Boocock, D J; Maggs, J L; White, I N; Park, B K
1999-01-01
The metabolic formation of a-hydroxytamoxifen, a reactive metabolite of tamoxifen in rat liver, was characterized and quantified in vitro (hepatic microsomal incubations) and in vivo (bile-duct cannulated animals). This minor metabolite was identified by chromatographic and mass spectral comparisons with the authentic compound. The rates of formation of alpha-hydroxytamoxifen in incubations (30 min) of tamoxifen (25 microM) with liver microsomal preparations from women (pool of six), female CD1 mice or female Sprague-Dawley rats, as quantified by liquid chromatography-mass spectrometry (LC-MS), were 1.15+/-0.03, 0.30+/-0.05 and 2.70+/-0.35 pmol/min/mg protein, respectively. Selective inhibition of microsomal P450 indicated that alpha-hydroxylation was catalysed predominantly by CYP3A in humans. Bile-duct cannulated and anaesthetized female rats and mice given [14C]tamoxifen (43 micromol/kg, i.v.) excreted, respectively, 24 and 21% of the administered radioactivity in bile over 5 and 3.5 h. The major radiolabelled biliary metabolite in rats, characterized by LC-MS after enzymic hydrolysis of conjugates, was the glucuronide of 4-hydroxytamoxifen (10% of dose) and only 0.1% of the dose was recovered as alpha-hydroxytamoxifen. After administration of alpha-hydroxytamoxifen (43 micromol/kg, i.v.) to rats, only 1.19% of the administered compound was recovered from a glucuronide metabolite in bile, indicating a possible 0.84% alpha-hydroxylation of tamoxifen in vivo. There was, however, no indication of the presence in bile of either O-sulphonate or glutathione conjugates derived from alpha-hydroxytamoxifen. This study shows for the first time that alpha-hydroxytamoxifen can be glucuronylated in rat liver. Whereas sulphonation results in electrophilic genotoxic intermediates, glucuronidation may represent a means of detoxifying alpha-hydroxytamoxifen.
Zhao, Mei-Fen; Huang, Peng; Ge, Chun-Lin; Sun, Tao; Ma, Zhi-Gang; Ye, Fei-Fei
2016-02-28
To identify conjugated bile acids in gallbladder bile and serum as possible biomarkers for cholesterol polyps (CPs) and adenomatous polyps (APs). Gallbladder bile samples and serum samples were collected from 18 patients with CPs (CP group), 9 patients with APs (AP group), and 20 patients with gallstones (control group) from March to November, 2013. High performance liquid chromatography (HPLC) assay with ultraviolent detection was used to detect the concentration of 8 conjugated bile acids (glycocholic acid, GCA; taurocholic acid, TCA; glycochenodeoxycholic acid, GCDCA; taurochenodeoxycholic acid, TCDCA; glycodeoxycholic acid, GDCA; taurodeoxycholic acid, TDCA; taurolithocholic acid, TLCA; tauroursodeoxycholic acid, TUDCA) in bile samples and serum samples. The diagnostic efficacy of serum GCA, GCDCA and TCDCA was evaluated. These 8 conjugated bile acids in gallbladder bile and serum were completely identified within 10 minutes with good linearity (correlation coefficient: R>0.9900; linearity range: 3.91-500 µg/mL). Among these conjugated bile acids, the levels of gallbladder bile GCDCA and TCDCA in the CP group were significantly higher than those in the AP group (p<0.05). Furthermore, serum GCDCA and TCDCA as well as GCA were significantly higher in the AP group than the CP group (p<0.05). Serum GCDCA alone (≤12 µg/mL) had relatively better diagnostic efficacy than the other conjugated bile acids. The levels of serum GCA, GCDCA and TCDCA may be valuable for differentiation of APs and CPs.
Hu, Peng-Li; Yuan, Ya-Hong; Yue, Tian-Li
2018-01-01
This study aimed to analyze the bile acid patterns in commercially available oxgall powders used for evaluation of the bile tolerance ability of probiotic bacteria. Qxgall powders purchased from Sigma-Aldrich, Oxoid and BD Difco were dissolved in distilled water, and analyzed. Conjugated bile acids were profiled by ion-pair high-performance liquid chromatography (HPLC), free bile acids were detected as their p-bromophenacyl ester derivatives using reversed-phase HPLC after extraction with acetic ether, and total bile acids were analyzed by enzymatic-colorimetric assay. The results showed that 9 individual bile acids (i.e., taurocholic acid, glycocholic acid, taurodeoxycholic acid, glycodeoxycholic acid, taurochenodeoxycholic acid, glycochenodeoxycholic acid, cholic acid, chenodeoxycholic acid, deoxycholic acid) were present in each of the oxgall powders tested. The content of total bile acid among the three oxgall powders was similar; however, the relative contents of the individual bile acids among these oxgall powders were significantly different (P < 0.001). The oxgall powder from Sigma-Aldrich was closer to human bile in the ratios of glycine-conjugated bile acids to taurine-conjugated bile acids, dihydroxy bile acids to trihydroxy bile acids, and free bile acids to conjugated bile acids than the other powders were. It was concluded that the oxgall powder from Sigma-Aldrich should be used instead of those from Oxoid and BD Difco to evaluate the bile tolerance ability of probiotic bacteria as human bile model. PMID:29494656
Taurocholic acid metabolism by gut microbes and colon cancer
Ridlon, Jason M.; Wolf, Patricia G.; Gaskins, H. Rex
2016-01-01
ABSTRACT Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively. PMID:27003186
Schacht, Anna Christina; Sørensen, Michael; Munk, Ole Lajord; Frisch, Kim
2016-04-01
During cholestasis, accumulation of conjugated bile acids may occur in the liver and lead to hepatocellular damage. Inspired by our recent development of N-(11)C-methyl-glycocholic acid-that is, (11)C-cholylsarcosine-a tracer for PET of the endogenous glycine conjugate of cholic acid, we report here a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids and biodistribution studies in pigs by PET/CT. A radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids was developed and used to prepare N-(11)C-methyl-taurine conjugates derived from cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic acid. The lipophilicity of these new tracers was determined by reversed-phase thin-layer chromatography. The effect of lipophilicity and structure on the biodistribution was investigated in pigs by PET/CT using the tracers derived from cholic acid (3α-OH, 7α-OH, 12α-OH), ursodeoxycholic acid (3α-OH, 7β-OH), and lithocholic acid (3α-OH). The radiosyntheses of the N-(11)C-methyl-taurine-conjugated bile acids proceeded with radiochemical yields of 61% (decay-corrected) or greater and radiochemical purities greater than 99%. PET/CT in pigs revealed that the tracers were rapidly taken up by the liver and secreted into bile. There was no detectable radioactivity in urine. Significant reflux of N-(11)C-methyl-taurolithocholic acid into the stomach was observed. We have successfully developed a radiosynthesis of N-(11)C-methyl-taurine-conjugated bile acids. These tracers behave in a manner similar to endogenous taurine-conjugated bile acids in vivo and are thus promising for functional PET of patients with cholestatic diseases. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
[Correlations of bile acids in the bile of rats in conditions of alloxan induced diabetes melitus].
Danchenko, N M; Vesel'skyĭ, S P; Tsudzevych, B O
2014-01-01
The ratio of bile acids in the bile of rats with alloxan diabetes was investigated using the method of thin-layer chromatography. Changes of coefficients of conjugation and hydroxylation of bile acids were calculated and analyzed in half-hour samples of bile obtained during the 3-hour experiment. It has been found that the processes of conjugation of cholic acid with glycine and taurine are inhibited in alloxan diabetes. At the same time a significant increase of free threehydroxycholic and dixydroxycholic bile acids and conjugates of the latter ones with taurine has been registered. Coefficients of hydroxylation in alloxan diabetes show the domination of "acidic" pathway in bile acid biosynthesis that is tightly connected with the activity of mitochondrial enzymes.
Suga, Takahiro; Sato, Toshihiro; Maekawa, Masamitsu; Goto, Junichi; Mano, Nariyasu
2017-01-01
Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74–14.7 μM for OATP1B1 and 0.47–15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3. PMID:28060902
Bile Acid Responses in Methane and Non-Methane Producers to Standard Breakfast Meals
USDA-ARS?s Scientific Manuscript database
Bile acids and their conjugates are important regulators of glucose homeostasis. Previous research has revealed the ratio of cholic acid to deoxycholic acid to affect insulin resistance in humans. Bile acid de-conjugation and intestinal metabolism depend on gut microbes which may be affected by hos...
Mitamura, Kuniko; Hori, Naohiro; Mino, Shiori; Iida, Takashi; Hofmann, Alan F; Ikegawa, Shigeo
2012-04-01
The 3-sulfates of the S-acyl glutathione (GSH) conjugates of five natural bile acids (cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic) were synthesized as reference standards in order to investigate their possible formation by a rat liver cytosolic fraction. Their structures were confirmed by proton nuclear magnetic resonance, as well as by means of electrospray ionization-linear ion-trap mass spectrometry with negative-ion detection. Upon collision-induced dissociation, structurally informative product ions were observed. Using a triple-stage quadrupole instrument, selected reaction monitoring analyses by monitoring characteristic transition ions allowed the achievement of a highly sensitive and specific assay. This method was used to determine whether the 3-sulfates of the bile acid-GSH conjugates (BA-GSH) were formed when BA-GSH were incubated with a rat liver cytosolic fraction to which 3'-phosphoadenosine 5'-phosphosulfate had been added. The S-acyl linkage was rapidly hydrolyzed to form the unconjugated bile acid. A little sulfation of the GSH conjugates occurred, but greater sulfation at C-3 of the liberated bile acid occurred. Sulfation was proportional to the hydrophobicity of the unconjugated bile acid. Thus GSH conjugates of bile acids as well as their C-3 sulfates if formed in vivo are rapidly hydrolyzed by cytosolic enzymes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Gilat, T; Somjen, G; Mazur, Y; Leikin-Frenkel, A; Rosenberg, R; Halpern, Z; Konikoff, F.
2001-01-01
BACKGROUND—Cholesterol gall stones are a frequent disease for which at present surgery is the usual therapy. Despite the importance of bile acids it has become evident that phospholipids are the main cholesterol solubilisers in bile. Even phospholipid components, such as fatty acids, have anticrystallising activity. AIM—To synthesise fatty acid bile acid conjugates (FABACs) and study their effects on cholesterol crystallisation in bile in vitro and in vivo. METHODS—FABACs were prepared by conjugation of cholic acid at position 3 with saturated fatty acids of variable chain length using an amide bond. Cholesterol crystallisation and its kinetics (crystal observation time, crystal mass) were studied in model bile, pooled enriched human bile, and fresh human bile using FABACs with saturated fatty acids of varying chain length (C-6 to C-22). Absorption of FABACs into blood and bile was tested in hamsters. Prevention of biliary cholesterol crystallisation in vivo was tested in hamsters and inbred mice. RESULTS—FABACs strongly inhibited cholesterol crystallisation in model as well as native bile. The FABACs with longer acyl chains (C-16 to C-22) were more effective. At a concentration of 5 mM, FABACs almost completely inhibited cholesterol crystallisation in fresh human bile for 21 days. FABACs were absorbed and found in both portal and heart blood of hamsters. Levels in bile were 2-3 times higher than in blood, indicating active secretion. Appreciable levels were found in the systemic circulation 24-48 hours after a single administration. Ingested FABACs completely prevented the formation of cholesterol crystals in the gall bladders of hamsters and mice fed a lithogenic diet. CONCLUSIONS—FABACs are potent inhibitors of cholesterol crystallisation in bile. They are absorbed and secreted into bile and prevent the earliest step of cholesterol gall stone formation in animals. These compounds may be of potential use in cholesterol gall stone disease in humans. Keywords: gall stones; bile; phospholipids; cholesterol crystallisation; fatty acid bile acid conjugates PMID:11115826
Rainer, Peter P; Primessnig, Uwe; Harenkamp, Sandra; Doleschal, Bernhard; Wallner, Markus; Fauler, Guenter; Stojakovic, Tatjana; Wachter, Rolf; Yates, Ameli; Groschner, Klaus; Trauner, Michael; Pieske, Burkert M; von Lewinski, Dirk
2013-11-01
High bile acid serum concentrations have been implicated in cardiac disease, particularly in arrhythmias. Most data originate from in vitro studies and animal models. We tested the hypotheses that (1) high bile acid concentrations are arrhythmogenic in adult human myocardium, (2) serum bile acid concentrations and composition are altered in patients with atrial fibrillation (AF) and (3) the therapeutically used ursodeoxycholic acid has different effects than other potentially toxic bile acids. Multicellular human atrial preparations ('trabeculae') were exposed to primary bile acids and the incidence of arrhythmic events was assessed. Bile acid concentrations were measured in serum samples from 250 patients and their association with AF and ECG parameters analysed. Additionally, we conducted electrophysiological studies in murine myocytes. Taurocholic acid (TCA) concentration-dependently induced arrhythmias in atrial trabeculae (14/28 at 300 µM TCA, p<0.01) while ursodeoxycholic acid did not. Patients with AF had significantly decreased serum levels of ursodeoxycholic acid conjugates and increased levels of non-ursodeoxycholic bile acids. In isolated myocytes, TCA depolarised the resting membrane potential, enhanced Na(+)/Ca(2+) exchanger (NCX) tail current density and induced afterdepolarisations. Inhibition of NCX prevented arrhythmias in atrial trabeculae. High TCA concentrations induce arrhythmias in adult human atria while ursodeoxycholic acid does not. AF is associated with higher serum levels of non-ursodeoxycholic bile acid conjugates and low levels of ursodeoxycholic acid conjugates. These data suggest that higher levels of toxic (arrhythmogenic) and low levels of protective bile acids create a milieu with a decreased arrhythmic threshold and thus may facilitate arrhythmic events.
Dilger, Karin; Hohenester, Simon; Winkler-Budenhofer, Ursula; Bastiaansen, Barbara A J; Schaap, Frank G; Rust, Christian; Beuers, Ulrich
2012-07-01
Ursodeoxycholic acid (UDCA) exerts anticholestatic, antifibrotic and antiproliferative effects in primary biliary cirrhosis (PBC) via mechanisms not yet fully understood. Its adequate biliary enrichment is considered mandatory for therapeutic efficacy. However, precise determination of biliary enrichment of UDCA is not possible in clinical practice. Therefore, we investigated (i) the relationship between biliary enrichment and plasma pharmacokinetics of UDCA, (ii) the effect of UDCA on plasma and biliary bile acid composition and conjugation patterns, and (iii) on the intestinal detoxification machinery in patients with PBC and healthy controls. In 11 PBC patients and 11 matched healthy subjects, cystic bile and duodenal tissue were collected before and after 3 weeks of administration of UDCA (15 mg/kg/day). Extensive pharmacokinetic profiling of bile acids was performed. The effect of UDCA on the intestinal detoxification machinery was studied by quantitative PCR and Western blotting. The relative fraction of UDCA and its conjugates in plasma at trough level[x] correlated with their biliary enrichment[y] (r=0.73, p=0.0001, y=3.65+0.49x). Taurine conjugates of the major hydrophobic bile acid, chenodeoxycholic acid, were more prominent in bile of PBC patients than in that of healthy controls. Biliary bile acid conjugation patterns normalized after treatment with UDCA. UDCA induced duodenal expression of key export pumps, BCRP and P-glycoprotein. Biliary and trough plasma enrichment of UDCA are closely correlated in PBC and health. Taurine conjugation may represent an adaptive mechanism in PBC against chenodeoxycholic acid-mediated bile duct damage. UDCA may stabilize small intestinal detoxification by upregulation of efflux pumps. Copyright © 2012. Published by Elsevier B.V.
Batta, A K; Shefer, S; Salen, G
1981-05-01
Separation of the glycine and taurine conjugates of ursodeoxycholic acid from those of lithocholic acid, chenodeoxycholic acid, deoxycholic acid, and cholic acid by thin-layer chromatography is described. Thus, on running a silica gel G plate first in a solvent system of n-butanol-water 20:3 and then in a second solvent system of chloroform-isopropanol-acetic acid-water 30:20:4:1, all the above-mentioned conjugated bile acids are separated from one another. The application of this method to study the change in the biliary bile acid conjugation pattern in ursodeoxycholic acid-fed gallstone patients is described.
Onishi, S; Itoh, S; Ishida, Y
1982-01-01
An accurate and sensitive method that involves the group separations of serum bile acids (i.e. free and glycine- and taurine-conjugated bile acid fractions) by ion-exchange chromatography on piperidinohydroxypropyl-Sephadex LH-20 is described. Each group was then analysed by high-pressure liquid chromatography by using the post-column reaction technique with immobilized 3 alpha-hydroxy steroid dehydrogenase. The bile acid patterns in the umbilical venous serum samples were analysed by this method. Taurochenodeoxycholate predominated in the umbilical blood. PMID:6956336
Tamoxifen decreases the myofibroblast count in the healing bile duct tissue of pigs
Siqueira, Orlando Hiroshi Kiono; Filho, Benedito Herani; de Paula, Rafael Erthal; Áscoli, Fábio Otero; da Nóbrega, Antonio Cláudio Lucas; Carvalho, Angela Cristina Gouvêa; Pires, Andréa Rodrigues Cordovil; Gaglionone, Nicolle Cavalcante; Cunha, Karin Soares Gonçalves; Granjeiro, José Mauro
2013-01-01
OBJECTIVE: The aim of this study was to evaluate the effect of oral tamoxifen treatment on the number of myofibroblasts present during the healing process after experimental bile duct injury. METHODS: The sample consisted of 16 pigs that were divided into two groups (the control and study groups). Incisions and suturing of the bile ducts were performed in the two groups. Tamoxifen (20 mg/day) was administered only to the study group. The animals were sacrificed after 30 days. Quantification of myofibroblasts in the biliary ducts was made through immunohistochemistry analysis using anti-alpha smooth muscle actin of the smooth muscle antibody. Immunohistochemical quantification was performed using a digital image system. RESULTS: In the animals treated with tamoxifen (20 mg/day), there was a significant reduction in immunostaining for alpha smooth muscle actin compared with the control group (0.1155 vs. 0.2021, p = 0.046). CONCLUSION: Tamoxifen reduced the expression of alpha smooth muscle actin in the healing tissue after bile duct injury, suggesting a decrease in myofibroblasts in the scarred area of the pig biliary tract. These data suggest that tamoxifen could be used in the prevention of biliary tract stenosis after bile duct surgeries. PMID:23420165
Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption.
Zhang, Dong; Li, Dongpo; Shang, Lei; He, Zhonggui; Sun, Jin
2016-09-10
Cytarabine has a poor oral absorption due to its rapid deamination and poor membrane permeability. Bile acid transporters are highly expressed both in enterocytes and hepatocytes and to increase the oral bioavailability and investigate the potential application of cytarabine for liver cancers, a transporter- recognizing prodrug strategy was applied to design and synthesize four conjugates of cytarabine with cholic acid (CA), chenodeoxycholic acid (CDCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA). The anticancer activities against HepG2 cells were evaluated by MTT assay and the role of bile acid transporters during cellular transport was investigated in a competitive inhibition experiment. The in vitro and in vivo metabolic stabilities of these conjugates were studied in rat plasma and liver homogenates. Finally, an oral bioavailability study was conducted in rats. All the cholic acid-cytarabine conjugates (40μM) showed potent antiproliferative activities (up to 70%) against HepG2 cells after incubation for 48h. The addition of bile acids could markedly reduce the antitumor activities of these conjugates. The N(4)-ursodeoxycholic acid conjugate of cytarabine (compound 5) exhibited optimal stability (t1/2=90min) in vitro and a 3.9-fold prolonged half-life of cytarabine in vivo. More importantly, compound 5 increased the oral bioavailability 2-fold compared with cytarabine. The results of the present study suggest that the prodrug strategy based on the bile acid transporters is suitable for improving the oral absorption and the clinical application of cytarabine. Copyright © 2016 Elsevier B.V. All rights reserved.
Ge, Chunlin; Sun, Tao; Meng, Jingjuan; Wang, Kun; Huang, Peng
2014-02-01
To investigate the difference in conjugated bile acids in the gallbladder bile between gallbladder cholesterol polyps and adenomatous polyps patients, and screen the differential diagnosis-markers for polypoid lesions of gallbladder (PLG). From January to June 2013, the 20 cholesterol polyps patients, 10 adenomatous polyps patients and 10 patients without gallbladder diseases were enrolled. High performance liquid chromatography assay with ultraviolet detection was used to test 8 conjugated bile acids in gallbladder bile. The 8 conjugated bile acids were completely analyzed in 10 minutes, and the assay was liner in the range 8-500 µg/ml. The correlation coeffients for linear regression was from 0.9996-0.9999 and the detection limits ranged from 3.90-7.81 µg/ml. The level of taurocholic acid (TCA) in adenomatous polyps group ((75 ± 51) µg/ml) was significantly lower than that in the cholesterol polyps ((228 ± 206) µg/ml, q = 3.120, P = 0.014) and control groups ((104 ± 40) µg/ml, q = 2.950, P = 0.027). The level of taurochenodeoxycholic acid (TCDCA) in cholesterol polyps group ((604 ± 444) µg/ml) was significantly higher than that in the adenomatous polyps ((310 ± 182) µg/ml, q = 2.560, P = 0.048) and control groups ((308 ± 21) µg/ml, q = 2.970, P = 0.023). The levels of TCA and TCDCA in the gallbladder biles in cholesterol polyps patients were higher than those in adenomatous polyps patients, which may be the differential diagnosis-markers for PLG.
Biliary Bile Acids in Primary Biliary Cirrhosis: Effect of Ursodeoxycholic Acid
Combes, Burton; Carithers, Robert L.; Maddrey, Willis C.; Munoz, Santiago; Garcia-Tsao, Guadalupe; Bonner, Gregory F.; Boyer, James L.; Luketic, Velimir A.; Shiffman, Mitchell L.; Peters, Marion G.; White, Heather; Zetterman, Rowen K.; Risser, Richard; Rossi, Stephen S.; Hofmann, Alan F.
2014-01-01
Bile acid composition in fasting duodenal bile was assessed at entry and at 2 years in patients with primary biliary cirrhosis (PBC) enrolled in a randomized, double-blind, placebo-controlled trial of ursodeoxycholic acid (UDCA) (10–12 mg/kg/d) taken as a single bedtime dose. Specimens were analyzed by a high-pressure liquid chromatography method that had been validated against gas chromatography. Percent composition in bile (mean ± SD) for 98 patients at entry for cholic (CA), chenodeoxycholic (CDCA), deoxycholic (DCA), lithocholic (LCA), and ursodeoxycholic (UDCA) acids, respectively, were 57.4 ± 18.6, 31.5 ± 15.5, 8.0 ± 9.3, 0.3 ± 1.0, and 0.6 ± 0.9. Values for CA were increased, whereas those for CDCA, DCA, LCA, and UDCA were decreased when compared with values in normal persons. Bile acid composition of the major bile acids did not change after 2 years on placebo medication. By contrast, in patients receiving UDCA for 2 years, bile became enriched with UDCA on average to 40.1%, and significant decreases were noted for CA (to 32.2%) and CDCA (to 19.5%). No change in percent composition was observed for DCA and LCA. Percent composition at entry and changes in composition after 2 years on UDCA were similar in patients with varying severity of PBC. In patients whose bile was not enriched in UDCA (entry and placebo-treated specimens), CA, CDCA, DCA, and the small amount of UDCA found in some of these specimens were conjugated to a greater extent with glycine (52%–64%) than with taurine (36%–48%). Treatment with UDCA caused the proportion of all endogenous bile acids conjugated with glycine to increase to 69% to 78%, while the proportion conjugated with taurine (22%–31%) fell (P < .05). Administered UDCA was also conjugated predominantly with glycine (87%). PMID:10347103
Mukaisho, Ken-ichi; Hagiwara, Tadashi; Nakayama, Takahisa; Hattori, Takanori; Sugihara, Hiroyuki
2014-09-14
The long-term use of proton pump inhibitors (PPIs) exacerbates corpus atrophic gastritis in patients with Helicobacter pylori (H. pylori) infection. To identify a potential mechanism for this change, we discuss interactions between pH, bile acids, and H. pylori. Duodenogastric reflux, which includes bile, occurs in healthy individuals, and bile reflux is increased in patients with gastroesophageal reflux disease (GERD). Diluted human plasma and bile acids have been found to be significant chemoattractants and chemorepellents, respectively, for the bacillus H. pylori. Although only taurine conjugates, with a pKa of 1.8-1.9, are soluble in an acidic environment, glycine conjugates, with a pKa of 4.3-5.2, as well as taurine-conjugated bile acids are soluble in the presence of PPI therapy. Thus, the soluble bile acid concentrations in the gastric contents of patients with GERD after continuous PPI therapy are considerably higher than that in those with intact acid production. In the distal stomach, the high concentration of soluble bile acids is likely to act as a bactericide or chemorepellent for H. pylori. In contrast, the mucous layer in the proximal stomach has an optimal bile concentration that forms chemotactic gradients with plasma components required to direct H. pylori to the epithelial surface. H. pylori may then colonize in the stomach body rather than in the pyloric antrum, which may explain the occurrence of corpus-predominant gastritis after PPI therapy in H. pylori-positive patients with GERD.
Qiao, Xue; Ye, Min; Pan, De-lin; Miao, Wen-juan; Xiang, Cheng; Han, Jian; Guo, De-an
2011-01-07
Animal biles and gallstones are popularly used in traditional Chinese medicines, and bile acids are their major bioactive constituents. Some of these medicines, like cow-bezoar, are very expensive, and may be adulterated or even replaced by less expensive but similar species. Due to poor ultraviolet absorbance and structural similarity of bile acids, effective technology for species differentiation and quality control of bile-based Chinese medicines is still lacking. In this study, a rapid and reliable method was established for the simultaneous qualitative and quantitative analysis of 18 bile acids, including 6 free steroids (cholic acid, chenodeoxycholic acid, deoxycholic acid, lithocholic acid, hyodeoxycholic acid, and ursodeoxycholic acid) and their corresponding glycine conjugates and taurine conjugates, by using liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS). This method was used to analyze six bile-based Chinese medicines: bear bile, cattle bile, pig bile, snake bile, cow-bezoar, and artificial cow-bezoar. Samples were separated on an Atlantis dC₁₈ column and were eluted with methanol-acetonitrile-water containing ammonium acetate. The mass spectrometer was monitored in the negative electrospray ionization mode. Total ion currents of the samples were compared for species differentiation, and the contents of bile acids were determined by monitoring specific ion pairs in a selected reaction monitoring program. All 18 bile acids showed good linearity (r² > 0.993) in a wide dynamic range of up to 2000-fold, using dehydrocholic acid as the internal standard. Different animal biles could be explicitly distinguished by their major characteristic bile acids: tauroursodeoxycholic acid and taurochenodeoxycholic acid for bear bile, glycocholic acid, cholic acid and taurocholic acid for cattle bile, glycohyodeoxycholic acid and glycochenodeoxycholic acid for pig bile, and taurocholic acid for snake bile. Furthermore, cattle bile, cow-bezoar, and artificial cow-bezoar could be differentiated by the existence of hyodeoxycholic acid and the ratio of cholic acid to deoxycholic acid. This study provided bile acid profiles of bile-based Chinese medicines for the first time, which could be used for their quality control. Copyright © 2010 Elsevier B.V. All rights reserved.
Synthesis and Characterization of Bioactive Tamoxifen-conjugated Polymers
Rickert, Emily L.; Trebley, Joseph P.; Peterson, Anton C.; Morrell, Melinda M.; Weatherman, Ross V.
2008-01-01
Macromolecular conjugates of tamoxifen could perhaps be used to circumvent some of the limitations of the extensively used breast cancer drug. To test the feasibility of these conjugates, a 4-hydroxytamoxifen analog was conjugated to a diaminoalkyl linker and then conjugated to activated esters of a poly(methacrylic acid) polymer synthesized by atom transfer radical polymerization. A polymer conjugated to the 4-hydroxytamoxifen analog with a six carbon linker showed high affinity for both estrogen receptor alpha and estrogen receptor beta and potent antagonism of the estrogen receptor in cell-based transcriptional reporter assays. These results suggest that the conjugation of 4-hydroxytamoxifen to a polymer results in a macromolecular conjugate that can display ligand in a manner that can be recognized by estrogen receptor and still act as a potent antiestrogen in cells. PMID:17929966
Dobbins, RL; O'Connor‐Semmes, RL; Young, MA
2016-01-01
A systems model was developed to describe the metabolism and disposition of ursodeoxycholic acid (UDCA) and its conjugates in healthy subjects based on pharmacokinetic (PK) data from published studies in order to study the distribution of oral UDCA and potential interactions influencing therapeutic effects upon interruption of its enterohepatic recirculation. The base model was empirically adapted to patients with primary biliary cirrhosis (PBC) based on current understanding of disease pathophysiology and clinical measurements. Simulations were performed for patients with PBC under two competing hypotheses: one for inhibition of ileal absorption of both UDCA and conjugates and the other only of conjugates. The simulations predicted distinctly different bile acid distribution patterns in plasma and bile. The UDCA model adapted to patients with PBC provides a platform to investigate a complex therapeutic drug interaction among UDCA, UDCA conjugates, and inhibition of ileal bile acid transport in this rare disease population. PMID:27537780
Kakiyama, Genta; Iida, Takashi; Goto, Takaaki; Mano, Nariyasu; Goto, Junichi; Nambara, Toshio; Hagey, Lee R; Schteingart, Claudio D; Hofmann, Alan F
2006-07-01
By HPLC, a taurine-conjugated bile acid with a retention time different from that of taurocholate was found to be present in the bile of the black-necked swan, Cygnus melanocoryphus. The bile acid was isolated and its structure, established by (1)H and (13)C NMR and mass spectrometry, was that of the taurine N-acyl amidate of 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid. The compound was shown to have chromatographic and spectroscopic properties that were identical to those of the taurine conjugate of authentic 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid, previously synthesized by us from ursodeoxycholic acid. By HPLC, the taurine conjugate of 3alpha,7alpha,15alpha-trihydroxy-5beta-cholan-24-oic acid was found to be present in 6 of 6 species in the subfamily Dendrocygninae (tree ducks) and in 10 of 13 species in the subfamily Anserinae (swans and geese) but not in other subfamilies in the Anatidae family. It was also not present in species from the other two families of the order Anseriformes. 3alpha,7alpha,15alpha-Trihydroxy-5beta-cholan-24-oic acid is a new primary bile acid that is present in the biliary bile acids of swans, tree ducks, and geese and may be termed 15alpha-hydroxy-chenodeoxycholic acid.
Swobodnik, W; Klüppelberg, U; Wechsler, J G; Volz, M; Normandin, G; Ditschuneit, H
1985-05-03
This paper introduces a new method to detect the taurine and glycine conjugates of five different bile acids (cholic acid, deoxycholic acid, chenodeoxycholic acid, ursodeoxycholic acid and lithocholic acid) in human bile. Advantages of this method are sufficient separation of compounds within a short period of time and a high rate of reproducibility. Using a mobile phase gradient of acetonitrile and water, modified with tetrabutylammonium hydrogen sulphate (0.0075 mol/l), we were able to maximize the differentiation between ursodeoxycholic acid and lithocholic acid, which is of primary interest during conservative gallstone dissolution therapy. Use of this gradient reduced analysis time to less than 0.5 h. Recovery rates for this modified method ranged from 94% to 100%, and reproducibility was 98%, sufficient for routine clinical applications.
A Substrate Pharmacophore for the Human Sodium Taurocholate Co-transporting Polypeptide
Dong, Zhongqi; Ekins, Sean; Polli, James E.
2014-01-01
Human Sodium Taurocholate Co-transporting Polypeptide (NTCP) is the main bile acid uptake transporter in the liver with the capability to translocate xenobiotics. While its inhibitor requirements have been recently characterized, its substrate requirements have not. The objectives of this study were a) to elucidate NTCP substrate requirements using native bile acids and bile acid analogs, b) to develop the first pharmacophore for NTCP substrates and compare it with the inhibitor pharmacophores, and c) to identify additional NTCP novel substrates. Thus, 18 native bile acids and two bile acid conjugates were initially assessed for NTCP inhibition and/or uptake, which suggested a role of hydroxyl pattern and steric interaction in NTCP binding and translocation. A common feature pharmacophore for NTCP substrate uptake was developed, using 14 native bile acids and bile acid conjugates, yielding a model which featured three hydrophobes, one hydrogen bond donor, one negative ionizable feature and three excluded volumes. This model was used to search a database of FDA approved drugs and retrieved the majority of the known NTCP substrates. Among the retrieved drugs, irbesartan and losartan were identified as novel NTCP substrates, suggesting a potential role of NTCP in drug disposition. PMID:25448570
EXOCRINE FUNCTION OF THE LIVER IN RATS WITH EXPOSURE TO CОRVITIN.
Vovkun, T V; Yanchuk, P I; Shtanova, L Y; Vesеlskyу, S P; Shalamaу, A S
In acute experiments on rats with cannulated bile duct we studied the effect of Corvitin, water-soluble analogue of quercetin, on secretion of bile. Intraportal administration of the test compound at doses of 2,5; 5 and 10 mg/kg resulted in a significant increase in the volume of secreted bile by 20,9, 31,2 and 20,4%, respectively, as compared with the control. Using the method of thin layer chromatography it was established the mild stimulating effect of Corvitin on the processes of bile acids conjugation with taurine and glycine, especially when administered at a dose of 5 mg/kg. This flavonoid did not affect the concentration of glycocholic acid, however increased the content of glycochenodeoxycholic and glycodeoxycholic acids in the mixture between 15 to 35,1%. Regarding free bile acids, the concentration of cholic acid, chenodeoxycholic and deoxycholic acids in the mixture was increased significantly relative to control only after Corvitin application at dose 10 mg/ kg. In the first case – from 17,9 to 29,8%, in the second – from 25 to 65,4%. At the dose of 5 mg/kg, Corvitin significantly increased the ratio of bile cholates conjugation (maximum by 23,2%), whereas 10 mg/kg of the drug decreased this index by 27,0%. After administration of Corvitin, the hydroxylation ratio in all experimental groups differed little from the control: at the dose of 5 and 10 mg/kg this parameter decreased by 14%. Thus, Corvitin modulates exocrine function of the liver, causing an increase in bile secretion and concentration of different cholates, dose-dependently increasing or decreasing the effectiveness of multienzyme systems providing processes of bile acids conjugation in rats.
Mi, Si; Lim, David W; Turner, Justine M; Wales, Paul W; Curtis, Jonathan M
2016-03-01
An LC/MS/MS-based method was developed for the determination of individual bile acids (BA) and their conjugates in porcine bile samples. The C18-based solid-phase extraction (SPE) procedure was optimized so that all 19 target BA and their glycine and taurine conjugates were collected with high recoveries for standards (89.1-100.2%). Following this, all 19 compounds were separated and quantified in a single 12 min chromatographic run. The method was validated in terms of linearity, sensitivity, accuracy, precision, and recovery. An LOD in the low ppb range with measured precisions in the range of 0.5-9.3% was achieved. The recoveries for all of the 19 analytes in bile samples were all >80%. The validated method was successfully applied to the profiling of BA and their conjugates in the bile from piglets treated with exogenous glucagon-like peptide-2 (GLP-2) in a preclinical model of neonatal parenteral nutrition-associated liver disease (PNALD). The method developed is rapid and could be easily implemented for routine analysis of BA and their conjugates in other biofluids or tissues.
Frisch, Kim; Stimson, Damion H R; Venkatachalam, Taracad; Pierens, Gregory K; Keiding, Susanne; Reutens, David; Bhalla, Rajiv
2018-05-04
Enterohepatic circulation (EHC) of conjugated bile acids is an important physiological process crucial for regulation of intracellular concentrations of bile acids and their function as detergents and signal carriers. Only few bile acid-derived imaging agents have been synthesized and hitherto none have been evaluated for studies of EHC. We hypothesized that N-(4-[ 18 F]fluorobenzyl)cholylglycine ([ 18 F]FBCGly), a novel fluorine-18 labeled derivative of endogenous cholylglycine, would be a suitable tracer for PET of the EHC of conjugated bile acids, and we report here a radiosynthesis of [ 18 F]FBCGly and a proof-of-concept study by PET/MR in rats. A radiosynthesis of [ 18 F]FBCGly was developed based on reductive alkylation of glycine with 4-[ 18 F]fluorobenzaldehyde followed by coupling to cholic acid. [ 18 F]FBCGly was investigated in vivo by dynamic PET/MR in anesthetized rats; untreated or treated with cholyltaurine or rifampicin. Possible in vivo metabolites of [ 18 F]FBCGly were investigated by analysis of blood and bile samples, and the stability of [ 18 F]FBCGly towards enzymatic de-conjugation by Cholylglycine Hydrolase was tested in vitro. [ 18 F]FBCGly was produced with a radiochemical purity of 96% ± 1% and a non-decay corrected radiochemical yield of 1.0% ± 0.3% (mean ± SD; n = 12). PET/MR studies showed that i.v.-administrated [ 18 F]FBCGly underwent EHC within 40-60 min with a rapid transhepatic transport from blood to bile. In untreated rats, the radioactivity concentration of [ 18 F]FBCGly was approximately 15 times higher in bile than in liver tissue. Cholyltaurine and rifampicin inhibited the biliary secretion of [ 18 F]FBCGly. No fluorine-18 metabolites of [ 18 F]FBCGly were observed. We have developed a radiosynthesis of a novel fluorine-18 labeled bile acid derivative, [ 18 F]FBCGly, and shown by PET/MR that [ 18 F]FBCGly undergoes continuous EHC in rats without metabolizing. This novel tracer may prove useful in PET studies on the effect of drugs or diseases on the EHC of conjugated bile acids. Copyright © 2018 Elsevier Inc. All rights reserved.
Bachir, G S; Collis, J L
1976-01-01
Tests of the response to perfusion of the oesophagus were made in 54 patients divided into three groups. Group I consisted of patients with symptomatic hiatal hernia, group II hiatal hernia patients with peptic stricture, and group III normal individuals. Each individual oesophagus was perfused at a rate of 45-65 drops per minute over 25 minutes with six solutions: normal saline, N/10 HCl, taurine conjugates of bile salts in normal saline, taurine conjugates of bile salts in N/10 HCl, glycine conjugates of bile salts in normal saline, and taurine and glycine conjugates in a ratio of 1 to 2 in normal saline. It was found that acidified taurine solutions were more irritating than acid alone. With a 2mM/l solution of taurine in acid, symptoms are produced even in controls. With a 1 mM/l solution of the same conjugates, the majority of normal people feel slight heartburn or nothing, and therefore perfusion into the oesophagus of such a solution could be used as a test for oesophagitis. PMID:941112
Physiological and molecular biochemical mechanisms of bile formation
Reshetnyak, Vasiliy Ivanovich
2013-01-01
This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract. PMID:24259965
Trautwein, E A; Forgbert, K; Rieckhoff, D; Erbersdobler, H F
1999-01-29
To examine the impact on bile acid metabolism and fecal steroid excretion as a mechanism involved in the lipid-lowering action of beta-cyclodextrin and resistant starch in comparison to cholestyramine, male golden Syrian hamsters were fed 0% (control), 8% or 12% of beta-cyclodextrin or resistant starch or 1% cholestyramine. Resistant starch, beta-cyclodextrin and cholestyramine significantly lowered plasma total cholesterol and triacylglycerol concentrations compared to control. Distinct changes in the bile acid profile of gallbladder bile were caused by resistant starch, beta-cyclodextrin and cholestyramine. While cholestyramine significantly reduced chenodeoxycholate independently of its taurine-glycine conjugation, beta-cyclodextrin and resistant starch decreased especially the percentage of taurochenodeoxycholate by -75% and -44%, respectively. As a result, the cholate:chenodeoxycholate ratio was significantly increased by 100% with beta-cyclodextrin and by 550% with cholestyramine while resistant starch revealed no effect on this ratio. beta-Cyclodextrin and resistant starch, not cholestyramine, significantly increased the glycine:taurine conjugation ratio demonstrating the predominance of glycine conjugated bile acids. Daily fecal excretion of bile acids was 4-times higher with 8% beta-cyclodextrin and 19-times with 1% cholestyramine compared to control. beta-Cyclodextrin and cholestyramine also induced a 2-fold increase in fecal neutral sterol excretion, demonstrating the sterol binding capacity of these two compounds. Resistant starch had only a modest effect on fecal bile acid excretion (80% increase) and no effect on excretion of neutral sterols, suggesting a weak interaction with intestinal steroid absorption. These data demonstrate the lipid-lowering potential of beta-cyclodextrin and resistant starch. An impaired reabsorption of circulating bile acids and intestinal cholesterol absorption leading to an increase in fecal bile acid and neutral sterol excretion is most likely the primary mechanism responsible for the lipid-lowering action of beta-cyclodextrin. In contrast, other mechanisms involving the alterations in the biliary bile acid profile or repressed hepatic lipogenesis, e.g., VLDL production, appear to be involved in the hypolipidemic effect of resistant starch.
Merrick, M V; Eastwood, M A; Anderson, J R; Ross, H M
1982-02-01
A conjugated bile acid, 23-selena-25-homotaurocholic acid (SeHCAT), labeled with the gamma emitter Se-75, has been evaluated in man. Absorption and excretion were compared with that of simultaneously administered [23-14C]cholic acid. SeHCAT is absorbed quantitatively following oral administration, secreted into the bile at the same rate as cholic acid, reabsorbed from the small intestine, and resecreted. It is not absorbed when the terminal ileum has been excised or bypassed. SeHCAT is therefore the first of a new class of radiopharmaceuticals, namely, gamma-emitting tracers of the complete cycle of the enterohepatic circulation. Its use will simplify investigation of the functional state of the terminal ileum by eliminating the need to collect and process feces.
Changes in the faecal bile acid profile in dogs fed dry food vs high content of beef: a pilot study.
Herstad, Kristin Marie Valand; Rønning, Helene Thorsen; Bakke, Anne Marie; Moe, Lars; Skancke, Ellen
2018-05-11
Dogs are fed various diets, which also include components of animal origin. In humans, a high-fat/low-fibre diet is associated with higher faecal levels of bile acids, which can influence intestinal health. It is unknown how an animal-based diet high in fat and low in fibre influences the faecal bile acid levels and intestinal health in dogs. This study investigated the effects of high intake of minced beef on the faecal bile acid profile in healthy, adult, client-owned dogs (n = 8) in a 7-week trial. Dogs were initially adapted to the same commercial dry food. Thereafter, incremental substitution of the dry food by boiled minced beef over 3 weeks resulted in a diet in which 75% of each dog's total energy requirement was provided as minced beef during week 5. Dogs were subsequently reintroduced to the dry food for the last 2 weeks of the study. The total taurine and glycine-conjugated bile acids, the primary bile acids chenodeoxycholic acid and cholic acid, and the secondary bile acids lithocholic acid, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA) were analysed, using liquid chromatography-tandem mass spectrometry. The faecal quantities of DCA were significantly higher in dogs fed the high minced beef diet. These levels reversed when dogs were reintroduced to the dry food diet. The faecal levels of UDCA and taurine-conjugated bile acids had also increased in response to the beef diet, but this was only significant when compared to the last dry food period. These results suggest that an animal-based diet with high-fat/low-fibre content can influence the faecal bile acids levels. The consequences of this for canine colonic health will require further investigation.
Development of a Bile Acid-Based Newborn Screen for Niemann-Pick C Disease
Jiang, Xuntian; Sidhu, Rohini; Mydock, Laurel; Hsu, Fong-Fu; Covey, Douglas F.; Scherrer, David E.; Earley, Brian; Gale, Sarah E.; Farhat, Nicole Y.; Porter, Forbes D.; Dietzen, Dennis J.; Orsini, Joseph J.; Berry-Kravis, Elizabeth; Zhang, Xiaokui; Reunert, Janice; Marquardt, Thorsten; Runz, Heiko; Giugliani, Roberto; Schaffer, Jean E.; Ory, Daniel S.
2017-01-01
Niemann-Pick disease type C (NPC) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, it is imperative to improve diagnostics and facilitate early intervention. We used metabolomic profiling to identify potential markers and discovered three unknown bile acids that were increased in plasma from NPC but not control subjects. The bile acids most elevated in the NPC subjects were identified as 3β,5α,6β-trihydroxycholanic acid and its glycine conjugate, both of which were shown to be metabolites of cholestane-3β,5α,6β-triol, an oxysterol elevated in NPC. A high-throughput, mass spectrometry-based method was developed and validated to measure the glycine-conjugated bile acid in dried blood spots. Analysis of dried blood spots from 4992 controls, 134 NPC carriers, and 44 NPC subjects provided 100% sensitivity and specificity in the study samples. Quantification of the bile acid in dried blood spots, therefore, provides the basis for a newborn screen for NPC that is ready for piloting in newborn screening programs. PMID:27147587
Zuo, P; Dobbins, R L; O'Connor-Semmes, R L; Young, M A
2016-08-01
A systems model was developed to describe the metabolism and disposition of ursodeoxycholic acid (UDCA) and its conjugates in healthy subjects based on pharmacokinetic (PK) data from published studies in order to study the distribution of oral UDCA and potential interactions influencing therapeutic effects upon interruption of its enterohepatic recirculation. The base model was empirically adapted to patients with primary biliary cirrhosis (PBC) based on current understanding of disease pathophysiology and clinical measurements. Simulations were performed for patients with PBC under two competing hypotheses: one for inhibition of ileal absorption of both UDCA and conjugates and the other only of conjugates. The simulations predicted distinctly different bile acid distribution patterns in plasma and bile. The UDCA model adapted to patients with PBC provides a platform to investigate a complex therapeutic drug interaction among UDCA, UDCA conjugates, and inhibition of ileal bile acid transport in this rare disease population. © 2016 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Van den Bossche, Lien; Hindryckx, Pieter; Devisscher, Lindsey; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H.; Vanden Bussche, Julie; Vanhaecke, Lynn; Van de Wiele, Tom; De Vos, Martine
2017-01-01
ABSTRACT The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes. Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila, bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD. IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered. Here, we studied the alterations in the fecal microbial abundance in colitic mice following the administration of secondary bile acids. Our results show that secondary bile acids reduce the severity of colitis and ameliorate colitis-associated fecal dysbiosis at the phylum level. This study indicates that secondary bile acids might act as a safe and effective drug for inflammatory bowel disease. PMID:28115375
Van den Bossche, Lien; Hindryckx, Pieter; Devisscher, Lindsey; Devriese, Sarah; Van Welden, Sophie; Holvoet, Tom; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Vanden Bussche, Julie; Vanhaecke, Lynn; Van de Wiele, Tom; De Vos, Martine; Laukens, Debby
2017-04-01
The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila , bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD. IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered. Here, we studied the alterations in the fecal microbial abundance in colitic mice following the administration of secondary bile acids. Our results show that secondary bile acids reduce the severity of colitis and ameliorate colitis-associated fecal dysbiosis at the phylum level. This study indicates that secondary bile acids might act as a safe and effective drug for inflammatory bowel disease. Copyright © 2017 American Society for Microbiology.
Ørntoft, Nikolaj Worm; Munk, Ole Lajord; Frisch, Kim; Ott, Peter; Keiding, Susanne; Sørensen, Michael
2017-08-01
Hepatobiliary secretion of bile acids is an important liver function. Here, we quantified the hepatic transport kinetics of conjugated bile acids using the bile acid tracer [N-methyl- 11 C]cholylsarcosine ( 11 C-CSar) and positron emission tomography (PET). Nine healthy participants and eight patients with varying degrees of cholestasis were examined with 11 C-CSar PET and measurement of arterial and hepatic venous blood concentrations of 11 C-CSar. Results are presented as median (range). The hepatic intrinsic clearance was 1.50 (1.20-1.76) ml blood/min/ml liver tissue in healthy participants and 0.46 (0.13-0.91) in patients. In healthy participants, the rate constant for secretion of 11 C-CSar from hepatocytes to bile was 0.36 (0.30-0.62)min -1 , 20 times higher than the rate constant for backflux from hepatocytes to blood (0.02, 0.005-0.07min -1 ). In the patients, rate constant for transport from hepatocyte to bile was reduced to 0.12 (0.006-0.27)min -1 , 2.3times higher than the rate constant for backflux to blood (0.05, 0.04-0.09). The increased backflux did not fully normalize exposure of the hepatocyte to bile acids as mean hepatocyte residence time of 11 C-CSar was 2.5 (1.6-3.1)min in healthy participants and 6.4 (3.1-23.7)min in patients. The rate constant for transport of 11 C-CSar from intrahepatic to extrahepatic bile was 0.057 (0.023-0.11)min -1 in healthy participants and only slightly reduced in patients 0.039 (0.017-0.066). This first in vivo quantification of individual steps involved in the hepatobiliary secretion of a conjugated bile acid in humans provided new insight into cholestatic disease. Positron emission tomography (PET) using the radiolabelled bile acid ( 11 C-CSar) enabled quantification of the individual steps of the hepatic transport of bile acids from blood to bile in man. Cholestasis reduced uptake and secretion and increased backflux to blood. These findings improve our understanding of cholestatic liver diseases and may support therapeutic decisions. The trial is registered at ClinicalTrials.gov (NCT01879735). Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Mice with chimeric livers are an improved model for human lipoprotein metabolism.
Ellis, Ewa C S; Naugler, Willscott Edward; Nauglers, Scott; Parini, Paolo; Mörk, Lisa-Mari; Jorns, Carl; Zemack, Helen; Sandblom, Anita Lövgren; Björkhem, Ingemar; Ericzon, Bo-Göran; Wilson, Elizabeth M; Strom, Stephen C; Grompe, Markus
2013-01-01
Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. FRG [ F ah(-/-) R ag2(-/-)Il2r g (-/-)]) mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL) was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA). Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.
