors relying on the principle of FRET have enabled real-time visualization of subcellular signaling events in live cells with high temporal and spatial resolution. Here, we describe the application of a genetically encoded Bile Acid Sensor (BAS) that consists of two fluorophores fused to the farnesoid X receptor ligand binding domain (FXR-LBD), thereby forming a bile acid sensor that can be activated by a large number of bile acids species and other (synthetic) FXR ligands. This sensor can be targeted to different cellular compartments including the nucleus (NucleoBAS) and cytosol (CytoBAS) to measure bile acid concentrations locally. It allows rapid and simple quantitation of cellular bile acid influx, efflux and subcellular distribution of endogenous bile acids without the need for labeling with fluorescent tags or radionuclei. Furthermore, the BAS FRET sensors can be useful for monitoring FXR ligand binding. Finally, we show that this FRET biosensor can be combined with imaging of other spectrally distinct fluorophores. This allows for combined analysis of intracellular bile acid dynamics and i) localization and/or abundance of proteins of interest, or ii) intracellular signaling in a single cell.

  13. Sodium Taurocholate Modifies the Bile Acid-Independent Fraction of Canalicular Bile Flow in the Rhesus Monkey

    PubMed Central

    Baker, Alfred L.; Wood, R. A. B.; Moossa, A. R.; Boyer, James L.

    1979-01-01

    Bile acid-independent secretion and the choleretic response to taurocholate were determined in rhesus monkeys fitted with indwelling silastic cannulas in the common bile ducts. Bile acids were infused intravenously in random order at 3.5, 7.0, or 10.5 μmol/min for 1.5 h each. When data were analyzed with a single regression line, bile flow increased in proportion to the level of bile acid secretion, although the y-intercepts (the conventional measurement of bile acid-independent secretion) varied widely (77.9±40.9 ml/24 h). The variation in y-intercepts was observed between animals and with repeated studies in the same animal and could not be explained by sex differences or the effects of the indwelling silastic cannulas, but seemed to be related to the order of bile acid infusion. With only two taurocholic acid infusion rates (7.0 and 3.5 μmol/min), [14C]erythritol clearance was greater per mole of secreted bile acid when the initial bile acid infusion was at the high level, but approached zero at low bile acid secretion rates, which suggests that so-called bile acid-independent canalicular flow is closely related to bile acid secretion or is small in size. The augmentation in [14C]erythritol clearance when the high infusion rate was given first was also associated with an increase in biliary clearance of [3H]inulin, which indicates that the premeability to inulin was also enhanced. Identical experiments which substituted equimolar infusions of a nonmicelle-forming bile acid (taurodehydrocholate) for taurocholate failed to demonstrate any difference in choleretic response or biliary clearance of [3H]inulin with the order of bile acid infusion. These experiments demonstrate that a micelleforming bile acid, taurocholate, can increase the permeability of the biliary system to large molecular weight solutes and simultaneously modify the y-intercept and the volume of bile secreted in response to the transported bile acid. Taurocholate may, therefore, modify its own

  14. Olfactory sensitivity of Pacific Lampreys to lamprey bile acids

    USGS Publications Warehouse

    Robinson, T. Craig; Sorensen, Peter W.; Bayer, Jennifer M.; Seelye, James G.

    2009-01-01

    Pacific lampreys Lampetra tridentata are in decline throughout much of their historical range in the Columbia River basin. In support of restoration efforts, we tested whether larval and adult lamprey bile acids serve as migratory and spawning pheromones in adult Pacific lampreys, as they do in sea lampreys Petromyzon marinus. The olfactory sensitivity of adult Pacific lampreys to lamprey bile acids was measured by electro-olfactogram recording from the time of their capture in the spring until their spawning in June of the following year. As controls, we tested L-arginine and a non-lamprey bile acid, taurolithocholic acid 3-sulfate (TLS). Migrating adult Pacific lampreys were highly sensitive to petromyzonol sulfate (a component of the sea lamprey migratory pheromone) and 3-keto petromyzonol sulfate (a component of the sea lamprey sex pheromone) when first captured. This sensitivity persisted throughout their long migratory and overwinter holding period before declining to nearly unmeasurable levels by the time of spawning. The absolute magnitudes of adult Pacific lamprey responses to lamprey bile acids were smaller than those of the sea lamprey, and unlike the sea lamprey, the Pacific lamprey did not appear to detect TLS. No sexual dimorphism was noted in olfactory sensitivity. Thus, Pacific lampreys are broadly similar to sea lampreys in showing sensitivity to the major lamprey bile acids but apparently differ in having a longer period of sensitivity to those acids. The potential utility of bile acid-like pheromones in the restoration of Pacific lampreys warrants their further investigation in this species.

  15. Assessment of conjugal transfer of antibiotic resistance genes in Salmonella Typhimurium exposed to bile salts.

    PubMed

    He, Xinlong; Ahn, Juhee

    2014-08-01

    This study was designed to evaluate the transfer potential of antibiotic resistance genes in antibiotic-resistant Salmonella Typhimurium (S. Typhimurium(R)) in the presence of bile salts. The resistance of S. Typhimurium(R) to ampicillin, kanamycin, and tetracycline was increased by 64-, 64-, and 512-fold, respectively. The highest transfer frequency from S. Typhimurium(R) to Escherichia coli was observed at the bile salt concentration of 160 μg/ml (3.8 × 10(-3) transferrants/cells). The expression of traJ and traY was suppressed in S. Typhimurium(R) by bile salt. This study provides useful information for understanding the conjugative transfer of antibiotic resistance genes in S. Typhimurium under intestinal conditions.

  16. Unconjugated Bile Acids Influence Expression of Circadian Genes: A Potential Mechanism for Microbe-Host Crosstalk

    PubMed Central

    Govindarajan, Kalaimathi; MacSharry, John; Casey, Patrick G.; Shanahan, Fergus

    2016-01-01

    Disruptions to circadian rhythm in mice and humans have been associated with an increased risk of obesity and metabolic syndrome. The gut microbiota is known to be essential for the maintenance of circadian rhythm in the host suggesting a role for microbe-host interactions in the regulation of the peripheral circadian clock. Previous work suggested a role for gut bacterial bile salt hydrolase (BSH) activity in the regulation of host circadian gene expression. Here we demonstrate that unconjugated bile acids, known to be generated through the BSH activity of the gut microbiota, are potentially chronobiological regulators of host circadian gene expression. We utilised a synchronised Caco-2 epithelial colorectal cell model and demonstrated that unconjugated bile acids, but not the equivalent tauro-conjugated bile salts, enhance the expression levels of genes involved in circadian rhythm. In addition oral administration of mice with unconjugated bile acids significantly altered expression levels of circadian clock genes in the ileum and colon as well as the liver with significant changes to expression of hepatic regulators of circadian rhythm (including Dbp) and associated genes (Per2, Per3 and Cry2). The data demonstrate a potential mechanism for microbe-host crosstalk that significantly impacts upon host circadian gene expression. PMID:27907092

  17. Unconjugated Bile Acids Influence Expression of Circadian Genes: A Potential Mechanism for Microbe-Host Crosstalk.

    PubMed

    Govindarajan, Kalaimathi; MacSharry, John; Casey, Patrick G; Shanahan, Fergus; Joyce, Susan A; Gahan, Cormac G M

    2016-01-01

    Disruptions to circadian rhythm in mice and humans have been associated with an increased risk of obesity and metabolic syndrome. The gut microbiota is known to be essential for the maintenance of circadian rhythm in the host suggesting a role for microbe-host interactions in the regulation of the peripheral circadian clock. Previous work suggested a role for gut bacterial bile salt hydrolase (BSH) activity in the regulation of host circadian gene expression. Here we demonstrate that unconjugated bile acids, known to be generated through the BSH activity of the gut microbiota, are potentially chronobiological regulators of host circadian gene expression. We utilised a synchronised Caco-2 epithelial colorectal cell model and demonstrated that unconjugated bile acids, but not the equivalent tauro-conjugated bile salts, enhance the expression levels of genes involved in circadian rhythm. In addition oral administration of mice with unconjugated bile acids significantly altered expression levels of circadian clock genes in the ileum and colon as well as the liver with significant changes to expression of hepatic regulators of circadian rhythm (including Dbp) and associated genes (Per2, Per3 and Cry2). The data demonstrate a potential mechanism for microbe-host crosstalk that significantly impacts upon host circadian gene expression.

  18. Detection of pentachlorophenol and its glucuronide and sulfate conjugates in fish bile and exposure water

    SciTech Connect

    Stehly, G.R.; Hayton, W.L.

    1988-08-01

    The glucuronide and sulfate conjugates of pentachlorophenol (PCP) that were present in the bile and exposure water of goldfish (Carassius auratus) were used to develop methodology to quantify PCP and its metabolites. Reverse phase HPLC with radioactivity detection separated PCP and its metabolites, and was used to verify a method of quantification that used differential extraction and scintillation counting. Extractions of aqueous phase at pH 2 or 8, with butanol, ethyl acetate, or ether indicated that ether at pH 8 best separated PCP from its metabolites. The sulfate conjugate of PCP was the major metabolite produced when goldfish were exposed to 125 micrograms UC-PCP/l. It was present primarily in the exposure water, but also appeared in the bile.

  19. Antibacterial drug treatment increases intestinal bile acid absorption via elevated levels of ileal apical sodium-dependent bile acid transporter but not organic solute transporter α protein.

    PubMed

    Miyata, Masaaki; Hayashi, Kenjiro; Yamakawa, Hiroki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2015-01-01

    Antibacterial drug treatment increases the bile acid pool size and hepatic bile acid concentration through the elevation of hepatic bile acid synthesis. However, the involvement of intestinal bile acid absorption in the increased bile acid pool size remains unclear. To determine whether intestinal bile acid absorption contributes to the increased bile acid pool in mice treated with antibacterial drugs, we evaluated the levels of bile acid transporter proteins and the capacity of intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) mRNA and protein levels were significantly increased in ampicillin (ABPC)-treated mice, whereas organic solute transporter α (OSTα) mRNA levels, but not protein levels, significantly decreased in mice. Similar alterations in the expression levels of bile acid transporters were observed in mice treated with bacitracin/neomycin/streptomycin. The capacity for intestinal bile acid absorption was evaluated by an in situ loop method. Increased ileal absorption of taurochenodeoxycholic acid was observed in mice treated with ABPC. These results suggest that intestinal bile acid absorption is elevated in an ASBT-dependent manner in mice treated with antibacterial drugs.

  20. Maternal bile acid transporter deficiency promotes neonatal demise

    PubMed Central

    Zhang, Yuanyuan; Li, Fei; Wang, Yao; Pitre, Aaron; Fang, Zhong-ze; Frank, Matthew W.; Calabrese, Christopher; Krausz, Kristopher W.; Neale, Geoffrey; Frase, Sharon; Vogel, Peter; Rock, Charles O.; Gonzalez, Frank J.; Schuetz, John D.

    2015-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse neonatal survival and is estimated to impact between 0.4 and 5% of pregnancies worldwide. Here we show that maternal cholestasis (due to Abcb11 deficiency) produces neonatal death among all offspring within 24 h of birth due to atelectasis-producing pulmonary hypoxia, which recapitulates the neonatal respiratory distress of human ICP. Neonates of Abcb11-deficient mothers have elevated pulmonary bile acids and altered pulmonary surfactant structure. Maternal absence of Nr1i2 superimposed on Abcb11 deficiency strongly reduces maternal serum bile acid concentrations and increases neonatal survival. We identify pulmonary bile acids as a key factor in the disruption of the structure of pulmonary surfactant in neonates of ICP. These findings have important implications for neonatal respiratory failure, especially when maternal bile acids are elevated during pregnancy, and highlight potential pathways and targets amenable to therapeutic intervention to ameliorate this condition. PMID:26416771

  1. Maternal bile acid transporter deficiency promotes neonatal demise.

    PubMed

    Zhang, Yuanyuan; Li, Fei; Wang, Yao; Pitre, Aaron; Fang, Zhong-Ze; Frank, Matthew W; Calabrese, Christopher; Krausz, Kristopher W; Neale, Geoffrey; Frase, Sharon; Vogel, Peter; Rock, Charles O; Gonzalez, Frank J; Schuetz, John D

    2015-09-29

    Intrahepatic cholestasis of pregnancy (ICP) is associated with adverse neonatal survival and is estimated to impact between 0.4 and 5% of pregnancies worldwide. Here we show that maternal cholestasis (due to Abcb11 deficiency) produces neonatal death among all offspring within 24 h of birth due to atelectasis-producing pulmonary hypoxia, which recapitulates the neonatal respiratory distress of human ICP. Neonates of Abcb11-deficient mothers have elevated pulmonary bile acids and altered pulmonary surfactant structure. Maternal absence of Nr1i2 superimposed on Abcb11 deficiency strongly reduces maternal serum bile acid concentrations and increases neonatal survival. We identify pulmonary bile acids as a key factor in the disruption of the structure of pulmonary surfactant in neonates of ICP. These findings have important implications for neonatal respiratory failure, especially when maternal bile acids are elevated during pregnancy, and highlight potential pathways and targets amenable to therapeutic intervention to ameliorate this condition.

  2. Are bile acid malabsorption and bile acid diarrhoea important causes of loose stool complicating cancer therapy?

    PubMed

    Phillips, F; Muls, A C G; Lalji, A; Andreyev, H J N

    2015-08-01

    Gastrointestinal (GI) symptoms during and after cancer therapy can significantly affect quality of life and interfere with treatment. This study assessed whether bile acid malabsorption (BAM) or bile acid diarrhoea (BAD) are important causes of diarrhoea associated with cancer treatment. A retrospective analysis was carried out of consecutive patients assessed for BAM using ((75) Se) Selenium homocholic acid taurocholate (SeHCAT) scanning, after reporting any episodes of loose stool, attending a gastroenterology clinic in a cancer centre. Between 2009 and 2013, 506 consecutive patients (54.5% male; age range: 20-91 years), were scanned. BAM/BAD was diagnosed in 215 (42.5%). It was mild in 25.6%, moderate in 29.3% and severe in 45.1%. Pelvic chemoradiation had induced BAM in > 50% of patients. BAM was also frequent after treatment for conditions not previously associated with BAM, such as anal and colorectal cancer, and was present in > 75% of patients referred after pancreatic surgery. It was also unexpectedly frequent in patients who were treated for malignancy outside the GI tract, such as breast cancer and haematological malignancy. BAM/BAD are very common and under-appreciated causes of GI symptoms after cancer treatment. Health professionals should have a low threshold in suspecting this condition, as diagnosis and treatment can significantly improve quality of life. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.

  3. Comparison study between fasting total serum bile acid and post prandial bile acid in hepatic diseases: a preliminary study.

    PubMed

    Boonyapisit, S; Lekhakula, S; Amornkittichareon, B; Shumnumsirivath, D

    1994-01-01

    Fasting bile acid, two-hour post prandial bile acid and other liver function tests (Bili, AST, ALT, ALB, Glob, ALP) were measured in 22 normal and 28 liver diseased patients. In normal volunteers, the mean value of fasting total serum bile acid (FTBA) and postprandial serum bile acid (PTBA) were 3.08 mumole/L (S.D. 1.65) range 0.21-6.26 mumol/L, and 8.07 mumole/L (S.D. 2.99) range 4.06-15.65 mumole/L. Comparison between FTBA, PTBA and other liver function tests in various liver diseases from this study the PTBA was not statistically significant superior to FTBA. Therefore, it is not necessary to do the PTBA at this time until more data is available.

  4. Kinetics for the synthetic bile acid 75-selenohomocholic acid-taurine in humans: comparison with (/sup 14/C)taurocholate

    SciTech Connect

    Jazrawi, R.P.; Ferraris, R.; Bridges, C.; Northfield, T.C.

    1988-07-01

    The apparent fractional turnover rate of the gamma-labeled bile acid analogue 75-selenohomocholic acid-taurine (75-SeHCAT) was assessed from decline in radioactivity over the gallbladder area on 4 successive days using a gamma-camera, and was compared in the same subjects with the fractional turnover rate of the corresponding natural bile acid, cholic acid-taurine, labeled with 14C ((14C)CAT) using the classical Lindstedt technique. Very similar results were obtained in 5 healthy individuals (coefficient of variation 4.8%, medians 0.35 and 0.34, respectively). By contrast, the fractional deconjugation rate assessed from zonal scanning of glycine- and taurine-conjugated bile acids on thin-layer chromatography was much less for 75-SeHCAT than for (14C)CAT (0.02 and 0.13, respectively; p less than 0.05). The fractional rate for deconjugation plus dehydroxylation was also determined by zonal scanning, and gave lower values for 75-SeHCAT than for (14C)CAT (0.02 and 0.12, respectively; p less than 0.05). There was a striking similarity between the fractional rate for deconjugation alone and that for deconjugation plus dehydroxylation for both bile acids in individual samples (r = 0.999, p less than 0.001), suggesting that these two processes might occur simultaneously and probably involve the same bacteria. We conclude that our scintiscanning technique provides an accurate, noninvasive method of measuring fractional turnover rate of a bile acid in humans, and that the finding that 75SeHCAT remains conjugated with taurine during enterohepatic recycling means that absorption should be specific for the ileal active transport site, thus rendering it an ideal substance for assessing ileal function.

  5. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids

    PubMed Central

    Townsley, Loni; Peach, Kelly C.; Navarro, Gabriel; Shikuma, Nicholas J.; Bray, Walter M.; Riener, Romina M.; Yildiz, Fitnat H.; Linington, Roger G.

    2016-01-01

    Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition, we describe the identification of taurine-conjugated bile acids as inhibitors of biofilm formation against both Vibrio cholerae and Pseudomonas aeruginosa. Taurocholic acid (1) was isolated from the fermentation broth of the fish microbiome-derived strain of Rhodococcus erythropolis and identified using standard NMR and MS methods. Screening of the twelve predominant human steroidal bile acid components revealed that a subset of these compounds can inhibit biofilm formation, induce detachment of preformed biofilms under static conditions, and that these compounds display distinct structure-activity relationships against V. cholerae and P. aeruginosa. Our findings highlight the significance of distinct bile acid components in the regulation of biofilm formation and dispersion in two different clinically relevant bacterial pathogens, and suggest that the bile acids, which are endogenous mammalian metabolites used to solubilize dietary fats, may also play a role in maintaining host health against bacterial infection. PMID:26992172

  6. A new, major C27 biliary bile acid in the red-winged tinamou (Rhynchotus rufescens):25R-1beta, 3alpha,7alpha-trihydroxy-5beta-cholestan-27-oic acid.

    PubMed

    Hagey, Lee R; Kakiyama, Genta; Muto, Akina; Iida, Takashi; Mushiake, Kumiko; Goto, Takaaki; Mano, Nariyasu; Goto, Junichi; Oliveira, Cleida A; Hofmann, Alan F

    2009-04-01

    The chemical structures of the three major bile acids present in the gallbladder bile of the Red-winged tinamou (Rhynchotus rufescens), an early evolving, ground-living bird related to ratites, were determined. Bile acids were isolated by preparative reversed-phase HPLC. Two of the compounds were identified as the taurine N-acylamidates of 25R-3alpha,7alpha-dihydroxy-5beta-cholestan-27-oic acid (constituting 22% of biliary bile acids) and 25R-3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-27-oic acid (constituting 51%). The remaining compound, constituting 21% of biliary bile acids, was an unknown C27 bile acid. Its structure was elucidated by LC/ESI-MS/MS and NMR and shown to be the taurine conjugate of 25R-1beta, 3alpha, 7alpha-trihydroxy-5beta-cholestan-27-oic acid, a C27 trihydroxy bile acid not previously reported. Although C27 bile acids with a 1beta-hydroxyl group have been identified as trace bile acids in the alligator, this is the first report of a major biliary C27 bile acid possessing a 1beta-hydroxyl group.

  7. The ileal bile acid transporter inhibitor A4250 decreases serum bile acids by interrupting the enterohepatic circulation.

    PubMed

    Graffner, H; Gillberg, P-G; Rikner, L; Marschall, H-U

    2016-01-01

    Reabsorption of bile acids from the intestine by ileal bile acid transporter is pivotal for the enterohepatic circulation of BAs and sterol homoeostasis. To assess tolerability and study, bile acid metabolism in a phase 1 trial with the selective ileal bile acid transporter inhibitor A4250. A randomised double-blind, single-ascending dose (SAD) and multiple-ascending-dose study consisting of five cohorts comprising 40 individuals with a single administration of A4250 (0.1, 0.3, 1, 3, or 10 mg) or placebo and three cohorts comprising 24 individuals with a 1-week administration of A4250 (1 or 3 mg once daily or 1.5 mg twice daily) or placebo. For the multiple-ascending-dose study, bile acids were measured by HPLC-MS in plasma and faeces, and fibroblast growth factor 19 (FGF19) and 7α-hydroxy-4-cholesten-3-one (C4) were measured in plasma. No serious adverse events occurred and all participants finished the trial per protocol. At the end of the multiple-ascending-dose study, plasma total bile acids and FGF19 decreased by 47% and 76%, respectively, at 3 mg/day (P < 0.01), and by 15% and 16%, respectively, at 1.5 mg twice daily (P < 0.05). Plasma C4 and faecal bile acids increased at all dose regimens, by 555%, 664%, 292% and 338%, 421%, 420%, respectively (P < 0.01-0.05). The primary bile acids cholic and chenodeoxycholic acids constituted the majority of faecal bile acids in the A4250-treated groups. A4250 is well tolerated. By blocking ileal bile acid transporter in the terminal ileum, it highly efficiently interrupts the enterohepatic circulation of BAs, and should be of benefit to patients with cholestatic liver diseases. Clinical Trial registration EudraCT 2013-001175-21. © 2015 John Wiley & Sons Ltd.

  8. Bile Acids Improve the Antimicrobial Effect of Rifaximin▿ †

    PubMed Central

    Darkoh, Charles; Lichtenberger, Lenard M.; Ajami, Nadim; Dial, Elizabeth J.; Jiang, Zhi-Dong; DuPont, Herbert L.

    2010-01-01

    Diarrhea is one of the most common infirmities affecting international travelers, occurring in 20 to 50% of persons from industrialized countries visiting developing regions. Enterotoxigenic Escherichia coli (ETEC) is the most common causative agent and is isolated from approximately half of the cases of traveler's diarrhea. Rifaximin, a largely water-insoluble, nonabsorbable (<0.4%) antibiotic that inhibits bacterial RNA synthesis, is approved for use for the treatment of traveler's diarrhea caused by diarrheagenic E. coli. However, the drug has minimal effect on the bacterial flora or the infecting E. coli strain in the aqueous environment of the colon. The purpose of the present study was to evaluate the antimicrobial effect and bioavailability of rifaximin in aqueous solution in the presence and absence of physiologic concentrations of bile acids. The methods used included growth measurement of ETEC (strain H10407), rifaximin solubility measurements, total bacterial protein determination, and assessment of the functional activity of rifaximin by monitoring inhibition of bacterial β-galactosidase expression. Solubility studies showed rifaximin to be 70- to 120-fold more soluble in bile acids (approximately 30% in 4 mM bile acids) than in aqueous solution. Addition of both purified bile acids and human bile to rifaximin at subinhibitory and inhibitory concentrations significantly improved the drug's anti-ETEC effect by 71% and 73%, respectively, after 4 h. This observation was confirmed by showing a decrease in the overall amount of total bacterial protein expressed during incubation of rifaximin plus bile acids. Rifaximin-treated samples containing bile acids inhibited the expression of ETEC β-galactosidase at a higher magnitude than samples that did not contain bile acids. The study provides data showing that bile acids solubilize rifaximin on a dose-response basis, increasing the drug's bioavailability and antimicrobial effect. These observations suggest

  9. Bile acids stimulate chloride secretion through CFTR and calcium-activated Cl- channels in Calu-3 airway epithelial cells.

    PubMed

    Hendrick, Siobhán M; Mroz, Magdalena S; Greene, Catherine M; Keely, Stephen J; Harvey, Brian J

    2014-09-01

    Bile acids resulting from the aspiration of gastroesophageal refluxate are often present in the lower airways of people with cystic fibrosis and other respiratory distress diseases. Surprisingly, there is little or no information on the modulation of airway epithelial ion transport by bile acids. The secretory effect of a variety of conjugated and unconjugated secondary bile acids was investigated in Calu-3 airway epithelial cells grown under an air-liquid interface and mounted in Ussing chambers. Electrogenic transepithelial ion transport was measured as short-circuit current (Isc). The taurine-conjugated secondary bile acid, taurodeoxycholic acid (TDCA), was found to be the most potent modulator of basal ion transport. Acute treatment (5 min) of Calu-3 cells with TDCA (25 μM) on the basolateral side caused a stimulation of Isc, and removal of extracellular Cl(-) abolished this response. TDCA produced an increase in the cystic fibrosis transmembrane conductance regulator (CFTR)-dependent current that was abolished by pretreatment with the CFTR inhibitor CFTRinh172. TDCA treatment also increased Cl(-) secretion through calcium-activated chloride (CaCC) channels and increased the Na(+)/K(+) pump current. Acute treatment with TDCA resulted in a rapid cellular influx of Ca(2+) and increased cAMP levels in Calu-3 cells. Bile acid receptor-selective activation with INT-777 revealed TGR5 localized at the basolateral membrane as the receptor involved in TDCA-induced Cl(-) secretion. In summary, we demonstrate for the first time that low concentrations of bile acids can modulate Cl(-) secretion in airway epithelial cells, and this effect is dependent on both the duration and sidedness of exposure to the bile acid.

  10. Metabolic effects of bile acids in the gut in health and disease.

    PubMed

    Boesjes, Marije; Brufau, Gemma

    2014-01-01

    In the last decade, it became clear that bile acids, in addition to their role in intestinal absorption of lipids and fat-soluble vitamins, are major regulators of metabolism. They activate signal transduction pathways through binding to the specific bile acid receptors TGR5 and FXR. Indirectly, bile acids influence metabolism via modification of the gut microbiota ecosystem. The relation between bile acid metabolism and gut microbiota composition is very complex whereas gut microbiota modulates bile acid structure, creating a complex bile acid pool consisting of a mixture of differentially structured species, bile acids alter gut microbiota by disturbing bacterial membrane integrity. In addition, to the effects on glucose and energy homeostasis, recent literature ascribed a role for bile acid signaling in control of inflammation and regulation of the nervous system. In this review, we discuss a selection of recent published studies describing the effects of intestinal bile acid signaling on health and disease.

  11. Metabolism of Cholesterol and Bile Acids by the Gut Microbiota

    PubMed Central

    Gérard, Philippe

    2013-01-01

    The human gastro-intestinal tract hosts a complex and diverse microbial community, whose collective genetic coding capacity vastly exceeds that of the human genome. As a consequence, the gut microbiota produces metabolites from a large range of molecules that host's enzymes are not able to convert. Among these molecules, two main classes of steroids, cholesterol and bile acids, denote two different examples of bacterial metabolism in the gut. Therefore, cholesterol is mainly converted into coprostanol, a non absorbable sterol which is excreted in the feces. Moreover, this conversion occurs in a part of the human population only. Conversely, the primary bile acids (cholic and chenodeoxycholic acids) are converted to over twenty different secondary bile acid metabolites by the gut microbiota. The main bile salt conversions, which appear in the gut of the whole human population, include deconjugation, oxidation and epimerization of hydroxyl groups at C3, C7 and C12, 7-dehydroxylation, esterification and desulfatation. If the metabolisms of cholesterol and bile acids by the gut microbiota are known for decades, their consequences on human health and disease are poorly understood and only start to be considered. PMID:25437605

  12. Bile acid receptors and nonalcoholic fatty liver disease

    PubMed Central

    Yuan, Liyun; Bambha, Kiran

    2015-01-01

    With the high prevalence of obesity, diabetes, and other features of the metabolic syndrome in United States, nonalcoholic fatty liver disease (NAFLD) has inevitably become a very prevalent chronic liver disease and is now emerging as one of the leading indications for liver transplantation. Insulin resistance and derangement of lipid metabolism, accompanied by activation of the pro-inflammatory response and fibrogenesis, are essential pathways in the development of the more clinically significant form of NAFLD, known as nonalcoholic steatohepatitis (NASH). Recent advances in the functional characterization of bile acid receptors, such as farnesoid X receptor (FXR) and transmembrane G protein-coupled receptor (TGR) 5, have provided further insight in the pathophysiology of NASH and have led to the development of potential therapeutic targets for NAFLD and NASH. Beyond maintaining bile acid metabolism, FXR and TGR5 also regulate lipid metabolism, maintain glucose homeostasis, increase energy expenditure, and ameliorate hepatic inflammation. These intriguing features have been exploited to develop bile acid analogues to target pathways in NAFLD and NASH pathogenesis. This review provides a brief overview of the pathogenesis of NAFLD and NASH, and then delves into the biological functions of bile acid receptors, particularly with respect to NASH pathogenesis, with a description of the associated experimental data, and, finally, we discuss the prospects of bile acid analogues in the treatment of NAFLD and NASH. PMID:26668692

  13. Metabolism of cholesterol and bile acids by the gut microbiota.

    PubMed

    Gérard, Philippe

    2013-12-30

    The human gastro-intestinal tract hosts a complex and diverse microbial community, whose collective genetic coding capacity vastly exceeds that of the human genome. As a consequence, the gut microbiota produces metabolites from a large range of molecules that host's enzymes are not able to convert. Among these molecules, two main classes of steroids, cholesterol and bile acids, denote two different examples of bacterial metabolism in the gut. Therefore, cholesterol is mainly converted into coprostanol, a non absorbable sterol which is excreted in the feces. Moreover, this conversion occurs in a part of the human population only. Conversely, the primary bile acids (cholic and chenodeoxycholic acids) are converted to over twenty different secondary bile acid metabolites by the gut microbiota. The main bile salt conversions, which appear in the gut of the whole human population, include deconjugation, oxidation and epimerization of hydroxyl groups at C3, C7 and C12, 7-dehydroxylation, esterification and desulfatation. If the metabolisms of cholesterol and bile acids by the gut microbiota are known for decades, their consequences on human health and disease are poorly understood and only start to be considered.

  14. Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism.

    PubMed

    Hu, X; Bonde, Y; Eggertsen, G; Rudling, M

    2014-01-01

    Bile acid (BA) synthesis is regulated by negative feedback end-product inhibition, initiated by farnesoid X receptors (FXRs) in liver and gut. Studies on cholic acid (CA)-free Cyp8b1(-/-) mice have concluded that CA is a potent suppressor of BA synthesis. Cyp8b1(-/-) mice have increased BA synthesis and an enlarged BA pool, a phenotype shared with bile-duct-ligated, antibiotics-administered and with germ-free mice. Studies on such mice have concluded BA synthesis is induced due to reduced hormonal signalling by fibroblast growth factor (FGF)15 from intestine to liver. A mutual finding in these models is that potent FXR-agonistic BAs are reduced. We hypothesized that the absence of the potent FXR agonist deoxycholic acid (DCA) may be important for the induction of BA synthesis in these situations. Two of these models were investigated, antibiotic treatment and Cyp8b1(-/-) mice and their combination. Secondary BA formation was inhibited by ampicillin (AMP) given to wild-type and Cyp8b1(-/-) mice. We then administered CA, chenodeoxycholic acid (CDCA) or DCA to AMP-treated Cyp8b1(-/-) mice. Our data show that the phenotype of AMP-treated wild-type mice resembles that of Cyp8b1(-/-) mice with fourfold induced Cyp7a1 expression, increased intestinal apical sodium-dependent BA transporter expression and increased hepatic BA levels. We also show that reductions in the FXR-agonistic BAs CDCA, CA, DCA or lithocholic acid cannot explain this phenotype; instead, it is likely due to increases in levels of α- and β-muricholic BAs and ursodeoxycholic acid, three FXR-antagonistic BAs. Our findings reveal a potent positive feedback mechanism for regulation of BA synthesis in mice that appears to be sufficient without endocrine effects of FGF15 on Cyp7a1. This mechanism will be fundamental in understanding BA metabolism in both mice and humans. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  15. Bile acids. 38. Conversion of 5 -cholestane-3 ,7 -diol to allo bile acids by the rat.

    PubMed

    Noll, B W; Doisy, E A; Elliott, W H

    1973-07-01

    5alpha-[4-(14)C, 3alpha-(3)H]Cholestane-3beta,7alpha-diol was prepared from individual samples of 5alpha-[3alpha-(3)H]cholestane-3beta,7alpha-diol and 5alpha-[4-(14)C]cholestane-3beta,7alpha-diol, each derived from 3beta-acetoxycholest-5-en-7-one. Bile was collected for 11 days from adult male rats, with cannulated bile ducts, that had received intraperitoneally 0.90-0.92 mg of the doubly labeled diol. Bile from the first 10 hr, containing 63% of the administered (14)C and 6% of the (3)H, was hydrolyzed, and the bile acids were separated by acetic acid partition chromatography. Allochenodeoxycholic and allocholic acids contained at least 20.6% and 48.6%, respectively, of the (14)C retained in the biliary acids. Small amounts of (14)C (2.5% and 1.9%, respectively) were present in the 3beta isomers of these acids, but the tritium content totaled more than half of that found in the bile acid fraction. No evidence was obtained for presence of the extensive quantities of the allomuricholates.

  16. Endogenous bile acid disposition in rat and human sandwich-cultured hepatocytes

    SciTech Connect

    Marion, Tracy L.; Perry, Cassandra H.; St Claire, Robert L.; Brouwer, Kim L.R.

    2012-05-15

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR{sup ®} technology, BAs were measured in cells + bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells + bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.9 μM in CTL rat and 183 ± 56 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.21 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na{sup +}-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. -- Highlights: ► Bile acids (BAs) were measured in rat and human sandwich-cultured hepatocytes (SCH). ► Cell and medium BA

  17. Physiological control of cholecystokinin release and pancreatic enzyme secretion by intraduodenal bile acids.

    PubMed Central

    Koop, I; Schindler, M; Bosshammer, A; Scheibner, J; Stange, E; Koop, H

    1996-01-01

    BACKGROUND: The physiological relevance of duodenal bile acids in the control of cholecystokinin release and pancreatic enzyme secretion is still unknown. AIMS: To provide a near physiological situation by perfusing a bile acid mixture mimicking the individual endogenous bile acid composition of the person under investigation. For maximal reduction of endogenous bile output the CCK-A receptor antagonist loxiglumide was infused intravenously. SUBJECTS AND METHODS: Seven healthy volunteers were studied on four different days by a duodenal marker perfusion technique. The individual bile acid composition in duodenal juice and test meal stimulated bile acid output was assessed on day 1. Bile acids were perfused at an amount of 30 or 100% as determined on day 1 in combination with the test meal in the presence or absence of loxiglumide. Pancreatic enzymes, bilirubin, and bile acid output were determined in duodenal juice. Plasma cholecystokinin (CCK) and plasma pancreatic polypeptide (PP) were measured radioimmunologically. RESULTS: Bile acid perfusion did not significantly alter stimulated pancreatic enzyme, bilirubin or bile acid output or plasma CCK. Loxiglumide did not alter basal CCK release but increased test meal stimulated CCK output fourfold (p < 0.05). The addition of bile acids to the test meal at a dose resembling 30% of bile acid output as determined on day 1 prevented this increase. Plasma PP concentration remained unchanged by bile acids and were mostly undetectable during loxiglumide infusion. CONCLUSIONS: The CCK producing cell is under constant suppression by intraduodenal bile acids which cannot be further enhanced by a physiological bile acid mixture. However, removal of duodenal bile acids by inhibition of gall bladder contraction unmasks this suppression leading to a dramatic increase in plasma CCK levels. As little as one third of postprandially released bile acids completely reverse this effect. Bile acids are the most important luminal regulator

  18. Bile acid malabsorption in chronic diarrhea: pathophysiology and treatment.

    PubMed

    Barkun, Alan N; Love, Jonathan; Gould, Michael; Pluta, Henryk; Steinhart, Hillary

    2013-11-01

    Bile acid malabsorption (BAM) is a common but frequently under-recognized cause of chronic diarrhea, with an estimated prevalence of 4% to 5%. The published literature for the period 1965 to 2012 was examined for articles regarding the pathophysiology and treatment of BAM to provide an overview of the management of BAM in gastroenterology practice. BAM is classified as type 1 (secondary to ileal dysfunction), type 2 (idiopathic) or type 3 (secondary to gastrointestinal disorders not associated with ileal dysfunction). The estimated prevalence of BAM is >90% in patients with resected Crohn disease (CD) and 11% to 52% of unresected CD patients (type 1); 33% in diarrhea-predominant irritable bowel syndrome (type 2); and is a frequent finding postcholecystectomy or postvagotomy (type 3). Investigations include BAM fecal bile acid assay, 23-seleno-25-homo-tauro-cholic acid (SeHCAT) testing and high-performance liquid chromatography of serum 7-α-OH-4-cholesten-3-one (C4), to determine the level of bile acid synthesis. A less time-consuming and expensive alternative in practice is an empirical trial of the bile acid sequestering agent cholestyramine. An estimated 70% to 96% of chronic diarrhea patients with BAM respond to short-course cholestyramine. Adverse effects include constipation, nausea, borborygmi, flatulence, bloating and abdominal pain. Other bile acid sequestering agents, such as colestipol and colesevelam, are currently being investigated for the treatment of BAM-associated diarrhea. BAM is a common cause of chronic diarrhea presenting in gastroenterology practice. In accordance with current guidelines, an empirical trial of a bile acid sequestering agent is warranted as part of the clinical workup to rule out BAM.

  19. Bile acid malabsorption in chronic diarrhea: Pathophysiology and treatment

    PubMed Central

    Barkun, Alan; Love, Jonathan; Gould, Michael; Pluta, Henryk; Steinhart, A Hillary

    2013-01-01

    BACKGROUND: Bile acid malabsorption (BAM) is a common but frequently under-recognized cause of chronic diarrhea, with an estimated prevalence of 4% to 5%. METHODS: The published literature for the period 1965 to 2012 was examined for articles regarding the pathophysiology and treatment of BAM to provide an overview of the management of BAM in gastroenterology practice. RESULTS: BAM is classified as type 1 (secondary to ileal dysfunction), type 2 (idiopathic) or type 3 (secondary to gastrointestinal disorders not associated with ileal dysfunction). The estimated prevalence of BAM is >90% in patients with resected Crohn disease (CD) and 11% to 52% of unresected CD patients (type 1); 33% in diarrhea-predominant irritable bowel syndrome (type 2); and is a frequent finding postcholecystectomy or postvagotomy (type 3). Investigations include BAM fecal bile acid assay, 23-seleno-25-homo-tauro-cholic acid (SeHCAT) testing and high-performance liquid chromatography of serum 7-α-OH-4-cholesten-3-one (C4), to determine the level of bile acid synthesis. A less time-consuming and expensive alternative in practice is an empirical trial of the bile acid sequestering agent cholestyramine. An estimated 70% to 96% of chronic diarrhea patients with BAM respond to short-course cholestyramine. Adverse effects include constipation, nausea, borborygmi, flatulence, bloating and abdominal pain. Other bile acid sequestering agents, such as colestipol and colesevelam, are currently being investigated for the treatment of BAM-associated diarrhea. CONCLUSIONS: BAM is a common cause of chronic diarrhea presenting in gastroenterology practice. In accordance with current guidelines, an empirical trial of a bile acid sequestering agent is warranted as part of the clinical workup to rule out BAM. PMID:24199211

  20. Fecal bile acids of black-footed ferrets

    USGS Publications Warehouse

    Richardson, Louise; Johnson, M.K.; Clark, T.W.; Schroder, M.H.

    1986-01-01

    Fecal bile acid characteristics have been used to identify scats to species of origin. Fecal bile acids in scats from 20 known black-footed ferrets ( Mustela nigripes ), 7 other known small carnivores, and 72 of unknown origin were analyzed to determine if this procedure could be used as a tool to verify ferret presence in an area. Seventeen ferret scats were suitable for analysis and had a mean fecal bile acid index of 156 ± 9. This was significantly different from mean indices for the other carnivores; however, substantial overlap among confidence intervals occurred for badgers, kit foxes, and especially long-tailed weasels. We conclude this method is not useful for making positive identifications if individual ferret scats and suggest that we may be able to definitively identify individual scats with reasonable confidence by using gas-liquid chromatography.

  1. Bile acid nuclear receptor FXR and digestive system diseases.

    PubMed

    Ding, Lili; Yang, Li; Wang, Zhengtao; Huang, Wendong

    2015-03-01

    Bile acids (BAs) are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases.

  2. Effect of common polymorphisms of the farnesoid X receptor and bile acid transporters on the pharmacokinetics of ursodeoxycholic acid.

    PubMed

    Hu, Miao; Fok, Benny S P; Wo, Siu-Kwan; Lee, Vincent H L; Zuo, Zhong; Tomlinson, Brian

    2016-01-01

    Ursodeoxycholic acid (UDCA), a natural, dihydroxy bile acid, promotes gallstone dissolution and has been attributed with several other beneficial effects. The farnesoid X receptor (FXR) may influence the pharmacokinetics of UDCA by modulating the expression of bile acid transporters. This exploratory study examined whether common functional polymorphisms in FXR and in bile acid transporter genes affect the pharmacokinetics of exogenous UDCA. Polymorphisms in genes for transporters involved in bile acid transport, solute carrier organic anion 1B1 (SLCO1B1) 388A>G and 521T>C, solute carrier 10A1 (SLC10A1) 800 C>T and ATP-binding cassette B11 (ABCB11) 1331T>C, and the FXR -1G>T polymorphism were genotyped in 26 male Chinese subjects who ingested single oral 500-mg doses of UDCA. Plasma concentrations of UDCA and its major conjugate metabolite glycoursodeoxycholic acid (GUDCA) were determined. The mean systemic exposure of UDCA was higher in the five subjects with one copy of the FXR -1G>T variant allele than in those homozygous for the wild-type allele (n = 21) (AUC0-24 h : 38.5 ± 28.2 vs. 20.9 ± 8.0 μg h/mL, P = 0.021), but this difference appeared mainly due to one outlier with the -1GT genotype and elevated baseline and post-treatment UDCA concentrations. After excluding the outlier, body weight was the only factor associated with plasma concentrations of UDCA and there were no significant associations with the other polymorphisms examined. None of the polymorphisms affected the pharmacokinetics of GUDCA. This study showed that the common polymorphisms in bile acid transporters had no significant effect on the pharmacokinetics of exogenous UDCA but an effect of the FXR polymorphism cannot be excluded.

  3. Hydrophobicity and retention coefficient of selected bile Acid oxo derivatives.

    PubMed

    Poša, Mihalj; Pilipović, Mladena Ana Lalić; Popović, Jovan

    2010-12-01

    Retention coefficients (k) of cholic acid and its keto derivatives are determined by means of Reversed Phase High Pressure Liquid Chromatography at different temperatures (303K, 309K, and 313K). At each studied temperature, retention factor decreases if the hydroxyl group in the cholic acid molecule replaces oxo group. In addition, the change of retention coefficient in a function of temperature (Δk/ΔT) is dominant for the cholic acid while by increasing the number of oxo groups it decreases. Introduction of an oxo group in a bile acid molecule leads to the lower hydrophobicity of the β side of the steroid nucleus. Because of that, less interaction happens between β side of the steroid nucleus and stationary phase. For dehydrocholic acid (three- oxo derivative), the value for Δk/ΔT shows an exception of this explanation. This suggests that in this molecule the planar polarity is disturbed. Partition coefficient K of nitrazepam (probe molecule) in micelles of bile acid salts at the examined temperatures shows a high linear correlation with retention factors of the selected bile acids. This indicates the importance of hydrophobic interactions in mixed micelles between the examined drug and bile acid salts. Haemolytic potential (erythrocyte haemolysis, log (Lys50)) represents measure of membranotoxicity of bile acids. In addition, it is shown that haemolytic potential correlates highly with the retention coefficient. All experiments that we conducted to obtain the values of K and log (Lys50) as well as their correlations with k, contribute to significance of retention coefficient as a measure of hydrophobicity in biopharmaceutical experiments.

  4. Description and simulation of a physiological pharmacokinetic model for the metabolism and enterohepatic circulation of bile acids in man. Cholic acid in healthy man.

    PubMed Central

    Hofmann, A F; Molino, G; Milanese, M; Belforte, G

    1983-01-01

    A multicompartmental pharmacokinetic model based on physiological principles, experimental data, and the standard mathematical principles of compartmental analysis has been constructed that fully describes the metabolism and enterohepatic cycling in man of cholic acid, a major bile acid. The model features compartments and linear transfer coefficients. The compartments are aggregated into nine spaces based on physiological considerations (liver, gallbladder, bile ducts, jejunum, ileum, colon, portal blood sinusoidal blood, and general circulation). The transfer coefficients are also categorized according to function: flow, i.e., emptying of gallbladder or intestinal spaces, and circulation of the blood; biotransformation, i.e., conjugation, deconjugation, or dehydroxylation; and transport, i.e., active or passive transport. The model is made time dependent by introducing meals, which trigger discrete increases in gallbladder emptying and intestinal flow. Each space contains three compartments. For cholic acid, these are unconjugated cholic acid, cholylglycine, and cholyltaurine. The model was then used with all existing experimental data to simulate cholic acid metabolism in healthy man over a 24-h period. Satisfactory agreement was obtained between simulated and experimental results for serum bile acid levels, hepatic bile acid secretion, and bile acid secretion into the intestine. The model was also used to classify 16 clinical instances in which the enterohepatic circulation of bile acids is altered by drugs or disease. The model can be extended to describe completely the metabolism and enterohepatic circulation of any bile acids in man in health and digestive disease. The model should also be broadly applicable to the description of the pharmacokinetics of all other drugs whose metabolism is similar to that of bile acids, i.e., drugs for which there are tissue and bacterial biotransformations, enterohepatic cycling, and appreciable first-pass clearance. Images

  5. A prospective study of faecal bile acids and colorectal cancer.

    PubMed

    Haines, A; Hill, M J; Thompson, M H; Owen, R W; Williams, R E; Meade, T W; Wilkes, H; Griffin, M

    2000-10-01

    A prospective study of 7079 people aged 45-74 recruited through general practices in South Wales, Herefordshire and Edinburgh, Scotland was undertaken to test the hypothesis that faecal bile acids are implicated in the causation of large bowel cancer. The population was recruited between 1974 and 1980 and the response rate for stool collection was 67%. Bile acid analyses were performed on those cases that presented by 1990. It was decided in advance to examine the hypothesis separately for left- and right-sided bowel cancer because of known epidemiological differences between the two sites and to exclude the cases presenting within 2 years of the stool sample from the analyses because the cancer could have been present at recruitment and might have possibly affected faecal bile acid concentrations. Each case (n = 51 left-sided and 8 right-sided) was matched with three controls by age (within 5 years), sex, place of residence and time of providing the stool sample (within 3 months). Statistical analyses using conditional logistic regression showed no significant differences between the left-sided cases and controls for any of the concentrations of individual bile acids, total bile acid concentrations, faecal neutral steroids, percentage bacterial conversion and the ratio of lithocholic acid to deoxycholic acid concentrations. There was a statistically significant (P = 0.021) association of the presence of chenodeoxycholic acid (5/8 samples) in the right-sided cases compared with the controls (3/23), odds ratio 6.26 (95% confidence interval 1.19, 32.84). A high proportion of primary bile acids has also been found in other studies of patients with a genetic predisposition to proximal bowel cancer, however this pattern may also occur in low risk groups, such as Indian vegetarians, suggesting that they may predispose to right-sided bowel cancer only in the presence of other, as yet unknown factors. If bile acids are involved in the causation of large bowel cancer, they

  6. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors.

    PubMed

    Brighton, Cheryl A; Rievaj, Juraj; Kuhre, Rune E; Glass, Leslie L; Schoonjans, Kristina; Holst, Jens J; Gribble, Fiona M; Reimann, Frank

    2015-11-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca(2+). In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca(2+) response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber-mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms.

  7. Solution structure of the supramolecular adduct between a liver cytosolic bile acid binding protein and a bile acid-based gadolinium(III)-chelate, a potential hepatospecific magnetic resonance imaging contrast agent.

    PubMed

    Tomaselli, Simona; Zanzoni, Serena; Ragona, Laura; Gianolio, Eliana; Aime, Silvio; Assfalg, Michael; Molinari, Henriette

    2008-11-13

    Bile acid-conjugated gadolinium chelates were shown to display promising features for the development of hepatospecific constrast agents for magnetic resonance imaging (MRI). The study of the pharmacokinetics of these compounds should address their possible interaction with the bile acid protein transporters. We have previously shown that a 5beta-cholanoic acid-based contrast agent is efficiently internalized in hepatocytes and is able to bind to a liver bile acid binding protein (BABP) in vitro. Here we report the solution structure of the adduct between a BABP and a gadolinium chelate/bile acid conjugate. The identification of unambiguous intermolecular distance restraints was possible through 3D edited/filtered NOESY-HSQC experiments, together with distance information derived from paramagnetic relaxation enhancements. These intermolecular contacts were used for the structure determination of the complex, using the data-driven docking software HADDOCK. The obtained results represent the starting point for the design of new and more efficient MRI contrast agents.

  8. The Conjugate Acid-Base Chart.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  9. The Conjugate Acid-Base Chart.

    ERIC Educational Resources Information Center

    Treptow, Richard S.

    1986-01-01

    Discusses the difficulties that beginning chemistry students have in understanding acid-base chemistry. Describes the use of conjugate acid-base charts in helping students visualize the conjugate relationship. Addresses chart construction, metal ions, buffers and pH titrations, and the organic functional groups and nonaqueous solvents. (TW)

  10. Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid.

    PubMed

    Wiemuth, Dominik; Sahin, Hacer; Lefèvre, Cathérine M T; Wasmuth, Hermann E; Gründer, Stefan

    2013-01-01

    Bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC gene family of unknown function. Rat BASIC (rBASIC) is inactive at rest. We have recently shown that cholangiocytes, the epithelial cells lining the bile ducts, are the main site of BASIC expression in the liver and identified bile acids, in particular hyo- and chenodeoxycholic acid, as agonists of rBASIC. Moreover, it seems that extracellular divalent cations stabilize the resting state of rBASIC, because removal of extracellular divalent cations opens the channel. In this addendum, we demonstrate that removal of extracellular divalent cations potentiates the activation of rBASIC by bile acids, suggesting an allosteric mechanism. Furthermore, we show that rBASIC is strongly activated by the anticholestatic bile acid ursodeoxycholic acid (UDCA), suggesting that BASIC might mediate part of the therapeutic effects of UDCA.

  11. Cholesterol-lowering effect of rice bran protein containing bile acid-binding proteins.

    PubMed

    Wang, Jilite; Shimada, Masaya; Kato, Yukina; Kusada, Mio; Nagaoka, Satoshi

    2015-01-01

    Dietary plant protein is well known to reduce serum cholesterol levels. Rice bran is a by-product of rice milling and is a good source of protein. The present study examined whether feeding rats a high-cholesterol diet containing 10% rice bran protein (RBP) for 10 d affected cholesterol metabolism. Rats fed dietary RBP had lower serum total cholesterol levels and increased excretion of fecal steroids, such as cholesterol and bile acids, than those fed dietary casein. In vitro assays showed that RBP strongly bound to taurocholate, and inhibited the micellar solubility of cholesterol, compared with casein. Moreover, the bile acid-binding proteins of the RBP were eluted by a chromatographic column conjugated with cholic acid, and one of them was identified as hypothetical protein OsJ_13801 (NCBI accession No. EAZ29742) using MALDI-TOF mass spectrometry analysis. These results suggest that the hypocholesterolemic action of the RBP may be caused by the bile acid-binding proteins.

  12. TUDCA: An Agonist of the Bile Acid Receptor GPBAR1/TGR5 With Anti-Inflammatory Effects in Microglial Cells.

    PubMed

    Yanguas-Casás, Natalia; Barreda-Manso, M Asunción; Nieto-Sampedro, Manuel; Romero-Ramírez, Lorenzo

    2017-08-01

    Bile acids are steroid acids found in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is neuroprotective in different animal models of stroke and neurological diseases. We have previously shown that TUDCA has anti-inflammatory effects on glial cell cultures and in a mouse model of acute neuroinflammation. We show now that microglial cells (central nervous system resident macrophages) express the G protein-coupled bile acid receptor 1/Takeda G protein-coupled receptor 5 (GPBAR1/TGR5) in vivo and in vitro. TUDCA binding to GPBAR1/TGR5 caused an increase in intracellular cAMP levels in microglia that induced anti-inflammatory markers, while reducing pro-inflammatory ones. This anti-inflammatory effect of TUDCA was inhibited by small interference RNA for GPBAR1/TGR5 receptor, as well as by treatment with a protein kinase A (PKA) inhibitor. In the mouse model of acute neuroinflammation, treating the animals with TUDCA was clearly anti-inflammatory. TUDCA biased the microglial phenotype in vivo and in vitro toward the anti-inflammatory. The bile acid receptor GPBAR1/TGR5 could be a new therapeutic target for pathologies coursing with neuroinflammation and microglia activation, such as traumatic brain injuries, stroke, or neurodegenerative diseases. TUDCA and other GPBAR1/TGR5 agonists need to be further investigated, to determine their potential in attenuating the neuropathologies associated with microglia activation. J. Cell. Physiol. 232: 2231-2245, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Bile acids, farnesoid X receptor, atherosclerosis and metabolic control.

    PubMed

    Kuipers, Folkert; Stroeve, Johanna H M; Caron, Sandrine; Staels, Bart

    2007-06-01

    Bile acids are amphiphilic molecules synthesized from cholesterol exclusively in the liver that are essential for effective absorption of dietary fat. In addition to this 'classical role', bile acids act as signalling molecules that control their own metabolism by activating the nuclear receptor, farnesoid X receptor. Recent work demonstrates that farnesoid X receptor exerts metabolic control beyond bile acid homeostasis, notably effects on HDL, triglyceride and glucose metabolism. Farnesoid X receptor influences insulin sensitivity of tissues that are not part of the enterohepatic circulation, for example, adipose tissue. Certain metabolic effects in the liver appear to be mediated via farnesoid X receptor-stimulated release of an intestinal growth factor. In addition, novel signalling pathways independent of farnesoid X receptor have been identified that may contribute to bile acid-mediated metabolic regulation. Farnesoid X receptor represents a potentially attractive target for treatment of various aspects of the metabolic syndrome and for prevention of atherosclerosis. Yet, in view of its pleiotropic effects and apparent species-specificity, it is evident that successful interference of the farnesoid X receptor signalling system will require the development of gene-specific and/or organ-specific farnesoid X receptor modulators and extensive testing in human models of disease.

  14. Peripheral serotonin enhances lipid metabolism by accelerating bile acid turnover.

    PubMed

    Watanabe, Hitoshi; Akasaka, Daisuke; Ogasawara, Hideki; Sato, Kan; Miyake, Masato; Saito, Kazuki; Takahashi, Yu; Kanaya, Takashi; Takakura, Ikuro; Hondo, Tetsuya; Chao, Guozheng; Rose, Michael T; Ohwada, Shyuichi; Watanabe, Kouichi; Yamaguchi, Takahiro; Aso, Hisashi

    2010-10-01

    Serotonin is synthesized by two distinct tryptophan hydroxylases, one in the brain and one in the periphery. The latter is known to be unable to cross the blood-brain barrier. These two serotonin systems have apparently independent functions, although the functions of peripheral serotonin have yet to be fully elucidated. In this study, we have investigated the physiological effect of peripheral serotonin on the concentrations of metabolites in the circulation and in the liver. After fasting, mice were ip injected with 1 mg serotonin. The plasma glucose concentration was significantly elevated between 60 and 270 min after the injection. In contrast, plasma triglyceride, cholesterol, and nonesterified fatty acid concentrations were decreased. The hepatic glycogen synthesis and concentrations were significantly higher at 240 min. At the same time, the hepatic triglyceride content was significantly lower than the basal levels noted before the serotonin injection, whereas the hepatic cholesterol content was significantly higher by 60 min after the injection. Furthermore, serotonin stimulated the contraction of the gallbladder and the excretion of bile. After the serotonin injection, there was a significant induction of apical sodium-dependent bile acid transporter expression, resulting in a decrease in the concentration of bile acids in the feces. Additionally, data are presented to show that the functions of serotonin are mediated through diverse serotonin receptor subtypes. These data indicate that peripheral serotonin accelerates the metabolism of lipid by increasing the concentration of bile acids in circulation.

  15. Comparison of endogenous and radiolabeled bile acid excretion in patients with idiopathic chronic diarrhea

    SciTech Connect

    Schiller, L.R.; Bilhartz, L.E.; Santa Ana, C.A. )

    1990-04-01

    Fecal recovery of radioactivity after ingestion of a bolus of radiolabeled bile acid is abnormally high in most patients with idiopathic chronic diarrhea. To evaluate the significance of this malabsorption, concurrent fecal excretion of both exogenous radiolabeled bile acid and endogenous (unlabeled) bile acid were measured in patients with idiopathic chronic diarrhea. Subjects received a 2.5-microCi oral dose of taurocholic acid labeled with 14C in the 24th position of the steroid moiety. Endogenous bile acid excretion was measured by a hydroxysteroid dehydrogenase assay on a concurrent 72-h stool collection. Both radiolabeled and endogenous bile acid excretion were abnormally high in most patients with chronic diarrhea compared with normal subjects, even when equivoluminous diarrhea was induced in normal subjects by ingestion of osmotically active solutions. The correlation between radiolabeled and endogenous bile acid excretion was good. However, neither radiolabeled nor endogenous bile acid excretion was as abnormal as is typically seen in patients with ileal resection, and none of these diarrhea patients responded to treatment with cholestyramine with stool weights less than 200 g. These results suggest (a) that this radiolabeled bile acid excretion test accurately reflects excess endogenous bile acid excretion; (b) that excess endogenous bile acid excretion is not caused by diarrhea per se; (c) that spontaneously occurring idiopathic chronic diarrhea is often associated with increased endogenous bile acid excretion; and (d) that bile acid malabsorption is not likely to be the primary cause of diarrhea in most of these patients.

  16. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium‐driven bile uptake

    PubMed Central

    Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.

    2016-01-01

    Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na

  17. Role of glucuronidation for hepatic detoxification and urinary elimination of toxic bile acids during biliary obstruction.

    PubMed

    Perreault, Martin; Białek, Andrzej; Trottier, Jocelyn; Verreault, Mélanie; Caron, Patrick; Milkiewicz, Piotr; Barbier, Olivier

    2013-01-01

    Biliary obstruction, a severe cholestatic condition, results in a huge accumulation of toxic bile acids (BA) in the liver. Glucuronidation, a conjugation reaction, is thought to protect the liver by both reducing hepatic BA toxicity and increasing their urinary elimination. The present study evaluates the contribution of each process in the overall BA detoxification by glucuronidation. Glucuronide (G), glycine, taurine conjugates, and unconjugated BAs were quantified in pre- and post-biliary stenting urine samples from 12 patients with biliary obstruction, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The same LC-MS/MS procedure was used to quantify intra- and extracellular BA-G in Hepatoma HepG2 cells. Bile acid-induced toxicity in HepG2 cells was evaluated using MTS reduction, caspase-3 and flow cytometry assays. When compared to post-treatment samples, pre-stenting urines were enriched in glucuronide-, taurine- and glycine-conjugated BAs. Biliary stenting increased the relative BA-G abundance in the urinary BA pool, and reduced the proportion of taurine- and glycine-conjugates. Lithocholic, deoxycholic and chenodeoxycholic acids were the most cytotoxic and pro-apoptotic/necrotic BAs for HepG2 cells. Other species, such as the cholic, hyocholic and hyodeoxycholic acids were nontoxic. All BA-G assayed were less toxic and displayed lower pro-apoptotic/necrotic effects than their unconjugated precursors, even if they were able to penetrate into HepG2 cells. Under severe cholestatic conditions, urinary excretion favors the elimination of amidated BAs, while glucuronidation allows the conversion of cytotoxic BAs into nontoxic derivatives.

  18. Role of Glucuronidation for Hepatic Detoxification and Urinary Elimination of Toxic Bile Acids during Biliary Obstruction

    PubMed Central

    Perreault, Martin; Białek, Andrzej; Trottier, Jocelyn; Verreault, Mélanie; Caron, Patrick; Milkiewicz, Piotr; Barbier, Olivier

    2013-01-01

    Biliary obstruction, a severe cholestatic condition, results in a huge accumulation of toxic bile acids (BA) in the liver. Glucuronidation, a conjugation reaction, is thought to protect the liver by both reducing hepatic BA toxicity and increasing their urinary elimination. The present study evaluates the contribution of each process in the overall BA detoxification by glucuronidation. Glucuronide (G), glycine, taurine conjugates, and unconjugated BAs were quantified in pre- and post-biliary stenting urine samples from 12 patients with biliary obstruction, using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The same LC-MS/MS procedure was used to quantify intra- and extracellular BA-G in Hepatoma HepG2 cells. Bile acid-induced toxicity in HepG2 cells was evaluated using MTS reduction, caspase-3 and flow cytometry assays. When compared to post-treatment samples, pre-stenting urines were enriched in glucuronide-, taurine- and glycine-conjugated BAs. Biliary stenting increased the relative BA-G abundance in the urinary BA pool, and reduced the proportion of taurine- and glycine-conjugates. Lithocholic, deoxycholic and chenodeoxycholic acids were the most cytotoxic and pro-apoptotic/necrotic BAs for HepG2 cells. Other species, such as the cholic, hyocholic and hyodeoxycholic acids were nontoxic. All BA-G assayed were less toxic and displayed lower pro-apoptotic/necrotic effects than their unconjugated precursors, even if they were able to penetrate into HepG2 cells. Under severe cholestatic conditions, urinary excretion favors the elimination of amidated BAs, while glucuronidation allows the conversion of cytotoxic BAs into nontoxic derivatives. PMID:24244729

  19. Tauroursodeoxycholic acid protects bile acid homeostasis under inflammatory conditions and dampens Crohn's disease-like ileitis.

    PubMed

    Van den Bossche, Lien; Borsboom, Daniel; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Devisscher, Lindsey; Hindryckx, Pieter; De Vos, Martine; Laukens, Debby

    2017-02-06

    Bile acids regulate the expression of intestinal bile acid transporters and are natural ligands for nuclear receptors controlling inflammation. Accumulating evidence suggests that signaling through these receptors is impaired in inflammatory bowel disease. We investigated whether tauroursodeoxycholic acid (TUDCA), a secondary bile acid with cytoprotective properties, regulates ileal nuclear receptor and bile acid transporter expression and assessed its therapeutic potential in an experimental model of Crohn's disease (CD). Gene expression of the nuclear receptors farnesoid X receptor, pregnane X receptor and vitamin D receptor and the bile acid transporters apical sodium-dependent bile acid transporter and organic solute transporter α and β was analyzed in Caco-2 cell monolayers exposed to tumor necrosis factor (TNF)α, in ileal tissue of TNF(ΔARE/WT) mice and in inflamed ileal biopsies from CD patients by quantitative real-time polymerase chain reaction. TNF(ΔARE/WT) mice and wild-type littermates were treated with TUDCA or placebo for 11 weeks and ileal histopathology and expression of the aforementioned genes were determined. Exposing Caco-2 cell monolayers to TNFα impaired the mRNA expression of nuclear receptors and bile acid transporters, whereas co-incubation with TUDCA antagonized their downregulation. TNF(ΔARE/WT) mice displayed altered ileal bile acid homeostasis that mimicked the situation in human CD ileitis. Administration of TUDCA attenuated ileitis and alleviated the downregulation of nuclear receptors and bile acid transporters in these mice. These results show that TUDCA protects bile acid homeostasis under inflammatory conditions and suppresses CD-like ileitis. Together with previous observations showing similar efficacy in experimental colitis, we conclude that TUDCA could be a promising therapeutic agent for inflammatory bowel disease, warranting a clinical trial.Laboratory Investigation advance online publication, 6 February 2017; doi:10

  20. Endogenous Bile Acid Disposition in Rat and Human Sandwich-Cultured Hepatocytes

    PubMed Central

    Marion, Tracy L.; Perry, Cassandra H.; St. Claire, Robert L.; Brouwer, Kim L. R.

    2013-01-01

    Sandwich-cultured hepatocytes (SCH) are used commonly to investigate hepatic transport protein-mediated uptake and biliary excretion of substrates. However, little is known about the disposition of endogenous bile acids (BAs) in SCH. In this study, four endogenous conjugated BAs common to rats and humans [taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), and glycochenodeoxycholic acid (GCDCA)], as well as two BA species specific to rodents (α- and β-tauromuricholic acid; α/β TMCA), were profiled in primary rat and human SCH. Using B-CLEAR® technology, BAs were measured in cells+bile canaliculi, cells, and medium of SCH by LC-MS/MS. Results indicated that, just as in vivo, taurine-conjugated BA species were predominant in rat SCH, while glycine-conjugated BAs were predominant in human SCH. Total intracellular BAs remained relatively constant over days in culture in rat SCH. Total BAs in control (CTL) cells+bile, cells, and medium were approximately 3.4, 2.9, and 8.3-fold greater in human than in rat. The estimated intracellular concentrations of the measured total BAs were 64.3 ± 5.85 μM in CTL rat and 183 ± 55.6 μM in CTL human SCH, while medium concentrations of the total BAs measured were 1.16 ± 0.210 μM in CTL rat SCH and 9.61 ± 6.36 μM in CTL human SCH. Treatment of cells for 24 h with 10 μM troglitazone (TRO), an inhibitor of the bile salt export pump (BSEP) and the Na+-taurocholate cotransporting polypeptide (NTCP), had no significant effect on endogenous BAs measured at the end of the 24-h culture period, potentially due to compensatory mechanisms that maintain BA homeostasis. These data demonstrate that BAs in SCH are similar to in vivo, and that SCH may be a useful in vitro model to study alterations in BA disposition if species differences are taken into account. PMID:22342602

  1. Valproic acid-associated vanishing bile duct syndrome.

    PubMed

    Gökçe, Selim; Durmaz, Ozlem; Celtik, Coskun; Aydogan, Aysen; Güllüoglu, Mine; Sökücü, Semra

    2010-07-01

    Hepatotoxicity as a result of valproic acid therapy is well documented. Elevation in aminotransferase activities is rarely associated with symptoms. It sometimes manifests as acute liver failure. Here, we report a 8-year-old girl who was referred for unresolving jaundice and itching for 3 months. Past history revealed afebrile convulsion 5 months previously and beginning of valproic acid treatment. Valproic acid was discontinued after the development of jaundice. Physical examination revealed ichterus, xanthomas on extensor surfaces of extremities, and hepatomegaly without any sign of chronic liver disease. Total and direct bilirubin levels were 20.2 and 12.9 mg/dL, respectively. Enzyme activities indicating cholestasis were increased together with blood cholesterol. Tests for infectious and autoimmune, metabolic, and genetic disorders were not informative. Liver biopsy revealed portal inflammation, severe bile duct loss, and cholestasis. The patient was considered to have valproic acid-associated vanishing bile duct syndrome, which has not been reported previously.

  2. A novel primary bile acid in the Shoebill stork and herons and its phylogenetic significance.

    PubMed

    Hagey, L R; Schteingart, C D; Ton-Nu, H-T; Hofmann, A F

    2002-05-01

    The Shoebill stork, an enigma phylogenetically, was found to contain as its dominant biliary bile acid 16alpha-hydroxychenodeoxycholic acid, a heretofore undescribed bile acid. The bile acid occurred as its taurine N-acyl amidate; structure was established by nuclear magnetic resonance (NMR) and mass spectrometry (MS). A search for this novel bile acid in other Ciconiiformes showed that it constituted >92% of biliary bile acids in five of nine herons in the Ardidae, but was absent in all other families (Ciconiidae, Threskiornithidae, Scopidae, Phoenicopteridae). The presence of this biochemical trait in the Shoebill stork and certain herons suggests that these birds are closely related.

  3. Impact of Dry Solids and Bile Acid Concentrations on Bile Acid Binding Capacity of Extruded Oat Cereals

    USDA-ARS?s Scientific Manuscript database

    Extruded breakfast cereals (EBC), processed from two oat lines, N979-5-2-4 (N979) and ‘Jim’, with beta-glucan concentrations of 8.7 and 4.9%, respectively, were used to determine the impact of dry solids (DS) and bile acid (BA) concentrations on in vitro BA binding efficiency. A full fractional fact...

  4. Deoxycholate Bile Acid Directed Synthesis of Branched Au Nanostructures for Near Infrared Photothermal Ablation

    PubMed Central

    Kim, Dong-Hyun; Larson, Andrew C.

    2015-01-01

    We report an approach for simple, reproducible and high-yield synthesis of branched GNPs directed by deoxycholate bile acid supramolecular aggregates in Au solution. A growth process involving stepwise trapping of the GNP seeds and Au ions in the deoxycholate bile acid solution yields multiple-branched GNPs. Upon NIR laser irradiation strong NIR absorption for branched GNPs induced photothermal-heating to destroy tumor cells. Subsequently, these branched GNPs were bio-functionalized with cRGD cell penetrating-targeting peptides for photothermal cancer treatment applications. Branched GNPs conjugated with cRGD peptides enhanced internalization of the branched GNPs in BxPC3 human pancreatic adenocarcinoma cells and effectively ablated BxPC3 cells when irradiated with a NIR laser (808 nm). Their potential use as photothermal transducing agents was demonstrated in in vivo settings using a pancreatic cancer xenograft model. The tumors were effectively ablated with cRGD-branched GNPs injection and laser exposure without any observation of tumor recurrence. This firstly reported method for deoxycholate bile acid directed synthesis of branched GNPs opens new possibilities for the production of strong NIR absorbing nanostructures for selective nanophotothermolisys of cancer cells and the further design of novel materials with customized spectral and structural properties for broader applications. PMID:25934288

  5. Deoxycholate bile acid directed synthesis of branched Au nanostructures for near infrared photothermal ablation.

    PubMed

    Kim, Dong-Hyun; Larson, Andrew C

    2015-07-01

    We report an approach for simple, reproducible and high-yield synthesis of branched GNPs directed by deoxycholate bile acid supramolecular aggregates in Au solution. A growth process involving stepwise trapping of the GNP seeds and Au ions in the deoxycholate bile acid solution yields multiple-branched GNPs. Upon NIR laser irradiation strong NIR absorption for branched GNPs induced photothermal-heating to destroy tumor cells. Subsequently, these branched GNPs were biofunctionalized with cRGD cell penetrating-targeting peptides for photothermal cancer treatment applications. Branched GNPs conjugated with cRGD peptides enhanced internalization of the branched GNPs in BxPC3 human pancreatic adenocarcinoma cells and effectively ablated BxPC3 cells when irradiated with a NIR laser (808 nm). Their potential use as photothermal transducing agents was demonstrated in in vivo settings using a pancreatic cancer xenograft model. The tumors were effectively ablated with cRGD-branched GNPs injection and laser exposure without any observation of tumor recurrence. This firstly reported method for deoxycholate bile acid directed synthesis of branched GNPs opens new possibilities for the production of strong NIR absorbing nanostructures for selective nano-photothermolysis of cancer cells and the further design of novel materials with customized spectral and structural properties for broader applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Elevated bile acids in newborns with Biliary Atresia (BA).

    PubMed

    Zhou, Kejun; Lin, Na; Xiao, Yongtao; Wang, Yang; Wen, Jie; Zou, Gang-Ming; Gu, Xuefan; Cai, Wei

    2012-01-01

    Biliary Atresia (BA), a result from inflammatory destruction of the intrahepatic and extrahepatic bile ducts, is a severe hepatobiliary disorder unique to infancy. Early diagnosis and Kasai operation greatly improve the outcome of BA patients, which encourages the development of early screening methods. Using HPLC coupled tandem mass spectrometry, we detected primary bile acids content in dried blood spots obtained from 8 BA infants, 17 neonatal jaundice and 292 comparison infants at 3-4 days of life. Taurocholate (TC) was significantly elevated in biliary atresia infants (0.98 ± 0.62 µmol/L) compared to neonatal jaundice (0.47 ± 0.30 µmol/L) and comparison infants (0.43 ± 0.40 µmol/L), with p=0.0231 and p=0.0016 respectively. The area under receiver operating characteristic (ROC) curve for TC to discriminate BA and comparison infants was 0.82 (95% confidence interval: 0.72-0.92). A cutoff of 0.63 µmol/L produced a sensitivity of 79.1% and specificity of 62.5%. The concentrations of total bile acids were also raised significantly in BA compared to comparison infants (6.62 ± 3.89 µmol/L vs 3.81 ± 3.06 µmol/L, p=0.0162), with the area under ROC curve of 0.75 (95% confidence interval: 0.61-0.89). No significant difference was found between the bile acids of neonatal jaundice and that of comparison infants. The early increase of bile acids indicates the presentation of BA in the immediate newborn period and the possibility of TC as newborn screening marker.

  7. Faecal pH, bile acid and sterol concentrations in premenopausal Indian and white vegetarians compared with white omnivores.

    PubMed

    Reddy, S; Sanders, T A; Owen, R W; Thompson, M H

    1998-06-01

    Faecal bulk, pH, water content, the concentrations of neutral sterols and bile acids and dietary intakes were measured in twenty-two Indian vegetarian, twenty-two white omnivorous and eighteen white vegetarian premenopausal women. Faecal bulk and water content were greater and pH lower in the Indian vegetarians. Total faecal animal sterol and coprostanol concentrations expressed on a dry-weight basis were lower in the vegetarians compared with the omnivores. The faecal sterol concentrations were correlated with dietary cholesterol intake. Primary bile acids were detected in six Indian vegetarians, two white vegetarians and two white omnivores; secondary bile acids were detected in all the white omnivores and vegetarian subjects but not in two of the Indian vegetarians. Total faecal free bile acid and conjugated bile acid concentrations were lower in the white vegetarians compared with the omnivores. Faecal lithocholic acid concentrations were lower in both Indian and white vegetarians. The lithocholic: deoxycholic acid ratio and coprostanol: total animal sterols ratio were significantly lower in the Indian vegetarians compared with the omnivores. Both ratios were positively correlated with faecal pH. Stepwise multiple regression analyses were undertaken in order to identify which nutrients influenced faecal pH, lithocholic and deoxycholic acid concentrations. The intakes of starch and dietary fibre were negatively associated with faecal concentrations of lithocholic and deoxycholic acid. Starch intake alone was negatively associated with faecal pH. The results of this study confirm that diets high in dietary fibre decrease faecal bile acid concentrations and suggest that the complex carbohydrates present in Indian vegetarian diets influence faecal pH and inhibit the degradation of faecal steroids.

  8. Oligomeric bile acid-mediated oral delivery of low molecular weight heparin.

    PubMed

    Al-Hilal, Taslim A; Park, Jooho; Alam, Farzana; Chung, Seung Woo; Park, Jin Woo; Kim, Kwangmeyung; Kwon, Ick Chan; Kim, In-San; Kim, Sang Yoon; Byun, Youngro

    2014-02-10

    Intestinal transporters are limited to the transport of small molecular substrates. Here, we describe the development of apical sodium-dependent bile acid transporter (ASBT)-targeted high-affinity oligomeric bile acid substrates that mediate the transmembrane transport of low molecular weight heparin (LMWH). Several oligomers of deoxycholic acid (oligoDOCA) were synthesized to investigate the substrate specificity of ASBT. To see the binding of oligoDOCA on the substrate-binding pocket of ASBT, molecular docking was used and the dissociation rate constants (KD) were measured using surface plasmon resonance. The KD for tetrameric DOCA (tetraDOCA) was 50-fold lower than that for monomeric DOCA, because tetraDOCA interacted with several hydrophobic grooves in the substrate-binding pocket of ASBT. The synthesized oligoDOCA compounds were subsequently chemically conjugated to macromolecular LMWH. In vitro, tetraDOCA-conjugated LMWH (LHe-tetraD) had highest selectivity for ASBT during its transport. Orally administered LHe-tetraD showed remarkable systemic anticoagulation activity and high oral bioavailability of 33.5±3.2% and 19.9±2.5% in rats and monkeys, respectively. Notably, LHe-tetraD successfully prevented thrombosis in a rat model of deep vein thrombosis. These results represent a major advancement in ASBT-mediated LMWH delivery and may facilitate administration of many important therapeutic macromolecules through a non-invasive oral route.

  9. Molecular mechanisms of altered bile acid homeostasis in organic solute transporter-alpha knockout mice.

    PubMed

    Lan, Tian; Haywood, Jamie; Rao, Anuradha; Dawson, Paul A

    2011-01-01

    Mutations in the apical sodium-dependent bile acid transporter (SLC10A2) block intestinal bile acid absorption, resulting in a compensatory increase in hepatic bile acid synthesis. Inactivation of the basolateral membrane bile acid transporter (OSTα-OSTβ) also impairs intestinal bile acid absorption, but hepatic bile acid synthesis was paradoxically repressed. We hypothesized that the altered bile acid homeostasis resulted from ileal trapping of bile acids that act via the farnesoid X receptor (FXR) to induce overexpression of FGF15. To test this hypothesis, we investigated whether blocking FXR signaling would reverse the bile acid synthesis phenotype in Ostα null mice. The corresponding null mice were crossbred to generate OstαFxr double-null mice. All experiments compared wild-type, Ostα, Fxr and OstαFxr null littermates. Analysis of the in vivo phenotype included measurements of bile acid fecal excretion, pool size and composition. Hepatic and intestinal gene and protein expression were also examined. OstαFxr null mice exhibited increased bile acid fecal excretion and pool size, and decreased bile acid pool hydrophobicity, as compared with Ostα null mice. Inactivation of FXR reversed the increase in ileal total FGF15 expression, which was associated with a significant increase in hepatic Cyp7a1 expression. Inactivation of FXR largely unmasked the bile acid malabsorption phenotype and corrected the bile acid homeostasis defect in Ostα null mice, suggesting that inappropriate activation of the FXR-FGF15-FGFR4 pathway partially underlies this phenotype. Intestinal morphological changes and reduced apical sodium-dependent bile acid transporter expression were maintained in Ostα(-/-)Fxr(-/-) mice, indicating that FXR is not required for these adaptive responses. Copyright © 2011 S. Karger AG, Basel.

  10. Bile Acid Pool Dynamics in Progressive Familial Intrahepatic Cholestasis with Partial External Bile Diversion

    PubMed Central

    Jericho, Hilary Smith; Kaurs, Elizabeth; Boverhof, Renze; Knisely, Alex; Shneider, Benjamin L; Verkade, Henkjan J; Whitington, Peter F

    2015-01-01

    Objectives Partial external bile diversion (PEBD) is an established therapy for low-GGT Progressive Familial Intrahepatic Cholestasis (PFIC). This study sought to determine if the dynamics of the cholic acid (CA) and chenodeoxycholic acid (CDCA) pools in low-GGT-PFIC subjects with successful PEBD were equivalent to those achieved with successful liver transplantation (LTX). Methods The kinetics of CA and CDCA metabolism were measured by stable isotope dilution in plasma samples in 5 PEBD subjects all with intact canalicular BSEP expression and compared to low-GGT-PFIC subjects with successful LTX. Stomal loss of bile acids was measured in PEBD subjects. Results The fractional turnover rate for CA in the PEBD group ranged from 0.5 to 4.2 d−1 (LTX group, range 0.2 – 0.9 d−1, p = 0.076) and for CDCA from 0.7 to 4.5 d−1 (LTX group 0.3 – 0.4 d−1, p = 0.009). The CA and CDCA pool sizes were equivalent between groups; however pool composition in PEBD was somewhat more hydrophilic. The CA/CDCA ratio in PEBD ranged from 0.9 to 19.5, whereas in LTX it ranged from 0.5 to 2.6. Synthesis rates computed from isotope dilution correlated well with timed output for both CA: r2 = 0.760, p = 0.024 and CDCA: r2 = 0.690, p = 0.021. Conclusions PEBD results in bile acid fractional turnover rates greater than LTX, pool sizes equivalent to LTX and pool composition that is at least as hydrophilic as produced by LTX. PMID:25383786

  11. In Vitro Bile Acid Binding Capacities of Red Leaf Lettuce and Cruciferous Vegetables.

    PubMed

    Yang, Isabelle F; Jayaprakasha, Guddadarangavvanahally K; Patil, Bhimanagouda S

    2017-09-13

    In the present study, we tested the bile acid binding capacity of red leaf lettuce, red cabbage, red kale, green kale, and Brussels sprouts through in vitro digestion process by simulating mouth, gastric, and intestinal digestion using six bile acids at physiological pH. Green and red kale exhibited significantly higher (86.5 ± 2.9 and 89.7 ± 0.9%, respectively) bile acid binding capacity compared to the other samples. Further, three different compositions of bile acids were tested to understand the effect on different health conditions. To predict the optimal dose for bile acid binding, we established a logistic relationship between kale dose and bile acid binding capacity. The results indicated that kale showed significantly higher bile acid binding capacity (82.5 ± 2.9% equivalent to 72.06 mg) at 1.5 g sample and remained constant up to 2.5 g. In addition, minimally processed (microwaved 3 min or steamed 8 min) green kale showed significantly enhanced bile acid binding capacity (91.1 ± 0.3 and 90.2 ± 0.7%, respectively) compared to lyophilized kale (85.5 ± 0.24%). Among the six bile acids tested, kale preferentially bound hydrophobic bile acids chenodeoxycholic acid and deoxycholic acid. Therefore, regular consumption of kale, especially minimally processed kale, can help excrete more bile acids and, thus, may lower the risk of hypercholesterolemia.

  12. A comparative study of the sulfation of bile acids and a bile alcohol by the Zebra danio (Danio rerio) and human cytosolic sulfotransferases (SULTs)

    PubMed Central

    Kurogi, Katsuhisa; Krasowski, Matthew D.; Injeti, Elisha; Liu, Ming-Yih; Williams, Frederick E.; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2012-01-01

    The current study was designed to examine the sulfation of bile acids and bile alcohols by the Zebra danio (Danio rerio) SULTs in comparison with human SULTs. A systematic analysis using the fifteen Zebra danio SULTs revealed that SULT3 ST2 and SULT3 ST3 were the major bile acid/alcohol-sulfating SULTs. Among the eleven human SULTs, only SULT2A1 was found to be capable of sulfating bile acids and bile alcohols. To further investigate the sulfation of bile acids and bile alcohols by the two Zebra danio SULT3 STs and the human SULT2A1, pH-dependence and kinetics of the sulfation of bile acids/alcohols were analyzed. pH-dependence experiments showed that the mechanisms underlying substrate recognition for the sulfation of lithocholic acid (a bile acid) and 5α-petromyzonol (a bile alcohol) differed between the human SULT2A1 and the Zebra danio SULT3 ST2 and ST3. Kinetic analysis indicated that both the two Zebra danio SULT3 STs preferred petromyzonol as substrate compared to bile acids. In contrast, the human SULT2A1 was more catalytically efficient toward lithocholic acid than petromyzonol. Collectively, the results imply that the Zebra danio and human SULTs have evolved to serve for the sulfation of, respectively, bile alcohols and bile acids, matching the cholanoid profile in these two vertebrate species. PMID:21839837

  13. A comparative study of the sulfation of bile acids and a bile alcohol by the Zebra danio (Danio rerio) and human cytosolic sulfotransferases (SULTs).

    PubMed

    Kurogi, Katsuhisa; Krasowski, Matthew D; Injeti, Elisha; Liu, Ming-Yih; Williams, Frederick E; Sakakibara, Yoichi; Suiko, Masahito; Liu, Ming-Cheh

    2011-11-01

    The current study was designed to examine the sulfation of bile acids and bile alcohols by the Zebra danio (Danio rerio) SULTs in comparison with human SULTs. A systematic analysis using the fifteen Zebra danio SULTs revealed that SULT3 ST2 and SULT3 ST3 were the major bile acid/alcohol-sulfating SULTs. Among the eleven human SULTs, only SULT2A1 was found to be capable of sulfating bile acids and bile alcohols. To further investigate the sulfation of bile acids and bile alcohols by the two Zebra danio SULT3 STs and the human SULT2A1, pH-dependence and kinetics of the sulfation of bile acids/alcohols were analyzed. pH-dependence experiments showed that the mechanisms underlying substrate recognition for the sulfation of lithocholic acid (a bile acid) and 5α-petromyzonol (a bile alcohol) differed between the human SULT2A1 and the Zebra danio SULT3 ST2 and ST3. Kinetic analysis indicated that both the two Zebra danio SULT3 STs preferred petromyzonol as substrate compared to bile acids. In contrast, the human SULT2A1 was more catalytically efficient toward lithocholic acid than petromyzonol. Collectively, the results imply that the Zebra danio and human SULTs have evolved to serve for the sulfation of, respectively, bile alcohols and bile acids, matching the cholanoid profile in these two vertebrate species. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Conjugated linoleic acid pork research.