Bi, Jie; Liu, Song; Du, Guocheng; Chen, Jian
2016-04-01
Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism. The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2. Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.
Ho, Y C; Ho, K J
1988-04-01
Our purpose is to develop a standard method for preparing the bile for beta-glucuronidase determination by removal of bile acids and conjugated bilirubin which interfere with its activity. The bile acids and conjugated bilirubin in their purified solutions and in the diluted gallbladder biles could be extracted completely with cholestyramine in powder form or tetrahexylammonium chloride (THAC) in chloroform or ethyl acetate. The enzyme was, however, partially precipitated with cholestyramine and denatured by chloroform but not by ethyl acetate. A standard procedure, therefore, includes extraction of the diluted gallbladder bile with THAC in ethyl acetate, followed by determination of the maximal velocity (Vmax) of the enzyme by a kinetic method employing phenolphthalein glucuronide as the substrate. The average Vmax of beta-glucuronidase in the 20 normal gallbladder biles was 165 +/- 86 nmol/min/ml (mean +/- SD), a 23.5-fold increase over the activity before extraction. The measured activity represented the true activity of the enzyme in the bile for recovery of activity of the enzyme added to the bile was practically complete.
Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.
2011-01-01
Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816
Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C; Mujer, Cesar V; DelVecchio, Vito G; Comerci, Diego J
2011-01-01
Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.
Synthesis and in vitro evaluation of potential sustained release prodrugs via targeting ASBT.
Zheng, Xiaowan; Polli, James E
2010-08-30
The objective was to synthesize prodrugs of niacin and ketoprofen that target the human apical sodium-dependent bile acid transporter (ASBT) and potentially allow for prolonged drug release. Each drug was conjugated to the naturally occurring bile acid chenodeoxycholic acid (CDCA) using lysine as a linker. Their inhibitory binding and transport properties were evaluated in stably transfected ASBT-MDCK monolayers, and the kinetic parameters K(i), K(t), normJ(max), and P(p) were characterized. Enzymatic stability of the conjugates was evaluated in Caco-2 and liver homogenate. Both conjugates were potent inhibitors of ASBT. For the niacin prodrug, substrate kinetic parameter K(t) was 8.22microM and normJ(max) was 0.0917. In 4h, 69.4% and 26.9% of niacin was released from 1microM and 5microM of the conjugate in Caco-2 homogenate, respectively. For the ketoprofen prodrug, K(t) was 50.8microM and normJ(max) was 1.58. In 4h, 5.94% and 3.73% of ketoprofen was released from 1microM and 5microM of the conjugate in Caco-2 homogenate, and 24.5% and 12.2% of ketoprofen was released in liver homogenate, respectively. In vitro results showed that these bile acid conjugates are potential prolonged release prodrugs with binding affinity for ASBT. Copyright 2010 Elsevier B.V. All rights reserved.
Christiaens, H; Leer, R J; Pouwels, P H; Verstraete, W
1992-12-01
The conjugated bile acid hydrolase gene from the silage isolate Lactobacillus plantarum 80 was cloned and expressed in Escherichia coli MC1061. For the screening of this hydrolase gene within the gene bank, a direct plate assay developed by Dashkevicz and Feighner (M. P. Dashkevicz and S. D. Feighner, Appl. Environ. Microbiol. 53:331-336, 1989) was adapted to the growth requirements of E. coli. Because of hydrolysis and medium acidification, hydrolase-active colonies were surrounded with big halos of precipitated, free bile acids. This phenomenon was also obtained when the gene was cloned into a multicopy shuttle vector and subsequently reintroduced into the parental Lactobacillus strain. The cbh gene and surrounding regions were characterized by nucleotide sequence analysis. The deduced amino acid sequence was shown to have 52% similarity with a penicillin V amidase from Bacillus sphaericus. Preliminary characterization of the gene product showed that it is a cholylglycine hydrolase (EC 3.5.1.24) with only slight activity against taurine conjugates. The optimum pH was between 4.7 and 5.5. Optimum temperature ranged from 30 to 45 degrees C. Southern blot analysis indicated that the cloned gene has similarity with genomic DNA of bile acid hydrolase-active Lactobacillus spp. of intestinal origin.
Marschall, Hanns-Ulrich; Wagner, Martin; Zollner, Gernot; Fickert, Peter; Diczfalusy, Ulf; Gumhold, Judith; Silbert, Dagmar; Fuchsbichler, Andrea; Benthin, Lisbet; Grundström, Rosita; Gustafsson, Ulf; Sahlin, Staffan; Einarsson, Curt; Trauner, Michael
2005-08-01
Rifampicin (RIFA) and ursodeoxycholic acid (UDCA) improve symptoms and biochemical markers of liver injury in cholestatic liver diseases by largely unknown mechanisms. We aimed to study the molecular mechanisms of action of these drugs in humans. Thirty otherwise healthy gallstone patients scheduled for cholestectomy were randomized to RIFA (600 mg/day for 1 week) or UDCA (1 g/day for 3 weeks) or no medication before surgery. Routine biochemistry, lipids, and surrogate markers for P450 activity (4beta-hydroxy cholesterol, 4beta-OH-C) and bile acid synthesis (7alpha-hydroxy-4-cholesten-3-one, C-4) were measured in serum. Bile acids were analyzed in serum, urine, and bile. A wedge liver biopsy specimen was taken to study expression of hepatobiliary ABC transporters as well as detoxification enzymes and regulatory transcription factors. RIFA enhanced bile acid detoxification as well as bilirubin conjugation and excretion as reflected by enhanced expression of CYP3A4, UGT1A1, and MRP2. These molecular effects were paralleled by decreased bilirubin and deoxycholic acid concentrations in serum and decreased lithocholic and deoxycholic acid concentrations in bile. UDCA on the other hand stimulated the expression of BSEP, MDR3, and MRP4. UDCA became the predominant bile acid after UDCA treatment and lowered the biliary cholesterol saturation index. RIFA enhances bile acid detoxification as well as bilirubin conjugation and export systems, whereas UDCA stimulates the expression of transporters for canalicular and basolateral bile acid export as well as the canalicular phospholipid flippase. These independent but complementary effects may justify a combination of both agents for the treatment of cholestatic liver diseases.
In Vitro Modeling of Bile Acid Processing by the Human Fecal Microbiota.
Martin, Glynn; Kolida, Sofia; Marchesi, Julian R; Want, Elizabeth; Sidaway, James E; Swann, Jonathan R
2018-01-01
Bile acids, the products of concerted host and gut bacterial metabolism, have important signaling functions within the mammalian metabolic system and a key role in digestion. Given the complexity of the mega-variate bacterial community residing in the gastrointestinal tract, studying associations between individual bacterial genera and bile acid processing remains a challenge. Here, we present a novel in vitro approach to determine the bacterial genera associated with the metabolism of different primary bile acids and their potential to contribute to inter-individual variation in this processing. Anaerobic, pH-controlled batch cultures were inoculated with human fecal microbiota and treated with individual conjugated primary bile acids (500 μg/ml) to serve as the sole substrate for 24 h. Samples were collected throughout the experiment (0, 5, 10, and 24 h) and the bacterial composition was determined by 16S rRNA gene sequencing and the bile acid signatures were characterized using a targeted ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) approach. Data fusion techniques were used to identify statistical bacterial-metabolic linkages. An increase in gut bacteria associated bile acids was observed over 24 h with variation in the rate of bile acid metabolism across the volunteers ( n = 7). Correlation analysis identified a significant association between the Gemmiger genus and the deconjugation of glycine conjugated bile acids while the deconjugation of taurocholic acid was associated with bacteria from the Eubacterium and Ruminococcus genera. A positive correlation between Dorea and deoxycholic acid production suggest a potential role for this genus in cholic acid dehydroxylation. A slower deconjugation of taurocholic acid was observed in individuals with a greater abundance of Parasutterella and Akkermansia . This work demonstrates the utility of integrating compositional (metataxonomics) and functional (metabonomics) systems biology approaches, coupled to in vitro model systems, to study the biochemical capabilities of bacteria within complex ecosystems. Characterizing the dynamic interactions between the gut microbiota and the bile acid pool enables a greater understanding of how variation in the gut microbiota influences host bile acid signatures, their associated functions and their implications for health.
Hagey, Lee R.; Kakiyama, Genta; Muto, Akina; Iida, Takashi; Mushiake, Kumiko; Goto, Takaaki; Mano, Nariyasu; Goto, Junichi; Oliveira, Cleida A.; Hofmann, Alan F.
2009-01-01
The chemical structures of the three major bile acids present in the gallbladder bile of the Red-winged tinamou (Rhynchotus rufescens), an early evolving, ground-living bird related to ratites, were determined. Bile acids were isolated by preparative reversed-phase HPLC. Two of the compounds were identified as the taurine N-acylamidates of (25R)-3α,7α-dihydroxy-5β-cholestan-27-oic acid (constituting 22% of biliary bile acids) and (25R)-3α,7α,12α-trihydroxy-5β-cholestan-27-oic acid (constituting 51%). The remaining compound, constituting 21% of biliary bile acids, was an unknown C27 bile acid. Its structure was elucidated by LC/ESI-MS/MS and NMR and shown to be the taurine conjugate of (25R)-1β,3α,7α-trihydroxy-5β-cholestan-27-oic acid, a C27 trihydroxy bile acid not previously reported. Although C27 bile acids with a 1β-hydroxyl group have been identified as trace bile acids in the alligator, this is the first report of a major biliary C27 bile acid possessing a 1β-hydroxyl group. PMID:19011113
Preparation of radioactive iodinated cholylhistamine for use in the radioimmunoassay of cholic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinberg, P.B.; Kinkade, J.M. Jr.; Collins, D.C.
1977-11-01
A major handicap in the development of simple and accurate radioimmunoassay procedures for bile acids has been the lack of a radioactive standard of high specific activity. To provide such a compound, we first synthesized cholylhistamine using the carbodiimide reaction. The hypothesized structure was confirmed by elemental analysis, thin-layer chromatography, infrared and mass spectral analysis. The cholylhistamine was then iodinated with /sup 125/I, using the choloramine-T method. The /sup 125/I-cholylhistamine was bound by antisera raised against a cholic acid-bovine serum albumin conjugate. This procedure should prove useful in preparing radioactive conjugates for all of the bile acids.
Hofmann, Alan F.; Hagey, Lee R.
2014-01-01
During the last 80 years there have been extraordinary advances in our knowledge of the chemistry and biology of bile acids. We present here a brief history of the major achievements as we perceive them. Bernal, a physicist, determined the X-ray structure of cholesterol crystals, and his data together with the vast chemical studies of Wieland and Windaus enabled the correct structure of the steroid nucleus to be deduced. Today, C24 and C27 bile acids together with C27 bile alcohols constitute most of the bile acid “family”. Patterns of bile acid hydroxylation and conjugation are summarized. Bile acid measurement encompasses the techniques of GC, HPLC, and MS, as well as enzymatic, bioluminescent, and competitive binding methods. The enterohepatic circulation of bile acids results from vectorial transport of bile acids by the ileal enterocyte and hepatocyte; the key transporters have been cloned. Bile acids are amphipathic, self-associate in solution, and form mixed micelles with polar lipids, phosphatidylcholine in bile, and fatty acids in intestinal content during triglyceride digestion. The rise and decline of dissolution of cholesterol gallstones by the ingestion of 3,7-dihydroxy bile acids is chronicled. Scientists from throughout the world have contributed to these achievements. PMID:24838141
Bile acid metabolism and signaling in cholestasis, inflammation and cancer
Apte, Udayan
2015-01-01
Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid soluble vitamins. Bile acid synthesis, transport and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration and carcinogenesis. PMID:26233910
Mitamura, Kuniko; Sakai, Toshihiro; Nakai, Risa; Wakamiya, Tateaki; Iida, Takashi; Hofmann, Alan F; Ikegawa, Shigeo
2011-06-01
Previous work from this laboratory has reported the chemical synthesis of N-acetylcysteine (NAC) conjugates of natural bile acids (BAs) and shown that such novel conjugates can be formed in vivo in rats to which NAC has been administered. The subsequent fate of such novel conjugates is not known. One possible biotransformation is sulfation, a major pathway for BAs N-acylamidates in patients with cholestatic liver disease. Here, we report the chemical synthesis of the 3-sulfates of the S-acyl NAC conjugates of five natural BAs (cholic, chenodeoxycholic, deoxycholic, ursodeoxycholic, and lithocholic). We also measured the sulfation of N-acetylcysteine-natural bile acid (BA-NAC) conjugates when they were incubated with a rat liver cytosolic fraction. The chemical structures of the BA-NAC 3-sulfates were confirmed by proton nuclear magnetic resonance, as well as by means of electrospray ionization-linear ion trap mass spectrometry with negative-ion detection. Upon collision-induced dissociation of singly and doubly charged deprotonated molecules, structurally informative product ions were observed. Using a triple-stage quadrupole instrument, selected reaction monitoring analyses by monitoring characteristic transition ions allowed the achievement of a highly sensitive and specific assay. When BA-NACs were incubated with a rat liver cytosolic fraction to which 3'-phosphoadenosine 5'-phosphosulfate was added, sulfation occurred, but the dominant reaction was hydrolysis of the S-acyl linkage to form the unconjugated BAs. Subsequent sulfation occurred at C-3 on the unconjugated BAs that had been formed from the BA-NACs. Such sulfation was proportional to the hydrophobicity of the unconjugated bile acid. Thus, NAC conjugates of BAs as well as their C-3 sulfates if formed in vivo are rapidly hydrolyzed by cytosolic enzymes.
Rohawi, Nur Syakila; Ramasamy, Kalavathy; Agatonovic-Kustrin, Snezana; Lim, Siong Meng
2018-06-05
A quantitative assay using high-performance thin-layer chromatography (HPTLC) was developed to investigate bile salt hydrolase (BSH) activity in Pediococcus pentosaceus LAB6 and Lactobacillus plantarum LAB12 probiotic bacteria isolated from Malaysian fermented food. Lactic acid bacteria (LAB) were cultured in de Man Rogosa and Sharpe (MRS) broth containing 1 mmol/L of sodium-based glyco- and tauro-conjugated bile salts for 24 h. The cultures were centrifuged and the resultant cell free supernatant was subjected to chromatographic separation on a HPTLC plate. Conjugated bile salts were quantified by densitometric scans at 550 nm and results were compared to digital image analysis of chromatographic plates after derivatisation with anisaldehyde/sulfuric acid. Standard curves for bile salts determination with both methods show good linearity with high coefficient of determination (R 2 ) between 0.97 and 0.99. Method validation indicates good sensitivity with low relative standard deviation (RSD) (<10%), low limits of detection (LOD) of 0.4 versus 0.2 μg and limit of quantification (LOQ) of 1.4 versus 0.7 μg, for densitometric vs digital image analysis method, respectively. The bile salt hydrolase activity was found to be higher against glyco- than tauro-conjugated bile salts (LAB6; 100% vs >38%: LAB12; 100% vs >75%). The present findings strongly show that quantitative analysis via digitally-enhanced HPTLC offers a rapid quantitative analysis for deconjugation of bile salts by probiotics. Copyright © 2018. Published by Elsevier B.V.
Nuclear receptors in bile acid metabolism
Li, Tiangang; Chiang, John Y. L.
2013-01-01
Bile acids are signaling molecules that activate nuclear receptors, such as farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, and vitamin D receptor, and play a critical role in the regulation of lipid, glucose, energy, and drug metabolism. These xenobiotic/endobiotic-sensing nuclear receptors regulate phase I oxidation, phase II conjugation, and phase III transport in bile acid and drug metabolism in the digestive system. Integration of bile acid metabolism with drug metabolism controls absorption, transport, and metabolism of nutrients and drugs to maintain metabolic homeostasis and also protects against liver injury, inflammation, and related metabolic diseases, such as nonalcoholic fatty liver disease, diabetes, and obesity. Bile-acid–based drugs targeting nuclear receptors are in clinical trials for treating cholestatic liver diseases and fatty liver disease. PMID:23330546
Hofmann, Alan F; Hagey, Lee R
2014-08-01
During the last 80 years there have been extraordinary advances in our knowledge of the chemistry and biology of bile acids. We present here a brief history of the major achievements as we perceive them. Bernal, a physicist, determined the X-ray structure of cholesterol crystals, and his data together with the vast chemical studies of Wieland and Windaus enabled the correct structure of the steroid nucleus to be deduced. Today, C24 and C27 bile acids together with C27 bile alcohols constitute most of the bile acid "family". Patterns of bile acid hydroxylation and conjugation are summarized. Bile acid measurement encompasses the techniques of GC, HPLC, and MS, as well as enzymatic, bioluminescent, and competitive binding methods. The enterohepatic circulation of bile acids results from vectorial transport of bile acids by the ileal enterocyte and hepatocyte; the key transporters have been cloned. Bile acids are amphipathic, self-associate in solution, and form mixed micelles with polar lipids, phosphatidylcholine in bile, and fatty acids in intestinal content during triglyceride digestion. The rise and decline of dissolution of cholesterol gallstones by the ingestion of 3,7-dihydroxy bile acids is chronicled. Scientists from throughout the world have contributed to these achievements. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.
Fang, Nianbai; Yu, Shanggong; Adams, Sean H.; Ronis, Martin J. J.; Badger, Thomas M.
2016-01-01
We present a method using a combination of enzymatic deconjugation and targeted LC-multiple reaction monitoring (MRM)-MS analysis for analyzing all common bile acids (BAs) in piglet urine, and in particular, for detecting conjugated BAs either in the absence of their standards, or when present in low concentrations. Initially, before enzymatic deconjugation, 19 unconjugated BAs (FBAs) were detected where the total concentration of the detected FBAs was 9.90 μmol/l. Sixty-seven conjugated BAs were identified by LC-MRM-MS analysis before and after enzymatic deconjugation. Four enzymatic assays were used to deconjugate the BA conjugates. FBAs in urine after cholylglycine hydrolase/sulfatase treatment were 33.40 μmol/l, indicating the urinary BAs were comprised of 29.75% FBAs and 70.25% conjugated BAs in single and multiple conjugated forms. For the conjugates in single form, released FBAs from cholylglycine hydrolase deconjugation indicated that the conjugates with amino acids were 14.54% of urinary BAs, 16.27% glycosidic conjugates were found by β-glucuronidase treatment, and sulfatase with glucuronidase inhibitor treatment liberated FBAs that constituted 16.67% of urinary BAs. Notably, chenodeoxycholic acid (CDCA) was initially detected only in trace amounts in urine, but was found at significant levels after the enzymatic assays above. These results support that CDCA is a precursor of γ-muricholic acid in BA biosynthesis in piglets. PMID:27538824
Liver-selective glucocorticoid antagonists: a novel treatment for type 2 diabetes.
von Geldern, Thomas W; Tu, Noah; Kym, Philip R; Link, James T; Jae, Hwan-Soo; Lai, Chunqiu; Apelqvist, Theresa; Rhonnstad, Patrik; Hagberg, Lars; Koehler, Konrad; Grynfarb, Marlena; Goos-Nilsson, Annika; Sandberg, Johnny; Osterlund, Marie; Barkhem, Tomas; Höglund, Marie; Wang, Jiahong; Fung, Steven; Wilcox, Denise; Nguyen, Phong; Jakob, Clarissa; Hutchins, Charles; Färnegårdh, Mathias; Kauppi, Björn; Ohman, Lars; Jacobson, Peer B
2004-08-12
Hepatic blockade of glucocorticoid receptors (GR) suppresses glucose production and thus decreases circulating glucose levels, but systemic glucocorticoid antagonism can produce adrenal insufficiency and other undesirable side effects. These hepatic and systemic responses might be dissected, leading to liver-selective pharmacology, when a GR antagonist is linked to a bile acid in an appropriate manner. Bile acid conjugation can be accomplished with a minimal loss of binding affinity for GR. The resultant conjugates remain potent in cell-based functional assays. A novel in vivo assay has been developed to simultaneously evaluate both hepatic and systemic GR blockade; this assay has been used to optimize the nature and site of the linker functionality, as well as the choice of the GR antagonist and the bile acid. This optimization led to the identification of A-348441, which reduces glucose levels and improves lipid profiles in an animal model of diabetes. Copyright 2004 American Chemical Society
Huang, Peng; Zhao, Meifen; Meng, Fanbin; Sun, Tao; He, Chunxu; Chen, Jingyu; Zhang, Jiali; Huang, Jiapeng; Ge, Chunlin
2014-11-04
To explore the concentration differences of eight conjugated bile acids between patients of cholesterol polyps and adenomatous polyps and determine the differential diagnosis markers for polypoid lesions of gallbladder (PLG). During the period of March 2013 to November, 18 cholesterol polyps patients, 9 adenomatous polyps ones and 20 simple gallstone disease ones were enrolled. High performance liquid chromatography with ultraviolet detection was used to test 8 conjugated bile acids in sera. A total of 8 conjugated bile acids were completely dissociated within 10 minutes and the assay was liner in the range of 3.91 to 500.00 mg/L. The correlation coefficients for linear regression were from 0.995 to 0.999 and the detection limits ranged from 3.91 to 7.81 mg/L. The serum level of glycocholic acid (GCA) in adenomatous polyps group (3.48 ± 1.66) mg/L was significantly higher than that in cholesterol polyps group ((2.16 ± 0.71) mg/L, q = 5.182, P = 0.001) and control group ((2.15 ± 0.45) mg/L, q = 5.313, P = 0.001). The serum level of glycochenodeoxycholic acid (GCDCA) in adenomatous polyps group (12.67 ± 1.74) mg/L was significantly higher than that in cholesterol polyps group ((10.53 ± 3.04) mg/L, q = 3.253, P = 0.026) and control group ((10.72 ± 1.58) mg/L, q = 3.015, P = 0.038). The serum level of taurochenodeoxycholic acid (TCDCA) in adenomatous polyps group ((6.79 ± 2.90) mg/L) was significantly higher than that in cholesterol polyps group ((4.47 ± 2.35) mg/L, q = 3.412, P = 0.020) and control group ((4.72 ± 2.11) mg/L q = 3.091, P = 0.034). The serum levels of GCA, GCDCA and TCDCA in adenomatous polyps patients are higher than those in cholesterol polyps counterparts. And these markers may aid the differential diagnosis of PLG.
Nasmyth, D G; Johnston, D; Williams, N S; King, R F; Burkinshaw, L; Brooks, K
1989-03-01
Bile acid absorption was investigated using 75Se Taurohomocholate (SeHCAT) in controls and patients who had undergone total colectomy with either conventional ileostomy or pouch-anal anastomosis for ulcerative colitis or adenomatous polyposis. Whole-body retention of SeHCAT after 168 hours was greater in the controls than the patients who had undergone colectomy (P less than .05). Retention of SeHCAT did not differ significantly between patients with an ileostomy and patients with pouch-anal anastomosis, but patients with an ileostomy and ileal resection of more than 20 cm retained less SeHCAT than patients with a pouch-anal anastomosis (P less than .01). Analysis of fecal bile acids from ileostomies and pouches showed that bacterial metabolism of primary conjugated bile acids was greater in patients with a pouch. It was concluded that bile acid absorption was not significantly impaired by construction of a pouch compared with conventional ileostomy, but bacterial metabolism of bile acids was greater in the pouches.
Fang, Nianbai; Yu, Shanggong; Adams, Sean H; Ronis, Martin J J; Badger, Thomas M
2016-10-01
We present a method using a combination of enzymatic deconjugation and targeted LC-multiple reaction monitoring (MRM)-MS analysis for analyzing all common bile acids (BAs) in piglet urine, and in particular, for detecting conjugated BAs either in the absence of their standards, or when present in low concentrations. Initially, before enzymatic deconjugation, 19 unconjugated BAs (FBAs) were detected where the total concentration of the detected FBAs was 9.90 μmol/l. Sixty-seven conjugated BAs were identified by LC-MRM-MS analysis before and after enzymatic deconjugation. Four enzymatic assays were used to deconjugate the BA conjugates. FBAs in urine after cholylglycine hydrolase/sulfatase treatment were 33.40 μmol/l, indicating the urinary BAs were comprised of 29.75% FBAs and 70.25% conjugated BAs in single and multiple conjugated forms. For the conjugates in single form, released FBAs from cholylglycine hydrolase deconjugation indicated that the conjugates with amino acids were 14.54% of urinary BAs, 16.27% glycosidic conjugates were found by β-glucuronidase treatment, and sulfatase with glucuronidase inhibitor treatment liberated FBAs that constituted 16.67% of urinary BAs. Notably, chenodeoxycholic acid (CDCA) was initially detected only in trace amounts in urine, but was found at significant levels after the enzymatic assays above. These results support that CDCA is a precursor of γ-muricholic acid in BA biosynthesis in piglets. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.
Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis.
Ferslew, Brian C; Xie, Guoxiang; Johnston, Curtis K; Su, Mingming; Stewart, Paul W; Jia, Wei; Brouwer, Kim L R; Barritt, A Sidney
2015-11-01
The prevalence of nonalcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) is increasing at an alarming rate. The role of bile acids in the development and progression of NAFLD to NASH and cirrhosis is poorly understood. This study aimed to quantify the bile acid metabolome in healthy subjects and patients with non-cirrhotic NASH under fasting conditions and after a standardized meal. Liquid chromatography tandem mass spectroscopy was used to quantify 30 serum and 16 urinary bile acids from 15 healthy volunteers and 7 patients with biopsy-confirmed NASH. Bile acid concentrations were measured at two fasting and four post-prandial time points following a high-fat meal to induce gallbladder contraction and bile acid reabsorption from the intestine. Patients with NASH had significantly higher total serum bile acid concentrations than healthy subjects under fasting conditions (2.2- to 2.4-fold increase in NASH; NASH 2595-3549 µM and healthy 1171-1458 µM) and at all post-prandial time points (1.7- to 2.2-fold increase in NASH; NASH 4444-5898 µM and healthy 2634-2829 µM). These changes were driven by increased taurine- and glycine-conjugated primary and secondary bile acids. Patients with NASH exhibited greater variability in their fasting and post-prandial bile acid profile. Results indicate that patients with NASH have higher fasting and post-prandial exposure to bile acids, including the more hydrophobic and cytotoxic secondary species. Increased bile acid exposure may be involved in liver injury and the pathogenesis of NAFLD and NASH.
[Substrate specificities of bile salt hydrolase 1 and its mutants from Lactobacillus salivarius].
Bi, Jie; Fang, Fang; Qiu, Yuying; Yang, Qingli; Chen, Jian
2014-03-01
In order to analyze the correlation between critical residues in the catalytic centre of BSH and the enzyme substrate specificity, seven mutants of Lactobacillus salivarius bile salt hydrolase (BSH1) were constructed by using the Escherichia coli pET-20b(+) gene expression system, rational design and site-directed mutagenesis. These BSH1 mutants exhibited different hydrolytic activities against various conjugated bile salts through substrate specificities comparison. Among the residues being tested, Cys2 and Thr264 were deduced as key sites for BSH1 to catalyze taurocholic acid and glycocholic acid, respectively. Moreover, Cys2 and Thr264 were important for keeping the catalytic activity of BSH1. The high conservative Cys2 was not the only active site, other mutant amino acid sites were possibly involved in substrate binding. These mutant residues might influence the space and shape of the substrate-binding pockets or the channel size for substrate passing through and entering active site of BSH1, thus, the hydrolytic activity of BSH1 was changed to different conjugated bile salt.
Westermann, Martin; Lambeck, Sandro; Lupp, Amelie; Rudiger, Alain; Dyson, Alex; Carré, Jane E.; Kortgen, Andreas; Krafft, Christoph; Popp, Jürgen; Sponholz, Christoph; Fuhrmann, Valentin; Hilger, Ingrid; Claus, Ralf A.; Riedemann, Niels C.; Wetzker, Reinhard; Singer, Mervyn; Trauner, Michael; Bauer, Michael
2012-01-01
Background Hepatic dysfunction and jaundice are traditionally viewed as late features of sepsis and portend poor outcomes. We hypothesized that changes in liver function occur early in the onset of sepsis, yet pass undetected by standard laboratory tests. Methods and Findings In a long-term rat model of faecal peritonitis, biotransformation and hepatobiliary transport were impaired, depending on subsequent disease severity, as early as 6 h after peritoneal contamination. Phosphatidylinositol-3-kinase (PI3K) signalling was simultaneously induced at this time point. At 15 h there was hepatocellular accumulation of bilirubin, bile acids, and xenobiotics, with disturbed bile acid conjugation and drug metabolism. Cholestasis was preceded by disruption of the bile acid and organic anion transport machinery at the canalicular pole. Inhibitors of PI3K partially prevented cytokine-induced loss of villi in cultured HepG2 cells. Notably, mice lacking the PI3Kγ gene were protected against cholestasis and impaired bile acid conjugation. This was partially confirmed by an increase in plasma bile acids (e.g., chenodeoxycholic acid [CDCA] and taurodeoxycholic acid [TDCA]) observed in 48 patients on the day severe sepsis was diagnosed; unlike bilirubin (area under the receiver-operating curve: 0.59), these bile acids predicted 28-d mortality with high sensitivity and specificity (area under the receiver-operating curve: CDCA: 0.77; TDCA: 0.72; CDCA+TDCA: 0.87). Conclusions Liver dysfunction is an early and commonplace event in the rat model of sepsis studied here; PI3K signalling seems to play a crucial role. All aspects of hepatic biotransformation are affected, with severity relating to subsequent prognosis. Detected changes significantly precede conventional markers and are reflected by early alterations in plasma bile acids. These observations carry important implications for the diagnosis of liver dysfunction and pharmacotherapy in the critically ill. Further clinical work is necessary to extend these concepts into clinical practice. Please see later in the article for the Editors' Summary PMID:23152722
James, Laura; Yan, Ke; Pence, Lisa; Simpson, Pippa; Bhattacharyya, Sudeepa; Gill, Pritmohinder; Letzig, Lynda; Kearns, Gregory; Beger, Richard
2015-01-01
Metabolomics approaches have enabled the study of new mechanisms of liver injury in experimental models of drug toxicity. Disruption of bile acid homeostasis is a known mechanism of drug induced liver injury. The relationship of individual bile acids to indicators of oxidative drug metabolism (acetaminophen protein adducts) and liver injury was examined in children with acetaminophen overdose, hospitalized children with low dose exposure to acetaminophen, and children with no recent exposure to acetaminophen. Nine bile acids were quantified through targeted metabolomic analysis in the serum samples of the three groups. Bile acids were compared to serum levels of acetaminophen protein adducts and alanine aminotransferase. Glycodeoxycholic acid, taurodeoxycholic acid, and glycochenodeoxycholic acid were significantly increased in children with acetaminophen overdose compared to healthy controls. Among patients with acetaminophen overdose, bile acids were higher in subjects with acetaminophen protein adduct values > 1.0 nmol/mL and modest correlations were noted for three bile acids and acetaminophen protein adducts as follows: taurodeoxycholic acid (R=0.604; p<0.001), glycodeoxycholic acid (R=0.581; p<0.001), and glycochenodeoxycholic acid (R=0.571; p<0.001). Variability in bile acids was greater among hospitalized children receiving low doses of acetaminophen than in healthy children with no recent acetaminophen exposure. Compared to bile acids, acetaminophen protein adducts more accurately discriminated among children with acetaminophen overdose, children with low dose exposure to acetaminophen, and healthy control subjects. In children with acetaminophen overdose, elevations of conjugated bile acids were associated with specific indicators of acetaminophen metabolism and non-specific indicators of liver injury.
A Surgical Model in Male Obese Rats Uncovers Protective Effects of Bile Acids Post-Bariatric Surgery
Setchell, Kenneth DR; Kirby, Michelle; Myronovych, Andriy; Ryan, Karen K.; Ibrahim, Samar H.; Berger, Jose; Smith, Kathi; Toure, Mouhamadoul; Woods, Stephen C.; Seeley, Randy J.
2013-01-01
Bariatric surgery elevates serum bile acids. Conjugated bile acid administration, such as tauroursodeoxycholic acid (TUDCA), improves insulin sensitivity, whereas short-circuiting bile acid circulation through ileal interposition surgery in rats raises TUDCA levels. We hypothesized that bariatric surgery outcomes could be recapitulated by short circuiting the normal enterohepatic bile circulation. We established a model wherein male obese rats underwent either bile diversion (BD) or Sham (SH) surgery. The BD group had a catheter inserted into the common bile duct and its distal end anchored into the middistal jejunum for 4–5 weeks. Glucose tolerance, insulin and glucagon-like peptide-1 (GLP-1) response, hepatic steatosis, and endoplasmic reticulum (ER) stress were measured. Rats post-BD lost significantly more weight than the SH rats. BD rats gained less fat mass after surgery. BD rats had improved glucose tolerance, increased higher postprandial glucagon-like peptide-1 response and serum bile acids but less liver steatosis. Serum bile acid levels including TUDCA concentrations were higher in BD compared to SH pair-fed rats. Fecal bile acid levels were not different. Liver ER stress (C/EBP homologous protein mRNA and pJNK protein) was decreased in BD rats. Bile acid gavage (TUDCA/ursodeoxycholic acid [UDCA]) in diet-induced obese rats, elevated serum TUDCA and concomitantly reduced hepatic steatosis and ER stress (C/EBP homologous protein mRNA). These data demonstrate the ability of alterations in bile acids to recapitulate important metabolic improvements seen after bariatric surgery. Further, our work establishes a model for focused study of bile acids in the context of bariatric surgery that may lead to the identification of therapeutics for metabolic disease. PMID:23592746
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lake, April D.; Novak, Petr; Shipkova, Petia
2013-04-15
Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BAmore » profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids are observed in NASH. ► Hepatic bile acid synthesis shifts toward the alternative pathway in NASH.« less
Zhang, Yuanyuan; LaCerte, Carl; Kansra, Sanjay; Jackson, Jonathan P; Brouwer, Kenneth R; Edwards, Jeffrey E
2017-12-01
Obeticholic acid (OCA) is a semisynthetic farnesoid X receptor (FXR) agonist, an analogue of chenodeoxycholic acid (CDCA) which is indicated for the treatment of primary biliary cholangitis (PBC) in combination with ursodeoxycholic acid (UDCA). OCA efficiently inhibits bile acid synthesis and promotes bile acid efflux via activating FXR-mediated mechanisms in a physiologically relevant in vitro cell system, Sandwich-cultured Transporter Certified ™ human primary hepatocytes (SCHH). The study herein evaluated the effects of UDCA alone or in combination with OCA in SCHH. UDCA (≤100 μmol/L) alone did not inhibit CYP7A1 mRNA, and thus, no reduction in the endogenous bile acid pool observed. UDCA ≤100 μmol/L concomitantly administered with 0.1 μmol/L OCA had no effect on bile acid synthesis beyond what was observed with OCA alone. Furthermore, this study evaluated human Caco-2 cells (clone C2BBe1) as in vitro intestinal models. Glycine conjugate of OCA increased mRNA levels of FXR target genes in Caco-2 cells, FGF-19, SHP, OSTα/β, and IBABP, but not ASBT, in a concentration-dependent manner, while glycine conjugate of UDCA had no effect on the expression of these genes. The results suggested that UDCA ≤100 μmol/L did not activate FXR in human primary hepatocytes or intestinal cell line Caco-2. Thus, co-administration of UDCA with OCA did not affect OCA-dependent pharmacological effects. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.
Huijghebaert, S M; Hofmann, A F
1986-07-01
The influence of the chemical structure of the amino acid (or amino acid analogue) moiety of a number of synthetic cholyl amidates on deconjugation by cholylglycine hydrolase from Clostridium perfringens was studied in vitro at pH 5.4. Conjugates with alkyl homologues of glycine were hydrolyzed more slowly as the number of methylene units increased (cholylglycine greater than cholyl-beta-alanine greater than cholyl-gamma-aminobutyrate). In contrast, for conjugates with the alkyl homologues of taurine, cholylaminopropane sulfonate was hydrolyzed slightly faster than cholyltaurine, whereas cholylaminomethane sulfonate was hydrolyzed much more slowly. When glycine was replaced by other neutral alpha-amino acids, rates of hydrolysis decreased with increasing steric hindrance near the amide bond (cholyl-L-alpha-alanine much much greater than cholyl-L-leucine much greater than cholyl-L-valine greater than cholyl-L-tyrosine much greater than cholyl-D-valine). Conjugation with acidic or basic amino acids also greatly reduced the rates of hydrolysis, as cholyl-L-aspartate, cholyl-L-cysteate, cholyl-L-lysine, and cholyl-L-histidine were all hydrolyzed at a rate less than one-tenth that of cholylglycine. Methyl esterification of the carboxylic group of the amino acid moiety reduced the hydrolysis, but such substrates (cholylglycine methyl ester and cholyl-beta-alanine methyl ester) were completely hydrolyzed after overnight incubation with excess of enzyme. In contrast, cholyl-cholamine was not hydrolyzed at all, suggesting that a negative charge at the end of the side chain is required for optimal hydrolysis. Despite the lack of specificity for the amino acid moiety, a bile salt moiety was required, as the cholylglycine hydrolase did not display general carboxypeptidase activity for other non-bile acid substrates containing a terminal amide bond: hippuryl-L-phenylalanine and hippuryl-L-arginine, as well as oleyltaurine and oleylglycine, were not hydrolyzed. Fecal bacterial cultures from healthy volunteers also hydrolyzed cholyl-L-valine and cholyl-D-valine more slowly than cholylglycine, suggesting that cholylglycine hydrolase from Clostridium perfringens has a substrate specificity similar to that of the deconjugating enzymes of the fecal flora. The results indicate that modification of the position of the amide bond, introduction of steric hindrance near the amide bond, or loss of a negative charge on the terminal group of the amino acid moiety of the bile acid conjugate greatly reduces the rate of bacterial deconjugation in vitro when compared to that of the naturally occurring glycine and taurine conjugates.
Peng, Can; Tian, Jixin; Lv, Mengying; Huang, Yin; Tian, Yuan; Zhang, Zunjian
2014-02-01
Artificial Calculus Bovis is a major substitute in clinical treatment for Niuhuang, a widely used, efficacious but rare traditional Chinese medicine. However, its chemical structures and the physicochemical properties of its components are complicated, which causes difficulty in establishing a set of effective and comprehensive methods for its identification and quality control. In this study, a simple, sensitive and reliable liquid chromatography-tandem mass spectrometry method was successfully developed and validated for the simultaneous determination of bilirubin, taurine and major bile acids (including six unconjugated bile acids, two glycine-conjugated bile acids and three taurine-conjugated bile acids) in artificial Calculus Bovis using a Zorbax SB-C18 column with a gradient elution of methanol and 10 mmol/L ammonium acetate in aqueous solution (adjusted to pH 3.0 with formic acid). The mass spectra were obtained in the negative ion mode using dehydrocholic acid as the internal standard. The content of each analyte in artificial Calculus Bovis was determined by monitoring specific ion pairs in the selected reaction monitoring mode. All analytes demonstrated perfect linearity (r(2) > 0.994) in a wide dynamic range, and 10 batches of samples from different sources were further analyzed. This study provided a comprehensive method for the quality control of artificial Calculus Bovis.
Doden, Heidi; Sallam, Lina A; Devendran, Saravanan; Ly, Lindsey; Doden, Greta; Daniel, Steven L; Alves, João M P; Ridlon, Jason M
2018-05-15
Bile acids are important cholesterol-derived nutrient signaling hormones, synthesized in the liver, that act as detergents to solubilize dietary lipids. Bile acid 7α-dehydroxylating gut bacteria generate the toxic bile acids deoxycholic acid and lithocholic acid from host bile acids. The ability of these bacteria to remove the 7-hydroxyl group is partially dependent on 7α-hydroxysteroid dehydrogenase (HSDH) activity, which reduces 7-oxo-bile acids generated by other gut bacteria. 3α-HSDH has an important enzymatic activity in the bile acid 7α-dehydroxylation pathway. 12α-HSDH activity has been reported for the low-activity bile acid 7α-dehydroxylating bacterium Clostridium leptum ; however, this activity has not been reported for high-activity bile acid 7α-dehydroxylating bacteria, such as Clostridium scindens , Clostridium hylemonae , and Clostridium hiranonis Here, we demonstrate that these strains express bile acid 12α-HSDH. The recombinant enzymes were characterized from each species and shown to preferentially reduce 12-oxolithocholic acid to deoxycholic acid, with low activity against 12-oxochenodeoxycholic acid and reduced activity when bile acids were conjugated to taurine or glycine. Phylogenetic analysis suggests that 12α-HSDH is widespread among Firmicutes , Actinobacteria in the Coriobacteriaceae family, and human gut Archaea IMPORTANCE 12α-HSDH activity has been established in the medically important bile acid 7α-dehydroxylating bacteria C. scindens , C. hiranonis , and C. hylemonae Experiments with recombinant 12α-HSDHs from these strains are consistent with culture-based experiments that show a robust preference for 12-oxolithocholic acid over 12-oxochenodeoxycholic acid. Phylogenetic analysis identified novel members of the gut microbiome encoding 12α-HSDH. Future reengineering of 12α-HSDH enzymes to preferentially oxidize cholic acid may provide a means to industrially produce the therapeutic bile acid ursodeoxycholic acid. In addition, a cholic acid-specific 12α-HSDH expressed in the gut may be useful for the reduction in deoxycholic acid concentration, a bile acid implicated in cancers of the gastrointestinal (GI) tract. Copyright © 2018 American Society for Microbiology.
The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases
Nagahashi, Masayuki; Yuza, Kizuki; Hirose, Yuki; Nakajima, Masato; Ramanathan, Rajesh; Hait, Nitai C.; Hylemon, Phillip B.; Zhou, Huiping; Takabe, Kazuaki; Wakai, Toshifumi
2016-01-01
Based on research carried out over the last decade, it has become increasingly evident that bile acids act not only as detergents, but also as important signaling molecules that exert various biological effects via activation of specific nuclear receptors and cell signaling pathways. Bile acids also regulate the expression of numerous genes encoding enzymes and proteins involved in the synthesis and metabolism of bile acids, glucose, fatty acids, and lipoproteins, as well as energy metabolism. Receptors activated by bile acids include, farnesoid X receptor α, pregnane X receptor, vitamin D receptor, and G protein-coupled receptors, TGR5, muscarinic receptor 2, and sphingosine-1-phosphate receptor (S1PR)2. The ligand of S1PR2, sphingosine-1-phosphate (S1P), is a bioactive lipid mediator that regulates various physiological and pathophysiological cellular processes. We have recently reported that conjugated bile acids, via S1PR2, activate and upregulate nuclear sphingosine kinase 2, increase nuclear S1P, and induce genes encoding enzymes and transporters involved in lipid and sterol metabolism in the liver. Here, we discuss the role of bile acids and S1P signaling in the regulation of hepatic lipid metabolism and in hepatobiliary diseases. PMID:27459945
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasmyth, D.G.; Johnston, D.; Williams, N.S.
Bile acid absorption was investigated using /sup 75/Se Taurohomocholate (SeHCAT) in controls and patients who had undergone total colectomy with either conventional ileostomy or pouch-anal anastomosis for ulcerative colitis or adenomatous polyposis. Whole-body retention of SeHCAT after 168 hours was greater in the controls than the patients who had undergone colectomy (P less than .05). Retention of SeHCAT did not differ significantly between patients with an ileostomy and patients with pouch-anal anastomosis, but patients with an ileostomy and ileal resection of more than 20 cm retained less SeHCAT than patients with a pouch-anal anastomosis (P less than .01). Analysis ofmore » fecal bile acids from ileostomies and pouches showed that bacterial metabolism of primary conjugated bile acids was greater in patients with a pouch. It was concluded that bile acid absorption was not significantly impaired by construction of a pouch compared with conventional ileostomy, but bacterial metabolism of bile acids was greater in the pouches.« less
Sabordo, L; Sallustio, B C; Evans, A M; Nation, R L
2000-10-01
Glucuronidation of carboxylic acid compounds results in the formation of electrophilic acyl glucuronides. Because of their polarity, carrier-mediated hepatic transport systems play an important role in determining both intra- and extrahepatic exposure to these reactive conjugates. We have previously shown that the hepatic membrane transport of 1-O-gemfibrozil-beta-D-glucuronide (GG) is carrier-mediated and inhibited by the organic anion dibromosulfophthalein. In this study, we examined the influence of 200 microM acetaminophen, acetaminophen glucuronide, and clofibric acid on the disposition of GG (3 microM) in the recirculating isolated perfused rat liver preparation. GG was taken up by the liver, excreted into bile, and hydrolyzed within the liver to gemfibrozil, which appeared in perfusate but not in bile. Mean +/- S. D. hepatic clearance, apparent intrinsic clearance, hepatic extraction ratio, and biliary excretion half-life of GG were 10.4 +/- 1.4 ml/min, 94.1 +/- 17.9 ml/min, 0.346 +/- 0.046, and 30.9 +/- 4.9 min, respectively, and approximately 73% of GG was excreted into bile. At the termination of the experiment (t = 90 min), the ratio of GG concentrations in perfusate, liver, and bile was 1:35:3136. Acetaminophen and acetaminophen glucuronide had no effect on the hepatic disposition of GG, suggesting relatively low affinities of acetaminophen conjugates for hepatic transport systems or the involvement of multiple transport systems for glucuronide conjugates. In contrast, clofibric acid increased the hepatic clearance, extraction ratio, and apparent intrinsic clearance of GG (P <.05) while decreasing its biliary excretion half-life (P <.05), suggesting an interaction between GG and hepatically generated clofibric acid glucuronide at the level of hepatic transport. However, the transporter protein(s) involved remains to be identified.
Singh, Namrata; Bhattacharyya, Debasish
2016-04-15
An ether extract of nine different bacterial metabolites in combination with two solvent extract (ether followed by ethanol) of bile lipids from ox gall bladder is used as an immune stimulator drug. Over the years bile acids are discussed regarding their anti-oxidant and lipid peroxidation properties. Since some of the bile acids are known to be potent antioxidants, presence of similar activity in the solvent extract of ox bile lipid was investigated using TLC and reverse phase HPLC systems. Fractions from HPLC were analyzed with mass spectrometry using electrospray ionization. The presence of twelve different bile acids along with other substances in small proportions including fatty acids, sulfate conjugates and bile pigments were confirmed. The twelve separated peaks had similar retention times as those of tauroursodeoxycholic acid, glycoursodeoxycholic acid, taurocholic acid, glycocholic acid, glycochenodeoxycholic acid, taurochenodeoxycholic acid, taurodeoxycholic acid, cholic acid, ursodeoxycholic acid, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid. Subsequently, all fractions were tested for their anti-oxidative property on HepG2 cells exposed to H2O2 that served as an oxidative injury model. Four fluorescent dyes H2DCF DA, MitoSOX red, Amplex red and DAF-2 DA were used for estimation of reactive radicals in the HepG2 cells. Among the separated bile acids, tauroursodeoxycholic acid, glycoursodeoxycholic acid and ursodeoxycholic acid prevented the HepG2 cells from H2O2-induced oxidative stress. Copyright © 2015 Elsevier B.V. All rights reserved.
Sanyakamdhorn, S; Agudelo, D; Tajmir-Riahi, H A
2017-08-01
In this review, the binding and loading efficacy (LE) of anticancer drugs doxorubicin (DOX), tamoxifen (Tam) and its metabolites 4-hydroxytamoxifen (4-Hydroxytam) and endoxifen (Endox) with several synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3), and polyamidoamine (PAMAM-G4) dendrimers were compared in aqueous solution at pH 7.4. The results of multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling of conjugated drug-polymer were examined. Structural analysis showed that drug-polymer conjugation occurs mainly via H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4 > mPEG-PAMAM-G3 > PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Doxorubicin shows stronger affinity for PAMAM-G4 than tamoxifen and its metabolites. The drug LE was 30-55%. TEM showed significant changes in the carrier morphology upon drug encapsulation. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with DOX forming more stable polymer conjugates.
Geenes, Victoria; Lövgren-Sandblom, Anita; Benthin, Lisbet; Lawrance, Dominic; Chambers, Jenny; Gurung, Vinita; Thornton, Jim; Chappell, Lucy; Khan, Erum; Dixon, Peter; Marschall, Hanns-Ulrich; Williamson, Catherine
2014-01-01
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA). This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18), UDCA-treated ICP (n = 46) and uncomplicated pregnancy (n = 15) cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = <0.0001 and <0.05, respectively), predominantly due to increased levels of conjugated cholic and chenodeoxycholic acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = <0.0001), thereby reducing the feto-maternal transplacental gradient. UDCA-treatment does not cause a clinically important increase in lithocholic acid (LCA) concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels. PMID:24421907
Geenes, Victoria; Lövgren-Sandblom, Anita; Benthin, Lisbet; Lawrance, Dominic; Chambers, Jenny; Gurung, Vinita; Thornton, Jim; Chappell, Lucy; Khan, Erum; Dixon, Peter; Marschall, Hanns-Ulrich; Williamson, Catherine
2014-01-01
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder associated with an increased risk of adverse fetal outcomes. It is characterised by raised maternal serum bile acids, which are believed to cause the adverse outcomes. ICP is commonly treated with ursodeoxycholic acid (UDCA). This study aimed to determine the fetal and maternal bile acid profiles in normal and ICP pregnancies, and to examine the effect of UDCA treatment. Matched maternal and umbilical cord serum samples were collected from untreated ICP (n = 18), UDCA-treated ICP (n = 46) and uncomplicated pregnancy (n = 15) cases at the time of delivery. Nineteen individual bile acids were measured using HPLC-MS/MS. Maternal and fetal serum bile acids are significantly raised in ICP compared with normal pregnancy (p = <0.0001 and <0.05, respectively), predominantly due to increased levels of conjugated cholic and chenodeoxycholic acid. There are no differences between the umbilical cord artery and cord vein levels of the major bile acid species. The feto-maternal gradient of bile acids is reversed in ICP. Treatment with UDCA significantly reduces serum bile acids in the maternal compartment (p = <0.0001), thereby reducing the feto-maternal transplacental gradient. UDCA-treatment does not cause a clinically important increase in lithocholic acid (LCA) concentrations. ICP is associated with significant quantitative and qualitative changes in the maternal and fetal bile acid pools. Treatment with UDCA reduces the level of bile acids in both compartments and reverses the qualitative changes. We have not found evidence to support the suggestion that UDCA treatment increases fetal LCA concentrations to deleterious levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, G.S.; Merrick, M.V.; Monks, R.
Four selenium-labeled free bile acids and four selenium-labeled conjugated bile acids, labeled with Se-75 at the C-19, C-22, C-23, or C-24 position, have been synthesized and their absorption and excretion compared with that of (24-/sup 14/C)cholic acid, following both oral and intravenous administration. All but one of the compounds is absorbed and excreted in bile to a significant extent. One compound, SeHCAT, has been selected for particular study. It is quantitatively absorbed from the gut at the same rate as cholic acid, and both are excreted into the bile at the same rate. It remains almost entirely confined to themore » enterohepatic circulation (the gut, liver, and biliary tree) and excretion is exclusively fecal. Such a compound offers the possibility of a simple, novel, and aesthetically acceptalbe method investigating small-bowel disease.« less
Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolbright, Benjamin L.; Dorko, Kenneth; Antoine, Daniel J.
Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with,more » or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury compared to rodents. • Primary human hepatocytes largely undergo necrosis in response to BA toxicity. • Cholestatic liver injury in vivo is predominantly necrotic with minor apoptosis. • Rodent models of bile acid toxicity may not recapitulate the injury in man.« less
Clinical Study of Ursodeoxycholic Acid in Barrett’s Esophagus Patients
Banerjee, Bhaskar; Shaheen, Nicholas J.; Martinez, Jessica A.; Hsu, Chiu-Hsieh; Trowers, Eugene; Gibson, Blake A.; Della’Zanna, Gary; Richmond, Ellen; Chow, H-H. Sherry
2016-01-01
Prior research strongly implicates gastric acid and bile acids, two major components of the gastroesophageal refluxate, in the development of Barrett’s esophagus (BE) and its pathogenesis. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, has been shown to protect esophageal cells against oxidative stress induced by cytotoxic bile acids. We conducted a pilot clinical study to evaluate the clinical activity of UDCA in patients with BE. Twenty-nine BE patients received UDCA treatment at a daily dose of 13–15 mg/kg/day for six months. The clinical activity of UDCA was assessed by evaluating changes in gastric bile acid composition and markers of oxidative DNA damage (8-hydroxydeoxyguanosine, 8OHdG), cell proliferation (Ki67), and apoptosis (cleaved caspase 3, CC3) in BE epithelium. The bile acid concentrations in gastric fluid were measured by liquid chromatography-mass spectrometry. At baseline, UDCA (sum of unchanged and glycine/taurine conjugates) accounted for 18.2% of total gastric bile acids. Post UDCA intervention, UDCA increased significantly to account for 93.39% of total gastric bile acids (p<0.0001). The expression of markers of oxidative DNA damage, cell proliferation, and apoptosis was assessed in the BE biopsies by immunohistochemistry. The selected tissue biomarkers were unchanged after 6 months of UDCA intervention. We conclude that high dose UDCA supplementation for six months resulted in favorable changes in gastric bile acid composition but did not modulate selected markers of oxidative DNA damage, cell proliferation, and apoptosis in the BE epithelium. PMID:26908564
Dhaundiyal, Ankit; Jena, Sunil K; Samal, Sanjaya K; Sonvane, Bhavin; Chand, Mahesh; Sangamwar, Abhay T
2016-12-01
This study was designed to demonstrate the potential of novel α-lipoic acid-stearylamine (ALA-SA) conjugate-based solid lipid nanoparticles in modulating the pharmacokinetics and hepatotoxicity of tamoxifen (TMX). α-lipoic acid-stearylamine bioconjugate was synthesized via carbodiimide chemistry and used as a lipid moiety for the generation of TMX-loaded solid lipid nanoparticles (TMX-SLNs). TMX-SLNs were prepared by solvent emulsification-diffusion method and optimized for maximum drug loading using rotatable central composite design. The optimized TMX-SLNs were stabilized using 10% w/w trehalose as cryoprotectant. In addition, pharmacokinetics and hepatotoxicity of freeze-dried TMX-SLNs were also evaluated in Sprague Dawley rats. Initial characterization with transmission electron microscopy revealed spherical morphology with smooth surface having an average particle size of 261.08 ± 2.13 nm. The observed entrapment efficiency was 40.73 ± 2.83%. In-vitro release study showed TMX release was slow and pH dependent. Pharmacokinetic study revealed a 1.59-fold increase in relative bioavailability as compared to TMX suspension. A decrease in hepatotoxicity of TMX is evidenced by the histopathological evaluation of liver tissues. α-lipoic acid-stearylamine conjugate-based SLNs have a great potential in enhancing the oral bioavailability of poorly soluble drugs like TMX. Moreover, this ALA-SA nanoparticulate system could be of significant value in long-term anticancer therapy with least side effects. © 2016 Royal Pharmaceutical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jazrawi, R.P.; Ferraris, R.; Bridges, C.
The apparent fractional turnover rate of the gamma-labeled bile acid analogue 75-selenohomocholic acid-taurine (75-SeHCAT) was assessed from decline in radioactivity over the gallbladder area on 4 successive days using a gamma-camera, and was compared in the same subjects with the fractional turnover rate of the corresponding natural bile acid, cholic acid-taurine, labeled with 14C ((14C)CAT) using the classical Lindstedt technique. Very similar results were obtained in 5 healthy individuals (coefficient of variation 4.8%, medians 0.35 and 0.34, respectively). By contrast, the fractional deconjugation rate assessed from zonal scanning of glycine- and taurine-conjugated bile acids on thin-layer chromatography was much lessmore » for 75-SeHCAT than for (14C)CAT (0.02 and 0.13, respectively; p less than 0.05). The fractional rate for deconjugation plus dehydroxylation was also determined by zonal scanning, and gave lower values for 75-SeHCAT than for (14C)CAT (0.02 and 0.12, respectively; p less than 0.05). There was a striking similarity between the fractional rate for deconjugation alone and that for deconjugation plus dehydroxylation for both bile acids in individual samples (r = 0.999, p less than 0.001), suggesting that these two processes might occur simultaneously and probably involve the same bacteria. We conclude that our scintiscanning technique provides an accurate, noninvasive method of measuring fractional turnover rate of a bile acid in humans, and that the finding that 75SeHCAT remains conjugated with taurine during enterohepatic recycling means that absorption should be specific for the ileal active transport site, thus rendering it an ideal substance for assessing ileal function.« less
Chae, J P; Valeriano, V D; Kim, G-B; Kang, D-K
2013-01-01
To clone, characterize and compare the bile salt hydrolase (BSH) genes of Lactobacillus johnsonii PF01. The BSH genes were amplified by polymerase chain reaction (PCR) using specific oligonucleotide primers, and the products were inserted into the pET21b expression vector. Escherichia coli BLR (DE3) cells were transformed with pET21b vectors containing the BSH genes and induced using 0·1 mmol l(-1) isopropylthiolgalactopyranoside. The overexpressed BSH enzymes were purified using a nickel-nitrilotriacetic acid (Ni(2+) -NTA) agarose column and their activities characterized. BSH A hydrolysed tauro-conjugated bile salts optimally at pH 5·0 and 55°C, whereas BSH C hydrolysed glyco-conjugated bile salts optimally at pH 5·0 and 70°C. The enzymes had no preferential activities towards a specific cholyl moiety. BSH enzymes vary in their substrate specificities and characteristics to broaden its activity. Despite the lack of conservation in their putative substrate-binding sites, these remain functional through motif conservation. This is to our knowledge the first report of isolation of BSH enzymes from a single strain, showing hydrolase activity towards either glyco-conjugated or tauro-conjugated bile salts. Future structural homology studies and site-directed mutagenesis of sites associated with substrate specificity may elucidate specificities of BSH enzymes. © 2012 The Society for Applied Microbiology.
Wu, Songyan; Zhang, Yaqing; Zhang, Zunjian; Song, Rui
2017-10-01
Emodin is the representative form of rhubarb, which is widely used in traditional Chinese medicine for the treatment of purgative, anti-inflammatory, antioxidative and antiviral, etc. Previous reports demonstrated that emodin glucuronide was the major metabolite in plasma. Owing to the extensive conjugation reactions of polyphenols, the aim of this study was to identify the metabolites of emodin in rat bile and urine. Neutral loss and precursor ion scan methods of triple-quadrupole mass spectrometer revealed 13 conjugated metabolites in rat bile and 22 metabolites in rat urine, which included four phase I and 18 phase II metabolites. The major metabolites in rat biosamples were emodin glucuronoconjugates. Moreover, rhein monoglucuronide, chrysophanol monoglucuronide and rhein sulfate were proposed for the first time after oral administration of emodin. Overall, liquid chromatography hybrid triple-quadrupole mass spectrometry analysis leads to the discovery of several novel emodin metabolites in rat bile and urine and underscores that conjugated with glucuronic acid is the main metabolic pathway. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Eun Sook; Kim, Gabin; Shin, Ho Jung
A liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS)-based metabolomics approach was employed to identify endogenous metabolites as potential biomarkers for thioacetamide (TAA)-induced liver injury. TAA (10 and 30 mg/kg), a well-known hepatotoxic agent, was administered daily to male Sprague–Dawley (SD) rats for 28 days. We then conducted untargeted analyses of endogenous serum and liver metabolites. Partial least squares discriminant analysis (PLS-DA) was performed on serum and liver samples to evaluate metabolites associated with TAA-induced perturbation. TAA administration resulted in altered levels of bile acids, acyl carnitines, and phospholipids in serum and in the liver. We subsequently demonstrated and confirmed the occurrence ofmore » compromised bile acid homeostasis. TAA treatment significantly increased serum levels of conjugated bile acids in a dose-dependent manner, which correlated well with toxicity. However, hepatic levels of these metabolites were not substantially changed. Gene expression profiling showed that the hepatic mRNA levels of Ntcp, Bsep, and Oatp1b2 were significantly suppressed, whereas those of basolateral Mrp3 and Mrp4 were increased. Decreased levels of Ntcp, Oatp1b2, and Ostα proteins in the liver were confirmed by western blot analysis. These results suggest that serum bile acids might be increased due to the inhibition of bile acid enterohepatic circulation rather than increased endogenous bile acid synthesis. Moreover, serum bile acids are a good indicator of TAA-induced hepatotoxicity. - Highlights: • Endogenous metabolic profiles were assessed in rat after treatment of thioacetamide. • It significantly increased the levels of bile acids in serum but not in the liver. • Expression of the genes related to bile acid secretion and reuptake was decreased. • Increased serum bile acids result from block of enterohepatic circulation of bile acids.« less
Wang, Renxue; Liu, Lin; Sheps, Jonathan A; Forrest, Dana; Hofmann, Alan F; Hagey, Lee R; Ling, Victor
2013-08-15
The bile salt export pump (BSEP), encoded by the abcb11 gene, is the major canalicular transporter of bile acids from the hepatocyte. BSEP malfunction in humans causes bile acid retention and progressive liver injury, ultimately leading to end-stage liver failure. The natural, hydrophilic, bile acid ursodeoxycholic acid (UDCA) is efficacious in the treatment of cholestatic conditions, such as primary biliary cirrhosis and cholestasis of pregnancy. The beneficial effects of UDCA include promoting bile flow, reducing hepatic inflammation, preventing apoptosis, and maintaining mitochondrial integrity in hepatocytes. However, the role of BSEP in mediating UDCA efficacy is not known. Here, we used abcb11 knockout mice (abcb11-/-) to test the effects of acute and chronic UDCA administration on biliary secretion, bile acid composition, liver histology, and liver gene expression. Acutely infused UDCA, or its taurine conjugate (TUDC), was taken up by the liver but retained, with negligible biliary output, in abcb11-/- mice. Feeding UDCA to abcb11-/- mice led to weight loss, retention of bile acids, elevated liver enzymes, and histological damage to the liver. Semiquantitative RT-PCR showed that genes encoding Mdr1a and Mdr1b (canalicular) as well as Mrp4 (basolateral) transporters were upregulated in abcb11-/- mice. We concluded that infusion of UDCA and TUDC failed to induce bile flow in abcb11-/- mice. UDCA fed to abcb11-/- mice caused liver damage and the appearance of biliary tetra- and penta-hydroxy bile acids. Supplementation with UDCA in the absence of Bsep caused adverse effects in abcb11-/- mice.
Enright, Elaine F; Joyce, Susan A; Gahan, Cormac G M; Griffin, Brendan T
2017-04-03
In recent years, the gut microbiome has gained increasing appreciation as a determinant of the health status of the human host. Bile salts that are secreted into the intestine may be biotransformed by enzymes produced by the gut bacteria. To date, bile acid research at the host-microbe interface has primarily been directed toward effects on host metabolism. The aim of this work was to investigate the effect of changes in gut microbial bile acid metabolism on the solubilization capacity of bile salt micelles and consequently intraluminal drug solubility. First, the impact of bile acid metabolism, mediated in vivo by the microbial enzymes bile salt hydrolase (BSH) and 7α-dehydroxylase, on drug solubility was assessed by comparing the solubilization capacity of (a) conjugated vs deconjugated and (b) primary vs secondary bile salts. A series of poorly water-soluble drugs (PWSDs) were selected as model solutes on the basis of an increased tendency to associate with bile micelles. Subsequently, PWSD solubility and dissolution was evaluated in conventional biorelevant simulated intestinal fluid containing host-derived bile acids, as well as in media modified to contain microbial bile acid metabolites. The findings suggest that deconjugation of the bile acid steroidal core, as dictated by BSH activity, influences micellar solubilization capacity for some PWSDs; however, these differences appear to be relatively minor. In contrast, the extent of bile acid hydroxylation, regulated by microbial 7α-dehydroxylase, was found to significantly affect the solubilization capacity of bile salt micelles for all nine drugs studied (p < 0.05). Subsequent investigations in biorelevant media containing either the trihydroxy bile salt sodium taurocholate (TCA) or the dihydroxy bile salt sodium taurodeoxycholate (TDCA) revealed altered drug solubility and dissolution. Observed differences in biorelevant media appeared to be both drug- and amphiphile (bile salt/lecithin) concentration-dependent. Our studies herein indicate that bile acid modifications occurring at the host-microbe interface could lead to alterations in the capacity of intestinal bile salt micelles to solubilize drugs, providing impetus to consider the gut microbiota in the drug absorption process. In the clinical setting, disruption of the gut microbial ecosystem, through disease or antibiotic treatment, could transform the bile acid pool with potential implications for drug absorption and bioavailability.
Palmela, Inês; Correia, Leonor; Silva, Rui F. M.; Sasaki, Hiroyuki; Kim, Kwang S.; Brites, Dora; Brito, Maria A.
2015-01-01
Ursodeoxycholic acid and its main conjugate glycoursodeoxycholic acid are bile acids with neuroprotective properties. Our previous studies demonstrated their anti-apoptotic, anti-inflammatory, and antioxidant properties in neural cells exposed to elevated levels of unconjugated bilirubin (UCB) as in severe jaundice. In a simplified model of the blood-brain barrier, formed by confluent monolayers of a cell line of human brain microvascular endothelial cells, UCB has shown to induce caspase-3 activation and cell death, as well as interleukin-6 release and a loss of blood-brain barrier integrity. Here, we tested the preventive and restorative effects of these bile acids regarding the disruption of blood-brain barrier properties by UCB in in vitro conditions mimicking severe neonatal hyperbilirubinemia and using the same experimental blood-brain barrier model. Both bile acids reduced the apoptotic cell death induced by UCB, but only glycoursodeoxycholic acid significantly counteracted caspase-3 activation. Bile acids also prevented the upregulation of interleukin-6 mRNA, whereas only ursodeoxycholic acid abrogated cytokine release. Regarding barrier integrity, only ursodeoxycholic acid abrogated UCB-induced barrier permeability. Better protective effects were obtained by bile acid pre-treatment, but a strong efficacy was still observed by their addition after UCB treatment. Finally, both bile acids showed ability to cross confluent monolayers of human brain microvascular endothelial cells in a time-dependent manner. Collectively, data disclose a therapeutic time-window for preventive and restorative effects of ursodeoxycholic acid and glycoursodeoxycholic acid against UCB-induced blood-brain barrier disruption and damage to human brain microvascular endothelial cells. PMID:25821432
UV-induced solvent free synthesis of truxillic acid-bile acid conjugates
NASA Astrophysics Data System (ADS)
Koivukorpi, Juha; Kolehmainen, Erkki
2009-07-01
The solvent free UV-induced [2 + 2] intermolecular cycloaddition of two molecules of 3α-cinnamic acid ester of methyl lithocholate produced in 99% yield of α- and ɛ-truxillic acid-bis(methyl lithocholate) isomers, which possess two structurally different potential binding sites. A prerequisite for this effective solid state reaction is a proper self-assembled crystal structure of the starting conjugate crystallized from acetonitrile. The crystallization of cinnamic acid ester of methyl lithocholate from acetonitrile produces two different crystalline forms (polymorphs), which is the reason for the solid state formation of two isomers of truxillic acid-bis(methyl lithocholate).
Graham, D Y; Osato, M S
2000-01-01
Helicobacter pylori (H. pylori) growth is inhibited by bile yet it can grow in the duodenal bulb and cause ulcer disease. The aim of this study was to test the effect of bile on H. pylori viability and growth and to determine whether acidification of bile reduces its inhibitory activity. Fresh human bile was collected at laparotomy and tested for inhibitory activity of H. pylori using broth dilution assays. Six clinical isolates of H. pylori obtained from patients with duodenal ulcer were used for each experiment. The bile was diluted from 1:3 to 1:192; its inhibitory effect on H. pylori was tested before and after acidification, treatment with cholestyramine, or chloroform. Bile was acidified to a pH of 2-6, centrifuged at 8000 rpm for 20 min to remove precipitated bile acids, and the supernatant pH readjusted. Controls included BHI broth without bile (positive control) and bile that was acidified to pH 2 and neutralized without centrifugation. Human bile inhibited H. pylori growth in a dose dependent manner. Growth of all strains was supported for all strains only at a dilution of 1:192. In contrast, after acidification to pH < or =5 and centrifugation to remove precipitated bile acids, all strains grew at a bile dilution of 1:12. Neither chloroform extraction of lipids, nor acidification without centrifugation removed the inhibitory action of bile. In contrast, cholestyramine sequestration of bile acids completely removed all inhibitory activity. The duodenal acid load may be the critical factor to explain the ability of H. pylori to colonize the duodenal bulb by precipitating glycine-conjugated bile salts. The combination of a high duodenal acid load and H. pylori infection is likely the critical event in the pathogenesis of H. pylori-related duodenal ulcer disease.
Clinical Study of Ursodeoxycholic Acid in Barrett's Esophagus Patients.
Banerjee, Bhaskar; Shaheen, Nicholas J; Martinez, Jessica A; Hsu, Chiu-Hsieh; Trowers, Eugene; Gibson, Blake A; Della'Zanna, Gary; Richmond, Ellen; Chow, H-H Sherry
2016-07-01
Prior research strongly implicates gastric acid and bile acids, two major components of the gastroesophageal refluxate, in the development of Barrett's esophagus and its pathogenesis. Ursodeoxycholic acid (UDCA), a hydrophilic bile acid, has been shown to protect esophageal cells against oxidative stress induced by cytotoxic bile acids. We conducted a pilot clinical study to evaluate the clinical activity of UDCA in patients with Barrett's esophagus. Twenty-nine patients with Barrett's esophagus received UDCA treatment at a daily dose of 13 to 15 mg/kg/day for 6 months. The clinical activity of UDCA was assessed by evaluating changes in gastric bile acid composition and markers of oxidative DNA damage (8-hydroxydeoxyguanosine), cell proliferation (Ki67), and apoptosis (cleaved caspase-3) in Barrett's esophagus epithelium. The bile acid concentrations in gastric fluid were measured by liquid chromatography/mass spectrometry. At baseline, UDCA (sum of unchanged and glycine/taurine conjugates) accounted for 18.2% of total gastric bile acids. After UDCA intervention, UDCA increased significantly to account for 93.4% of total gastric bile acids (P < 0.0001). The expression of markers of oxidative DNA damage, cell proliferation, and apoptosis was assessed in the Barrett's esophagus biopsies by IHC. The selected tissue biomarkers were unchanged after 6 months of UDCA intervention. We conclude that high-dose UDCA supplementation for 6 months resulted in favorable changes in gastric bile acid composition but did not modulate selected markers of oxidative DNA damage, cell proliferation, and apoptosis in the Barrett's esophagus epithelium. Cancer Prev Res; 9(7); 528-33. ©2016 AACRSee related article by Brian J. Reid, p. 512. ©2016 American Association for Cancer Research.
Guar gum and bile: effects on postprandial gallbladder contraction and on serum bile acids in man.
Hansen, W E; Maurer, H; Vollmar, J; Bräuning, C
1983-08-01
In a randomized cross-over study, 10 healthy volunteers received a fiber-depleted liquid mixed meal alone and, exactly 7 days apart, a combination with 15 g guar gum. Addition of the dietary fiber inhibited emptying of the gall bladder after 30 min to 7 (5-10) ml instead of 4 (3-6) ml (p less than 0.05) and delayed its refilling. Also the postprandial increase in conjugated serum bile acids was prevented by guar gum. The maximal postprandial blood glucose 30 min after ingestion of the meal was reduced from 120 (117-135) mg/dl to 110 (105-119) mg/dl (p less than or equal to 0.05) by guar gum. Serum insulin levels were unaffected by guar gum.--Our data suggest that the addition of guar gum to meals affects enterohepatic circulation of bile acids as well as digestion of carbohydrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, G.S.; Merrick, M.V.; Monks, R.
Four selenium-labeled free bile acids and four selenium-labeled conjugated bile acids, labeled with Se-75 at the C-19, C-22, C-23, or C-24 position, have been synthesized and their absorption and excretion compared with that of (24-14C)cholic acid, following both oral and intravenous administration. All but one of the compounds is absorbed and excreted in bile to a significant extent. One compound, SeHCAT, has been selected for particular study. It is quantitatively absorbed from the gut at the same rate as cholic acid, and both are excreted into the bile at the same rate. It remains almost entirely confined to the enterohepaticmore » circulation (the gut, liver, and biliary tree) and excretion is exclusively fecal. Whole-body retention, measured for 41 days, and tissue distributions suggest that the absorbed radiation dose would be small compared with that in many established tests. Such a compound offers the possibility of a simple, novel, and aesthetically acceptable method of investigating small-bowel disease. It therefore merits further investigation.« less
Sardella, Roccaldo; Gioiello, Antimo; Ianni, Federica; Venturoni, Francesco; Natalini, Benedetto
2012-10-15
The employment of the flow N-acyl amidation of natural bile acids (BAs) required the in-line connection with suitable analytical tools enabling the determination of reaction yields as well as of the purity grade of the synthesized glyco- and tauro-conjugated derivatives. In this framework, a unique HPLC method was successfully established and validated for ursodeoxycholic (UDCA), chenodeoxycholic (CDCA), deoxycholic (DCA) and cholic (CA) acids, as well as the corresponding glyco- and tauro-conjugated forms. Because of the shared absence of relevant chromophoric moieties in the sample structure, an evaporative light scattering detector (ELSD) was profitably utilized for the analysis of such steroidal species. For each of the investigated compounds, all the runs were contemporarily carried out on the acidic free and the two relative conjugated variants. The different ELSD response of the free and the corresponding conjugated BAs, imposed to build-up separate calibration curves. In all the cases, very good precision (RSD% values ranging from 1.04 to 6.40% in the long-period) and accuracy (Recovery% values ranging from 96.03 to 111.14% in the long-period) values along with appreciably low LOD and LOQ values (the former being within the range 1-27 ng mL(-1) and the latter within the range 2-44 ng mL(-1)) turned out. Copyright © 2012 Elsevier B.V. All rights reserved.
Asai, Saori; Kusada, Mio; Watanabe, Suzuyo; Kawashima, Takuji; Nakamura, Tadashi; Shimada, Masaya; Goto, Tsuyoshi; Nagaoka, Satoshi
2014-01-01
Royal jelly (RJ) intake lowers serum cholesterol levels in animals and humans, but the active component in RJ that lowers serum cholesterol level and its molecular mechanism are unclear. In this study, we set out to identify the bile acid-binding protein contained in RJ, because dietary bile acid-binding proteins including soybean protein and its peptide are effective in ameliorating hypercholesterolemia. Using a cholic acid-conjugated column, we separated some bile acid-binding proteins from RJ and identified the major RJ protein 1 (MRJP1), MRJP2, and MRJP3 as novel bile acid-binding proteins from RJ, based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Purified MRJP1, which is the most abundant protein of the bile acid-binding proteins in RJ, exhibited taurocholate-binding activity in vitro. The micellar solubility of cholesterol was significantly decreased in the presence of MRJP1 compared with casein in vitro. Liver bile acids levels were significantly increased, and cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein tended to increase by MRJP1 feeding compared with the control. CYP7A1 mRNA and protein levels were significantly increased by MRJP1 tryptic hydrolysate treatment compared with that of casein tryptic hydrolysate in hepatocytes. MRJP1 hypocholesterolemic effect has been investigated in rats. The cholesterol-lowering action induced by MRJP1 occurs because MRJP1 interacts with bile acids induces a significant increase in fecal bile acids excretion and a tendency to increase in fecal cholesterol excretion and also enhances the hepatic cholesterol catabolism. We have identified, for the first time, a novel hypocholesterolemic protein, MRJP1, in RJ. Interestingly, MRJP1 exhibits greater hypocholesterolemic activity than the medicine β-sitosterol in rats. PMID:25144734
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMark, B.R.; Klein, P.D.
1981-01-01
The ammonia chemical ionization mass spectra of 28 methyl ester acetate derivatives of bile acids and related compounds have been determined by gas-liquid chromatography-mass spectrometry. Advantages of ammonia ionization over the previously studied isobutane ionization include a 130 to 270% enhancement in the sensitivity of base peak monitoring, and direct determination of molecular weight from the base peak (M + NH/sub 4//sup +/) in the mass spectrum of any of the derivatives. Minor ions in the ammonia spectra also allow selective detection of 3-keto compounds and can indicate unsaturation or double bond conjugation in the molecule. The significance of thesemore » studies for the detection and quantitation of bile acids is discussed. 2 tables.« less
Molecular cloning and expression of rat liver bile acid CoA ligase.
Falany, Charles N; Xie, Xiaowei; Wheeler, James B; Wang, Jin; Smith, Michelle; He, Dongning; Barnes, Stephen
2002-12-01
Bile acid CoA ligase (BAL) is responsible for catalyzing the first step in the conjugation of bile acids with amino acids. Sequencing of putative rat liver BAL cDNAs identified a cDNA (rBAL-1) possessing a 51 nucleotide 5'-untranslated region, an open reading frame of 2,070 bases encoding a 690 aa protein with a molecular mass of 75,960 Da, and a 138 nucleotide 3'-nontranslated region followed by a poly(A) tail. Identity of the cDNA was established by: 1) the rBAL-1 open reading frame encoded peptides obtained by chemical sequencing of the purified rBAL protein; 2) expressed rBAL-1 protein comigrated with purified rBAL during SDS-polyacrylamide gel electrophoresis; and 3) rBAL-1 expressed in insect Sf9 cells had enzymatic properties that were comparable to the enzyme isolated from rat liver. Evidence for a relationship between fatty acid and bile acid metabolism is suggested by specific inhibition of rBAL-1 by cis-unsaturated fatty acids and its high homology to a human very long chain fatty acid CoA ligase. In summary, these results indicate that the cDNA for rat liver BAL has been isolated and expression of the rBAL cDNA in insect Sf9 cells results in a catalytically active enzyme capable of utilizing several different bile acids as substrates.
Bile acids: regulation of apoptosis by ursodeoxycholic acid
Amaral, Joana D.; Viana, Ricardo J. S.; Ramalho, Rita M.; Steer, Clifford J.; Rodrigues, Cecília M. P.
2009-01-01
Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases. PMID:19417220
Bile acids: regulation of apoptosis by ursodeoxycholic acid.
Amaral, Joana D; Viana, Ricardo J S; Ramalho, Rita M; Steer, Clifford J; Rodrigues, Cecília M P
2009-09-01
Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases.
Chesney, Russell W; Hedberg, Gail E; Rogers, Quinton R; Dierenfeld, Ellen S; Hollis, Bruce E; Derocher, Andrew; Andersen, Magnus
2009-01-01
Rickets and fractures have been reported in captive polar bears. Taurine (TAU) is key for the conjugation of ursodeoxycholic acid (UDCA), a bile acid unique to bears. Since TAU-conjugated UDCA optimizes fat and fat-soluble vitamin absorption, we asked if TAU deficiency could cause vitamin D malabsorption and lead to metabolic bone disease in captive polar bears. We measured TAU levels in plasma (P) and whole blood (WB) from captive and free-ranging cubs and adults, and vitamin D3 and TAU concentrations in milk samples from lactating sows. Plasma and WB TAU levels were significantly higher in cubs vs captive and free-ranging adult bears. Vitamin D in polar bear milk was 649.2 +/- 569.2 IU/L, similar to that found in formula. The amount of TAU in polar bear milk is 3166.4 +/- 771 nmol/ml, 26-fold higher than in formula. Levels of vitamin D in bear milk and formula as well as in plasma do not indicate classical nutritional vitamin D deficiency. Higher dietary intake of TAU by free-ranging cubs may influence bile acid conjugation and improve vitamin D absorption.
Wegner, Katrin; Just, Sarah; Gau, Laura; Mueller, Henrike; Gérard, Philippe; Lepage, Patricia; Clavel, Thomas; Rohn, Sascha
2017-02-01
Bile acids are important signaling molecules that regulate cholesterol, glucose, and energy homoeostasis and have thus been implicated in the development of metabolic disorders. Their bioavailability is strongly modulated by the gut microbiota, which contributes to generation of complex individual-specific bile acid profiles. Hence, it is important to have accurate methods at hand for precise measurement of these important metabolites. Here, a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous identification and quantitation of primary and secondary bile acids as well as their taurine and glycine conjugates was developed and validated. Applicability of the method was demonstrated for mammalian tissues, biofluids, and cell culture media. The analytical approach mainly consists of a simple and rapid liquid-liquid extraction procedure in presence of deuterium-labeled internal standards. Baseline separation of all isobaric bile acid species was achieved and a linear correlation over a broad concentration range was observed. The method showed acceptable accuracy and precision on intra-day (1.42-11.07 %) and inter-day (2.11-12.71 %) analyses and achieved good recovery rates for representative analytes (83.7-107.1 %). As a proof of concept, the analytical method was applied to mouse tissues and biofluids, but especially to samples from in vitro fermentations with gut bacteria of the family Coriobacteriaceae. The developed method revealed that the species Eggerthella lenta and Collinsella aerofaciens possess bile salt hydrolase activity, and for the first time that the species Enterorhabdus mucosicola is able to deconjugate and dehydrogenate primary bile acids in vitro.
Sanyakamdhorn, S; Agudelo, D; Bekale, L; Tajmir-Riahi, H A
2016-09-01
Conjugation of antitumor drug tamoxifen and its metabolites, 4-hydroxytamxifen and ednoxifen with synthetic polymers poly(ethylene glycol) (PEG), methoxypoly (ethylene glycol) polyamidoamine (mPEG-PAMAM-G3) and polyamidoamine (PAMAM-G4) dendrimers was studied in aqueous solution at pH 7.4. Multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize the drug binding process to synthetic polymers. Structural analysis showed that drug-polymer binding occurs via both H-bonding and hydrophobic contacts. The order of binding is PAMAM-G4>mPEG-PAMAM-G3>PEG-6000 with 4-hydroxttamoxifen forming more stable conjugate than tamoxifen and endoxifen. Transmission electron microscopy showed significant changes in carrier morphology with major changes in the shape of the polymer aggregate as drug encapsulation occurred. Modeling also showed that drug is located in the surface and in the internal cavities of PAMAM with the free binding energy of -3.79 for tamoxifen, -3.70 for 4-hydroxytamoxifen and -3.69kcal/mol for endoxifen, indicating of spontaneous drug-polymer interaction at room temperature. Copyright © 2016 Elsevier B.V. All rights reserved.
Marzioni, Marco; Francis, Heather; Benedetti, Antonio; Ueno, Yoshiyuki; Fava, Giammarco; Venter, Juliet; Reichenbach, Ramona; Mancino, Maria Grazia; Summers, Ryun; Alpini, Gianfranco; Glaser, Shannon
2006-01-01
Chronic cholestatic liver diseases are characterized by impaired balance between proliferation and death of cholangiocytes, as well as vanishing of bile ducts and liver failure. Ursodeoxycholic acid (UDCA) is a bile acid widely used for the therapy of cholangiopathies. However, little is known of the cytoprotective effects of UDCA on cholangiocytes. Therefore, UDCA and its taurine conjugate tauroursodeoxycholic acid (TUDCA) were administered in vivo to rats simultaneously subjected to bile duct ligation and vagotomy, a model that induces cholestasis and loss of bile ducts by apoptosis of cholangiocytes. Because these two bile acids act through Ca2+ signaling, animals were also treated with BAPTA/AM (an intracellular Ca2+ chelator) or Gö6976 (a Ca2+-dependent protein kinase C-α inhibitor). The administration of UDCA or TUDCA prevented the induction of apoptosis and the loss of proliferative and functional responses observed in the bile duct ligation-vagotomized rats. These effects were neutralized by the simultaneous administration of BAPTA/AM or Gö6976. UDCA and TUDCA enhanced intracellular Ca2+ and IP3 levels, together with increased phosphorylation of protein kinase C-α. Parallel changes were observed regarding the activation of the MAPK and PI3K pathways, changes that were abolished by addition of BAPTA/AM or Gö6976. These studies provide information that may improve the response of cholangiopathies to medical therapy. PMID:16436655
Wakatsuki, Akihiko; Ogawa, Yasuhiro; Saibara, Toshiji; Okatani, Yuji; Fukaya, Takao
2002-08-01
The purpose of the present study was to investigate the effects of tamoxifen on the size and oxidative susceptibility of low-density lipoprotein (LDL) particles in breast cancer patients with tamoxifen-induced fatty liver. We investigated the following breast cancer patients: 13 receiving no tamoxifen (group A), 13 receiving tamoxifen 40 mg daily but without fatty liver (group B), and 13 receiving tamoxifen 40 mg daily with fatty liver (group C). Plasma lipids and diameter of LDL particles were measured. Susceptibility of LDL to oxidation was analyzed by incubation with CuSO(4) while monitoring conjugated diene formation and assaying thiobarbituric acid reactive substances (TBARS). Plasma total and LDL cholesterol concentrations in groups B and C were significantly lower than those in group A. In group C, concentrations of plasma triglyceride (TG) and TBARS were significantly greater, but LDL particle diameter and lag time for LDL oxidation were significantly smaller than those in groups A and B. Plasma TG concentrations correlated negatively with computed tomography ratio of liver to spleen (r = -0.76; P < 0.001). LDL particle diameter correlated negatively with plasma TG (r = -0.62; P < 0.001) and TBARS (r = -0.44; P < 0.01), but positively with LDL lag time (r = 0.47; P < 0.01). Tamoxifen-induced fatty liver in breast cancer patients may be atherogenic, via increased TG and consequent small, easily oxidized LDL particles.
Bouscarel, B; Fromm, H; Ceryak, S; Cassidy, M M
1991-01-01
Ursodeoxycholic acid (UDCA), in contrast to both chenodeoxycholic acid (CDCA), its 7 alpha-epimer, and lithocholic acid, enhanced receptor-dependent low-density lipoprotein (LDL) uptake and degradation in isolated hamster hepatocytes. The increase in cell-associated LDL was time- and concentration-dependent, with a maximum effect observed at approx. 60 min with 1 mM-UDCA. This increase was not associated with a detergent effect of UDCA, as no significant modifications were observed either in the cellular release of lactate dehydrogenase or in Trypan Blue exclusion. The effect of UDCA was not due to a modification of the LDL particle, but rather was receptor-related. UDCA (1 mM) maximally increased the number of 125I-LDL-binding sites (Bmax.) by 35%, from 176 to 240 ng/mg of protein, without a significant modification of the binding affinity. Furthermore, following proteolytic degradation of the LDL receptor with Pronase, specific LDL binding decreased to the level of non-specific binding, and the effect of UDCA was abolished. Conversely, the trihydroxy 7 beta-hydroxy bile acid ursocholic acid and its 7 alpha-epimer, cholic acid, induced a significant decrease in LDL binding by approx. 15%. The C23 analogue of UDCA (nor-UDCA) and CDCA did not affect LDL binding. On the other hand, UDCA conjugated with either glycine (GUDCA) or taurine (TUDCA), increased LDL binding to the same extent as did the free bile acid. The half maximum time (t1/2) to reach the full effect was 1-2 min for UDCA and TUDCA, while GUDCA had a much slower t1/2 of 8.3 min. Ketoconazole (50 microM), an antifungal agent, increased LDL binding, but this effect was not additive when tested in the presence of 0.7 mM-UDCA. The results of the studies indicate that, in isolated hamster hepatocytes, the UDCA-induced increase in receptor-dependent LDL binding and uptake represents a direct effect of this bile acid. The action of the bile acid is closely related to its specific structural conformation, since UDCA and its conjugates are the only bile acids shown to express this ability thus far. However, certain agents other than bile acids, such as ketoconazole, have a similar effect. Finally, the studies suggest that the recruitment of LDL receptors from a latent pool in the hepatocellular membrane may be the mechanism by which UDCA exerts its direct effect. Images Fig. 6. PMID:1764022
Scharschmidt, Bruce F.; Schmid, Rudi
1978-01-01
Although the importance of mixed micelles in the solubilization and biliary excretion of lipids is established, little is known about a possible role of mixed micelles in the excretion of other biliary solutes. Ultrafiltration and ultracentrifugation techniques were used to investigate the interaction between substances that are excreted in bile and biliary mixed micelles. Substances (urea, erythritol, sucrose) excreted in bile at concentrations equal to, or less than, that in plasma did not show an association with mixed micelles, whereas substances (indocyanine green, iopanoic acid, rose bengal, unconjugated and conjugated sulfobromophthalein, and conjugated bilirubin) excreted in bile at high concentration relative to plasma did. The percentage of these latter substances in bile associated with micelles varied from 26 to 93% and was relatively independent of concentration. In addition to their association with mixed micelles, these test solutes formed self-aggregates that were stabilized primarily by ionic bonds, and only a small percentage (range = 0-5%) of these solutes were present in bile in the form of monomer or complexes small enough to pass a 5,000-mol wt membrane. These findings offer a possible explanation for the increase in sulfobromophthalein, bilirubin, and indocyanine green maximal biliary excretory rate produced by bile salt infusion, and suggest that the concentrative transport into bile of endogenous compounds and xenobiotics may result from their incorporation into mixed micelles and other macromolecular complexes. PMID:748371
Potential of nor-Ursodeoxycholic Acid in Cholestatic and Metabolic Disorders.
Trauner, Michael; Halilbasic, Emina; Claudel, Thierry; Steinacher, Daniel; Fuchs, Claudia; Moustafa, Tarek; Pollheimer, Marion; Krones, Elisabeth; Kienbacher, Christian; Traussnigg, Stefan; Kazemi-Shirazi, Lili; Munda, Petra; Hofer, Harald; Fickert, Peter; Paumgartner, Gustav
2015-01-01
24-nor-ursodeoxycholic acid (norUDCA) is a side-chain shortened derivate of ursodeoxycholic acid (UDCA). Since norUDCA is only ineffectively conjugated with glycine or taurine, it has specific physicochemical and therapeutic properties distinct from UDCA. Nonamidated norUDCA undergoes cholehepatic shunting enabling 'ductular targeting' and inducing a bicarbonate-rich hypercholeresis, with cholangioprotective effects. At the same time it has direct anti-inflammatory, antilipotoxic, anti fibrotic, and antiproliferative properties targeting various liver cell populations. norUDCA appears to be one of the most promising novel treatment approaches targeting the liver and the bile duct system at multifactorial and multicellular levels. This review article is a summary of a lecture given at the XXIII International Bile Acid Meeting (Falk Symposium 194) on 'Bile Acids as Signal Integrators and Metabolic Modulators' held in Freiburg, October 8-9, 2014, and summarizes the recent progress with norUDCA as a novel therapeutic approach in cholestatic and metabolic (liver) disorders. 2015 S. Karger AG, Basel.
Fan, P W; Zhang, F; Bolton, J L
2000-01-01
Tamoxifen is widely prescribed for the treatment of hormone-dependent breast cancer, and it has recently been approved by the Food and Drug Administration for the chemoprevention of this disease. However, long-term usage of tamoxifen has been linked to increased risk of developing endometrial cancer in women. One of the suggested pathways leading to the potential toxicity of tamoxifen involves its oxidative metabolism to 4-hydroxytamoxifen, which may be further oxidized to an electrophilic quinone methide. The resulting quinone methide has the potential to alkylate DNA and may initiate the carcinogenic process. To further probe the chemical reactivity and toxicity of such an electrophilic species, we have prepared the 4-hydroxytamoxifen quinone methide chemically and enzymatically, examined its reactivity under physiological conditions, and quantified its reactivity with GSH. Interestingly, this quinone methide is unusually stable; its half-life under physiological conditions is approximately 3 h, and its half-life in the presence of GSH is approximately 4 min. The reaction between 4-hydroxytamoxifen quinone methide and GSH appears to be a reversible process because the quinone methide GSH conjugates slowly decompose over time, regenerating the quinone methide as indicated by LC/MS/MS data. The tamoxifen GSH conjugates were detected in microsomal incubations with 4-hydroxytamoxifen; however, none were observed in breast cancer cell lines (MCF-7) perhaps because very little quinone methides is formed. Toremifene, which is a chlorinated analogue of tamoxifen, undergoes similar oxidative metabolism to give 4-hydroxytoremifene, which is further oxidized to the corresponding quinone methide. The toremifene quinone methide has a half-life of approximately 1 h under physiological conditions, and its rate of reaction in the presence of excess GSH is approximately 6 min. More detailed analyses have indicated that the 4-hydroxytoremifene quinone methide reacts with two molecules of GSH and loses chlorine to give the corresponding di-GSH conjugates. The reaction mechanism likely involves an episulfonium ion intermediate which may contribute to the potential cytotoxic effects of toremifene. Similar to what was observed with 4-hydroxytamoxifen, 4-hydroxytoremifene was metabolized to di-GSH conjugates in microsomal incubations at about 3 times the rate of 4-hydroxytamoxifen, although no conjugates were detected with MCF-7 cells. Finally, these data suggest that quinone methide formation may not make a significant contribution to the cytotoxic and genotoxic effects of tamoxifen and toremifene.
Rickets in lion cubs at the London Zoo in 1889: some new insights.
Chesney, Russell W; Hedberg, Gail
2009-05-01
In 1889, when Dr John Bland-Sutton, a prominent surgeon in London, England, was consulted concerning fatal rickets in more than 20 successive litters of lion cubs at the London Zoo, he evaluated the role of diet relative to the development of rickets. He prescribed goat meat and bones and cod-liver oil to be added to the lean horse-meat diet of the cubs and their mothers. Rickets reversed, the cubs survived, and litters were reared successfully. In classic controlled studies conducted in puppies and young rats 3 decades later, the crucial role of calcium, phosphate, and vitamin D in both prevention and therapy of rickets was elucidated. Later studies led to the identification of the structural features of vitamin D. Although the Bland-Sutton interventional diet obviously provides calcium and phosphate from bones and vitamin D from cod-liver oil, other benefits of this diet were not initially recognized. Chewing bones promotes tooth and gum health and removes bacteria-laden tartar. Cod-liver oil also contains vitamin A, which is essential for the prevention of infection and for epithelial cell health. Taurine-conjugated bile salts are also necessary for the intestinal absorption of fat-soluble vitamins, including A and D. Moreover, unlike dogs and rats, all feline species are unable to synthesize taurine yet can only conjugate bile acids with taurine. This sulfur-containing beta-amino acid must be provided in the carnivorous diet of a large cat. Taurine-conjugated bile salts were provided in the oil cold-pressed from cod liver. The now famous Bland-Sutton "experiment of nature," namely, fatal rickets in lion cubs, was cured by the addition of minerals and vitamin D. However, gum health and the presence of taurine-conjugated bile salts undoubtedly permitted absorption of vitamin A and D, the latter promoting the cure of rickets.
Donkers, Joanne M; Zehnder, Benno; van Westen, Gerard J P; Kwakkenbos, Mark J; IJzerman, Adriaan P; Oude Elferink, Ronald P J; Beuers, Ulrich; Urban, Stephan; van de Graaf, Stan F J
2017-11-10
The sodium taurocholate co-transporting polypeptide (NTCP, SLC10A1) is the main hepatic transporter of conjugated bile acids, and the entry receptor for hepatitis B virus (HBV) and hepatitis delta virus (HDV). Myrcludex B, a synthetic peptide mimicking the NTCP-binding domain of HBV, effectively blocks HBV and HDV infection. In addition, Myrcludex B inhibits NTCP-mediated bile acid uptake, suggesting that also other NTCP inhibitors could potentially be a novel treatment of HBV/HDV infection. This study aims to identify clinically-applied compounds intervening with NTCP-mediated bile acid transport and HBV/HDV infection. 1280 FDA/EMA-approved drugs were screened to identify compounds that reduce uptake of taurocholic acid and lower Myrcludex B-binding in U2OS cells stably expressing human NTCP. HBV/HDV viral entry inhibition was studied in HepaRG cells. The four most potent inhibitors of human NTCP were rosiglitazone (IC 50 5.1 µM), zafirlukast (IC 50 6.5 µM), TRIAC (IC 50 6.9 µM), and sulfasalazine (IC 50 9.6 µM). Chicago sky blue 6B (IC 50 7.1 µM) inhibited both NTCP and ASBT, a distinct though related bile acid transporter. Rosiglitazone, zafirlukast, TRIAC, sulfasalazine, and chicago sky blue 6B reduced HBV/HDV infection in HepaRG cells in a dose-dependent manner. Five out of 1280 clinically approved drugs were identified that inhibit NTCP-mediated bile acid uptake and HBV/HDV infection in vitro.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrick, M.V.; Eastwood, M.A.; Anderson, J.R.
A conjugated bile acid, 23-selena-25-homotaurocholic acid (SeHCAT), labeled with the gamma emitter Se-75, has been evaluated in man. Absorption and excretion were compared with that of simultaneously administered (23-14C)cholic acid. SeHCAT is absorbed quantitatively following oral administration, secreted into the bile at the same rate as cholic acid, reabsorbed from the small intestine, and resecreted. It is not absorbed when the terminal ileum has been excised or bypassed. SeHCAT is therefore the first of a new class of radiopharmaceuticals, namely, gamma-emitting tracers of the complete cycle of the enterohepatic circulation. Its use will simplify investigation of the functional state ofmore » the terminal ileum by eliminating the need to collect and process feces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merrick, M.V.; Eastwood, M.A.; Anderson, J.R.
A conjugated bile acid, 23-selena-25-homotaurocholic acid (SeHCAT), labeled with the gamma emitter Se-75, has been evaluated in man. Absorption and excretion were compared with that of simultaneously administered (23-/sup 14/C)cholic acid. SeHCAT is absorbed quantitatively following oral administration, secreted into the bile at the same rate as cholic acid, reabsorbed from the small intestine, and resecreted. It is not absorbed when the terminal ileum has been excised or bypassed. SeHCAT is therefore the first of a new class of radiopharmaceuticals, namely, gamma-emitting tracers of the complete cycle of the enterohepatic circulation. Its use will simplify investigation of the functional statemore » of the terminal ileum by eliminating the need to collect and process feces.« less
Individual bile acids have differential effects on bile acid signaling in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Peizhen, E-mail: songacad@gmail.com; Rockwell, Cheryl E., E-mail: rockwelc@msu.edu; Cui, Julia Yue, E-mail: juliacui@uw.edu
2015-02-15
Bile acids (BAs) are known to regulate BA synthesis and transport by the farnesoid X receptor in the liver (FXR-SHP) and intestine (FXR-Fgf15). However, the relative importance of individual BAs in regulating these processes is not known. Therefore, mice were fed various doses of five individual BAs, including cholic acid (CA), chenodeoxycholic acid (CDCA), deoxoycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) in their diets at various concentrations for one week to increase the concentration of one BA in the enterohepatic circulation. The mRNA of BA synthesis and transporting genes in liver and ileum were quantified. In themore » liver, the mRNA of SHP, which is the prototypical target gene of FXR, increased in mice fed all concentrations of BAs. In the ileum, the mRNA of the intestinal FXR target gene Fgf15 was increased at lower doses and to a higher extent by CA and DCA than by CDCA and LCA. Cyp7a1, the rate-limiting enzyme in BA synthesis, was decreased more by CA and DCA than CDCA and LCA. Cyp8b1, the enzyme that 12-hydroxylates BAs and is thus responsible for the synthesis of CA, was decreased much more by CA and DCA than CDCA and LCA. Surprisingly, neither a decrease in the conjugated BA uptake transporter (Ntcp) nor increase in BA efflux transporter (Bsep) was observed by FXR activation, but an increase in the cholesterol efflux transporter (Abcg5/Abcg8) was observed with FXR activation. Thus in conclusion, CA and DCA are more potent FXR activators than CDCA and LCA when fed to mice, and thus they are more effective in decreasing the expression of the rate limiting gene in BA synthesis Cyp7a1 and the 12-hydroxylation of BAs Cyp8b1, and are also more effective in increasing the expression of Abcg5/Abcg8, which is responsible for biliary cholesterol excretion. However, feeding BAs do not alter the mRNA or protein levels of Ntcp or Bsep, suggesting that the uptake or efflux of BAs is not regulated by FXR at physiological and pharmacological concentrations of BAs. - Highlights: • All four major bile acids in humans activate the FXR in liver and intestine. • These bile acids decreased the mRNA of the bile acid synthetic enzymes Cyp7a1 and Cyp8b1. • These BAs did not alter the mRNA or protein of the conjugated BA transporters (Ntcp and Bsep). • Cholic acid and deoxycholic acid are more potent activators of FXR than chenodeoxycholic acid and lithocholic acid.« less
Comparative metabolism and elimination of acetanilide compounds by rat.