    PubMed

    Dugan, Michael E R; Aalhus, Jennifer L; Kramer, John K G

    2004-06-01

    The driving force behind most conjugated linoleic acid (CLA) research in swine has been related to potential improvements in animal production. Early work that used rodent models indicated that feeding CLA could potentially reduce body fat, increase lean content, increase growth rate, and improve feed conversion efficiency. Producer-backed funding organizations were, therefore, receptive to proposals to extend this research to pigs, and many studies have been completed worldwide. In general, improvements in body composition were found, but evidence indicating that CLA improves growth rate or feed conversion was limited. Inclusion of CLA into pig diets was, however, shown to increase muscle marbling fat and fat hardness, and both of these characteristics have the potential to increase carcass value. Currently, Badische Anilin- & Soda-Fabrik AG (BASF) has the international marketing license to include synthetic CLA in animal feeds, but to date this practice is not approved in Canada or the United States. If and when approval is granted, the next step in realizing CLA's economic potential would be to seek approval for claiming CLA enrichment in pork and pork products. Given the ability of swine to accumulate relatively high amounts of CLA in their tissues, pork and pork products could become an important vehicle for delivery of physiologically significant amounts of CLA to consumers.

  15. Bile salts of the green turtle Chelonia mydas (L.)

    PubMed Central

    Haslewood, G A; Ikawa, S; Tökés, L; Wong, D

    1978-01-01

    1. Bile salts of the green turtle Chelonia mydas (L.) were analysed as completely as possible. 2. They consist of taurine conjugates of 3 alpha, 7 alpha, 12 alpha, 22 xi-tetrahydroxy-5 beta-cholestan-26-oic acid (tetrahydroxysterocholanic acid) and 3 alpha 12 alpha, 22 xi-trihydroxy-5 beta-cholestan-26-oic acid, with minor amounts of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5beta-cholan-24-oic acid (cholic acid), 3alpha, 12 alpha-dihydroxy-5beta-cholan-24-oic acid (deoxycholic acid) and possibly other bile acids. 3. Cholic acid and deoxycholic acid represent the first known examples of bile acids common to chelonians and other animal forms: they may indicate independent evolution in chelonians to C24 bile acids. 4. The discovery of a 7-deoxy C27 bile acid is the first evidence that C27 bile acids or their conjugates have an enterohepatic circulation. PMID:656052

  16. Bile acids are new products of a marine bacterium, Myroides sp. strain SM1.

    PubMed

    Maneerat, Suppasil; Nitoda, Teruhiko; Kanzaki, Hiroshi; Kawai, Fusako

    2005-06-01

    Strain SM1 was isolated as a biosurfactant-producing microorganism from seawater and presumptively identified as Myroides sp., based on morphology, biochemical characteristics and 16S rDNA sequence. The strain produced surface-active compounds in marine broth, which were purified, using emulsification activity for n-hexadecane as an indicator. The purified compounds were identified by thin-layer chromatography, (1)H- and (13)C-NMR spectra and fast atom bombardment mass spectrometry as cholic acid, deoxycholic acid and their glycine conjugates. Type strains of the genus Myroides, M. odoratus JCM7458 and M. odoramitimus JCM7460, also produced these compounds. Myroides sp. strain SM1 possessed a biosynthetic route to cholic acid from cholesterol. Thus, bile acids were found as new products of prokaryotic cells, genus Myroides.

  17. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242

    PubMed Central

    Martoni, Christopher J; Labbé, Alain; Ganopolsky, Jorge G; Prakash, Satya; Jones, Mitchell L

    2015-01-01

    The size and composition of the circulating bile acid (BA) pool are important factors in regulating the human gut microbiota. Disrupted regulation of BA metabolism is implicated in several chronic diseases. Bile salt hydrolase (BSH)-active Lactobacillus reuteri NCIMB 30242, previously shown to decrease LDL-cholesterol and increase circulating BA, was investigated for its dose response effect on BA profile in a pilot clinical study. Ten otherwise healthy hypercholesterolemic adults, recruited from a clinical trial site in London, ON, were randomized to consume delayed release or standard release capsules containing L. reuteri NCIMB 30242 in escalating dose over 4 weeks. In another aspect, 4 healthy normocholesterolemic subjects with LDL-C below 3.4 mmol/l received delayed release L. reuteri NCIMB 30242 at a constant dose over 4 weeks. The primary outcome measure was the change in plasma BA profile over the intervention period. Additional outcomes included circulating fibroblast growth factor (FGF)-19, plant sterols and LDL-cholesterol as well as fecal microbiota and bsh gene presence. After one week of intervention subjects receiving delayed release L. reuteri NCIMB 30242 increased total BA by 1.13 ± 0.67 μmol/l (P = 0.02), conjugated BA by 0.67 ± 0.39 μmol/l (P = 0.02) and unconjugated BA by 0.46 ± 0.43 μmol/l (P = 0.07), which represented a greater than 2-fold change relative to baseline. Increases in BA were largely maintained post-week 1 and were generally correlated with FGF-19 and inversely correlated with plant sterols. This is the first clinical support showing that a BSH-active probiotic can significantly and rapidly influence BA metabolism and may prove useful in chronic diseases beyond hypercholesterolemia. PMID:25612224

  18. Synthesis and antifungal activity of bile acid-derived oxazoles.

    PubMed

    Fernández, Lucía R; Svetaz, Laura; Butassi, Estefanía; Zacchino, Susana A; Palermo, Jorge A; Sánchez, Marianela

    2016-04-01

    Peracetylated bile acids (1a-g) were used as starting materials for the preparation of fourteen new derivatives bearing an oxazole moiety in their side chain (6a-g, 8a-g). The key step for the synthetic path was a Dakin-West reaction followed by a Robinson-Gabriel cyclodehydration. A simpler model oxazole (12) was also synthesized. The antifungal activity of the new compounds (6a-g) as well as their starting bile acids (1a-g) was tested against Candida albicans. Compounds 6e and 6g showed the highest percentages of inhibition (63.84% and 61.40% at 250 μg/mL respectively). Deacetylation of compounds 6a-g, led to compounds 8a-g which showed lower activities than the acetylated derivatives.

  19. Further evaluation of the interrelationship between the hepatocellular transport of bile acids and endocytosed proteins.

    PubMed Central

    Herrera, M. C.; el-Mir, M. Y.; Monte, M. J.; Perez-Barriocanal, F.; Marin, J. J.

    1992-01-01

    Experiments on the relationship between the hepatocellular transport of endogenous or exogenously loaded bile acids (sodium taurocholate, TC, 0.5 mumol/min/100 g body wt) and horseradish peroxidase (HRP) or immunoglobulin A (IgA) (0.5 mg/100 g body wt) were carried out on anaesthetized Wistar rats. The time course of HRP excretion into bile (acceleration in the secretory peak), but not the total amount of HRP output, was affected by TC infusion. Administration of HRP was found to have no stimulatory effect on either spontaneous or TC-induced bile flow, bile acid, lecithin or cholesterol output. Spontaneous bile acid output was increased (25 and 67%, respectively) in rats that were treated for 12-h fasting or by oral administration of TC (45 mg/100 g body wt, every 12 h, for 2 days). These manoeuvres did not change the inability of HRP and IgA to increase bile acid output. Exogenous TC load had no stimulatory effect on the hepatocellular transport of endogenous bile acid pool, that was labelled by a combination of fasting and oral administration of 14C-glycocholic acid 12 h before the experiments. Therefore, exogenous bile acid load-induced stimulation of transcytosis had no effect on endogenous bile acid output. Moreover, bile secretion of both endogenous and exogenously loaded bile acids is unaffected by the administration of proteins, irrespective of whether they are endocytosed by a receptor or nonreceptor mediated process. PMID:1571280

  20. Analysis of ileal sodium/bile acid cotransporter and related nuclear receptor genes in a family with multiple cases of idiopathic bile acid malabsorption

    PubMed Central

    Montagnani, Marco; Abrahamsson, Anna; Gälman, Cecilia; Eggertsen, Gösta; Marschall, Hanns-Ulrich; Ravaioli, Elisa; Einarsson, Curt; Dawson, Paul A

    2006-01-01

    The etiology of most cases of idiopathic bile acid malabsorption (IBAM) is unknown. In this study, a Swedish family with bile acid malabsorption in three consecutive generations was screened for mutations in the ileal apical sodium-bile acid cotransporter gene (ASBT; gene symbol, SLC10A2) and in the genes for several of the nuclear receptors known to be important for ASBT expression: the farnesoid X receptor (FXR) and peroxisome proliferator activated receptor alpha (PPARα). The patients presented with a clinical history of idiopathic chronic watery diarrhea, which was responsive to cholestyramine treatment and consistent with IBAM. Bile acid absorption was determined using 75Se-homocholic acid taurine (SeHCAT); bile acid synthesis was estimated by measuring the plasma levels of 7α-hydroxy-4-cholesten-3-one (C4). The ASBT, FXR, and PPARα genes in the affected and unaffected family members were analyzed using single stranded conformation polymorphism (SSCP), denaturing HPLC, and direct sequencing. No ASBT mutations were identified and the ASBT gene did not segregate with the bile acid malabsorption phenotype. Similarly, no mutations or polymorphisms were identified in the FXR or PPARα genes associated with the bile acid malabsorption phenotype. These studies indicate that the intestinal bile acid malabsorption in these patients cannot be attributed to defects in ASBT. In the absence of apparent ileal disease, alternative explanations such as accelerated transit through the small intestine may be responsible for the IBAM. PMID:17171805

  1. Binding of free bile acids by cells of yogurt starter culture bacteria.

    PubMed

    Pigeon, R M; Cuesta, E P; Gililliand, S E

    2002-11-01

    Several strains of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus, which produced exocellular polysaccharides (EPS), varied in the amount produced. The streptococci tended to produce the most EPS per milliliter of culture; however, when compared on the basis of amounts per 10(7) cfu, the lactobacilli produced the most. Lactobacillus delbrueckii ssp. bulgaricus strains Lb-18 and Lb-10442 and S. thermophilus St-143 produced significantly larger amounts per 107 cfu than did other strains tested. These three cultures plus two strains of the streptococci that produced the greatest amounts of EPS per ml of culture were tested for the ability to bind bile acids from laboratory media. The two cultures of L. delbrueckii ssp. bulgaricus (Lb-18 and Lb-10442) bound significantly higher amounts of cholic acid than did the three strains of streptococci. These two cultures of lactobacilli bound up to 15.3% of the cholic acid present in laboratory media, up to 452 microg/mg of EPS and 2.9 microg/10(7) cfu. None of the cultures tested in this study were able to bind the conjugated bile acid, glycocholic acid.

  2. Design, synthesis, and physico-chemical interactions of bile acid derived dimeric phospholipid amphiphiles with model membranes.

    PubMed

    Kumar, Sandeep; Bhargava, Priyanshu; Sreekanth, Vedagopuram; Bajaj, Avinash

    2015-06-15

    Understanding of amphiphile-membrane interactions is crucial in design and development of novel amphiphiles for drug delivery, gene therapy, and biomedical applications. Structure and physico-chemical properties of amphiphiles determine their interactions with biomembranes thereby influencing their drug delivery efficacies. Here, we unravel the interactions of bile acid derived dimeric phospholipid amphiphiles with model membranes using Laurdan-based hydration, DPH-based membrane fluidity, and differential scanning calorimetry studies. We synthesized three dimeric bile acid amphiphiles where lithocholic acid, deoxycholic acid, and cholic acid are conjugated to cholic acid phospholipid using click chemistry. Interactions of these dimeric amphiphiles with model membranes showed that these amphiphiles form different structural assemblies and molecular packing in model membranes depending on the number and position of free hydroxyl groups on bile acids. We discovered that cholic acid-cholic acid dimeric phospholipid form self-assembled aggregates in model membranes without changing membrane fluidity; whereas cholic acid-deoxycholic acid derived amphiphile induces membranes fluidity and hydration of model membranes. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Fasting levels of monoketonic bile acids in human peripheral and portal circulation.

    PubMed

    Björkhem, I; Angelin, B; Einarsson, K; Ewerth, S

    1982-09-01

    It has been suggested that large amounts of ketonic bile acids may be present in portal venous blood. We have therefore determined the approximate concentration of 3-oxo-, 7-oxo-, and 12-oxo-bile acids (monoketonic bile acids) in human peripheral and portal circulation. These compounds were converted into the corresponding 3alpha-, 7alpha-, and 12alpha-hydroxy bile acids by treatment with sodium borodeuteride, thus increasing the molecular weight of each bile acid formed by one mass unit. The ratio between deuterated and nondeuterated bile acid was determined by combined gas-liquid chromatography-mass spectrometry with use of selected ion monitoring. From the ratio obtained and from the concentration of unlabeled bile acid, determined by isotope dilution-mass spectrometry, the approximate concentration of the different ketonic bile acids could be calculated. This method underestimates 3-oxygenated bile acids by 4-8%, 7-oxygenated bile acids by 2-3%, and 12-oxygenated bile acids by about 25%. The approximate concentration of monoketonic 3,7-oxygenated bile acids was found to be 0.08 +/- 0.02 and 0.37 +/- 0.25 micro mol/l in the peripheral venous serum and the portal venous serum, respectively. The approximate concentration of monoketonic 3,12-oxygenated bile acids was found to be 0.07 +/- 0.02 and 0.32 +/- 0.12 micro mol/l in the peripheral venous serum and the portal venous serum, respectively. The approximate concentration of monoketonic 3,7,12-oxygenated bile acids was found to be 0.03 +/- 0.01 and 0.14 +/- 0.05 micro mol/l in the peripheral venous serum and in the portal venous serum, respectively. The total concentration of the ketonic bile acids constituted only 9 +/- 1% and 8 +/- 3% of the nonoxidized bile acids in the peripheral venous serum and in the portal venous serum, respectively. Thus it seems less likely that the portal inflow of ketonic bile acids is of significant physiological importance under normal conditions.-Björkhem, I., B. Angelin, K

  4. Role of bile acids in carcinogenesis of pancreatic cancer: An old topic with new perspective

    PubMed Central

    Feng, Hui-Yi; Chen, Yang-Chao

    2016-01-01

    The role of bile acids in colorectal cancer has been well documented, but their role in pancreatic cancer remains unclear. In this review, we examined the risk factors of pancreatic cancer. We found that bile acids are associated with most of these factors. Alcohol intake, smoking, and a high-fat diet all lead to high secretion of bile acids, and bile acid metabolic dysfunction is a causal factor of gallstones. An increase in secretion of bile acids, in addition to a long common channel, may result in bile acid reflux into the pancreatic duct and to the epithelial cells or acinar cells, from which pancreatic adenocarcinoma is derived. The final pathophysiological process is pancreatitis, which promotes dedifferentiation of acinar cells into progenitor duct-like cells. Interestingly, bile acids act as regulatory molecules in metabolism, affecting adipose tissue distribution, insulin sensitivity and triglyceride metabolism. As a result, bile acids are associated with three risk factors of pancreatic cancer: obesity, diabetes and hypertriglyceridemia. In the second part of this review, we summarize several studies showing that bile acids act as cancer promoters in gastrointestinal cancer. However, more question are raised than have been solved, and further oncological and physiological experiments are needed to confirm the role of bile acids in pancreatic cancer carcinogenesis. PMID:27672269

  5. Role of bile acids in carcinogenesis of pancreatic cancer: An old topic with new perspective.

    PubMed

    Feng, Hui-Yi; Chen, Yang-Chao

    2016-09-07

    The role of bile acids in colorectal cancer has been well documented, but their role in pancreatic cancer remains unclear. In this review, we examined the risk factors of pancreatic cancer. We found that bile acids are associated with most of these factors. Alcohol intake, smoking, and a high-fat diet all lead to high secretion of bile acids, and bile acid metabolic dysfunction is a causal factor of gallstones. An increase in secretion of bile acids, in addition to a long common channel, may result in bile acid reflux into the pancreatic duct and to the epithelial cells or acinar cells, from which pancreatic adenocarcinoma is derived. The final pathophysiological process is pancreatitis, which promotes dedifferentiation of acinar cells into progenitor duct-like cells. Interestingly, bile acids act as regulatory molecules in metabolism, affecting adipose tissue distribution, insulin sensitivity and triglyceride metabolism. As a result, bile acids are associated with three risk factors of pancreatic cancer: obesity, diabetes and hypertriglyceridemia. In the second part of this review, we summarize several studies showing that bile acids act as cancer promoters in gastrointestinal cancer. However, more question are raised than have been solved, and further oncological and physiological experiments are needed to confirm the role of bile acids in pancreatic cancer carcinogenesis.

  6. A biosynthetic pathway for a prominent class of microbiota-derived bile acids

    PubMed Central

    Devlin, A. Sloan; Fischbach, Michael A.

    2015-01-01

    The gut bile acid pool is millimolar in concentration, varies widely in composition among individuals, and is linked to metabolic disease and cancer. Although these molecules derive almost exclusively from the microbiota, remarkably little is known about which bacterial species and genes are responsible for their biosynthesis. Here, we report a biosynthetic pathway for the second most abundant class in the gut, iso (3β-hydroxy) bile acids, whose levels exceed 300 µM in some humans and are absent in others. We show, for the first time, that iso bile acids are produced by Ruminococcus gnavus, a far more abundant commensal than previously known producers; and that the iso bile acid pathway detoxifies deoxycholic acid, favoring the growth of the keystone genus Bacteroides. By revealing the biosynthetic genes for an abundant class of bile acids, our work sets the stage for predicting and rationally altering the composition of the bile acid pool. PMID:26192599

  7. A biosynthetic pathway for a prominent class of microbiota-derived bile acids.

    PubMed

    Devlin, A Sloan; Fischbach, Michael A

    2015-09-01

    The gut bile acid pool is millimolar in concentration, varies widely in composition among individuals and is linked to metabolic disease and cancer. Although these molecules are derived almost exclusively from the microbiota, remarkably little is known about which bacterial species and genes are responsible for their biosynthesis. Here we report a biosynthetic pathway for the second most abundant class in the gut, 3β-hydroxy(iso)-bile acids, whose levels exceed 300 μM in some humans and are absent in others. We show, for the first time, that iso-bile acids are produced by Ruminococcus gnavus, a far more abundant commensal than previously known producers, and that the iso-bile acid pathway detoxifies deoxycholic acid and thus favors the growth of the keystone genus Bacteroides. By revealing the biosynthetic genes for an abundant class of bile acids, our work sets the stage for predicting and rationally altering the composition of the bile acid pool.

  8. Bile acids potentiate proton-activated currents in Xenopus laevis oocytes expressing human acid-sensing ion channel (ASIC1a).

    PubMed

    Ilyaskin, Alexandr V; Diakov, Alexei; Korbmacher, Christoph; Haerteis, Silke

    2017-02-01

    Acid-sensing ion channels (ASICs) are nonvoltage-gated sodium channels transiently activated by extracellular protons and belong to the epithelial sodium channel (ENaC)/Degenerin (DEG) family of ion channels. Bile acids have been shown to activate two members of this family, the bile acid-sensitive ion channel (BASIC) and ENaC. To investigate whether bile acids also modulate ASIC function, human ASIC1a was heterologously expressed in Xenopus laevis oocytes. Exposing oocytes to tauro-conjugated cholic (t-CA), deoxycholic (t-DCA), and chenodeoxycholic (t-CDCA) acid at pH 7.4 did not activate ASIC1a-mediated whole-cell currents. However, in ASIC1a expressing oocytes the whole-cell currents elicited by pH 5.5 were significantly increased in the presence of these bile acids. Single-channel recordings in outside-out patches confirmed that t-DCA enhanced the stimulatory effect of pH 5.5 on ASIC1a channel activity. Interestingly, t-DCA reduced single-channel current amplitude by ~15% which suggests an interaction of t-DCA with a region close to the channel pore. Molecular docking predicted binding of bile acids to the pore region near the degenerin site (G433) in the open conformation of the channel. Site-directed mutagenesis demonstrated that the amino acid residue G433 is critically involved in the potentiating effect of bile acids on ASIC1a activation by protons.

  9. Cholesterol Feeding Prevents Hepatic Accumulation of Bile Acids in Cholic Acid-Fed Farnesoid X Receptor (FXR)-Null Mice: FXR-Independent Suppression of Intestinal Bile Acid Absorption

    PubMed Central

    Miyata, Masaaki; Matsuda, Yoshiki; Nomoto, Masahiro; Takamatsu, Yuki; Sato, Nozomi; Hamatsu, Mayumi; Dawson, Paul A.; Gonzalez, Frank J.; Yamazoe, Yasushi

    2009-01-01

    Cholic acid (CA) feeding of farnesoid X receptor (Fxr)-null mice results in markedly elevated hepatic bile acid levels and liver injury. In contrast, Fxr-null mice fed cholesterol plus CA (CA+Chol) do not exhibit liver injury, and hepatic bile acid levels and bile acid pool size are reduced 51 and 40%, respectively, compared with CA-treated Fxr-null mice. These decreases were not observed in wild-type mice. Despite a reduced bile acid pool size, hepatic Cyp7a1 mRNA expression was increased in Fxr-null mice fed the CA+Chol diet, and biliary bile acid output was not changed. Analysis of other potential protective mechanisms revealed significant decreases in portal blood bile acid concentrations and a reduced ileal bile acid absorption capacity, as estimated using an in situ loop method. Fecal bile acid excretion was also increased in Fxr-null mice fed the CA+Chol versus CA diet. The decreased ileal bile acid absorption correlated with decreased ileal apical sodium-dependent bile salt transporter (ASBT) protein expression in brush-border membranes. These results suggest a critical role for ileal bile acid absorption in regulation of hepatic bile acid levels in Fxr-null mice fed CA+Chol. Furthermore, experiments with Fxr-null mice suggest that cholesterol feeding can down-regulate ASBT expression through a pathway independent of FXR. PMID:18988759

  10. Role of hepatic transporters in prevention of bile acid toxicity after partial hepatectomy in mice

    PubMed Central

    Csanaky, Iván L.; Aleksunes, Lauren M.; Tanaka, Yuji; Klaassen, Curtis D.

    2009-01-01

    The enterohepatic recirculation of bile acids (BAs) is important in several physiological processes. Although there has been considerable research on liver regeneration after two-thirds partial hepatectomy (PHx), little is known about how the liver protects itself against BA toxicity during regeneration. In this study, various BAs in plasma and liver, the composition of micelle-forming bile constituents, as well as gene expression of the main hepatobiliary transporters were quantified in sham-operated and PHx mice 24 and 48 h after surgery. PHx did not influence the hepatic concentrations of taurine-conjugated BAs (T-BA) but increased the concentration of glycine-conjugated (G-BA) and unconjugated BAs. Total BA excretion (μg·min−1·g liver wt−1) increased 2.4-fold and was accompanied by a 55% increase in bile flow after PHx. The plasma concentrations of T-BAs (402-fold), G-BAs (17-fold), and unconjugated BAs (500-fold) increased. The mRNA and protein levels of the BA uptake transporter Ntcp were unchanged after PHx, whereas the canalicular Bsep protein increased twofold at 48 h. The basolateral efflux transporter Mrp3 was induced at the mRNA (2.6-fold) and protein (3.1-fold) levels after PHx, which may contribute to elevated plasma BA and bilirubin levels. Biliary phospholipid excretion was nearly doubled in PHx mice, most likely owing to increased mRNA expression of the phospholipid transporter, Mdr2. In conclusion, the remnant liver after PHx excretes 2.5-fold more BAs and three times more phospholipids per gram liver than the sham-operated mouse liver. Upregulation of phospholipid transport may be important in protecting the biliary tract from BA toxicity during PHx. PMID:19497955

  11. 3{alpha}-6{alpha}-Dihydroxy-7{alpha}-fluoro-5{beta}-cholanoate (UPF-680), physicochemical and physiological properties of a new fluorinated bile acid that prevents 17{alpha}-ethynyl-estradiol-induced cholestasis in rats

    SciTech Connect

    Clerici, Carlo . E-mail: clerici@unipg.it; Castellani, Danilo; Asciutti, Stefania; Pellicciari, Roberto; Setchell, Kenneth D.R. |; O'Connell, Nancy C. |; Sadeghpour, Bahman; Camaioni, Emidio; Fiorucci, Stefano; Renga, Barbara; Nardi, Elisabetta; Sabatino, Giuseppe; Clementi, Mattia; Giuliano, Vittorio; Baldoni, Monia; Orlandi, Stefano; Mazzocchi, Alessandro; Morelli, Antonio; Morelli, Olivia

    2006-07-15

    3{alpha}-6{alpha}-Dihydroxy-7{alpha}-fluoro-5{beta}-cholanoate (UPF-680), the 7{alpha}-fluorine analog of hyodeoxycholic acid (HDCA), was synthesized to improve bioavailability and stability of ursodeoxycholic acid (UDCA). Acute rat biliary fistula and chronic cholestasis induced by 17{alpha}-ethynyl-estradiol (17EE) models were used to study and compare the effects of UPF-680 (dose range 0.6-6.0 {mu}mol/kg min) with UDCA on bile flow, biliary bicarbonate (HCO{sub 3} {sup -}), lipid output, biliary bile acid composition, hepatic enzymes and organic anion pumps. In acute infusion, UPF-680 increased bile flow in a dose-related manner, by up to 40.9%. Biliary HCO{sub 3} {sup -} output was similarly increased. Changes were observed in phospholipid secretion only at the highest doses. Treatment with UDCA and UPF-680 reversed chronic cholestasis induced by 17EE; in this model, UDCA had no effect on bile flow in contrast to UPF-680, which significantly increased bile flow. With acute administration of UPF-680, the biliary bile acid pool became enriched with unconjugated and conjugated UPF-680 (71.7%) at the expense of endogenous cholic acid and muricholic isomers. With chronic administration of UPF-680 or UDCA, the main biliary bile acids were tauro conjugates, but modification of biliary bile acid pool was greater with UPF-680. UPF-680 increased the mRNA for cytochrome P450 7A1 (CYP7A1) and cytochrome P450 8B (CYP8B). Both UDCA and UPF-680 increased the mRNA for Na{sup +} taurocholate co-transporting polypeptide (NCTP). In conclusion, UPF-680 prevented 17EE-induced cholestasis and enriched the biliary bile acid pool with less detergent and cytotoxic bile acids. This novel fluorinated bile acid may have potential in the treatment of cholestatic liver disease.

  12. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection.

    PubMed

    Weingarden, Alexa R; Chen, Chi; Bobr, Aleh; Yao, Dan; Lu, Yuwei; Nelson, Valerie M; Sadowsky, Michael J; Khoruts, Alexander

    2014-02-15

    Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for refractory, recurrent Clostridium difficile infection (CDI), which develops following antibiotic treatments. Intestinal microbiota play a critical role in the metabolism of bile acids in the colon, which in turn have major effects on the lifecycle of C. difficile bacteria. We hypothesized that fecal bile acid composition is altered in patients with recurrent CDI and that FMT results in its normalization. General metabolomics and targeted bile acid analyses were performed on fecal extracts from patients with recurrent CDI treated with FMT and their donors. In addition, 16S rRNA gene sequencing was used to determine the bacterial composition of pre- and post-FMT fecal samples. Taxonomic bacterial composition of fecal samples from FMT recipients showed rapid change and became similar to the donor after the procedure. Pre-FMT fecal samples contained high concentrations of primary bile acids and bile salts, while secondary bile acids were nearly undetectable. In contrast, post-FMT fecal samples contained mostly secondary bile acids, as did non-CDI donor samples. Therefore, our analysis showed that FMT resulted in normalization of fecal bacterial community structure and metabolic composition. Importantly, metabolism of bile salts and primary bile acids to secondary bile acids is disrupted in patients with recurrent CDI, and FMT corrects this abnormality. Since individual bile salts and bile acids have pro-germinant and inhibitory activities, the changes suggest that correction of bile acid metabolism is likely a major mechanism by which FMT results in a cure and prevents recurrence of CDI.

  13. Liver fatty-acid-binding protein (L-FABP) gene ablation alters liver bile acid metabolism in male mice

    PubMed Central

    2005-01-01

    Although the physiological roles of the individual bile acid synthetic enzymes have been extensively examined, relatively little is known regarding the function of intracellular bile acid-binding proteins. Male L-FABP (liver fatty-acid-binding protein) gene-ablated mice were used to determine a role for L-FABP, the major liver bile acid-binding protein, in bile acid and biliary cholesterol metabolism. First, in control-fed mice L-FABP gene ablation alone increased the total bile acid pool size by 1.5-fold, especially in gall-bladder and liver, but without altering the proportions of bile acid, cholesterol and phospholipid. Loss of liver L-FABP was more than compensated by up-regulation of: other liver cytosolic bile acid-binding proteins [GST (glutathione S-transferase), 3α-HSD (3α-hydroxysteroid dehydrogenase)], key hepatic bile acid synthetic enzymes [CYP7A1 (cholesterol 7α-hydroxylase) and CYP27A1 (sterol 27α-hydroxylase)], membrane bile acid translocases [canalicular BSEP (bile salt export pump), canalicular MRP2 (multidrug resistance associated protein 2), and basolateral/serosal OATP-1 (organic anion transporting polypeptide 1)], and positive alterations in nuclear receptors [more LXRα (liver X receptor α) and less SHP (short heterodimer partner)]. Secondly, L-FABP gene ablation reversed the cholesterol-responsiveness of bile acid metabolic parameters such that total bile acid pool size, especially in gall-bladder and liver, was reduced 4-fold, while the mass of biliary cholesterol increased 1.9-fold. The dramatically reduced bile acid levels in cholesterol-fed male L-FABP (−/−) mice were associated with reduced expression of: (i) liver cytosolic bile acid-binding proteins (L-FABP, GST and 3α-HSD), (ii) hepatic bile acid synthetic enzymes [CYP7A1, CYP27A1 and SCP-x (sterol carrier protein-x/3-ketoacyl-CoA thiolase)] concomitant with decreased positive nuclear receptor alterations (i.e. less LXRα and more SHP), and (iii) membrane bile acid

  14. Ursodeoxycholic Acid and Its Taurine- or Glycine-Conjugated Species Reduce Colitogenic Dysbiosis and Equally Suppress Experimental Colitis in Mice.

    PubMed

    Van den Bossche, Lien; Hindryckx, Pieter; Devisscher, Lindsey; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Vanden Bussche, Julie; Vanhaecke, Lynn; Van de Wiele, Tom; De Vos, Martine; Laukens, Debby

    2017-04-01

    The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila, bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD.IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered. Here, we

  15. Ursodeoxycholic Acid and Its Taurine- or Glycine-Conjugated Species Reduce Colitogenic Dysbiosis and Equally Suppress Experimental Colitis in Mice

    PubMed Central

    Van den Bossche, Lien; Hindryckx, Pieter; Devisscher, Lindsey; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H.; Vanden Bussche, Julie; Vanhaecke, Lynn; Van de Wiele, Tom; De Vos, Martine

    2017-01-01

    ABSTRACT The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes. Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila, bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD. IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered

  16. Beneficial role of dietary folic acid on cholesterol and bile acid metabolism in ethanol-fed rats.

    PubMed

    Delgado-Villa, Maria Jesus; Ojeda, Maria Luisa; Rubio, Jose Maria; Murillo, Maria Luisa; Sánchez, Olimpia Carreras

    2009-07-01

    Cholesterol metabolism is altered by chronic ethanol consumption. In previous articles, we demonstrated the anti-oxidant capacity of folic acid, which may be useful in the prevention of damage provoked by ethanol. We want to determine the effects of ethanol on cholesterol and bile metabolism and whether a folic acid-supplemented diet could change alterations provoked by a chronic ethanol intake in rats. We used four experimental groups: (1) control, (2) alcohol, (3) alcohol supplemented with folic acid, and (4) control supplemented with folic acid. In all the experimental groups, we measured hepatic 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, and cholesterol and bile acids in serum, liver, bile, and feces. We have found that the alcohol-fed groups showed high hepatic HMG-CoA reductase activity, total hepatic and serum cholesterol concentration, bile cholesterol secretion concentration, and cholesterol enterohepatic circulation. Total serum and hepatic cholesterol levels decreased when alcohol-fed rats were supplemented with folic acid. The hepatic bile acid concentration increased in both chronic ethanol groups. Folic acid supplementation significantly increased bile cholesterol secretion, the bile acids in bile, and fecal bile acid excretion in ethanol-exposed rats. The independent bile acid fraction showed no significant differences between both ethanol groups with respect to Na+, K+, and Cl- concentrations. Folic acid increases bile flow, bile acid synthesis from cholesterol, and bile acid excretion via feces, thus provoking a decrease in serum and hepatic cholesterol. However none of these actions were observed in supplemented control rats. This, therefore, could be yet another beneficial effect of folic acid on alcoholic patients.

  17. Lake char (Salvelinus namaycush) olfactory neurons are highly sensitive and specific to bile acids.

    PubMed

    Zhang, Chunbo; Hara, Toshiaki J

    2009-02-01

    Bile acids have been implicated as chemical signals in spawning behaviour of lake char (Salvelinus namaycush). In this study, we investigated olfactory responses of lake char to bile acids by using the electro-olfactogram recording. Lake char detected 9 out of 38 bile acids tested at thresholds 0.02-0.5 nM. The most stimulatory included chenodeoxycholic acid, cholic acid, taurochenodeoxycholic acid, taurocholic acid, and taurolithocholic acid 3alpha-sulphate. Structure-activity analysis indicated that substituents in the side chain or hydroxyl sulphation were determinant elements for the recognition of individual bile acid receptors, while the position and orientation of hydroxyls or the type of amidation were important for effective stimulation. Three distinct types of concentration-response relationships were found, representing free, taurine- or glycine-amidated, and 3alpha-sulphated bile acids. Cross-adaptation and binary mixture experiments revealed the presence of multiple olfactory receptors for bile acids. Lake char were also capable of detecting petromyzonol sulphate at 1 nM, possibly via its own receptors. Our study further showed that the olfactory responses to bile acids were independent of those of known odorants including amino acids, prostaglandins and gonadal steroids. We conclude that lake char possess multiple olfactory receptors capable of discriminating bile acids produced and released by conspecifics.

  18. Orally Administered Berberine Modulates Hepatic Lipid Metabolism by Altering Microbial Bile Acid Metabolism and the Intestinal FXR Signaling Pathway.

    PubMed

    Sun, Runbin; Yang, Na; Kong, Bo; Cao, Bei; Feng, Dong; Yu, Xiaoyi; Ge, Chun; Huang, Jingqiu; Shen, Jianliang; Wang, Pei; Feng, Siqi; Fei, Fei; Guo, Jiahua; He, Jun; Aa, Nan; Chen, Qiang; Pan, Yang; Schumacher, Justin D; Yang, Chung S; Guo, Grace L; Aa, Jiye; Wang, Guangji

    2017-02-01

    Previous studies suggest that the lipid-lowering effect of berberine (BBR) involves actions on the low-density lipoprotein receptor and the AMP-activated protein kinase signaling pathways. However, the implication of these mechanisms is unclear because of the low bioavailability of BBR. Because the main action site of BBR is the gut and intestinal farnesoid X receptor (FXR) plays a pivotal role in the regulation of lipid metabolism, we hypothesized that the effects of BBR on intestinal FXR signaling pathway might account for its pharmacological effectiveness. Using wild type (WT) and intestine-specific FXR knockout (FXR(int-/-)) mice, we found that BBR prevented the development of high-fat-diet-induced obesity and ameliorated triglyceride accumulation in livers of WT, but not FXR(int-/-) mice. BBR increased conjugated bile acids in serum and their excretion in feces. Furthermore, BBR inhibited bile salt hydrolase (BSH) activity in gut microbiota, and significantly increased the levels of tauro-conjugated bile acids, especially tauro-cholic acid(TCA), in the intestine. Both BBR and TCA treatment activated the intestinal FXR pathway and reduced the expression of fatty-acid translocase Cd36 in the liver. These results indicate that BBR may exert its lipid-lowering effect primarily in the gut by modulating the turnover of bile acids and subsequently the ileal FXR signaling pathway. In summary, we provide the first evidence to suggest a new mechanism of BBR action in the intestine that involves, sequentially, inhibiting BSH, elevating TCA, and activating FXR, which lead to the suppression of hepatic expression of Cd36 that results in reduced uptake of long-chain fatty acids in the liver.

  19. Effects of artificial depletion of the bile acid pool in man.

    PubMed Central

    Jazrawi, R P; Bridges, C; Joseph, A E; Northfield, T C

    1986-01-01

    In order to elucidate the relationship between bile acid pool size and cholesterol saturation index of fasting state gall bladder bile, we artificially depleted the bile acid pool in 12 healthy volunteers. Bile acid pool size decreased from 7.6 +/- 0.9 to 5.8 +/- 0.7 mmol (mean +/- SEM, p less than 0.01), and saturation index of fasting state gall bladder bile increased from 0.93 +/- 0.07 to 1.18 +/- 0.07 (p less than 0.001). There was no alteration in saturation index of basal or stimulated hepatic bile. There was no change in gall bladder storage of basal hepatic bile, nor in the proportion of the bile acid pool stored in the gall bladder. The bile acid mass in the gall bladder fell from 4.9 +/- 0.5 to 3.4 +/- 0.4 mmol (p less than 0.05) and phospholipid mass from 1.6 +/- 0.3 to 1.2 +/- 0.2 mmol (p less than 0.05), but there was no change in cholesterol mass. The gall bladder volume fell from 30 +/- 4 to 18 +/- 2 ml (p less than 0.01). These results suggest that artificial depletion of the bile acid pool increased saturation index of fasting state gall bladder bile without altering saturation index of basal or stimulated hepatic bile; it probably increased the ratio of basal: stimulated hepatic bile within the gall bladder by decreasing gall bladder storage of stimulated hepatic bile. PMID:3732888

  20. Regulation of hepatic bile acid transporters Ntcp and Bsep expression

    PubMed Central

    Cheng, Xingguo; Buckley, David; Klaassen, Curtis D.

    2009-01-01

    Sodium-taurocholate cotransporting polypeptide (Ntcp) and bile salt export pump (Bsep) are two key transporters for hepatic bile acid uptake and excretion. Alterations in Ntcp and Bsep expression have been reported in pathophysiological conditions. In the present study, the effects of age, gender, and various chemicals on the regulation of these two transporters were characterized in mice. Ntcp and Bsep mRNA levels in mouse liver were low in the fetus, but increased to its highest expression at parturition. After birth, mouse Ntcp and Bsep mRNA decreased by more than 50%, and then gradually increased to adult levels by day 30. Expression of mouse Ntcp mRNA and protein exhibit higher levels in female than male livers, which is consistent with the trend of human NTCP mRNA expression between men and women. No gender difference exists in BSEP/Bsep expression in human and mouse livers. Hormone replacements conducted in gonadectomized, hypophysectomized, and lit/lit mice indicate that female-predominant Ntcp expression in mouse liver is due to the inhibitory effect of male-pattern GH secretion, but not sex hormones. Ntcp and Bsep expression are in general resistant to induction by a large battery of microsomal enzyme inducers. Administration of cholestyramine increased Ntcp, whereas chenodeoxycholic acid increased Bsep mRNA expression. In silico analysis indicates that female-predominant mouse and human Ntcp/NTCP expression may be due to GH. In conclusion, mouse Ntcp and Bsep are regulated by age, gender, cholestyramine, and bile acid, but resistant to induction by most microsomal enzyme inducers. PMID:17897632

  1. Suppression of the HPA Axis During Cholestasis Can Be Attributed to Hypothalamic Bile Acid Signaling.

    PubMed

    McMillin, Matthew; Frampton, Gabriel; Quinn, Matthew; Divan, Ali; Grant, Stephanie; Patel, Nisha; Newell-Rogers, Karen; DeMorrow, Sharon

    2015-12-01

    Suppression of the hypothalamic-pituitary-adrenal (HPA) axis has been shown to occur during cholestatic liver injury. Furthermore, we have demonstrated that in a model of cholestasis, serum bile acids gain entry into the brain via a leaky blood brain barrier and that hypothalamic bile acid content is increased. Therefore, the aim of the current study was to determine the effects of bile acid signaling on the HPA axis. The data presented show that HPA axis suppression during cholestatic liver injury, specifically circulating corticosterone levels and hypothalamic corticotropin releasing hormone (CRH) expression, can be attenuated by administration of the bile acid sequestrant cholestyramine. Secondly, treatment of hypothalamic neurons with various bile acids suppressed CRH expression and secretion in vitro. However, in vivo HPA axis suppression was only evident after the central injection of the bile acids taurocholic acid or glycochenodeoxycholic acid but not the other bile acids studied. Furthermore, we demonstrate that taurocholic acid and glycochenodeoxycholic acid are exerting their effects on hypothalamic CRH expression after their uptake through the apical sodium-dependent bile acid transporter and subsequent activation of the glucocorticoid receptor. Taken together with previous studies, our data support the hypothesis that during cholestatic liver injury, bile acids gain entry into the brain, are transported into neurons through the apical sodium-dependent bile acid transporter and can activate the glucocorticoid receptor to suppress the HPA axis. These data also lend themselves to the broader hypothesis that bile acids may act as central modulators of hypothalamic peptides that may be altered during liver disease.