Davison, K L; Larsen, G L; Feil, V J
1994-10-01
1. 14C-labelled propachlor, alachlor, butachlor, metolachlor, methoxypropachlor and some of their mercapturic acid pathway metabolites (MAP) were given to rat either by gavage or by perfusion into a renal artery. MAP metabolites were isolated from bile and urine. 2. Rat gavaged with propachlor and methoxypropachlor eliminated 14C mostly in urine, whereas rat gavaged with alachlor, butachlor and metolachlor eliminated 14C about equally divided between urine and faeces. When bile ducts were cannulated, the gavaged rat eliminated most of the 14C in bile for all compounds. The amount of 14C in bile from the propachlor-gavaged rat was less than that for the other acetanilides, with the difference being in the urine. 3. The mercapturic acid metabolites 2-methylsulphinyl-N-(1-methylhydroxyethyl)-N-phenylacetam ide and 2-methylsulphinyl-N-(1-methylmethoxyethyl)-N-phenylacetam ide were isolated from the urine and bile of the methoxypropachlor-gavaged rat. 4. Bile was the major route for 14C elimination when MAP metabolites of alachlor, butachlor and metolachlor were perfused into a renal artery. Urine was the major route for 14C elimination when MAP metabolites of propachlor and methoxypropachlor were perfused. Mercapturic acid conjugates were major metabolites in bile and urine when MAP metabolites were perfused. 5. We conclude that alkyl groups on the phenyl portion of the acetanilide causes biliary elimination to be favoured over urinary elimination.
Photodynamic cell-kill analysis of breast tumor cells with a tamoxifen-pyropheophorbide conjugate.
Fernandez Gacio, Ana; Fernandez-Marcos, Carlos; Swamy, Narasimha; Dunn, Darra; Ray, Rahul
2006-10-15
We hypothesized that estrogen receptor (ER) in hormone-sensitive breast cancer cells could be targeted for selective photodynamic killing of tumor cell with antiestrogen-porphyrin conjugates by combining the over-expression of ER in hormone-sensitive breast cancer cells and tumor-retention property of porphyrin photosensitizers. In this study we describe that a tamoxifen (TAM)-pyropheophorbide conjugate that specifically binds to ER alpha, caused selective cell-kill in MCF-7 breast cancer cells upon light exposure. Therefore, it is a potential candidate for ER-targeted photodynamic therapy of cancers (PDT) of tissues and organs that respond to estrogens/antiestrogens. 2006 Wiley-Liss, Inc.
Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Hayashi, Hisamitsu; Onuki, Reiko; Hofmann, Alan F; Sugiyama, Yuichi
2006-03-01
Na(+)-taurocholate-cotransporting peptide (NTCP)/SLC10A1 and bile salt export pump (BSEP)/ABCB11 synergistically play an important role in the transport of bile salts by the hepatocyte. In this study, we transfected human NTCP and BSEP or rat Ntcp and Bsep into LLC-PK1 cells, a cell line devoid of bile salts transporters. Transport by these cells was characterized with a focus on substrate specificity between rats and humans. The basal to apical flux of taurocholate across NTCP- and BSEP-expressing LLC-PK1 monolayers was 10 times higher than that in the opposite direction, whereas the flux across the monolayer of control and NTCP or BSEP single-expressing cells did not show any vectorial transport. The basal to apical flux of taurocholate was saturated with a K(m) value of 20 microM. Vectorial transcellular transport was also observed for cholate, chenodeoxycholate, ursodeoxycholate, their taurine and glycine conjugates, and taurodeoxycholate and glycodeoxycholate, whereas no transport of lithocholate was detected. To evaluate the respective functions of NTCP and BSEP and to compare them with those of rat Ntcp and Bsep, we calculated the clearance by each transporter in this system. A good correlation in the clearance of the examined bile salts (cholate, chenodeoxycholate, ursodeoxycholate, and their taurine or glycine conjugates) was observed between transport by human and that of rat transporters in terms of their rank order: for NTCP, taurine conjugates > glycine conjugates > unconjugated bile salts, and for BSEP, unconjugated bile salts and glycine conjugates > taurine conjugates. In conclusion, the substrate specificity of human and rat NTCP and BSEP appear to be very similar at least for monovalent bile salts under physiological conditions.
König, Alexander; Döring, Barbara; Mohr, Christina; Geipel, Andreas; Geyer, Joachim; Glebe, Dieter
2014-10-01
The human liver bile acid transporter Na(+)/taurocholate cotransporting polypeptide (NTCP) has recently been identified as liver-specific receptor for infection of hepatitis B virus (HBV), which attaches via the myristoylated preS1 (myr-preS1) peptide domain of its large surface protein to NTCP. Since binding of the myr-preS1 peptide to NTCP is an initiating step of HBV infection, we investigated if this process interferes with the physiological bile acid transport function of NTCP. HBV infection, myr-preS1 peptide binding, and bile acid transport assays were performed with primary Tupaia belangeri (PTH) and human (PHH) hepatocytes as well as NTCP-transfected human hepatoma HepG2 cells allowing regulated NTCP expression, in the presence of various bile acids, ezetimibe, and myr-preS1 peptides. The myr-preS1 peptide of HBV inhibited bile acid transport in PTH and PHH as well as in NTCP-expressing HEK293 and HepG2 cells. Inversely, HBV infection of PTH, PHH, and NTCP-transfected HepG2 cells was inhibited in a concentration-dependent manner by taurine and glycine conjugates of cholic acid and ursodeoxycholic acid as well as by ezetimibe. In NTCP-HepG2 cells and PTH, NTCP expression, NTCP transport function, myr-preS1 peptide binding, and HBV infection followed comparable kinetics. Myr-preS1 virus binding to NTCP, necessary for productive HBV infection, interferes with the physiological bile acid transport function of NTCP. Therefore, HBV infection via NTCP may be lockable by NTCP substrates and NTCP-inhibiting drugs. This opens a completely new way for an efficient management of HBV infection by the use of NTCP-directed drugs. Copyright © 2014 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Elkins, Christopher A.; Savage, Dwayne C.
1998-01-01
Cytosolic extracts of Lactobacillus johnsonii 100-100 (previously reported as Lactobacillus sp. strain 100-100) contain four heterotrimeric isozymes composed of two peptides, α and β, with conjugated bile salt hydrolase (BSH) activity. We now report cloning, from the genome of strain 100-100, a 2,977-bp DNA segment that expresses BSH activity in Escherichia coli. The sequencing of this segment showed that it contained one complete and two partial open reading frames (ORFs). The 3′ partial ORF (927 nucleotides) was predicted by BLAST and confirmed with 5′ and 3′ deletions to be a BSH gene. Thermal asymmetric interlaced PCR was used to extend and complete the 948-nucleotide sequence of the BSH gene 3′ of the cloned segment. The predicted amino acid sequence of the 5′ partial ORF (651 nucleotides) was about 80% similar to the C-terminal half of the largest, complete ORF (1,353 nucleotides), and these two putative proteins were similar to several amine, multidrug resistance, and sugar transport proteins of the major facilitator superfamily. E. coli DH5α cells transformed with a construct containing these ORFs, in concert with an extracellular factor produced by strain 100-100, demonstrated levels of uptake of [14C]taurocholic acid that were increased as much as threefold over control levels. [14C]Cholic acid was taken up in similar amounts by strain DH5α pSportI (control) and DH5α p2000 (transport clones). These findings support a hypothesis that the ORFs are conjugated bile salt transport genes which may be arranged in an operon with BSH genes. PMID:9721268
Festi, D.; Capodicasa, S.; Sandri, L.; Colaiocco-Ferrante, L.; Staniscia, T.; Vitacolonna, E.; Vestito, A.; Simoni, P.; Mazzella, G.; Portincasa, P.; Roda, E.; Colecchia, A.
2005-01-01
AIM: To evaluate and compare the clinical usefulness of 13C-phenylalanine and 13C-methacetin breath tests in quantitating functional hepatic mass in patients with chronic liver disease and to further compare these results with those of conventional tests, Child-Pugh score and serum bile acid levels. METHODS: One hundred and forty patients (50 HCV- related chronic hepatitis, 90 liver cirrhosis patients) and 40 matched healthy controls were studied. Both breath test and routine liver test, serum levels of cholic and chenodeoxycholic acid conjugates were evaluated. RESULTS: Methacetin breath test, expressed as 60 min cumulative percent of oxidation, discriminated the hepatic functional capacity not only between controls and liver disease patients, but also between different categories of chronic liver disease patients. Methacetin breath test was correlated with liver function tests and serum bile acids. Furthermore, methacetin breath test, as well as serum bile acids, were highly predictive of Child-Pugh scores. The diagnostic power of phenylalanine breath test was always less than that of methacetin breath test. CONCLUSION: Methacetin breath test represents a safe and accurate diagnostic tool in the evaluation of hepatic functional mass in chronic liver disease patients. PMID:15609414
Absorption of Bile Pigments by the Gall Bladder*
Ostrow, J. Donald
1967-01-01
A technique is described for preparation in the guinea pig of an in situ, isolated, vascularized gall bladder that exhibits normal absorptive functions. Absorption of labeled bile pigments from the gall bladder was determined by the subsequent excretion of radioactivity in hepatic bile. Over a wide range of concentrations, unconjugated bilirubin-14C was well absorbed, whereas transfer of conjugated bilirubin proceeded slowly. Mesobilirubinogen-3H was absorbed poorly from whole bile, but was absorbed as rapidly as unconjugated bilirubin from a solution of pure conjugated bile salt. Bilirubin absorption was not impaired by iodoacetamide, 1.5 mM, or dinitrophenol, 1.0 mM, even though water transport was affected. This indicated that absorption of bilirubin was not dependent upon water transport, nor upon energy-dependent processes. The linear relationship between absorption and concentration of pigment at low concentrations in bile salt solutions suggested that pigment was transferred by passive diffusion. At higher pigment concentrations or in whole bile, this simple relationship was modified by interactions of pigment with bile salts and other constituents of bile. These interactions did not necessarily involve binding of bilirubin in micelles. The slow absorption of the more polar conjugates and photo-oxidative derivatives of bilirubin suggested that bilirubin was absorbed principally by nonionic, and partially, by ionic diffusion. Concentrations of pure conjugated bile salts above 3.5 mM were found to be injurious to the gall bladder mucosa. This mucosal injury did not affect the kinetics of bilirubin absorption. During in vitro incubation of bile at 37°C, decay of bilirubin and hydrolysis of the conjugate proceeded as first-order reactions. The effects of these processes on the kinetics of bilirubin absorption, and their possible role in the formation of “white bile” and in the demonstrated appearance of unconjugated bilirubin in hepatic bile, are discussed. PMID:6074006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moscovitz, Jamie E.; Kong, Bo; Buckley, Kyle
The farnesoid X receptor (Fxr) controls bile acid homeostasis by coordinately regulating the expression of synthesizing enzymes (Cyp7a1, Cyp8b1), conjugating enzymes (Bal, Baat) and transporters in the ileum (Asbt, Ostα/β) and liver (Ntcp, Bsep, Ostβ). Transcriptional regulation by Fxr can be direct, or through the ileal Fgf15/FGF19 and hepatic Shp pathways. Circulating bile acids are increased during pregnancy due to hormone-mediated disruption of Fxr signaling. While this adaptation enhances lipid absorption, elevated bile acids may predispose women to develop maternal cholestasis. The objective of this study was to determine whether short-term treatment of pregnant mice with GW4064 (a potent FXRmore » agonist) restores Fxr signaling to the level observed in virgin mice. Plasma, liver and ilea were collected from virgin and pregnant mice administered vehicle or GW4064 by oral gavage. Treatment of pregnant mice with GW4064 induced ileal Fgf15, Shp and Ostα/β mRNAs, and restored hepatic Shp, Bal, Ntcp, and Bsep back to vehicle-treated virgin levels. Pregnant mice exhibited 2.5-fold increase in Cyp7a1 mRNA compared to virgin controls, which was reduced by GW4064. Similarly treatment of mouse primary hepatocytes with plasma isolated from pregnant mice induced Cyp7a1 mRNA by nearly 3-fold as compared to virgin plasma, which could be attenuated by co-treatment with either GW4064 or recombinant FGF19 protein. Collectively, these data reveal that repressed activity of intestinal and hepatic Fxr in pregnancy, as previously demonstrated, may be restored by pharmacological activation. This study provides the basis for a novel approach to restore bile acid homeostasis in patients with maternal cholestasis. - Highlights: • Ileal bile acid pathways are altered in pregnancy in an Fxr-dependent manner. • Ileal Fxr/Fgf contributes to changes in hepatic bile acid synthesis and transport. • Treatment of pregnant mice with an Fxr agonist restores bile acid homeostasis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan
2015-03-15
Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp)more » and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved in the hepatoprotective effect of AB23A.« less
Effect of supplemental taurine on juvenile channel catfish Ictalurus punctatus growth performance
USDA-ARS?s Scientific Manuscript database
Taurine is a beta-amino sulfur amino acid found in most animal tissues that has many important biological functions including bile salt conjugation, cellular osmoregulation, neuromodulation, calcium signaling. The benefits of supplementing diets with taurine are just beginning to be realized in a n...
Hu, Miao; Fok, Benny S P; Wo, Siu-Kwan; Lee, Vincent H L; Zuo, Zhong; Tomlinson, Brian
2016-01-01
Ursodeoxycholic acid (UDCA), a natural, dihydroxy bile acid, promotes gallstone dissolution and has been attributed with several other beneficial effects. The farnesoid X receptor (FXR) may influence the pharmacokinetics of UDCA by modulating the expression of bile acid transporters. This exploratory study examined whether common functional polymorphisms in FXR and in bile acid transporter genes affect the pharmacokinetics of exogenous UDCA. Polymorphisms in genes for transporters involved in bile acid transport, solute carrier organic anion 1B1 (SLCO1B1) 388A>G and 521T>C, solute carrier 10A1 (SLC10A1) 800 C>T and ATP-binding cassette B11 (ABCB11) 1331T>C, and the FXR -1G>T polymorphism were genotyped in 26 male Chinese subjects who ingested single oral 500-mg doses of UDCA. Plasma concentrations of UDCA and its major conjugate metabolite glycoursodeoxycholic acid (GUDCA) were determined. The mean systemic exposure of UDCA was higher in the five subjects with one copy of the FXR -1G>T variant allele than in those homozygous for the wild-type allele (n = 21) (AUC0-24 h : 38.5 ± 28.2 vs. 20.9 ± 8.0 μg h/mL, P = 0.021), but this difference appeared mainly due to one outlier with the -1GT genotype and elevated baseline and post-treatment UDCA concentrations. After excluding the outlier, body weight was the only factor associated with plasma concentrations of UDCA and there were no significant associations with the other polymorphisms examined. None of the polymorphisms affected the pharmacokinetics of GUDCA. This study showed that the common polymorphisms in bile acid transporters had no significant effect on the pharmacokinetics of exogenous UDCA but an effect of the FXR polymorphism cannot be excluded. © 2015 Wiley Publishing Asia Pty Ltd.
Maglova, L M; Jackson, A M; Meng, X J; Carruth, M W; Schteingart, C D; Ton-Nu, H T; Hofmann, A F; Weinman, S A
1995-08-01
The transport properties of three different synthetically prepared fluorescent conjugated bile acid analogs (FBA), all with the fluorophore on the side chain, were determined using isolated rat hepatocytes and hepatocyte couplets. The compounds studied were cholylglycylamidofluorescein (CGamF), cholyl(N epsilon-nitrobenzoxadiazolyl [NBD])-lysine (C-NBD-L), and chenodeoxycholyl-(N epsilon-NBD)-lysine (CDC-NBD-L). When hepatocytes were incubated at 37 degrees C with 0.3 mumol/L of FBA and 0.15 mol/L of Na+, cell fluorescence increased linearly with time at a rate (U/min) of 7.8 +/- 0.5 for CGamF, 7.2 +/- 0.3 for C-NBD-L, and 13.7 +/- 1.0 for CDC-NBD-L (mean, +/- SE; n = 40 to 90). Uptake was concentration dependent for concentrations less than 20 mumol/L and was saturable. The Michaelis constant (Km) value (mumol/L) for CGamF was 10.8, for C-NBD-L was 3.8, and for CDC-NBD-L was 3.0. In the absence of Na+, the uptake rate was decreased by 50% for CGamF and by 38% for C-NBD-L; but uptake of CDC-NBD-L was unchanged and thus Na+ independent. Cellular uptake of all three derivatives was specific to hepatocytes and was absent in several nonhepatocyte cell lines. For CGamF and C-NBD-L, both Na(+)-dependent and Na(+)-independent uptake was inhibited by 200-fold excess concentrations of cholyltaurine, dehydrocholyltaurine, and cholate, but for CDC-NBD-L, these nonfluorescent bile acids did not inhibit initial uptake. The intracellular fluorescence of CGamF was strongly pH dependent at an excitation wavelength of 495 nm, but pH independent at 440 nm excitation. In contrast, intracellular fluorescence of C-NBD-L and CDC-NBD-L was pH independent. All three FBA were secreted into the canalicular space of approximately 50% to 60% of couplets. Cellular adenosine triphosphate (ATP) depletion with either CN- or atractyloside inhibited secretion of all three FBA. The multispecific organic anion transporter (MOAT) inhibitor, chlorodinitrobenzene, blocked secretion of fluorescent MOAT substrates at a concentration of 1 mumol/L. At this concentration it did not affect secretion of the three FBA. At higher concentrations, chlorodinitrobenzene partially inhibited the canalicular secretion of CGamF but not the other two FBA. In conclusion, all three FBA are secreted by canalicular membrane bile acid transporters, but the sinusoidal uptake characteristics of CGamF and C-NBD-L are more similar than those of CDC-NBD-L to the transport properties of cholyltaurine. Therefore, C-NBD-L appears to be the best of the three for studies of conjugated trihydroxy-bile acid transport in hepatocytes.
Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundeen, S.G.; Savage, D.C.
1990-08-01
The authors have characterized and purified the bile salt hydrolase from Lactobacillus sp. strain 100-100. Bile salt hydrolase from cells of the strain was purified with column and high-performance liquid chromatography. The activity was assayed in whole cells and cell-free extracts with either a radiochemical assay involving ({sup 14}C)taurocholic acid or a nonradioactive assay involving trinitrobenzene sulfonate. The activity was detectable only in stationary-phase cells. Within 20 min after conjugated bile acids were added to stationary-phase cultures of strain 100-100, the activity in whole cells increased to levels three- to fivefold higher than in cells from cultures grown in mediummore » free of bile salts. In cell-free extracts, however, the activity was about equal whether or not the cells have been grown with bile salts present. When supernatant solutions from cultures grown in medium containing taurocholic acid were used to suspend cells grown in medium free of the bile salt, the bile salt hydrolase activity detected in whole cells increased two- to threefold. Two forms of the hydrolase were purified from the cells and designated hydrolases A and B. They eluted from anion-exchange high-performance liquid chromatography in two sets of fractions, A at 0.15 M NaCl and B at 0.18 M NaCl. Their apparent molecular weights in nondenaturing polyacrylamide gel electrophoresis were 115,000 and 105,000, respectively. However, discrepancies existed in the apparent molecular weights and number of peptides detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two forms. Whether the enzyme exists in two forms in the cells remains to be determined.« less
Yago, María Dolores; González, Victoria; Serrano, Pilar; Calpena, Rafael; Martínez, María Alba; Martínez-Victoria, Emilio; Mañas, Mariano
2005-03-01
The effect of the type of dietary fat on bile lipids and lithogenicity is unclear. This study compared the effects of two dietary oils that differed in fatty acid profile on biliary lipid composition in humans. Female patients who had cholesterol gallstones and were scheduled for elective cholecystectomy were studied. For 30 d before surgery, subjects were kept on diets that contained olive oil (olive oil group, n = 9) or sunflower oil (sunflower oil group, n = 9) as the main source of fat. Gallbladder bile and stones were sampled at surgery. After cholecystectomy, duodenal samples were collected by nasoduodenal intubation during fasting and after administration of mixed liquid meals that included the corresponding dietary oil. Duodenal and gallbladder bile samples were analyzed for cholesterol, phospholipids, and total bile acids by established methods. Individual bile acid conjugates in gallbladder bile were measured by high-performance liquid chromatography. Gallstones were analyzed by semiquantitative polarizing light microscopy. Despite marked differences in the absolute concentration of biliary lipids and total lipid content, manipulation of dietary fat ingestion did not influence the cholesterol saturation or the profile of individual bile acids in gallbladder bile obtained from patients who had gallstones. All but one subject had mixed cholesterol stones. A cholesterol saturation index of hepatic bile in fasted cholecystectomized patients was similar in both dietary groups and indicative of supersaturation. In response to the test meal, the cholesterol saturation index decreased significantly in patients given the olive oil diet, reaching values lower than one at 120 min postprandially. In contrast, hepatic bile secreted by patients who consumed sunflower oil appeared supersaturated (cholesterol saturation index >1.5) throughout the experiment. Our results suggest that the type of dietary fat habitually consumed can influence bile composition in humans. In gallbladder, this influence was noted in the presence of more concentrated bile in the olive oil group. However, this was not translated into a modification of cholesterol saturation, which is likely due to the fact that cholesterol gallstones were present by the time the dietary intervention started. The finding that a typical postprandial variation in hepatic bile lithogenicity occurred only in olive oil patients was revealing. While keeping in mind the methodologic limitations of this part of the study, some gastrointestinal and metabolic mechanisms for this effect are discussed.
Pharmacokinetics and Biliary Excretion of Fisetin in Rats.
Huang, Miao-Chan; Hsueh, Thomas Y; Cheng, Yung-Yi; Lin, Lie-Chwen; Tsai, Tung-Hu
2018-06-14
The hypothesis of this study is that fisetin and phase II conjugated forms of fisetin may partly undergo biliary excretion. To investigate this hypothesis, male Sprague-Dawley rats were used for the experiment, and their bile ducts were cannulated with polyethylene tubes for bile sampling. The pharmacokinetic results demonstrated that the average area-under-the-curve (AUC) ratios ( k (%) = AUC conjugate /AUC free-form ) of fisetin, its glucuronides, and its sulfates were 1:6:21 in plasma and 1:4:75 in bile, respectively. Particularly, the sulfated metabolites were the main forms that underwent biliary excretion. The biliary excretion rate ( k BE (%) = AUC bile /AUC plasma ) indicates the amount of fisetin eliminated by biliary excretion. The biliary excretion rates of fisetin, its glucuronide conjugates, and its sulfate conjugates were approximately 144, 109, and 823%, respectively, after fisetin administration (30 mg/kg, iv). Furthermore, biliary excretion of fisetin is mediated by P-glycoprotein.
Wang, Yongqing; Aoki, Hiroaki; Yang, Jing; Peng, Kesong; Liu, Runping; Li, Xiaojiaoyang; Qiang, Xiaoyan; Sun, Lixin; Gurley, Emily C; Lai, Guanhua; Zhang, Luyong; Liang, Guang; Nagahashi, Masayuki; Takabe, Kazuaki; Pandak, William M; Hylemon, Phillip B.; Zhou, Huiping
2017-01-01
Bile duct obstruction is a potent stimulus for cholangiocyte proliferation, especially for large cholangiocytes. Our previous studies reported that conjugated bile acids (CBAs) activate the AKT and ERK1/2 signaling pathways via the sphingosine 1-phosphate receptor 2 (S1PR2) in hepatocytes and cholangiocarcinoma cells. It also has been reported that taurocholate (TCA) promotes large cholangiocyte proliferation and protects cholangiocytes from bile duct ligation (BDL)-induced apoptosis. However, the role of S1PR2 in bile acid-mediated cholangiocyte proliferation and cholestatic liver injury has not been elucidated. Here we report that S1PR2 is the predominant S1PR expressed in cholangiocytes. Both TCA- and S1P-induced activation of ERK1/2 and AKT were inhibited by JTE-013, a specific antagonist of S1PR2, in cholangiocytes. In addition, TCA- and S1P-induced cell proliferation and migration were inhibited by JTE-013 and a specific shRNA of S1PR2 as well as chemical inhibitors of ERK1/2 and AKT in mouse cholangiocytes. In BDL mice, the expression of S1PR2 was upregulated in whole liver and cholangiocytes. S1PR2 deficiency significantly reduced BDL-induced cholangiocyte proliferation and cholestatic injury as indicated by significant reduction of inflammation and liver fibrosis in S1PR2−/− mice. Treatment of BDL mice with JTE-013 significantly reduced total bile acid levels in the serum and cholestatic liver injury. This study suggests that the CBA-induced activation of S1PR2-mediated signaling pathways plays a critical role in obstructive cholestasis and may represent a novel therapeutic target for cholestatic liver diseases. PMID:28120434
Wunsch, Ewa; Trottier, Jocelyn; Milkiewicz, Malgorzata; Raszeja-Wyszomirska, Joanna; Hirschfield, Gideon M; Barbier, Olivier; Milkiewicz, Piotr
2014-09-01
Ursodeoxycholic acid (UDCA) is no longer recommended for management of adult patients with primary sclerosing cholangitis (PSC). We undertook a prospective evaluation of UDCA withdrawal in a group of consecutive patients with PSC. Twenty six patients, all treated with UDCA (dose range: 10-15 mg/kg/day) were included. Paired blood samples for liver biochemistry, bile acids, and fibroblast growth factor 19 (FGF19) were collected before UDCA withdrawal and 3 months later. Liquid chromatography/tandem mass spectrometry was used for quantification of 29 plasma bile acid metabolites. Pruritus and health-related quality of life (HRQoL) were assessed with a 10-point numeric rating scale, the Medical Outcomes Study Short Form-36 (SF-36), and PBC-40 questionnaires. UDCA withdrawal resulted in a significant deterioration in liver biochemistry (increase of alkaline phosphatase of 75.6%; P<0.0001; gamma-glutamyl transpeptidase of 117.9%, P<0.0001; bilirubin of 50.0%, P<0.001; alanine aminotransferase of 63.9%, P<0.005; and aspartate aminotransferase of 45.0%, P<0.005) and increase of Mayo Risk Score for PSC (change from baseline of +0.5 point; P<0.003). Bile acid analysis revealed a significant decrease in lithocholic acid and its derivatives after UDCA withdrawal, but no effect on concentrations of primary bile acids aside from an increased accumulation of their taurine conjugates. After UDCA removal cholestatic parameters, taurine species of cholic acid and chenodeoxycholic acid correlated with serum FGF19 levels. No significant effect on HRQoL after UDCA withdrawal was observed; however, 42% of patients reported a deterioration in their pruritus. At 3 months, discontinuation of UDCA in patients with PSC causes significant deterioration in liver biochemistry and influences concentrations of bile acid metabolites. A proportion of patients report increased pruritus, but other short-term markers of quality of life are unaffected. © 2014 by the American Association for the Study of Liver Diseases.
Hirano, S; Masuda, N
1982-01-01
Peptostreptococcus productus strain b-52 (a human fecal isolate) and Eubacterium aerofaciens ATCC 25986 were found to contain NADP-dependent 7 beta-hydroxysteriod dehydrogenase activity. The enzyme was synthesized constitutively by both organisms, and the enzyme yields were suppressed by the addition of 0.5 mM 7 beta-hydroxy bile acid to the growth medium. Purification of the enzyme by chromatography resulted in preparations with 3.5 (P. productus b-52, on Sephadex G-200) and 1.8 (E. aerofaciens, on Bio-Gel A-1.5 M) times the activity of the crude cell extracts. A pH optimum of 9.8 and a molecular weight of approximately 53,000 were shown for the enzyme of strain b-52, and an optimum pH at 10.5 and a molecular weight of 45,000 was shown for that from strain ATCC 25986. Kinetic studies revealed that both enzyme preparations oxidized the 7 beta-hydroxy group in unconjugated and conjugated bile acids, a lower Km value being demonstrated with free bile acid than with glycine and taurine conjugates. No measureable activity against 3 alpha-, 7 alpha-, or 12 alpha-hydroxy groups was detected in either enzyme preparation. When tested with strain ATCC 25986, little 7 beta-hydroxy-steroid dehydrogenase activity was detected in cells grown in the presence of glucose in excess. The enzyme from strain b-52 was found to be heat labile (90% inactivation at 50 degrees C for 3 min) and highly sensitive to sulfhydryl inhibitors. PMID:6954878
Inherited Disorders of Bilirubin Clearance
Memon, Naureen; Weinberger, Barry I; Hegyi, Thomas; Aleksunes, Lauren M
2016-01-01
Inherited disorders of hyperbilirubinemia may be caused by increased bilirubin production or decreased bilirubin clearance. Reduced hepatic bilirubin clearance can be due to defective 1) unconjugated bilirubin uptake and intrahepatic storage, 2) conjugation of glucuronic acid to bilirubin (e.g. Gilbert syndrome, Crigler-Najjar syndrome, Lucey-Driscoll syndrome, breast milk jaundice), 3) bilirubin excretion into bile (Dubin-Johnson syndrome), or 4) conjugated bilirubin re-uptake (Rotor syndrome). In this review, the molecular mechanisms and clinical manifestations of these conditions are described, as well as current approaches to diagnosis and therapy. PMID:26595536
Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jie, E-mail: JLiu@kumc.edu; Zunyi Medical College, Zunyi 563003; Lu, Yuan-Fu
2013-11-01
Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by livermore » histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.« less
Characterization of biliary conjugates of 4,4'-methylenedianiline in male versus female rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kan; Cole, Richard B.; Santa Cruz, Vicente
2008-10-15
4,4'-Methylenedianiline (4,4'-diaminodiphenylmethane; DAPM) is an aromatic diamine used in the production of numerous polyurethane foams and epoxy resins. Previous studies in rats revealed that DAPM initially injures biliary epithelial cells of the liver, that the toxicity is greater in female than in male rats, and that the toxic metabolites of DAPM are excreted into bile. Since male and female rats exhibit differences in the expression of both phase I and phase II enzymes, our hypothesis was that female rats either metabolize DAPM to more toxic metabolites or have a decreased capacity to conjugate metabolites to less toxic intermediates. Our objectivemore » was thus to isolate, characterize, and quantify DAPM metabolites excreted into bile in both male and female bile duct-cannulated Sprague Dawley rats. The rats were gavaged with [{sup 14}C]-DAPM, and the collected bile was subjected to reversed-phase HPLC with radioisotope detection. Peaks eluting from HPLC were collected and analyzed using electrospray MS and NMR spectroscopy. HPLC analysis indicated numerous metabolites in both sexes, but male rats excreted greater amounts of glutathione and glucuronide conjugates than females. Electrospray MS and NMR spectra of HPLC fractions revealed that the most prominent metabolite found in bile of both sexes was a glutathione conjugate of an imine metabolite of a 4'-nitroso-DAPM. Seven other metabolites were identified, including acetylated, cysteinyl-glycine, glutamyl-cysteine, glycine, and glucuronide conjugates. While our prior studies demonstrated increased covalent binding of DAPM in the liver and bile of female compared to male rats, in these studies, SDS-PAGE with autoradiography revealed 4-5 radiolabeled protein bands in the bile of rats treated with [{sup 14}C]-DAPM. In addition, these bands were much more prominent in female than in male rats. These studies thus suggest that a plausible mechanism for the increased sensitivity of female rats to DAPM toxicity may be decreased conjugation of reactive DAPM metabolites, leading to greater levels of protein adduct formation.« less
Zhu, Andy Z. X.; Johnson, Mike; Yu, Shaoxia; Moriya, Yuu; Ebihara, Takuya; Csizmadia, Vilmos; Grieves, Jessica; Paton, Martin; Liao, Mingxiang; Gemski, Christopher; Pan, Liping; Vakilynejad, Majid; Dragan, Yvonne P.; Chowdhury, Swapan K.; Kirby, Patrick J.
2017-01-01
Abstract Fasiglifam (TAK-875), a Free Fatty Acid Receptor 1 (FFAR1) agonist in development for the treatment of type 2 diabetes, was voluntarily terminated in phase 3 due to adverse liver effects. A mechanistic investigation described in this manuscript focused on the inhibition of bile acid (BA) transporters as a driver of the liver findings. TAK-875 was an in vitro inhibitor of multiple influx (NTCP and OATPs) and efflux (BSEP and MRPs) hepatobiliary BA transporters at micromolar concentrations. Repeat dose studies determined that TAK-875 caused a dose-dependent increase in serum total BA in rats and dogs. Additionally, there were dose-dependent increases in both unconjugated and conjugated individual BAs in both species. Rats had an increase in serum markers of liver injury without correlative microscopic signs of tissue damage. Two of 6 dogs that received the highest dose of TAK-875 developed liver injury with clinical pathology changes, and by microscopic analysis had portal granulomatous inflammation with neutrophils around a crystalline deposition. The BA composition of dog bile also significantly changed in a dose-dependent manner following TAK-875 administration. At the highest dose, levels of taurocholic acid were 50% greater than in controls with a corresponding 50% decrease in taurochenodeoxycholic acid. Transporter inhibition by TAK-875 may cause liver injury in dogs through altered bile BA composition characteristics, as evidenced by crystalline deposition, likely composed of test article, in the bile duct. In conclusion, a combination of in vitro and in vivo evidence suggests that BA transporter inhibition could contribute to TAK-875-mediated liver injury in dogs. PMID:28108665
NASA Astrophysics Data System (ADS)
Rzagalinski, Ignacy; Hainz, Nadine; Meier, Carola; Tschernig, Thomas; Volmer, Dietrich A.
2018-02-01
Bile acids (BAs) play two vital roles in living organisms, as they are involved in (1) the secretion of cholesterol from liver, and (2) the lipid digestion/absorption in the intestine. Abnormal bile acid synthesis or secretion can lead to severe liver disorders. Even though there is extensive literature on the mass spectrometric determination of BAs in biofluids and tissue homogenates, there are no reports on the spatial distribution in the biliary network of the liver. Here, we demonstrate the application of high mass resolution/mass accuracy matrix-assisted laser desorption/ionization (MALDI)-Fourier-transform ion cyclotron resonance (FTICR) to MS imaging (MSI) of BAs at high spatial resolutions (pixel size, 25 μm). The results show chemical heterogeneity of the mouse liver sections with a number of branching biliary and blood ducts. In addition to ion signals from deprotonation of the BA molecules, MALDI-MSI generated several further intense signals at larger m/z for the BAs. These signals were spatially co-localized with the deprotonated molecules and easily misinterpreted as additional products of BA biotransformations. In-depth analysis of accurate mass shifts and additional electrospray ionization and MALDI-FTICR experiments, however, confirmed them as proton-bound dimers. Interestingly, dimers of bile acids, but also unusual mixed dimers of different taurine-conjugated bile acids and free taurine, were identified. Since formation of these complexes will negatively influence signal intensities of the desired [M - H]- ions and significantly complicate mass spectral interpretations, two simple broadband techniques were proposed for non-selective dissociation of dimers that lead to increased signals for the deprotonated BAs. [Figure not available: see fulltext.
Metabolism of isotretinoin. Biliary excretion of isotretinoin glucuronide in the rat.
Meloche, S; Besner, J G
1986-01-01
The biliary metabolites of isotretinoin were examined after iv administration of 4-20-mg/kg doses to vitamin A-normal bile duct-cannulated rats. Analysis of bile by reverse phase high performance liquid chromatography showed that injection of isotretinoin is followed by a rapid excretion of metabolites in bile. Isotretinoin glucuronide was identified as the major metabolite in bile. A specific high performance liquid chromatography method based on the assay of generated isotretinoin in beta-glucuronidase-treated bile was developed for the determination of isotretinoin glucuronide in bile samples. The excretion rate of isotretinoin glucuronide increased rapidly to reach a maximum 55 min after dosing and then declined exponentially. After 330 min of collection, biliary excretion of isotretinoin glucuronide was almost complete, and the metabolite accounted for 34.8-37.9% of the dose. These results indicate that conjugation with glucuronic acid represents a major pathway for the metabolism of pharmacological doses of isotretinoin. The maximum excretion rate of isotretinoin glucuronide in bile increased in a linear manner with the dose of isotretinoin, and no delay was observed after the larger doses. These data suggest that glucuronidation and biliary excretion are not saturated at high pharmacological doses of isotretinoin.
He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro
2012-01-01
Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, (1)H NMR and (13)C NMR.
He, Jiao; Li, Jing; Sun, Wenji; Zhang, Tianyou; Ito, Yoichiro
2011-01-01
Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was developed for preparative isolation and purification of three glycine-conjugated cholic acids, glycochenodeoxycholic acid (GCDCA), glycohyodeoxycholic acid (GHDCA) and glycohyocholic acid (GHCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The separation was performed with a two-phase solvent system consisted of chloroform-methanol-water-acetic acid (65:30:10:1.5, v/v/v/v) by eluting the lower phase in the head-to-tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 2 ml/min and 25 °C, respectively. In a single operation, 33 mg of GCDCA, 38 mg of GHDCA and 23 mg of GHCA were obtained from 200 mg of crude extract with the purity of 95.65%, 96.72% and 96.63%, respectively, in one step separation. The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three glycine-conjugated cholic acids were identified by ESI-MS, 1H NMR and 13C NMR. PMID:23008527
Takesada, H; Matsuda, K; Ohtake, R; Mihara, R; Ono, I; Tanaka, K; Naito, M; Yatagai, M; Suzuki, E
1996-10-01
Molecular structures of 10 metabolites, which were isolated from urine (M1-M8) or bile (M9 and M10) after administration of AY4166 (N-(trans-4-isopropylcyclohexanecarbonyl)-D-phenylalanine), a novel amino acid derivative with hypoglycemic activity, have been elucidated by mass spectrometry and nuclear magnetic resonance. Four of these (M1, M2, M3 and M8) were determined to be hydroxyl derivatives of AY4166, two (M9 and M10) were carboxylate derivatives via oxidization of M2 and M3, three (M4, M5 and M6) were glucronic acid conjugates and the other (M7) was a dehydro derivative. The estimated structures for M1, M2, M3, M7, M8, M9 and M10 were confirmed by the coincidence of the retention time of HPLC, MS and 1H NMR spectra between the isolated metabolites and authentic synthesized substances. For three glucronic acid conjugates, M4, M5 and M6, structural confirmation was performed by a selective enzymatic digestion with beta-glucronidase. M1 and M2/3 were about 5-6 and 3 times less potent than AY4166, respectively, and M7 was almost as potent as AY4166.
Ishizuka, T; Komiya, I; Hiratsuka, A; Watabe, T
1990-06-01
Rats orally given radioactive Clebopride [[14C]CP; N-(1'-benzyl-4'-piperidyl)-2-[14C]methoxy-4-amino-5-chlorobenzamide++ +], an antiulcer agent, excreted a novel type of ornithine (Orn)-GSH double conjugate in the bile as a major metabolite [( 14C]BMCP), corresponding to 18% of the dose. The present study provides the first evidence for Orn conjugation of a xenobiotic in mammals and demonstrates that the structure of the radioactive conjugate differs fundamentally from those known in birds and reptiles. The structure of the biliary metabolite, [14C]BMCP, purified to homogeneity by silica gel thin layer and reverse phase high pressure liquid chromatography, was elucidated as S-[2-ornithylamino-4-[14C]methoxy-5-(1'-methyl-4'-piperidylamin o) carboxyphenyl]glutathione, based mainly on the following facts: 1) BMCP showed a protonated molecular ion (M + H)+ peak at m/z 683 in the secondary ion mass spectrum and 2) [14C]BMCP afforded Orn, glutamic acid, glycine, S-(2-amino-4-[14C]methoxy-5-carboxyphenyl)cysteine [( 14C]AMCC), and 1-methyl-4-aminopiperidine (MAP) quantitatively, in an equal molar ratio, by complete hydrolysis with peptidase. Thus, BMCP was a metabolite with three enzymatically hydrolyzable amide bonds in addition to the one existing originally in the parent structure of the drug, which produces MAP by peptic digestion. Of the three additional amide bonds of BMCP, one was a novel type of bond formed by condensation of the alpha-carboxylic acid group of Orn with the primary aromatic amino group of the drug and the other two were in the S-glutathionyl residue, substituted for the chlorine atom vicinal to the Orn-conjugating primary amino group in the aromatic ring and affording glutamic acid, glycine, and the S-cysteine conjugate AMCC by hydrolysis of BMCP with the peptidase. Substitution of a methyl group for the benzyl group at the piperidine ring nitrogen atom, leading to the formation of MAP by peptic digestion, also occurred during metabolism of CP to BMCP.
Terasaki, Masaru; Totsuka, Yukari; Nishimura, Koichi; Mukaisho, Ken-Ichi; Chen, Kuan-Hao; Hattori, Takanori; Takamura-Enya, Takeji; Sugimura, Takashi; Wakabayashi, Keiji
2008-09-01
The endogenous DNA adducts O(6)-carboxymethyl-deoxyguanosine (O(6)-CM-dG) and 3-ethanesulfonic acid-deoxycytidine (3-ESA-dC) are produced from N-nitroso bile acid conjugates, such as N-nitrosoglycocholic acid (NO-GCA) and N-nitrosotaurocholic acid (NO-TCA), respectively. Formation of these DNA adducts in vivo was here analyzed by 32P-postlabeling in the glandular stomach of rats subjected to duodenal content reflux surgery. In this model, all duodenal contents, including bile acid conjugates, flow back from the jejunum into the gastric corpus. The levels of O(6)-CM-dG found at 4 and 8 weeks after surgery were 40.9 +/- 9.4 and 56.3 +/- 3.2 per 10(8) nucleotides, respectively, whereas the sham operation groups had values of 5.8 +/- 2.3 and 5.9 +/- 0.5 per 10(8) nucleotides. Moreover, adduct spots corresponding to 3-ESA-dC were detected in both duodenal reflux and sham operation groups and levels in the duodenal reflux groups were around four-fold elevated at 11.2 +/- 1.0 and 8.9 +/- 1.0 per 10(8) nucleotides after 4 and 8 weeks, respectively. When the duodenal reflux animals were treated with a nitrite trapping agent, thiazolidine- 4-carboxylic acid (thioproline, TPRO), the levels of O(6)-CM-dG and 3-ESA-dC were reduced to the same levels as in the sham operation animals. These observations suggest that NO-TCA and NO-GCA are formed by nitrosation of glycocholic acid and taurocholic acid, respectively, and these nitroso compounds produce DNA adducts in the glandular stomach of rats subjected to duodenal content reflux surgery.
Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F.; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida
2018-01-01
Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time– and bile-acid-concentration–dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune-mediated mechanism, are highly associated with potent inhibition of bile salt transport. PMID:27000539
Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida
2016-08-05
Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune-mediated mechanism, are highly associated with potent inhibition of bile salt transport. Published by Elsevier Ireland Ltd.
Omega-3 free fatty acids inhibit tamoxifen-induced cell apoptosis.
Wu, Shufan; Guo, Yang; Wu, Yikuan; Zhu, Shenglong; He, Zhao; Chen, Yong Q
2015-04-03
Fish oil, which contains omega-3 fatty acids mainly in the form of triglycerides, has benefits for reducing breast cancer risk, similar to tamoxifen action. However, it remains to be elucidated whether the combination of omega-3 free fatty acid (ω-3FFA) with tamoxifen leads to improved treatment in breast cancer. In this study, we observed that ω-3FFA induces MCF-7 cell apoptosis to suppress cell growth. The treatment of breast cancer cells with ω-3FFA attenuated tamoxifen-induced cell apoptosis. ω-3FFA and tamoxifen significantly increased Erk1/2 and Akt phosphorylation levels in a dose and time dependent manner. Compared to ω-3FFA alone, the combination of tamoxifen with ω-3FFA significantly increased Erk1/2 and Akt phosphorylation levels. Because Erk1/2 and Akt activation has been linked to tamoxifen-related anti-estrogen resistance in breast cancer patients, these results indicate that ω-3FFA may interfere with the effects of tamoxifen in the prevention of breast cancer risk. Copyright © 2015 Elsevier Inc. All rights reserved.
He, Jiao; Zhang, Yongmin; Ito, Yoichiro; Sun, Wenji
2011-01-01
Coupled with evaporative light scattering detection, a high-speed counter-current chromatography (HSCCC) method was applied to the separation and purification of three tauro-conjugated cholic acids of taurochenodeoxycholic acid (TCDCA), taurohyodeoxycholic acid (THDCA) and taurohyocholic acid (THCA) from Pulvis Fellis Suis (Pig gallbladder bile) for the first time. The two-phase solvent system composed of chloroform-methanol-water-acetic acid (4:4:2:0.3, v/v/v/v) was selected for the one-step separation where the lower phase was used as the mobile phase in the head to tail elution mode. The revolution speed of the separation column, flow rate of the mobile phase and separation temperature were 800 rpm, 1.5 ml/min and 25°C respectively. From 100 mg of the crude extract, 10.2 mg of TCDCA, 11.8 mg of THDCA and 5.3 mg of THCA were obtained with the purity of 94.6%, 96.5% and 95.4%, respectively. in one step separation The HSCCC fractions were analyzed by high-performance liquid chromatography (HPLC) and the structures of the three tauro-conjugated cholic acids were identified by ESI-MS, (1)H NMR and (13)C NMR.
Steinacher, Daniel; Claudel, Thierry; Trauner, Michael
2017-01-01
Non-alcoholic fatty liver disease is one of the most rapidly rising clinical problems in the 21st century. So far no effective drug treatment has been established to cure this disease. Bile acids (BAs) have a variety of signaling properties, which can be used therapeutically for modulating hepatic metabolism and inflammation. A side-chain shorted derivative of ursodeoxycholic acid (UDCA) is 24 nor-ursodeoxycholic acid (NorUDCA) and it represents a new class of drugs for treatment of liver diseases. NorUDCA has unique biochemical and therapeutic properties, since it is relatively resistant to conjugation with glycine or taurine compared to UDCA. NorUDCA undergoes cholehepatic shunting, resulting in ductular targeting, bicarbonate-rich hypercholeresis, and cholangiocyte protection. Furthermore, it showed anti-fibrotic, anti-inflammatory, and anti-lipotoxic properties in several animal models. As such, NorUDCA is a promising new approach in the treatment of cholestatic and metabolic liver diseases. This review is a summary of current BA-based therapeutic approaches in the treatment of the fatty liver disease. © 2017 S. Karger AG, Basel.
Agarwal, Devesh S; Anantaraju, Hasitha Shilpa; Sriram, Dharmarajan; Yogeeswari, Perumal; Nanjegowda, Shankara H; Mallu, P; Sakhuja, Rajeev
2016-03-01
A series of bile acid (Cholic acid and Deoxycholic acid) aryl/heteroaryl amides linked via α-amino acid were synthesized and tested against 3 human cancer cell-lines (HT29, MDAMB231, U87MG) and 1 human normal cell line (HEK293T). Some of the conjugates showed promising results to be new anticancer agents with good in vitro results. More specifically, Cholic acid derivatives 6a (1.35 μM), 6c (1.41 μM) and 6m (4.52 μM) possessing phenyl, benzothiazole and 4-methylphenyl groups showed fairly good activity against the breast cancer cell line with respect to Cisplatin (7.21 μM) and comparable with respect to Doxorubicin (1 μM), while 6e (2.49μM), 6i (2.46 μM) and 6m (1.62 μM) showed better activity against glioblastoma cancer cell line with respect to both Cisplatin (2.60 μM) and Doxorubicin (3.78 μM) drugs used as standards. Greater than 65% of the compounds were found to be safer on human normal cell line. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stehly, G.R.; Hayton, W.L.