  2. Suppression of the HPA Axis During Cholestasis Can Be Attributed to Hypothalamic Bile Acid Signaling

    PubMed Central

    McMillin, Matthew; Frampton, Gabriel; Quinn, Matthew; Divan, Ali; Grant, Stephanie; Patel, Nisha; Newell-Rogers, Karen

    2015-01-01

    Suppression of the hypothalamic-pituitary-adrenal (HPA) axis has been shown to occur during cholestatic liver injury. Furthermore, we have demonstrated that in a model of cholestasis, serum bile acids gain entry into the brain via a leaky blood brain barrier and that hypothalamic bile acid content is increased. Therefore, the aim of the current study was to determine the effects of bile acid signaling on the HPA axis. The data presented show that HPA axis suppression during cholestatic liver injury, specifically circulating corticosterone levels and hypothalamic corticotropin releasing hormone (CRH) expression, can be attenuated by administration of the bile acid sequestrant cholestyramine. Secondly, treatment of hypothalamic neurons with various bile acids suppressed CRH expression and secretion in vitro. However, in vivo HPA axis suppression was only evident after the central injection of the bile acids taurocholic acid or glycochenodeoxycholic acid but not the other bile acids studied. Furthermore, we demonstrate that taurocholic acid and glycochenodeoxycholic acid are exerting their effects on hypothalamic CRH expression after their uptake through the apical sodium-dependent bile acid transporter and subsequent activation of the glucocorticoid receptor. Taken together with previous studies, our data support the hypothesis that during cholestatic liver injury, bile acids gain entry into the brain, are transported into neurons through the apical sodium-dependent bile acid transporter and can activate the glucocorticoid receptor to suppress the HPA axis. These data also lend themselves to the broader hypothesis that bile acids may act as central modulators of hypothalamic peptides that may be altered during liver disease. PMID:26431088

  3. Bile acid nephropathy in a bodybuilder abusing an anabolic androgenic steroid.

    PubMed

    Luciano, Randy L; Castano, Ekaterina; Moeckel, Gilbert; Perazella, Mark A

    2014-09-01

    Bile acid nephropathy, also known as cholemic nephrosis or nephropathy, is an entity that can be seen in patients with severe cholestatic liver disease. It typically is associated with acute kidney injury (AKI) with various forms of hepatic disease. Most often, patients with severe obstructive jaundice develop this lesion, which is thought to occur due to direct bile acid injury to tubular cells, as well as obstructing bile acid casts. Patients with end-stage liver disease also can develop AKI, in which case a more heterogeneous lesion occurs that includes hepatorenal syndrome and acute tubular injury/necrosis. In this circumstance, acute tubular injury develops from a combination of hemodynamic changes with some contribution from direct bile acid-related tubular toxicity and obstructive bile casts. We present a case of AKI due to bile acid nephropathy in a bodybuilder who developed severe cholestatic liver disease in the setting of anabolic androgenic steroid use.

  4. Cross-talk between bile acids and gastrointestinal tract for progression and development of cancer and its therapeutic implications.

    PubMed

    Kundu, Somanath; Kumar, Sandeep; Bajaj, Avinash

    2015-07-01

    Increasing incidences of gastrointestinal (GI) cancer are linked to changes in lifestyle with excess of red meat/fat consumption, and elevated secretion of bile acids. Bile acids are strong signaling molecules that control various physiological processes. Failure in bile acid regulation has detrimental effects, often linked with development and promotion of cancer of digestive tract including esophagus, stomach, liver, and intestine. Excessive concentration of bile acids especially lipophillic secondary bile acids are cytotoxic causing apoptosis and reactive oxygen species-mediated damage to the cells. Resistance to this apoptosis and accumulation of mutations leads to progression of cancer. Cytotoxicity of bile acids is contingent on their chemical structure. In this review, we discuss the chemistry of bile acids, bile acid mediated cellular signaling processes, their role in GI cancer progression, and therapeutic potential of synthetic bile acid derivatives for cancer therapy.

  5. RNA-binding protein ZFP36L1 maintains posttranscriptional regulation of bile acid metabolism.

    PubMed

    Tarling, Elizabeth J; Clifford, Bethan L; Cheng, Joan; Morand, Pauline; Cheng, Angela; Lester, Ellen; Sallam, Tamer; Turner, Martin; de Aguiar Vallim, Thomas Q

    2017-10-02

    Bile acids function not only as detergents that facilitate lipid absorption but also as signaling molecules that activate the nuclear receptor farnesoid X receptor (FXR). FXR agonists are currently being evaluated as therapeutic agents for a number of hepatic diseases due to their lipid-lowering and antiinflammatory properties. FXR is also essential for maintaining bile acid homeostasis and prevents the accumulation of bile acids. Elevated bile acids activate FXR, which in turn switches off bile acid synthesis by reducing the mRNA levels of bile acid synthesis genes, including cholesterol 7α-hydroxylase (Cyp7a1). Here, we show that FXR activation triggers a rapid posttranscriptional mechanism to degrade Cyp7a1 mRNA. We identified the RNA-binding protein Zfp36l1 as an FXR target gene and determined that gain and loss of function of ZFP36L1 reciprocally regulate Cyp7a1 mRNA and bile acid levels in vivo. Moreover, we found that mice lacking hepatic ZFP36L1 were protected from diet-induced obesity and steatosis. The reduced adiposity and antisteatotic effects observed in ZFP36L1-deficient mice were accompanied by impaired lipid absorption that was consistent with altered bile acid metabolism. Thus, the ZFP36L1-dependent regulation of bile acid metabolism is an important metabolic contributor to obesity and hepatosteatosis.

  6. The crucial role of bile acids in the entry of porcine enteric calicivirus.

    PubMed

    Shivanna, Vinay; Kim, Yunjeong; Chang, Kyeong-Ok

    2014-05-01

    Replication of porcine enteric calicivirus (PEC) in LLC-PK cells is dependent on the presence of bile acids in the medium. However, the mechanism of bile acid-dependent PEC replication is unknown. Understanding of bile acid-mediated PEC replication may provide insight into cultivating related human noroviruses, currently uncultivable, which are the major cause of viral gastroenteritis outbreaks in humans. Our results demonstrated that while uptake of PEC into the endosomes does not require bile acids, the presence of bile acids is critical for viral escape from the endosomes into cell cytoplasm to initiate viral replication. We also demonstrated that bile acid transporters including the sodium-taurocholate co-transporting polypeptide and the apical sodium-dependent bile acid transporter are important in exerting the effects of bile acids in PEC replication in cells. In summary, our results suggest that bile acids play a critical role in virus entry for successful replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Probing the Binding Site of Bile Acids in TGR5

    PubMed Central

    2013-01-01

    TGR5 is a G-protein-coupled receptor (GPCR) mediating cellular responses to bile acids (BAs). Although some efforts have been devoted to generate homology models of TGR5 and draw structure–activity relationships of BAs, none of these studies has hitherto described how BAs bind to TGR5. Here, we present an integrated computational, chemical, and biological approach that has been instrumental to determine the binding mode of BAs to TGR5. As a result, key residues have been identified that are involved in mediating the binding of BAs to the receptor. Collectively, these results provide new hints to design potent and selective TGR5 agonists. PMID:24900622

  8. Probing the Binding Site of Bile Acids in TGR5.

    PubMed

    Macchiarulo, Antonio; Gioiello, Antimo; Thomas, Charles; Pols, Thijs W H; Nuti, Roberto; Ferrari, Cristina; Giacchè, Nicola; De Franco, Francesca; Pruzanski, Mark; Auwerx, Johan; Schoonjans, Kristina; Pellicciari, Roberto

    2013-12-12

    TGR5 is a G-protein-coupled receptor (GPCR) mediating cellular responses to bile acids (BAs). Although some efforts have been devoted to generate homology models of TGR5 and draw structure-activity relationships of BAs, none of these studies has hitherto described how BAs bind to TGR5. Here, we present an integrated computational, chemical, and biological approach that has been instrumental to determine the binding mode of BAs to TGR5. As a result, key residues have been identified that are involved in mediating the binding of BAs to the receptor. Collectively, these results provide new hints to design potent and selective TGR5 agonists.

  9. Liquid crystal based biosensors for bile acid detection

    NASA Astrophysics Data System (ADS)

    He, Sihui; Liang, Wenlang; Tanner, Colleen; Fang, Jiyu; Wu, Shin-Tson

    2013-03-01

    The concentration level of bile acids is a useful indicator for early diagnosis of liver diseases. The prevalent measurement method in detecting bile acids is the chromatography coupled with mass spectrometry, which is precise yet expensive. Here we present a biosensor platform based on liquid crystal (LC) films for the detection of cholic acid (CA). This platform has the advantage of low cost, label-free, solution phase detection and simple analysis. In this platform, LC film of 4-Cyano-4'-pentylbiphenyl (5CB) was hosted by a copper grid supported with a polyimide-coated glass substrate. By immersing into sodium dodecyl sulfate (SDS) solution, the LC film was coated with SDS which induced a homeotropic anchoring of 5CB. Addition of CA introduced competitive adsorption between CA and SDS at the interface, triggering a transition from homeotropic to homogeneous anchoring. The detection limit can be tuned by changing the pH value of the solution from 12uM to 170uM.

  10. Mechanisms of triglyceride metabolism in patients with bile acid diarrhea

    PubMed Central

    Sagar, Nidhi Midhu; McFarlane, Michael; Nwokolo, Chuka; Bardhan, Karna Dev; Arasaradnam, Ramesh Pulendran

    2016-01-01

    Bile acids (BAs) are essential for the absorption of lipids. BA synthesis is inhibited through intestinal farnesoid X receptor (FXR) activity. BA sequestration is known to influence BA metabolism and control serum lipid concentrations. Animal data has demonstrated a regulatory role for the FXR in triglyceride metabolism. FXR inhibits hepatic lipogenesis by inhibiting the expression of sterol regulatory element binding protein 1c via small heterodimer primer activity. Conversely, FXR promotes free fatty acids oxidation by inducing the expression of peroxisome proliferator-activated receptor α. FXR can reduce the expression of microsomal triglyceride transfer protein, which regulates the assembly of very low-density lipoproteins (VLDL). FXR activation in turn promotes the clearance of circulating triglycerides by inducing apolipoprotein C-II, very low-density lipoproteins receptor (VLDL-R) and the expression of Syndecan-1 together with the repression of apolipoprotein C-III, which increases lipoprotein lipase activity. There is currently minimal clinical data on triglyceride metabolism in patients with bile acid diarrhoea (BAD). Emerging data suggests that a third of patients with BAD have hypertriglyceridemia. Further research is required to establish the risk of hypertriglyceridaemia in patients with BAD and elicit the mechanisms behind this, allowing for targeted treatment. PMID:27570415

  11. Biochemical and physiological evidence that bile acids produced and released by lake char (Salvelinus namaycush) function as chemical signals.

    PubMed

    Zhang, C; Brown, S B; Hara, T J

    2001-03-01

    It has been hypothesized that faeces of juvenile lake char (Salvelinus namaycush) may contain chemical cues that mediate behaviour of conspecifics. However, our knowledge of bile acids naturally produced and released by fish is limited. Using HPLC, we fractionated bile acids produced and released by lake char and examined their stimulatory effectiveness using electro-olfactogram recordings. Taurocholic acid, taurochenodeoxycholic acid, taurooxocholanic acid, taurooxodeoxycholic acid 3alpha-sulphate, trace amounts of taurolithocholic acid and an unidentified sulphated bile steroid were found in bile and faeces. Bile acids were either taurine amidated or sulphated, or both. Lake char released an average of 4 nmol min(-1) bile acids per kilogram of body weight into their tank water. Urinary bile acids accounted for only a small portion of total bile acids released into water. Water and faeces contained higher proportion of taurochenodeoxycholic acid and sulphated bile acids (relative to taurocholic acid) than bile. The electro-olfactogram recordings demonstrated that bile acids released by lake char were detectable by their olfactory system at nanomolar concentrations, which is well below the levels of bile acids released into water. The exquisite olfactory sensitivity of lake char to water-borne bile acids released by their conspecifics is consistent with a role for these compounds as important chemical signals.

  12. Carboxy-terminal mutations of bile acid CoA:N-acyltransferase alter activity and substrate specificity.

    PubMed

    Styles, Nathan A; Shonsey, Erin M; Falany, Josie L; Guidry, Amber L; Barnes, Stephen; Falany, Charles N

    2016-07-01

    Bile acid CoA:amino acid N-acyltransferase (BAAT) is the terminal enzyme in the synthesis of bile salts from cholesterol and catalyzes the conjugation of taurine or glycine to bile acid CoA thioesters to form bile acid N-acylamidates. BAAT has a dual localization to the cytosol and peroxisomes, possibly due to an inefficient carboxy-terminal peroxisomal targeting signal (PTS), -serine-glutamine-leucine (-SQL). Mutational analysis was used to define the role of the carboxy terminus in peroxisomal localization and kinetic activity. Amidation activity of BAAT and BAAT lacking the final two amino acids (AAs) (BAAT-S) were similar, whereas the activity of BAAT with a canonical PTS sequence (BAAT-SKL) was increased >2.5-fold. Kinetic analysis of BAAT and BAAT-SKL showed that BAAT-SKL had a lower Km for taurine and glycine as well as a greater Vmax There was no difference in the affinity for cholyl-CoA. In contrast to BAAT, BAAT-SKL forms bile acid N-acylamidates with β-alanine. BAAT-S immunoprecipitated when incubated with peroxisomal biogenesis factor 5 (Pex5) and rabbit anti-Pex5 antibodies; however, deleting the final 12 AAs prevented coimmunoprecipitation with Pex5, indicating the Pex5 interaction involves more than the -SQL sequence. These results indicate that even small changes in the carboxy terminus of BAAT can have significant effects on activity and substrate specificity. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  13. Hepatic bile acid metabolism in the neonatal hamster: expansion of the bile acid pool parallels increased Cyp7a1 expression levels.

    PubMed

    Burke, Katie T; Horn, Paul S; Tso, Patrick; Heubi, James E; Woollett, Laura A

    2009-07-01

    Intraluminal concentrations of bile acids are low in newborn infants and increase rapidly after birth, at least partly owing to increased bile acid synthesis rates. The expansion of the bile acid pool is critical since bile acids are required to stimulate bile flow and absorb lipids, a major component of newborn diets. The purpose of the present studies was to determine the mechanism responsible for the increase in bile acid synthesis rates and the subsequent enlargement of bile acid pool sizes (BAPS) during the neonatal period, and how changes in circulating hormone levels might affect BAPS. In the hamster, pool size was low just after birth and increased modestly until 10.5 days postpartum (dpp). BAPS increased more significantly ( approximately 3-fold) between 10.5 and 15.5 dpp. An increase in mRNA and protein levels of cholesterol 7alpha-hydroxylase (Cyp7a1), the rate-limiting step in classical bile acid synthesis, immediately preceded an increase in BAPS. In contrast, levels of oxysterol 7alpha-hydroxylase (Cyp7b1), a key enzyme in bile acid synthesis by the alternative pathway, were relatively elevated by 1.5 dpp. farnesyl X receptor (FXR) and short heterodimeric partner (SHP) mRNA levels remained relatively constant at a time when Cyp7a1 levels increased. Finally, although simultaneous increases in circulating cortisol and Cyp7a1 levels occurred, precocious expression of Cyp7a1 could not be induced in neonatal hamsters with dexamethasone. Thus the significant increase in Cyp7a1 levels in neonatal hamsters is due to mechanisms independent of the FXR and SHP pathway and cortisol.

  14. Prognostic roles of tetrahydroxy bile acids in infantile intrahepatic cholestasis.

    PubMed

    Lee, Chee-Seng; Kimura, Akihiko; Wu, Jia-Feng; Ni, Yen-Hsuan; Hsu, Hong-Yuan; Chang, Mei-Hwei; Nittono, Hiroshi; Chen, Huey-Ling

    2017-03-01

    Tetrahydroxy bile acids (THBAs) are hydrophilic and are present at minimal or undetectable levels in healthy human adults, but are present at high levels in bile salt export pump (abcb11)-knockout mice. The roles of THBAs in human cholestatic diseases are unclear. We aimed to investigate the presence of THBAs in patients with infantile intrahepatic cholestasis and its correlation with outcome. Urinary bile acids (BAs) were analyzed by GC-MS. Data were compared between good (n = 21) (disease-free before 1 year old) and poor prognosis groups (n = 19). Good prognosis patients had a higher urinary THBA proportion than poor prognosis patients [25.89% (3.45-76.73%) vs. 1.93% (0.05-48.90%)]. A urinary THBA proportion >7.23% predicted good prognosis with high sensitivity (95.24%), specificity (84.21%), and area under the curve (0.91) (P < 0.0001). A THBA proportion 7.23% was an independent factor for decreased transplant-free survival (hazard ratio = 7.16, confidence interval: 1.24-41.31, P = 0.028). Patients with a confirmed ABCB11 or tight junction protein 2 gene mutation (n = 7) had a minimally detectable THBA proportion (0.23-2.99% of total BAs). Three patients with an ATP8B1 mutation had an elevated THBA proportion (7.51-37.26%). In conclusion, in addition to disease entity as a major determinant of outcome, a high THBA level was associated with good outcome in the infantile intrahepatic cholestasis patients.

  15. An association between post-meal bile acid response and bone resorption in normal subjects.

    PubMed

    Ewang-Emukowhate, M; Alaghband-Zadeh, J; Vincent, R P; Sherwood, R A; Moniz, C F

    2013-11-01

    The mechanism surrounding bone suppression after a meal may involve several mediators, but is yet to be clarified. Bile acids (BA) function as signalling molecules in response to feeding, and may be directly involved in bone suppression acutely after a meal. The aim of this study was to test the hypothesis that BA are involved in the acute bone suppression observed after a meal. A prospective study in which samples collected from volunteers fed a 400 Kcal test meal after an overnight fast were analysed for parathyroid hormone (PTH), BA, and carboxyterminal of type 1 collagen telopeptide (CTX). The study was carried out in 10 healthy male volunteers. Ethical approval was obtained from the Local Research and Ethics Committee at King's College Hospital. Total BA, glycine conjugated bile acids (GCBA), PTH and CTX showed a response to meal ingestion. There was a negative correlation between percentage change in PTH and CTX (R (2 )= -0.82, P = 0.004), and between PTH and GCBA (R (2 )= -0.39, P = 0.005). This study demonstrated an association between GCBA and PTH suppression after a meal. The drop in PTH concentration after a meal may be responsible for the suppression of bone resorption as observed by the decrease in CTX concentration.

  16. Structural requirements of the human sodium-dependent bile acid transporter (hASBT): Role of 3- and 7-OH moieties on binding and translocation of bile acids

    PubMed Central

    González, Pablo M.; Lagos, Carlos F.; Ward, Weslyn C.; Polli, James E.

    2014-01-01

    Bile acids (BAs) are the end products of cholesterol metabolism. One of the critical steps in their biosynthesis involves the isomerization of the 3β-hydroxyl (-OH) group on the cholestane ring to the common 3α-configuration on BAs. BAs are actively recaptured from the small intestine by the human Apical Sodium-dependent Bile Acid Transporter (hASBT) with high affinity and capacity. Previous studies have suggested that no particular hydroxyl group on BAs is critical for binding or transport by hASBT, even though 3β-hydroxylated BAs were not examined. The aim of this study was to elucidate the role of the 3α-OH group on BAs binding and translocation by hASBT. Ten 3β-hydroxylated BAs (Iso-bile acids, iBAs) were synthesized, characterized, and subjected to hASBT inhibition and uptake studies. hASBT inhibition and uptake kinetics of iBAs were compared to that of native 3α-OH BAs. Glycine conjugates of native and isomeric BAs were subjected to molecular dynamics simulations in order to identify topological descriptors related to binding and translocation by hASBT. Iso-BAs bound to hASBT with lower affinity and exhibited reduced translocation than their respective 3α-epimers. Kinetic data suggests that, in contrast to native BAs where hASBT binding is the rate-limiting step, iBAs transport was rate-limited by translocation and not binding. Remarkably, 7-dehydroxylated iBAs were not hASBT substrates, highlighting the critical role of 7-OH group on BA translocation by hASBT, especially for iBAs. Conformational analysis of gly-iBAs and native BAs identified topological features for optimal binding as: concave steroidal nucleus, 3-OH “on-” or below-steroidal plane, 7-OH below-plane, and 12-OH moiety towards-plane. Our results emphasize the relevance of the 3α-OH group on BAs for proper hASBT binding and transport and revealed the critical role of 7-OH group on BA translocation, particularly in the absence of a 3α-OH group. Results have implications for BA

  17. Bile acid transport in sister of P-glycoprotein (ABCB11) knockout mice.

    PubMed

    Lam, Ping; Wang, Renxue; Ling, Victor

    2005-09-20

    In vertebrates, bile flow is essential for movement of water and solutes across liver canalicular membranes. In recent years, the molecular motor of canalicular bile acid secretion has been identified as a member of the ATP binding cassette transporter (ABC) superfamily, known as sister of P-glycoprotein (Spgp) or bile salt export pump (Bsep, ABCB11). In humans, mutations in the BSEP gene are associated with a very low level of bile acid secretion and severe cholestasis. However, as reported previously, because the spgp(-)(/)(-) knockout mice do not express severe cholestasis and have substantial bile acid secretion, we investigated the "alternative transport system" that allows these mice to be physiologically relatively normal. We examined the expression levels of several ABC transporters in spgp(-)(/)(-) mice and found that the level of multidrug resistance Mdr1 (P-glycoprotein) was strikingly increased while those of Mdr2, Mrp2, and Mrp3 were increased to only a moderate extent. We hypothesize that an elevated level of Mdr1 in the spgp(-)(/)(-) knockout mice functions as an alternative pathway to transport bile acids and protects hepatocytes from bile acid-induced cholestasis. In support of this hypothesis, we showed that plasma membrane vesicles isolated from a drug resistant cell line expressing high levels of P-glycoprotein were capable of transporting bile acids, albeit with a 5-fold lower affinity compared to Spgp. This finding is the first direct evidence that P-glycoprotein (Mdr1) is capable of transporting bile acids.

  18. Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling

    PubMed Central

    Dossa, Avafia Y.; Escobar, Oswaldo; Golden, Jamie; Frey, Mark R.; Ford, Henri R.

    2015-01-01

    Bile acids (BAs) are synthesized in the liver and secreted into the intestine. In the lumen, enteric bacteria metabolize BAs from conjugated, primary forms into more toxic unconjugated, secondary metabolites. Secondary BAs can be injurious to the intestine and may contribute to disease. The epidermal growth factor receptor (EGFR) and the nuclear farnesoid X receptor (FXR) are known to interact with BAs. In this study we examined the effects of BAs on intestinal epithelial cell proliferation and investigated the possible roles for EGFR and FXR in these effects. We report that taurine-conjugated cholic acid (TCA) induced proliferation, while its unconjugated secondary counterpart deoxycholic acid (DCA) inhibited proliferation. TCA stimulated phosphorylation of Src, EGFR, and ERK 1/2. Pharmacological blockade of any of these pathways or genetic ablation of EGFR abrogated TCA-stimulated proliferation. Interestingly, Src or EGFR inhibitors eliminated TCA-induced phosphorylation of both molecules, suggesting that their activation is interdependent. In contrast to TCA, DCA exposure diminished EGFR phosphorylation, and pharmacological or siRNA blockade of FXR abolished DCA-induced inhibition of proliferation. Taken together, these results suggest that TCA induces intestinal cell proliferation via Src, EGFR, and ERK activation. In contrast, DCA inhibits proliferation via an FXR-dependent mechanism that may include downstream inactivation of the EGFR/Src/ERK pathway. Since elevated secondary BA levels are the result of specific bacterial modification, this may provide a mechanism through which an altered microbiota contributes to normal or abnormal intestinal epithelial cell proliferation. PMID:26608185

  19. A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids.

    PubMed

    John, Clara; Werner, Philipp; Worthmann, Anna; Wegner, Katrin; Tödter, Klaus; Scheja, Ludger; Rohn, Sascha; Heeren, Joerg; Fischer, Markus

    2014-12-05

    Recently, hydroxy sterols and bile acids have gained growing interest as they are important regulators of energy homoeostasis and inflammation. The high number of different hydroxy sterols and bile acid species requires powerful analytical tools to quantify these structurally and chemically similar analytes. Here, we introduce a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method for rapid quantification of 34 sterols (hydroxy sterols, primary, secondary bile acids as well as their taurine and glycine conjugates). Chromatographic baseline separation of isomeric hydroxy sterols and bile acids is obtained using a rugged amide embedded C18 (polar embedded) stationary phase. The current method features a simple extraction protocol validated for blood plasma, urine, gall bladder, liver, feces, and adipose tissue avoiding solid phase extraction as well as derivatization procedures. The total extraction recovery for representative analytes ranged between 58-86% in plasma, 85% in urine, 79-92% in liver, 76-98% in adipose tissue, 93-104% in feces and 62-79% in gall bladder. The validation procedure demonstrated that the calibration curves were linear over the selected concentration ranges for 97% of the analytes, with calculated coefficients of determination (R2) of greater than 0.99. A feeding study in wild type mice with a standard chow and a cholesterol-enriched Western type diet illustrated that the protocol described here provides a powerful tool to simultaneously quantify cholesterol derivatives and bile acids in metabolically active tissues and to follow the enterohepatic circulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The Contributing Role of Bile Acids to Metabolic Improvements After Obesity and Metabolic Surgery.

    PubMed

    Fouladi, Farnaz; Mitchell, James E; Wonderlich, Joseph A; Steffen, Kristine J

    2016-10-01

    Obesity and metabolic surgery (OMS) leads to several metabolic improvements, which often occur prior to substantial weight loss. Therefore, other factors in addition to weight loss contribute to the metabolic benefits. This literature review offers an overview of studies investigating bile acids (BAs) and their metabolic effects after OMS. Rearrangement of enterohepatic circulation, changes in BA synthesis, BA conjugation, intestinal reabsorption, and alterations in the gut microbiota are potential mechanisms for altered BA profiles after surgery. Increased BA levels are associated with improved glucose homeostasis and lipid profiles, which are mediated by two major receptors: the Transmembrane G-protein Coupled Receptor and the Farnesoid X Receptor. Therefore, pharmacological manipulation of BAs and their receptors may be viable targets for less invasive obesity treatment.

  1. Cerebrospinal Fluid Steroidomics: Are Bioactive Bile Acids Present in Brain?*

    PubMed Central

    Ogundare, Michael; Theofilopoulos, Spyridon; Lockhart, Andrew; Hall, Leslie J.; Arenas, Ernest; Sjövall, Jan; Brenton, A. Gareth; Wang, Yuqin; Griffiths, William J.

    2010-01-01

    In this study we have profiled the free sterol content of cerebrospinal fluid by a combination of charge tagging and liquid chromatography-tandem mass spectrometry. Surprisingly, the most abundant cholesterol metabolites were found to be C27 and C24 intermediates of the bile acid biosynthetic pathways with structures corresponding to 7α-hydroxy-3-oxocholest-4-en-26-oic acid (7.170 ± 2.826 ng/ml, mean ± S.D., six subjects), 3β-hydroxycholest-5-en-26-oic acid (0.416 ± 0.193 ng/ml), 7α,x-dihydroxy-3-oxocholest-4-en-26-oic acid (1.330 ± 0.543 ng/ml), and 7α-hydroxy-3-oxochol-4-en-24-oic acid (0.172 ± 0.085 ng/ml), and the C26 sterol 7α-hydroxy-26-norcholest-4-ene-3,x-dione (0.204 ± 0.083 ng/ml), where x is an oxygen atom either on the CD rings or more likely on the C-17 side chain. The ability of intermediates of the bile acid biosynthetic pathways to activate the liver X receptors (LXRs) and the farnesoid X receptor was also evaluated. The acidic cholesterol metabolites 3β-hydroxycholest-5-en-26-oic acid and 3β,7α-dihydroxycholest-5-en-26-oic acid were found to activate LXR in a luciferase assay, but the major metabolite identified in this study, i.e. 7α-hydroxy-3-oxocholest-4-en-26-oic acid, was not an LXR ligand. 7α-Hydroxy-3-oxocholest-4-en-26-oic acid is formed from 3β,7α-dihydroxycholest-5-en-26-oic acid in a reaction catalyzed by 3β-hydroxy-Δ5-C27-steroid dehydrogenase (HSD3B7), which may thus represent a deactivation pathway of LXR ligands in brain. Significantly, LXR activation has been found to reduce the symptoms of Alzheimer disease (Fan, J., Donkin, J., and Wellington C. (2009) Biofactors 35, 239–248); thus, cholesterol metabolites may play an important role in the etiology of Alzheimer disease. PMID:19996111

  2. Impact of beta-cyclodextrin and resistant starch on bile acid metabolism and fecal steroid excretion in regard to their hypolipidemic action in hamsters.

    PubMed

    Trautwein, E A; Forgbert, K; Rieckhoff, D; Erbersdobler, H F

    1999-01-29

    To examine the impact on bile acid metabolism and fecal steroid excretion as a mechanism involved in the lipid-lowering action of beta-cyclodextrin and resistant starch in comparison to cholestyramine, male golden Syrian hamsters were fed 0% (control), 8% or 12% of beta-cyclodextrin or resistant starch or 1% cholestyramine. Resistant starch, beta-cyclodextrin and cholestyramine significantly lowered plasma total cholesterol and triacylglycerol concentrations compared to control. Distinct changes in the bile acid profile of gallbladder bile were caused by resistant starch, beta-cyclodextrin and cholestyramine. While cholestyramine significantly reduced chenodeoxycholate independently of its taurine-glycine conjugation, beta-cyclodextrin and resistant starch decreased especially the percentage of taurochenodeoxycholate by -75% and -44%, respectively. As a result, the cholate:chenodeoxycholate ratio was significantly increased by 100% with beta-cyclodextrin and by 550% with cholestyramine while resistant starch revealed no effect on this ratio. beta-Cyclodextrin and resistant starch, not cholestyramine, significantly increased the glycine:taurine conjugation ratio demonstrating the predominance of glycine conjugated bile acids. Daily fecal excretion of bile acids was 4-times higher with 8% beta-cyclodextrin and 19-times with 1% cholestyramine compared to control. beta-Cyclodextrin and cholestyramine also induced a 2-fold increase in fecal neutral sterol excretion, demonstrating the sterol binding capacity of these two compounds. Resistant starch had only a modest effect on fecal bile acid excretion (80% increase) and no effect on excretion of neutral sterols, suggesting a weak interaction with intestinal steroid absorption. These data demonstrate the lipid-lowering potential of beta-cyclodextrin and resistant starch. An impaired reabsorption of circulating bile acids and intestinal cholesterol absorption leading to an increase in fecal bile acid and neutral sterol

  3. Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion.

    PubMed

    Sonne, David P; Hansen, Morten; Knop, Filip K

    2014-08-01

    Bile acid sequestrants have been used for decades for the treatment of hypercholesterolaemia. Sequestering of bile acids in the intestinal lumen interrupts enterohepatic recirculation of bile acids, which initiate feedback mechanisms on the conversion of cholesterol into bile acids in the liver, thereby lowering cholesterol concentrations in the circulation. In the early 1990s, it was observed that bile acid sequestrants improved glycaemic control in patients with type 2 diabetes. Subsequently, several studies confirmed the finding and recently - despite elusive mechanisms of action - bile acid sequestrants have been approved in the USA for the treatment of type 2 diabetes. Nowadays, bile acids are no longer labelled as simple detergents necessary for lipid digestion and absorption, but are increasingly recognised as metabolic regulators. They are potent hormones, work as signalling molecules on nuclear receptors and G protein-coupled receptors and trigger a myriad of signalling pathways in many target organs. The most described and well-known receptors activated by bile acids are the farnesoid X receptor (nuclear receptor) and the G protein-coupled cell membrane receptor TGR5. Besides controlling bile acid metabolism, these receptors are implicated in lipid, glucose and energy metabolism. Interestingly, activation of TGR5 on enteroendocrine L cells has been suggested to affect secretion of incretin hormones, particularly glucagon-like peptide 1 (GLP1 (GCG)). This review discusses the role of bile acid sequestrants in the treatment of type 2 diabetes, the possible mechanism of action and the role of bile acid-induced secretion of GLP1 via activation of TGR5.

  4. Use of D(acid)-, D(bile)-, z(acid)-, and z(bile)-values in evaluating Bifidobacteria with regard to stomach pH and bile salt sensitivity.

    PubMed

    Jia, Li; Shigwedha, Nditange; Mwandemele, Osmund D

    2010-01-01

    The survival of bifidobacteria in simulated conditions of the gastrointestinal (GI) tract was studied based on the D- and z-value concept. Some Bifidobacterium spp. are probiotics that improve microbial balance in the human GI tract. Because they are sensitive to low pH and bile salt concentrations, their viability in the GI tract is limited. The D- and z-value approach was therefore adopted as a result of observing constant log-cell reduction (90%) when Bifidobacterium spp. were exposed to these 2 different stressing factors. Survivals of one strain each or 4 species of Bifidobacterium was studied at pH between 3.0 and 4.5 and in ox-bile between 0.15% and 0.60% for times up to 41 h. From the D(acid)- and D(bile)-values, the order of resistance to acid and bile was B. bifidum > B. infantis > B. longum > B. adolescentis. While the former 3 strains retained high cell viability at pH 3.5 (>5.5 log CFU/mL after 5 h) and at elevated bile salt concentration of 0.6% (>4.5 log CFU/mL after 3 h), B. adolescentis was less resistant (<3.4 log CFU/mL). The z(acid)- and z(bile)-values calculated from the D(acid)- and D(bile)-values ranged from 1.11 to 1.55 pH units and 0.40% to 0.49%, respectively. The results suggest that the D(acid)-, D(bile)-, z(acid)-, and z(bile)-value approach could be more appropriate than the screening and selection method in evaluating survival of probiotic bacteria, and in measuring their tolerance or resistance to gastric acidity and the associated bile salt concentration in the small intestine. The evaluation of the tolerance of bifidobacteria to bile salts and low pH has been made possible by use of D- and z-value concept. The calculated z(acid)- and z(bile)-values were all fairly similar for the strains used and suggest the effect of increasing the bile salt concentration or decreasing the pH on the D(acid)- and D(bile)-values. This approach would be useful for predicting the suitability of bifidobacteria and other lactic acid bacteria (LAB) as

  5. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice.

    PubMed

    Liu, Qian; Shao, Wentao; Zhang, Chunlan; Xu, Cheng; Wang, Qihan; Liu, Hui; Sun, Haidong; Jiang, Zhaoyan; Gu, Aihua

    2017-07-01

    Organochlorine pesticides (OCPs) can persistently accumulate in body and threaten human health. Bile acids and intestinal microbial metabolism have emerged as important signaling molecules in the host. However, knowledge on which intestinal microbiota and bile acids are modified by OCPs remains unclear. In this study, adult male C57BL/6 mice were exposed to p, p'-dichlorodiphenyldichloroethylene (p, p'-DDE) and β-hexachlorocyclohexane (β-HCH) for 8 weeks. The relative abundance and composition of various bacterial species were analyzed by 16S rRNA gene sequencing. Bile acid composition was analyzed by metabolomic analysis using UPLC-MS. The expression of genes involved in hepatic and enteric bile acids metabolism was measured by real-time PCR. Expression of genes in bile acids synthesis and transportation were measured in HepG2 cells incubated with p, p'-DDE and β-HCH. Our findings showed OCPs changed relative abundance and composition of intestinal microbiota, especially in enhanced Lactobacillus with bile salt hydrolase (BSH) activity. OCPs affected bile acid composition, enhanced hydrophobicity, decreased expression of genes on bile acid reabsorption in the terminal ileum and compensatory increased expression of genes on synthesis of bile acids in the liver. We demonstrated that chronic exposure of OCPs could impair intestinal microbiota; as a result, hepatic and enteric bile acid profiles and metabolism were influenced. The findings in this study draw our attention to the hazards of chronic OCPs exposure in modulating bile acid metabolism that might cause metabolic disorders and their potential to cause related diseases in human. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A novel varanic acid epimer--(24R,25S)-3α,7α,12α,24-tetrahydroxy-5β-cholestan-27-oic acid--is a major biliary bile acid in two varanid lizards and the Gila monster.

    PubMed

    Hagey, Lee R; Ogawa, Shoujiro; Kato, Narimi; Satoh née Okihara, Rika; Une, Mizuho; Mitamura, Kuniko; Ikegawa, Shigeo; Hofmann, Alan F; Iida, Takashi

    2012-11-01

    A key intermediate in the biosynthetic pathway by which C(24) bile acids are formed from cholesterol has long been considered to be varanic acid, (24ξ,25ξ)-3α,7α,12α-24-tetrahydroxy-5β-cholestan-27-oic acid. The (24R,25R)-epimer of this tetrahydroxy bile acid, in the form of its taurine N-acyl amidate, was thought to be the major biliary bile acid in lizards of the family Varanidae. We report here that a major biliary bile acid of three lizard species - the Komodo dragon (Varanus komodoensis), Gray's monitor (Varanus olivaceus), and the Gila monster (Heloderma suspectum) - is a novel epimer of varanic acid. The epimer was shown to be (24R,25S)-3α,7α,12α,24-tetrahydroxy-5β-cholestan-27-oic acid (present in bile as its taurine conjugate). The structure was established by mass spectroscopy and by (1)H and (13)C nuclear magnetic spectroscopy, as well as by synthesis of the compound.

  7. Research on food and nutrition characteristics of conjugated fatty acids.

    PubMed

    Tsuduki, Tsuyoshi

    2015-01-01

    In this study, the physiological effects of fatty acids with conjugated double bonds were widely examined in vitro and in vivo. Initially, a method for determination of conjugated fatty acids in food and biological samples was established. I then clarified that the oxidative stability of conjugated fatty acids was improved by the form of triacylglycerol and addition of an antioxidant, and the influence of this effect on the metabolism and pharmacokinetics of conjugated fatty acids was clarified in vivo. In addition, antitumor, anti-angiogenesis, and antiobesity effects of conjugated fatty acids were found for the first time, thus demonstrating the usefulness of conjugated fatty acids. This communication mainly outlines the data obtained for conjugated linolenic acid. In addition, this review summarizes my research on conjugated fatty acid.

  8. Ca2+-Dependent Cytoprotective Effects of Ursodeoxycholic and Tauroursodeoxycholic Acid on the Biliary Epithelium in a Rat Model of Cholestasis and Loss of Bile Ducts

    PubMed Central

    Marzioni, Marco; Francis, Heather; Benedetti, Antonio; Ueno, Yoshiyuki; Fava, Giammarco; Venter, Juliet; Reichenbach, Ramona; Mancino, Maria Grazia; Summers, Ryun; Alpini, Gianfranco; Glaser, Shannon

    2006-01-01

    Chronic cholestatic liver diseases are characterized by impaired balance between proliferation and death of cholangiocytes, as well as vanishing of bile ducts and liver failure. Ursodeoxycholic acid (UDCA) is a bile acid widely used for the therapy of cholangiopathies. However, little is known of the cytoprotective effects of UDCA on cholangiocytes. Therefore, UDCA and its taurine conjugate tauroursodeoxycholic acid (TUDCA) were administered in vivo to rats simultaneously subjected to bile duct ligation and vagotomy, a model that induces cholestasis and loss of bile ducts by apoptosis of cholangiocytes. Because these two bile acids act through Ca2+ signaling, animals were also treated with BAPTA/AM (an intracellular Ca2+ chelator) or Gö6976 (a Ca2+-dependent protein kinase C-α inhibitor). The administration of UDCA or TUDCA prevented the induction of apoptosis and the loss of proliferative and functional responses observed in the bile duct ligation-vagotomized rats. These effects were neutralized by the simultaneous administration of BAPTA/AM or Gö6976. UDCA and TUDCA enhanced intracellular Ca2+ and IP3 levels, together with increased phosphorylation of protein kinase C-α. Parallel changes were observed regarding the activation of the MAPK and PI3K pathways, changes that were abolished by addition of BAPTA/AM or Gö6976. These studies provide information that may improve the response of cholangiopathies to medical therapy. PMID:16436655

  9. Intestinal bile acid sensing is linked to key endocrine and metabolic signalng pathways

    USDA-ARS?s Scientific Manuscript database

    Bile acids have historically been considered to mainly function in cholesterol homeostasis and facilitate fat digestion in the gastrointestinal tract. Recent discoveries show that bile acids also function as signaling molecules that exert diverse endocrine and metabolic actions by activating G prote...

  10. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    PubMed Central

    Liu, Jie; Lu, Yuan-Fu; Zhang, Youcai; Wu, Kai Connie; Fan, Fang; Klaassen, Curtis D.

    2013-01-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. PMID:23948738

  11. Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease

    PubMed Central

    Bandsma, Robert; Comelli, Elena M.; Arendt, Bianca M.; Zhang, Ling; Fung, Scott; Fischer, Sandra E.; McGilvray, Ian G.; Allard, Johane P.

    2016-01-01

    Background & Aims Non-alcoholic fatty liver disease (NAFLD) is characterized by dysbiosis. The bidirectional effects between intestinal microbiota (IM) and bile acids (BA) suggest that dysbiosis may be accompanied by an altered bile acid (BA) homeostasis, which in turn can contribute to the metabolic dysregulation seen in NAFLD. This study sought to examine BA homeostasis in patients with NAFLD and to relate that with IM data. Methods This was a prospective, cross-sectional study of adults with biopsy-confirmed NAFLD (non-alcoholic fatty liver: NAFL or non-alcoholic steatohepatitis: NASH) and healthy controls (HC). Clinical and laboratory data, stool samples and 7-day food records were collected. Fecal BA profiles, serum markers of BA synthesis 7-alpha-hydroxy-4-cholesten-3-one (C4) and intestinal BA signalling, as well as IM composition were assessed. Results 53 subjects were included: 25 HC, 12 NAFL and 16 NASH. Levels of total fecal BA, cholic acid (CA), chenodeoxycholic acid (CDCA) and BA synthesis were higher in patients with NASH compared to HC (p<0.05 for all comparisons). The primary to secondary BA ratio was higher in NASH compared to HC (p = 0.004), but ratio of conjugated to unconjugated BAs was not different between the groups. Bacteroidetes and Clostridium leptum counts were decreased in in a subset of 16 patients with NASH compared to 25 HC, after adjusting for body mass index and weight-adjusted calorie intake (p = 0.028 and p = 0.030, respectively). C. leptum was positively correlated with fecal unconjugated lithocholic acid (LCA) (r = 0.526, p = 0.003) and inversely with unconjugated CA (r = -0.669, p<0.0001) and unconjugated CDCA (r = - 0.630, p<0.0001). FGF19 levels were not different between the groups (p = 0.114). Conclusions In adults with NAFLD, dysbiosis is associated with altered BA homeostasis, which renders them at increased risk of hepatic injury. PMID:27203081

  12. Structural basis of the alternating-access mechanism in a bile acid transporter

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming

    2014-01-01

    Bile acids are synthesized from cholesterol in hepatocytes and secreted through the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for resecretion. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP; also known as SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT; also known as SLC10A2) expressed on enterocytes in the terminal ileum. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolaemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. However, a lack of three-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data. The crystal structure of an ASBT homologue from Neisseria meningitidis (ASBTNM) in detergent was reported recently, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand the structural changes associated with the coupled transport of Na+ and bile acids, here we solved two structures of an ASBT homologue from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives the conserved `crossover' region, where two discontinuous helices cross each other, alternating accessibility from either side of the cell membrane. This result has implications

  13. Faecal bile acids are natural ligands of the mouse accessory olfactory system

    PubMed Central

    Doyle, Wayne I.; Dinser, Jordan A.; Cansler, Hillary L.; Zhang, Xingjian; Dinh, Daniel D.; Browder, Natasha S.; Riddington, Ian M.; Meeks, Julian P.