1988-08-01
The glucuronide and sulfate conjugates of pentachlorophenol (PCP) that were present in the bile and exposure water of goldfish (Carassius auratus) were used to develop methodology to quantify PCP and its metabolites. Reverse phase HPLC with radioactivity detection separated PCP and its metabolites, and was used to verify a method of quantification that used differential extraction and scintillation counting. Extractions of aqueous phase at pH 2 or 8, with butanol, ethyl acetate, or ether indicated that ether at pH 8 best separated PCP from its metabolites. The sulfate conjugate of PCP was the major metabolite produced when goldfish were exposedmore » to 125 micrograms UC-PCP/l. It was present primarily in the exposure water, but also appeared in the bile.« less
Tsuchiya, Youichi; Noguchi, Takao; Yoshihara, Daisuke; Roy, Bappaditya; Yamamoto, Tatsuhiro; Shinkai, Seiji
2016-11-29
Control of higher-order polymer structures attracts a great deal of interest for many researchers when they lead to the development of materials having various advanced functions. Among them, conjugated polymers that are useful as starting materials in the design of molecular wires are particularly attractive. However, an equilibrium existing between isolated chains and bundled aggregates is inevitable and has made their physical properties very complicated. As an attempt to simplify this situation, we previously reported that a polymer chain of a water-soluble polythiophene could be isolated through complexation with a helix-forming polysaccharide. More recently, a covalently self-threading polythiophene was reported, the main chain of which was physically protected from self-folding and chain-chain π-stacking. In this report, we wish to report a new strategy to isolate a water-soluble polythiophene and to control its higher-order structure by a supramolecular approach: that is, among a few bile acids, lithocholate can form stoichiometric complexes with cationic polythiophene to isolate the polymer chain, and the higher-order structure is changeable by the molar ratio. The optical and morphological studies have been thoroughly performed, and the resultant complex has been applied to the selective recognition of two AMP structural isomers.
Cytosol-nucleus traffic and colocalization with FXR of conjugated bile acids in rat hepatocytes.
Monte, Maria J; Rosales, Ruben; Macias, Rocio I R; Iannota, Valeria; Martinez-Fernandez, Almudena; Romero, Marta R; Hofmann, Alan F; Marin, Jose J G
2008-07-01
Bile acids (BAs) are natural ligands of nuclear receptors, in particular farnesoid X receptor (FXR). Whether, in addition to protein-mediated cytosolic-nuclear BA translocation, other mechanisms are involved in the access of BAs to nuclear FXR was investigated. When rat hepatocytes were incubated with radiolabeled taurocholic acid, taurodeoxycholic acid, taurochenodeoxycholic acid, and tauroursodeoxycholic acid, their nuclear accumulation was proportional to their intracellular levels. With the use of flow cytometry analysis, the accumulation by nuclei isolated from rat liver cells was found to differ for several fluorescent compounds of similar molecular weight and different charge, including fluorescein-tagged BAs [cholylglycyl amidofluorescein (CGamF), ursodeoxycholylglycyl amidofluorescein, or chenodeoxycholylglycyl amidofluorescein]. When we varied nuclear volume by incubation with different sucrose concentrations, a similar relationship between nuclear volume and content of FITC and 4-kDa FITC-dextran was found. In contrast, this relationship was markedly lower for CGamF. Confocal microscopy studies revealed that fluorescein-tagged BAs, but also FITC or 10-kDa FITC-dextran were found in the nuclear envelope and concentrated in regions where DNA was less densely packed. In contrast to the cytosolic subcellular localization of peroxisome proliferator-activated receptor-alpha, FXR and nucleolin (a marker of transcriptional active chromatin) were also localized by immunoreactivity in these intranuclear regions. In conclusion, although intranuclear levels of small organic molecules including conjugated BAs depend on their concentrations in the extranuclear space, the existence of certain molecular selectivity (not strictly dependent on molecular weight or charge) suggests that, in addition to simple diffusional exchange, other mechanisms may be also involved in determining their overall nuclear content in regions where these compounds coincide and may interact with nuclear receptors such as FXR.
Bile salt induced back diffusion of hydrogen ions across gastric mucosa in man. Fact or fiction?
Ivey, K J
1981-01-01
We studied the effect of 5.5 mM bile salts, consisting of taurine conjugates in 5 normal subjects. Bile salts caused a significant increase in H+ loss from and Na+ movement into the gastric lumen (controls 1.5 mEq H+, 1.5 mEq Na+; bile salts -3.1 mEq H+ (p less than 0.001), Na+ 2.5 mEq (p less than 0.01) per 15 min.) To determine the effect of acid secretion, studies were repeated after i.v. atropine 2 mg/70 kg b.w. Atropine reduced net H+ flux to -0.2 mEq and Na+ gain to 0.9 mEq. When the bile salt studies were repeated after i.v. atropine, net H+ loss was increased to -5.4 mEq H+, significantly greater than with bile salts alone; corresponding Na+ gain was 3.2 mEq/15 min. The volume of fluid secreted was 25.0 ml in the bile salt study compared with 14.0 ml in the atropine and bile salt study. Even if all the additional volume 'secreted' (14 ml) were bicarbonate from the stomach or pancreatic juice with a concentration of 145 mEq/liter, it could account for a loss of only 2.0 mEq H+. In conclusion, atropine with bile salts is associated with a loss of H+ ions too great to be accounted for by bicarbonate neutralization. We conclude that back diffusion of H+ ions is the most likely explanation of H+ loss after bile salts in man.
Bile Acid Metabolism in Liver Pathobiology
Chiang, John Y. L.; Ferrell, Jessica M.
2018-01-01
Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders. PMID:29325602
Nuzzo, F; Gallo, C; Lastoria, S; Di Maio, M; Piccirillo, M C; Gravina, A; Landi, G; Rossi, E; Pacilio, C; Labonia, V; Di Rella, F; Bartiromo, A; Buonfanti, G; De Feo, G; Esposito, G; D'Aniello, R; Maiolino, P; Signoriello, S; De Maio, E; Tinessa, V; Colantuoni, G; De Laurentiis, M; D'Aiuto, M; Di Bonito, M; Botti, G; Giordano, P; Daniele, G; Morabito, A; Normanno, N; de Matteis, A; Perrone, F
2012-08-01
To measure bone mineral density (BMD) reduction produced by letrozole as compared with tamoxifen and the benefit of the addition of zoledronic acid. A phase 3 trial comparing tamoxifen, letrozole or letrozole+zoledronic acid in patients with hormone receptor-positive early breast cancer was conducted; triptorelin was given to premenopausal patients. Two comparisons were planned: letrozole versus tamoxifen and letrozole+zoledronic acid versus letrozole. Primary end point was the difference in 1-year change of T-score at lumbar spine (LTS) measured by dual energy X-ray absorptiometry scan. Out of 483 patients enrolled, 459 were available for primary analyses. Median age was 50 (range 28-80). The estimated mean difference (95% confidence interval [CI]) in 1-year change of LTS was equal to -0.30 (95% CI -0.44 to -0.17) in the letrozole versus tamoxifen comparison (P<0.0001) and to +0.60 (95% CI +0.46 to +0.77) in the letrozole+zoledronic acid versus letrozole comparison (P<0.0001). Bone damage by letrozole decreased with increasing baseline body mass index in premenopausal, but not postmenopausal, patients (interaction test P=0.004 and 0.47, respectively). In the HOBOE (HOrmonal BOne Effects) trial, the positive effect of zoledronic acid on BMD largely counteracts damage produced by letrozole as compared with tamoxifen. Letrozole effect is lower among overweight/obese premenopausal patients.
Lucangioli, S E; Carducci, C N; Tripodi, V P; Kenndler, E
2001-12-25
The capacity factors of 16 anionic cholates (from six bile salts, including their glyco- and tauro-conjugates) were determined in a micellar electrokinetic chromatography (MEKC) system consisting of buffer, pH 7.5 (phosphate-boric acid; 20 mmol/l) with 50 mmol/l sodium dodecyl sulfate (SDS) as micelle former and 10% acetonitrile as organic modifier. The capacity factors of the fully dissociated, negatively charged analytes (ranging between 0.2 and 60) were calculated from their mobilities, with a reference background electrolyte (BGE) without SDS representing "free" solution. For comparison, the capacity factors were derived for a second reference BGE where the SDS concentration (5 mmol/l) is close to the critical micellar concentration (CMC). The capacity factors are compared with the logarithm of the octanol-water partition coefficient, log Pow, as measure for lipophilicity. Clear disagreement between these two parameters is found especially for epimeric cholates with the hydroxy group in position 7. In contrast, fair relation between the capacity factor of the analytes and their CMC is observed both depending strongly on the orientation of the OH groups, and tauro-conjugation as well. In this respect the retention behaviour of the bile salts in MEKC seems to reflect their role as detergents in living systems, and might serve as model parameter beyond lipophilicity.
NASA Astrophysics Data System (ADS)
Jain, Sankalp; Grandits, Melanie; Richter, Lars; Ecker, Gerhard F.
2017-06-01
The bile salt export pump (BSEP) actively transports conjugated monovalent bile acids from the hepatocytes into the bile. This facilitates the formation of micelles and promotes digestion and absorption of dietary fat. Inhibition of BSEP leads to decreased bile flow and accumulation of cytotoxic bile salts in the liver. A number of compounds have been identified to interact with BSEP, which results in drug-induced cholestasis or liver injury. Therefore, in silico approaches for flagging compounds as potential BSEP inhibitors would be of high value in the early stage of the drug discovery pipeline. Up to now, due to the lack of a high-resolution X-ray structure of BSEP, in silico based identification of BSEP inhibitors focused on ligand-based approaches. In this study, we provide a homology model for BSEP, developed using the corrected mouse P-glycoprotein structure (PDB ID: 4M1M). Subsequently, the model was used for docking-based classification of a set of 1212 compounds (405 BSEP inhibitors, 807 non-inhibitors). Using the scoring function ChemScore, a prediction accuracy of 81% on the training set and 73% on two external test sets could be obtained. In addition, the applicability domain of the models was assessed based on Euclidean distance. Further, analysis of the protein-ligand interaction fingerprints revealed certain functional group-amino acid residue interactions that could play a key role for ligand binding. Though ligand-based models, due to their high speed and accuracy, remain the method of choice for classification of BSEP inhibitors, structure-assisted docking models demonstrate reasonably good prediction accuracies while additionally providing information about putative protein-ligand interactions.
Berman, Marvin D; Carey, Martin C
2015-01-01
Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. Copyright © 2015 the American Physiological Society.
Berman, Marvin D.
2014-01-01
Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. PMID:25359538
McGinn, B J; Morrison, J D
2016-06-28
Experiments have been undertaken to determine the extent to which cholic acid conjugates of insulin were absorbed from the small intestine of anaesthetised rats by means of the bile salt transporters of the ileum. The measure used to assess the absorption of the cholyl-insulins was the amount of hypoglycaemia following infusion into the small intestine. Control experiments involving infusion of natural insulin into the ileum showed either nil absorption or absorption of a small amount of insulin as indicated by transient dip in the blood glucose concentration. However, when insulin was co-infused with the bile salt taurocholate, this was followed by a marked hypoglycaemic response which was specific to the ileum and did not occur on infusion into the jejunum. When the two cholyl conjugates of insulin were tested viz. B(29)-Lys-cholyl-insulin and B(1)-Phe-cholyl-insulin, both were biologically active as indicated by hypoglycaemic responses on systemic injection, though their potency was about 40% of that of natural insulin. While there was no evidence for the absorption of B(29)-Lys-cholyl-insulin when infused into the ileum, B(1)-Phe-cholyl-insulin did cause a long lasting hypoglycaemic response, indicating that absorption had occurred. Since the hypoglycaemic response was blocked on co-infusion with taurocholate and was absent for infusion of the conjugate into the jejunum, these results were taken as evidence that B(1)-Phe-cholyl-insulin had been taken up by the ileal bile salt transporters. This would indicate that B(1)-Phe-cholyl-insulin is worthy of further investigation for use in an oral insulin formulation. Copyright © 2016. Published by Elsevier B.V.
2010-01-01
Background Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion and in influencing the intestinal microflora. We greatly extend prior surveys of bile salt diversity in both reptiles and mammals, including analysis of 8,000 year old human coprolites and coprolites from the extinct Shasta ground sloth (Nothrotherium shastense). Results While there is significant variation of bile salts across species, bile salt profiles are generally stable within families and often within orders of reptiles and mammals, and do not directly correlate with differences in diet. The variation of bile salts generally accords with current molecular phylogenies of reptiles and mammals, including more recent groupings of squamate reptiles. For mammals, the most unusual finding was that the Paenungulates (elephants, manatees, and the rock hyrax) have a very different bile salt profile from the Rufous sengi and South American aardvark, two other mammals classified with Paenungulates in the cohort Afrotheria in molecular phylogenies. Analyses of the approximately 8,000 year old human coprolites yielded a bile salt profile very similar to that found in modern human feces. Analysis of the Shasta ground sloth coprolites (approximately 12,000 years old) showed the predominant presence of glycine-conjugated bile acids, similar to analyses of bile and feces of living sloths, in addition to a complex mixture of plant sterols and stanols expected from an herbivorous diet. Conclusions The bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution, with some bile salt modifications only found within single groups such as marsupials. Analysis of the evolution of bile salt structures in different species provides a potentially rich model system for the evolution of a complex biochemical pathway in vertebrates. Our results also demonstrate the stability of bile salts in coprolites preserved in arid climates, suggesting that bile salt analysis may have utility in selected paleontological research. PMID:20444292
Li, Yan; He, Hai; Jia, Xinru; Lu, Wan-Liang; Lou, Jinning; Wei, Yen
2012-05-01
A pH-sensitive dual-targeting drug carrier (G4-DOX-PEG-Tf-TAM) was synthesized with transferrin (Tf) conjugated on the exterior and Tamoxifen (TAM) in the interior of the fourth generation PAMAM dendrimers for enhancing the blood-brain barrier (BBB) transportation and improving the drug accumulation in the glioma cells. It was found that, on average, 7 doxorubicine (DOX) molecules, over 30 PEG(1000) and PEG(2000) chains and one Tf group were bonded on the periphery of each G4 PAMAM dendrimer, while 29 TAM molecules were encapsulated into the interior of per dendrimer. The pH-triggered DOX release was 32% at pH 4.5 and 6% at pH 7.4, indicating a comparatively fast drug release at weak acidic condition and stable state of the carrier at physiological environment. The in vitro assay of the drug transport across the BBB model showed that G4-DOX-PEG-Tf-TAM exhibited higher BBB transportation ability with the transporting ratio of 6.06% in 3 h. The carrier was internalized into C6 glioma cells upon crossing the BBB model by the coactions of TfR-mediated endocytosis and the inhibition effect of TAM to the drug efflux transports. Moreover, it also displayed the in vitro accumulation of DOX in the avascular C6 glioma spheroids made the tumor volume effectively reduced. Copyright © 2012 Elsevier Ltd. All rights reserved.
Characteristics of lipid substances activating the ileal brake in the rat.
Brown, N J; Read, N W; Richardson, A; Rumsey, R D; Bogentoft, C
1990-01-01
Studies were carried out in 36 adult male rats to determine the characteristics of lipid substances which, after infusion into the ileum, slow the stomach to caecum transit time of the head of a bean meal in the rat. Stomach to caecum transit time was measured by environmental hydrogen analysis. Ileal infusion of a range of free fatty acids including petroselinic, oleic, myristoleic, erucic, linoleic, and linolenic all significantly slowed stomach to caecum transit time, as did the detergents (sodium bis (2-ethyl hexyl) sulphosuccinate and sodium linoleyl sulphate), the triglyceride corn oil, and the phospholipid lecithin. Although the lipid soluble deconjugated bile acid deoxycholic acid slowed stomach to caecum transit time, the water soluble conjugated bile acid taurocholic acid accelerated it. Infusion of the lipid alcohol oleyl alcohol and the calcium chelating agent disodium edetate (EDTA) into the ileum did not delay the passage of the meal through the stomach and small intestine. The diversity of lipid substances activating the ileal brake suggest a nonspecific effect by lipid soluble substances that can penetrate cell membranes. The lack of effect of EDTA suggested that calcium binding was not important. PMID:2128071
New insights into bile acid malabsorption.
Johnston, Ian; Nolan, Jonathan; Pattni, Sanjeev S; Walters, Julian R F
2011-10-01
Bile acid malabsorption occurs when there is impaired absorption of bile acids in the terminal ileum, so interrupting the normal enterohepatic circulation. The excess bile acids in the colon cause diarrhea, and treatment with bile acid sequestrants is beneficial. The condition can be diagnosed with difficulty by measuring fecal bile acids, or more easily by retention of selenohomocholyltaurine (SeHCAT), where this is available. Chronic diarrhea caused by primary bile acid diarrhea appears to be common, but is under-recognized where SeHCAT testing is not performed. Measuring excessive bile acid synthesis with 7α-hydroxy-4-cholesten-3-one may be an alternative means of diagnosis. It appears that there is no absorption defect in primary bile acid diarrhea but, instead, an overproduction of bile acids. Fibroblast growth factor 19 (FGF19) inhibits hepatic bile acid synthesis. Defective production of FGF19 from the ileum may be the cause of primary bile acid diarrhea.
Tamoxifen protects male mice nigrostriatal dopamine against methamphetamine-induced toxicity.
Bourque, Mélanie; Liu, Bin; Dluzen, Dean E; Di Paolo, Thérèse
2007-11-01
The selective estrogen receptor modulator tamoxifen and estradiol were shown to protect nigrostriatal dopamine concentration loss by methamphetamine in female mice whereas male mice were protected only by tamoxifen. The present study examined the protective properties of tamoxifen in male mice on several nigrostriatal dopaminergic markers and body temperature. Intact male mice were administered 12.5 or 50 microg tamoxifen 24 h before methamphetamine treatment. Basal body temperatures of male mice remained unchanged by the tamoxifen treatment. Methamphetamine reduced striatal dopamine and its metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid concentrations, striatal and substantia nigra dopamine and vesicular monoamine transporter specific binding as well substantia nigra dopamine and vesicular monoamine transporter mRNA levels and increased striatal preproenkephalin mRNA levels. These methamphetamine effects were not altered by 12.5 microg tamoxifen except for increased striatal dopamine metabolites and turnover. Tamoxifen at 50 microg reduced the methamphetamine effect on striatal dopamine concentration, dopamine transporter specific binding and prevented the increase in preproenkephalin mRNA levels; in the substantia nigra tamoxifen prevented the decrease of dopamine transporter mRNA levels. The present results show a tamoxifen dose-dependent prevention of loss of various dopaminergic markers against methamphetamine-induced toxicity in male mice. Since this is the only known hormonal protection of male mice against methamphetamine toxicity, these findings provide important new information on specific parameters of nigrostriatal dopaminergic function preserved by tamoxifen.
No significant effect of the SLCO1B1 polymorphism on the pharmacokinetics of ursodeoxycholic acid.
Xiang, Xiaoqiang; Vakkilainen, Juha; Backman, Janne T; Neuvonen, Pertti J; Niemi, Mikko
2011-11-01
To investigate possible effects of the SLCO1B1 polymorphism on the pharmacokinetics of ursodeoxycholic acid (UDCA) and its metabolites in healthy volunteers. In a crossover study with two phases, 15 healthy volunteers with the SLCO1B1*1A/*1A genotype, seven with the *1B/*1B genotype, and five with the *15/*15 or *5/*15 genotype ingested placebo or a single 150-mg dose of UDCA. Plasma concentrations of bile acids and their biosynthesis marker were determined up to 24 h post-ingestion by liquid chromatography-tandem mass spectrometry. The SLCO1B1 genotype had no significant effect on the pharmacokinetics of UDCA. The geometric mean ratios (95% confidence interval) of UDCA area under the plasma concentration-time curve from 0 to 12 h (AUC(0-12)) in subjects with the SLCO1B1*1B/*1B genotype and in subjects with the SLCO1B1*15/*15 or *5/*15 genotype to the AUC(0-12) in subjects with the SLCO1B1*1A/*1A genotype were 1.07 (0.85, 1.35; P = 0.459) and 0.93 (0.75, 1.15; P = 0.563), respectively. In addition, following either placebo or UDCA administration, the SLCO1B1 polymorphism showed no association with the AUC(0-24) of the glycine and taurine conjugates of UDCA, with endogenous bile acids, or with the incremental AUC(0-24) of a bile acid synthesis marker. Compared with placebo, UDCA ingestion increased the AUC(0-24) of cholic acid, glycochenodeoxycholic acid, glycocholic acid, and glycodeoxycholic acid by 1.5-, 1.1-, 1.2-, and 1.2- fold (P < 0.05), respectively. Genetic polymorphism in SLCO1B1 does not affect pharmacokinetics of UDCA, suggesting that OATP1B1 is not rate-limiting to the hepatic uptake of therapeutic UDCA. Further studies are required to clarify the mechanisms by which UDCA increases the plasma concentrations of endogenous bile acids.
Mazzarino, Monica; Biava, Mariangela; de la Torre, Xavier; Fiacco, Ilaria; Botrè, Francesco
2013-06-01
The use of selective oestrogen receptor modulators has been prohibited since 2005 by the World Anti-Doping Agency regulations. As they are extensively cleared by hepatic and intestinal metabolism via oxidative and conjugating enzymes, a complete investigation of their biotransformation pathways and kinetics of excretion is essential for the anti-doping laboratories to select the right marker(s) of misuse. This work was designed to characterize the chemical reactions and the metabolizing enzymes involved in the metabolic routes of clomiphene, tamoxifen and toremifene. To determine the biotransformation pathways of the substrates under investigation, urine samples were collected from six subjects (three females and three males) after oral administration of 50 mg of clomiphene citrate or 40 mg of tamoxifen or 60 mg of toremifene, whereas the metabolizing enzymes were characterized in vitro, using expressed cytochrome P450s and uridine diphosphoglucuronosyltransferases. The separation, identification and determination of the compounds formed in the in vivo and in vitro experiments were carried out by liquid chromatography coupled with mass spectrometry techniques using different acquisition modes. Clomiphene, tamoxifen and toremifene were biotransformed to 22, 23 and 18 metabolites respectively, these phase I reactions being catalyzed mainly by CYP3A4 and CYP2D6 isoforms and, to a lesser degree, by CYP3A5, CYP2B6, CYP2C9, CYP2C19 isoforms. The phase I metabolic reactions include hydroxylation in different positions, N-oxidation, dehalogenation, carboxylation, hydrogenation, methoxylation, N-dealkylation and combinations of them. In turn, most of the phase I metabolites underwent conjugation reaction to form the corresponding glucuro-conjugated mainly by UGT1A1, UGT1A3, UGT1A4, UGT2B7, UGT2B15 and UGT2B17 isoenzymes.
A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model
Martin, François-Pierre J; Dumas, Marc-Emmanuel; Wang, Yulan; Legido-Quigley, Cristina; Yap, Ivan K S; Tang, Huiru; Zirah, Séverine; Murphy, Gerard M; Cloarec, Olivier; Lindon, John C; Sprenger, Norbert; Fay, Laurent B; Kochhar, Sunil; van Bladeren, Peter; Holmes, Elaine; Nicholson, Jeremy K
2007-01-01
Symbiotic gut microorganisms (microbiome) interact closely with the mammalian host's metabolism and are important determinants of human health. Here, we decipher the complex metabolic effects of microbial manipulation, by comparing germfree mice colonized by a human baby flora (HBF) or a normal flora to conventional mice. We perform parallel microbiological profiling, metabolic profiling by 1H nuclear magnetic resonance of liver, plasma, urine and ileal flushes, and targeted profiling of bile acids by ultra performance liquid chromatography–mass spectrometry and short-chain fatty acids in cecum by GC-FID. Top-down multivariate analysis of metabolic profiles reveals a significant association of specific metabotypes with the resident microbiome. We derive a transgenomic graph model showing that HBF flora has a remarkably simple microbiome/metabolome correlation network, impacting directly on the host's ability to metabolize lipids: HBF mice present higher ileal concentrations of tauro-conjugated bile acids, reduced plasma levels of lipoproteins but higher hepatic triglyceride content associated with depletion of glutathione. These data indicate that the microbiome modulates absorption, storage and the energy harvest from the diet at the systems level. PMID:17515922
Rossi, Emanuela; Morabito, Alessandro; Di Rella, Francesca; Esposito, Giuseppe; Gravina, Adriano; Labonia, Vincenzo; Landi, Gabriella; Nuzzo, Francesco; Pacilio, Carmen; De Maio, Ermelinda; Di Maio, Massimo; Piccirillo, Maria Carmela; De Feo, Gianfranco; D'Aiuto, Giuseppe; Botti, Gerardo; Chiodini, Paolo; Gallo, Ciro; Perrone, Francesco; de Matteis, Andrea
2009-07-01
PURPOSE We compared the endocrine effects of 6 and 12 months of adjuvant letrozole versus tamoxifen in postmenopausal patients with hormone-responsive early breast cancer within an ongoing phase III trial. PATIENTS AND METHODS Patients were randomly assigned to receive tamoxifen, letrozole, or letrozole plus zoledronic acid. Serum values of estradiol, follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, dehydroepiandrosterone-sulphate (DHEA-S), progesterone, and cortisol were measured at baseline and after 6 and 12 months of treatment. For each hormone, changes from baseline at 6 and 12 months were compared between treatment groups, and differences over time for each group were analyzed. Results Hormonal data were available for 139 postmenopausal patients with a median age of 62 years, with 43 patients assigned to tamoxifen and 96 patients assigned to letrozole alone or combined with zoledronic acid. Baseline values were similar between the two groups for all hormones. Many significant changes were observed between drugs and for each drug over time. Namely, three hormones seemed significantly affected by one drug only: estradiol that decreased and progesterone that increased with letrozole and cortisol that increased with tamoxifen. Both drugs affected FSH (decreasing with tamoxifen and slightly increasing with letrozole), LH (decreasing more with tamoxifen than with letrozole), testosterone (slightly increasing with letrozole but not enough to differ from tamoxifen), and DHEA-S (increasing with both drugs but not differently between them). Zoledronic acid did not have significant impact on hormonal levels. CONCLUSION Adjuvant letrozole and tamoxifen result in significantly distinct endocrine effects. Such differences can explain the higher efficacy of letrozole as compared with tamoxifen.
Vahjen, Wilfried; Osswald, Tanja; Schäfer, Klaus; Simon, Ortwin
2007-04-01
Weaned piglets were fed a wheat based diet either non-supplemented or supplemented with a multi-enzyme preparation or a xylanase mono-enzyme preparation, respectively. Both enzyme preparations increased live weight gain nonsignificantly, but only animals of the xylanase group showed a trend (p = 0.076) for an improved feed conversion. Only precaecal digestibility of total amino acids was improved significantly when the mono-enzyme preparation was added. Improvements of digestibility of crude fat, crude protein and starch did not reach the significance level. Both enzyme preparations reduced jejunal viscosity, however viscosity in the colon was only reduced by the mono-enzyme preparation. Both enzymes significantly reduced Lactobacillus spp. cell numbers as well as bacterial metabolites in the stomach and showed similar nonsignificant modifications in jejunum contents except for acetate in the mono-enzyme group. Total jejunal bile acids were unchanged. Compared to the control, the ratio of the main conjugated to the main deconjugated bile acid was significantly higher in the mono-enzyme group. This study has shown that the mono- and multi-enzyme preparation can lead to improved performance in wheat based diets for piglets. Like in poultry, the main mode of action seems to be the reduction of small intestinal viscosity. However, the generation of fermentable carbohydrates by the multi-enzyme preparation may mask beneficial effects on performance due to the development of an active bile acid deconjugating microbiota in the small intestine.
Hassan, Amir; Ahmed, Mansoor; Rasheed, Munawwer; Mansoor, Najia; Khan, Rafeeq Alam; Kamal, Mustafa; Rashid, Mohammad Abdur
2015-07-01
Bile from gallbladders of Arius platystomus (Singhara), Arius tenuispinis (Khagga), Pomadasys commersonni (Holoola) and Kishinoella tonggol (Dawan) were derivatised and analysed by GC-MS for identification of bile acids and bile alcohols. Cholic acid and Chenodeoxycholic acid were found as major bile acids in Arius platystomus, Arius tenuispinis and Pomadasys commersonni. Other bile acids identified in Arius platystomus were allochenodeoxycholic acid, allodeoxycholic acid, 3α,7α,12α-trihydroxy-24-methyl-5β-cholestane-26-oic acid, and 3α,7α,12α, 24-tetrahydroxy-5α-cholestane-26-oic acid. Cholesterol was found as major bile alcohol in Arius platystomus, Arius tenuispinis and Pomadasys commersonni. Cholic acid was the major bile acid identified in the bile of Kishinoella tonggol while other bile acids included 3α,7α,12α-tridydroxy-5α-cholestanoic acid and 3α,7α,12α-tridydroxy-5β-cholestanoic acid. Bile alcohol 5β-cyprinol was present in significant amounts with 5β-cholestane-3α,7α,12α,24-tetrol being the other contributors in the bile of Kishinoella tonggol.
Interactions between gut bacteria and bile in health and disease.
Long, Sarah L; Gahan, Cormac G M; Joyce, Susan A
2017-08-01
Bile acids are synthesized from cholesterol in the liver and released into the intestine to aid the digestion of dietary lipids. The host enzymes that contribute to bile acid synthesis in the liver and the regulatory pathways that influence the composition of the total bile acid pool in the host have been well established. In addition, the gut microbiota provides unique contributions to the diversity of bile acids in the bile acid pool. Gut microbial enzymes contribute significantly to bile acid metabolism through deconjugation and dehydroxylation reactions to generate unconjugated bile acids and secondary bile acids. These microbial enzymes (which include bile salt hydrolase (BSH) and bile acid-inducible (BAI) enzymes) are essential for bile acid homeostasis in the host and represent a vital contribution of the gut microbiome to host health. Perturbation of the gut microbiota in disease states may therefore significantly influence bile acid signatures in the host, especially in the context of gastrointestinal or systemic disease. Given that bile acids are ligands for host cell receptors (including the FXR, TGR5 and Vitamin D Receptor) alterations to microbial enzymes and associated changes to bile acid signatures have significant consequences for the host. In this review we examine the contribution of microbial enzymes to the process of bile acid metabolism in the host and discuss the implications for microbe-host signalling in the context of C. difficile infection, inflammatory bowel disease and other disease states. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dubbelman, Anne-Charlotte; Jansen, Robert S; Rosing, Hilde; Darwish, Mona; Hellriegel, Edward; Robertson, Philmore; Schellens, Jan H M; Beijnen, Jos H
2012-07-01
Bendamustine is an alkylating agent consisting of a mechlorethamine derivative, a benzimidazole group, and a butyric acid substituent. A human mass balance study showed that bendamustine is extensively metabolized and subsequently excreted in urine. However, limited information is available on the metabolite profile of bendamustine in human urine. The objective of this study was to elucidate the metabolic pathways of bendamustine in humans by identification of its metabolites excreted in urine. Human urine samples were collected up to 168 h after an intravenous infusion of 120 mg/m(2) (80-95 μCi) [(14)C]bendamustine. Metabolites of [(14)C]bendamustine were identified using liquid chromatography (high-resolution)-tandem mass spectrometry with off-line radioactivity detection. Bendamustine and a total of 25 bendamustine-related compounds were detected. Observed metabolic conversions at the benzimidazole and butyric acid moiety were N-demethylation and γ-hydroxylation. In addition, various other combinations of these conversions with modifications at the mechlorethamine moiety were observed, including hydrolysis (the primary metabolic pathway), cysteine conjugation, and subsequent biotransformation to mercapturic acid and thiol derivatives, N-dealkylation, oxidation, and conjugation with phosphate, creatinine, and uric acid. Bendamustine-derived products containing phosphate, creatinine, and uric acid conjugates were also detected in control urine incubated with bendamustine. Metabolites that were excreted up to 168 h after the infusion included products of dihydrolysis and cysteine conjugation of bendamustine and γ-hydroxybendamustine. The range of metabolic reactions is generally consistent with those reported for rat urine and bile, suggesting that the overall processes involved in metabolic elimination are qualitatively the same in rats and humans.
Wewalka, Marlene; Patti, Mary-Elizabeth; Barbato, Corinne; Houten, Sander M.
2014-01-01
Context: Bile acids (BAs) are newly recognized signaling molecules in glucose and energy homeostasis. Differences in BA profiles with type 2 diabetes mellitus (T2D) remain incompletely understood. Objective: The objective of the study was to assess serum BA composition in impaired glucose-tolerant, T2D, and normal glucose-tolerant persons and to monitor the effects of improving glycemia on serum BA composition in T2D patients. Design and Setting: This was a cross-sectional cohort study in a general population (cohort 1) and nonrandomized intervention (cohort 2). Patients and Interventions: Ninety-nine volunteers underwent oral glucose tolerance testing, and 12 persons with T2D and hyperglycemia underwent 8 weeks of intensification of treatment. Main Outcome Measures: Serum free BA and respective taurine and glycine conjugates were measured by HPLC tandem mass spectrometry. Results: Oral glucose tolerance testing identified 62 normal-, 25 impaired glucose-tolerant, and 12 T2D persons. Concentrations of total taurine-conjugated BA were higher in T2D and intermediate in impaired- compared with normal glucose-tolerant persons (P = .009). Univariate regression revealed a positive association between total taurine-BA and fasting glucose (R = 0.37, P < .001), postload glucose (R = 0.31, P < .002), hemoglobin A1c (R = 0.26, P < .001), fasting insulin (R = 0.21, P = .03), and homeostatic model assessment-estimated insulin resistance (R = 0.26, P = .01) and an inverse association with oral disposition index (R = −0.36, P < .001). Insulin-mediated glycemic improvement in T2D patients did not change fasting serum total BA or BA composition. Conclusion: Fasting taurine-conjugated BA concentrations are higher in T2D and intermediate in impaired compared with normal glucose-tolerant persons and are associated with fasting and postload glucose. Serum BAs are not altered in T2D in response to improved glycemia. Further study may elucidate whether this pattern of taurine-BA conjugation can be targeted to provide novel therapeutic approaches to treat T2D. PMID:24432996
Kimoto-Nira, Hiromi; Kobayashi, Miho; Nomura, Masaru; Sasaki, Keisuke; Suzuki, Chise
2009-05-31
Bile resistance is one of the basic characteristics of probiotic bacteria. The aim of this study was to investigate the characteristics of bile resistance in lactococci by studying the relationship between bile resistance and cellular fatty acid composition in lactococcci grown on different media. We determined the bile resistance of 14 strains in lactose-free M17 medium supplemented with either glucose only (GM17) or lactose only (LM17). Gas chromatographic analyses of free lipids extracted from the tested strains were used for determining their fatty acid composition. A correlation analysis of all strains grown in both media revealed significant positive correlations between bile resistance and relative contents of hexadecanoic acid and octadecenoic acid, and negative correlations between bile resistance and relative contents of hexadecenoic acid and C-19 cyclopropane fatty acid. It is also a fact that the fatty acids associated with bile resistance depended on species, strain, and/or growth medium. In L. lactis subsp. cremoris strains grown in GM17 medium, the bile-resistant strains had significantly more octadecenoic acid than the bile-sensitive strains. In LM17 medium, bile-resistant strains had significantly more octadecenoic acid and significantly less C-19 cyclopropane fatty acid than the bile-sensitive strains. In L. lactis subsp. lactis strains, bile resistances of some of the tested strains were altered by growth medium. Some strains were resistant to bile in GM17 medium but sensitive to bile in LM17 medium. Some strains were resistant in both media tested. The strains grown in GM17 medium had significantly more hexadecanoic acid and octadecenoic acid, and significantly less tetradecanoic acid, octadecadienoic acid and C-19 cyclopropane fatty acid than the strains grown in LM17 medium. In conclusion, the fatty acid compositions of the bile-resistant lactococci differed from those of the bile-sensitive ones. More importantly, our data suggest that altering their fatty acid composition (i.e. increased hexadecanoic acid and octadecenoic acid and decreased hexadecenoic acid and C-19 cyclopropane fatty acid) by changing growth conditions may be a useful way to enhance their bile resistance in lactococci.
Yuan, Bin; Ren, Ying-Long; Ma, Li; Gu, Hao; Wang, Yun; Qiao, Yan-Jiang
2014-02-01
To discuss the rationality of the clinical replacement of traditional Chinese medicine (TCM) bear bile with bile acid constituents, and analyze the difference between these constituents and bear bile in drug properties. Summarizing the drug properties of bear bile by reference to medical literatures for drug properties of TCM bear bile and Science of Traditional Chinese Medicine (China Press of Traditional Chinese Medicine, 2007). Analyzing and summarizing the pharmacological effects of main bile acid constituents according to relevant literatures for studies on pharmacological effects of main bile acid constituents in CNKI database. Predicating the drug properties of these bile acid constituents by using the drug property predication model established by the study group according the pharmacological effects of main bile acid constituents in the paper, and compare the prediction results with the drug properties of bear bile. Bile acid constituents in bear bile were mostly cold in property, bitter in taste, and the combination of their drug properties could reflect the combined drug properties of bear bile. All of these bile acid constituents in bear bile could show part of effects of bear bile. Attention shall be given to regulate the medication scheme in clinical application according to actual conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin
Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I)more » significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.« less
Li, Ke; Buchinger, Tyler J.; Bussy, Ugo; Fissette, Skye D.; Johnson, Nicholas; Li, Weiming
2015-01-01
Many fishes are hypothesized to use bile acids (BAs) as chemical cues, yet quantification of BAs in biological samples and the required methods remain limited. Here, we present an UHPLC–MS/MS method for simultaneous, sensitive, and rapid quantification of 15 BAs, including free, taurine, and glycine conjugated BAs, and application of the method to fecal samples from lake charr (Salvelinus namaycush). The analytes were separated on a C18 column with acetonitrile–water (containing 7.5 mM ammonium acetate and 0.1% formic acid) as mobile phase at a flow rate of 0.25 mL/min for 12 min. BAs were monitored with a negative electrospray triple quadrupole mass spectrometer (Xevo TQ-S™). Calibration curves of 15 BAs were linear over the concentration range of 1.00–5,000 ng/mL. Validation revealed that the method was specific, accurate, and precise. The method was applied to quantitative analysis of feces extract of fry lake charr and the food they were eating. The concentrations of analytes CA, TCDCA, TCA, and CDCA were 242.3, 81.2, 60.7, and 36.2 ng/mg, respectively. However, other taurine conjugated BAs, TUDCA, TDCA, and THDCA, were not detected in feces of lake charr. Interestingly, TCA and TCDCA were detected at high concentrations in food pellets, at 71.9 and 38.2 ng/mg, respectively. Application of the method to feces samples from lake charr supported a role of BAs as chemical cues, and will enhance further investigation of BAs as chemical cues in other fish species.
Siqueira, Orlando Hiroshi Kiono; Oliveira, Karen Jesus; Carvalho, Angela Cristina Gouvêa; da Nóbrega, Antonio Claudio Lucas; Medeiros, Renata Frauches; Felix-Patrício, Bruno; Áscoli, Fábio Otero; Olej, Beni
2017-10-01
End-to-end anastomosis in the treatment for bile duct injury during laparoscopic cholecystectomy has been associated with stricture formation. The aim of this study was to experimentally investigate the effect of oral tamoxifen (tmx) treatment on fibrosis, collagen content and transforming growth factor-β1, -β2 and -β3 expression in common bile duct anastomosis of pigs. Twenty-six pigs were divided into three groups [sham (n = 8), control (n = 9) and tmx (n = 9)]. The common bile ducts were transected and anastomosed in the control and tmx groups. Tmx (40 mg/day) was administered orally to the tmx group, and the animals were euthanized after 60 days. Fibrosis was analysed by Masson's trichrome staining. Picrosirius red was used to quantify the total collagen content and collagen type I/III ratio. mRNA expression of transforming growth factor (TGF)-β1, -β2 and -β3 was quantified using real-time polymerase chain reaction (qRT-PCR). The control and study groups exhibited higher fibrosis than the sham group, and the study group showed lower fibrosis than the control group (P = 0.011). The control and tmx groups had higher total collagen content than the sham group (P = 0.003). The collagen type I/III ratio was higher in the control group than in the sham and tmx groups (P = 0.015). There were no significant differences in the mRNA expression of TGF-β1, -β2 and -β3 among the groups (P > 0.05). Tmx decreased fibrosis and prevented the change in collagen type I/III ratio caused by the procedure. © 2017 The Authors. International Journal of Experimental Pathology © 2017 International Journal of Experimental Pathology.
The bile acid composition of crane gallbladder bile
Serafin, J.A.
1983-01-01
1. The biliary bile acids of the whooping crane (Grus americana) and the Florida sandhill crane (G. canadensis pratensis) have been examined.2. Cholic acid (CA), chenodeoxycholic acid (CDOCA) and lithocholic acid were found in bile from both species of these North American cranes.3. CDOCA and CA were the primary bile acids in both species, together constituting 70% or more of the bile acids by weight.4. The primary bile acids of cranes appear to be the same as those that have been identified in other avian species.
Jacobs, Jonathan P; Dong, Tien S; Agopian, Vatche; Lagishetty, Venu; Sundaram, Vinay; Noureddin, Mazen; Ayoub, Walid; Durazo, Francisco; Benhammou, Jihane; Enayati, Pedram; Elashoff, David; Goodman, Marc T; Pisegna, Joseph; Hussain, Shehnaz
2018-06-20
Cirrhosis is a leading cause of death in the world, yet there are no well-established risk stratifying tools for lethal complications including hepatocellular carcinoma (HCC). Patients with liver cirrhosis undergo routine endoscopic surveillance, providing ready access to duodenal aspirate samples which may be a source for identifying novel biomarkers. The aim of this study was to characterize the microbiome and bile acid profiles in duodenal aspirates from patients with liver cirrhosis to demonstrate feasibility of developing biomarkers for HCC risk stratification. Thirty patients with liver cirrhosis were enrolled in the Microbiome, Microbial Markers, and Liver Disease (M 3 LD) study between May 2015 and March 2017. Detailed clinical and epidemiological data were collected at baseline and at 6-monthly follow-up visits. Duodenal aspirate fluid was collected at baseline for microbial characterization using 16S ribosomal RNA sequencing and bile acid quantification using mass spectroscopy. Alcohol-related cirrhosis was associated with reductions in the Bacteroidetes phylum, particularly Prevotella (13-fold reduction), and expansion of Staphylococcus (13-fold increase), compared to HCV-related cirrhosis. Participants with hepatic encephalopathy (HE) had less microbial diversity compared to patients without HE (p<0.05), and were characterized by expansion of Mycobacterium (45-fold increase) and Gram positive cocci including Granulicatella (3.1-fold increase), unclassified Planococcaceae (3.3-fold increase), and unclassified Streptococcaceae (4.5-fold increase). Non-Hispanic Whites had reduced microbial richness (p<0.01) and diversity (p<0.05), and increased levels of conjugated ursodeoxycholic acid (glycoursodeoxycholic acid and tauroursodeoxycholic acid, p<0.05) compared to Hispanics. Microbial profiles of duodenal aspirates differed by cirrhosis etiology, HE, and Hispanic ethnicity. This article is protected by copyright. All rights reserved.
Crystal structure of bile salt hydrolase from Lactobacillus salivarius.
Xu, Fuzhou; Guo, Fangfang; Hu, Xiao Jian; Lin, Jun
2016-05-01
Bile salt hydrolase (BSH) is a gut-bacterial enzyme that negatively influences host fat digestion and energy harvesting. The BSH enzyme activity functions as a gateway reaction in the small intestine by the deconjugation of glycine-conjugated or taurine-conjugated bile acids. Extensive gut-microbiota studies have suggested that BSH is a key mechanistic microbiome target for the development of novel non-antibiotic food additives to improve animal feed production and for the design of new measures to control obesity in humans. However, research on BSH is still in its infancy, particularly in terms of the structural basis of BSH function, which has hampered the development of BSH-based strategies for improving human and animal health. As an initial step towards the structure-function analysis of BSH, C-terminally His-tagged BSH from Lactobacillus salivarius NRRL B-30514 was crystallized in this study. The 1.90 Å resolution crystal structure of L. salivarius BSH was determined by molecular replacement using the structure of Clostridium perfringens BSH as a starting model. It revealed this BSH to be a member of the N-terminal nucleophile hydrolase superfamily. Crystals of apo BSH belonged to space group P21212, with unit-cell parameters a = 90.79, b = 87.35, c = 86.76 Å (PDB entry 5hke). Two BSH molecules packed perfectly as a dimer in one asymmetric unit. Comparative structural analysis of L. salivarius BSH also identified potential residues that contribute to catalysis and substrate specificity.
Normal or increased bile acid uptake in isolated mucosa from patients with bile acid malabsorption.
Bajor, Antal; Kilander, Anders; Fae, Anita; Gälman, Cecilia; Jonsson, Olof; Ohman, Lena; Rudling, Mats; Sjövall, Henrik; Stotzer, Per-Ove; Ung, Kjell-Arne
2006-04-01
Bile acid malabsorption as reflected by an abnormal Se-labelled homocholic acid-taurine (SeHCAT) test is associated with diarrhoea, but the mechanisms and cause-and-effect relations are unclear. Primarily, to determine whether there is a reduced active bile acid uptake in the terminal ileum in patients with bile acid malabsorption. Secondarily, to study the linkage between bile acid malabsorption and hepatic bile acid synthesis. Ileal biopsies were taken from patients with diarrhoea and from controls with normal bowel habits. Maximal active bile acid uptake was assessed in ileal biopsies using a previously validated technique based on uptake of C-labelled taurocholate. To monitor the hepatic synthesis, 7alpha-hydroxy-4-cholesten-3-one, a bile acid precursor, was assayed in blood. The SeHCAT-retention test was used to diagnose bile acid malabsorption. The taurocholate uptake in specimens from diarrhoea patients was higher compared with the controls [median, 7.7 (n=53) vs 6.1 micromol/g per min (n=17)] (P<0.01) but no difference was seen between those with bile acid malabsorption (n=18) versus diarrhoea with a normal SeHCAT test (n=23). The SeHCAT values and 7alpha-hydroxy-4-cholesten-3-one were inversely correlated. The data do not support bile acid malabsorption being due to a reduced active bile acid uptake capacity in the terminal ileum.
Therapeutic targeting of bile acids
Gores, Gregory J.
2015-01-01
The first objectives of this article are to review the structure, chemistry, and physiology of bile acids and the types of bile acid malabsorption observed in clinical practice. The second major theme addresses the classical or known properties of bile acids, such as the role of bile acid sequestration in the treatment of hyperlipidemia; the use of ursodeoxycholic acid in therapeutics, from traditional oriental medicine to being, until recently, the drug of choice in cholestatic liver diseases; and the potential for normalizing diverse bowel dysfunctions in irritable bowel syndrome, either by sequestering intraluminal bile acids for diarrhea or by delivering more bile acids to the colon to relieve constipation. The final objective addresses novel concepts and therapeutic opportunities such as the interaction of bile acids and the microbiome to control colonic infections, as in Clostridium difficile-associated colitis, and bile acid targeting of the farnesoid X receptor and G protein-coupled bile acid receptor 1 with consequent effects on energy expenditure, fat metabolism, and glycemic control. PMID:26138466
Kahlon, Talwinder Singh; Chiu, Mei-Chen M; Chapman, Mary H
2008-06-01
Bile acid binding capacity has been related to the cholesterol-lowering potential of foods and food fractions. Lowered recirculation of bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of cancer. Bile acid binding potential has been related to lowering the risk of heart disease and that of cancer. Previously, we have reported bile acid binding by several uncooked vegetables. However, most vegetables are consumed after cooking. How cooking would influence in vitro bile acid binding of various vegetables was investigated using a mixture of bile acids secreted in human bile under physiological conditions. Eight replicate incubations were conducted for each treatment simulating gastric and intestinal digestion, which included a substrate only, a bile acid mixture only, and 6 with substrate and bile acid mixture. Cholestyramine (a cholesterol-lowering, bile acid binding drug) was the positive control treatment and cellulose was the negative control. Relative to cholestyramine, in vitro bile acid binding on dry matter basis was for the collard greens, kale, and mustard greens, 13%; broccoli, 10%; Brussels sprouts and spinach, 8%; green bell pepper, 7%; and cabbage, 5%. These results point to the significantly different (P < or = .05) health-promoting potential of collard greens = kale = mustard greens > broccoli > Brussels sprouts = spinach = green bell pepper > cabbage as indicated by their bile acid binding on dry matter basis. Steam cooking significantly improved the in vitro bile acid binding of collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage compared with previously observed bile acid binding values for these vegetables raw (uncooked). Inclusion of steam-cooked collard greens, kale, mustard greens, broccoli, green bell pepper, and cabbage in our daily diet as health-promoting vegetables should be emphasized. These green/leafy vegetables, when consumed regularly after steam cooking, would lower the risk of cardiovascular disease and cancer, advance human nutrition research, and improve public health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellinger-Ziegelbauer, Heidrun, E-mail: heidrun.ellinger-ziegelbauer@bayerhealthcare.com; Adler, Melanie; Amberg, Alexander
2011-04-15
The InnoMed PredTox consortium was formed to evaluate whether conventional preclinical safety assessment can be significantly enhanced by incorporation of molecular profiling ('omics') technologies. In short-term toxicological studies in rats, transcriptomics, proteomics and metabolomics data were collected and analyzed in relation to routine clinical chemistry and histopathology. Four of the sixteen hepato- and/or nephrotoxicants given to rats for 1, 3, or 14 days at two dose levels induced similar histopathological effects. These were characterized by bile duct necrosis and hyperplasia and/or increased bilirubin and cholestasis, in addition to hepatocyte necrosis and regeneration, hepatocyte hypertrophy, and hepatic inflammation. Combined analysis ofmore » liver transcriptomics data from these studies revealed common gene expression changes which allowed the development of a potential sequence of events on a mechanistic level in accordance with classical endpoint observations. This included genes implicated in early stress responses, regenerative processes, inflammation with inflammatory cell immigration, fibrotic processes, and cholestasis encompassing deregulation of certain membrane transporters. Furthermore, a preliminary classification analysis using transcriptomics data suggested that prediction of cholestasis may be possible based on gene expression changes seen at earlier time-points. Targeted bile acid analysis, based on LC-MS metabonomics data demonstrating increased levels of conjugated or unconjugated bile acids in response to individual compounds, did not provide earlier detection of toxicity as compared to conventional parameters, but may allow distinction of different types of hepatobiliary toxicity. Overall, liver transcriptomics data delivered mechanistic and molecular details in addition to the classical endpoint observations which were further enhanced by targeted bile acid analysis using LC/MS metabonomics.« less
Färkkilä, M A; Kairemo, K J; Taavitsainen, M J; Strandberg, T A; Miettinen, T A
1996-04-01
1. Plasma lathosterol concentration, known to reflect cholesterol and bile acid synthesis, was evaluated as a screening test for bile acid malabsorption, comparing it with faecal bile acid measurements, SeHCAT test and Schilling test in 22 subjects of whom six were healthy controls and 16 had Crohn's disease with ileal resections of varying length. 2. Plasma lathosterols and other non-cholesterol sterols were determined by GLC. Faecal bile acids were measured by GLC, and SeHCAT retention times by gamma camera. The study subjects were divided into two groups according to the degree of bile acid malabsorption: controls (faecal bile acids < 10 mg day-1 kg-1, n = 9) and bile acid malabsorption (faecal bile acids > 10 mg day-1 kg-1, n = 13). 3. Faecal bile acid excretion was 5.9 +/- 1.0 mg day-1 kg-1 in control subjects and 45.7 +/- 6.1 mg day-1 kg-1 in the bile acid malabsorption group. The biological half-life of 75SeHCAT (T1/2) was 95.6 +/- 16.3 h and 14.1 +/- 4.1 h, respectively. Plasma lathosterol levels were significantly elevated in patients with bile acid malabsorption (742 +/- 84 micrograms/ml compared with 400 +/- 59 micrograms/ml in control subjects) and correlated closely with faecal bile acid levels (r = 0.779, P < 0.001), with 75SeHCAT T1/2 (r = -0.524, P < 0.05) and with Schilling test (r = -0.591, P < 0.05). Significant correlations were also obtained for delta 8-cholestenol with faecal bile acids (r = 0.784, P < 0.001) and 75SeHCAT (r = -0.505, P < 0.05). The biological half-life of SeHCAT correlated with faecal bile acid excretion (r = -0.702, P < 0.001). Using mean+2 SD of lathosterol (In micrograms/ml cholesterol) as a cut-off value and 10 mg day-1 kg-1 as the upper limit for faecal bile acid excretion, the test gives 100% sensitivity and 82% specificity for plasma lathosterol determination to detect bile acid malabsorption. 4. The results indicate that both the 75SeHCAT test and plasma lathosterol detect bile acid malabsorption in patients with ileal resections for Crohn's disease. However, plasma lathosterol is a simpler and less expensive method.