    2016-01-01

    The accessory olfactory system (AOS) guides behaviours that are important for survival and reproduction, but understanding of AOS function is limited by a lack of identified natural ligands. Here we report that mouse faeces are a robust source of AOS chemosignals and identify bile acids as a class of natural AOS ligands. Single-unit electrophysiological recordings from accessory olfactory bulb neurons in ex vivo preparations show that AOS neurons are strongly and selectively activated by peripheral stimulation with mouse faecal extracts. Faecal extracts contain several unconjugated bile acids that cause concentration-dependent neuronal activity in the AOS. Many AOS neurons respond selectively to bile acids that are variably excreted in male and female mouse faeces, and others respond to bile acids absent in mouse faeces. These results identify faeces as a natural source of AOS information, and suggest that bile acids may be mammalian pheromones and kairomones. PMID:27324439

  14. Binding of cholesterol and bile acid to hemicelluloses from rice bran.

    PubMed

    Hu, Guohua; Yu, Wenjian

    2013-06-01

    The objective of this study was to investigate the possibility of using hemicellulose from rice bran to scavenge cholesterol and bile acid in vitro study. This paper demonstrates that rice bran hemicellulose A (RBHA), rice bran hemicellulose B (RBHB) and rice bran hemicellulose C (RBHC) have the potential for binding cholesterol and bile acid. The quantity of cholesterol and bile acid bound varies from one rice bran fibre to another. As it can be inferred from the results of the study, RBHB was characterized by the highest capacity for cholesterol binding, followed by RBHC and RBHA. Binding of cholesterol and bile acid to rice bran insoluble dietary fibre (RBDF) and cellulose from rice bran was found to be poor. Lignin from rice bran was the least active fraction for binding cholesterol and bile acid. This confirms that the RBHB preparation from defatted rice bran has great potential in food applications, especially in the development of functional foods.

  15. Protective effects of nonionic tri-block copolymers on bile acid-mediated epithelial barrier disruption.

    SciTech Connect

    Edelstein, A.; Fink, D.; Musch, M.; Valuckaite, V.; Zabornia, O.; Grubjesic, S.; Firestone, M. A.; Matthews, J. B.; Alverdy, J. C.

    2011-11-01

    Translocation of bacteria and other luminal factors from the intestine following surgical injury can be a major driver of critical illness. Bile acids have been shown to play a key role in the loss of intestinal epithelial barrier function during states of host stress. Experiments to study the ability of nonionic block copolymers to abrogate barrier failure in response to bile acid exposure are described. In vitro experiments were performed with the bile salt sodium deoxycholate on Caco-2 enterocyte monolayers using transepithelial electrical resistance to assay barrier function. A bisphenol A coupled triblock polyethylene glycol (PEG), PEG 15-20, was shown to prevent sodium deoxycholate-induced barrier failure. Enzyme-linked immunosorbent assay, lactate dehydrogenase, and caspase 3-based cell death detection assays demonstrated that bile acid-induced apoptosis and necrosis were prevented with PEG 15-20. Immunofluorescence microscopic visualization of the tight junctional protein zonula occludens 1 (ZO-1) demonstrated that PEG 15-20 prevented significant changes in tight junction organization induced by bile acid exposure. Preliminary transepithelial electrical resistance-based studies examining structure-function correlates of polymer protection against bile acid damage were performed with a small library of PEG-based copolymers. Polymer properties associated with optimal protection against bile acid-induced barrier disruption were PEG-based compounds with a molecular weight greater than 10 kd and amphiphilicity. The data demonstrate that PEG-based copolymer architecture is an important determinant that confers protection against bile acid injury of intestinal epithelia.

  16. Use of Omega-3 Polyunsaturated Fatty Acids to Treat Inspissated Bile Syndrome: A Case Report.

    PubMed

    Jun, Woo Young; Cho, Min Jeng; Han, Hye Seung; Bae, Sun Hwan

    2016-12-01

    Inspissated bile syndrome (IBS) is a rare condition in which thick intraluminal bile, including bile plugs, sludge, or stones, blocks the extrahepatic bile ducts in an infant. A 5-week-old female infant was admitted for evaluation of jaundice and acholic stool. Diagnostic tests, including ultrasound sonography, magnetic resonance cholangiopancreatography, and a hepatobiliary scan, were not conclusive. Although the diagnosis was unclear, the clinical and laboratory findings improved gradually on administration of urodeoxycholic acid and lipid emulsion containing omega-3 polyunsaturated fatty acids (PUFAs) for 3 weeks. However, a liver biopsy was suggestive of biliary atresia. This finding forced us to perform intraoperative cholangiography, which revealed a patent common bile duct with impacted thick bile. We performed normal saline irrigation and the symptom was improved, the final diagnosis was IBS. Thus, we herein report that IBS can be treated with omega-3 PUFAs as an alternative to surgical intervention.

  17. Use of Omega-3 Polyunsaturated Fatty Acids to Treat Inspissated Bile Syndrome: A Case Report

    PubMed Central

    Jun, Woo Young; Cho, Min Jeng; Han, Hye Seung

    2016-01-01

    Inspissated bile syndrome (IBS) is a rare condition in which thick intraluminal bile, including bile plugs, sludge, or stones, blocks the extrahepatic bile ducts in an infant. A 5-week-old female infant was admitted for evaluation of jaundice and acholic stool. Diagnostic tests, including ultrasound sonography, magnetic resonance cholangiopancreatography, and a hepatobiliary scan, were not conclusive. Although the diagnosis was unclear, the clinical and laboratory findings improved gradually on administration of urodeoxycholic acid and lipid emulsion containing omega-3 polyunsaturated fatty acids (PUFAs) for 3 weeks. However, a liver biopsy was suggestive of biliary atresia. This finding forced us to perform intraoperative cholangiography, which revealed a patent common bile duct with impacted thick bile. We performed normal saline irrigation and the symptom was improved, the final diagnosis was IBS. Thus, we herein report that IBS can be treated with omega-3 PUFAs as an alternative to surgical intervention. PMID:28090475

  18. Bile acid salt binding with colesevelam HCl is not affected by suspension in common beverages.

    PubMed

    Hanus, Martin; Zhorov, Eugene

    2006-12-01

    It has been previously reported that anions in common beverages may bind to bile acid sequestrants (BAS), reducing their capacity for binding bile acid salts. This study examined the ability of the novel BAS colesevelam hydrochloride (HCl), in vitro, to bind bile acid sodium salts following suspension in common beverages. Equilibrium binding was evaluated under conditions of constant time and varying concentrations of bile acid salts in simulated intestinal fluid (SIF). A stock solution of sodium salts of glycochenodeoxycholic acid (GCDC), taurodeoxycholic acid (TDC), and glycocholic acid (GC), was added to each prepared sample of colesevelam HCl. Bile acid salt binding was calculated by high-performance liquid chromatography (HPLC) analysis. Kinetics experiments were conducted using constant initial bile acid salt concentrations and varying binding times. The affinity, capacity, and kinetics of colesevelam HCl binding for GCDC, TDC, and GC were not significantly altered after suspension in water, carbonated water, Coca-Cola, Sprite, grape juice, orange juice, tomato juice, or Gatorade. The amount of bile acid sodium salt bound as a function of time was unchanged by pretreatment with any beverage tested. The in vitro binding characteristics of colesevelam HCl are unchanged by suspension in common beverages.

  19. Bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge.

    PubMed

    Kakimoto, Toshiaki; Kanemoto, Hideyuki; Fukushima, Kenjiro; Ohno, Koichi; Tsujimoto, Hajime

    2017-02-01

    OBJECTIVE To examine bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge. ANIMALS 18 dogs with gallbladder mucocele (GBM group), 8 dogs with immobile biliary sludge (i-BS group), 17 dogs with mobile biliary sludge (m-BS group), and 14 healthy dogs (control group). PROCEDURES Samples of gallbladder contents were obtained by use of percutaneous ultrasound-guided cholecystocentesis or during cholecystectomy or necropsy. Concentrations of 15 bile acids were determined by use of highperformance liquid chromatography, and a bile acid compositional ratio was calculated for each group. RESULTS Concentrations of most bile acids in the GBM group were significantly lower than those in the control and m-BS groups. Compositional ratio of taurodeoxycholic acid, which is 1 of 3 major bile acids in dogs, was significantly lower in the GBM and i-BS groups, compared with ratios for the control and m-BS groups. The compositional ratio of taurocholic acid was significantly higher and that of taurochenodeoxycholic acid significantly lower in the i-BS group than in the control group. CONCLUSIONS AND CLINICAL RELEVANCE In this study, concentrations and fractions of bile acids in gallbladder contents were significantly different in dogs with gallbladder mucocele or immobile biliary sludge, compared with results for healthy control dogs. Studies are needed to determine whether changes in bile acid composition are primary or secondary events of gallbladder abnormalities.

  20. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice

    SciTech Connect

    Fu, Zidong Donna; Klaassen, Curtis D.

    2013-12-15

    Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a “dose–response” model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and small intestinal contents. In addition, CR “dose-dependently” increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum. - Highlights: • Dose response effects of short-term CR on BA homeostasis in male mice. • CR increased the BA pool size and many individual BAs. • CR altered BA composition (increased proportion of 12α-hydroxylated BAs). • Increased mRNAs of BA enzymes in liver (Cyp7a1 and BAL) and ileal BA binding protein.

  1. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    PubMed Central

    Noel, Olivier F.; Still, Christopher D.; Argyropoulos, George; Edwards, Michael; Gerhard, Glenn S.

    2016-01-01

    Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D) mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs) as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR) transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes. PMID:27006824

  2. Intestinal sucrase inhibitors and bile acid absorption in the rat

    SciTech Connect

    Walsh, C.T.; Harnett, K.M.

    1986-03-01

    Studies were carried out to determine if bile acid absorption is perturbed by the intestinal sucrase inhibitors, Acarbose and BAY m 1099 (1,5-dideoxy-1.5((2-hydroxy-ethyl) imino-)-D-glucitol). The intestinal absorption of taurocholic acid (TA) in male Wistar rats, anesthetized with pentobarbital (50mg/ig, i.p.), was assessed from its excretion rate in bile. In acute studies, 15 cm of distal ileum was perfused in vivo for 70 min with /sup 14/C-TA (0.1 mM, 5 ..mu.. Ci/mmol) in 0.154 M NaCl, 0.01 M phosphate (pH 6.8) and in some studies 20 mM sucrose. From 70-140 min the perfusate was unchanged or contained Acarbose (150, 1500 ..mu..g/ml) or BAY m 1099 (10, 25 ..mu..g/ ml). Neither drug without sucrose altered TA biliary excretion. With sucrose, BAY m 1099 (10 and 25 ..mu.. g/ml) reduced TA excretion by 11 and 22%; no greater effect occurred with 60..mu..g/ml. In subchronic studies rats were fed Acarbose (40 mg/100 g diet) or BAY m 1099 (10, 20, 40 mg/100 g diet) in AIN-76A (50% cornstarch, 15% sucrose) and after 8 wk /sup 14/C-TA (10 mg/kg, 0.08 ..mu..Ci/mg, 3 mg/ml 0.9% NaCl) was injected into the proximal small intestine. Neither drug affected the biliary excretion of TA, measured every 20 min for 4-5 hr. These studies indicate that neither acute nor subchronic regimes of Acarbose or BAY m 1099 affect the intestinal absorption of TA. A possible effect in the presence of sucrose is being explored.

  3. Microbial Biotransformations of Bile Acids as Detected by Electrospray Mass Spectrometry123

    PubMed Central

    Hagey, Lee R.; Krasowski, Matthew D.

    2013-01-01

    Many current experiments investigating the effects of diet, dietary supplements, and pre- and probiotics on the intestinal environments do not take into consideration the potential for using bile salts as markers of environmental change. Intestinal bacteria in vertebrates can metabolize bile acids into a number of different structures, with deamidation, hydroxyl group oxidation, and hydroxyl group elimination. Fecal bile acids are readily available to sample and contain a considerable structural complexity that directly relates to intestinal morphology, bile acid residence time in the intestine, and the species of microbial forms in the intestinal tract. Here we offer a classification scheme that can serve as an initial guide to interpret the different bile acid patterns expressed in vertebrate feces. PMID:23319120

  4. Determination of bile acids by hollow fibre liquid-phase microextraction coupled with gas chromatography.

    PubMed

    Ghaffarzadegan, T; Nyman, M; Jönsson, J Å; Sandahl, M

    2014-01-01

    A method based on hollow-fibre liquid phase microextraction combined with gas chromatography was developed for determination of specific bile acids in caecal materials of rats. Nine unconjugated bile acids, including the primary bile acids (cholic acid, chenodeoxycholic acid and α-muricholic acid) and the secondary bile acids (lithocholic acid, deoxycholic acid, ursodeoxycholic acid, hyodeoxycholic acid, β-muricholic acid and ω-muricholic acid) were quantified. Extraction conditions were evaluated, including: sample pH, type of organic solvent and amount of caecal material to be extracted. To compensate for sample matrix effects during extraction the method of standard addition was applied. The satisfactory linearity (r(2)>0.9840), high recovery (84.2-108.7%) and good intra-assay (6.3-10.6%) and inter-assay (6.9-11.1%) precision illustrated the good performance of the present method. The method is rapid, simple and capable of detecting and determining bile acids with limit of detection (LOD) ranged from 0.002 to 0.067μg/mL and limits of quantification (LOQ) varied from 0.006 to 0.224μg/mL. The results indicated that the concentration of some secondary bile acids, which usually are associated with health problems, were lower in rats fed with fermentable dietary fibre compared with a fibre free control diet, while the concentration of primary bile acids, usually connected with positive health effects, were higher in rats fed with diets containing dietary fibre. Of the dietary fibres, guar gum and to some extent the mixture of pectin+guar gum had the most positive effects. Thus, it was concluded that the composition of bile acids can be affected by the type of diet.

  5. Profiling of urinary bile acids in piglets by a combination of enzymatic deconjugation and targeted LC-MRM-MS

    USDA-ARS?s Scientific Manuscript database

    Bile acids (BAs) have an important role in the control of fat, glucose and cholesterol metabolism. Synthesis of bile acids is the major pathway for the metabolism of cholesterol and for the excretion of excess cholesterol in mammals. Bile acid intermediates and/or their metabolites are excreted in...

  6. Health benefits of conjugated linoleic acid (CLA).

    PubMed

    Koba, Kazunori; Yanagita, Teruyoshi

    2014-01-01

    Conjugated linoleic acid (CLA) is a group of positional and geometric (cis or trans) isomers of linoleic acid with a conjugated double bond. The most representative CLA isomers are 9c,11t-18:2 and 10t,12c-18:2. CLA has been shown to exert various potent physiological functions such as anticarcinogenic, antiobese, antidiabetic and antihypertensive properties. This means CLA can be effective to prevent lifestyle diseases or metabolic syndromes. Also, reports suggest that physiological effects of CLA are different between the isomers, for example the 10t,12c isomer is anticarcinogenic, antiobese and antidiabetic, whereas the 9c,11t isomer is mainly anticarcinogenic. We describe here the physiological properties of CLA including the possible mechanism and the possibility to benefit human health. Copyright © 2013 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  7. Fatty acid-amino acid conjugates diversification in Lepidopteran caterpillars

    USDA-ARS?s Scientific Manuscript database

    Fatty acid amino acid conjugates (FACs) have been found in Noctuid as well as Sphingid caterpillar oral secretions and especially volicitin [N-(17-hydroxylinolenoyl)-L-Glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants...

  8. Short-term circadian disruption impairs bile acid and lipid homeostasis in mice.

    PubMed

    Ferrell, Jessica M; Chiang, John Y L

    2015-11-01

    Bile acids are physiological detergents that also activate nuclear receptors to regulate glucose and lipid homeostasis. Cholesterol 7α-hydroxylase (Cyp7a1), the rate-limiting enzyme that converts cholesterol to bile acids, is transcriptionally regulated by bile acids and circadian rhythms. Fasting, nutrients and the circadian clock critically control hepatic bile acid and lipid homeostasis, while circadian misalignment is associated with metabolic syndrome in humans. To delineate these interactions, we employed a sleep disruption model to induce circadian disruption and examined hepatic metabolism with respect to bile acids, lipids and clock gene expression. B6xC57 mice were maintained on chow or Western diet and were sleep disrupted for 6 hr/day for 5 days. Mice were sacrificed at 4 hr intervals over 24 hr. Hepatic metabolic genes were examined, and bile acid pool and lipid profiles were measured over 24 hr. Sleep disruption significantly suppressed circadian expression of core clock genes, genes involved in lipid metabolism, and key regulators of Cyp7a1 as well as Cyp7a1 expression itself. Sleep disruption abolished the peak in serum cholesterol and increased liver and serum free fatty acids. Bile acid pool size was increased while liver bile acids were decreased. ChIP assay revealed HNF4α and Dbp occupancies were suppressed at the Cyp7a1 promoter in sleep-disrupted mice. When coupled with Western diet, sleep disruption abolished liver clock rhythms and elevated free fatty acids. This study suggests that even short-term circadian disruption dramatically alters hepatic clock gene expression, bile acid metabolism and lipid homeostasis to contribute to dyslipidemia.

  9. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes.

    PubMed

    Zhang, Yuanyuan; Jackson, Jonathan P; St Claire, Robert L; Freeman, Kimberly; Brouwer, Kenneth R; Edwards, Jeffrey E

    2017-08-01

    Farnesoid X receptor (FXR) is a master regulator of bile acid homeostasis through transcriptional regulation of genes involved in bile acid synthesis and cellular membrane transport. Impairment of bile acid efflux due to cholangiopathies results in chronic cholestasis leading to abnormal elevation of intrahepatic and systemic bile acid levels. Obeticholic acid (OCA) is a potent and selective FXR agonist that is 100-fold more potent than the endogenous ligand chenodeoxycholic acid (CDCA). The effects of OCA on genes involved in bile acid homeostasis were investigated using sandwich-cultured human hepatocytes. Gene expression was determined by measuring mRNA levels. OCA dose-dependently increased fibroblast growth factor-19 (FGF-19) and small heterodimer partner (SHP) which, in turn, suppress mRNA levels of cholesterol 7-alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for de novo synthesis of bile acids. Consistent with CYP7A1 suppression, total bile acid content was decreased by OCA (1 μmol/L) to 42.7 ± 20.5% relative to control. In addition to suppressing de novo bile acids synthesis, OCA significantly increased the mRNA levels of transporters involved in bile acid homeostasis. The bile salt excretory pump (BSEP), a canalicular efflux transporter, increased by 6.4 ± 0.8-fold, and the basolateral efflux heterodimer transporters, organic solute transporter α (OSTα ) and OSTβ increased by 6.4 ± 0.2-fold and 42.9 ± 7.9-fold, respectively. The upregulation of BSEP and OSTα and OSTβ, by OCA reduced the intracellular concentrations of d8 -TCA, a model bile acid, to 39.6 ± 8.9% relative to control. These data demonstrate that OCA does suppress bile acid synthesis and reduce hepatocellular bile acid levels, supporting the use of OCA to treat bile acid-induced toxicity observed in cholestatic diseases. © 2017 Intercept Pharmaceuticals. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and

  10. G-protein-coupled bile acid receptor plays a key role in bile acid metabolism and fasting-induced hepatic steatosis in mice.

    PubMed

    Donepudi, Ajay C; Boehme, Shannon; Li, Feng; Chiang, John Y L

    2017-03-01

    Bile acids are signaling molecules that play a critical role in regulation of hepatic metabolic homeostasis by activating nuclear farnesoid X receptor (Fxr) and membrane G-protein-coupled receptor (Takeda G-protein-coupled receptor 5; Tgr5). The role of FXR in regulation of bile acid synthesis and hepatic metabolism has been studied extensively. However, the role of TGR5 in hepatic metabolism has not been explored. The liver plays a central role in lipid metabolism, and impaired response to fasting and feeding contributes to steatosis and nonalcoholic fatty liver and obesity. We have performed a detailed analysis of gallbladder bile acid and lipid metabolism in Tgr5(-/-) mice in both free-fed and fasted conditions. Lipid profiles of serum, liver and adipose tissues, bile acid composition, energy metabolism, and messenger RNA and protein expression of the genes involved in lipid metabolism were analyzed. Results showed that deficiency of the Tgr5 gene in mice alleviated fasting-induced hepatic lipid accumulation. Expression of liver oxysterol 7α-hydroxylase in the alternative bile acid synthesis pathway was reduced. Analysis of gallbladder bile acid composition showed marked increase of taurocholic acid and decrease of tauro-α and β-muricholic acid in Tgr5(-/-) mice. Tgr5(-/-) mice had increased hepatic fatty acid oxidation rate and decreased hepatic fatty acid uptake. Interestingly, fasting induction of fibroblast growth factor 21 in liver was attenuated. In addition, fasted Tgr5(-/-) mice had increased activation of hepatic growth hormone-signal transducer and activator of transcription 5 (GH-Stat5) signaling compared to wild-type mice.

  11. In vitro binding capacity of bile acids by defatted corn protein hydrolysate.

    PubMed

    Kongo-Dia-Moukala, Jauricque Ursulla; Zhang, Hui; Irakoze, Pierre Claver

    2011-02-08

    Defatted corn protein was digested using five different proteases, Alcalase, Trypsin, Neutrase, Protamex and Flavourzyme, in order to produce bile acid binding peptides. Bile acid binding capacity was analyzed in vitro using peptides from different proteases of defatted corn hydrolysate. Some crystalline bile acids like sodium glycocholate, sodium cholate and sodium deoxycholate were individually tested using HPLC to see which enzymes can release more peptides with high bile acid binding capacity. Peptides from Flavourzyme defatted corn hydrolysate exhibited significantly (p < 0.05) stronger bile acid binding capacity than all others hydrolysates tested and all crystalline bile acids tested were highly bound by cholestyramine, a positive control well known as a cholesterol-reducing agent. The bile acid binding capacity of Flavourzyme hydrolysate was almost preserved after gastrointestinal proteases digestion. The molecular weight of Flavourzyme hydrolysate was determined and most of the peptides were found between 500-180 Da. The results showed that Flavourzyme hydrolysate may be used as a potential cholesterol-reducing agent.

  12. In Vitro Binding Capacity of Bile Acids by Defatted Corn Protein Hydrolysate

    PubMed Central

    Kongo-Dia-Moukala, Jauricque Ursulla; Zhang, Hui; Irakoze, Pierre Claver

    2011-01-01

    Defatted corn protein was digested using five different proteases, Alcalase, Trypsin, Neutrase, Protamex and Flavourzyme, in order to produce bile acid binding peptides. Bile acid binding capacity was analyzed in vitro using peptides from different proteases of defatted corn hydrolysate. Some crystalline bile acids like sodium glycocholate, sodium cholate and sodium deoxycholate were individually tested using HPLC to see which enzymes can release more peptides with high bile acid binding capacity. Peptides from Flavourzyme defatted corn hydrolysate exhibited significantly (p < 0.05) stronger bile acid binding capacity than all others hydrolysates tested and all crystalline bile acids tested were highly bound by cholestyramine, a positive control well known as a cholesterol-reducing agent. The bile acid binding capacity of Flavourzyme hydrolysate was almost preserved after gastrointestinal proteases digestion. The molecular weight of Flavourzyme hydrolysate was determined and most of the peptides were found between 500–180 Da. The results showed that Flavourzyme hydrolysate may be used as a potential cholesterol-reducing agent. PMID:21541043

  13. Metformin impairs systemic bile acid homeostasis through regulating SIRT1 protein levels.

    PubMed

    Chen, Qi; Yang, Xiaoying; Zhang, Huabing; Kong, Xingxing; Yao, Lu; Cui, Xiaona; Zou, Yongkang; Fang, Fude; Yang, Jichun; Chang, Yongsheng

    2017-01-01

    Metformin is widely used to treat hyperglycemia. However, metformin treatment may induce intrahepatic cholestasis and liver injury in a few patients with type II diabetes through an unknown mechanism. Here we show that metformin decreases SIRT1 protein levels in primary hepatocytes and liver. Both metformin-treated wild-type C57 mice and hepatic SIRT1-mutant mice had increased hepatic and serum bile acid levels. However, metformin failed to change systemic bile acid levels in hepatic SIRT1-mutant mice. Molecular mechanism study indicates that SIRT1 directly interacts with and deacetylates Foxa2 to inhibit its transcriptional activity on expression of genes involved in bile acids synthesis and transport. Hepatic SIRT1 mutation elevates Foxa2 acetylation levels, which promotes Foxa2 binding to and activating genes involved in bile acids metabolism, impairing hepatic and systemic bile acid homeostasis. Our data clearly suggest that hepatic SIRT1 mediates metformin effects on systemic bile acid metabolism and modulation of SIRT1 activity in liver may be an attractive approach for treatment of bile acid-related diseases such as cholestasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Fish protein decreases serum cholesterol in rats by inhibition of cholesterol and bile acid absorption.

    PubMed

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2011-05-01

    Fish protein has been shown to decrease serum cholesterol content by inhibiting absorption of cholesterol and bile acid in laboratory animals, though the mechanism underlying this effect is not yet fully understood. The purpose of this study was to elucidate the mechanism underlying the inhibition of cholesterol and bile acid absorption following fish protein intake. Male Wistar rats were divided into 2 dietary groups of 7 rats each, 1 group receiving a diet consisting of 20% casein and the other receiving a diet consisting of 10% casein and 10% fish protein. Both experimental diets also contained 0.5% cholesterol and 0.1% sodium cholate. After the rats had been on their respective diets for 4 wk, their serum and liver cholesterol contents and fecal cholesterol, bile acid, and nitrogen excretion contents were measured. Fish protein consumption decreased serum and liver cholesterol content and increased fecal cholesterol and bile acid excretion and simultaneously increased fecal nitrogen excretion. In addition, fish protein hydrolyzate prepared by in vitro digestion had lower micellar solubility of cholesterol and higher binding capacity for bile acids compared with casein hydrolyzate. These results suggest that the hypocholesterolemic effect of fish protein is mediated by increased fecal cholesterol and bile acid excretion, which is due to the digestion products of fish protein having reduced micellar solubility of cholesterol and increased bile acid binding capacity.

  15. Adsorption of bile acid by chitosan salts prepared with cinnamic acid and analogue compounds.

    PubMed

    Murata, Yoshifumi; Nagaki, Kumiko; Kofuji, Kyouko; Sanae, Fujiko; Kontani, Hitoshi; Kawashima, Susumu

    2006-01-01

    A chitosan (CS) powder treated with cinnamic acid and an analogue compound (CN) was prepared as CS-CN. Using it, bile acid adsorption by CS-CN and the release of CN were investigated in vitro. When CS-CN was soaked in a taurocholate solution, it released CN and simultaneously adsorbed the bile acid. For CS-CN prepared with cinnamic acid, the amount of CN released was 0.286 +/- 0.001 mmol/g CS-CN; the amount of taurocholate adsorbed was 0.284 +/- 0.003 mmol/g CS-CN. These two functions were recognized on alginate or pectin gel beads containing CS-CN. The amount of released CN was altered extensively by the species of CN used for gel-bead preparation. Results suggest that CS-CN is a candidate for complementary medicine to prevent lifestyle-related diseases.

  16. Bile Acid Signaling Is Involved in the Neurological Decline in a Murine Model of Acute Liver Failure

    PubMed Central

    McMillin, Matthew; Frampton, Gabriel; Quinn, Matthew; Ashfaq, Samir; de los Santos, Mario; Grant, Stephanie; DeMorrow, Sharon

    2017-01-01

    Hepatic encephalopathy is a serious neurological complication of liver failure. Serum bile acids are elevated after liver damage and may disrupt the blood-brain barrier and enter the brain. Our aim was to assess the role of serum bile acids in the neurological complications after acute liver failure. C57Bl/6 or cytochrome p450 7A1 knockout (Cyp7A1−/−) mice were fed a control, cholestyramine-containing, or bile acid–containing diet before azoxymethane (AOM)-induced acute liver failure. In parallel, mice were given an intracerebroventricular infusion of farnesoid X receptor (FXR) Vivo-morpholino before AOM injection. Liver damage, neurological decline, and molecular analyses of bile acid signaling were performed. Total bile acid levels were increased in the cortex of AOM-treated mice. Reducing serum bile acids via cholestyramine feeding or using Cyp7A1−/− mice reduced bile acid levels and delayed AOM-induced neurological decline, whereas cholic acid or deoxycholic acid feeding worsened AOM-induced neurological decline. The expression of bile acid signaling machinery apical sodium-dependent bile acid transporter, FXR, and small heterodimer partner increased in the frontal cortex, and blocking FXR signaling delayed AOM-induced neurological decline. In conclusion, circulating bile acids may play a pathological role during hepatic encephalopathy, although precisely how they dysregulate normal brain function is unknown. Strategies to minimize serum bile acid concentrations may reduce the severity of neurological complications associated with liver failure. PMID:26683664

  17. A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3.

    PubMed

    Ferdinandusse, Sacha; Jimenez-Sanchez, Gerardo; Koster, Janet; Denis, Simone; Van Roermund, Carlo W; Silva-Zolezzi, Irma; Moser, Ann B; Visser, Wouter F; Gulluoglu, Mine; Durmaz, Ozlem; Demirkol, Mubeccel; Waterham, Hans R; Gökcay, Gülden; Wanders, Ronald J A; Valle, David

    2015-01-15

    ABCD3 is one of three ATP-binding cassette (ABC) transporters present in the peroxisomal membrane catalyzing ATP-dependent transport of substrates for metabolic pathways localized in peroxisomes. So far, the precise function of ABCD3 is not known. Here, we report the identification of the first patient with a defect of ABCD3. The patient presented with hepatosplenomegaly and severe liver disease and showed a striking accumulation of peroxisomal C27-bile acid intermediates in plasma. Investigation of peroxisomal parameters in skin fibroblasts revealed a reduced number of enlarged import-competent peroxisomes. Peroxisomal beta-oxidation of C26:0 was normal, but beta-oxidation of pristanic acid was reduced. Genetic analysis revealed a homozygous deletion at the DNA level of 1758bp, predicted to result in a truncated ABCD3 protein lacking the C-terminal 24 amino acids (p.Y635NfsX1). Liver disease progressed and the patient required liver transplantation at 4 years of age but expired shortly after transplantation. To corroborate our findings in the patient, we studied a previously generated Abcd3 knockout mouse model. Abcd3-/- mice accumulated the branched chain fatty acid phytanic acid after phytol loading. In addition, analysis of bile acids revealed a reduction of C24 bile acids, whereas C27-bile acid intermediates were significantly increased in liver, bile and intestine of Abcd3-/- mice. Thus, both in the patient and in Abcd3-/- mice, there was evidence of a bile acid biosynthesis defect. In conclusion, our studies show that ABCD3 is involved in transport of branched-chain fatty acids and C27 bile acids into the peroxisome and that this is a crucial step in bile acid biosynthesis. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Binding of bile acids by pastry products containing bioactive substances during in vitro digestion.

    PubMed

    Dziedzic, Krzysztof; Górecka, Danuta; Szwengiel, Artur; Smoczyńska, Paulina; Czaczyk, Katarzyna; Komolka, Patrycja

    2015-03-01

    The modern day consumer tends to choose products with health enhancing properties, enriched in bioactive substances. One such bioactive food component is dietary fibre, which shows a number of physiological properties including the binding of bile acids. Dietary fibre should be contained in everyday, easily accessible food products. Therefore, the aim of this study was to determine sorption capacities of primary bile acid (cholic acid - CA) and secondary bile acids (deoxycholic - DCA and lithocholic acids - LCA) by muffins (BM) and cookies (BC) with bioactive substances and control muffins (CM) and cookies (CC) in two sections of the in vitro gastrointestinal tract. Variations in gut flora were also analysed in the process of in vitro digestion of pastry products in a bioreactor. Enzymes: pepsin, pancreatin and bile salts: cholic acid, deoxycholic acid and lithocholic acid were added to the culture. Faecal bacteria, isolated from human large intestine, were added in the section of large intestine. The influence of dietary fibre content in cookies and concentration of bile acids in two stages of digestion were analysed. Generally, pastry goods with bioactive substances were characterized by a higher content of total fibre compared with the control samples. These products also differ in the profile of dietary fibre fractions. Principal Component Analysis (PCA) showed that the bile acid profile after two stages of digestion depends on the quality and quantity of fibre. The bile acid profile after digestion of BM and BC forms one cluster, and with the CM and CC forms a separate cluster. High concentration of H (hemicellulose) is positively correlated with LCA (low binding effect) and negatively correlated with CA and DCA contents. The relative content of bile acids in the second stage of digestion was in some cases above the content in the control sample, particularly LCA. This means that the bacteria introduced in the 2nd stage of digestion synthesize the LCA.

  19. Biological measurement of estrogenic activity in urine and bile conjugates with the in vitro ER-CALUX reporter gene assay.

    PubMed

    Legler, Juliette; Jonas, Arjen; Lahr, Joost; Vethaak, A Dick; Brouwer, Abraham; Murk, Albertinka J

    2002-03-01

    Although estrogens are excreted as biologically inactive conjugates, they can be reconverted to an active form, possibly by bacteria. A simple method was developed to deconjugate estrogen metabolites present in human urine and fish bile back to active estrogens by enzymatic hydrolysis with beta-glucuronidase or live Escherichia coli cells. Deconjugated extracts were tested for estrogenic activity in the in vitro stable estrogen receptor-mediated chemical-activated luciferase gene expression (ER-CALUX) assay. Estrogen glucuronides in urine obtained from human males and females were effectively converted to active forms after incubation with beta-glucuronidase or E. coli. The highest estrogenic activity was found in deconjugated metabolites from urine of a pregnant woman, in which levels up to 3,000 nmol estradiol equivalents per liter of urine were found after overnight incubation of urine with E. coli. Bile sampled from male bream and flounder from various freshwater and marine locations was also deconjugated and a good correlation was found between high biliary estrogenic activity and elevated levels of xenoestrogenic activity in surface water as well as in plasma vitellogenin. Therefore, the measurement of deconjugated bile could form a useful (indirect) biomarker for internal dose of xenoestrogens in male fish.

  20. Inhibition of ileal bile acid transporter: An emerging therapeutic strategy for chronic idiopathic constipation.

    PubMed

    Mosińska, Paula; Fichna, Jakub; Storr, Martin

    2015-06-28

    Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation.

  1. TGR5-mediated bile acid sensing controls glucose homeostasis

    PubMed Central

    Thomas, Charles; Gioiello, Antimo; Noriega, Lilia; Strehle, Axelle; Oury, Julien; Rizzo, Giovanni; Macchiarulo, Antonio; Yamamoto, Hiroyasu; Mataki, Chikage; Pruzanski, Mark; Pellicciari, Roberto; Auwerx, Johan; Schoonjans, Kristina

    2009-01-01

    Summary TGR5 is a G-protein coupled receptor expressed in brown adipose tissue and muscle where its activation by bile acids triggers an increase in energy expenditure and attenuates diet-induced obesity. Using a combination of pharmacological and genetic gain- and loss-of function studies in vivo, we show here that TGR5 signaling induces intestinal glucagon-like peptide-1 (GLP-1) release, leading to improved liver and pancreatic function and enhanced glucose tolerance in obese mice. In addition, we show that the induction of GLP-1 release in enteroendocrine cells by 6α-ethyl-23(S)-methyl-cholic acid (EMCA, INT-777), a specific TGR5 agonist, is linked to an increase of the intracellular ATP/ADP ratio and a subsequent rise in intracellular calcium mobilization. Altogether, these data show that the TGR5 signaling pathway is critical in regulating intestinal GLP-1 secretion in vivo and suggest that pharmacological targeting of TGR5 may constitute a promising incretin-based strategy for the treatment of diabesity and associated metabolic disorders. PMID:19723493

  2. Lithocholic Acid Feeding Induces Segmental Bile Duct Obstruction and Destructive Cholangitis in Mice

    PubMed Central

    Fickert, Peter; Fuchsbichler, Andrea; Marschall, Hanns-Ulrich; Wagner, Martin; Zollner, Gernot; Krause, Robert; Zatloukal, Kurt; Jaeschke, Hartmut; Denk, Helmut; Trauner, Michael

    2006-01-01

    We determined the mechanisms of hepatobiliary injury in the lithocholic acid (LCA)-fed mouse, an increasingly used model of cholestatic liver injury. Swiss albino mice received control diet or 1% (w/w) LCA diet (for 1, 2, and 4 days), followed by assessment of liver morphology and ultrastructure, tight junctions, markers of fibrosis and key proteins of hepatobiliary function, and bile flow and composition. As expected LCA feeding led to bile infarcts, which were followed by a destructive cholangitis with activation and proliferation of periductal myofibroblasts. At the ultrastructural level, small bile ducts were frequently obstructed by crystals. Biliary-excreted fluorescence-labeled ursodeoxycholic acid accumulated in bile infarcts, whereas most infarcts did not stain with India ink injected into the common bile duct; both findings are indicative of partial biliary obstruction. Expression of the main basolateral bile acid uptake proteins (sodium-taurocholate cotransporter and organic anion-transporting polypeptide 1) was reduced, the canalicular transporters bile salt export pump and multidrug-related protein 2 were preserved, and the basolateral transporter multidrug-related protein 3 and the detoxifying enzyme sulfotransferase 2a1 were induced. Thus, we demonstrate that LCA feeding in mice leads to segmental bile duct obstruction, destructive cholangitis, periductal fibrosis, and an adaptive transporter and metabolic enzyme response. PMID:16436656

  3. Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice.

    PubMed

    Fickert, Peter; Fuchsbichler, Andrea; Marschall, Hanns-Ulrich; Wagner, Martin; Zollner, Gernot; Krause, Robert; Zatloukal, Kurt; Jaeschke, Hartmut; Denk, Helmut; Trauner, Michael

    2006-02-01

    We determined the mechanisms of hepatobiliary injury in the lithocholic acid (LCA)-fed mouse, an increasingly used model of cholestatic liver injury. Swiss albino mice received control diet or 1% (w/w) LCA diet (for 1, 2, and 4 days), followed by assessment of liver morphology and ultrastructure, tight junctions, markers of fibrosis and key proteins of hepatobiliary function, and bile flow and composition. As expected LCA feeding led to bile infarcts, which were followed by a destructive cholangitis with activation and proliferation of periductal myofibroblasts. At the ultrastructural level, small bile ducts were frequently obstructed by crystals. Biliary-excreted fluorescence-labeled ursodeoxycholic acid accumulated in bile infarcts, whereas most infarcts did not stain with India ink injected into the common bile duct; both findings are indicative of partial biliary obstruction. Expression of the main basolateral bile acid uptake proteins (sodium-taurocholate cotransporter and organic anion-transporting polypeptide 1) was reduced, the canalicular transporters bile salt export pump and multidrug-related protein 2 were preserved, and the basolateral transporter multidrug-related protein 3 and the detoxifying enzyme sulfotransferase 2a1 were induced. Thus, we demonstrate that LCA feeding in mice leads to segmental bile duct obstruction, destructive cholangitis, periductal fibrosis, and an adaptive transporter and metabolic enzyme response.

  4. Metabolomic Profiling of Bile Acids in Clinical and Experimental Samples of Alzheimer’s Disease

    PubMed Central

    Pan, Xiaobei; Elliott, Christopher T.; McGuinness, Bernadette; Passmore, Peter; Kehoe, Patrick G.; Hölscher, Christian; McClean, Paula L.; Graham, Stewart F.; Green, Brian D.

    2017-01-01

    Certain endogenous bile acids have been proposed as potential therapies for ameliorating Alzheimer’s disease (AD) but their role, if any, in the pathophysiology of this disease is not currently known. Given recent evidence of bile acids having protective and anti-inflammatory effects on the brain, it is important to establish how AD affects levels of endogenous bile acids. Using LC-MS/MS, this study profiled 22 bile acids in brain extracts and blood plasma from AD patients (n = 10) and age-matched control subjects (n = 10). In addition, we also profiled brain/plasma samples from APP/PS1 and WT mice (aged 6 and 12 months). In human plasma, we detected significantly lower cholic acid (CA, p = 0.03) in AD patients than age-matched control subjects. In APP/PS1 mouse plasma we detected higher CA (p = 0.05, 6 months) and lower hyodeoxycholic acid (p = 0.04, 12 months) than WT. In human brain with AD pathology (Braak stages V-VI) taurocholic acid (TCA) were significantly lower (p = 0.01) than age-matched control subjects. In APP/PS1 mice we detected higher brain lithocholic acid (p = 0.05) and lower tauromuricholic acid (TMCA; p = 0.05, 6 months). TMCA was also decreased (p = 0.002) in 12-month-old APP/PS1 mice along with 5 other acids: CA (p = 0.02), β-muricholic acid (p = 0.02), Ω-muricholic acid (p = 0.05), TCA (p = 0.04), and tauroursodeoxycholic acid (p = 0.02). The levels of bile acids are clearly disturbed during the development of AD pathology and, since some bile acids are being proposed as potential AD therapeutics, we demonstrate a method that can be used to support work to advance bile acid therapeutics. PMID:28629125

  5. Progressive familial intrahepatic cholestasis and inborn errors of bile acid synthesis.

    PubMed

    Jankowska, Irena; Socha, Piotr

    2012-06-01

    Progressive familial intrahepatic cholestasis (PFIC), types 1, 2 and 3, are due to defects in genes involved in bile secretion (FIC1, BSEP, MDR3). PFIC and inborn errors of bile acid synthesis (IEBAS) often present in infancy with cholestasis. The distinctive feature of PFIC 1 and 2 and IEBAS is a normal level of GGT, while IEBAS are suspected in patients with low plasma bile acids concentration. Molecular testing, urinary bile acid analysis (IEBAS), liver biopsy and immuno-staining are used for the diagnosis. Some patients with PFIC can be successfully treated with ursodeoxycholic acid or partial external biliary diversion. IEBAS is treated with cholic acid. Liver transplantation is required for cirrhosis with liver failure. Hepatocarcinoma has been reported in PFIC2.

  6. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor

    PubMed Central

    Inagaki, Takeshi; Moschetta, Antonio; Lee, Youn-Kyoung; Peng, Li; Zhao, Guixiang; Downes, Michael; Yu, Ruth T.; Shelton, John M.; Richardson, James A.; Repa, Joyce J.; Mangelsdorf, David J.; Kliewer, Steven A.