Bile Acid Metabolism and Signaling
Chiang, John Y. L.
2015-01-01
Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. PMID:23897684
Quantifying bile acid malabsorption helps predict response and tailor sequestrant therapy.
Orekoya, Oluwafikunayo; McLaughlin, John; Leitao, Eugenia; Johns, Wendy; Lal, Simon; Paine, Peter
2015-06-01
Although recognised as a cause of chronic diarrhoea for over forty years, diagnostic tests and treatments for bile acid malabsorption (BAM) remain controversial. Recent National Institute for Health and Care Excellence (NICE) guidelines highlighted the lack of evidence in the field, and called for further research. This retrospective study explores the BAM subtype and severity, the use and response to bile acid sequestrants (BAS) and the prevalence of abnormal colonic histology. 264 selenium-75-labelled homocholic acid conjugated taurine (SeHCAT)-tested patient records were reviewed and the severity and subtype of BAM, presence of colonic histopathology and response to BAS were recorded. 53% of patients tested had BAM, with type-2 BAM in 45% of patients with presumed irritable bowel syndrome. Colonic histological abnormalities were similar overall between patients with (29%) or without (23%) BAM (p = 0.46) and between BAM subtypes, with no significant presence of inflammatory changes. 63% of patients with BAM had a successful BAS response which showed a trend to decreased response with reduced severity. Colestyramine was unsuccessful in 44% (38/87) and 45% of these (17/38) were related to medication intolerance, despite a positive SeHCAT. 47% (7/15) of colestyramine failures had a successful colesevelam response. No patient reported colesevelam intolerance. Quantifying severity of BAM appears to be useful in predicting BAS response. Colesevelam was better tolerated than colestyramine and showed some efficacy in colestyramine failures. Colestyramine failure should not be used to exclude BAM. Colonic histology is of no relevance. © Royal College of Physicians 2015. All rights reserved.
Accatino, L; Pizarro, M; Solís, N; Koenig, C S
1995-01-18
This study was undertaken to gain insights into the characteristics of the polymolecular association between canalicular membrane enzymes, bile acids, cholesterol and phospholipids in bile and into the celular mechanisms whereby the enzymes are secreted into bile. With this purpose, we studied the distribution of bile acids, cholesterol, phospholipids, proteins and representative canalicular membrane enzymes (alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase), which can be considered specific marker constituents, in bile fractions enriched in phospholipid-cholesterol lamellar structures (multilamellar and unilamellar vesicles) and bile acid-mixed micelles. These fractions were isolated by ultracentrifugation from human hepatic bile, normal rat bile and bile of rats treated with diosgenin, a steroid that induces a marked increase in biliary cholesterol secretion, and were characterized by density, lipid composition and transmission electron microscopy. These studies demonstrate that alkaline phosphatase, 5'-nucleotidase and gamma-glutamyl transpeptidase are secreted into both human and rat bile where they are preferentially associated with bile acid-mixed micelles, suggesting a role for bile acids in both release of these enzymes and lipids from the canalicular membrane and solubilization in bile. In addition, heterogeneous association of these enzymes with nonmicellar, lamellar structures in human and rat bile is consistent with the hypothesis that processes independent of the detergent effects of bile acids might also result in the release of specific intrinsic membrane proteins into bile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiller, L.R.; Bilhartz, L.E.; Santa Ana, C.A.
Fecal recovery of radioactivity after ingestion of a bolus of radiolabeled bile acid is abnormally high in most patients with idiopathic chronic diarrhea. To evaluate the significance of this malabsorption, concurrent fecal excretion of both exogenous radiolabeled bile acid and endogenous (unlabeled) bile acid were measured in patients with idiopathic chronic diarrhea. Subjects received a 2.5-microCi oral dose of taurocholic acid labeled with 14C in the 24th position of the steroid moiety. Endogenous bile acid excretion was measured by a hydroxysteroid dehydrogenase assay on a concurrent 72-h stool collection. Both radiolabeled and endogenous bile acid excretion were abnormally high inmore » most patients with chronic diarrhea compared with normal subjects, even when equivoluminous diarrhea was induced in normal subjects by ingestion of osmotically active solutions. The correlation between radiolabeled and endogenous bile acid excretion was good. However, neither radiolabeled nor endogenous bile acid excretion was as abnormal as is typically seen in patients with ileal resection, and none of these diarrhea patients responded to treatment with cholestyramine with stool weights less than 200 g. These results suggest (a) that this radiolabeled bile acid excretion test accurately reflects excess endogenous bile acid excretion; (b) that excess endogenous bile acid excretion is not caused by diarrhea per se; (c) that spontaneously occurring idiopathic chronic diarrhea is often associated with increased endogenous bile acid excretion; and (d) that bile acid malabsorption is not likely to be the primary cause of diarrhea in most of these patients.« less
Nyhlin, H; Brydon, G; Danielsson, A; Eriksson, F
1990-01-01
Seventeen patients were operated on with intestinal shunts for morbid obesity, in eight a biliointestinal bypass (BI) was constructed and in the rest a conventional jejunoileal (JI)-shunt. The reduction in weight was similar in both groups, and so was malabsorption of fat, but the BI-group had significantly less bowel motions with less watery diarrhoea. Bile acid malabsorption was measured both chemically by estimating the total amount of faecal bile acids excreted, as well as indirectly by using a 75Se-labelled synthetic bile acid (SeHCAT). Both techniques revealed a substantial loss of bile acid after both types of operation, but patients with BI bypass surgery had significantly lower elimination time of the bile acid than those with JI-shunts. There was a significant negative correlation between SeHCAT retention and total faecal bile acids. However, some patients with low SeHCAT retention had normal or even reduced output of faecal bile acids. Estimation of faecal bile acids may display false negative results when the bile acid pool is decreased. The SeHCAT-test seems to be a better technique for measuring bile acid losses. The study suggests that BI bypass surgery for obesity seems to be advantageous over the JI shunt in reducing the postoperative loss of bile acids and choleretic diarrhoea, without influencing the weight loss.
Weerachayaphorn, Jittima; Mennone, Albert; Soroka, Carol J.; Harry, Kathy; Hagey, Lee R.; Kensler, Thomas W.
2012-01-01
The transcription factor nuclear factor-E2-related factor 2 (Nrf2) is a key regulator for induction of hepatic detoxification and antioxidant mechanisms, as well as for certain hepatobiliary transporters. To examine the role of Nrf2 in bile acid homeostasis and cholestasis, we assessed the determinants of bile secretion and bile acid synthesis and transport before and after bile duct ligation (BDL) in Nrf2−/− mice. Our findings indicate reduced rates of biliary bile acid and GSH excretion, higher levels of intrahepatic bile acids, and decreased expression of regulators of bile acid synthesis, Cyp7a1 and Cyp8b1, in Nrf2−/− compared with wild-type control mice. The mRNA expression of the bile acid transporters bile salt export pump (Bsep) and organic solute transporter (Ostα) were increased in the face of impaired expression of the multidrug resistance-associated proteins Mrp3 and Mrp4. Deletion of Nrf2 also decreased ileal apical sodium-dependent bile acid transporter (Asbt) expression, leading to reduced bile acid reabsorption and increased loss of bile acid in feces. Finally, when cholestasis is induced by BDL, liver injury was not different from that in wild-type BDL mice. These Nrf2−/− mice also had increased pregnane X receptor (Pxr) and Cyp3a11 mRNA expression in association with enhanced hepatic bile acid hydroxylation. In conclusion, this study finds that Nrf2 plays a major role in the regulation of bile acid homeostasis in the liver and intestine. Deletion of Nrf2 results in a cholestatic phenotype but does not augment liver injury following BDL. PMID:22345550
Metabolism of pentachlorophenol by fish
Stehly, G.R.; Hayton, W.L.
1989-01-01
Interspecies variability in the metabolism of pentachlorophenol (PCP) was investigated by exposing rainbow trout, fathead minnows, sheepshead minnow, firemouth, and goldfish to water-borne super(14)C-PCP for 64 h. The amounts of metabolites in bile and exposure water were species-dependent; all of the metabolites excreted into the water were sulphate conjugates while bile was enriched in glucuronide conjugates. Biliary excretion accounted for less than 30% of the total PCP metabolites. Biliary metabolites alone were a poor indication of the metabolites produced and of the major routes of elimination.
Bile Acid Signaling in Metabolic Disease and Drug Therapy
Li, Tiangang
2014-01-01
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates hepatobiliary secretion of lipids, lipophilic metabolites, and xenobiotics. In the intestine, bile acids are essential for the absorption, transport, and metabolism of dietary fats and lipid-soluble vitamins. Extensive research in the last 2 decades has unveiled new functions of bile acids as signaling molecules and metabolic integrators. The bile acid–activated nuclear receptors farnesoid X receptor, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, and G protein–coupled bile acid receptor play critical roles in the regulation of lipid, glucose, and energy metabolism, inflammation, and drug metabolism and detoxification. Bile acid synthesis exhibits a strong diurnal rhythm, which is entrained by fasting and refeeding as well as nutrient status and plays an important role for maintaining metabolic homeostasis. Recent research revealed an interaction of liver bile acids and gut microbiota in the regulation of liver metabolism. Circadian disturbance and altered gut microbiota contribute to the pathogenesis of liver diseases, inflammatory bowel diseases, nonalcoholic fatty liver disease, diabetes, and obesity. Bile acids and their derivatives are potential therapeutic agents for treating metabolic diseases of the liver. PMID:25073467
Consequences of bile salt biotransformations by intestinal bacteria
Ridlon, Jason M.; Harris, Spencer C.; Bhowmik, Shiva; Kang, Dae-Joong; Hylemon, Phillip B.
2016-01-01
ABSTRACT Emerging evidence strongly suggest that the human “microbiome” plays an important role in both health and disease. Bile acids function both as detergents molecules promoting nutrient absorption in the intestines and as hormones regulating nutrient metabolism. Bile acids regulate metabolism via activation of specific nuclear receptors (NR) and G-protein coupled receptors (GPCRs). The circulating bile acid pool composition consists of primary bile acids produced from cholesterol in the liver, and secondary bile acids formed by specific gut bacteria. The various biotransformation of bile acids carried out by gut bacteria appear to regulate the structure of the gut microbiome and host physiology. Increased levels of secondary bile acids are associated with specific diseases of the GI system. Elucidating methods to control the gut microbiome and bile acid pool composition in humans may lead to a reduction in some of the major diseases of the liver, gall bladder and colon. PMID:26939849
Batta, A K; Salen, G; Shefer, S
1985-01-01
We have examined the mechanism for the bacterial transformation of chenodeoxycholic acid and lithocholic acid into the corresponding 3 beta-hydroxy epimers with the use of 3 alpha- and 3 beta-tritiated bile acids. The 3-oxo bile acids were transformed into the 3 alpha- (85%) and 3 beta- (15%) hydroxy bile acids after 20-hr incubation with Clostridium perfringens. Approximately 75% radioactivity was recovered in the aqueous medium when [3 beta-3H]chenodeoxycholic acid or [3 beta-3H]lithocholic acid was incubated with the bacteria, and approximately 15% of radioactivity in the bile acid fraction was associated with the 3 alpha-position of the iso-bile acids. When [3 beta-3H]chenodeoxycholic acid was incubated with unlabeled 3-oxo-5 beta-cholanoic acid, tritiated litho- and iso-lithocholic acids were recovered. These results can be explained only when a 3-oxo intermediate is postulated, and the 3 beta-hydrogen in the bile acids is transferred by the bacterial coenzyme (NAD+ or NADP+) to the 3 alpha-position in the iso-bile acids during the reduction of the 3-oxo compounds.
Kularatnam, Grace Angeline Malarnangai; Warawitage, Dilanthi; Vidanapathirana, Dinesha Maduri; Jayasena, Subashini; Jasinge, Eresha; de Silva, Nalika; Liyanarachchi, Kirinda Liyana Arachchige Manoj Sanjeeva; Wickramasinghe, Pujitha; Devgun, Manjit Singh; Barbu, Veronique; Lascols, Olivier
2017-09-18
Dubin-Johnson syndrome and intrahepatic cholestasis of pregnancy are rare chronic liver disorders. Dubin-Johnson syndrome may manifest as conjugated hyperbilirubinemia, darkly pigmented liver, presence of abnormal pigment in the parenchyma of hepatocytes and abnormal distribution of the coproporphyrin isomers I and III in the urine. Intrahepatic cholestatic jaundice of pregnancy presents as pruritus, abnormal liver biochemistry and increased serum bile acids. A Sri Lankan girl presented with recurrent episodes of jaundice. She had conjugated hyperbilirubinaemia with diffuse, coarse brown pigments in the hepatocytes. Urine coproporphyrin examination suggested Dubin-Johnson syndrome. Genetic studies confirmed missense homozygous variant p.Trp709Arg in the ATP-binding cassette sub-family C member 2 gene ABCC2 that encodes the Multidrug resistance-associated protein 2 that causes Dubin-Johnson syndrome. The gene study of the mother revealed the same missense variant in ABCC2/MRP2 but with a heterozygous status, and in addition a homozygous missense variant p.Val444Ala in the ATP-binding cassette, sub-family B member 11 gene ABCB11 that encodes the bile salt export pump. Dubin-Johnson syndrome should be considered when the common causes for conjugated hyperbilirubinaemia have been excluded, and patient has an increased percentage of direct bilirubin relative to total bilirubin concentration. Its early diagnosis prevents repeated hospital admissions and investigations. Knowledge of a well known homozygous variant in ABCB11 gene could help in the management of pregnancy.
[Neonatal hyperbilirubinemia and molecular mechanisms of jaundice].
Jirsa, M; Sticová, E
2013-07-01
The introductory summarises the classical path of heme degradation and classification of jaundice. Subsequently, a description of neonatal types of jaundice is given, known as Crigler Najjar, Gilberts, DubinJohnson and Rotor syndromes, emphasising the explanation of the molecular mechanisms of these metabolic disorders. Special attention is given to a recently discovered molecular mechanism of the Rotor syndrome. The mechanism is based on the inability of the liver to retrospectively uptake the conjugated bilirubin fraction primarily excreted into the blood, not bile. A reduced ability of the liver to uptake the conjugated bilirubin contributes to the development of hyperbilirubinemia in common disorders of the liver and bile ducts and to the toxicity of xenobiotics and drugs using transport proteins for conjugated bilirubin.
Weingarden, Alexa R; Chen, Chi; Bobr, Aleh; Yao, Dan; Lu, Yuwei; Nelson, Valerie M; Sadowsky, Michael J; Khoruts, Alexander
2014-02-15
Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for refractory, recurrent Clostridium difficile infection (CDI), which develops following antibiotic treatments. Intestinal microbiota play a critical role in the metabolism of bile acids in the colon, which in turn have major effects on the lifecycle of C. difficile bacteria. We hypothesized that fecal bile acid composition is altered in patients with recurrent CDI and that FMT results in its normalization. General metabolomics and targeted bile acid analyses were performed on fecal extracts from patients with recurrent CDI treated with FMT and their donors. In addition, 16S rRNA gene sequencing was used to determine the bacterial composition of pre- and post-FMT fecal samples. Taxonomic bacterial composition of fecal samples from FMT recipients showed rapid change and became similar to the donor after the procedure. Pre-FMT fecal samples contained high concentrations of primary bile acids and bile salts, while secondary bile acids were nearly undetectable. In contrast, post-FMT fecal samples contained mostly secondary bile acids, as did non-CDI donor samples. Therefore, our analysis showed that FMT resulted in normalization of fecal bacterial community structure and metabolic composition. Importantly, metabolism of bile salts and primary bile acids to secondary bile acids is disrupted in patients with recurrent CDI, and FMT corrects this abnormality. Since individual bile salts and bile acids have pro-germinant and inhibitory activities, the changes suggest that correction of bile acid metabolism is likely a major mechanism by which FMT results in a cure and prevents recurrence of CDI.
Role of bile acids in carcinogenesis of pancreatic cancer: An old topic with new perspective
Feng, Hui-Yi; Chen, Yang-Chao
2016-01-01
The role of bile acids in colorectal cancer has been well documented, but their role in pancreatic cancer remains unclear. In this review, we examined the risk factors of pancreatic cancer. We found that bile acids are associated with most of these factors. Alcohol intake, smoking, and a high-fat diet all lead to high secretion of bile acids, and bile acid metabolic dysfunction is a causal factor of gallstones. An increase in secretion of bile acids, in addition to a long common channel, may result in bile acid reflux into the pancreatic duct and to the epithelial cells or acinar cells, from which pancreatic adenocarcinoma is derived. The final pathophysiological process is pancreatitis, which promotes dedifferentiation of acinar cells into progenitor duct-like cells. Interestingly, bile acids act as regulatory molecules in metabolism, affecting adipose tissue distribution, insulin sensitivity and triglyceride metabolism. As a result, bile acids are associated with three risk factors of pancreatic cancer: obesity, diabetes and hypertriglyceridemia. In the second part of this review, we summarize several studies showing that bile acids act as cancer promoters in gastrointestinal cancer. However, more question are raised than have been solved, and further oncological and physiological experiments are needed to confirm the role of bile acids in pancreatic cancer carcinogenesis. PMID:27672269
Serum bile acid concentrations in dairy cattle with hepatic lipidosis.
Garry, F B; Fettman, M J; Curtis, C R; Smith, J A
1994-01-01
This study was designed to evaluate serum bile acid measurements as indicatory, of liver function and/or hepatic fat infiltration in dairy cattle. Serum bile acid concentrations were measured in healthy dairy cattle at different stages of lactation after fasting or feeding. Bile acid concentrations were compared with liver fat content and sulfobromophthalein (BSP) half-life (T 1/2). Serum bile acid concentrations were higher in cows in early lactation and with higher daily milk production. Compared with prefasting values, bile acid concentrations were decreased at 8, 14, and 24 hours of fasting. Blood samples from fed cows at 1- to 2-hour intervals had wide and inconsistent variations in bile acid concentration. Because serum bile acids correlated well with BSP T 1/2, it is suggested that both measurements evaluate a similar aspect of liver function. Neither bile acids nor BSP T 1/2 correlated with differences in liver fat content among cows. Because of large variability in serum bile acid concentrations in fed cows and the lack of correlation of measured values with liver fat content, bile acid determinations do not appear useful for showing changes in hepatic function in fed cows with subclinical hepatic lipidosis nor serve as a screening test for this condition.
Kakiyama, Genta; Muto, Akina; Takei, Hajime; Nittono, Hiroshi; Murai, Tsuyoshi; Kurosawa, Takao; Hofmann, Alan F.; Pandak, William M.; Bajaj, Jasmohan S.
2014-01-01
We have developed a simple and accurate HPLC method for measurement of fecal bile acids using phenacyl derivatives of unconjugated bile acids, and applied it to the measurement of fecal bile acids in cirrhotic patients. The HPLC method has the following steps: 1) lyophilization of the stool sample; 2) reconstitution in buffer and enzymatic deconjugation using cholylglycine hydrolase/sulfatase; 3) incubation with 0.1 N NaOH in 50% isopropanol at 60°C to hydrolyze esterified bile acids; 4) extraction of bile acids from particulate material using 0.1 N NaOH; 5) isolation of deconjugated bile acids by solid phase extraction; 6) formation of phenacyl esters by derivatization using phenacyl bromide; and 7) HPLC separation measuring eluted peaks at 254 nm. The method was validated by showing that results obtained by HPLC agreed with those obtained by LC-MS/MS and GC-MS. We then applied the method to measuring total fecal bile acid (concentration) and bile acid profile in samples from 38 patients with cirrhosis (17 early, 21 advanced) and 10 healthy subjects. Bile acid concentrations were significantly lower in patients with advanced cirrhosis, suggesting impaired bile acid synthesis. PMID:24627129
In vitro digestion with bile acids enhances the bioaccessibility of kale polyphenols.
Yang, Isabelle; Jayaprakasha, Guddarangavvanahally K; Patil, Bhimanagouda
2018-02-21
Kale (Brassica oleracea) is a leafy green vegetable belonging to the Brassicaceae family, and kale leaves have large amounts of dietary fiber and polyphenolics. Dietary fiber can bind bile acids, thus potentially decreasing cholesterol levels; however, whether the polyphenols from kale contribute to in vitro bile acid binding capacity remains unclear. In the present study, kale was extracted with hexane, acetone, and MeOH : water and the dried extracts, as well as the fiber-rich residue, were tested for their bile acid binding capacity. The fiber-rich residue bound total bile acids in amounts equivalent to that bound by raw kale. The lyophilized acetone extract bound significantly more glycochenodeoxycholate and glycodeoxycholate and less of other bile acids. To test whether bile acid binding enhanced the bioaccessibility of polyphenolic compounds from kale, we used ultra-performance liquid chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry to identify chemical constituents and measure their bioaccessibility in an in vitro digestion reaction. This identified 36 phenolic compounds in kale, including 18 kaempferol derivatives, 13 quercetin derivatives, 4 sinapoyl derivatives, and one caffeoylquinic acid. The bioaccessibility of these phenolics was significantly higher (69.4%) in digestions with bile acids. Moreover, bile acids enhanced the bioaccessibility of quercetin by 25 times: only 2.7% of quercetin derivatives were bioaccessible in the digestion without bile acids, but with bile acids, their accessibility increased to 69.5%. Bile acids increased the bioaccessibility of kaempferol from 37.7% to 69.2%. The extractability and biostability of total phenolics in the digested residue increased 1.8 fold in the digestions with bile acids. These results demonstrated the potential use of kale to improve human health.
Role of bile acids and bile acid binding agents in patients with collagenous colitis
Ung, K; Gillberg, R; Kilander, A; Abrahamsson, H
2000-01-01
BACKGROUND—In a retrospective study bile acid malabsorption was observed in patients with collagenous colitis. AIMS—To study the occurrence of bile acid malabsorption and the effect of bile acid binders prospectively in patients with chronic diarrhoea and collagenous colitis. METHODS—Over 36 months all patients referred because of chronic diarrhoea completed a diagnostic programme, including gastroscopy with duodenal biopsy, colonoscopy with biopsies, and the 75Se-homocholic acid taurine (75SeHCAT) test for bile acid malabsorption. Treatment with a bile acid binder (cholestyramine in 24, colestipol in three) was given, irrespective of the results of the 75SeHCAT test. RESULTS—Collagenous colitis was found in 28 patients (six men, 22 women), 27 of whom had persistent symptoms and completed the programme. Four patients had had a previous cholecystectomy or a distal gastric resection. The 75SeHCAT test was abnormal in 12/27 (44%) of the collagenous colitis patients with 75SeHCAT values 0.5-9.7%, and normal in 15 patients (56%). Bile acid binding treatment was followed by a rapid, marked, or complete improvement in 21/27 (78%) of the collagenous colitis patients. Rapid improvement occurred in 11/12 (92%) of the patients with bile acid malabsorption compared with 10/15 (67%) of the patients with normal 75SeHCAT tests. CONCLUSION—Bile acid malabsorption is common in patients with collagenous colitis and is probably an important pathophysiological factor. Because of a high response rate without serious side effects, bile acid binding treatment should be considered for collagenous colitis, particularly patients with bile acid malabsorption. Keywords: bile acid malabsorption; collagenous colitis; diarrhoea; cholestyramine; colestipol PMID:10644309
Zhang, Yuanyuan; Jackson, Jonathan P; St Claire, Robert L; Freeman, Kimberly; Brouwer, Kenneth R; Edwards, Jeffrey E
2017-08-01
Farnesoid X receptor (FXR) is a master regulator of bile acid homeostasis through transcriptional regulation of genes involved in bile acid synthesis and cellular membrane transport. Impairment of bile acid efflux due to cholangiopathies results in chronic cholestasis leading to abnormal elevation of intrahepatic and systemic bile acid levels. Obeticholic acid (OCA) is a potent and selective FXR agonist that is 100-fold more potent than the endogenous ligand chenodeoxycholic acid (CDCA). The effects of OCA on genes involved in bile acid homeostasis were investigated using sandwich-cultured human hepatocytes. Gene expression was determined by measuring mRNA levels. OCA dose-dependently increased fibroblast growth factor-19 (FGF-19) and small heterodimer partner (SHP) which, in turn, suppress mRNA levels of cholesterol 7-alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for de novo synthesis of bile acids. Consistent with CYP7A1 suppression, total bile acid content was decreased by OCA (1 μmol/L) to 42.7 ± 20.5% relative to control. In addition to suppressing de novo bile acids synthesis, OCA significantly increased the mRNA levels of transporters involved in bile acid homeostasis. The bile salt excretory pump (BSEP), a canalicular efflux transporter, increased by 6.4 ± 0.8-fold, and the basolateral efflux heterodimer transporters, organic solute transporter α (OST α ) and OST β increased by 6.4 ± 0.2-fold and 42.9 ± 7.9-fold, respectively. The upregulation of BSEP and OST α and OST β, by OCA reduced the intracellular concentrations of d 8 -TCA, a model bile acid, to 39.6 ± 8.9% relative to control. These data demonstrate that OCA does suppress bile acid synthesis and reduce hepatocellular bile acid levels, supporting the use of OCA to treat bile acid-induced toxicity observed in cholestatic diseases. © 2017 Intercept Pharmaceuticals. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.
Teske, Kelly A.; Bogart, Jonathan W.; Sanchez, Luis M.; Yu, Olivia B.; Preston, Joshua V.; Cook, James M.; Silvaggi, Nicholas R.; Bikle, Daniel D.; Arnold, Leggy A.
2016-01-01
A systematic study with phase 1 and phase 2 metabolites of cholesterol and vitamin D was conducted to determine whether their biological activity is mediated by the vitamin D receptor (VDR). The investigation necessitated the development of novel synthetic routes for lithocholic acid (LCA) glucuronides (Gluc). Biochemical and cell-based assays were used to demonstrate that hydroxylated LCA analogs were not able to bind VDR. This excludes VDR from mediating their biological and pharmacological activities. Among the synthesized LCA conjugates a novel VDR agonist was identified. LCA Gluc II increased the expression of CYP24A1 in DU145 cancer cells especially in the presence of the endogenous VDR ligand 1,25(OH)2D3. Furthermore, the methyl ester of LCA was identified as novel VDR antagonist. For the first time, we showed that calcitroic acid, the assumed inactive final metabolite of vitamin D, was able to activate VDR-mediated transcription to a higher magnitude than bile acid LCA. Due to a higher metabolic stability in comparison to vitamin D, a very low toxicity, and high concentration in bile and intestine, calcitroic acid is likely to be an important mediator of the protective vitamin D properties against colon cancer. PMID:26774929
Nocturnal weakly acidic reflux promotes aspiration of bile acids in lung transplant recipients.
Blondeau, Kathleen; Mertens, Veerle; Vanaudenaerde, Bart A; Verleden, Geert M; Van Raemdonck, Dirk E; Sifrim, Daniel; Dupont, Lieven J
2009-02-01
Gastroesophageal reflux (GER) and aspiration of bile acids have been implicated as non-alloimmune risk factors for the development of bronchiolitis obliterans syndrome (BOS) after lung transplantation. The aim of our study was to investigate the association between GER and gastric aspiration of bile acids and to establish which reflux characteristics may promote aspiration of bile acids into the lungs and may feature as a potential diagnostic tool in identifying lung transplantation (LTx) patients at risk for aspiration. Twenty-four stable LTx recipients were studied 1 year after transplantation. All patients underwent 24-hour ambulatory impedance-pH recording for the detection of acid (pH <4) and weakly acidic (pH 4 to 7) reflux. On the same day, bronchoalveolar lavage fluid (BALF) was collected and then analyzed for the presence of bile acids (Bioquant enzymatic assay). Increased GER was detected in 13 patients, of whom 9 had increased acid reflux and 4 had exclusively increased weakly acidic reflux. Sixteen patients had detectable bile acids in the BALF (0.6 [0.4 to 1.5] micromol/liter). The 24-hour esophageal volume exposure was significantly increased in patients with bile acids compared to patients without bile acids in the BALF. Acid exposure and the number of reflux events (total, acid and weakly acidic) were unrelated to the presence of bile acids in the BALF. However, both nocturnal volume exposure and the number of nocturnal weakly acidic reflux events were significantly higher in patients with bile acids in the BALF. Weakly acidic reflux events, especially during the night, are associated with the aspiration of bile acids in LTx recipients and may therefore feature as a potential risk factor for the development of BOS.
Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart
Desai, Moreshwar; Mathur, Bhoomika; Eblimit, Zeena; Vasquez, Hernan; Taegtmeyer, Heinrich; Karpen, Saul; Penny, Daniel J.; Moore, David D.; Anakk, Sayeepriyadarshini
2017-01-01
Cardiac dysfunction in patients with liver cirrhosis is strongly associated with increased serum bile acid concentrations. Here we show that excess bile acids decrease fatty acid oxidation in cardiomyocytes and can cause heart dysfunction, a cardiac syndrome that we term Cholecardia. Fxr; Shp double knockout (DKO) mice, a model for bile acid overload, display cardiac hypertrophy, bradycardia, and exercise intolerance. In addition, DKO mice exhibit an impaired cardiac response to catecholamine challenge. Consistent with this decreased cardiac function, we show that elevated serum bile acids reduce cardiac fatty acid oxidation both in vivo and ex vivo. We find that increased bile acid levels suppress expression of Pgc1α, a key regulator of fatty acid metabolism, and that Pgc1α overexpression in cardiac cells was able to rescue the bile acid-mediated reduction in fatty acid oxidation genes. Importantly, intestinal bile acid sequestration with cholestyramine was sufficient to reverse the observed heart dysfunction in the DKO mice. Conclusions Overall, we propose that decreased Pgc1α expression contributes to the metabolic dysfunction in Cholecardia, and that reducing serum bile acid concentrations will be beneficial against metabolic and pathological changes in the heart. PMID:27774647
Saito, Kosuke; Goda, Keisuke; Kobayashi, Akio; Yamada, Naohito; Maekawa, Kyoko; Saito, Yoshiro; Sugai, Shoichiro
2017-08-01
Lipid profiling has emerged as an effective approach to not only screen disease and drug toxicity biomarkers but also understand their underlying mechanisms of action. Tamoxifen, a widely used antiestrogenic agent for adjuvant therapy against estrogen-positive breast cancer, possesses side effects such as hepatic steatosis and phospholipidosis (PLD). In the present study, we administered tamoxifen to Sprague-Dawley rats and used lipidomics to reveal tamoxifen-induced alteration of the hepatic lipid profile and its association with the plasma lipid profile. Treatment with tamoxifen for 28 days caused hepatic PLD in rats. We compared the plasma and liver lipid profiles in treated vs. untreated rats using a multivariate analysis to determine differences between the two groups. In total, 25 plasma and 45 liver lipids were identified and altered in the tamoxifen-treated group. Of these lipids, arachidonic acid (AA)-containing phosphatidylcholines (PCs), such as PC (17:0/20:4) and PC (18:1/20:4), were commonly reduced in both plasma and liver. Conversely, tamoxifen increased other phosphoglycerolipids in the liver, such as phosphatidylethanolamine (18:1/18:1) and phosphatidylinositol (18:0/18:2). We also examined alteration of AA-containing PCs and some phosphoglycerolipids in the pre-PLD stage and found that these lipid alterations were initiated before pathological alteration in the liver. In addition, changes in plasma and liver levels of AA-containing PCs were linearly associated. Moreover, levels of free AA and mRNA levels of AA-synthesizing enzymes, such as fatty acid desaturase 1 and 2, were decreased by tamoxifen treatment. Therefore, our study demonstrated that AA-containing PCs might have potential utility as novel and predictive biomarkers for tamoxifen-induced PLD. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Role of bile acids and bile acid binding agents in patients with collagenous colitis.
Ung, K A; Gillberg, R; Kilander, A; Abrahamsson, H
2000-02-01
In a retrospective study bile acid malabsorption was observed in patients with collagenous colitis. To study the occurrence of bile acid malabsorption and the effect of bile acid binders prospectively in patients with chronic diarrhoea and collagenous colitis. Over 36 months all patients referred because of chronic diarrhoea completed a diagnostic programme, including gastroscopy with duodenal biopsy, colonoscopy with biopsies, and the (75)Se-homocholic acid taurine ((75)SeHCAT) test for bile acid malabsorption. Treatment with a bile acid binder (cholestyramine in 24, colestipol in three) was given, irrespective of the results of the (75)SeHCAT test. Collagenous colitis was found in 28 patients (six men, 22 women), 27 of whom had persistent symptoms and completed the programme. Four patients had had a previous cholecystectomy or a distal gastric resection. The (75)SeHCAT test was abnormal in 12/27 (44%) of the collagenous colitis patients with (75)SeHCAT values 0.5-9.7%, and normal in 15 patients (56%). Bile acid binding treatment was followed by a rapid, marked, or complete improvement in 21/27 (78%) of the collagenous colitis patients. Rapid improvement occurred in 11/12 (92%) of the patients with bile acid malabsorption compared with 10/15 (67%) of the patients with normal (75)SeHCAT tests. Bile acid malabsorption is common in patients with collagenous colitis and is probably an important pathophysiological factor. Because of a high response rate without serious side effects, bile acid binding treatment should be considered for collagenous colitis, particularly patients with bile acid malabsorption.
Green, J; Kellogg, T; Keirs, R; Cooper, R
1987-11-01
A bile acid analogue, SEHCAT (tauro-23-75SE-selena-homocholic acid), was used to determine bile acid pool size, turnover time, and distribution in the developing broiler chick. Bile acid pool size was significantly affected by age and followed a quintic trend (a fifth degree polynomial). It remained steady until 30 days of age when it decreased significantly and then rose significantly at 37 days of age. The bile acid pool half-life remained constant until 28 days of age when it increased significantly and then held steady until it increased again at 8 wk of age following a quartic trend. The distribution of bile acids was affected by age with the amount in the gizzard, duodenum, cloaca, liver, and gall bladder varying significantly with age. Jejunal, ileal, and cecal bile acids did not vary significantly with age. Liver bile acid levels followed a quintic trend, rising until 23 days of age and dropping sharply at 30 days of age and holding steady.
González, Pablo M.; Lagos, Carlos F.; Ward, Weslyn C.; Polli, James E.
2014-01-01
Bile acids (BAs) are the end products of cholesterol metabolism. One of the critical steps in their biosynthesis involves the isomerization of the 3β-hydroxyl (-OH) group on the cholestane ring to the common 3α-configuration on BAs. BAs are actively recaptured from the small intestine by the human Apical Sodium-dependent Bile Acid Transporter (hASBT) with high affinity and capacity. Previous studies have suggested that no particular hydroxyl group on BAs is critical for binding or transport by hASBT, even though 3β-hydroxylated BAs were not examined. The aim of this study was to elucidate the role of the 3α-OH group on BAs binding and translocation by hASBT. Ten 3β-hydroxylated BAs (Iso-bile acids, iBAs) were synthesized, characterized, and subjected to hASBT inhibition and uptake studies. hASBT inhibition and uptake kinetics of iBAs were compared to that of native 3α-OH BAs. Glycine conjugates of native and isomeric BAs were subjected to molecular dynamics simulations in order to identify topological descriptors related to binding and translocation by hASBT. Iso-BAs bound to hASBT with lower affinity and exhibited reduced translocation than their respective 3α-epimers. Kinetic data suggests that, in contrast to native BAs where hASBT binding is the rate-limiting step, iBAs transport was rate-limited by translocation and not binding. Remarkably, 7-dehydroxylated iBAs were not hASBT substrates, highlighting the critical role of 7-OH group on BA translocation by hASBT, especially for iBAs. Conformational analysis of gly-iBAs and native BAs identified topological features for optimal binding as: concave steroidal nucleus, 3-OH “on-” or below-steroidal plane, 7-OH below-plane, and 12-OH moiety towards-plane. Our results emphasize the relevance of the 3α-OH group on BAs for proper hASBT binding and transport and revealed the critical role of 7-OH group on BA translocation, particularly in the absence of a 3α-OH group. Results have implications for BA prodrug design. PMID:24328955
Center, S A; Thompson, M; Guida, L
1993-05-01
Concentrations of 3 alpha-hydroxylated bile acids were measured in serum and urine of clinically normal (healthy) cats (n = 6), cats with severe hepatic lipidosis (n = 9), and cats with complete bile duct occlusion (n = 4). Bile acid concentrations were measured by use of a gradient flow high-performance liquid chromatography procedure with an acetonitrile and ammonium phosphate mobile phase and an in-line postanalytic column containing 3 alpha-hydroxy-steroid dehydrogenase and a fluorescence detector. Specific identification of all bile acid peaks was not completed; unidentified moieties were represented in terms of their elution time (in minutes). Significant differences in serum and urine bile acid concentrations, quantitative and proportional, were determined among groups of cats. Cats with hepatic lipidosis and bile duct occlusion had significantly (P > or = 0.05) greater total serum and urine bile acids concentrations than did healthy cats. The proportion of hydrophobic bile acids in serum, those eluting at > or = 400 minutes, was 1.9% for healthy cats, 3.3% for cats with lipidosis, and 5.4% for bile duct-obstructed cats. Both groups of ill cats had a broader spectrum of unidentified late-eluting serum bile acids than did healthy cats; the largest spectrum developed in bile duct-occluded cats.(ABSTRACT TRUNCATED AT 250 WORDS)
USDA-ARS?s Scientific Manuscript database
Bile acid binding capacity has been related to cholesterol-lowering potential of foods and food fractions. Lowered recirculating bile acids results in utilization of cholesterol to synthesize bile acid and reduced fat absorption. Secondary bile acids have been associated with increased risk of can...
Bile acids. XLIV, quantitation of bile acids from the bile fistula rat given (4-14C) cholesterol.
Siegfried, C M; Doisy, E A; Elliott, W H
1975-01-24
The bile acids derived from [4-14-C]cholesterol administered intracardially to rats with cannulated bile ducts were identified and quantitated. Over a period of 28 days about 90% of the administered 14-C was found in bile of which 73% was retained in the biliary acid fraction. [7beta-3-H]cholic acid, alpha-muri[3beta-3-H]cholic acid, beta-muri[3beta-3-H]cholic acid and litho[3beta-3-H]cholic acid were prepared with specific activities of about 30 muCi/mg by reduction of appropriate ketonic precursors with NaB3H4 and were added to the biliary acid fraction. After separation and purification of the bile acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids accounted for 70, 16, 7.5 and 6.1%, respectively, of the 14-C in the biliary acid fraction. The specific activities of these isolated 14-C-labeled acids were almost identical. Lithocholic acid accounted for a maximum of 0.2% and ursodeoxycholic acid and 7-oxolithocholic acid could account for no more than 2% of the biliary 14-C. Gas-liquid chromatography on 3% OV-17 of the trimethylsilyl ether derivatives of the methyl esters of the common bile acids of rat bile results in their complete separation and provides a convenient means of estimating the relative proportions of these acids in rat bile. By this method, the relative amounts of the four major acids, cholic, chenodeoxycholic, alpha- and beta-muricholic acids were 63, 20, 8 and 6%, respectively.
Review article: bile acid diarrhoea - pathogenesis, diagnosis and management.
Mottacki, N; Simrén, M; Bajor, A
2016-04-01
Bile acid diarrhoea results from imbalances in the homoeostasis of bile acids in the enterohepatic circulation. It can be a consequence of ileal disease/dysfunction, associated with other GI pathology or can be idiopathic. To summarise the different types of bile acid diarrhoea and discuss the currently available diagnostic methods and treatments. Bile acid diarrhoea is found in up to 40% of patients diagnosed as having functional diarrhoea/IBS-D, and in up to 80% of patients who have undergone ileal resection. It is likely under-diagnosed and under-treated. In idiopathic disease, errors in regulation feedback of fibroblast growth factor 19 contribute to the development of the condition. Clinical therapeutic trials for bile acid diarrhoea have been used to diagnose it, but the 75 SeHCAT test is the primary current method. It is sensitive, specific and widely available, though not in the USA. Other diagnostic methods (such as serum measurement of the bile acid intermediate 7α-hydroxy-4-cholesten-3-one, or C4) have less widespread availability and documentation, and some (such as faecal measurement of bile acids) are significantly more complex and costly. First-line treatment of bile acid diarrhoea is with the bile acid sequestrant cholestyramine, which can be difficult to administer and dose due to gastrointestinal side effects. These side effects are less prominent in newer agents such as colesevelam, which may provide higher efficacy, tolerability and compliance. Bile acid diarrhoea is common, and likely under-diagnosed. Bile acid diarrhoea should be considered relatively early in the differential diagnosis of chronic diarrhoea. © 2016 John Wiley & Sons Ltd.
Martin, Gregory G.; Atshaves, Barbara P.; Landrock, Kerstin K.; Landrock, Danilo; Storey, Stephen M.; Howles, Philip N.; Kier, Ann B.
2014-01-01
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol. PMID:25277800
Peng, X R; Lu, Y; Zhang, M H; Li, L T; Xie, X B; Gong, J Y; Wang, J S
2018-06-02
Objective: To explore the relationship between genotype and phenotype of ABCB11 deficiency. Methods: Clinical data of two siblings with ABCB11 deficiency were retrospectively analyzed. Related literature from PubMed, CNKI and Wangfang databases was reviewed to date (up to August 2017) with 'ABCB11 gene' or 'bile salt export pump', 'cholestasis' and 'child' as key words. Results: The patients were siblings. Both of them presented as jaundice, pruritus and hepatosplenomegaly since 3 days after birth. Significant laboratory findings on admission of the older sister included high total bilirubin, 170 µmol/L;conjugated bilirubin, 115.8 µmol/L;alanine aminotransferase, 168 U/L;total bile acid 186.3 µmol/L and normal gamma-glutamyl transpeptidase. While routine laboratory data of the younger brother were as follows: total bilirubin, 148.8 µmol/L;conjugated bilirubin, 96.3 µmol/L;alanine aminotransferase, 232.8 U/L;total bile acid 226 µmol/L, and normal gamma-glutamyl transpeptidase.Both received ursodeoxycholic acid and fat-soluble vitamins. Liver pathology of the younger brother showed giant hepatocytes with ballooning degeneration, focal necrosis and intrahepatic cholestasis. Both the patients harbor the same compound heterozygous mutations in ABCB11 gene, c.145C>T (p.Q49X) and c.1510G>A (p.E504K). The sister is 9 years old now, with normal liver function. Jaundice faded around 3 months after birth, pruritus relieved at age 5, and medications was stopped since then. The brother progressed to liver failure after an operation on perianal abscess when he was 8-month-old, and received living-related liver transplantation when he was 9 month and 20 days old (from his mother). Now he is 1 year and 5 months old, with normal liver function. Both are under our follow-up. Literature review revealed 18 ABCB11 deficiency patients from 7 families who had apparent different prognoses, within each family the siblings had the same ABCB11 gene mutation. Seven cases relieved after ursodeoxycholic acid therapy and/or partial external biliary diversion, 5 received orthotopic liver transplantation, 2 developed hepatocellular carcinoma and 4 cases died in childhood. Conclusions: The clinical manifestations of ABCB11 deficiency may vary greatly in patients carrying the same genotype, even in siblings. Patients should be managed in individualized maner.
Borghede, Märta K; Schlütter, Jacob M; Agnholt, Jørgen S; Christensen, Lisbet A; Gormsen, Lars C; Dahlerup, Jens F
2011-12-01
The liver produces and secretes bile acids into the small intestine. In the small intestine, most of the bile acids are absorbed in the distal ileum with portal vein transportation back to the liver and resecretion (enterohepatic recycling). Increased spillover of bile acids from the small intestine into the colon (bile acid malabsorption) may affect the secretion of colonic water and electrolytes and result in watery diarrhoea. The aim of this study was to investigate the frequency of bile acid malabsorption and treatment responses to cholestyramine with (75)SeHCAT scanning among patients suffering from chronic watery diarrhoea. This was a retrospective study that included all patients who received a (75)SeHCAT scan over a five-year period (2004-2009). In total, 298 patients (198 females, 100 men) with a median age of 42 years (range 16-82 years) were investigated. Bile acid malabsorption ((75)SeHCAT retention<15% after seven days) was identified in 201 patients (68%, 95% confidence interval (CI): 62%-73%). Bile acid malabsorption due to ileal dysfunction (Type I) was found in 77 patients, idiopathic bile acid malabsorption (Type II) was found in 68 patients and 56 patients with other conditions had bile acid malabsorption (Type III). Of the 150 patients who were able to take cholestyramine continuously, 108 patients (71%, CI: 63%-78%) reported a positive effect on their bowel habits. Bile acid malabsorption is a frequent problem in patients with chronic watery diarrhoea. Treatment with bile acid binders was effective regardless of type and severity. Copyright © 2011 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.
Interaction of Gut Microbiota with Bile Acid Metabolism and its Influence on Disease States
Staley, Christopher; Weingarden, Alexa R.
2016-01-01
Primary bile acids serve important roles in cholesterol metabolism, lipid digestion, host-microbe interactions, and regulatory pathways in the human host. While most bile acids are reabsorbed and recycled via enterohepatic cycling, ~5% serve as substrates for bacterial biotransformation in the colon. Enzymes involved in various transformations have been characterized from cultured gut bacteria and reveal taxa-specific distribution. More recently, bioinformatic approaches have revealed greater diversity in isoforms of these enzymes, and the microbial species in which they are found. Thus, the functional roles played by the bile acid-transforming gut microbiota and the distribution of resulting secondary bile acids, in the bile acid pool, may be profoundly affected by microbial community structure and function. Bile acids and the composition of the bile acid pool have historically been hypothesized to be associated with several disease states, including recurrent Clostridium difficile infection, inflammatory bowel diseases, metabolic syndrome, and several cancers. Recently, however, emphasis has been placed on how microbial communities in the dysbiotic gut may alter the bile acid pool to potentially cause or mitigate disease onset. This review highlights the current understanding of the interactions between the gut microbial community, bile acid biotransformation, and disease states, and addresses future directions to better understand these complex associations. PMID:27888332
Autio, Kaija J; Schmitz, Werner; Nair, Remya R; Selkälä, Eija M; Sormunen, Raija T; Miinalainen, Ilkka J; Crick, Peter J; Wang, Yuqin; Griffiths, William J; Reddy, Janardan K; Baes, Myriam; Hiltunen, J Kalervo
2014-07-01
Cholesterol is catabolized to bile acids by peroxisomal β-oxidation in which the side chain of C27-bile acid intermediates is shortened by three carbon atoms to form mature C24-bile acids. Knockout mouse models deficient in AMACR (α-methylacyl-CoA racemase) or MFE-2 (peroxisomal multifunctional enzyme type 2), in which this β-oxidation pathway is prevented, display a residual C24-bile acid pool which, although greatly reduced, implies the existence of alternative pathways of bile acid synthesis. One alternative pathway could involve Mfe-1 (peroxisomal multifunctional enzyme type 1) either with or without Amacr. To test this hypothesis, we generated a double knockout mouse model lacking both Amacr and Mfe-1 activities and studied the bile acid profiles in wild-type, Mfe-1 and Amacr single knockout mouse line and Mfe-1 and Amacr double knockout mouse lines. The total bile acid pool was decreased in Mfe-1-/- mice compared with wild-type and the levels of mature C24-bile acids were reduced in the double knockout mice when compared with Amacr-deficient mice. These results indicate that Mfe-1 can contribute to the synthesis of mature bile acids in both Amacr-dependent and Amacr-independent pathways.
Mechanisms of bile acid mediated inflammation in the liver.
Li, Man; Cai, Shi-Ying; Boyer, James L
2017-08-01
Bile acids are synthesized in the liver and are the major component in bile. Impaired bile flow leads to cholestasis that is characterized by elevated levels of bile acid in the liver and serum, followed by hepatocyte and biliary injury. Although the causes of cholestasis have been extensively studied, the molecular mechanisms as to how bile acids initiate liver injury remain controversial. In this chapter, we summarize recent advances in the pathogenesis of bile acid induced liver injury. These include bile acid signaling pathways in hepatocytes as well as the response of cholangiocytes and innate immune cells in the liver in both patients with cholestasis and cholestatic animal models. We focus on how bile acids trigger the production of molecular mediators of neutrophil recruitment and the role of the inflammatory response in this pathological process. These advances point to a number of novel targets where drugs might be judged to be effective therapies for cholestatic liver injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rat Liver Canalicular Membrane Vesicles Contain an ATP-Dependent Bile Acid Transport System
NASA Astrophysics Data System (ADS)
Nishida, Toshirou; Gatmaitan, Zenaida; Che, Mingxin; Arias, Irwin M.
1991-08-01
The secretion of bile by the liver is primarily determined by the ability of the hepatocyte to transport bile acids into the bile canaliculus. A carrier-mediated process for the transport of taurocholate, the major bile acid in humans and rats, was previously demonstrated in canalicular membrane vesicles from rat liver. This process is driven by an outside-positive membrane potential that is, however, insufficient to explain the large bile acid concentration gradient between the hepatocyte and bile. In this study, we describe an ATP-dependent transport system for taurocholate in inside-out canalicular membrane vesicles from rat liver. The transport system is saturable, temperature-dependent, osmotically sensitive, specifically requires ATP, and does not function in sinusoidal membrane vesicles and right side-out canalicular membrane vesicles. Transport was inhibited by other bile acids but not by substrates for the previously demonstrated ATP-dependent canalicular transport systems for organic cations or nonbile acid organic anions. Defects in ATP-dependent canalicular transport of bile acids may contribute to reduced bile secretion (cholestasis) in various developmental, inheritable, and acquired disorders.
Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice.
Liu, Qian; Shao, Wentao; Zhang, Chunlan; Xu, Cheng; Wang, Qihan; Liu, Hui; Sun, Haidong; Jiang, Zhaoyan; Gu, Aihua
2017-07-01
Organochlorine pesticides (OCPs) can persistently accumulate in body and threaten human health. Bile acids and intestinal microbial metabolism have emerged as important signaling molecules in the host. However, knowledge on which intestinal microbiota and bile acids are modified by OCPs remains unclear. In this study, adult male C57BL/6 mice were exposed to p, p'-dichlorodiphenyldichloroethylene (p, p'-DDE) and β-hexachlorocyclohexane (β-HCH) for 8 weeks. The relative abundance and composition of various bacterial species were analyzed by 16S rRNA gene sequencing. Bile acid composition was analyzed by metabolomic analysis using UPLC-MS. The expression of genes involved in hepatic and enteric bile acids metabolism was measured by real-time PCR. Expression of genes in bile acids synthesis and transportation were measured in HepG2 cells incubated with p, p'-DDE and β-HCH. Our findings showed OCPs changed relative abundance and composition of intestinal microbiota, especially in enhanced Lactobacillus with bile salt hydrolase (BSH) activity. OCPs affected bile acid composition, enhanced hydrophobicity, decreased expression of genes on bile acid reabsorption in the terminal ileum and compensatory increased expression of genes on synthesis of bile acids in the liver. We demonstrated that chronic exposure of OCPs could impair intestinal microbiota; as a result, hepatic and enteric bile acid profiles and metabolism were influenced. The findings in this study draw our attention to the hazards of chronic OCPs exposure in modulating bile acid metabolism that might cause metabolic disorders and their potential to cause related diseases in human. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recent advances in the understanding of bile acid malabsorption.
Pattni, Sanjeev; Walters, Julian R F
2009-01-01
Bile acid malabsorption (BAM) is a syndrome of chronic watery diarrhoea with excess faecal bile acids. Disruption of the enterohepatic circulation of bile acids following surgical resection is a common cause of BAM. The condition is easily diagnosed by the selenium homocholic acid taurine (SeHCAT) test and responds to bile acid sequestrants. Idiopathic BAM (IBAM, primary bile acid diarrhoea) is the condition where no definitive cause for low SeHCAT retention can be identified. Review of PubMed and major journals. Evidence is accumulating that BAM is more prevalent than first thought. Management of chronic diarrhoea involves excluding secondary causes. Treatment of the condition is with bile acid binders. SeHCAT testing is not widely performed, limiting awareness of how common this condition can be. The underlying mechanism for IBAM has been unclear. Increasing awareness of the condition is important. Alternative mechanisms of IBAM have been suggested which involve an increased bile acid pool size and reduced negative feedback regulation of bile acid synthesis by FGF19. New sequestrants are available. Further research into the precise mechanism of IBAM is needed. Improvements in the recognition of the condition and optimization of treatment are required.
Van Steenbergen, W; Fevery, J; De Vos, R; Leyten, R; Heirwegh, K P; De Groote, J
1989-02-01
The effects of thyroidectomy and of thyroid hormone administration on the hepatic transport of endogenous bilirubin were investigated in the Wistar R/APfd rat. Hypothyroidism resulted in an enhanced hepatic bilirubin UDP-glucuronosyltransferase activity and in a decreased p-nitrophenol transferase activity. It caused a cholestatic condition with a 50% decrease in bile flow and bile salt excretion, and an increased proportion of conjugated bilirubin in serum. The biliary output of unconjugated and monoconjugated bilirubins decreased in parallel by about 65%, whereas the excretion rate of the diconjugate dropped by only 47%, resulting in an increased di- to monoconjugate ratio in bile. Hyperthyroidism was characterized by a decreased bilirubin and an increased p-nitrophenol transferase activity, and by an augmented bilirubin output in bile. The output of unconjugated and monoconjugated bilirubins increased in parallel by about 50 or 100%, whereas the excretion of the diconjugate increased by only 20 to 50%, depending on the dose of thyroxine administered; this resulted in a decreased di- to monoconjugate ratio in bile. A linear positive relationship was found between bilirubin UDP-glucuronosyltransferase activity and the ratio of bilirubin di- to monoconjugates present in bile or formed by in vitro incubation of liver homogenates at low concentration of bilirubin (10 to 15 microM), indicating that bile pigment composition is mainly determined by the conjugation activity in the liver. The inverse relationship observed between hepatic beta-glucuronidase activity and the ratio of di- to monoconjugates in bile warrants further investigation to analyze whether this enzyme activity also plays a possible role in the changes in bile pigment composition in hypo- and hyperthyroid rats.
Martin, Gregory G; Atshaves, Barbara P; Landrock, Kerstin K; Landrock, Danilo; Storey, Stephen M; Howles, Philip N; Kier, Ann B; Schroeder, Friedhelm
2014-12-01
On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol. Copyright © 2014 the American Physiological Society.
History of hepatic bile formation: old problems, new approaches.
Javitt, Norman B
2014-12-01
Studies of hepatic bile formation reported in 1958 established that it was an osmotically generated water flow. Intravenous infusion of sodium taurocholate established a high correlation between hepatic bile flow and bile acid excretion. Secretin, a hormone that stimulates bicarbonate secretion, was also found to increase hepatic bile flow. The sources of the water entering the biliary system with these two stimuli were differentiated by the use of mannitol. An increase in its excretion parallels the increase in bile flow in response to bile acids but not secretin, which led to a quantitative distinction between canalicular and ductular water flow. The finding of aquaglyceroporin-9 in the basolateral surface of the hepatocyte accounted for the rapid entry of mannitol into hepatocytes and its exclusion from water movement in the ductules where aquaporin-1 is present. Electron microscopy demonstrated that bile acids generate the formation of vesicles that contain lecithin and cholesterol after their receptor-mediated canalicular transport. Biophysical studies established that the osmotic effect of bile acids varies with their concentration and also with the proportion of mono-, di-, and trihydroxy bile acids and provides a basis for understanding their physiological effects. Because of the varying osmotic effect of bile acids, it is difficult to quantify bile acid independent flow generated by other solutes, such as glutathione, which enters the biliary system. Monohydroxy bile acids, by markedly increasing aggregation number, severely reduce water flow. Developing biomarkers for the noninvasive assessment of normal hepatic bile flow remains an elusive goal that merits further study. Copyright © 2014 The American Physiological Society.
In Vitro Binding Capacity of Bile Acids by Defatted Corn Protein Hydrolysate
Kongo-Dia-Moukala, Jauricque Ursulla; Zhang, Hui; Irakoze, Pierre Claver
2011-01-01
Defatted corn protein was digested using five different proteases, Alcalase, Trypsin, Neutrase, Protamex and Flavourzyme, in order to produce bile acid binding peptides. Bile acid binding capacity was analyzed in vitro using peptides from different proteases of defatted corn hydrolysate. Some crystalline bile acids like sodium glycocholate, sodium cholate and sodium deoxycholate were individually tested using HPLC to see which enzymes can release more peptides with high bile acid binding capacity. Peptides from Flavourzyme defatted corn hydrolysate exhibited significantly (p < 0.05) stronger bile acid binding capacity than all others hydrolysates tested and all crystalline bile acids tested were highly bound by cholestyramine, a positive control well known as a cholesterol-reducing agent. The bile acid binding capacity of Flavourzyme hydrolysate was almost preserved after gastrointestinal proteases digestion. The molecular weight of Flavourzyme hydrolysate was determined and most of the peptides were found between 500–180 Da. The results showed that Flavourzyme hydrolysate may be used as a potential cholesterol-reducing agent. PMID:21541043
Hvas, Christian Lodberg; Ott, Peter; Paine, Peter; Lal, Simon; Jørgensen, Søren Peter; Dahlerup, Jens Frederik
2018-01-01
Bile acid diarrhea results from excessive amounts of bile acids entering the colon due to hepatic overexcretion of bile acids or bile acid malabsorption in the terminal ileum. The main therapies include bile acid sequestrants, such as colestyramine and colesevelam, which may be given in combination with the opioid receptor agonist loperamide. Some patients are refractory to conventional treatments. We report the use of the farnesoid X receptor agonist obeticholic acid in a patient with refractory bile acid diarrhea and subsequent intestinal failure. A 32-year-old woman with quiescent colonic Crohn’s disease and a normal terminal ileum had been diagnosed with severe bile acid malabsorption and complained of watery diarrhea and fatigue. The diarrhea resulted in hypokalemia and sodium depletion that made her dependent on twice weekly intravenous fluid and electrolyte infusions. Conventional therapies with colestyramine, colesevelam, and loperamide had no effect. Second-line antisecretory therapies with pantoprazole, liraglutide, and octreotide also failed. Third-line treatment with obeticholic acid reduced the number of stools from an average of 13 to an average of 7 per 24 h and improved the patient’s quality of life. The fluid and electrolyte balances normalized. The effect was sustained during follow-up for 6 mo with treatment at a daily dosage of 25 mg. The diarrhea worsened shortly after cessation of obeticholic acid. This case report supports the initial report that obeticholic acid may reduce bile acid production and improve symptoms in patients with bile acid diarrhea. PMID:29881241
Jia, Li; Shigwedha, Nditange; Mwandemele, Osmund D
2010-01-01
The survival of bifidobacteria in simulated conditions of the gastrointestinal (GI) tract was studied based on the D- and z-value concept. Some Bifidobacterium spp. are probiotics that improve microbial balance in the human GI tract. Because they are sensitive to low pH and bile salt concentrations, their viability in the GI tract is limited. The D- and z-value approach was therefore adopted as a result of observing constant log-cell reduction (90%) when Bifidobacterium spp. were exposed to these 2 different stressing factors. Survivals of one strain each or 4 species of Bifidobacterium was studied at pH between 3.0 and 4.5 and in ox-bile between 0.15% and 0.60% for times up to 41 h. From the D(acid)- and D(bile)-values, the order of resistance to acid and bile was B. bifidum > B. infantis > B. longum > B. adolescentis. While the former 3 strains retained high cell viability at pH 3.5 (>5.5 log CFU/mL after 5 h) and at elevated bile salt concentration of 0.6% (>4.5 log CFU/mL after 3 h), B. adolescentis was less resistant (<3.4 log CFU/mL). The z(acid)- and z(bile)-values calculated from the D(acid)- and D(bile)-values ranged from 1.11 to 1.55 pH units and 0.40% to 0.49%, respectively. The results suggest that the D(acid)-, D(bile)-, z(acid)-, and z(bile)-value approach could be more appropriate than the screening and selection method in evaluating survival of probiotic bacteria, and in measuring their tolerance or resistance to gastric acidity and the associated bile salt concentration in the small intestine. The evaluation of the tolerance of bifidobacteria to bile salts and low pH has been made possible by use of D- and z-value concept. The calculated z(acid)- and z(bile)-values were all fairly similar for the strains used and suggest the effect of increasing the bile salt concentration or decreasing the pH on the D(acid)- and D(bile)-values. This approach would be useful for predicting the suitability of bifidobacteria and other lactic acid bacteria (LAB) as probiotics for use in real-life situations.
Rethinking the bile acid/gut microbiome axis in cancer
Phelan, John P.; Reen, F. Jerry; Caparros-Martin, Jose A.; O'Connor, Rosemary; O'Gara, Fergal
2017-01-01
Dietary factors, probiotic agents, aging and antibiotics/medicines impact on gut microbiome composition leading to disturbances in localised microbial populations. The impact can be profound and underlies a plethora of human disorders, including the focus of this review; cancer. Compromised microbiome populations can alter bile acid signalling and produce distinct pathophysiological bile acid profiles. These in turn have been associated with cancer development and progression. Exposure to high levels of bile acids, combined with localised molecular/genome instability leads to the acquisition of bile mediated neoplastic alterations, generating apoptotic resistant proliferation phenotypes. However, in recent years, several studies have emerged advocating the therapeutic benefits of bile acid signalling in suppressing molecular and phenotypic hallmarks of cancer progression. These studies suggest that in some instances, bile acids may reduce cancer phenotypic effects, thereby limiting metastatic potential. In this review, we contextualise the current state of the art to propose that the bile acid/gut microbiome axis can influence cancer progression to the extent that classical in vitro cancer hallmarks of malignancy (cell invasion, cell migration, clonogenicity, and cell adhesion) are significantly reduced. We readily acknowledge the existence of a bile acid/gut microbiome axis in cancer initiation, however, in light of recent advances, we focus exclusively on the role of bile acids as potentially beneficial molecules in suppressing cancer progression. Finally, we theorise that suppressing aggressive malignant phenotypes through bile acid/gut microbiome axis modulation could uncover new and innovative disease management strategies for managing cancers in vulnerable cohorts. PMID:29383197
Smart coumarin-tagged imprinted polymers for the rapid detection of tamoxifen.
Ray, Judith V; Mirata, Fosca; Pérollier, Celine; Arotcarena, Michel; Bayoudh, Sami; Resmini, Marina
2016-03-01
A signalling molecularly imprinted polymer was synthesised for easy detection of tamoxifen and its metabolites. 6-Vinylcoumarin-4-carboxylic acid (VCC) was synthesised from 4-bromophenol to give a fluorescent monomer, designed to switch off upon binding of tamoxifen. Clomiphene, a chlorinated analogue, was used as the template for the imprinting, and its ability to quench the coumarin fluorescence when used in a 1:1 ratio was demonstrated. Tamoxifen and 4-hydroxytamoxifen were also shown to quench coumarin fluorescence. Imprinted and non-imprinted polymers were synthesised using VCC, methacrylic acid as a backbone monomer and ethylene glycol dimethacrylate as cross-linker, and were ground and sieved to particle sizes ranging between 45 and 25 μm. Rebinding experiments demonstrate that the imprinted polymer shows very strong affinity for both clomiphene and tamoxifen, while the non-imprinted polymer shows negligible rebinding. The fluorescence of the imprinted polymer is quenched by clomiphene, tamoxifen and 4-hydroxytamoxifen. The switch off in fluorescence of the imprinted polymer under these conditions could also be detected under a UV lamp with the naked eye, making this matrix suitable for applications when coupled with a sample preparation system.
FXR signaling in the enterohepatic system
Matsubara, Tsutomu; Li, Fei; Gonzalez, Frank J.
2012-01-01
Enterohepatic circulation serves to capture bile acids and other steroid metabolites produced in the liver and secreted to the intestine, for reabsorption back into the circulation and reuptake to the liver. This process is under tight regulation by nuclear receptor signaling. Bile acids, produced from cholesterol, can alter gene expression in the liver and small intestine via activating the nuclear receptors farnesoid X receptor (FXR; NR1H4), pregnane X receptor (PXR; NR1I2), vitamin D receptor (VDR; NR1I1), G protein coupled receptor TGR5, and other cell signaling pathways (JNK1/2, AKT and ERK1/2). Among these controls, FXR is known to be a major bile acid-responsive ligand-activated transcription factor and a crucial control element for maintaining bile acid homeostasis. FXR has a high affinity for several major endogenous bile acids, notably cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid. By responding to excess bile acids, FXR is a bridge between the liver and small intestine to control bile acid levels and regulate bile acid synthesis and enterohepatic flow. FXR is highly expressed in the liver and gut, relative to other tissues, and contributes to the maintenance of cholesterol/bile acid homeostasis by regulating a variety of metabolic enzymes and transporters. FXR activation also affects lipid and glucose metabolism, and can influence drug metabolism. PMID:22609541
Role of the Intestinal Bile Acid Transporters in Bile Acid and Drug Disposition
Dawson, Paul A.
2011-01-01
Membrane transporters expressed by the hepatocyte and enterocyte play critical roles in maintaining the enterohepatic circulation of bile acids, an effective recycling and conservation mechanism that largely restricts these potentially cytotoxic detergents to the intestinal and hepatobiliary compartments. In doing so, the hepatic and enterocyte transport systems ensure a continuous supply of bile acids to be used repeatedly during the digestion of multiple meals throughout the day. Absorption of bile acids from the intestinal lumen and export into the portal circulation is mediated by a series of transporters expressed on the enterocyte apical and basolateral membranes. The ileal apical sodium-dependent bile acid cotransporter (abbreviated ASBT; gene symbol, SLC10A2) is responsible for the initial uptake of bile acids across the enterocyte brush border membrane. The bile acids are then efficiently shuttled across the cell and exported across the basolateral membrane by the heteromeric Organic Solute Transporter, OSTα-OSTβ. This chapter briefly reviews the tissue expression, physiology, genetics, pathophysiology, and transport properties of the ASBT and OSTα-OSTα. In addition, the chapter discusses the relationship between the intestinal bile acid transporters and drug metabolism, including development of ASBT inhibitors as novel hypocholesterolemic or hepatoprotective agents, prodrug targeting of the ASBT to increase oral bioavailability, and involvement of the intestinal bile acid transporters in drug absorption and drug-drug interactions. PMID:21103970
Bile acid receptors link nutrient sensing to metabolic regulation
Li, Jibiao; Li, Tiangang
2017-01-01
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease in Western populations. Non-alcoholic steatohepatitis (NASH) is a more debilitating form of NAFLD characterized by hepatocellular injury and inflammation, which significantly increase the risk of end-stage liver and cardiovascular diseases. Unfortunately, there are no available drug therapies for NASH. Bile acids are physiological detergent molecules that are synthesized from cholesterol exclusively in the hepatocytes. Bile acids circulate between the liver and intestine, where they are required for cholesterol solubilization in the bile and dietary fat emulsification in the gut. Bile acids also act as signaling molecules that regulate metabolic homeostasis and inflammatory processes. Many of these effects are mediated by the bile acid-activated nuclear receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5. Nutrient signaling regulates hepatic bile acid synthesis and circulating plasma bile acid concentrations, which in turn control metabolic homeostasis. The FXR agonist obeticholic acid has had beneficial effects on NASH in recent clinical trials. Preclinical studies have suggested that the TGR5 agonist and the FXR/TGR5 dual agonist are also potential therapies for metabolic liver diseases. Extensive studies in the past few decades have significantly improved our understanding of the metabolic regulatory function of bile acids, which has provided the molecular basis for developing promising bile acid-based therapeutic agents for NASH treatment. PMID:29098111
NASA Astrophysics Data System (ADS)
Roy, Nayan; Paul, Pradip C.; Singh, T. Sanjoy
2015-05-01
Fluorescence properties of Schiff base - N,N‧-bis(salicylidene) - 1,2-phenylenediamine (LH2) is used to study the micelles formed by aggregation of different important bile acids like cholic acid, deoxycholic acid, chenodeoxycholic acid and glycocholic acid by steady state and picosecond time-resolved fluorescence spectroscopy. The fluorescence band intensity was found out to increase with concomitant red shift with gradual addition of different bile acids. Binding constant of the probe with different bile acids as well as critical micelle concentration was obtained from the variation of fluorescence intensity on increasing concentration of bile acids in the medium. The increase in fluorescence quantum yields, fluorescence decay times and substantial decrease in nonradiative decay rate constants in bile acids micellar environment points to the restricted motion of the fluorophore inside the micellar subdomains.
Montagnani, Marco; Abrahamsson, Anna; Gälman, Cecilia; Eggertsen, Gösta; Marschall, Hanns-Ulrich; Ravaioli, Elisa; Einarsson, Curt; Dawson, Paul A
2006-01-01
The etiology of most cases of idiopathic bile acid malabsorption (IBAM) is unknown. In this study, a Swedish family with bile acid malabsorption in three consecutive generations was screened for mutations in the ileal apical sodium-bile acid cotransporter gene (ASBT; gene symbol, SLC10A2) and in the genes for several of the nuclear receptors known to be important for ASBT expression: the farnesoid X receptor (FXR) and peroxisome proliferator activated receptor alpha (PPARα). The patients presented with a clinical history of idiopathic chronic watery diarrhea, which was responsive to cholestyramine treatment and consistent with IBAM. Bile acid absorption was determined using 75Se-homocholic acid taurine (SeHCAT); bile acid synthesis was estimated by measuring the plasma levels of 7α-hydroxy-4-cholesten-3-one (C4). The ASBT, FXR, and PPARα genes in the affected and unaffected family members were analyzed using single stranded conformation polymorphism (SSCP), denaturing HPLC, and direct sequencing. No ASBT mutations were identified and the ASBT gene did not segregate with the bile acid malabsorption phenotype. Similarly, no mutations or polymorphisms were identified in the FXR or PPARα genes associated with the bile acid malabsorption phenotype. These studies indicate that the intestinal bile acid malabsorption in these patients cannot be attributed to defects in ASBT. In the absence of apparent ileal disease, alternative explanations such as accelerated transit through the small intestine may be responsible for the IBAM. PMID:17171805
A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis.
Walters, Julian R F; Tasleem, Ali M; Omer, Omer S; Brydon, W Gordon; Dew, Tracy; le Roux, Carel W
2009-11-01
Primary (idiopathic) bile acid malabsorption (BAM) is a common, yet underrecognized, chronic diarrheal syndrome. Diagnosis is difficult without selenium homocholic acid taurine (SeHCAT) testing. The diarrhea results from excess colonic bile acids, but the pathogenesis is unclear. Fibroblast growth factor 19 (FGF19), produced in the ileum in response to bile acid absorption, regulates hepatic bile acid synthesis. We proposed that FGF19 is involved in bile acid diarrhea and measured its levels in patients with BAM. Blood was collected from fasting patients with chronic diarrhea; BAM was diagnosed by SeHCAT. Serum FGF19 was measured by enzyme-linked immunosorbent assay. Serum 7alpha-hydroxy-4-cholesten-3-one (C4) was determined using high-performance liquid chromatography, to quantify bile acid synthesis. Data were compared between patients and subjects without diarrhea (controls). Samples were taken repeatedly after meals from several subjects. The median C4 level was significantly higher in patients with primary BAM than in controls (51 vs 18 ng/mL; P < .0001). The median FGF19 level was significantly lower in patients with BAM (120 vs 231 pg/mL; P < .0005). There was a significant inverse relationship between FGF19 and C4 levels (P < .0004). Low levels of FGF19 were also found in patients with postcholecystectomy and secondary bile acid diarrhea. Abnormal patterns of FGF19 levels were observed throughout the day in some patients with primary BAM. Patients with BAM have reduced serum FGF19 which may be useful in diagnosis. We propose a mechanism whereby impaired FGF19 feedback inhibition causes excessive bile acid synthesis that exceeds the normal capacity for ileal reabsorption, producing bile acid diarrhea.
Dahmane, E; Mercier, T; Zanolari, B; Cruchon, S; Guignard, N; Buclin, T; Leyvraz, S; Zaman, K; Csajka, C; Decosterd, L A
2010-12-15
There is increasing evidence that the clinical efficacy of tamoxifen, the first and most widely used targeted therapy for estrogen-sensitive breast cancer, depends on the formation of the active metabolites 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen (endoxifen). Large inter-individual variability in endoxifen plasma concentrations has been observed and related both to genetic and environmental (i.e. drug-induced) factors altering CYP450s metabolizing enzymes activity. In this context, we have developed an ultra performance liquid chromatography-tandem mass spectrometry method (UPLC-MS/MS) requiring 100 μL of plasma for the quantification of tamoxifen and three of its major metabolites in breast cancer patients. Plasma is purified by a combination of protein precipitation, evaporation at room temperature under nitrogen, and reconstitution in methanol/20 mM ammonium formate 1:1 (v/v), adjusted to pH 2.9 with formic acid. Reverse-phase chromatographic separation of tamoxifen, N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen is performed within 13 min using elution with a gradient of 10 mM ammonium formate and acetonitrile, both containing 0.1% formic acid. Analytes quantification, using matrix-matched calibration samples spiked with their respective deuterated internal standards, is performed by electrospray ionization-triple quadrupole mass spectrometry using selected reaction monitoring detection in the positive mode. The method was validated according to FDA recommendations, including assessment of relative matrix effects variability, as well as tamoxifen and metabolites short-term stability in plasma and whole blood. The method is precise (inter-day CV%: 2.5-7.8%), accurate (-1.4 to +5.8%) and sensitive (lower limits of quantification comprised between 0.4 and 2.0 ng/mL). Application of this method to patients' samples has made possible the identification of two further metabolites, 4'-hydroxy-tamoxifen and 4'-hydroxy-N-desmethyl-tamoxifen, described for the first time in breast cancer patients. This UPLC-MS/MS assay is currently applied for monitoring plasma levels of tamoxifen and its metabolites in breast cancer patients within the frame of a clinical trial aiming to assess the impact of dose increase on tamoxifen and endoxifen exposure. Copyright © 2010 Elsevier B.V. All rights reserved.
Ferdek, Pawel E; Jakubowska, Monika A; Gerasimenko, Julia V; Gerasimenko, Oleg V; Petersen, Ole H
2016-11-01
Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas. Bile acids are known to induce Ca 2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored. Here we show that cholate and taurocholate elicit more dramatic Ca 2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3-sulfate primarily affects acinar cells. Ca 2+ signals and necrosis are strongly dependent on extracellular Ca 2+ as well as Na + ; and Na + -dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells. Bile acid-mediated pancreatic damage can be further escalated by bradykinin-induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca 2+ signals and necrosis in acinar cells. However, bile acid-elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca 2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3-sulfate (TLC-S), known to induce Ca 2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca 2+ signals on extracellular Na + and the presence of sodium-taurocholate cotransporting polypeptide (NTCP) indicate a Na + -dependent bile acid uptake mechanism in stellate cells. Bile acid treatment caused necrosis predominantly in stellate cells, which was abolished by removal of extracellular Ca 2+ and significantly reduced in the absence of Na + , showing that bile-dependent cell death was a downstream event of Ca 2+ signals. Finally, combined application of TLC-S and the inflammatory mediator bradykinin caused more extensive necrosis in both stellate and acinar cells than TLC-S alone. Our findings shed new light on the mechanism by which bile acids promote pancreatic pathology. This involves not only signalling in acinar cells but also in stellate cells. © 2016 The Authors The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Intestinal transport and metabolism of bile acids
Dawson, Paul A.; Karpen, Saul J.
2015-01-01
In addition to their classical roles as detergents to aid in the process of digestion, bile acids have been identified as important signaling molecules that function through various nuclear and G protein-coupled receptors to regulate a myriad of cellular and molecular functions across both metabolic and nonmetabolic pathways. Signaling via these pathways will vary depending on the tissue and the concentration and chemical structure of the bile acid species. Important determinants of the size and composition of the bile acid pool are their efficient enterohepatic recirculation, their host and microbial metabolism, and the homeostatic feedback mechanisms connecting hepatocytes, enterocytes, and the luminal microbiota. This review focuses on the mammalian intestine, discussing the physiology of bile acid transport, the metabolism of bile acids in the gut, and new developments in our understanding of how intestinal metabolism, particularly by the gut microbiota, affects bile acid signaling. PMID:25210150
Bile Routing Modification Reproduces Key Features of Gastric Bypass in Rat.
Goncalves, Daisy; Barataud, Aude; De Vadder, Filipe; Vinera, Jennifer; Zitoun, Carine; Duchampt, Adeline; Mithieux, Gilles
2015-12-01
To evaluate the role of bile routing modification on the beneficial effects of gastric bypass surgery on glucose and energy metabolism. Gastric bypass surgery (GBP) promotes early improvements in glucose and energy homeostasis in obese diabetic patients. A suggested mechanism associates a decrease in hepatic glucose production to an enhanced intestinal gluconeogenesis. Moreover, plasma bile acids are elevated after GBP and bile acids are inhibitors of gluconeogenesis. In male Sprague-Dawley rats, we performed bile diversions from the bile duct to the midjejunum or the mid-ileum to match the modified bile delivery in the gut occurring in GBP. Body weight, food intake, glucose tolerance, insulin sensitivity, and food preference were analyzed. The expression of gluconeogenesis genes was evaluated in both the liver and the intestine. Bile diversions mimicking GBP promote an increase in plasma bile acids and a marked improvement in glucose control. Bile bioavailability modification is causal because a bile acid sequestrant suppresses the beneficial effects of bile diversions on glucose control. In agreement with the inhibitory role of bile acids on gluconeogenesis, bile diversions promote a blunting in hepatic glucose production, whereas intestinal gluconeogenesis is increased in the gut segments devoid of bile. In rats fed a high-fat-high-sucrose diet, bile diversions improve glucose control and dramatically decrease food intake because of an acquired disinterest in fatty food. This study shows that bile routing modification is a key mechanistic feature in the beneficial outcomes of GBP.
Bile Routing Modification Reproduces Key Features of Gastric Bypass in Rat
Goncalves, Daisy; Barataud, Aude; De Vadder, Filipe; Vinera, Jennifer; Zitoun, Carine; Duchampt, Adeline; Mithieux, Gilles
2015-01-01
STRUCTURED ABSTRACT Objective To evaluate the role of bile routing modification on the beneficial effects of gastric bypass surgery on glucose and energy metabolism. Summary background data Gastric bypass surgery (GBP) promotes early improvements in glucose and energy homeostasis in obese diabetic patients. A suggested mechanism associates a decrease in hepatic glucose production (HGP) to an enhanced intestinal gluconeogenesis (IGN). Moreover, plasma bile acids are elevated after GBP and bile acids are inhibitors of gluconeogenesis. Methods In male Sprague-Dawley rats, we performed bile diversions from the bile duct to the mid-jejunum or the mid-ileum to match the modified bile delivery in the gut occurring in GBP. Body weight, food intake, glucose tolerance, insulin sensitivity and food preference were analyzed. The expression of gluconeogenesis genes was evaluated in both the liver and the intestine. Results Bile diversions mimicking GBP promote an increase in plasma bile acids and a marked improvement in glucose control. Bile bioavailability modification is causal since a bile acid sequestrant suppresses the beneficial effects of bile diversions on glucose control. In agreement with the inhibitory role of bile acids on gluconeogenesis, bile diversions promote a blunting in HGP, whereas IGN is increased in the gut segments devoid of bile. In rats fed a high fat-high sucrose diet, bile diversions improve glucose control and dramatically decrease food intake due to an acquired disinterest in fatty food. Conclusion This study shows that bile routing modification is a key mechanistic feature in the beneficial outcomes of GBP. PMID:25575265
Eusufzai, S; Axelson, M; Angelin, B; Einarsson, K
1993-01-01
The synthesis of bile acids is regulated by a homeostatic mechanism in which bile acids returning to the liver from the intestine inhibit their own synthesis. Serum concentrations of the bile acid intermediate 7 alpha-hydroxy-4-cholesten-3-one reflect the rate of bile acid synthesis whereas bile acid malabsorption can be determined by the SeHCAT test. This study was done to evaluate the correlation between the two tests in humans. Twenty eight patients with chronic diarrhoea were included in the study. Fasting serum was collected for the determination of 7 alpha-hydroxy-4-cholesten-3-one, and on the same day the gamma emitting bile acid analogue SeHCAT was given orally and its fractional catabolic rate assessed by repeated external counting over the upper abdomen during the next seven days. There was a highly significant positive correlation between the two tests (Rs = 0.80, p < 0.001). The results show a close relation between intestinal loss and hepatic synthesis of bile acids and imply that analysis of 7 alpha-hydroxy-4-cholesten-3-one in serum should now be evaluated as a possible convenient method for assessing bile acid malabsorption in patients with diarrhoea. PMID:8504974
Defining primary bile acid diarrhea: making the diagnosis and recognizing the disorder.
Walters, Julian R F
2010-10-01
Chronic diarrhea due to bile acid malabsorption may be considered as contributing to the diagnosis when it results from secondary causes, such as ileal resection affecting the enterohepatic circulation. However, the primary form (also known as idiopathic bile acid malabsorption) is not well recognized as a common condition and patients are left undiagnosed. Primary bile acid diarrhea can be diagnosed by the nuclear medicine 75Se-homocholyltaurine (SeHCAT) test, although this is unavailable or underutilized in many settings. A systematic review suggests that approximately 30% of patients who would otherwise be diagnosed with diarrhea-predominant irritable bowel syndrome or functional diarrhea have abnormal SeHCAT retention. Serum 7α-hydroxy-4-cholesten-3-one can also be measured to show increased bile acid synthesis. The reasons for the lack of recognition of primary bile acid diarrhea are discussed, and these are compared with the other common cause of malabsorption, celiac disease. The lack of a clear pathophysiological mechanism has been a problem, but recent evidence suggests that impaired feedback control of hepatic bile acid synthesis by the ileal hormone FGF19 results in overproduction of bile acids. The identification of FGF19 as the central mechanism opens up new areas for development in the diagnosis and treatment of primary bile acid diarrhea.
Eusufzai, S; Axelson, M; Angelin, B; Einarsson, K
1993-05-01
The synthesis of bile acids is regulated by a homeostatic mechanism in which bile acids returning to the liver from the intestine inhibit their own synthesis. Serum concentrations of the bile acid intermediate 7 alpha-hydroxy-4-cholesten-3-one reflect the rate of bile acid synthesis whereas bile acid malabsorption can be determined by the SeHCAT test. This study was done to evaluate the correlation between the two tests in humans. Twenty eight patients with chronic diarrhoea were included in the study. Fasting serum was collected for the determination of 7 alpha-hydroxy-4-cholesten-3-one, and on the same day the gamma emitting bile acid analogue SeHCAT was given orally and its fractional catabolic rate assessed by repeated external counting over the upper abdomen during the next seven days. There was a highly significant positive correlation between the two tests (Rs = 0.80, p < 0.001). The results show a close relation between intestinal loss and hepatic synthesis of bile acids and imply that analysis of 7 alpha-hydroxy-4-cholesten-3-one in serum should now be evaluated as a possible convenient method for assessing bile acid malabsorption in patients with diarrhoea.
Bile Acid Signaling Pathways from the Enterohepatic Circulation to the Central Nervous System
Mertens, Kim L.; Kalsbeek, Andries; Soeters, Maarten R.; Eggink, Hannah M.
2017-01-01
Bile acids are best known as detergents involved in the digestion of lipids. In addition, new data in the last decade have shown that bile acids also function as gut hormones capable of influencing metabolic processes via receptors such as FXR (farnesoid X receptor) and TGR5 (Takeda G protein-coupled receptor 5). These effects of bile acids are not restricted to the gastrointestinal tract, but can affect different tissues throughout the organism. It is still unclear whether these effects also involve signaling of bile acids to the central nervous system (CNS). Bile acid signaling to the CNS encompasses both direct and indirect pathways. Bile acids can act directly in the brain via central FXR and TGR5 signaling. In addition, there are two indirect pathways that involve intermediate agents released upon interaction with bile acids receptors in the gut. Activation of intestinal FXR and TGR5 receptors can result in the release of fibroblast growth factor 19 (FGF19) and glucagon-like peptide 1 (GLP-1), both capable of signaling to the CNS. We conclude that when plasma bile acids levels are high all three pathways may contribute in signal transmission to the CNS. However, under normal physiological circumstances, the indirect pathway involving GLP-1 may evoke the most substantial effect in the brain. PMID:29163019
Risstad, Hilde; Kristinsson, Jon A; Fagerland, Morten W; le Roux, Carel W; Birkeland, Kåre I; Gulseth, Hanne L; Thorsby, Per M; Vincent, Royce P; Engström, My; Olbers, Torsten; Mala, Tom
2017-09-01
Bile acids have been proposed as key mediators of the metabolic effects after bariatric surgery. Currently no reports on bile acid profiles after duodenal switch exist, and long-term data after gastric bypass are lacking. To investigate bile acid profiles up to 5 years after Roux-en-Y gastric bypass and biliopancreatic diversion with duodenal switch and to explore the relationship among bile acids and weight loss, lipid profile, and glucose metabolism. Two Scandinavian University Hospitals. We present data from a randomized clinical trial of 60 patients with body mass index 50-60 kg/m 2 operated with gastric bypass or duodenal switch. Repeated measurements of total and individual bile acids from fasting serum during 5 years after surgery were performed. Mean concentrations of total bile acids increased from 2.3 µmol/L (95% confidence interval [CI], -.1 to 4.7) at baseline to 5.9 µmol/L (3.5-8.3) 5 years after gastric bypass and from 1.0 µmol/L (95% CI, -1.4 to 3.5) to 9.5 µmol/L (95% CI, 7.1-11.9) after duodenal switch; mean between-group difference was -4.8 µmol/L (95% CI, -9.3 to -.3), P = .036. Mean concentrations of primary bile acids increased more after duodenal switch, whereas secondary bile acids increased proportionally across the groups. Higher levels of total bile acids at 5 years were associated with lower body mass index, greater weight loss, and lower total cholesterol. Total bile acid concentrations increased substantially over 5 years after both gastric bypass and duodenal switch, with greater increases in total and primary bile acids after duodenal switch. (Surg Obes Relat Dis 2017;0:000-000.) © 2017 American Society for Metabolic and Bariatric Surgery. All rights reserved. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
Chen, C; Hennig, G E; McCann, D J; Manautou, J E
2000-11-01
1. The effects of clofibrate (CFB) and indocyanine green (ICG) on the biliary excretion of acetaminophen (APAP) and its metabolites were investigated. 2. Male CD-1 mice were pretreated with 500 mg CFB/kg, i.p. for 10 days. Controls received corn oil vehicle only. After overnight fasting, common bile duct-cannulated mice were challenged with a non-toxic dose of APAP (1 mmol/kg, i.v.). 3. CFB pretreatment did not affect bile flow rate, nor did it affect the cumulative biliary excretion of APAP and its conjugated metabolites. 4. Additional CFB or corn oil pretreated mice were given 30 mumol indocyanine green (ICG)/kg, i.v., immediately before APAP dosing. ICG is a non-metabolizable organic anion that is completely excreted into the bile through a canalicular transport process for organic anions. 5. ICG significantly decreased the bile flow rate and biliary concentration of APAP-glutathione, APAP-glucuronide and APAP-mercapturate within the first hour after dosing without affecting the biliary concentration of APAP. 6. The results indicate that CFB pretreatment does not affect the total amount of APAP and its metabolites excreted in bile. They also suggest that the biliary excretion of several conjugated metabolites of APAP share the same excretory pathway with the organic anion ICG.
Zhang, Jie; Fan, Yeqin; Gong, Yajun; Chen, Xiaoyong; Wan, Luosheng; Zhou, Chenggao; Zhou, Jiewen; Ma, Shuangcheng; Wei, Feng; Chen, Jiachun; Nie, Jing
2017-11-15
Snake bile is one of the most expensive traditional Chinese medicines (TCMs). However, due to the complicated constitutes of snake bile and the poor ultraviolet absorbance of some trace bile acids (BAs), effective analysis methods for snake bile acids were still unavailable, making it difficult to solve adulteration problems. In present study, ultrahigh-performance liquid chromatography with triple quadrupole linear ion trap mass spectrometry (UHPLC-QqQ-MS/MS) was applied to conduct a quantitative analysis on snake BAs. The mass spectrometer was monitored in the negative ion mode, and multiple-reaction monitoring (MRM) program was used to determine the contents of BAs in snake bile. In all, 61 snake bile from 17 commonly used species of three families (Elapidae, Colubridae and Viperidae), along with five batches of commercial snake bile from four companies, were collected and detected. Nine components, Tauro-3α,12α-dihydroxy-7-oxo-5β-cholenoic acid (T1), Tauro-3α,7α,12α,23R-tetrahydroxy-5β-cholenoic acid (T2), taurocholic acid (TCA), glycocholic acid (GCA), taurochenodeoxycholic acid (TCDCA), taurodeoxycholic acid (TDCA), cholic acid (CA), Tauro-3α,7α-dihydroxy-12-oxo-5β-cholenoic acid (T3), and Tauro-3α,7α,9α,16α-tetrahydroxy-5β-cholenoic acid (T4) were simultaneously and rapidly determined for the first time. In these BAs, T1 and T2, self-prepared with purity above 90%, were first reported with their quantitative determination, and the latter two (T3 and T4) were tentatively determined by quantitative analysis multi-components by single marker (QAMS) method for roughly estimating the components without reference. The developed method was validated with acceptable linearity (r 2 ≥0.995), precision (RSD<6.5%) and recovery (RSD<7.5%). It turned out that the contents of BAs among different species were also significantly different; T1 was one of the principle bile acids in some common snake bile, and also was the characteristic one in Viperidae and Elapidae; T2 was the dominant components in Enhydris chinensis. This quantitative study of BAs in snake bile is a remarkable improvement for clarifying the bile acid compositions and evaluating the quality of snake bile. Copyright © 2017 Elsevier B.V. All rights reserved.
Rees, David O; Crick, Peter J; Jenkins, Gareth J; Wang, Yuqin; Griffiths, William J; Brown, Tim H; Al-Sarireh, Bilal
2017-11-01
Bile acids have been implicated in the development of gastrointestinal malignancies. Both the specific nature of individual bile acids and their concentration appear key factors in the carcinogenic potency of bile. Using liquid chromatography mass spectrometry (LC-MS) we performed quantitative profiling of bile extracted directly from the common bile duct in 30 patients (15 patients with pancreatic cancer and 15 patients with benign disease). Separation and detection of bile acids was performed using a 1.7μm particle size reversed-phase C 18 LC column at a flow rate of 200μL/min with negative electrospray ionization MS. A significant difference (p=0.018) was seen in the concentration of unconjugated cholic acid in the malignant group (0.643mmol/L) compared to the benign group (0.022mmol/L), with an overall significant difference (p=0.04) seen in the level of total unconjugated bile acids in the malignant group (1.816mmol/L) compared to the benign group (0.069mmol/L). This finding may offer the possibility of both understanding the biology of cancer development in the pancreas, as well as offering a potential diagnostic avenue to explore. However, a larger study is necessary to confirm the alterations in bile acid profiles reported here and explore factors such as diet and microbial populations on the bile acid profiles of these patient groups. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Bertino, Enrico; Giribaldi, Marzia; Baro, Cristina; Giancotti, Valeria; Pazzi, Marco; Peila, Chiara; Tonetto, Paola; Arslanoglu, Sertac; Moro, Guido E; Cavallarin, Laura; Gastaldi, Daniela
2013-04-01
The study was aimed at evaluating the effect of prolonged refrigeration of fresh human milk (HM) on its fatty acid profile, free fatty acid content, lipase activities, and oxidative status. HM from mothers of preterm newborns was collected, pooled, and placed in the neonatal intensive care unit (NICU) refrigerator. Pooled milk was aliquoted and analyzed within 3 hours of collection, and after 24, 48, 72, and 96 hours of storage. The milk samples were analyzed for pH, total and free fatty acid profile, lipase activity at room temperature and at 4°C, lipase activity at room temperature in presence of sodium cholate (bile salt-dependent lipase), total antioxidant capacity, thiobarbituric acid reactive species, malondialdehyde, and conjugated diene concentration. The experiment was replicated in 3 independent trials. Prolonged refrigeration did not affect the fatty acid composition of breast milk, and preserved both its overall oxidative status and the activity of HM lipolytic enzymes. In particular, bile salt-dependent lipase activity, long-chain polyunsaturated fatty acids, and medium-chain saturated fatty acid concentrations were unaffected for up to 96 hours of refrigerated storage. Prolonged refrigeration of fresh HM for 96 hours maintained its overall lipid composition. The limited lipolysis during storage should be ascribed to the activity of lipoprotein lipase, responsible for the decrease in pH. Our study demonstrates that infants who receive expressed milk stored for up to 96 hours receive essentially the same supply of fatty acids and active lipases as do infants fed directly at the breast.
Si, Gu Leng Ri; Yao, Peng; Shi, Luwen
2015-08-01
A valid and efficient reversed-phase ultra-fast liquid chromatography method was developed for the simultaneous determination of 13 bile acids in the bile of three mammal species, including rat, pig and human gallstone patients. Chromatographic separation was performed with a Shim-pack XR-ODS column, and the mobile phase consisted of acetonitrile and potassium phosphate buffer (pH 2.6) at a flow rate of 0.5 mL min(-1). The linear detection range of most bile acids ranged from 2 to 600 ng µL(-1) with a good correlation coefficient (>0.9995). The precision of each bile acid was <1.8% for intraday and <4.8% for interday. All bile acids were separated in 15 min with satisfactory resolution, and the total analysis time was 18 min, including equilibration. The method was successfully applied in rapid screening of bile samples from the three mammals. Significant metabolic frameworks of bile acids among various species were observed, whereas considerable quantitative variations in both inter- and intraspecies were also observed, especially for gallstone patients. Our results suggest that detecting the change of bile acid profiles could be applied for the diagnosis of gallstone disease. © Crown copyright 2014.
Bile acids: analysis in biological fluids and tissues
Griffiths, William J.; Sjövall, Jan
2010-01-01
The formation of bile acids/bile alcohols is of major importance for the maintenance of cholesterol homeostasis. Besides their functions in lipid absorption, bile acids/bile alcohols are regulatory molecules for a number of metabolic processes. Their effects are structure-dependent, and numerous metabolic conversions result in a complex mixture of biologically active and inactive forms. Advanced methods are required to characterize and quantify individual bile acids in these mixtures. A combination of such analyses with analyses of the proteome will be required for a better understanding of mechanisms of action and nature of endogenous ligands. Mass spectrometry is the basic detection technique for effluents from chromatographic columns. Capillary liquid chromatography-mass spectrometry with electrospray ionization provides the highest sensitivity in metabolome analysis. Classical gas chromatography-mass spectrometry is less sensitive but offers extensive structure-dependent fragmentation increasing the specificity in analyses of isobaric isomers of unconjugated bile acids. Depending on the nature of the bile acid/bile alcohol mixture and the range of concentration of individuals, different sample preparation sequences, from simple extractions to group separations and derivatizations, are applicable. We review the methods currently available for the analysis of bile acids in biological fluids and tissues, with emphasis on the combination of liquid and gas phase chromatography with mass spectrometry. PMID:20008121
Budesonide treatment is associated with increased bile acid absorption in collagenous colitis.
Bajor, A; Kilander, A; Gälman, C; Rudling, M; Ung, K-A
2006-12-01
Bile acid malabsorption is frequent in collagenous colitis and harmful bile acids may play a pathophysiological role. Glucocorticoids increase ileal bile acid transport. Budesonide have its main effect in the terminal ileum. To evaluate whether the symptomatic effect of budesonide is linked to increased uptake of bile acids. Patients with collagenous colitis were treated with budesonide 9 mg daily for 12 weeks. Prior to and after 8 weeks of treatment, the (75)SeHCAT test, an indirect test for the active uptake of bile acid-s, measurements of serum 7alpha-hydroxy-4-cholesten-3-one, an indicator of hepatic bile acid synthesis, and registration of symptoms were performed. The median (75)SeHCAT retention increased from 18% to 35% (P < 0.001, n = 25) approaching the values of healthy controls (38%). The 7alpha-hydroxy-4-cholesten-3-one values decreased significantly among those with initially high synthesis (from 36 to 23 ng/mL, P = 0.04, n = 9); however, for the whole group the values were not altered (19 ng/mL vs. 13 ng/mL, P = 0.23, N.S., n = 19). The normalization of the (75)SeHCAT test and the reduction of bile acid synthesis in patients with initially high synthetic rate, suggests that the effect of budesonide in collagenous colitis may be in part due to decreased bile acid load on the colon.