    2006-01-01

    Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow. PMID:16473946

  7. Fatty acid-amino acid conjugates diversification in lepidopteran caterpillars.

    PubMed

    Yoshinaga, Naoko; Alborn, Hans T; Nakanishi, Tomoaki; Suckling, David M; Nishida, Ritsuo; Tumlinson, James H; Mori, Naoki

    2010-03-01

    Fatty acid amino acid conjugates (FACs) have been found in noctuid as well as sphingid caterpillar oral secretions; in particular, volicitin [N-(17-hydroxylinolenoyl)-L-glutamine] and its biochemical precursor, N-linolenoyl-L-glutamine, are known elicitors of induced volatile emissions in corn plants. These induced volatiles, in turn, attract natural enemies of the caterpillars. In a previous study, we showed that N-linolenoyl-L-glutamine in larval Spodoptera litura plays an important role in nitrogen assimilation which might be an explanation for caterpillars synthesizing FACs despite an increased risk of attracting natural enemies. However, the presence of FACs in lepidopteran species outside these families of agricultural interest is not well known. We conducted FAC screening of 29 lepidopteran species, and found them in 19 of these species. Thus, FACs are commonly synthesized through a broad range of lepidopteran caterpillars. Since all FAC-containing species had N-linolenoyl-L-glutamine and/or N-linoleoyl-L-glutamine in common, and the evolutionarily earliest species among them had only these two FACs, these glutamine conjugates might be the evolutionarily older FACs. Furthermore, some species had glutamic acid conjugates, and some had hydroxylated FACs. Comparing the diversity of FACs with lepidopteran phylogeny indicates that glutamic acid conjugates can be synthesized by relatively primitive species, while hydroxylation of fatty acids is limited mostly to larger and more developed macrolepidopteran species.

  8. Confocal imaging with a fluorescent bile acid analogue closely mimicking hepatic taurocholate disposition.

    PubMed

    De Bruyn, Tom; Sempels, Wouter; Snoeys, Jan; Holmstock, Nico; Chatterjee, Sagnik; Stieger, Bruno; Augustijns, Patrick; Hofkens, Johan; Mizuno, Hideaki; Annaert, Pieter

    2014-06-01

    This study aimed to characterize the in vitro hepatic transport mechanisms in primary rat and human hepatocytes of the fluorescent bile acid derivative N-(24-[7-(4-N,N-dimethylaminosulfonyl-2,1,3-benzoxadiazole)]amino-3α,7α,12α-trihydroxy-27-nor-5β-cholestan-26-oyl)-2'-aminoethanesulfonate (tauro-nor-THCA-24-DBD), previously synthesized to study the activity of the bile salt export pump (BSEP). The fluorescent bile acid derivative exhibited saturable uptake kinetics in suspended rat hepatocytes. Hepatic uptake was inhibited in the presence of substrates/inhibitors of the organic anion transporting polypeptide (Oatp) family and Na(+) -taurocholate cotransporting peptide (Ntcp). Concentration-dependent uptake of the fluorescent bile acid was also saturable in Chinese hamster ovary cells transfected with rNtcp, hNTCP, OATP1B1, or OATP1B3. The fluorescent bile acid derivative was actively excreted in the bile canaliculi of sandwich-cultured rat and human hepatocytes (SCRH and SCHH), with a biliary excretion index (BEI) of 26% and 32%, respectively. In SCRH, cyclosporin A significantly decreased the BEI to 5%. Quantification by real-time confocal imaging further confirmed canalicular transport of the fluorescent bile acid derivative (BEI = 75%). We conclude that tauro-nor-THCA-24-DBD is a useful probe to study interference of drugs with NTCP/Ntcp- and BSEP/Bsep-mediated transport in fluorescence-based in vitro assays.

  9. The influence of bile acids on the oral bioavailability of vitamin K encapsulated in polymeric micelles.

    PubMed

    van Hasselt, P M; Janssens, G E P J; Slot, T K; van der Ham, M; Minderhoud, T C; Talelli, M; Akkermans, L M; Rijcken, C J F; van Nostrum, C F

    2009-01-19

    The purpose of this study was to assess the ability of polymeric micelles to enable gastrointestinal absorption of the extremely hydrophobic compound vitamin K, by comparison of its absorption in bile duct ligated and sham operated rats. Hereto, vitamin K was encapsulated in micelles composed of mPEG(5000)-b-p(HPMAm-lac(2)), a thermosensitive block copolymer. Vitamin K plasma levels rose significantly upon gastric administration of 1 mg vitamin K encapsulated in polymeric micelles in sham operated rats, but not after bile duct ligation (AUC 4543 and 1.64 ng/mL/h respectively, p<0.01). Duodenal administration of polymeric micelles together with bile acids in bile duct ligated rats fully restored absorption. Dynamic light scattering time series showed a significant and dose dependent rise in micellar size in the presence of bile acids in vitro, indicating the gradual formation of mixed micelles during the first 3 h of incubation. The highest bile acid amounts (11 mM deoxycholic acid and 41 mM taurocholic acid) eventually caused aggregation of the loaded micelles after the formation of mixed micelles. These data suggest that the gastrointestinal absorption of encapsulated vitamin K from polymeric micelles is mediated by free bile and that uptake of intact micelles through pinocytosis is insignificant.

  10. Transport of bile acids in multidrug-resistance-protein 3-overexpressing cells co-transfected with the ileal Na+-dependent bile-acid transporter.

    PubMed Central

    Zelcer, Noam; Saeki, Tohru; Bot, Ilse; Kuil, Annemieke; Borst, Piet

    2003-01-01

    Many of the transporters involved in the transport of bile acids in the enterohepatic circulation have been characterized. The basolateral bile-acid transporter of ileocytes and cholangiocytes remains an exception. It has been suggested that rat multidrug resistance protein 3 (Mrp3) fulfills this function. Here we analyse bile-salt transport by human MRP3. Membrane vesicles from insect ( Spodoptera frugiperda ) cells expressing MRP3 show time-dependent uptake of glycocholate and taurocholate. Furthermore, sulphated bile salts were high-affinity competitive inhibitors of etoposide glucuronide transport by MRP3 (IC50 approximately 10 microM). Taurochenodeoxycholate, taurocholate and glycocholate inhibited transport at higher concentrations (IC50 approximately 100, 250 and 500 microM respectively). We used mouse fibroblast-like cell lines derived from mice with disrupted Mdr1a, Mdr1b and Mrp1 genes to generate transfectants that express the murine apical Na+-dependent bile-salt transporter (Asbt) and MRP3. Uptake of glycocholate by these cells is Na+-dependent, with a K(m) and V(max) of 29+/-7 microM and 660 +/- 63 pmol/min per mg of protein respectively and is inhibited by several organic-aniontransport inhibitors. Expression of MRP3 in these cells limits the accumulation of glycocholate and increases the efflux from cells preloaded with taurocholate or glycocholate. In conclusion, we find that MRP3 transports both taurocholate and glycocholate, albeit with low affinity, in contrast with the high-affinity transport by rat Mrp3. Our results suggest that MRP3 is unlikely to be the principal basolateral bile-acid transporter of ileocytes and cholangiocytes, but that it may have a role in the removal of bile acids from the liver in cholestasis. PMID:12220224

  11. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    SciTech Connect

    Hayashi, H.; Miwa, A. )

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  12. Bile acid-induced elevated oxidative stress in the absence of farnesoid X receptor

    PubMed Central

    Nomoto, Masahiro; Miyata, Masaaki; Yin, Shanai; Kurata, Yasushi; Shimada, Miki; Yoshinari, Kouichi; Gonzalez, Frank J; Suzuki, Kokichi; Shibasaki, Shigeki; Kurosawa, Tohru; Yamazoe, Yasushi

    2010-01-01

    SUMMARY The major function of farnesoid X receptor (FXR) is to maintain bile acid and lipid homeostasis. Fxr-null mice, in which the levels of hepatic bile acid and lipid have been elevated, develop spontaneous liver tumors. We evaluated differences in hepatic bile acid and triglyceride concentrations, and in generation of oxidative stress between wild-type mice and Fxr-null mice. The hepatic levels of 8-hydroxy-2’-deoxyguanosine (8OHdG), thiobarbituric acid-reactive substance (TBARS) and hydroperoxides, oxidative stress-related genes, and nuclear factor (erythroid-2 like) factor 2 (Nrf2) protein in Fxr-null mice were significantly higher than those in wild-type mice. An increase in the hepatic bile acid concentration in Fxr-null mice fed a cholic acid (CA) diet resulted in an increase in the hepatic levels of hydroperoxides, TBARS and 8OHdG, whereas a decrease in the hepatic concentration in mice fed a diet containing ME3738 (22β-methoxyolean-12-ene-3β, 24(4β)-diol) resulted in a decrease in these oxidative stress marker levels. A good correlation was observed between the hepatic bile acid concentrations and the hepatic oxidative stress marker levels, although there was no significant correlation between the hepatic triglyceride concentrations and oxidative stress. The results show that oxidative stress is spontaneously enhanced in Fxr-null mice, which may be attributable to a continuously high level of hepatic bile acids. PMID:19182371

  13. Effects of dose, flow rate, and bile acid on diclofenac disposition in the perfused rat liver.

    PubMed

    Uraki, Misato; Kawase, Atsushi; Matsushima, Yuka; Iwaki, Masahiro

    2016-06-01

    An in situ perfused rat liver system is useful for studying the hepatic disposition of drugs and their metabolites. However, the effects of the perfusion conditions on drug disposition are unclear. We examined the effects of conditions such as flow rate (13 or 26 mL/min) and bile acid on disposition of diclofenac (DF) as a model drug and DF metabolites [diclofenac-1-O-acyl glucuronide (DF-Glu) or 4'-hydroxydiclofenac (DF-4'OH)] in the absence of albumin. DF, DF-Glu, and DF-4'OH concentrations in the perfusate and cumulative amounts of DF-Glu excreted in bile were measured using high-performance liquid chromatography methods. DF in the perfusate was rapidly eliminated as the perfusate flow rate increased. The area under the plasma concentration-time curve from 0 to 60 min (AUC0-60) for DF-Glu and DF-4'OH in a perfusate containing bile acid was lower at a flow rate of 26 and 13 mL/min, respectively. The bile flow rate at 26 mL/min with 24 μM of bile acid in the perfusate was significantly higher (ca. 3.5 times) compared with that at 13 mL/min without bile acid. Cumulative biliary DF-Glu excretion was also dramatically affected by the flow rate and addition of bile acid. This study indicated that the flow rate and bile acid in the perfused rat liver were key factors for bile flow rate and DF, DF-Glu, and DF-4'OH disposition in the absence of albumin.

  14. Taurocholic acid metabolism by gut microbes and colon cancer.

    PubMed

    Ridlon, Jason M; Wolf, Patricia G; Gaskins, H Rex

    2016-05-03

    Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively.

  15. Removal of bile acids by two different extracorporeal liver support systems in acute-on-chronic liver failure.

    PubMed

    Stadlbauer, Vanessa; Krisper, Peter; Beuers, Ulrich; Haditsch, Bernd; Schneditz, Daniel; Jung, Aleksandra; Putz-Bankuti, Csilla; Holzer, Herwig; Trauner, Michael; Stauber, Rudolf E

    2007-01-01

    Acute-on-chronic liver failure (ACLF) is accompanied by marked intrahepatic cholestasis leading to accumulation of cytotoxic bile acids. Extracorporeal liver support systems efficiently remove bile acids, but their effect on bile acid composition in ACLF is unknown. The aim of the present study was to compare elimination of individual plasma bile acids by albumin dialysis (Molecular Adsorbents Recirculating System, MARS) and fractionated plasma separation (Prometheus). Eight consecutive patients with ACLF underwent alternating 6-hour sessions with MARS or Prometheus in a randomized, cross-over design. Serum samples were obtained before, during, and after each treatment, and individual bile acids including cholic acid and chenodeoxycholic acid (CDCA) were measured by gas chromatography. MARS and Prometheus removed total bile acids to a similar extent (reduction ratio, 45% and 46%, respectively). Both devices cleared cholic acid more efficiently than did CDCA. The molar fraction of CDCA (fCDCA) was elevated at baseline and correlated with the degree of liver dysfunction. Prometheus but not MARS treatments further increased fCDCA. Although both devices eliminate total bile acids to a similar extent, clearance of individual bile acids is different, leading to a slight change of the bile acid profile toward hydrophobic bile acids during Prometheus treatments.

  16. Sources and Bioactive Properties of Conjugated Dietary Fatty Acids.

    PubMed

    Hennessy, Alan A; Ross, Paul R; Fitzgerald, Gerald F; Stanton, Catherine

    2016-04-01

    The group of conjugated fatty acids known as conjugated linoleic acid (CLA) isomers have been extensively studied with regard to their bioactive potential in treating some of the most prominent human health malignancies. However, CLA isomers are not the only group of potentially bioactive conjugated fatty acids currently undergoing study. In this regard, isomers of conjugated α-linolenic acid, conjugated nonadecadienoic acid and conjugated eicosapentaenoic acid, to name but a few, have undergone experimental assessment. These studies have indicated many of these conjugated fatty acid isomers commonly possess anti-carcinogenic, anti-adipogenic, anti-inflammatory and immune modulating properties, a number of which will be discussed in this review. The mechanisms through which these bioactivities are mediated have not yet been fully elucidated. However, existing evidence indicates that these fatty acids may play a role in modulating the expression of several oncogenes, cell cycle regulators, and genes associated with energy metabolism. Despite such bioactive potential, interest in these conjugated fatty acids has remained low relative to the CLA isomers. This may be partly attributed to the relatively recent emergence of these fatty acids as bioactives, but also due to a lack of awareness regarding sources from which they can be produced. In this review, we will also highlight the common sources of these conjugated fatty acids, including plants, algae, microbes and chemosynthesis.

  17. Bile acids promote diethylnitrosamine-induced hepatocellular carcinoma via increased inflammatory signaling.

    PubMed

    Sun, Lina; Beggs, Kevin; Borude, Prachi; Edwards, Genea; Bhushan, Bharat; Walesky, Chad; Roy, Nairita; Manley, Michael W; Gunewardena, Sumedha; O'Neil, Maura; Li, Hua; Apte, Udayan

    2016-07-01

    Hepatocellular carcinoma (HCC) is the most common hepatic malignancy and the third leading cause of cancer related deaths. Previous studies have implicated bile acids in pathogenesis of HCC, but the mechanisms are not known. We investigated the mechanisms of HCC tumor promotion by bile acids the diethylnitrosamine (DEN)-initiation-cholic acid (CA)-induced tumor promotion protocol in mice. The data show that 0.2% CA treatment resulted in threefold increase in number and size of DEN-induced liver tumors. All tumors observed in DEN-treated mice were well-differentiated HCCs. The HCCs observed in DEN-treated CA-fed mice exhibited extensive CD3-, CD20-, and CD45-positive inflammatory cell aggregates. Microarray-based global gene expression studies combined with Ingenuity Pathway Analysis revealed significant activation of NF-κB and Nanog in the DEN-treated 0.2% CA-fed livers. Further studies showed significantly higher TNF-α and IL-1β mRNA, a marked increase in total and phosphorylated-p65 and phosphorylated IκBα (degradation form) in livers of DEN-treated 0.2% CA-fed mice. Treatment of primary mouse hepatocytes with various bile acids showed significant induction of stemness genes including Nanog, KLF4, Sox2, and Oct4. Quantification of total and 20 specific bile acids in liver, and serum revealed a tumor-associated bile acid signature. Finally, quantification of total serum bile acids in normal, cirrhotic, and HCC human samples revealed increased bile acids in serum of cirrhotic and HCC patients. Taken together, these data indicate that bile acids are mechanistically involved pathogenesis of HCC and may promote HCC formation via activation of inflammatory signaling. Copyright © 2016 the American Physiological Society.

  18. Steam Cooking Significantly Improves In Vitro Bile Acid Binding of Collard Greens, Kale, Mustard Greens, Broccoli, Green Bell Pepper and Cabbage

    USDA-ARS?s Scientific Manuscript database

    Bile acid binding capacity has been related to the cholesterol-lowering potential of foods and food fractions. Lowering recirculating bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increasing the r...

  19. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease

    PubMed Central

    Porez, Geoffrey; Prawitt, Janne; Gross, Barbara; Staels, Bart

    2012-01-01

    Dyslipidemia is an important risk factor for cardiovascular disease (CVD) and atherosclerosis. When dyslipidemia coincides with other metabolic disorders such as obesity, hypertension, and glucose intolerance, defined as the metabolic syndrome (MS), individuals present an elevated risk to develop type 2 diabetes (T2D) as well as CVD. Because the MS epidemic represents a growing public health problem worldwide, the development of therapies remains a major challenge. Alterations of bile acid pool regulation in T2D have revealed a link between bile acid and metabolic homeostasis. The bile acid receptors farnesoid X receptor (FXR) and TGR5 both regulate lipid, glucose, and energy metabolism, rendering them potential pharmacological targets for MS therapy. This review discusses the mechanisms of metabolic regulation by FXR and TGR5 and the utility relevance of natural and synthetic modulators of FXR and TGR5 activity, including bile acid sequestrants, in the treatment of the MS. PMID:22550135

  20. The bile acid sensor FXR regulates insulin transcription and secretion.

    PubMed

    Renga, Barbara; Mencarelli, Andrea; Vavassori, Piero; Brancaleone, Vincenzo; Fiorucci, Stefano

    2010-03-01

    Farnesoid X Receptor plays an important role in maintaining bile acid, cholesterol homeostasis and glucose metabolism. Here we investigated whether FXR is expressed by pancreatic beta-cells and regulates insulin signaling in pancreatic beta-cell line and human islets. We found that FXR activation induces positive regulatory effects on glucose-induced insulin transcription and secretion by genomic and non-genomic activities. Genomic effects of FXR activation relay on the induction of the glucose regulated transcription factor KLF11. Indeed, results from silencing experiments of KLF11 demonstrate that this transcription factor is essential for FXR activity on glucose-induced insulin gene transcription. In addition FXR regulates insulin secretion by non-genomic effects. Thus, activation of FXR in betaTC6 cells increases Akt phosphorylation and translocation of the glucose transporter GLUT2 at plasma membrane, increasing the glucose uptake by these cells. In vivo experiments on Non Obese Diabetic (NOD) mice demonstrated that FXR activation delays development of signs of diabetes, hyperglycemia and glycosuria, by enhancing insulin secretion and by stimulating glucose uptake by the liver. These data established that an FXR-KLF11 regulated pathway has an essential role in the regulation of insulin transcription and secretion induced by glucose.

  1. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis.

    PubMed

    Xie, Guoxiang; Wang, Xiaoning; Huang, Fengjie; Zhao, Aihua; Chen, Wenlian; Yan, Jingyu; Zhang, Yunjing; Lei, Sha; Ge, Kun; Zheng, Xiaojiao; Liu, Jiajian; Su, Mingming; Liu, Ping; Jia, Wei

    2016-10-15

    Dysregulated bile acids (BAs) are closely associated with liver diseases and attributed to altered gut microbiota. Here, we show that the intrahepatic retention of hydrophobic BAs including deoxycholate (DCA), taurocholate (TCA), taurochenodeoxycholate (TCDCA), and taurolithocholate (TLCA) were substantially increased in a streptozotocin and high fat diet (HFD) induced nonalcoholic steatohepatitis-hepatocellular carcinoma (NASH-HCC) mouse model. Additionally chronic HFD-fed mice spontaneously developed liver tumors with significantly increased hepatic BA levels. Enhancing intestinal excretion of hydrophobic BAs in the NASH-HCC model mice by a 2% cholestyramine feeding significantly prevented HCC development. The gut microbiota alterations were closely correlated with altered BA levels in liver and feces. HFD-induced inflammation inhibited key BA transporters, resulting in sustained increases in intrahepatic BA concentrations. Our study also showed a significantly increased cell proliferation in BA treated normal human hepatic cell lines and a down-regulated expression of tumor suppressor gene CEBPα in TCDCA treated HepG2 cell line, suggesting that several hydrophobic BAs may collaboratively promote liver carcinogenesis.

  2. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer

    PubMed Central

    Tsuei, Jessica; Chau, Thinh; Mills, David; Wan, Yu-Jui Yvonne

    2015-01-01

    Because of increasingly widespread sedentary lifestyles and diets high in fat and sugar, the global diabetes and obesity epidemic continues to grow unabated. A substantial body of evidence has been accumulated which associates diabetes and obesity to dramatically higher risk of cancer development, particularly in the liver and gastrointestinal tract. Additionally, diabetic and obese individuals have been shown to suffer from dysregulation of bile acid (BA) homeostasis and dysbiosis of the intestinal microbiome. Abnormally elevated levels of cytotoxic secondary BAs and a pro-inflammatory shift in gut microbial profile have individually been linked to numerous enterohepatic diseases including cancer. However, recent findings have implicated a detrimental interplay between BA dysregulation and intestinal dysbiosis that promotes carcinogenesis along the gut–liver axis. This review seeks to examine the currently investigated interactions between the regulation of BA metabolism and activity of the intestinal microbiota and how these interactions can drive cancer formation in the context of diabesity. The precarcinogenic effects of BA dysregulation and gut dysbiosis including excessive inflammation, heightened oxidative DNA damage, and increased cell proliferation are discussed. Furthermore, by focusing on the mediatory roles of BA nuclear receptor farnesoid x receptor, ileal transporter apical sodium dependent BA transporter, and G-coupled protein receptor TGR5, this review attempts to connect BA dysregulation, gut dysbiosis, and enterohepatic carcinogenesis at a mechanistic level. A better understanding of the intricate interplay between BA homeostasis and gut microbiome can yield novel avenues to combat the impending rise in diabesity-related cancers. PMID:24951470

  3. Bile acid dysregulation, gut dysbiosis, and gastrointestinal cancer.

    PubMed

    Tsuei, Jessica; Chau, Thinh; Mills, David; Wan, Yu-Jui Yvonne

    2014-11-01

    Because of increasingly widespread sedentary lifestyles and diets high in fat and sugar, the global diabetes and obesity epidemic continues to grow unabated. A substantial body of evidence has been accumulated which associates diabetes and obesity to dramatically higher risk of cancer development, particularly in the liver and gastrointestinal tract. Additionally, diabetic and obese individuals have been shown to suffer from dysregulation of bile acid (BA) homeostasis and dysbiosis of the intestinal microbiome. Abnormally elevated levels of cytotoxic secondary BAs and a pro-inflammatory shift in gut microbial profile have individually been linked to numerous enterohepatic diseases including cancer. However, recent findings have implicated a detrimental interplay between BA dysregulation and intestinal dysbiosis that promotes carcinogenesis along the gut-liver axis. This review seeks to examine the currently investigated interactions between the regulation of BA metabolism and activity of the intestinal microbiota and how these interactions can drive cancer formation in the context of diabesity. The precarcinogenic effects of BA dysregulation and gut dysbiosis including excessive inflammation, heightened oxidative DNA damage, and increased cell proliferation are discussed. Furthermore, by focusing on the mediatory roles of BA nuclear receptor farnesoid x receptor, ileal transporter apical sodium dependent BA transporter, and G-coupled protein receptor TGR5, this review attempts to connect BA dysregulation, gut dysbiosis, and enterohepatic carcinogenesis at a mechanistic level. A better understanding of the intricate interplay between BA homeostasis and gut microbiome can yield novel avenues to combat the impending rise in diabesity-related cancers.

  4. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids

    PubMed Central

    Cui, Julia Yue

    2015-01-01

    Information on the intestinal microbiota has increased exponentially this century because of technical advancements in genomics and metabolomics. Although information on the synthesis of bile acids by the liver and their transformation to secondary bile acids by the intestinal microbiota was the first example of the importance of the intestinal microbiota in biotransforming chemicals, this review will discuss numerous examples of the mechanisms by which the intestinal microbiota alters the pharmacology and toxicology of drugs and other chemicals. More specifically, the altered pharmacology and toxicology of salicylazosulfapridine, digoxin, l-dopa, acetaminophen, caffeic acid, phosphatidyl choline, carnitine, sorivudine, irinotecan, nonsteroidal anti-inflammatory drugs, heterocyclic amines, melamine, nitrazepam, and lovastatin will be reviewed. In addition, recent data that the intestinal microbiota alters drug metabolism of the host, especially Cyp3a, as well as the significance and potential mechanisms of this phenomenon are summarized. The review will conclude with an update of bile acid research, emphasizing the bile acid receptors (FXR and TGR5) that regulate not only bile acid synthesis and transport but also energy metabolism. Recent data indicate that by altering the intestinal microbiota, either by diet or drugs, one may be able to minimize the adverse effects of the Western diet by altering the composition of bile acids in the intestine that are agonists or antagonists of FXR and TGR5. Therefore, it may be possible to consider the intestinal microbiota as another drug target. PMID:26261286

  5. Bile acid diarrhoea and FGF19: new views on diagnosis, pathogenesis and therapy.

    PubMed

    Walters, Julian R F

    2014-07-01

    Chronic diarrhoea induced by bile acids is common and the underlying mechanisms are linked to homeostatic regulation of hepatic bile acid synthesis by fibroblast growth factor 19 (FGF19). Increasing evidence, including that from several large case series using SeHCAT (selenium homocholic acid taurine) tests for diagnosis, indicates that bile acid diarrhoea (BAD) accounts for a sizeable proportion of patients who would otherwise be diagnosed with IBS. Studies of other approaches for diagnosis of BAD have shown increased bile acid synthesis, increased faecal levels of primary bile acids, dysbiosis and different urinary volatile organic compounds when compared with healthy controls or with other diseases. The role of the ileal hormone FGF19 in BAD has been strengthened: a prospective clinical study has confirmed low FGF19 levels in BAD, and so a test to measure these levels could be developed for diagnosis. In animal models, FGF19 depletion by antibodies produces severe diarrhoea. Bile acids affect colonic function through farnesoid X receptor (FXR) and TGR5 receptors. As well as these effects in the colon, FXR-dependent stimulation of ileal FGF19 production could be a logical mechanism to provide therapeutic benefit in BAD. Further studies of FGF19 in humans hold promise in providing novel treatments for this cause of chronic diarrhoea.

  6. Review: Mechanisms of How the Intestinal Microbiota Alters the Effects of Drugs and Bile Acids.

    PubMed

    Klaassen, Curtis D; Cui, Julia Yue

    2015-10-01

    Information on the intestinal microbiota has increased exponentially this century because of technical advancements in genomics and metabolomics. Although information on the synthesis of bile acids by the liver and their transformation to secondary bile acids by the intestinal microbiota was the first example of the importance of the intestinal microbiota in biotransforming chemicals, this review will discuss numerous examples of the mechanisms by which the intestinal microbiota alters the pharmacology and toxicology of drugs and other chemicals. More specifically, the altered pharmacology and toxicology of salicylazosulfapridine, digoxin, l-dopa, acetaminophen, caffeic acid, phosphatidyl choline, carnitine, sorivudine, irinotecan, nonsteroidal anti-inflammatory drugs, heterocyclic amines, melamine, nitrazepam, and lovastatin will be reviewed. In addition, recent data that the intestinal microbiota alters drug metabolism of the host, especially Cyp3a, as well as the significance and potential mechanisms of this phenomenon are summarized. The review will conclude with an update of bile acid research, emphasizing the bile acid receptors (FXR and TGR5) that regulate not only bile acid synthesis and transport but also energy metabolism. Recent data indicate that by altering the intestinal microbiota, either by diet or drugs, one may be able to minimize the adverse effects of the Western diet by altering the composition of bile acids in the intestine that are agonists or antagonists of FXR and TGR5. Therefore, it may be possible to consider the intestinal microbiota as another drug target. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  7. Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation

    PubMed Central

    Aleksunes, Lauren M.

    2010-01-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting β polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) α and β] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory

  8. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity.

    PubMed

    Vrieze, Anne; Out, Carolien; Fuentes, Susana; Jonker, Lisanne; Reuling, Isaie; Kootte, Ruud S; van Nood, Els; Holleman, Frits; Knaapen, Max; Romijn, Johannes A; Soeters, Maarten R; Blaak, Ellen E; Dallinga-Thie, Geesje M; Reijnders, Dorien; Ackermans, Mariëtte T; Serlie, Mireille J; Knop, Filip K; Holst, Jenst J; van der Ley, Claude; Kema, Ido P; Zoetendal, Erwin G; de Vos, Willem M; Hoekstra, Joost B L; Stroes, Erik S; Groen, Albert K; Nieuwdorp, Max

    2014-04-01

    Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500 mg t.i.d. or 7 days of vancomycin 500 mg t.i.d. At baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured. Vancomycin reduced fecal microbial diversity with a decrease of gram-positive bacteria (mainly Firmicutes) and a compensatory increase in gram-negative bacteria (mainly Proteobacteria). Concomitantly, vancomycin decreased fecal secondary bile acids with a simultaneous postprandial increase in primary bile acids in plasma (p<0.05). Moreover, changes in fecal bile acid concentrations were predominantly associated with altered Firmicutes. Finally, administration of vancomycin decreased peripheral insulin sensitivity (p<0.05). Amoxicillin did not affect any of these parameters. Oral administration of vancomycin significantly impacts host physiology by decreasing intestinal microbiota diversity, bile acid dehydroxylation and peripheral insulin sensitivity in subjects with metabolic syndrome. These data show that intestinal microbiota, particularly of the Firmicutes phylum contributes to bile acid and glucose metabolism in humans. This trial is registered at the Dutch Trial Register (NTR2566). Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  9. Experimental study on the effect of bile, and bile and hydrochloric acid mixture on the esophageal mucosa.

    PubMed

    Manea, Georgeta Simona; Lupuşoru, Cătălina; Căruntu, Irina Draga

    2009-01-01

    The investigation of duodena gastro esophageal reflux (DGER) implies both clinical and experimental studies. Within the context of the literature, our study aimed to produce esophageal lesions by the development of an experimental model reproducing the characteristics of DGER and to analyze their microscopic pattern. The material consisted in three groups of white Wistar rats. Group I (control group) included physiologic saline gavaged rats. Group II received by the esophageal probe bovine bile pH 7, and group III 0.5% bovine bile at pH 4, to which we added hydrochloric acid 0.1 N. The rats were sacrificed in the 21st day of the experiment. The esophagus was sectioned obliquely and longitudinally, maintaining the lumen and marking the upper and lower extremities. The esophageal fragments were routinely processed for light microscopy pathology exam, in HE staining. The pathologic aspects suggested that the effect of bile and bile and hydrochloric acid mixture on the esophageal epithelium interferes with the normal keratinization process, with consequent onset of hyperkeratinization. Moreover, epithelial atrophy was present in the group II on restricted areas and in the group III on extended territories. The alterations in the keratinization process suggest the possibility of initiation in time of carcinogenic mechanism. The atrophic transformations plead for an evolution towards erosion and ulceration. The study takes into consideration the differences between human and experimental animal esophageal epithelium. Thus, there emerge new perspectives to extrapolate the experimental results into the human biologic context, the morphologic pattern proving the irritant effect of DGER in vivo.

  10. Absence of bile acid malabsorption as a late effect of pelvic irradiation

    SciTech Connect

    Schuster, J.J.; Stryker, J.A.; Demers, L.M.; Mortel, R.

    1986-09-01

    The pathophysiology of chronic radiation-induced diarrhea was evaluated in 28 patients who had undergone pelvic irradiation for gynecologic neoplasms 2 to 7 years previously. Twenty-seven patients undergoing radiotherapy with techniques that did not require abdominal or pelvic irradiation served as controls. The glycine conjugates of cholic acid (GC) were measured in serum by radioimmunoassay. Fasting and 2 hr. pp GC levels for the pelvic irradiated patients were 11.0 +/- 11.1 (mean +/- SD) and 24.8 +/- 17.3 micrograms/dl. Fasting and 2 hr. pp GC levels for controls were 12.6 +/- 7.4 and 28.0 +/- 14.7. There were no significant differences in the post-prandial increases in serum GC between pelvic irradiated patients and controls (p = .23, Type II error probability = .13). There was also no significant difference in the 2 hr. pp and fasting GC ratio (p = .39). There was significant difference between the stool frequency (p less than .01) and the prevalence of diarrhea (p less than .02) between pelvic irradiated patients and controls. The data suggest that bile acid malabsorption due to ileal dysfunction is not an inevitable late complication of pelvic irradiation and is not the major determinant in the pathophysiology of chronic radiation-induced diarrhea.

  11. Ursodeoxycholic and deoxycholic acids: A good and a bad bile acid for intestinal calcium absorption.

    PubMed

    Rodríguez, Valeria; Rivoira, María; Marchionatti, Ana; Pérez, Adriana; Tolosa de Talamoni, Nori

    2013-12-01

    The aim of this study was to investigate the effect of ursodeoxycholic acid (UDCA) on intestinal Ca(2+) absorption and to find out whether the inhibition of this process caused by NaDOC could be prevented by UDCA. Chicks were employed and divided into four groups: (a) controls, (b) treated with 10mM NaDOC, (c) treated with 60 μg UDCA/100g of b.w., and (d) treated with 10mM NaDOC and 60 μg UDCA/100g of b.w. UDCA enhanced intestinal Ca(2+) absorption, which was time and dose-dependent. UDCA avoided the inhibition of intestinal Ca(2+) absorption caused by NaDOC. Both bile acids altered protein and gene expression of molecules involved in the transcellular pathway of intestinal Ca(2+) absorption, but in the opposite way. UDCA aborted the oxidative stress produced by NaDOC in the intestine. UDCA and UDCA plus NaDOC increased vitamin D receptor protein expression. In conclusion, UDCA is a beneficial bile acid for intestinal Ca(2+) absorption. Contrarily, NaDOC inhibits the intestinal cation absorption through triggering oxidative stress. The use of UDCA in patients with cholestasis would be benefited because of the protective effect on the intestinal Ca(2+) absorption, avoiding the inhibition caused by hydrophobic bile acids and neutralizing the oxidative stress.

  12. Synthesis and in Vitro Evaluation of Bile Acid Prodrugs of Floxuridine to Target the Liver

    PubMed Central

    Vivian, Diana; Polli, James E.

    2014-01-01

    Floxuridine is often used to treat metastatic liver disease and is given as an infusion directly into the hepatic artery to increase the amount of intact drug that reaches the liver. The objective of this work was to design and synthesize prodrugs of floxuridine through conjugation to chenodeoxycholic acid (CDCA) to target the liver via the bile acid liver uptake transporter Na+/taurocholate cotransporting polypeptide (NTCP, SLC10A1). Two isomeric prodrugs of floxuridine were synthesized: floxuridine 3′ glutamic acid-CDCA and floxuridine 5′-glutamic acid-CDCA. Both were potent inhibitors and substrates of NTCP. Floxuridine 3′ glutamic acid-CDCA showed Ki = 6.86 ± 1.37 μM, Km = 10.7 ± 2.1 μM, and passive permeability = 0.663 (± 0.121) x 10−7 cm/s while floxuridine 5′-glutamic acid-CDCA showed Ki = 0.397 ± 0.038 μM, Km = 40.4 ± 15.2 μM, and passive permeability = 1.72 (± 0.18) x 10−7 cm/s. Floxuridine itself had a higher passively permeability of 7.54 (± 0.45) x 10−7 cm/s in the same cell line, indicating that both prodrugs have the potential for lower non-specific effects than the drug alone. Prodrugs were stable in rat plasma (t = 3h), but quickly released in rat liver s9 fraction, suggesting future in vivo evaluation. PMID:25219859

  13. Diagnostic Methods for Bile Acid Malabsorption in Clinical Practice

    PubMed Central

    Vijayvargiya, Priya; Camilleri, Michael; Shin, Andrea; Saenger, Amy

    2013-01-01

    Altered bile acid (BA) concentrations in the colon may cause diarrhea or constipation. BA malabsorption (BAM) accounts for >25% of patients with irritable bowel syndrome (IBS) with diarrhea and chronic diarrhea in Western countries. As BAM is increasingly recognized, proper diagnostic methods are desired in clinical practice to help direct the most effective treatment course for the chronic bowel dysfunction. This review appraises the methodology, advantages and disadvantages of 4 tools that directly measure BAM: 14C-glycocholate breath and stool test, 75Selenium HomotauroCholic Acid Test (SeHCAT), 7 α-hydroxy-4-cholesten-3-one (C4) and fecal BAs. 14C-glycocholate is a laborious test no longer widely utilized. 75SeHCAT is validated, but not available in the United States. Serum C4 is a simple, accurate method that is applicable to a majority of patients, but requires further clinical validation. Fecal measurements to quantify total and individual fecal BAs are technically cumbersome and not widely available. Regrettably, none of these tests are routinely available in the U.S., and a therapeutic trial with a BA binder is used as a surrogate for diagnosis of BAM. Recent data suggest there is an advantage to studying fecal excretion of the individual BAs and their role in BAM; this may constitute a significant advantage of the fecal BA method over the other tests. Fecal BA test could become a routine addition to fecal fat measurement in patients with unexplained diarrhea. In summary, availability determines the choice of test among C4, SeHCAT and fecal BA; more widespread availability of such tests would enhance clinical management of these patients. PMID:23644387

  14. Dysregulation of bile acid homeostasis in parenteral nutrition mouse model

    PubMed Central

    Zhan, Le; Yang, Ill; Shen, Jianliang; Gorczyca, Ludwik; Memon, Naureen; Buckley, Brian T.

    2015-01-01

    Long-term parenteral nutrition (PN) administration can lead to PN-associated liver diseases (PNALD). Although multiple risk factors have been identified for PNALD, to date, the roles of bile acids (BAs) and the pathways involved in BA homeostasis in the development and progression of PNALD are still unclear. We have established a mouse PN model with IV infusion of PN solution containing soybean oil-based lipid emulsion (SOLE). Our results showed that PN altered the expression of genes involved in a variety of liver functions at the mRNA levels. PN increased liver gene expression of Cyp7a1 and markedly decreased that of Cyp8b1, Cyp7b1, Bsep, and Shp. CYP7A1 and CYP8B1 are important for synthesizing the total amount of BAs and regulating the hydrophobicity of BAs, respectively. Consistently, both the levels and the percentages of primary BAs as well as total non-12α-OH BAs increased significantly in the serum of PN mice compared with saline controls, whereas liver BA profiles were largely similar. The expression of several key liver-X receptor-α (LXRα) target genes involved in lipid synthesis was also increased in PN mouse livers. Retinoid acid-related orphan receptor-α (RORα) has been shown to induce the expression of Cyp8b1 and Cyp7b1, as well as to suppress LXRα function. Western blot showed significantly reduced nuclear migration of RORα protein in PN mouse livers. This study shows that continuous PN infusion with SOLE in mice leads to dysregulation of BA homeostasis. Alterations of liver RORα signaling in PN mice may be one of the mechanisms implicated in the pathogenesis of PNALD. PMID:26564717

  15. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics

    PubMed Central

    Ridlon, Jason M.; Bajaj, Jasmohan S.

    2015-01-01

    The human body is now viewed as a complex ecosystem that on a cellular and gene level is mainly prokaryotic. The mammalian liver synthesizes and secretes hydrophilic primary bile acids, some of which enter the colon during the enterohepatic circulation, and are converted into numerous hydrophobic metabolites which are capable of entering the portal circulation, returned to the liver, and in humans, accumulating in the biliary pool. Bile acids are hormones that regulate their own synthesis, transport, in addition to glucose and lipid homeostasis, and energy balance. The gut microbial community through their capacity to produce bile acid metabolites distinct from the liver can be thought of as an “endocrine organ” with potential to alter host physiology, perhaps to their own favor. We propose the term “sterolbiome” to describe the genetic potential of the gut microbiome to produce endocrine molecules from endogenous and exogenous steroids in the mammalian gut. The affinity of secondary bile acid metabolites to host nuclear receptors is described, the potential of secondary bile acids to promote tumors, and the potential of bile acids to serve as therapeutic agents are discussed. PMID:26579434

  16. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.

    PubMed

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.

  17. The Bile Acid-Sensitive Ion Channel (BASIC) Is Activated by Alterations of Its Membrane Environment

    PubMed Central

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Dias Lucas, Susana; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity. PMID:25360526

  18. Targeting cancer cells with folic acid-iminoboronate fluorescent conjugates.

    PubMed

    Cal, Pedro M S D; Frade, Raquel F M; Chudasama, Vijay; Cordeiro, Carlos; Caddick, Stephen; Gois, Pedro M P

    2014-05-25

    Herein we present the synthesis of fluorescent 2-acetylbenzeneboronic acids that undergo B-N promoted conjugation with lysozyme and N-(2-aminoethyl) folic acid (EDA-FA), generating conjugates that are selectively recognized and internalized by cancer cells that over-express folic acid receptors.

  19. Primary bile acids as potential biomarkers for the clinical grading of intrahepatic cholestasis of pregnancy.

    PubMed

    Chen, Jianbo; Deng, Wenping; Wang, Junwei; Shao, Yong; Ou, Minglin; Ding, Min

    2013-07-01

    To identify possible biomarkers for the clinical grading of intrahepatic cholestasis of pregnancy (ICP) through serum bile acid (SBA) profiling in women with ICP. Serum samples were collected in the last trimester of pregnancy from 33 women with severe ICP, 28 women with mild ICP, and 35 women with a normal pregnancy. The SBA levels were determined by high-performance liquid chromatography-tandem mass spectrometry. Patients with severe ICP had significantly higher serum levels of taurochenodeoxycholic acid, tauroursodeoxycholic acid, glycocholic acid (GCA), taurocholic acid (TCA), and glycochenodeoxycholic acid than women with mild ICP or a normal pregnancy. Primary bile acid species, in particular TCA and GCA, were the main bile acids detected and their levels were significantly higher in the severe ICP group than in the other 2 groups. There is an obvious difference in the SBA profiles of women with severe ICP and those with mild ICP, indicating that primary bile acids may be useful biomarkers for the clinical grading of ICP. Implementation of primary bile acid testing in clinical practice may help clinicians to determine the appropriate management strategy for patients with ICP. Copyright © 2013 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Synergistic effect of hydrochloric acid and bile acids on the pars esophageal mucosa of the porcine stomach.

    PubMed

    Lang, J; Blikslager, A; Regina, D; Eisemann, J; Argenzio, R

    1998-09-01

    To determine effects of finely ground diet and food deprivation on pH and bile acid concentration in the proximal portion of the porcine stomach and effects of bile acids and pH on the pars esophageal mucosa in vitro. Sixteen 15- to 30-kg pigs. Gastric content samples obtained from pigs fed a finely ground pelleted or coarsely ground meal diet were assayed for gastric pH and bile acids. Stratified squamous epithelium was studied in an Ussing chamber, and histologically. Electrical conductance and transmucosal mannitol fluxes (as indices of tissue permeability) were determined at pH 4.0, 2.0, and 1.5 and in response to treatment with 0, 1, 2, or 3 mM taurodeoxycholate or glycocholate. Pigs fed the finely ground feed had significantly (P = 0.01) lower proximal stomach pH than did pigs fed the coarse meal. Proximal stomach bile acids concentration was significantly (P = 0.04) higher in pigs fed the finely ground diet. The H+ and bile acids concentration increased with time after feeding. In vitro exposure of the stratified mucosa to high H+ (pH < 4.0) and bile salt concentration (> or = 1.0 mM) resulted in significant (P < 0.05) dose-dependent increase in tissue conductance and mannitol fluxes, whereas low pH or bile acids alone had little effect. High H+ and bile acids concentration in the stomach of pigs fed finely ground diets or subjected to feed deprivation may contribute to ulceration of the pars esophageal tissue. Bile acids act synergistically and in dose-dependent manner, with low pH causing damage to the stratified squamous epithelium in vitro.

  1. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

    PubMed Central

    Gomez-Ospina, Natalia; Potter, Carol J.; Xiao, Rui; Manickam, Kandamurugu; Kim, Mi-Sun; Kim, Kang Ho; Shneider, Benjamin L.; Picarsic, Jennifer L.; Jacobson, Theodora A.; Zhang, Jing; He, Weimin; Liu, Pengfei; Knisely, A. S.; Finegold, Milton J.; Muzny, Donna M.; Boerwinkle, Eric; Lupski, James R.; Plon, Sharon E.; Gibbs, Richard A.; Eng, Christine M.; Yang, Yaping; Washington, Gabriel C.; Porteus, Matthew H.; Berquist, William E.; Kambham, Neeraja; Singh, Ravinder J.; Xia, Fan; Enns, Gregory M.; Moore, David D.

    2016-01-01

    Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection. PMID:26888176

  2. Probiotics--interactions with bile acids and impact on cholesterol metabolism.

    PubMed

    Pavlović, Nebojša; Stankov, Karmen; Mikov, Momir

    2012-12-01

    The use of probiotics, alone or in interaction with bile acids, is a modern strategy in the prevention and treatment of hypercholesterolemia. Numerous mechanisms for hypocholesterolemic effect of probiotics have been hypothesized, based mostly on in vitro evidence. Interaction with bile acids through reaction of deconjugation catalyzed by bile salt hydrolase enzymes (BSH) is considered as the main mechanism of cholesterol-lowering effects of probiotic bacteria, but it has been reported that microbial BSH activity could be potentially detrimental to the human host. There are several approaches for prevention of possible side effects associated with BSH activity, which at the same time increase the viability of probiotics in the intestines and also in food matrices. The aim of our study was to summarize present knowledge of probiotics-bile acids interactions, with special reference to cholesterol-lowering mechanisms of probiotics, and to report novel biotechnological approaches for increasing the pharmacological benefits of probiotics.

  3. Association between circulating vitamin D metabolites and fecal bile acid concentrations

    PubMed Central

    Jacobs, Elizabeth T.; Haussler, Mark R.; Alberts, David S.; Kohler, Lindsay N.; Lance, Peter; Martínez, María Elena; Roe, Denise J.; Jurutka, Peter W.

    2016-01-01

    While hydrophobic bile acids have been demonstrated to exhibit cytotoxic and carcinogenic effects in the colorectum, ursodeoxycholic acid (UDCA) has been investigated as a potential chemopreventive agent. Vitamin D has been shown to play a role in both bile acid metabolism and in the development of colorectal neoplasia. Employing a cross-sectional design, we sought to determine whether baseline circulating concentrations of the vitamin D metabolites 25(OH)D and 1,25(OH)2D were associated with baseline fecal bile acid concentrations in a trial of UDCA for the prevention of colorectal adenoma recurrence. We also prospectively evaluated whether vitamin D metabolite concentrations modified the effect of UDCA on adenoma recurrence. After adjustment for age, sex, BMI, physical activity, and calcium intake, adequate concentrations of 25(OH)D (> 30 ng/ml) were statistically significantly associated with reduced odds for high levels of total (OR=0.61; 95% CI=0.38-0.97), and primary (OR=0.61; 95% CI=0.38-0.96) bile acids, as well as individually with chenodeoxycholic acid (OR=0.39; 95% CI=0.24-0.63) and cholic acid (OR=0.56; 95% CI=0.36-0.90). No significant associations were observed for 1,25(OH)2D and high vs. low fecal bile acid concentrations. In addition, neither 25(OH)D nor 1,25(OH)2D modified the effect of UDCA on colorectal adenoma recurrence. In conclusion, this is the first study to demonstrate an inverse relationship between circulating levels of 25(OH)D and primary fecal bile acid concentrations. These results support prior data demonstrating that vitamin D plays a key role in bile acid metabolism, and suggest a potential mechanism of action for 25(OH)D in colorectal cancer prevention. PMID:27138789

  4. Metabolism of the bile acid analogues 7 beta-methyl-cholic acid and 7 alpha-methyl-ursocholic acid

    SciTech Connect

    Kuroki, S.; Mosbach, E.H.; Cohen, B.I.; McSherry, C.K.

    1987-04-01

    The metabolism of two new bile acid analogues, 7 beta-methyl-cholate and 7 alpha-methyl-ursocholate, was compared with that of cholate in the hamster. After intraduodenal administration of /sup 14/C-labeled compounds into bile fistula hamsters, radioactivity was exclusively recovered in bile; the more hydrophobic bile acid was absorbed more rapidly. Hepatic extraction of intravenously infused compounds was efficient and administered analogues became major biliary bile acids. Amidation of cholate was essentially complete, whereas 39% of 7 beta-methyl-cholate and 65% of 7 alpha-methyl-ursocholate were secreted in unconjugated form. After intragastric administration of the compounds, radioactivity was quantitatively recovered in feces. Cholate was 7-dehydroxylated to deoxycholate, whereas 31% of 7 beta-methyl-cholate and 78% of 7 alpha-methyl-ursocholate were recovered unchanged. Fifty percent of 7 beta-methyl-cholate and 15% of 7 alpha-methyl-ursocholate were transformed into ketonic derivatives, without loss of the 7-hydroxyl group. It is concluded that the introduction of the 7-methyl group did not interfere with intestinal absorption, hepatic extraction, and biliary secretion but did affect enzymatic amidation and bacterial 7-dehydroxylation of the analogues.

  5. Structural Conservation of Ligand Binding Reveals a Bile Acid-like Signaling Pathway in Nematodes*

    PubMed Central

    Zhi, Xiaoyong; Zhou, X. Edward; Melcher, Karsten; Motola, Daniel L.; Gelmedin, Verena; Hawdon, John; Kliewer, Steven A.; Mangelsdorf, David J.; Xu, H. Eric

    2012-01-01

    Bile acid-like molecules named dafachronic acids (DAs) control the dauer formation program in Caenorhabditis elegans through the nuclear receptor DAF-12. This mechanism is conserved in parasitic nematodes to regulate their dauer-like infective larval stage, and as such, the DAF-12 ligand binding domain has been identified as an important therapeutic target in human parasitic hookworm species that infect more than 600 million people worldwide. Here, we report two x-ray crystal structures of the hookworm Ancylostoma ceylanicum DAF-12 ligand binding domain in complex with DA and cholestenoic acid (a bile acid-like metabolite), respectively. Structure analysis and functional studies reveal key residues responsible for species-specific ligand responses of DAF-12. Furthermore, DA binds to DAF-12 mechanistically and is structurally similar to bile acids binding to the mammalian bile acid receptor farnesoid X receptor. Activation of DAF-12 by cholestenoic acid and the cholestenoic acid complex structure suggest that bile acid-like signaling pathways have been conserved in nematodes and mammals. Together, these results reveal the molecular mechanism for the interplay between parasite and host, provide a structural framework for DAF-12 as a promising target in treating nematode parasitism, and provide insight into the evolution of gut parasite hormone-signaling pathways. PMID:22170062

  6. Bile acids reduce endocytosis of high-density lipoprotein (HDL) in HepG2 cells.

    PubMed

    Röhrl, Clemens; Eigner, Karin; Fruhwürth, Stefanie; Stangl, Herbert

    2014-01-01

    High-density lipoprotein (HDL) transports lipids to hepatic cells and the majority of HDL-associated cholesterol is destined for biliary excretion. Cholesterol is excreted into the bile directly or after conversion to bile acids, which are also present in the plasma as they are effectively reabsorbed through the enterohepatic cycle. Here, we provide evidence that bile acids affect HDL endocytosis. Using fluorescent and radiolabeled HDL, we show that HDL endocytosis was reduced in the presence of high concentrations of taurocholate, a natural non-cell-permeable bile acid, in human hepatic HepG2 and HuH7 cells. In contrast, selective cholesteryl-ester (CE) uptake was increased. Taurocholate exerted these effects extracellularly and independently of HDL modification, cell membrane perturbation or blocking of endocytic trafficking. Instead, this reduction of endocytosis and increase in selective uptake was dependent on SR-BI. In addition, cell-permeable bile acids reduced HDL endocytosis by farnesoid X receptor (FXR) activation: chenodeoxycholate and the non-steroidal FXR agonist GW4064 reduced HDL endocytosis, whereas selective CE uptake was unaltered. Reduced HDL endocytosis by FXR activation was independent of SR-BI and was likely mediated by impaired expression of the scavenger receptor cluster of differentiation 36 (CD36). Taken together we have shown that bile acids reduce HDL endocytosis by transcriptional and non-transcriptional mechanisms. Further, we suggest that HDL endocytosis and selective lipid uptake are not necessarily tightly linked to each other.

  7. Pravastatin modulates liver bile acid and cholesterol homeostasis in rats with chronic cholestasis.

    PubMed

    Kolouchova, Gabriela; Brcakova, Eva; Hirsova, Petra; Sispera, Ludek; Tomsik, Pavel; Cermanova, Jolana; Hyspler, Radek; Slanarova, Martina; Fuksa, Leos; Lotkova, Halka; Micuda, Stanislav

    2011-10-01

    The administration of pravastatin to patients with cholestatic liver disease has suggested the potential of the drug with regard to reducing raised plasma cholesterol and bile acid levels. Information about the mechanisms associated with this effect is lacking. Thus, the aim of the present study is to evaluate pravastatin effects on the liver bile acid and cholesterol homeostasis in healthy and cholestatic rats. Control sham-operated and reversibly bile duct-obstructed (BDO) rats were treated with pravastatin (1 or 5 mg/kg) or the vehicle alone for 7 days after surgery. Lower doses of pravastatin reduced bile acid plasma concentrations in cholestatic animals. The effect was associated with reduced liver mRNA expression of Cyp7a1, Cyp8b1, Mrp2, Ugt1a1 and the increased expression of Bsep. In addition, BDO-induced increase in the liver content of cholesterol was normalized by pravastatin. The change was accompanied by the reduced liver expression of Hmg-CoA reductase, LDL receptor, and Acat2, and induced the expression of Abca1 and Mdr2. These changes corresponded with the upregulation of nuclear receptors LXRα and PPARα, and the downregulation of FXR, CAR, SREBP-2 and HNF1α. High doses of pravastatin lacked any positive effects on bile acids and cholesterol homeostasis, and blocked bile formation through the reduction of the biliary excretion of bile acids. Pravastatin rendered a positive reduction in BDO-induced increases in plasma bile acid concentrations and cholesterol liver content, mainly through the transcriptionally-mediated downregulation of genes involved in the synthesis of these compounds in the liver. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  8. Physicochemical and physiological properties of cholylsarcosine. A potential replacement detergent for bile acid deficiency states in the small intestine.

    PubMed Central

    Lillienau, J; Schteingart, C D; Hofmann, A F

    1992-01-01

    The properties of cholylsarcosine (the synthetic N-acyl conjugate of cholic acid with sarcosine [N-methylglycine]) were examined to determine its suitability as a bile acid replacement agent for conditions of bile acid deficiency in the small intestine, which causes fat malabsorption. Previous studies in rodents had shown that the compound was well transported by the liver and ileum and underwent neither deconjugation nor dehydroxylation during enterohepatic cycling. By 1H-nuclear magnetic resonance, cholylsarcosine was found to exist in dilute aqueous solution as an almost equimolar mixture of two geometric isomers--cis and trans (around the amide bond)--in contrast to cholylglycine, which was present entirely in the trans form. The critical micellization concentration was 11 mmol/liter, similar to that of cholylglycine (10 mmol/liter). By nonaqueous titrimetry, the pKa' of cholylsarcosine was 3.7, only slightly lower than that of cholylglycine (3.9). Cholylsarcosine was poorly soluble below pH 3.7, but highly soluble above pH 4. In vitro, cholylsarcosine behaved as cholylglycine with respect to promoting lipolysis by lipase/colipase. There was little difference between cholylsarcosine and cholylglycine in their solubilization of an equimolar mixture of oleic acid, oleate, and monoolein (designed to simulate digestive products of triglyceride) or in their solubilization of monooleyl-glycerol alone. When a [3H]triolein emulsion with either cholylsarcosine or cholyltaurine was infused intraduodenally in biliary fistula rats, recovery of 3H in lymph was 52 +/- 10% (mean +/- SD) for cholylsarcosine and 52 +/- 11% for cholyltaurine. When perfused into the colon of the anesthetized rabbit, cholylsarcosine (5 mmol/liter) did not influence water absorption or permeability to erythritol, in contrast to chenodeoxycholate, which induced vigorous water secretion and caused erythritol loss. We conclude that cholylsarcosine possesses the physicochemical and physiological

  9. Importance of Large Intestine in Regulating Bile Acids and Glucagon-Like Peptide-1 in Germ-Free Mice

    PubMed Central

    Selwyn, Felcy Pavithra; Csanaky, Iván L.; Zhang, Youcai

    2015-01-01

    It is known that 1) elevated serum bile acids (BAs) are associated with decreased body weight, 2) elevated glucagon-like peptide-1 (GLP-1) levels can decrease body weight, and 3) germ-free (GF) mice are resistant to diet-induced obesity. The purpose of this study was to test the hypothesis that a lack of intestinal microbiota results in more BAs in the body, resulting in increased BA-mediated transmembrane G protein–coupled receptor 5 (TGR5) signaling and increased serum GLP-1 as a mechanism of resistance of GF mice to diet-induced obesity. GF mice had 2- to 4-fold increased total BAs in the serum, liver, bile, and ileum. Fecal excretion of BAs was 63% less in GF mice. GF mice had decreased secondary BAs and increased taurine-conjugated BAs, as anticipated. Surprisingly, there was an increase in non–12α-OH BAs, namely, β-muricholic acid, ursodeoxycholic acid (UDCA), and their taurine conjugates, in GF mice. Further, in vitro experiments confirmed that UDCA is a primary BA in mice. There were minimal changes in the mRNA of farnesoid X receptor target genes in the ileum (Fibroblast growth factor 15, small heterodimer protein, and ileal bile acid–binding protein), in the liver (small heterodimer protein, liver receptor homolog-1, and cytochrome P450 7a1), and BA transporters (apical sodium dependent bile acid transporter, organic solute transporter α, and organic solute transporter β) in the ileum of GF mice. Surprisingly, there were marked increases in BA transporters in the large intestine. Increased GLP-1 levels and gallbladder size were observed in GF mice, suggesting activation of TGR5 signaling. In summary, the GF condition results in increased expression of BA transporters in the colon, resulting in 1) an increase in total BA concentrations in tissues, 2) a change in BA composition to favor an increase in non–12α-OH BAs, and 3) activation of TGR5 signaling with increased gallbladder size and GLP-1. PMID:26199423

  10. Influence of acid and bile acid on ERK activity, PPARγ expression and cell proliferation in normal human esophageal epithelial cells

    PubMed Central

    Jiang, Zhi-Ru; Gong, Jun; Zhang, Zhen-Ni; Qiao, Zhe

    2006-01-01

    AIM: To observe the effects of acid and bile acid exposure on cell proliferation and the expression of extracellular signal-regulated protein kinase (ERK) and peroxisome proliferator-activated receptor γ (PPARγ) in normal human esophageal epithelial cells in vitro. METHODS: In vitro cultured normal human esophageal epithelial cells were exposed to acidic media (pH 4.0 - 6.5), media containing different bile acid (250 μmol/L), media containing acid and bile acid, respectively. Cell proliferation was assessed using MTT and flow cytometry. The expressions of phosphorylated ERK1/2 and PPARγ protein were determined by the immunoblotting technique. RESULTS: Acid-exposed (3 min) esophageal cells exhibited a significant increase in proliferation ratio, S phase of the cell cycle (P < 0.05) and the level of phosphorylated ERK1/2 protein. When the acid-exposure period exceeded 6 min, we observed a decrease in proliferation ratio and S phase of the cell cycle, with an increased apoptosis ratio (P < 0.05). Bile acid exposure (3-12 min) also produced an increase in proliferation ratio, S phase of the cell cycle (P < 0.05) and phosphorylated ERK1/2 expression. On the contrary, deoxycholic acid (DCA) exposure (> 20 min) decreased proliferation ratio. Compared with bile acid exposure (pH 7.4), bile acid exposure (pH 6.5, 4) significantly decreased proliferation ratio (P < 0.05). There was no expression of PPARγ in normal human esophageal epithelial cells. CONCLUSION: The rapid stimuli of acid or bile acid increase proliferation in normal human esophageal epithelial cells by activating the ERK pathway. PMID:16688842

  11. Tandem mass spectrometric determination of atypical 3β-hydroxy-Δ5-bile acids in patients with 3β-hydroxy-Δ5-C27-steroid oxidoreductase deficiency: application to diagnosis and monitoring of bile acid therapeutic response.

    PubMed

    Zhang, Wujuan; Jha, Pinky; Wolfe, Brian; Gioiello, Antimo; Pellicciari, Roberto; Wang, Jianshe; Heubi, James; Setchell, Kenneth D R

    2015-07-01

    3β-Hydroxy-Δ(5)-C27-steroid oxidoreductase (HSD3B7) deficiency, a progressive cholestatic liver disease, is the most common genetic defect in bile acid synthesis. Early diagnosis is important because patients respond to oral primary bile acid therapy, which targets the negative feedback regulation for bile acid synthesis to reduce the production of hepatotoxic 3β-hydroxy-Δ(5)-bile acids. These atypical bile acids are highly labile and difficult to accurately measure, yet a method for accurate determination of 3β-hydroxy-Δ(5)-bile acid sulfates is critical for dose titration and monitoring response to therapy. We describe a electrospray ionization LC-MS/MS method for the direct measurement of atypical 3β-hydroxy-Δ(5)-bile acid sulfates in urine from patients with HSD3B7 deficiency that overcomes the deficiencies of previously used GC-MS methods. Separation of sulfated 3β-hydroxy-Δ(5)-bile acids was achieved by reversed-phase HPLC in a 12-min analytical run. The mean (SE) urinary concentration of the total 3β-sulfated-Δ(5)-cholenoic acids in patients with HSD3B7 deficiency was 4650 (1711) μmol/L, approximately 1000-fold higher than in noncholestatic and cholestatic patients with intact primary bile acid synthesis. GC-MS was not reliable for measuring 3β-hydroxy-Δ(5)-bile acid sulfates; however, direct analysis of urine by fast atom bombardment mass spectrometry yielded meaningful semiquantitative assessment of urinary excretion. The tandem mass spectrometry method described here for the measurement of 3β-hydroxy-Δ(5)-bile acid sulfates in urine can be applied to the diagnosis and accurate monitoring of responses to primary bile acid therapy in HSD3B7 patients. © 2015 American Association for Clinical Chemistry.

  12. Separate transport systems for biliary secretion of sulfated and unsulfated bile acids in the rat.

    PubMed Central

    Kuipers, F; Enserink, M; Havinga, R; van der Steen, A B; Hardonk, M J; Fevery, J; Vonk, R J

    1988-01-01

    Biliary secretion of 3 alpha-sulfated bile acids has been studied in Wistar rats with an autosomal recessive defect in the hepatic transport of bilirubin. Liver function, established by measurement of various enzymes in plasma, by enzyme histochemical methods, and by electron microscopy, appeared to be normal in these rats. Serum levels of unconjugated, monoglucuronidated, and diglucuronidated bilirubin were 0.62, 1.62, and 6.16 mumol/liter, respectively, compared with 0.17, 0.08, and 0.02 mumol/liter in control rats. Biliary bilirubin secretion was strongly reduced in the mutant animals: 0.21 +/- 0.03 vs. 0.39 +/- 0.03 nmol/min per 100 g body wt in control rats. Despite normal biliary bile acid output, bile flow was markedly impaired in the mutant animals, due to a 53% reduction of the bile acid-independent fraction of bile flow. The transport maximum for biliary secretion of dibromosulphthalein (DBSP) was also drastically reduced (-53%). Biliary secretion of intravenously administered trace amounts of the 3 alpha-sulfate esters of 14C-labeled taurocholic acid (-14%), taurochenodeoxycholic acid (-39%), taurolithocholic acid (-73%), and glycolithocholic acid (-91%) was impaired in the jaundiced rats compared with controls, in contrast to the biliary secretion of the unsulfated parent compounds. Hepatic uptake of sulfated glycolithocholic acid was not affected in the jaundiced animals. Preadministration of DBSP (15 mumol/100 g body wt) to normal Wistar rats significantly impaired the biliary secretion of sulfated glycolithocholic acid, but did not affect taurocholic acid secretion. We conclude that separate transport systems in the rat liver exist for biliary secretion of sulfated and unsulfated bile acids; the sulfates probably share secretory pathways with the organic anions bilirubin and DBSP. The described genetic defect in hepatic transport function is associated with a reduced capacity to secrete sulfated bile acids into bile; this becomes more pronounced with

  13. Histopathologic changes in the middle ear mucosa after exposure to pepsin and unconjugated bile acid.

    PubMed

    Develoglu, Omer Necati; Yalcin, Enis; Bulut, Erdoğan; Celebi, Saban; Sahan, Elife; Ustundag, Nil; Dervisoglu, Sergulen; Kulekci, Mehmet; Kucur, Mine

    2014-11-01

    An increasing number of studies indicate that pepsin and bile acid cause damage to the ear, nose, and throat structures as a result of extraesophageal reflux. The aim of this study was to evaluate and compare the damaging effect of bile acids and pepsin on the middle ear mucosa. Twenty-nine healthy rats were included in this study. The animals were divided into 5 groups. A single daily dose of 40 μmol/L chenodeoxycholic acid, 40 μg/mL pepsin, and saline were injected separately into the right middle ear of the rats. On day 30, all rats were decapitated, and formalin-fixed, paraffin-embedded samples of the middle ear both from the control and experimental rats were prepared. A semiquantitative analysis was performed. Inflammatory response was seen in all middle ear mucosa of rats except control group 1. The degree of inflammatory response was higher in the bile acid group when compared with the other groups. Epithelial metaplastic changes with varying number of goblet cells were observed in both the bile acid- and pepsin-injected groups. These metaplastic changes were also higher in the bile acid-induced group than in the pepsin-injected group. This is the first study on the middle ear mucosal damage of both pepsin and bile acid. Our results demonstrate that bile acids were associated with more extensive mucosal injury at pH 7 in comparison to pepsin in a rat animal model. Inflammatory response and metaplastic changes may play an important role in the etiology of middle ear pathologies.

  14. Enhanced solubility and antioxidant activity of chlorogenic acid-chitosan conjugates due to the conjugation of chitosan with chlorogenic acid.

    PubMed

    Rui, Liyun; Xie, Minhao; Hu, Bing; Zhou, Li; Saeeduddin, Muhammad; Zeng, Xiaoxiong

    2017-08-15

    Chlorogenic acid-chitosan conjugate was synthesized by introducing of chlorogenic acid onto chitosan with the aid of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and hydroxybenzotriazole. The data of UV-vis, FT-IR and NMR for chlorogenic acid-chitosan conjugates demonstrated the successful conjugation of chlorogenic acid with chitosan. Compared to chitosan, chlorogenic acid-chitosan conjugates exhibited increased solubility in distilled water, 1% acetic acid solution (v/v) or 50% ethanol solution (v/v) containing 0.5% acetic acid. Moreover, chlorogenic acid-chitosan conjugates showed dramatic enhancements in metal ion chelating activity, total antioxidant capacity, scavenging activities on 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) and superoxide radicals, inhibitory effects on lipid peroxidation and β-carotene-linoleic acid bleaching, and protective effect on H2O2-induced oxidative injury of PC12 cells. Particularly, chlorogenic acid-chitosan conjugate exhibited higher inhibitory effects on lipid peroxidation and β-carotene-linoleic acid bleaching than chlorogenic acid. The results suggested that chlorogenic acid-chitosan conjugates could serve as food supplements to enhance the function of foods in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Dietary fatty acids regulate cholesterol induction of liver CYP7alpha1 expression and bile acid production.

    PubMed

    Li, Yan; Hou, Meng Jun; Ma, Jing; Tang, Zhi Hong; Zhu, Hui Lian; Ling, Wen Hua

    2005-05-01

    In the present study we investigated the effects of dietary fats containing predominantly PUFA, monounsaturated FA (MUFA), or saturated FA (SFA) on lipid profile and liver cholesterol 7alpha-hydroxylase (CYP7alpha1) mRNA expression and bile acid production in C57BL/6J mice. The animals (n = 75) were randomly divided into five groups and fed a basic chow diet (AIN-93G) (BC diet), a chow diet with 1 g/100 g of cholesterol (Chol diet), a chow diet with 1 g/100 g of cholesterol and 14 g/100 g of safflower oil (Chol + PUFA diet), a chow diet with 1 g/100 g of cholesterol and olive oil (Chol + MUFA diet), or a chow diet with 1 g/100 g of cholesterol and myristic acid (Chol + SFA diet) for 6 wk. The results showed that the Chol + SFA diet decreased CYP7alpha1 gene expression and bile acid pool size, resulting in increased blood and liver cholesterol levels. Addition of PUFA and MUFA to a 1% cholesterol diet increased the bile acid pool production or bile acid excretion and simultaneously decreased liver cholesterol accumulation despite decreased CYP7alpha1 mRNA expression. The results indicate that the decreased bile acid pool size induced by the SFA diet is related to inhibition of the liver CYP7alpha1 gene expression, but an increased bile acid pool size and improved cholesterol homeostasis are disassociated from the liver CYP7alpha1 gene expression.

  16. Thermodynamic and molecular basis for dissimilar cholesterol-solubilizing capacities by micellar solutions of bile salts: cases of sodium chenodeoxycholate and sodium ursodeoxycholate and their glycine and taurine conjugates.

    PubMed

    Carey, M C; Montet, J C; Phillips, M C; Armstrong, M J; Mazer, N A

    1981-06-09

    The bile salts chenodeoxycholate (CDC) and its 7 beta-hydroxy epimer ursodeoxycholate (UDC) are administered therapeutically (as acids) to dissolve cholesterol gallstones in man. Since their micellarr solutions and those of their physiological conjugates differ strikingly in their capacities to solubilize cholesterol, we studied the interfacial and micellar properties of the epimers by a number of complimentary physical--chemical methods and correlated these with their solubilizing capacities. The critical micella concentrations (cmc) estimated by surface tension, dye titration, and turbidimetry were similar (1-5 mM), varying slightly with the bile salt species, the method employed, NaCl concentration (0-1 M), and temperature (10-50 degrees C). The weight-average aggregation number (number of monomers per micelle, nw) at the cmc, derived from Debye plots of conventional light-scattering data and from the mean hydrodynamic radii of the micelles obtained by quasi-elastic light-scattering spectroscopy, revealed no appreciable differences between the UDC-CDC epimers or between their conjugates. From the mean hydrodynamic radii, the taurine conjugates were found to form larger micelles (nw = 15-17) than the glycine conjugates (nw = 13) which in turn were larger than the free species (n w = 5), respectively. Consistent with previous experimental deductions, free and conjugated CDC micelles grew slightly in size with increases in total lipid concentration, but UDC micelles did not. With solubilization of cholesterol monohydrate, the mean sizes of UDC (13.4 A) and of CDC (13 A) micelles in 10 g/dL solutions did not change appreciably, even as the cholesterol saturation limit was reached. At the air-5 M NaCl (pH 2) interface, the glycine conjugates formed more expanded monomolecular films than the free acid, and both UDC and its glycine conjugate collapsed at surface pressures that were 10-20 mN m-1 lower than the collapse pressures of monolayers of CDC and its glycine

  17. Gut microbiota-associated bile acid deconjugation accelerates hepatic steatosis in ob/ob mice.

    PubMed

    Park, M-Y; Kim, S J; Ko, E K; Ahn, S-H; Seo, H; Sung, M-K

    2016-09-01

    Nonalcoholic hepatic fat accumulation has been hypothesized to be associated with alterations in gut microbiota composition, although mechanistic explanations for this link are largely insufficient. The aim of this study was to elucidate the microbiota-driven mechanisms involved in the development of nonalcoholic hepatic steatosis. Ob/ob mice and their wild-type lean control mice were fed an AIN-93G diet for 12 weeks. Faecal microbiota composition, faecal bile acid (BA) profile and intestinal and hepatic markers of BA metabolism were analysed. Ob/ob mice had significantly less faecal taurine-conjugated BAs compared to their lean controls. The proportions of butyrate-producing bacteria were lower in ob/ob mice compared to those in lean mice. Intestinal expression of farnesoid X receptor (FXR) mRNA was significantly higher, whereas hepatic expression of cholesterol-7α-hydroxylase 1 (CYP7A1) and small heterodimer partner (SHP) were significantly lower in ob/ob mice compared to those in control mice. Microbiota-associated BAs deconjugation may induce nonalcoholic fatty liver disease (NAFLD) by activating intestinal FXR signalling and blocking hepatic FXR-SHP pathway, thereby accelerating fat synthesis. We provided evidences that changes in the gut microbiota and their metabolites can alter the profile of BAs, thereby providing a mechanism by which an altered microbiota profile contributes to the development of NAFLD. © 2016 The Society for Applied Microbiology.

  18. Calcium Reduces Liver Injury in Mice on a High-Fat Diet: Alterations in Microbial and Bile Acid Profiles

    PubMed Central

    Nadeem Aslam, Muhammad; Bassis, Christine M.; Zhang, Li; Zaidi, Sameer

    2016-01-01

    A high-fat “Western-style” diet (HFWD) promotes obesity-related conditions including non-alcoholic steatohepatitis (NASH), the histologic manifestation of non-alcoholic fatty liver disease (NAFLD). In addition to high saturated fat and processed carbohydrates, the typical HFWD is deficient in calcium. Calcium-deficiency is an independent risk factor for many conditions associated with the Western-style diet. However, calcium has not been widely evaluated in the context of NAFLD. The goal of the present study was to determine if dietary calcium supplementation could protect mice fed a HFWD from NAFLD, specifically by decreasing non-alcoholic steatohepatitis (NASH) and its down-stream consequences. Male C57BL/6NCrl mice were maintained for 18-months on a HFWD containing dietary calcium at either 0.41 gm/kg feed (unsupplemented) or 5.25 gm/kg feed (supplemented). Although there was no difference in body weight or steatosis, calcium-supplemented mice were protected against downstream consequences of hepatic steatosis, manifested by lower inflammation, less fibrosis, and by lower overall histologic NAFLD activity scores (NAS). Calcium supplementation correlated with distinctly segregating gut fecal and cecal microbial communities as defined by 16S rRNA gene sequence. Further, calcium supplementation also correlated with decreased hepatic concentration of the major conjugated murine primary bile acid, tauro-β-muricholic acid (as well as a decrease in the parent unconjugated bile acid). Thus, calcium was protective against progression of diet-induced hepatic steatosis to NASH and end-stage liver disease, suggesting that calcium supplementation may effectively protect against adverse hepatic consequences of HFWD in cases where overall diet modification cannot be sustained. This protective effect occurred in concert with calcium-mediated gut microbial community shifts and alterations of the hepatic bile acid pool. PMID:27851786

  19. Calcium Reduces Liver Injury in Mice on a High-Fat Diet: Alterations in Microbial and Bile Acid Profiles.

    PubMed

    Nadeem Aslam, Muhammad; Bassis, Christine M; Zhang, Li; Zaidi, Sameer; Varani, James; Bergin, Ingrid L

    2016-01-01

    A high-fat "Western-style" diet (HFWD) promotes obesity-related conditions including non-alcoholic steatohepatitis (NASH), the histologic manifestation of non-alcoholic fatty liver disease (NAFLD). In addition to high saturated fat and processed carbohydrates, the typical HFWD is deficient in calcium. Calcium-deficiency is an independent risk factor for many conditions associated with the Western-style diet. However, calcium has not been widely evaluated in the context of NAFLD. The goal of the present study was to determine if dietary calcium supplementation could protect mice fed a HFWD from NAFLD, specifically by decreasing non-alcoholic steatohepatitis (NASH) and its down-stream consequences. Male C57BL/6NCrl mice were maintained for 18-months on a HFWD containing dietary calcium at either 0.41 gm/kg feed (unsupplemented) or 5.25 gm/kg feed (supplemented). Although there was no difference in body weight or steatosis, calcium-supplemented mice were protected against downstream consequences of hepatic steatosis, manifested by lower inflammation, less fibrosis, and by lower overall histologic NAFLD activity scores (NAS). Calcium supplementation correlated with distinctly segregating gut fecal and cecal microbial communities as defined by 16S rRNA gene sequence. Further, calcium supplementation also correlated with decreased hepatic concentration of the major conjugated murine primary bile acid, tauro-β-muricholic acid (as well as a decrease in the parent unconjugated bile acid). Thus, calcium was protective against progression of diet-induced hepatic steatosis to NASH and end-stage liver disease, suggesting that calcium supplementation may effectively protect against adverse hepatic consequences of HFWD in cases where overall diet modification cannot be sustained. This protective effect occurred in concert with calcium-mediated gut microbial community shifts and alterations of the hepatic bile acid pool.

  20. Loss of Nuclear Receptor SHP Impairs but Does Not Eliminate Negative Feedback Regulation of Bile Acid Synthesis

    PubMed Central

    Kerr, Thomas A.; Saeki, Shigeru; Schneider, Manfred; Schaefer, Karen; Berdy, Sara; Redder, Thadd; Shan, Bei; Russell, David W.; Schwarz, Margrit

    2014-01-01

    Summary The in vivo role of the nuclear receptor SHP in feedback regulation of bile acid synthesis was examined. Loss of SHP in mice caused abnormal accumulation and increased synthesis of bile acids due to derepression of rate-limiting CYP7A1 and CYP8B1 hydroxylase enzymes in the biosynthetic pathway. Dietary bile acids induced liver damage and restored feedback regulation. A synthetic agonist of the nuclear receptor FXR was not hepatotoxic and had no regulatory effects. Reduction of the bile acid pool with cholestyramine enhanced CYP7A1 and CYP8B1 expression. We conclude that input from three negative regulatory pathways controls bile acid synthesis. One is mediated by SHP, and two are SHP independent and invoked by liver damage and changes in bile acid pool size. PMID:12062084

  1. Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice.

    PubMed

    Qi, Yunpeng; Jiang, Changtao; Cheng, Jie; Krausz, Kristopher W; Li, Tiangang; Ferrell, Jessica M; Gonzalez, Frank J; Chiang, John Y L

    2015-01-01

    Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.

  2. Bile acid signaling in lipid metabolism: Metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice

    PubMed Central

    Qi, Yunpeng; Jiang, Changtao; Cheng, Jie; Krausz, Kristopher W.; Li, Tiangang; Ferrell, Jessica M.; Gonzalez, Frank J.; Chiang, John Y.L.

    2014-01-01

    Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. PMID:24796972

  3. Are conjugated linolenic acid isomers an alternative to conjugated linoleic acid isomers in obesity prevention?

    PubMed

    Miranda, Jonatan; Arias, Noemi; Fernández-Quintela, Alfredo; del Puy Portillo, María

    2014-04-01

    Despite its benefits, conjugated linoleic acid (CLA) may cause side effects after long-term administration. Because of this and the controversial efficacy of CLA in humans, alternative biomolecules that may be used as functional ingredients have been studied in recent years. Thus, conjugated linolenic acid (CLNA) has been reported to be a potential anti-obesity molecule which may have additional positive effects related to obesity. According to the results reported in obesity, CLNA needs to be given at higher doses than CLA to be effective. However, because of the few studies conducted so far, it is still difficult to reach clear conclusions about the potential use of these CLNAs in obesity and its related changes (insulin resistance, dyslipidemia, or inflammation).

  4. Biliary lipid, bile acid composition, and dietary correlations in Micmac Indian women. A population study.

    PubMed

    Williams, C N; Johnston, J L; McCarthy, S; Field, C A

    1981-01-01

    The precursor state for cholesterol gallstone formation is cholesterol-saturated bile. We studied a high-risk group for cholesterol gallstones to determine whether dietary variables affect bile cholesterol. Bile samples were analyzed from 46 Micmac Indian women without gallstones and 13 with gallstones for molar percentage cholesterol (MPC) and bile acid composition. The data were analyzed by multiple regression analysis with MPC as the dependent variable and the dietary variables, obtained from four consecutive-day food records, and biliary bile acid composition as the independent variables. In the 46 women without gallstones, obesity, calorie range/calorie intake, and iron and calcium intake were, in their order of importance, significant factors. In normal weight subjects (ponderal index > 12.5) relative obesity was still a significant correlate. Obesity and iron intake were positive correlates while calorie range/calorie intake and calcium intake varied inversely. When the effect of obesity was controlled, these factors were still significant in this group, as they were in the gallstone group. In addition, the duration of overnight fast obtained by history, together with the proportions of deoxycholic and chenodeoxycholic acids in bile were correlates of the biliary molar percentage cholesterol.

  5. Haemolytic activity of formyl- and acetyl-derivatives of bile acids and their gramine salts.

    PubMed

    Kozanecka-Okupnik, Weronika; Jasiewicz, Beata; Pospieszny, Tomasz; Matuszak, Monika; Mrówczyńska, Lucyna

    2017-10-01

    Bile acids (lithocholic: LCA, deoxycholic: DCA and cholic: CA) and their formyl- and acetyl-derivatives can be used as starting material in chemical synthesis of compounds with different biological activity strongly depended on their chemical structures. Our previous studies showed that biological activity of bile acids salts with gramine toward human erythrocytes was significantly different from the activity of bile acids alone. Moreover, gramine effectively modified the membrane perturbing activity of other steroids. As a continuation of our work, the haemolytic activity of formyl- and acetyl-substituet bile acids as well as their gramine salts was studied in vitro. The structures of new compounds were confirmed by spectral (NMR, FT-IR) analysis, mass spectrometry (ESI-MS) as well as PM5 semiempirical methods. The results shown that the haemolytic activity of formyl- and acetyl-LCA and DCA was significantly higher in comparison with their native forms at the whole concentration range. At high concentration, formyl derivative of CA was as effective as LCA and DCA derivatives whereas at lower concentration its haemolytic activity was at the level of original acid. The acetyl-CA was not active as membrane perturbing agents. Furthermore, gramine significantly decreased the membrane-perturbing activity of hydrophobic bile acids derivatives. The results obtained with the cellular system are in line with physicochemical calculation. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Lipid and protein oxidation in hepatic homogenates and cell membranes exposed to bile acids.

    PubMed

    Fuentes-Broto, Lorena; Martínez-Ballarín, Enrique; Miana-Mena, Javier; Berzosa, Cesar; Piedrafita, Eduardo; Cebrián, Igor; Reiter, Russel J; García, Joaquín J

    2009-01-01

    Cholestasis occurs in a variety of hepatic diseases and causes damage due to accumulation of bile acids in the liver. The aim was to investigate the effect of several bile acids, i.e. chenodeoxycholic, taurochenodeoxycholic, deoxycholic, taurodeoxycholic, ursodeoxycholic, lithocholic and taurolithocholic (TLC), in inducing oxidative damage. Hepatic tissue of male Sprague-Dawley rats was incubated with or without 1 mM of each bile acid, with or without 0.1 mM FeCl(3) and 0.1 mM ascorbic acid for the purpose of generating free radicals. Several bile acids increased lipid and protein oxidation, with TLC being the most pro-oxidative (657% and 175% in homogenates and 350% and 311% in membranes, respectively). TLC also enhanced iron-induced oxidative stress to lipids (21% in homogenates and 29% in membranes) and to proteins (74% in membranes). This enhancement was dose- and time-dependent and was reduced by melatonin. These results suggest that bile acids differentially mediate hepatic oxidative stress and may be involved in the physiopathology of cholestasis.

  7. Conjugated Linoleic Acid Induces Human Adipocyte Delipidation

    PubMed Central

    Brown, J. Mark; Boysen, Maria Sandberg; Chung, Soonkyu; Fabiyi, Olowatoyin; Morrison, Ron F.; Mandrup, Susanne; McIntosh, Michael K.

    2005-01-01

    Dietary conjugated linoleic acid (CLA) reduces body fat in animals and some humans. Here we show that trans-10, cis-12 CLA, but not cis-9, trans-11 CLA, when added to cultures of stromal vascular cells containing newly differentiated human adipocytes, caused a time-dependent decrease in triglyceride content, insulin-stimulated glucose and fatty acid uptake, incorporation into lipid, and oxidation compared with controls. In parallel, gene expression of peroxisome proliferator-activated receptor-γ and many of its downstream targets were diminished by trans-10, cis-12 CLA, whereas leptin gene expression was increased. Prior to changes in gene expression and metabolism, trans-10, cis-12 CLA caused a robust and sustained activation of mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK) signaling. Furthermore, the trans-10, cis-12 CLA-mediated activation of MEK/ERK could be attenuated by pretreatment with U0126 and pertussis toxin. In parallel, pretreatment with U0126 blocked the ability of trans-10, cis-12 CLA to alter gene expression and attenuate glucose and fatty acid uptake of the cultures. Intriguingly, the induction by CLA of MEK/ERK signaling was linked to hypersecretion of adipocytokines interleukin-6 and interleukin-8. Collectively, these data demonstrate for the first time that trans-10, cis-12 CLA decreases the triglyceride content of newly differentiated human adipocytes by inducing MEK/ERK signaling through the autocrine/paracrine actions of interleukins-6 and 8. PMID:15067015

  8. Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-Phenylenediamine in presence of bile acid host

    NASA Astrophysics Data System (ADS)

    Roy, Nayan; Paul, Pradip C.; Singh, T. Sanjoy

    2015-05-01

    Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-phenylenediamine (LH2) is used to study the micelles formed by aggregation of different important bile acids like cholic acid, deoxycholic acid, chenodeoxycholic acid and glycocholic acid by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found out to increase with concomitant red shift with gradual addition of different bile acids. Binding constant of the probe with different bile acids as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of bile acids in the medium. The increase in fluorescence quantum yields, fluorescence decay times and substantial decrease in nonradiative decay rate constants in bile acids micellar environment points to the restricted motion of the fluorophore inside the micellar subdomains.

  9. Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases

    PubMed Central

    Aldhahrani, Adil; Verdon, Bernard; Pearson, Jeffery

    2017-01-01

    Gastro-oesophageal reflux and aspiration have been associated with chronic and end-stage lung disease and with allograft injury following lung transplantation. This raises the possibility that bile acids may cause lung injury by damaging airway epithelium. The aim of this study was to investigate the effect of bile acid challenge using the immortalised human bronchial epithelial cell line (BEAS-2B). The immortalised human bronchial epithelial cell line (BEAS-2B) was cultured. A 48-h challenge evaluated the effect of individual primary and secondary bile acids. Post-challenge concentrations of interleukin (IL)-8, IL-6 and granulocyte−macrophage colony-stimulating factor were measured using commercial ELISA kits. The viability of the BEAS-2B cells was measured using CellTiter-Blue and MTT assays. Lithocholic acid, deoxycholic acid, chenodeoxycholic acid and cholic acid were successfully used to stimulate cultured BEAS-2B cells at different concentrations. A concentration of lithocholic acid above 10 μmol·L−1 causes cell death, whereas deoxycholic acid, chenodeoxycholic acid and cholic acid above 30 μmol·L−1 was required for cell death. Challenge with bile acids at physiological levels also led to a significant increase in the release of IL-8 and IL6 from BEAS-2B. Aspiration of bile acids could potentially cause cell damage, cell death and inflammation in vivo. This is relevant to an integrated gastrointestinal and lung physiological paradigm of chronic lung disease, where reflux and aspiration are described in both chronic lung diseases and allograft injury. PMID:28344983

  10. Steroid binding to Autotaxin links bile salts and lysophosphatidic acid signalling.

    PubMed

    Keune, Willem-Jan; Hausmann, Jens; Bolier, Ruth; Tolenaars, Dagmar; Kremer, Andreas; Heidebrecht, Tatjana; Joosten, Robbie P; Sunkara, Manjula; Morris, Andrew J; Matas-Rico, Elisa; Moolenaar, Wouter H; Oude Elferink, Ronald P; Perrakis, Anastassis

    2016-04-14

    Autotaxin (ATX) generates the lipid mediator lysophosphatidic acid (LPA). ATX-LPA signalling is involved in multiple biological and pathophysiological processes, including vasculogenesis, fibrosis, cholestatic pruritus and tumour progression. ATX has a tripartite active site, combining a hydrophilic groove, a hydrophobic lipid-binding pocket and a tunnel of unclear function. We present crystal structures of rat ATX bound to 7α-hydroxycholesterol and the bile salt tauroursodeoxycholate (TUDCA), showing how the tunnel selectively binds steroids. A structure of ATX simultaneously harbouring TUDCA in the tunnel and LPA in the pocket, together with kinetic analysis, reveals that bile salts act as partial non-competitive inhibitors of ATX, thereby attenuating LPA receptor activation. This unexpected interplay between ATX-LPA signalling and select steroids, notably natural bile salts, provides a molecular basis for the emerging association of ATX with disorders associated with increased circulating levels of bile salts. Furthermore, our findings suggest potential clinical implications in the use of steroid drugs.

  11. CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid.

    PubMed

    Cheng, Jie; Krausz, Kristopher W; Li, Feng; Ma, Xiaochao; Gonzalez, Frank J

    2013-01-15

    Isoniazid is the first-line medication in the prevention and treatment of tuberculosis. Isoniazid is known to have a biphasic effect on the inhibition-induction of CYP2E1 and is also considered to be involved in isoniazid-induced hepatotoxicity. However, the full extent and mechanism of involvement of CYP2E1 in isoniazid-induced hepatotoxicity remain to be thoroughly investigated. In the current study, isoniazid was administered to wild-type and Cyp2e1-null mice to investigate the potential toxicity of isoniazid in vivo. The results revealed that isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice, but produced elevated serum cholesterol and triglycerides, and hepatic bile acids in wild-type mice, as well as decreased abundance of free fatty acids in wild-type mice and not in Cyp2e1-null mice. Metabolomic analysis demonstrated that production of isoniazid metabolites was elevated in wild-type mice along with a higher abundance of bile acids, bile acid metabolites, carnitine and carnitine derivatives; these were not observed in Cyp2e1-null mice. In addition, the enzymes responsible for bile acid synthesis were decreased and proteins involved in bile acid transport were significantly increased in wild-type mice. Lastly, treatment of targeted isoniazid metabolites to wild-type mice led to similar changes in cholesterol, triglycerides and free fatty acids. These findings suggest that while CYP2E1 is not involved in isoniazid-induced hepatotoxicity, while an isoniazid metabolite might play a role in isoniazid-induced cholestasis through enhancement of bile acid accumulation and mitochondria β-oxidation. Published by Elsevier Inc.

  12. Direct measurement of first-pass ileal clearance of a bile acid in humans

    SciTech Connect

    Galatola, G.; Jazrawi, R.P.; Bridges, C.; Joseph, A.E.; Northfield, T.C. )

    1991-04-01

    The purpose of this study was to develop and validate a method of directly measuring ileal bile acid absorption efficiency during a single enterohepatic cycle (first-pass ileal clearance). This has become feasible for the first time because of the availability of the synthetic gamma-labeled bile acid 75Selena-homocholic acid-taurine (75SeHCAT). Together with the corresponding natural bile acid cholic acid-taurine (labeled with 14C), SeHCAT was infused distal to an occluding balloon situated beyond the ampulla of Vater in six healthy subjects. Completion of a single enterohepatic cycle was assessed by obtaining a plateau for 75SeHCAT activity proximal to the occluding balloon, which prevented further cycles. Unabsorbed 75SeHCAT was collected after total gut washout, which was administered distal to the occluding balloon. 75SeHCAT activity in the rectal effluent measured by gamma counter was compared with that of absorbed 75SeHCAT level measured by gamma camera and was used to calculate first-pass ileal clearance. This was very efficient (mean value, 96%) and showed very little variation in the six subjects studied (range, 95%-97%). A parallel time-activity course in hepatic bile for 14C and 75Se during a single enterohepatic cycle, together with a ratio of unity for 14C/75Se in samples obtained at different time intervals, suggests that 75SeHCAT is handled by the ileum like the natural bile acid cholic acid-taurine. Extrapolation of 75SeHCAT first-pass ileal clearance to that of the natural bile acid therefore seems justifiable. In a subsidiary experiment, ileal absorption efficiency per day for 75SeHCAT was also measured by scanning the gallbladder area on 5 successive days after the measurement of first-pass ileal clearance. In contrast with absorption efficiency per cycle, absorption efficiency per day varied widely (49%-86%).

  13. Tauroursodeoxycholic acid, a bile acid, is neuroprotective in a transgenic animal model of Huntington's disease

    PubMed Central

    Keene, C. Dirk; Rodrigues, Cecilia M. P.; Eich, Tacjana; Chhabra, Manik S.; Steer, Clifford J.; Low, Walter C.

    2002-01-01

    Huntington's disease (HD) is an untreatable neurological disorder caused by selective and progressive degeneration of the caudate nucleus and putamen of the basal ganglia. Although the etiology of HD pathology is not fully understood, the observed loss of neuronal cells is thought to occur primarily through apoptosis. Furthermore, there is evidence in HD that cell death is mediated through mitochondrial pathways, and mitochondrial deficits are commonly associated with HD. We have previously reported that treatment with tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, prevented neuropathology and associated behavioral deficits in the 3-nitropropionic acid rat model of HD. We therefore examined whether TUDCA would also be neuroprotective in a genetic mouse model of HD. Our results showed that systemically administered TUDCA led to a significant reduction in striatal neuropathology of the R6/2 transgenic HD mouse. Specifically, R6/2 mice began receiving TUDCA at 6 weeks of age and exhibited reduced striatal atrophy, decreased striatal apoptosis, as well as fewer and smaller size ubiquitinated neuronal intranuclear huntingtin inclusions. Moreover, locomotor and sensorimotor deficits were significantly improved in the TUDCA-treated mice. In conclusion, TUDCA is a nontoxic, endogenously produced hydrophilic bile acid that is neuroprotective in a transgenic mouse model of HD and, therefore, may provide a novel and effective treatment in patients with HD. PMID:12149470

  14. Relationships between fatty acid composition and bile tolerance in lactobacillus isolates from plants and from non-plant materials.

    PubMed

    Kimoto-Nira, Hiromi; Suzuki, Shigenori; Yakabe, Takafumi; Suzuki, Chise

    2012-12-01

    Twenty plant-derived and 18 non-plant-derived strains of Lactobacillus casei were compared for their growth in tryptone - yeast extract - glucose broth containing 0.3% bile by measuring absorbance at a wavelength of 620 nm after 24 h of incubation at 37 °C. Bile tolerance - a fundamental probiotic property - was calculated by dividing the experimental data by control values (growth without bile). We found that bile tolerance was strain specific but that the average bile tolerance of the plant-derived strains was significantly (P < 0.05) lower than that of the non-plant-derived strains tested. All tested strains could not deconjugate sodium taurocholate, indicating that the difference in bile tolerance was not due to the ability to deconjugate bile. The fatty acid compositions of the test strains with and without exposure to 0.3% bile were investigated, and a statistical correlation analysis between these compositions and their bile tolerance was conducted. The fatty acids correlated with bile tolerance differed between plant and non-plant lactobacilli. This is the first report to show that the origin (i.e., growth environment) of lactobacilli affects their fatty acid composition, which in turn, appears to be related to their bile tolerance.

  15. Functional human induced hepatocytes (hiHeps) with bile acid synthesis and transport capacities: A novel in vitro cholestatic model

    PubMed Central

    Ni, Xuan; Gao, Yimeng; Wu, Zhitao; Ma, Leilei; Chen, Chen; Wang, Le; Lin, Yunfei; Hui, Lijian; Pan, Guoyu

    2016-01-01

    Drug-induced cholestasis is a leading cause of drug withdrawal. However, the use of primary human hepatocytes (PHHs), the gold standard for predicting cholestasis in vitro, is limited by their high cost and batch-to-batch variability. Mature hepatocyte characteristics have been observed in human induced hepatocytes (hiHeps) derived from human fibroblast transdifferentiation. Here, we evaluated whether hiHeps could biosynthesize and excrete bile acids (BAs) and their potential as PHH alternatives for cholestasis investigations. Quantitative real-time PCR (qRT-PCR) and western blotting indicated that hiHeps highly expressed BA synthases and functional transporters. Liquid chromatography tandem mass spectrometry (LC-MS/MS) showed that hiHeps produced normal intercellular unconjugated BAs but fewer conjugated BAs than human hepatocytes. When incubated with representative cholestatic agents, hiHeps exhibited sensitive drug-induced bile salt export pump (BSEP) dysfunction, and their response to cholestatic agent-mediated cytotoxicity correlated well with that of PHHs (r2 = 0.8032). Deoxycholic acid (DCA)-induced hepatotoxicity in hiHeps was verified by elevated aspartate aminotransferase (AST) and γ-glutamyl-transferase (γ-GT) levels. Mitochondrial damage and cell death suggested DCA-induced toxicity in hiHeps, which were attenuated by hepatoprotective drugs, as in PHHs. For the first time, hiHeps were reported to biosynthesize and excrete BAs, which could facilitate predicting cholestatic hepatotoxicity and screening potential therapeutic drugs against cholestasis. PMID:27934920

  16. Biomimetic nitration of conjugated linoleic acid: formation and characterization of naturally occurring conjugated nitrodienes.

    PubMed

    Woodcock, Steven R; Salvatore, Sonia R; Bonacci, Gustavo; Schopfer, Francisco J; Freeman, Bruce A

    2014-01-03

    Nitro-conjugated linoleic acids (NO2-cLA), endogenous nitrodiene lipids which act as inflammatory signaling mediators, were isolated and single isomers purified from the biomimetic acidic nitration products of conjugated linoleic acid (CLA). Structures were elucidated by means of detailed NMR and HPLC-MS/MS spectroscopic analysis and the relative double bond configurations assigned. Additional synthetic methods produced useful quantities and similar isomeric distributions of these unusual and reactive compounds for biological studies and isotopic standards, and the potential conversion of nitro-linoleic to nitro-conjugated linoleic acids was explored via a facile base-catalyzed isomerization. This represents one of the few descriptions of naturally occurring conjugated nitro dienes (in particular, 1-nitro 1,3-diene), an unusual and highly reactive motif with few biological examples extant.

  17. Urinary metabolomics in Fxr-null mice reveals activated adaptive metabolic pathways upon bile acid challenge.

    PubMed

    Cho, Joo-Youn; Matsubara, Tsutomu; Kang, Dong Wook; Ahn, Sung-Hoon; Krausz, Kristopher W; Idle, Jeffrey R; Luecke, Hans; Gonzalez, Frank J

    2010-05-01

    Farnesoid X receptor (FXR) is a nuclear receptor that regulates genes involved in synthesis, metabolism, and transport of bile acids and thus plays a major role in maintaining bile acid homeostasis. In this study, metabolomic responses were investigated in urine of wild-type and Fxr-null mice fed cholic acid, an FXR ligand, using ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS). Multivariate data analysis between wild-type and Fxr-null mice on a cholic acid diet revealed that the most increased ions were metabolites of p-cresol (4-methylphenol), corticosterone, and cholic acid in Fxr-null mice. The structural identities of the above metabolites were confirmed by chemical synthesis and by comparing retention time (RT) and/or tandem mass fragmentation patterns of the urinary metabolites with the authentic standards. Tauro-3alpha,6,7alpha,12alpha-tetrol (3alpha,6,7alpha,12alpha-tetrahydroxy-5beta-cholestan-26-oyltaurine), one of the most increased metabolites in Fxr-null mice on a CA diet, is a marker for efficient hydroxylation of toxic bile acids possibly through induction of Cyp3a11. A cholestatic model induced by lithocholic acid revealed that enhanced expression of Cyp3a11 is the major defense mechanism to detoxify cholestatic bile acids in Fxr-null mice. These results will be useful for identification of biomarkers for cholestasis and for determination of adaptive molecular mechanisms in cholestasis.

  18. Mouse ghrelin-O-acyltransferase (GOAT) plays a critical role in bile acid reabsorption.

    PubMed

    Kang, Kihwa; Schmahl, Jennifer; Lee, Jong-Min; Garcia, Karen; Patil, Ketan; Chen, Amelia; Keene, Michelle; Murphy, Andrew; Sleeman, Mark W

    2012-01-01

    Ghrelin is a unique peptide gut hormone that requires post-translational modification to stimulate both feeding and growth hormone release. Ghrelin O-acyltransferase (GOAT) was identified as a specific acyl-transferase for ghrelin, and recent genetic deletion studies of the Goat gene (Goat(-/-)) uncovered the role of ghrelin in the regulation of glucose homeostasis. To further understand the physiological functions of the GOAT/ghrelin system, we have conducted a metabolomic and microarray profile of Goat-null mice, as well as determined Goat expression in different tissues using the lacZ reporter gene. Serum metabolite profile analysis revealed that Goat(-/-) mice exhibited increased secondary bile acids >2.5-fold. This was attributed to increased mRNA and protein expression of the ileal sodium-dependent bile acid transporter (ISBT) in the intestinal and biliary tract. Increased expression of additional solute carrier proteins, including Slc5a12 (>10-fold) were also detected in the small intestine and bile duct. Goat staining was consistently observed in the pituitary glands, stomach, and intestines, and to a lesser extent in the gallbladder and pancreatic duct. This is the first report that the GOAT/ghrelin system regulates bile acid metabolism, and these findings suggest a novel function of GOAT in the regulation of intestinal bile acid reabsorption..

  19. Bile acid increases expression of the histamine-producing enzyme, histidine decarboxylase, in gastric cells.

    PubMed

    Ku, Hye Jin; Kim, Hye Young; Kim, Hyeong Hoe; Park, Hee Ju; Cheong, Jae Hun

    2014-01-07

    To investigate the effect of bile acid on the expression of histidine decarboxylase (HDC), which is a major enzyme involved in histamine production, and gene expression of gastric transcription factors upon cooperative activation. HDC expression was examined by immunohistochemistry, reverse transcriptase polymerase chain reaction, and promoter assay in human gastric precancerous tissues, normal stomach tissue, and gastric cancer cell lines. The relationship between gastric precancerous state and HDC expression induced by bile acid was determined. The association between the expression of HDC and various specific transcription factors in gastric cells was also evaluated. MKN45 and AGS human gastric carcinoma cell lines were transfected with farnesoid X receptor (FXR), small heterodimer partner (SHP), and caudal-type homeodomain transcription factor (CDX)1 expression plasmids. The effects of various transcription factors on HDC expression were monitored by luciferase-reporter promoter assay. Histamine production and secretion in the stomach play critical roles in gastric acid secretion and in the pathogenesis of gastric diseases. Here, we show that bile acid increased the expression of HDC, which is a rate-limiting enzyme of the histamine production pathway. FXR was found to be a primary regulatory transcription factor for bile acid-induced HDC expression. In addition, the transcription factors CDX1 and SHP synergistically enhanced bile acid-induced elevation of HDC gene expression. We confirmed similar expression patterns for HDC, CDX1, and SHP in patient tissues. HDC production in the stomach is associated with bile acid exposure and its related transcriptional regulation network of FXR, SHP, and CDX1.

  20. Bile Acids in Polycystic Liver Diseases: Triggers of Disease Progression and Potential Solution for Treatment.

    PubMed

    Perugorria, Maria J; Labiano, Ibone; Esparza-Baquer, Aitor; Marzioni, Marco; Marin, Jose J G; Bujanda, Luis; Banales, Jesús M

    2017-01-01

    Polycystic liver diseases (PLDs) are a group of genetic hereditary cholangiopathies characterized by the development and progressive growth of cysts in the liver, which are the main cause of morbidity. Current therapies are based on surgical procedures and pharmacological strategies, which show short-term and modest beneficial effects. Therefore, the determination of the molecular mechanisms of pathogenesis appears to be crucial in order to find new potential targets for pharmacological therapy. Ductal plate malformation during embryogenesis and abnormal cystic cholangiocyte growth and secretion are some of the key mechanisms involved in the pathogenesis of PLDs. However, the discovery of the presence of bile acids in the fluid collected from human cysts and the intrahepatic accumulation of cytotoxic bile acids in an animal model of PLD (i.e. polycystic kidney (PCK) rat) suggest a potential role of impaired bile acid homeostasis in the pathogenesis of these diseases. On the other hand, ursodeoxycholic acid (UDCA) has emerged as a new potential therapeutic tool for PLDs by promoting the inhibition of cystic cholangiocyte growth in both PCK rats and highly symptomatic patients with autosomal dominant polycystic kidney disease (ADPKD: most common type of PLD), and improving symptoms. Chronic treatment with UDCA normalizes the decreased intracellular calcium levels in ADPKD human cholangiocytes in vitro, which results in the reduction of their baseline-stimulated proliferation. Moreover, UDCA decreases the liver concentration of cytotoxic bile acids in PCK rats and the bile acid-dependent enhanced proliferation of cystic cholangiocytes. Here, the role of bile acids in the pathogenesis of PLDs and the potential therapeutic value of UDCA for the treatment of these diseases are reviewed and future lines of investigation in this field are proposed.

  1. Prevalence of, and predictors of, bile acid malabsorption in outpatients with chronic diarrhea.

    PubMed

    Gracie, D J; Kane, J S; Mumtaz, S; Scarsbrook, A F; Chowdhury, F U; Ford, A C

    2012-11-01

    Many physicians do not consider the diagnosis of bile acid malabsorption in patients with chronic diarrhea, or do not have access to testing. We examined yield of 23-seleno-25-homo-tauro-cholic acid (SeHCAT) scanning in chronic diarrhea patients, and attempted to identify predictors of a positive test. Consecutive patients with chronic diarrhea undergoing SeHCAT scan over a 7-year period were identified retrospectively. Bile acid malabsorption was defined as present at a retention of <15%. Medical records were reviewed to obtain information regarding proposed risk factors. Gastrointestinal symptoms were recorded, and patients were classified as having diarrhea-predominant irritable bowel syndrome (IBS-D) if they reported abdominal pain or discomfort. Independent risk factors were assessed using multivariate logistic regression, and odds ratios (ORs) with 99% confidence intervals (CIs) were calculated. Of 373 patients, 190 (50.9%) had bile acid malabsorption. Previous cholecystectomy (OR 2.51; 99% CI 1.10-5.77), terminal ileal resection or right hemicolectomy for Crohn's disease (OR 12.4; 99% CI 2.42-63.8), and terminal ileal resection or right hemicolectomy for other reasons (OR 7.94; 99% CI 1.02-61.6) were associated with its presence. Seventy-seven patients had IBS-D, and 21 (27.3%) tested positive. There were 168 patients with no risk factors for a positive SeHCAT scan, other than chronic diarrhea, and 63 (37.5%) had bile acid malabsorption. Bile acid malabsorption was present in 50% of patients undergoing SeHCAT scanning. Almost 40% of those without risk factors had evidence of bile acid malabsorption, and in those meeting criteria for IBS-D prevalence was almost 30%. © 2012 Blackwell Publishing Ltd.

  2. CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid

    SciTech Connect

    Cheng, Jie; Krausz, Kristopher W.; Li, Feng; Ma, Xiaochao; Gonzalez, Frank J.

    2013-01-15

    Isoniazid is the first-line medication in the prevention and treatment of tuberculosis. Isoniazid is known to have a biphasic effect on the inhibition–induction of CYP2E1 and is also considered to be involved in isoniazid-induced hepatotoxicity. However, the full extent and mechanism of involvement of CYP2E1 in isoniazid-induced hepatotoxicity remain to be thoroughly investigated. In the current study, isoniazid was administered to wild-type and Cyp2e1-null mice to investigate the potential toxicity of isoniazid in vivo. The results revealed that isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice, but produced elevated serum cholesterol and triglycerides, and hepatic bile acids in wild-type mice, as well as decreased abundance of free fatty acids in wild-type mice and not in Cyp2e1-null mice. Metabolomic analysis demonstrated that production of isoniazid metabolites was elevated in wild-type mice along with a higher abundance of bile acids, bile acid metabolites, carnitine and carnitine derivatives; these were not observed in Cyp2e1-null mice. In addition, the enzymes responsible for bile acid synthesis were decreased and proteins involved in bile acid transport were significantly increased in wild-type mice. Lastly, treatment of targeted isoniazid metabolites to wild-type mice led to similar changes in cholesterol, triglycerides and free fatty acids. These findings suggest that while CYP2E1 is not involved in isoniazid-induced hepatotoxicity, while an isoniazid metabolite might play a role in isoniazid-induced cholestasis through enhancement of bile acid accumulation and mitochondria β-oxidation. -- Highlights: ► Isoniazid metabolites were elevated only in wild-type mice. ► Isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice. ► Isoniazid elevated serum cholesterol and triglycerides, and hepatic bile acids. ► Bile acid transporters were significantly decreased in isoniazid-treated mice.

  3. Thermosensitivity of bile acid-based oligo(ethylene glycol) stars in aqueous solutions.

    PubMed

    Strandman, Satu; Le Dévédec, Frantz; Zhu, X X

    2011-08-03

    Amphiphilic star-shaped oligo(ethylene glycol)s with a hydrophobic bile acid core and varying number of hydrophilic arms have been made. Their thermal behavior in aqueous solutions depends on the number rather than the length of the arms. The two-armed lithocholate derivative showed the strongest tendency for association and exhibited the lowest cloud point (79 °C) of the oligomers made, as well as another phase separation at a lower temperature (31 °C). The "double thermosensitivity" arising both from the salt-dependent LCST of the oligo(ethylene glycol) segments and the temperature-responsive self-assembly of amphiphilic bile acid derivative provides an interesting path in the design of bile acid-based smart materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Functional transformations of bile acid transporters induced by high-affinity macromolecules

    PubMed Central

    Al-Hilal, Taslim A.; Chung, Seung Woo; Alam, Farzana; Park, Jooho; Lee, Kyung Eun; Jeon, Hyesung; Kim, Kwangmeyung; Kwon, Ick Chan; Kim, In-San; Kim, Sang Yoon; Byun, Youngro

    2014-01-01

    Apical sodium-dependent bile acid transporters (ASBT) are the intestinal transporters that form intermediate complexes with substrates and its conformational change drives the movement of substrates across the cell membrane. However, membrane-based intestinal transporters are confined to the transport of only small molecular substrates. Here, we propose a new strategy that uses high-affinity binding macromolecular substrates to functionally transform the membrane transporters so that they behave like receptors, ultimately allowing the apical-basal transport of bound macromolecules. Bile acid based macromolecular substrates were synthesized and allowed to interact with ASBT. ASBT/macromolecular substrate complexes were rapidly internalized in vesicles, localized in early endosomes, dissociated and escaped the vesicular transport while binding of cytoplasmic ileal bile acid binding proteins cause exocytosis of macromolecules and prevented entry into lysosomes. This newly found transformation process of ASBT suggests a new transport mechanism that could aid in further utilization of ASBT to mediate oral macromolecular drug delivery. PMID:24566561

  5. Functional transformations of bile acid transporters induced by high-affinity macromolecules.

    PubMed

    Al-Hilal, Taslim A; Chung, Seung Woo; Alam, Farzana; Park, Jooho; Lee, Kyung Eun; Jeon, Hyesung; Kim, Kwangmeyung; Kwon, Ick Chan; Kim, In-San; Kim, Sang Yoon; Byun, Youngro

    2014-02-25

    Apical sodium-dependent bile acid transporters (ASBT) are the intestinal transporters that form intermediate complexes with substrates and its conformational change drives the movement of substrates across the cell membrane. However, membrane-based intestinal transporters are confined to the transport of only small molecular substrates. Here, we propose a new strategy that uses high-affinity binding macromolecular substrates to functionally transform the membrane transporters so that they behave like receptors, ultimately allowing the apical-basal transport of bound macromolecules. Bile acid based macromolecular substrates were synthesized and allowed to interact with ASBT. ASBT/macromolecular substrate complexes were rapidly internalized in vesicles, localized in early endosomes, dissociated and escaped the vesicular transport while binding of cytoplasmic ileal bile acid binding proteins cause exocytosis of macromolecules and prevented entry into lysosomes. This newly found transformation process of ASBT suggests a new transport mechanism that could aid in further utilization of ASBT to mediate oral macromolecular drug delivery.

  6. Bile acid profiles over 5 years after gastric bypass and duodenal switch: results from a randomized clinical trial.

    PubMed

    Risstad, Hilde; Kristinsson, Jon A; Fagerland, Morten W; le Roux, Carel W; Birkeland, Kåre I; Gulseth, Hanne L; Thorsby, Per M; Vincent, Royce P; Engström, My; Olbers, Torsten; Mala, Tom

    2017-05-25

    Bile acids have been proposed as key mediators of the metabolic effects after bariatric surgery. Currently no reports on bile acid profiles after duodenal switch exist, and long-term data after gastric bypass are lacking. To investigate bile acid profiles up to 5 years after Roux-en-Y gastric bypass and biliopancreatic diversion with duodenal switch and to explore the relationship among bile acids and weight loss, lipid profile, and glucose metabolism. Two Scandinavian University Hospitals. We present data from a randomized clinical trial of 60 patients with body mass index 50-60 kg/m(2) operated with gastric bypass or duodenal switch. Repeated measurements of total and individual bile acids from fasting serum during 5 years after surgery were performed. Mean concentrations of total bile acids increased from 2.3 µmol/L (95% confidence interval [CI], -.1 to 4.7) at baseline to 5.9 µmol/L (3.5-8.3) 5 years after gastric bypass and from 1.0 µmol/L (95% CI, -1.4 to 3.5) to 9.5 µmol/L (95% CI, 7.1-11.9) after duodenal switch; mean between-group difference was -4.8 µmol/L (95% CI, -9.3 to -.3), P = .036. Mean concentrations of primary bile acids increased more after duodenal switch, whereas secondary bile acids increased proportionally across the groups. Higher levels of total bile acids at 5 years were associated with lower body mass index, greater weight loss, and lower total cholesterol. Total bile acid concentrations increased substantially over 5 years after both gastric bypass and duodenal switch, with greater increases in total and primary bile acids after duodenal switch. (Surg Obes Relat Dis 2017;0:000-000.) © 2017 American Society for Metabolic and Bariatric Surgery. All rights reserved. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  7. Hepatic cannabinoid receptor type 1 mediates alcohol-induced regulation of bile acid enzyme genes expression via CREBH.

    PubMed

    Chanda, Dipanjan; Kim, Yong-Hoon; Li, Tiangang; Misra, Jagannath; Kim, Don-Kyu; Kim, Jung Ran; Kwon, Joseph; Jeong, Won-Il; Ahn, Sung-Hoon; Park, Tae-Sik; Koo, Seung-Hoi; Chiang, John Y L; Lee, Chul-Ho; Choi, Hueng-Sik

    2013-01-01

    Bile acids concentration in liver is tightly regulated to prevent cell damage. Previous studies have demonstrated that deregulation of bile acid homeostasis can lead to cholestatic liver disease. Recently, we have shown that ER-bound transcription factor Crebh is a downstream effector of hepatic Cb1r signaling pathway. In this study, we have investigated the effect of alcohol exposure on hepatic bile acid homeostasis and elucidated the mediatory roles of Cb1r and Crebh in this process. We found that alcohol exposure or Cb1r-agonist 2-AG treatment increases hepatic bile acid synthesis and serum ALT, AST levels in vivo alongwith significant increase in Crebh gene expression and activation. Alcohol exposure activated Cb1r, Crebh, and perturbed bile acid homeostasis. Overexpression of Crebh increased the expression of key bile acid synthesis enzyme genes via direct binding of Crebh to their promoters, whereas Cb1r knockout and Crebh-knockdown mice were protected against alcohol-induced perturbation of bile acid homeostasis. Interestingly, insulin treatment protected against Cb1r-mediated Crebh-induced disruption of bile acid homeostasis. Furthermore, Crebh expression and activation was found to be markedly increased in insulin resistance conditions and Crebh knockdown in diabetic mice model (db/db) significantly reversed alcohol-induced disruption of bile acid homeostasis. Overall, our study demonstrates a novel regulatory mechanism of hepatic bile acid metabolism by alcohol via Cb1r-mediated activation of Crebh, and suggests that targeting Crebh can be of therapeutic potential in ameliorating alcohol-induced perturbation of bile acid homeostasis.

  8. Formation of C21 bile acids from plant sterols in the rat

    SciTech Connect

    Boberg, K.M.; Lund, E.; Olund, J.; Bjoerkhem, I. )

    1990-05-15

    Formation of bile acids from sitosterol in bile-fistulated female Wistar rats was studied with use of 4-14C-labeled sitosterol and sitosterol labeled with 3H in specific positions. The major part (about 75%) of the 14C radioactivity recovered as bile acids in bile after intravenous administration of (4-14C)sitosterol was found to be considerably more polar than cholic acid, and only trace amounts of radioactivity had chromatographic properties similar to those of cholic acid and chenodeoxycholic acid. It was shown that polar metabolites were formed by intermediate oxidation of the 3 beta-hydroxyl group (loss of 3H from 3 alpha-3H-labeled sitosterol) and that the most polar fraction did not contain a hydroxyl group at C7 (retention of 3H in 7 alpha,7 beta-3H2-labeled sitosterol). Furthermore, the polar metabolites had lost at least the terminal 6 or 7 carbon atoms of the side chain (loss of 3H from 22,23-3H2- and 24,28-3H2-labeled sitosterol). Experiments with 3H-labeled 7 alpha-hydroxysitosterol and 4-14C-labeled 26-hydroxysitosterol showed that none of these compounds was an efficient precursor to the polar metabolites. By analysis of purified most polar products of (4-14C) sitosterol by radio-gas chromatography and the same products of 7 alpha,7 beta-(2H2)sitosterol by combined gas chromatography-mass spectrometry, two major metabolites could be identified as C21 bile acids. One metabolite had three hydroxyl groups (3 alpha, 15, and unknown), and one had two hydroxyl groups (3 alpha, 15) and one keto group. Considerably less C21 bile acids were formed from (4-14C)sitosterol in male than in female Wistar rats. The C21 bile acids formed in male rats did not contain a 15-hydroxyl group. Conversion of a (4-14C)sitosterol into C21 bile acids did also occur in adrenalectomized and ovariectomized rats, indicating that endocrine tissues are not involved.

  9. [Preparation and antitussive, expectorant and antiasthmatic activities of verticinone-bile acids salts].

    PubMed

    Xu, Fang-Zhou; Zhang, Yong-Hui; Ruan, Han-Li; Pi, Hui-Fang; Chen, Chang; Wu, Ji-Zhou

    2007-03-01

    To search for potential drugs with potent antitussive, expectorant, antiasthmatic activities and low toxicity, a series of verticinone-bile acids salts were prepared based on the clearly elucidated antitussive, expectorant and antiasthmatic activities of verticinone in bulbs of Fritillaria and different bile acids in Snake Bile. The antitussive, expectorant and antiasthmatic activities of these verticinone-bile acid salts were then screened with different animal models. Ver-CA (verticinone-cholic acid salt) and Ver-CDCA (verticinone-chenodeoxycholic acid salt) showed much more potent activities than other compounds. The bioactivities of Ver-CA and Ver-CDCA are worthy to be intensively studied, and it is also deserved to pay much attention to their much more potent antitussive effects than codeine phosphate. In order to elucidate whether they have synergistic effect and attenuated toxicity, their activities will be continuously compared with single verticinone, cholic acid and chenodeoxycholic acid at the same doses on different animal models. The application of "combination principles" in traditional Chinese medicinal formulations may be a novel way in triditional Chinese medicine research and discovery.

  10. Pepsin and bile acids in saliva in patients with laryngopharyngeal reflux - a prospective comparative study.

    PubMed

    Sereg-Bahar, M; Jerin, A; Jansa, R; Stabuc, B; Hocevar-Boltezar, I

    2015-06-01

    Laryngopharyngeal reflux (LPR) and biliary duodenogastric reflux can cause damage to the laryngeal mucosa and voice disorders. The aim of this study was to find out whether levels of pepsin and bile acids in the saliva can serve as diagnostic markers of LPR. A prospective comparative study. Twenty-eight patients with LPR proven via high-resolution manometry and combined multichannel intraluminal impedance and 24-h pH monitoring and 48 healthy controls without symptoms of LPR were included in the study. In the patients with LPR symptoms, oesophagogastroscopy with oesophageal biopsy was performed. The levels of total pepsin, active pepsin, bile acids and the pH of the saliva were determined in all participants and compared between the groups. Reflux symptom index (RSI) and reflux finding score (RFS) were also obtained and compared. The groups differed significantly in RSI (P = 0.00), RFS (P = 0.00), the levels of bile acids (P = 0.005) and total pepsin in saliva (P = 0.023). The levels of total pepsin and bile acids were about three times higher in the patients with LPR than in the healthy controls. There was a significant correlation between the RSI and RFS score and the level of total pepsin and bile acids in the saliva. Histopathological examination of the oesophageal biopsy taken 5 cm above the lower oesophageal sphincter confirmed reflux in almost 93% of patients with symptoms. The study results show that the levels of total pepsin and bile acids in saliva are significantly higher in patients with LPR than in the controls, thus suggesting this as a useful tool in the diagnosis of LPR and particularly biliary LPR. © 2014 John Wiley & Sons Ltd.

  11. Bile Acids and Bicarbonate Inversely Regulate Intracellular Cyclic di-GMP in Vibrio cholerae

    PubMed Central

    Koestler, Benjamin J.

    2014-01-01

    Vibrio cholerae is a Gram-negative bacterium that persists in aquatic reservoirs and causes the diarrheal disease cholera upon entry into a human host. V. cholerae employs the second messenger molecule 3′,5′-cyclic diguanylic acid (c-di-GMP) to transition between these two distinct lifestyles. c-di-GMP is synthesized by diguanylate cyclase (DGC) enzymes and hydrolyzed by phosphodiesterase (PDE) enzymes. Bacteria typically encode many different DGCs and PDEs within their genomes. Presumably, each enzyme senses and responds to cognate environmental cues by alteration of enzymatic activity. c-di-GMP represses the expression of virulence factors in V. cholerae, and it is predicted that the intracellular concentration of c-di-GMP is low during infection. Contrary to this model, we found that bile acids, a prevalent constituent of the human proximal small intestine, increase intracellular c-di-GMP in V. cholerae. We identified four c-di-GMP turnover enzymes that contribute to increased intracellular c-di-GMP in the presence of bile acids, and deletion of these enzymes eliminates the bile induction of c-di-GMP and biofilm formation. Furthermore, this bile-mediated increase in c-di-GMP is quenched by bicarbonate, the intestinal pH buffer secreted by intestinal epithelial cells. Our results lead us to propose that V. cholerae senses distinct microenvironments within the small intestine using bile and bicarbonate as chemical cues and responds by modulating the intracellular concentration of c-di-GMP. PMID:24799624

  12. Bile Acid secreted by male sea lamprey that acts as a sex pheromone.

    PubMed

    Li, Weiming; Scott, Alexander P; Siefkes, Michael J; Yan, Honggao; Liu, Qin; Yun, Sang-Seon; Gage, Douglas A

    2002-04-05

    We show that reproductively mature male sea lampreys release a bile acid that acts as a potent sex pheromone, inducing preference and searching behavior in ovulated female lampreys. The secreted bile acid 7alpha,12alpha,24-trihydroxy-5alpha-cholan-3-one 24-sulfate was released in much higher amounts relative to known vertebrate steroid pheromones and may be secreted through the gills. Hence, the male of this fish species signals both its reproductive status and location to females by secreting a pheromone that can act over long distances.

  13. Conjugated Linoleic Acid and Postmenopausal Women's Health.

    PubMed

    Kim, Jun Ho; Kim, Young Jun; Park, Yeonhwa

    2015-06-01

    Declined estrogen levels in women after menopause can cause a number of significant health issues, and various estrogen receptor ligands have been clinically evaluated for postmenopausal treatment. Conjugated linoleic acid (CLA) has been shown to display protective effects against menopausal symptoms such as bone loss and metabolic dysfunctions in both animals and humans. In particular, it inhibits the proliferations of breast and endometrial cancer cells through estrogen receptor α-mediated mechanism(s). These findings suggest that CLA may provide beneficial effects on menopausal symptoms, while protecting the endometrium and breast from estrogen stimulation. Thus, understanding the effects of CLA on menopausal disorders and ER metabolism is important in development of novel therapeutic options for use in postmenopausal women with or without conventional estrogen therapy. In this report, we review literature regarding the impact of CLA on menopausal symptoms in cell lines, rodents, and humans, along with potential mechanism(s). We also discuss safety consideration for CLA use in humans. © 2015 Institute of Food Technologists®

  14. The solute carrier family 10 (SLC10): beyond bile acid transport

    PubMed Central

    da Silva, Tatiana Claro; Polli, James E.; Swaan, Peter W.

    2012-01-01

    The solute carrier (SLC) family 10 (SLC10) comprises influx transporters of bile acids, steroidal hormones, various drugs, and several other substrates. Because the seminal transporters of this family, namely, sodium/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2), were primarily bile acid transporters, the term “sodium bile salt cotransporting family” was used for the SLC10 family. However, this notion became obsolete with the finding of other SLC10 members that do not transport bile acids. For example, the sodium-dependent organic anion transporter (SOAT; SLC10A6) transports primarily sulfated steroids. Moreover, NTCP was shown to also transport steroids and xenobiotics, including HMG-CoA inhibitors (statins). The SLC10 family contains four additional members, namely, P3 (SLC10A3; SLC10A3), P4 (SLC10A4; SLC10A4), P5 (SLC10A5; SLC10A5) and SLC10A7 (SLC10A7), several of which were unknown or considered hypothetical until approximately a decade ago. While their substrate specificity remains undetermined, great progress has been made towards their characterization in recent years. SLC10A4 may participate in vesicular storage or exocytosis of neurotransmitters or mastocyte mediators, whereas SLC10A5 and SLC10A7 may be involved in solute transport and SLC10A3 may have a role as a housekeeping protein. Finally, the newly found role of bile acids in glucose and energy homeostasis, via the TGR5 receptor, sheds new light on the clinical relevance of ASBT and NTCP. The present mini-review provides a brief summary of recent progress on members of the SLC10 family. PMID:23506869

  15. The influence of conjugation of cholic acid on its uptake and secretion: hepatic extraction of taurocholate and cholate in the dog

    PubMed Central

    O'Máille, E. R. L.; Richards, T. G.; Short, A. H.

    1967-01-01

    1. Sodium taurocholate or cholate was administered systemically at a constant rate of about 2·9 μmole/min.kg body wt. to anaesthetized dogs in which the common bile duct had been cannulated. In steady-state conditions blood was sampled from systemic and hepatic veins and the fraction of bile salt removed in a single passage through the liver was determined. Total hepatic blood flow was estimated by application of the Fick principle. 2. The hepatic extraction fraction for synthetic taurocholate in ten experiments was 92%±5% (S.D.) over the blood flow range encountered (1·1-2·8 ml./min.g liver). The extraction of cholate extensively conjugated in the liver before excretion into bile was 79%±8% (S.D.) (twenty-one observations, thirteen experiments). In circumstances of similar hepatic blood flow the extraction of cholate transferred to bile in the free form (after acute taurine depletion) was significantly less than that of either synthetic taurocholate or cholate which could be actively conjugated before excretion. These results, which are discussed and criticized, support previous work on the advantage of conjugation in the transfer of cholic acid from blood to bile. 3. The hepatic clearance of bile salt decreases with increasing administration rate, but the values obtained may be influenced by changes in hepatic blood flow. With regard to taurocholate an increase in total hepatic flow was observed when its administration rate exceeded about 5 μmole/min.kg body wt. 4. The secretory maximum for glycocholate, a bile salt not normally found in dog bile, was of the same order as that for taurocholate. PMID:6034118

  16. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    SciTech Connect

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan; Liu, Qi; Sun, Hui-jun; Sun, Peng-yuan; Huo, Xiao-kui; Liu, Zhi-hao; Yao, Ji-hong; Liu, Ke-xin

    2015-03-15

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp) and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved

  17. Oxidation of Indole-3-Acetic Acid-Amino Acid Conjugates by Horseradish Peroxidase

    PubMed Central

    Park, Ro Dong; Park, Chang Kyu

    1987-01-01

    The stability of 21 amino acid