Damsgaard, B; Dalby, H R; Krogh, K; Jørgensen, S M D; Arveschough, A K; Agnholt, J; Dahlerup, J F; Jørgensen, S P
2018-04-01
Excessive amounts of bile acids entering the colon due to bile acid malabsorption cause chronic bile acid diarrhoea. Diagnosis is possible by measuring the retention fraction of orally ingested 75 Selenium homotaurocholic acid (SeHCAT). The knowledge of long-term effects of medical treatment is sparse. To describe diarrhoea, adherence to treatment, treatment effects and quality of life in a large, well-defined cohort of patients with bile acid diarrhoea. A retrospective survey was performed among 594 patients with bile acid malabsorption verified by SeHCAT scans at our unit between 2003 and 2016. Questionnaires about medical history, diarrhoea, use of medication, and quality of life scores were mailed to all patients. Among 594 patients 377 (69%) responded. Among respondents, 121 (32%) had bile acid diarrhoea due to ileal disease or resection (type 1), 198 (52%) idiopathic bile acid diarrhoea (type 2) and 58 (16%) bile acid diarrhoea due to other non-ileal disease, mainly cholecystectomy (type 3). At follow-up, half of the patients, 184 (50%), reported improvement of diarrhoea. However, 273 patients (74%) still reported diarrhoea and 234 (62%) regularly used anti-diarrhoeal medication. In spite of treatment, 235 (64%) considered reduced quality of life by diarrhoea and 184 (50%) reported that diarrhoea was unaltered or worse than before established diagnosis. Many patients with bile acid diarrhoea continue to have bothersome diarrhoea in spite of correct diagnosis and treatment. © 2018 John Wiley & Sons Ltd.
USDA-ARS?s Scientific Manuscript database
Bile acids (BAs) have an important role in the control of fat, glucose and cholesterol metabolism. Synthesis of bile acids is the major pathway for the metabolism of cholesterol and for the excretion of excess cholesterol in mammals. Bile acid intermediates and/or their metabolites are excreted in...
Cotler, S; Chen, S; Macasieb, T; Colburn, W A
1984-01-01
Oral, intraportal, iv doses of isotretinoin were administered to dogs before and after bile duct cannulation to determine the effect of route of administration and biliary excretion on the pharmacokinetics of this compound. Blood and bile samples were collected and analyzed for isotretinoin using a gradient elution high performance liquid chromatographic method. Blood concentrations were decreased after bile duct cannulation. Decreases in the area under the blood concentration-time curves were greatest following oral dosing, intermediate following intraportal dosing, and least following iv dosing. These results indicate that biliary excretion impacts on the blood profile of isotretinoin as a function of route of administration and that the differences are the result of differences in first pass clearance. In addition, the apparent bioavailability of isotretinoin was 14% in bile cannulated dogs and 54% in the intact (uncannulated) animals, suggesting that enterohepatic recycling of isotretinoin may contribute to its oral bioavailability. Isotretinoin was excreted in the bile; predominantly as a conjugate. The largest percentage (approximately 27%) of the dose was excreted in the bile following intraportal infusion, an intermediate percentage (approximately 8.5%) after iv dosing, and the smallest percentage (approximately 3.3%) after oral dosing. When the amount of drug excreted in bile as intact drug and conjugate is divided by the area under the systemic blood concentration--time curve, the resulting apparent biliary clearances following oral and intraportal administration were almost identical whereas the apparent biliary clearance after iv dosing was substantially less.(ABSTRACT TRUNCATED AT 250 WORDS)
Poša, Mihalj; Tepavčević, Vesna
2011-09-01
The formation of mixed micelles built of 7,12-dioxolithocholic and the following hydrophobic bile acids was examined by conductometric method: cholic (C), deoxycholic (D), chenodeoxycholic (CD), 12-oxolithocholic (12-oxoL), 7-oxolithocholic (7-oxoL), ursodeoxycholic (UD) and hiodeoxycholic (HD). Interaction parameter (β) in the studied binary mixed micelles had negative value, suggesting synergism between micelle building units. Based on β value, the hydrophobic bile acids formed two groups: group I (C, D and CD) and group II (12-oxoL, 7-oxoL, UD and HD). Bile acids from group II had more negative β values than bile acids from group I. Also, bile acids from group II formed intermolecular hydrogen bonds in aggregates with both smaller (2) and higher (4) aggregation numbers, according to the analysis of their stereochemical (conformational) structures and possible structures of mixed micelles built of these bile acids and 7,12-dioxolithocholic acid. Haemolytic potential and partition coefficient of nitrazepam were higher in mixed micelles built of the more hydrophobic bile acids (C, D, CD) and 7,12-dioxolithocholic acid than in micelles built only of 7,12-dioxolithocholic acid. On the other hand, these mixed micelles still had lower values of haemolytic potential than micelles built of C, D or CD. The mixed micelles that included bile acids: 12-oxoL, 7-oxoL, UD or HD did not significantly differ from the micelles of 7,12-dioxolithocholic acid, observing the values of their haemolytic potential. Copyright © 2011 Elsevier B.V. All rights reserved.
Attakpa, Eugène S; Djibril, Naguibou M; Baba-Moussa, Farid; Yessoufou, Ganiou; Sezan, Alphonse
2013-01-01
Bile acids are synthesized in the liver from cholesterol. This study investigated the impact and expression of different carriers of bile acid in the liver and kidneys. Eight-week-old male mice were used, which were fed for 15 days and divided into two groups: 15 mice fed with standard diet (control group) and another 15 mice fed with a rich diet of 5% cholesterol (second group). Bile acid dosage was based on their oxidation by 7α hydroxyl-steroid dehydrogenize. The mRNA expression was quantitatively analyzed by the real time of polymerase chain reaction (RT-PCR), and the expression of the renal carrier bile acid protein was analyzed by Western blot. The expression of bile salt export pump involved in the uptake of bile acids in the basolateral membrane of hepatocytes revealed no differences between the two groups of mice. However, the expression of multidrug resistance-associated protein 2 was reduced in mice of the second group. Moreover, the expressions of organic anion transporting polypeptide 4, organic anion transporting polypeptide 1, and sodium taurocholate co-transporting polypeptide (Ntcp) involved in the uptake of bile acids in the apical pole of hepatocytes are suppressed in mice of the second group. The expression of multidrug resistance-associated protein 3 involved in the secretion of bile acids in the apical membrane of hepatocytes revealed no significant differences between the two groups. In mice of the second group, blood concentration of bile acids on the last day was increased. In those mice, the expression of intestinal bile acid transporter was reduced in the kidneys compared with the control mice.
INTRACELLULAR SIGNALING BY BILE ACIDS
Anwer, Mohammed Sawkat
2014-01-01
Bile acids, synthesized from cholesterol, are known to produce beneficial as well as toxic effects in the liver. The beneficial effects include choleresis, immunomodulation, cell survival, while the toxic effects include cholestasis, apoptosis and cellular toxicity. It is believed that bile acids produce many of these effects by activating intracellular signaling pathways. However, it has been a challenge to relate intracellular signaling to specific and at times opposing effects of bile acids. It is becoming evident that bile acids produce different effects by activating different isoforms of phosphoinositide 3-kinase (PI3K), Protein kinase Cs (PKCs), and mitogen activated protein kinases (MAPK). Thus, the apoptotic effect of bile acids may be mediated via PI3K-110γ, while cytoprotection induce by cAMP-GEF pathway involves activation of PI3K-p110α/β isoforms. Atypical PKCζ may mediate beneficial effects and nPKCε may mediate toxic effects, while cPKCα and nPKCδ may be involved in both beneficial and toxic effects of bile acids. The opposing effects of nPKCδ activation may depend on nPKCδ phosphorylation site(s). Activation of ERK1/2 and JNK1/2 pathway appears to mediate beneficial and toxic effects, respectively, of bile acids. Activation of p38α MAPK and p38β MAPK may mediate choleretic and cholestatic effects, respectively, of bile acids. Future studies clarifying the isoform specific effects on bile formation should allow us to define potential therapeutic targets in the treatment of cholestatic disorders. PMID:25378891
All-trans retinoic acid regulates hepatic bile acid homeostasis
Yang, Fan; He, Yuqi; Liu, Hui-Xin; Tsuei, Jessica; Jiang, Xiaoyue; Yang, Li; Wang, Zheng-Tao; Wan, Yu-Jui Yvonne
2014-01-01
Retinoic acid (RA) and bile acids share common roles in regulating lipid homeostasis and insulin sensitivity. In addition, the receptor for RA (retinoid x receptor) is a permissive partner of the receptor for bile acids, farnesoid x receptor (FXR/NR1H4). Thus, RA can activate the FXR-mediated pathway as well. The current study was designed to understand the effect of all-trans RA on bile acid homeostasis. Mice were fed an all-trans RA-supplemented diet and the expression of 46 genes that participate in regulating bile acid homeostasis was studied. The data showed that all-trans RA has a profound effect in regulating genes involved in synthesis and transport of bile acids. All-trans RA treatment reduced the gene expression levels of Cyp7a1, Cyp8b1, and Akr1d1, which are involved in bile acid synthesis. All-trans RA also decreased the hepatic mRNA levels of Lrh-1 (Nr5a2) and Hnf4α (Nr2a1), which positively regulate the gene expression of Cyp7a1 and Cyp8b1. Moreover, all-trans RA induced the gene expression levels of negative regulators of bile acid synthesis including hepatic Fgfr4, Fxr, and Shp (Nr0b2) as well as ileal Fgf15. All-trans RA also decreased the expression of Abcb11 and Slc51b, which have a role in bile acid transport. Consistently, all-trans RA reduced hepatic bile acid levels and the ratio of CA/CDCA, as demonstrated by liquid chromatography-mass spectrometry. The data suggest that all-trans RA-induced SHP may contribute to the inhibition of CYP7A1 and CYP8B1, which in turn reduces bile acid synthesis and affects lipid absorption in the gastrointestinal tract. PMID:25175738
Wang, Haina; Fang, Zhong-Ze; Meng, Ran; Cao, Yun-Feng; Tanaka, Naoki; Krausz, Kristopher W; Gonzalez, Frank J
2017-07-01
Alpha-naphthyl isothiocyanate (ANIT) is a common hepatotoxicant experimentally used to reproduce the pathologies of drug-induced liver injury in humans, but the mechanism of its toxicity remains unclear. To determine the metabolic alterations following ANIT exposure, metabolomic analyses was performed by use of liquid chromatography-mass spectrometry. Partial least squares discriminant analysis (PLS-DA) of liver, serum, bile, ileum, and cecum of vehicle- and ANIT-treated mice revealed significant alterations of individual bile acids, including increased tauroursodeoxycholic acid, taurohydrodeoxycholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid, and decreased ω-, β- and tauro-α/β- murideoxycholic acid, cholic acid, and taurocholic acid in the ANIT-treated groups. In accordance with these changes, ANIT treatment altered the expression of mRNAs encoded by genes responsible for the metabolism and transport of bile acids and cholesterol. Pre-treatment of glycyrrhizin (GL) and glycyrrhetinic acid (GA) prevented ANIT-induced liver damage and reversed the alteration of bile acid metabolites and Cyp7a1, Npc1l1, Mttp, and Acat2 mRNAs encoding bile acid transport and metabolism proteins. These results suggested that GL/GA could prevent drug-induced liver injury and ensuing disruption of bile acid metabolism in humans. Published by Elsevier B.V.
Kakimoto, Toshiaki; Kanemoto, Hideyuki; Fukushima, Kenjiro; Ohno, Koichi; Tsujimoto, Hajime
2017-12-01
OBJCTIVE To investigate the effects of dietary lipid overload on bile acid metabolism and gallbladder motility in healthy dogs. ANIMALS 7 healthy Beagles. PROCEDURES In a crossover study, dogs were fed a high-fat-high-cholesterol diet (HFCD) or a low-fat diet (LFD) for a period of 2 weeks. After a 4-month washout period, dogs were fed the other diet for 2 weeks. Before and at the end of each feeding period, the concentrations of each of the gallbladder bile acids, cholecystokinin (CCK)-induced gallbladder motility, and bile acid metabolism-related hepatic gene expression were examined in all dogs. RESULTS The HFCD significantly increased plasma total cholesterol concentrations. The HFCD also increased the concentration of taurochenodeoxycholic acid and decreased the concentration of taurocholic acid in bile and reduced gallbladder contractility, whereas the LFD significantly decreased the concentration of taurodeoxycholic acid in bile. Gene expression analysis revealed significant elevation of cholesterol 7α-hydroxylase mRNA expression after feeding the HFCD for 2 weeks, but the expression of other genes was unchanged. CONCLUSIONS AND CLINICAL RELEVANCE Feeding the HFCD and LFD for 2 weeks induced changes in gallbladder bile acid composition and gallbladder motility in dogs. In particular, feeding the HFCD caused an increase in plasma total cholesterol concentration, an increase of hydrophobic bile acid concentration in bile, and a decrease in gallbladder sensitivity to CCK. These results suggested that similar bile acid compositional changes and gallbladder hypomotility might be evident in dogs with hyperlipidemia.
Sarafian, Magali H; Lewis, Matthew R; Pechlivanis, Alexandros; Ralphs, Simon; McPhail, Mark J W; Patel, Vishal C; Dumas, Marc-Emmanuel; Holmes, Elaine; Nicholson, Jeremy K
2015-10-06
Bile acids are important end products of cholesterol metabolism. While they have been identified as key factors in lipid emulsification and absorption due to their detergent properties, bile acids have also been shown to act as signaling molecules and intermediates between the host and the gut microbiota. To further the investigation of bile acid functions in humans, an advanced platform for high throughput analysis is essential. Herein, we describe the development and application of a 15 min UPLC procedure for the separation of bile acid species from human biofluid samples requiring minimal sample preparation. High resolution time-of-flight mass spectrometry was applied for profiling applications, elucidating rich bile acid profiles in both normal and disease state plasma. In parallel, a second mode of detection was developed utilizing tandem mass spectrometry for sensitive and quantitative targeted analysis of 145 bile acid (BA) species including primary, secondary, and tertiary bile acids. The latter system was validated by testing the linearity (lower limit of quantification, LLOQ, 0.25-10 nM and upper limit of quantification, ULOQ, 2.5-5 μM), precision (≈6.5%), and accuracy (81.2-118.9%) on inter- and intraday analysis achieving good recovery of bile acids (serum/plasma 88% and urine 93%). The ultra performance liquid chromatography-mass spectrometry (UPLC-MS)/MS targeted method was successfully applied to plasma, serum, and urine samples in order to compare the bile acid pool compositional difference between preprandial and postprandial states, demonstrating the utility of such analysis on human biofluids.
Specific bile acids inhibit hepatic fatty acid uptake
Nie, Biao; Park, Hyo Min; Kazantzis, Melissa; Lin, Min; Henkin, Amy; Ng, Stephanie; Song, Sujin; Chen, Yuli; Tran, Heather; Lai, Robin; Her, Chris; Maher, Jacquelyn J.; Forman, Barry M.; Stahl, Andreas
2012-01-01
Bile acids are known to play important roles as detergents in the absorption of hydrophobic nutrients and as signaling molecules in the regulation of metabolism. Here we tested the novel hypothesis that naturally occurring bile acids interfere with protein-mediated hepatic long chain free fatty acid (LCFA) uptake. To this end stable cell lines expressing fatty acid transporters as well as primary hepatocytes from mouse and human livers were incubated with primary and secondary bile acids to determine their effects on LCFA uptake rates. We identified ursodeoxycholic acid (UDCA) and deoxycholic acid (DCA) as the two most potent inhibitors of the liver-specific fatty acid transport protein 5 (FATP5). Both UDCA and DCA were able to inhibit LCFA uptake by primary hepatocytes in a FATP5-dependent manner. Subsequently, mice were treated with these secondary bile acids in vivo to assess their ability to inhibit diet-induced hepatic triglyceride accumulation. Administration of DCA in vivo via injection or as part of a high-fat diet significantly inhibited hepatic fatty acid uptake and reduced liver triglycerides by more than 50%. In summary, the data demonstrate a novel role for specific bile acids, and the secondary bile acid DCA in particular, in the regulation of hepatic LCFA uptake. The results illuminate a previously unappreciated means by which specific bile acids, such as UDCA and DCA, can impact hepatic triglyceride metabolism and may lead to novel approaches to combat obesity-associated fatty liver disease. PMID:22531947
Ion-neutral Clustering of Bile Acids in Electrospray Ionization Across UPLC Flow Regimes
NASA Astrophysics Data System (ADS)
Brophy, Patrick; Broeckling, Corey D.; Murphy, James; Prenni, Jessica E.
2018-02-01
Bile acid authentic standards were used as model compounds to quantitatively evaluate complex in-source phenomenon on a UPLC-ESI-TOF-MS operated in the negative mode. Three different diameter columns and a ceramic-based microfluidic separation device were utilized, allowing for detailed descriptions of bile acid behavior across a wide range of flow regimes and instantaneous concentrations. A custom processing algorithm based on correlation analysis was developed to group together all ion signals arising from a single compound; these grouped signals produce verified compound spectra for each bile acid at each on-column mass loading. Significant adduction was observed for all bile acids investigated under all flow regimes and across a wide range of bile acid concentrations. The distribution of bile acid containing clusters was found to depend on the specific bile acid species, solvent flow rate, and bile acid concentration. Relative abundancies of each cluster changed non-linearly with concentration. It was found that summing all MS level (low collisional energy) ions and ion-neutral adducts arising from a single compound improves linearity across the concentration range (0.125-5 ng on column) and increases the sensitivity of MS level quantification. The behavior of each cluster roughly follows simple equilibrium processes consistent with our understanding of electrospray ionization mechanisms and ion transport processes occurring in atmospheric pressure interfaces. [Figure not available: see fulltext.
Bile acid disease: the emerging epidemic.
Oduyebo, Ibironke; Camilleri, Michael
2017-05-01
Our objective was to review advances in bile acids in health and disease published in the last 2 years. Bile acid diarrhea (BAD) is recognized as a common cause of chronic diarrhea, and its recognition has been facilitated by development of new screening tests. Primary BAD can account for 30% of cases of chronic diarrhea. The mechanisms leading to BAD include inadequate feedback regulation by fibroblast growth factor 19 (FGF-19) from ileal enterocytes, abnormalities in synthesis or degradation of proteins involved in FGF-19 regulation in hepatocytes and variations as a function of the bile acid receptor, TGR5 (GPBAR1). SeHCAT is the most widely used test for diagnosis of BAD. There has been significant validation of fasting serum FGF-19 and 7 α-hydroxy-cholesten-3-one (C4), a surrogate measure of bile acid synthesis. Bile acid sequestrants are the primary treatments for BAD; the farnesoid X-receptor-FGF-19 pathway provides alternative therapeutic targets for BAD. Bile acid-stimulated intestinal mechanisms contribute to the beneficial effects of bariatric surgery on obesity, glycemic control and the treatment of recurrent Clostridium difficile infection. Renewed interest in the role of bile acids is leading to novel management of diverse diseases besides BAD.
Strong activation of bile acid-sensitive ion channel (BASIC) by ursodeoxycholic acid
Wiemuth, Dominik; Sahin, Hacer; Lefèvre, Cathérine M.T.; Wasmuth, Hermann E.; Gründer, Stefan
2013-01-01
Bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC gene family of unknown function. Rat BASIC (rBASIC) is inactive at rest. We have recently shown that cholangiocytes, the epithelial cells lining the bile ducts, are the main site of BASIC expression in the liver and identified bile acids, in particular hyo- and chenodeoxycholic acid, as agonists of rBASIC. Moreover, it seems that extracellular divalent cations stabilize the resting state of rBASIC, because removal of extracellular divalent cations opens the channel. In this addendum, we demonstrate that removal of extracellular divalent cations potentiates the activation of rBASIC by bile acids, suggesting an allosteric mechanism. Furthermore, we show that rBASIC is strongly activated by the anticholestatic bile acid ursodeoxycholic acid (UDCA), suggesting that BASIC might mediate part of the therapeutic effects of UDCA. PMID:23064163
Daurio, Natalie A.; Tuttle, Stephen W.; Worth, Andrew J.; Song, Ethan Y.; Davis, Julianne M.; Snyder, Nathaniel W.; Blair, Ian A.; Koumenis, Constantinos
2016-01-01
Tamoxifen is the most widely used adjuvant chemotherapeutic for the treatment of estrogen receptor (ER) positive breast cancer, yet a large body of clinical and preclinical data indicates that tamoxifen can modulate multiple cellular processes independently of ER status. Here, we describe the ER-independent effects of tamoxifen on tumor metabolism. Using combined pharmacological and genetic knockout approaches, we demonstrate that tamoxifen inhibits oxygen consumption via inhibition of mitochondrial complex I, resulting in an increase in the AMP/ATP ratio and activation of the AMPK signaling pathway in vitro and in vivo. AMPK in turn promotes glycolysis, and alters fatty acid metabolism. We also show that tamoxifen-induced cytotoxicity is modulated by isoform-specific effects of AMPK signaling, in which AMPKα1 promotes cell death through inhibition of the mTOR pathway and translation. By using agents which concurrently target distinct adaptive responses to tamoxifen-mediated metabolic reprogramming, we demonstrate increased cytotoxicity through synergistic therapeutic approaches. Our results demonstrate novel metabolic perturbations by tamoxifen in tumor cells which can be exploited to expand the therapeutic potential of tamoxifen treatment beyond ER+ breast cancer. PMID:27020861
The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.
Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik
2014-01-01
The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.
Structural basis of the alternating-access mechanism in a bile acid transporter
NASA Astrophysics Data System (ADS)
Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming
2014-01-01
Bile acids are synthesized from cholesterol in hepatocytes and secreted through the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for resecretion. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP; also known as SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT; also known as SLC10A2) expressed on enterocytes in the terminal ileum. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolaemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption. However, a lack of three-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data. The crystal structure of an ASBT homologue from Neisseria meningitidis (ASBTNM) in detergent was reported recently, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand the structural changes associated with the coupled transport of Na+ and bile acids, here we solved two structures of an ASBT homologue from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives the conserved `crossover' region, where two discontinuous helices cross each other, alternating accessibility from either side of the cell membrane. This result has implications for the location and orientation of the bile acid during transport, as well as for the translocation pathway for Na+.
Structural basis of the alternating-access mechanism in a bile acid transporter
Zhou, Xiaoming; Levin, Elena J.; Pan, Yaping; McCoy, Jason G.; Sharma, Ruchika; Kloss, Brian; Bruni, Renato; Quick, Matthias; Zhou, Ming
2014-01-01
Bile acids are synthesized from cholesterol in hepatocytes and secreted via the biliary tract into the small intestine, where they aid in absorption of lipids and fat-soluble vitamins. Through a process known as enterohepatic recirculation, more than 90% of secreted bile acids are then retrieved from the intestine and returned to the liver for re-secretion1. In humans, there are two Na+-dependent bile acid transporters involved in enterohepatic recirculation, the Na+-taurocholate co-transporting polypeptide (NTCP or SLC10A1) expressed in hepatocytes, and the apical sodium-dependent bile acid transporter (ASBT or SLC10A2) expressed on enterocytes in the terminal ileum2. In recent years, ASBT has attracted much interest as a potential drug target for treatment of hypercholesterolemia, because inhibition of ASBT reduces reabsorption of bile acids, thus increasing bile acid synthesis and consequently cholesterol consumption3,4. However, a lack of 3-dimensional structures of bile acid transporters hampers our ability to understand the molecular mechanisms of substrate selectivity and transport, and to interpret the wealth of existing functional data2,5-8. The crystal structure of an ASBT homolog from Neisseria meningitidis (ASBTNM) in detergent was reported recently9, showing the protein in an inward-open conformation bound to two Na+ and a taurocholic acid. However, the structural changes that bring bile acid and Na+ across the membrane are difficult to infer from a single structure. To understand better the structural changes associated with the coupled transport of Na+ and bile acids, we crystallized and solved two structures of a ASBT homolog from Yersinia frederiksenii (ASBTYf) in a lipid environment, which reveal that a large rigid-body rotation of a substrate-binding domain gives alternate accessibility to the highly conserved “crossover” region, where two discontinuous transmembrane helices cross each other. This result has implications for the location and orientation of the bile acid during transport, as well as for the translocation pathway for Na+. PMID:24317697
Metabolic Profiling of the Novel Hypoxia-Inducible Factor 2α Inhibitor PT2385 In Vivo and In Vitro.
Xie, Cen; Gao, Xiaoxia; Sun, Dongxue; Zhang, Youbo; Krausz, Kristopher W; Qin, Xuemei; Gonzalez, Frank J
2018-04-01
PT2385 is a first-in-class, selective small-molecule inhibitor of hypoxia-inducible factor-2 α (HIF-2 α ) developed for the treatment of advanced clear cell renal cell carcinoma. Preclinical results demonstrated that PT2385 has potent antitumor efficacy in mouse xenograft models of kidney cancer. It also has activity toward metabolic disease in a mouse model. However, no metabolism data are currently publically available. It is of great importance to characterize the metabolism of PT2385 and identify its effect on systemic homeostasis in mice. High-resolution mass spectrometry-based metabolomics was performed to profile the biotransformation of PT2385 and PT2385-induced changes in endogenous metabolites. Liver microsomes and recombinant drug-metabolizing enzymes were used to determine the mechanism of PT2385 metabolism. Real-time polymerase chain reaction analysis was employed to investigate the reason for the PT2385-induced bile acid dysregulation. A total of 12 metabolites of PT2385 was characterized, generated from hydroxylation (M1, M2), dihydroxylation and desaturation (M3, M4), oxidative-defluorination (M7), glucuronidation (M8), N -acetylcysteine conjugation (M9), and secondary methylation (M5, M6) and glucuronidation (M10, M11, and M12). CYP2C19 was the major contributor to the formation of M1, M2, and M7, UGT2B17 to M8, and UGT1A1/3 to M10-M12. The bile acid metabolites taurocholic acid and tauro- β -muricholic acid were elevated in serum and liver of mice after PT2385 treatment. Gene expression analysis further revealed that intestinal HIF-2 α inhibition by PT2385 treatment upregulated the hepatic expression of CYP7A1, the rate-limiting enzyme in bile acid synthesis. This study provides metabolic data and an important reference basis for the safety evaluation and rational clinical application of PT2385. U.S. Government work not protected by U.S. copyright.
Metabolic Profiling of the Novel Hypoxia-Inducible Factor 2α Inhibitor PT2385 In Vivo and In Vitro
Xie, Cen; Gao, Xiaoxia; Sun, Dongxue; Zhang, Youbo; Krausz, Kristopher W.; Qin, Xuemei
2018-01-01
PT2385 is a first-in-class, selective small-molecule inhibitor of hypoxia-inducible factor-2α (HIF-2α) developed for the treatment of advanced clear cell renal cell carcinoma. Preclinical results demonstrated that PT2385 has potent antitumor efficacy in mouse xenograft models of kidney cancer. It also has activity toward metabolic disease in a mouse model. However, no metabolism data are currently publically available. It is of great importance to characterize the metabolism of PT2385 and identify its effect on systemic homeostasis in mice. High-resolution mass spectrometry–based metabolomics was performed to profile the biotransformation of PT2385 and PT2385-induced changes in endogenous metabolites. Liver microsomes and recombinant drug-metabolizing enzymes were used to determine the mechanism of PT2385 metabolism. Real-time polymerase chain reaction analysis was employed to investigate the reason for the PT2385-induced bile acid dysregulation. A total of 12 metabolites of PT2385 was characterized, generated from hydroxylation (M1, M2), dihydroxylation and desaturation (M3, M4), oxidative-defluorination (M7), glucuronidation (M8), N-acetylcysteine conjugation (M9), and secondary methylation (M5, M6) and glucuronidation (M10, M11, and M12). CYP2C19 was the major contributor to the formation of M1, M2, and M7, UGT2B17 to M8, and UGT1A1/3 to M10–M12. The bile acid metabolites taurocholic acid and tauro-β-muricholic acid were elevated in serum and liver of mice after PT2385 treatment. Gene expression analysis further revealed that intestinal HIF-2α inhibition by PT2385 treatment upregulated the hepatic expression of CYP7A1, the rate-limiting enzyme in bile acid synthesis. This study provides metabolic data and an important reference basis for the safety evaluation and rational clinical application of PT2385. PMID:29363499
Dietary fish oil regulates gene expression of cholesterol and bile acid transporters in mice.
Kamisako, Toshinori; Tanaka, Yuji; Ikeda, Takanori; Yamamoto, Kazuo; Ogawa, Hiroshi
2012-03-01
Fish oil rich in n-3 polyunsaturated fatty acids is known to affect hepatic lipid metabolism. Several studies have demonstrated that fish oil may affect the bile acid metabolism as well as lipid metabolism, whereas only scarce data are available. The aim of this study was to investigate the effect of fish oil on the gene expression of the transporters and enzymes related to bile acid as well as lipid metabolism in the liver and small intestine. Seven-week old male C57BL/6 mice were fed diets enriched in 10% soybean oil or 10% fish oil for 4 weeks. After 4 weeks, blood, liver and small intestine were obtained. Hepatic mRNA expression of lipids (Abcg5/8, multidrug resistance gene product 2) and bile acids transporters (bile salt export pump, multidrug resistance associated protein 2 and 3, organic solute transporter α) was induced in fish oil-fed mice. Hepatic Cyp8b1, Cyp27a1 and bile acid CoA : amino acid N-acyltransferase were increased in fish oil-fed mice compared with soybean-oil fed mice. Besides, intestinal cholesterol (Abcg5/8) and bile acid transporters (multidrug resistance associated protein 2 and organic solute transporter α) were induced in fish oil-fed mice. Fish oil induced the expression of cholesterol and bile acid transporters not only in liver but in intestine. The upregulation of Abcg5/g8 by fish oil is caused by an increase in cellular 27-HOC through Cyp27a1 induction. The hepatic induction of bile acid synthesis through Cyp27a1 may upregulate expression of bile acid transporters in both organs. © 2012 The Japan Society of Hepatology.
Bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge.
Kakimoto, Toshiaki; Kanemoto, Hideyuki; Fukushima, Kenjiro; Ohno, Koichi; Tsujimoto, Hajime
2017-02-01
OBJECTIVE To examine bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge. ANIMALS 18 dogs with gallbladder mucocele (GBM group), 8 dogs with immobile biliary sludge (i-BS group), 17 dogs with mobile biliary sludge (m-BS group), and 14 healthy dogs (control group). PROCEDURES Samples of gallbladder contents were obtained by use of percutaneous ultrasound-guided cholecystocentesis or during cholecystectomy or necropsy. Concentrations of 15 bile acids were determined by use of highperformance liquid chromatography, and a bile acid compositional ratio was calculated for each group. RESULTS Concentrations of most bile acids in the GBM group were significantly lower than those in the control and m-BS groups. Compositional ratio of taurodeoxycholic acid, which is 1 of 3 major bile acids in dogs, was significantly lower in the GBM and i-BS groups, compared with ratios for the control and m-BS groups. The compositional ratio of taurocholic acid was significantly higher and that of taurochenodeoxycholic acid significantly lower in the i-BS group than in the control group. CONCLUSIONS AND CLINICAL RELEVANCE In this study, concentrations and fractions of bile acids in gallbladder contents were significantly different in dogs with gallbladder mucocele or immobile biliary sludge, compared with results for healthy control dogs. Studies are needed to determine whether changes in bile acid composition are primary or secondary events of gallbladder abnormalities.
The ulcerogenic effect of bile and bile acid in rats during immobilization stress
NASA Technical Reports Server (NTRS)
Weisener, J.
1980-01-01
The effect of different concentrations of oxen bile and individual bile acids or their sodium salts on the gastric mucosa of rats was investigated in combination with immobilization stress. A statistically significant higher frequency of ulcers was only determined in the application of 10% oxen bile. Dosages on 10% sodium glycocholic acid demonstrated strong toxic damage with atonic dilation of the stomach and extensive mucosal bleeding.
Jakubowska, Monika A.; Gerasimenko, Julia V.; Gerasimenko, Oleg V.; Petersen, Ole H.
2016-01-01
Key points Acute biliary pancreatitis is a sudden and severe condition initiated by bile reflux into the pancreas.Bile acids are known to induce Ca2+ signals and necrosis in isolated pancreatic acinar cells but the effects of bile acids on stellate cells are unexplored.Here we show that cholate and taurocholate elicit more dramatic Ca2+ signals and necrosis in stellate cells compared to the adjacent acinar cells in pancreatic lobules; whereas taurolithocholic acid 3‐sulfate primarily affects acinar cells.Ca2+ signals and necrosis are strongly dependent on extracellular Ca2+ as well as Na+; and Na+‐dependent transport plays an important role in the overall bile acid uptake in pancreatic stellate cells.Bile acid‐mediated pancreatic damage can be further escalated by bradykinin‐induced signals in stellate cells and thus killing of stellate cells by bile acids might have important implications in acute biliary pancreatitis. Abstract Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid‐elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3‐sulfate (TLC‐S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium–taurocholate cotransporting polypeptide (NTCP) indicate a Na+‐dependent bile acid uptake mechanism in stellate cells. Bile acid treatment caused necrosis predominantly in stellate cells, which was abolished by removal of extracellular Ca2+ and significantly reduced in the absence of Na+, showing that bile‐dependent cell death was a downstream event of Ca2+ signals. Finally, combined application of TLC‐S and the inflammatory mediator bradykinin caused more extensive necrosis in both stellate and acinar cells than TLC‐S alone. Our findings shed new light on the mechanism by which bile acids promote pancreatic pathology. This involves not only signalling in acinar cells but also in stellate cells. PMID:27406326
Ravindra, Kodihalli C.; Large, Emma; Young, Carissa L.; Rivera-Burgos, Dinelia; Yu, Jiajie; Cirit, Murat; Hughes, David J.; Wishnok, John S.; Lauffenburger, Douglas A.; Griffith, Linda G.
2017-01-01
In vitro hepatocyte culture systems have inherent limitations in capturing known human drug toxicities that arise from complex immune responses. Therefore, we established and characterized a liver immunocompetent coculture model and evaluated diclofenac (DCF) metabolic profiles, in vitro–in vivo clearance correlations, toxicological responses, and acute phase responses using liquid chromatography–tandem mass spectrometry. DCF biotransformation was assessed after 48 hours of culture, and the major phase I and II metabolites were similar to the in vivo DCF metabolism profile in humans. Further characterization of secreted bile acids in the medium revealed that a glycine-conjugated bile acid was a sensitive marker of dose-dependent toxicity in this three-dimensional liver microphysiological system. Protein markers were significantly elevated in the culture medium at high micromolar doses of DCF, which were also observed previously for acute drug-induced toxicity in humans. In this immunocompetent model, lipopolysaccharide treatment evoked an inflammatory response that resulted in a marked increase in the overall number of acute phase proteins. Kupffer cell–mediated cytokine release recapitulated an in vivo proinflammatory response exemplified by a cohort of 11 cytokines that were differentially regulated after lipopolysaccharide induction, including interleukin (IL)-1β, IL-1Ra, IL-6, IL-8, IP-10, tumor necrosis factor-α, RANTES (regulated on activation normal T cell expressed and secreted), granulocyte colony-stimulating factor, macrophage colony-stimulating factor, macrophage inflammatory protein-1β, and IL-5. In summary, our findings indicate that three-dimensional liver microphysiological systems may serve as preclinical investigational platforms from the perspective of the discovery of a set of clinically relevant biomarkers including potential reactive metabolites, endogenous bile acids, excreted proteins, and cytokines to predict early drug-induced liver toxicity in humans. PMID:28450578
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kern, F., Jr.; Everson, G.T.; DeMark, B.
Reported are biliary lipid composition and secretion, bile acid composition and kinetics, and gallbladder function in a group of healthy, nonobese women taking a contraceptive steroid preparation. A comparable group of healthy women served as controls. Biliary lipid secretion rate was measured by the marker perfusion technique. Bile acid distribution was determined by gas-lipid chromatography. The pool size, FTR, and synthesis rate of each bile acid were measured by using CA and CDCA labeled with the stable isotope of carbon, /sup 13/C. In some of the subjects gallbladder storage and emptying were measured during the kinetic study, by real-time ultrasonography.more » Contraceptive steroid use was associated with a significant increase in biliary cholesterol saturation and in the lithogenic index of bile. The rate of cholesterol secretion in the contraceptive steroid group was 50% greater than in the control (p << 0.001) and the rate of bile acid secretion was reduced (p < 0.02). The total bile acid pool size was significantly increased by contraceptive steroids. The major increase occurred in the CA pool (p < 0.04). The daily rate of enterohepatic cycles of the bile acid pool was decreased by contraceptive steroids from 6.6 to 4.3 (p < 0.01). The only effect of contraceptive steroids on gallbladder function was a slower emptying rate in response to intraduodenal amino acid infusion. No index of gallbladder function correlated significantly with any parameter of bile acid kinetics in this small group of subjects. The findings confirm the lithogenic effect of contraceptive steroids and indicate that its causes are an increase in cholesterol secretion and a decrease in bile acid secretion.« less
Werling, Malin; Vincent, Royce P; Cross, Gemma F; Marschall, Hanns-Ulrich; Fändriks, Lars; Lönroth, Hans; Taylor, David R; Alaghband-Zadeh, Jamshid; Olbers, Torsten; Le Roux, Carel W
2013-11-01
Exogenous bile acid (BA) administration is associated with beneficial metabolic effects very similar to those seen after Roux-en-Y gastric bypass (RYGB) surgery. Re-routing of bile into a biliopancreatic limb with simultaneous exclusion of food occurs after RYGB, with subsequent increased fasting plasma BAs. The study assessed fasting and post-prandial plasma BA response before and 15 months after RYGB. The prospective study recruited 63 obese individuals (43 females), aged 43 (36-56) [median (IQR)] years. Blood samples were collected before and every 30 min for 120 min after a standard 400 kcal meal. Fasting and post-prandial plasma BAs, glucagons like peptide-1 (GLP-1), -tyrosine (PYY), fasting C-reactive protein (CRP), glucose and insulin were measured and homeostasis model assessment-insulin resistance (HOMA-IR) was calculated. Following RYGB, body mass index, CRP, fasting glucose and HOMA-IR decreased; 43.7 (39.3-49.2) kg/m(2) to 29.2 (25.1-35.0) kg/m(2), 7.9 (4.1-11.9) mg/L to 0.4 (0.2-1.0) mg/L, 5.5 (5.0-6.0) mmol/L to 4.6 (4.3-4.9) mmol/L and 5.9 (3.5-9.2) to 1.7 (1.1-2.2), respectively, all P < 0.001. Fasting total BAs, GLP-1 and PYY increased after RYGB; 1.69 (0.70-2.56) µmol/L to 2.43 (1.23-3.82) µmol/L (P = 0.02), 6.8 (1.5-15.3) pmol/L to 17.1 (12.6-23.9) pmol/L (P < 0.001) and 4.0 (1.0-7.1) pmol/L to 15.2 (10.0-28.3) pmol/L (P < 0.001), respectively. The area under the curve for post-prandial total BAs, total glycine-conjugated BAs, GLP-1 and PYY were greater after RYGB; 486 (312-732) µmol/L/min versus 1012 (684-1921) µmol/L/min, 315 (221-466) µmol/L/min versus 686 (424-877) µmol/L/min, 3679 (3162-4537) pmol/L/min versus 5347 (4727-5781) pmol/L/min and 1887 (1423-2092) pmol/L/min versus 3296 (2534-3834) pmol/L/min, respectively, all P < 0.0001. Weight loss following RYGB is associated with an increase in post-prandial plasma BA response due to larger amounts of glycine-conjugated BAs. This suggests up regulation of BA production and conjugation after RYGB.
Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette
2009-12-18
Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted.
Genetics Home Reference: congenital bile acid synthesis defect type 1
... type 1 Congenital bile acid synthesis defect type 1 Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Congenital bile acid synthesis defect type 1 ...
Donepudi, Ajay C.; Ferrell, Jessica M.; Boehme, Shannon; Choi, Hueng‐Sik
2017-01-01
Alcoholic fatty liver disease (AFLD) is a major risk factor for cirrhosis‐associated liver diseases. Studies demonstrate that alcohol increases serum bile acids in humans and rodents. AFLD has been linked to cholestasis, although the physiologic relevance of increased bile acids in AFLD and the underlying mechanism of increasing the bile acid pool by alcohol feeding are still unclear. In this study, we used mouse models either deficient of or overexpressing cholesterol 7α‐hydroxylase (Cyp7a1), the rate‐limiting and key regulatory enzyme in bile acid synthesis, to study the effect of alcohol drinking in liver metabolism and inflammation. Mice were challenged with chronic ethanol feeding (10 days) plus a binge dose of alcohol by oral gavage (5 g/kg body weight). Alcohol feeding reduced bile acid synthesis gene expression but increased the bile acid pool size, hepatic triglycerides and cholesterol, and inflammation and injury in wild‐type mice and aggravated liver inflammation and injury in Cyp7a1‐deficient mice. Interestingly, alcohol‐induced hepatic inflammation and injury were ameliorated in Cyp7a1 transgenic mice. Conclusion: Alcohol feeding alters hepatic bile acid and cholesterol metabolism to cause liver inflammation and injury, while maintenance of bile acid and cholesterol homeostasis protect against alcohol‐induced hepatic inflammation and injury. Our findings indicate that CYP7A1 plays a key role in protection against alcohol‐induced steatohepatitis. (Hepatology Communications 2018;2:99–112) PMID:29404516
Preparation of the 3-monosulphates of cholic acid, chenodeoxycholic acid and deoxycholic acid.
Haslewood, E S; Haslewood, G A
1976-01-01
1. The 3-sulphates of cholic, chenodeoxycholic and deoxycholic acids were prepared as crystalline disodium salts. 2. The method described shows that it is possible to prepare specific sulphate esters of polyhydroxy bile acids and to remove protecting acyl groups without removing the sulphate. 3. A study of bile acid sulphate solvolysis showed that none of the usual methods give the original bile acid in major yield in a single step. 4. An understanding of the preparation, properties and methods of solvolysis of bile acid sulphates is basic for investigations of cholestasis and liver disease. PMID:938488
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Won Il; Park, Min Jung; An, Jin Kwang
2008-05-02
Bile reflux is considered to be one of the most important causative factors in gastric carcinogenesis, due to the attendant inflammatory changes in the gastric mucosa. In this study, we have assessed the molecular mechanisms inherent to the contribution of bile acid to the transcriptional regulation of inflammatory-related genes. In this study, we demonstrated that bile acid induced the expression of the SHP orphan nuclear receptor at the transcriptional level via c-Jun activation. Bile acid also enhanced the protein interaction of NF-{kappa}B and SHP, thereby resulting in an increase in c-Jun expression and the production of the inflammatory cytokine, TNF{alpha}.more » These results indicate that bile acid performs a critical function in the regulation of the induction of inflammatory-related genes in gastric cells, and that bile acid-mediated gene expression provides a pre-clue for the development of gastric cellular malformation.« less
A Comprehensive Evaluation of Steroid Metabolism in Women with Intrahepatic Cholestasis of Pregnancy
Pařízek, Antonín; Hill, Martin; Dušková, Michaela; Vítek, Libor; Velíková, Marta; Kancheva, Radmila; Šimják, Patrik; Koucký, Michal; Kokrdová, Zuzana; Adamcová, Karolína; Černý, Andrej; Hájek, Zdeněk; Stárka, Luboslav
2016-01-01
Intrahepatic cholestasis of pregnancy (ICP) is a common liver disorder, mostly occurring in the third trimester. ICP is defined as an elevation of serum bile acids, typically accompanied by pruritus and elevated activities of liver aminotransferases. ICP is caused by impaired biliary lipid secretion, in which endogenous steroids may play a key role. Although ICP is benign for the pregnant woman, it may be harmful for the fetus. We evaluated the differences between maternal circulating steroids measured by RIA (17-hydroxypregnenolone and its sulfate, 17-hydroxyprogesterone, and cortisol) and GC-MS (additional steroids), hepatic aminotransferases and bilirubin in women with ICP (n = 15, total bile acids (TBA) >8 μM) and corresponding controls (n = 17). An age-adjusted linear model, receiver-operating characteristics (ROC), and multivariate regression (a method of orthogonal projections to latent structure, OPLS) were used for data evaluation. While aminotransferases, conjugates of pregnanediols, 17-hydroxypregnenolone and 5β-androstane-3α,17β-diol were higher in ICP patients, 20α-dihydropregnenolone, 16α-hydroxy-steroids, sulfated 17-oxo-C19-steroids, and 5β-reduced steroids were lower. The OPLS model including steroids measured by GC-MS and RIA showed 93.3% sensitivity and 100% specificity, while the model including steroids measured by GC-MS in a single sample aliquot showed 93.3% sensitivity and 94.1% specificity. A composite index including ratios of sulfated 3α/β-hydroxy-5α/β-androstane-17-ones to conjugated 5α/β-pregnane-3α/β, 20α-diols discriminated with 93.3% specificity and 81.3% sensitivity (ROC analysis). These new data demonstrating altered steroidogenesis in ICP patients offer more detailed pathophysiological insights into the role of steroids in the development of ICP. PMID:27494119
Bile acid malabsorption in Crohn's disease and indications for its assessment using SeHCAT.
Nyhlin, H; Merrick, M V; Eastwood, M A
1994-01-01
Patients with Crohn's disease who suffer from longstanding diarrhoea that does not respond to conventional treatment pose a common clinical problem. Bile acid malabsorption is a possible cause, although its prevalence and clinical importance is unclear. This paper explores the clinical indications for referring patients with Crohn's disease for bile acid assessment and the extent of bile acid malabsorption in this selected group of patients. The selenium labelled bile acid SeHCAT was used to assess the effect of disease on the integrity of the enterohepatic circulation. Altogether 76% of the patients referred for bile acid assessment had longstanding diarrhoea that had not responded to conventional anti-diarrhoeal treatment or an increase in steroid therapy as their sole or predominant symptom. Ninety per cent of patients with bowel resections, almost exclusively ileocaecal, had abnormal SeHCAT retention (< 5% at seven days). Twenty eight per cent of patients with Crohn's disease who had not undergone resection 28% had a SeHCAT retention < 5%, signifying bile acid malabsorption. Nineteen of 22 patients given cholestyramine treatment subsequent to the SeHCAT test had a good symptomatic response. In conclusion, the prevalence of bile acid malabsorption in this selected group with Crohn's disease is sufficiently high to justify performing the SeHCAT test in order to separate the various differential diagnoses.
Li, Weina; Li, Xuesong; Zhu, Wei; Li, Changxu; Xu, Dan; Ju, Yong; Li, Guangtao
2011-07-21
Based on a topochemical approach, a strategy for efficiently producing main-chain poly(bile acid)s in the solid state was developed. This strategy allows for facile and scalable synthesis of main-chain poly(bile acid)s not only with high molecular weights, but also with quantitative conversions and yields.
Peters, A Michael; Walters, Julian R F
2013-10-01
Measurement of the whole body retention of orally administered (75)SeHCAT is used to investigate patients with unexplained diarrhoea. Retention values of <15 % at 7 days post-administration are taken to indicate bile acid malabsorption (BAM). Whilst idiopathic BAM is frequently diagnosed with (75)SeHCAT, functional and morphological studies of the terminal ileum rarely show any abnormality, so the disorder may be more appropriately termed bile acid diarrhoea (BAD). In addition to malabsorption, excess bile acid may reach the colon, where the events leading to diarrhoea take place, as a result firstly of increased bile acid synthesis and secondly of an increased recycling rate of bile acids. Increased recycling has been largely ignored as a cause of BAD, but, as shown in this study, can readily result in excess bile acids reaching the colon even when ileal absorption efficiency is normal (i.e. 95-97 %). There needs to be a re-evaluation of the causes of BAD in patients without a history of previous intestinal resection or evidence of ileal pathology, such as Crohn's disease.
Winston, Jenessa A; Theriot, Casey M
2016-10-01
Clostridium difficile is an anaerobic, Gram positive, spore-forming bacillus that is the leading cause of nosocomial gastroenteritis. Clostridium difficile infection (CDI) is associated with increasing morbidity and mortality, consequently posing an urgent threat to public health. Recurrence of CDI after successful treatment with antibiotics is high, thus necessitating discovery of novel therapeutics against this pathogen. Susceptibility to CDI is associated with alterations in the gut microbiota composition and bile acid metabolome, specifically a loss of microbial derived secondary bile acids. This review aims to summarize in vitro, ex vivo, and in vivo studies done by our group and others that demonstrate how secondary bile acids affect the different stages of the C. difficile life cycle. Understanding the dynamic interplay of C. difficile and microbial derived secondary bile acids within the gastrointestinal tract will shed light on how bile acids play a role in colonization resistance against C. difficile. Rational manipulation of secondary bile acids may prove beneficial as a treatment for patients with CDI. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Brown, Alexandra M.; Miranda-Alarćon, Yoliem S.; Knoll, Grant A.; Santora, Anthony M.; Banerjee, Ipsita A.
In this work, self-assembled tumor targeting nanostructured surfaces were developed from a newly designed amphiphile by conjugating boc protected isoleucine with 2,2‧ ethylenedioxy bis ethylamine (IED). To target mouse mammary tumor cells, a short peptide sequence derived from the human alpha-fetoprotein (AFP), LSEDKLLACGEG was attached to the self-assembled nanostructures. Tumor targeting and cell proliferation were examined in the presence of nanoscale assemblies. To further obliterate mouse breast tumor cells, the chemotherapeutic drug tamoxifen was then entrapped into the nanoassemblies. Our studies indicated that the targeting systems were able to efficiently encapsulate and release tamoxifen. Cell proliferation studies showed that IED-AFP peptide loaded with tamoxifen decreased the proliferation of breast cancer cells while in the presence of the IED-AFP peptide nanoassemblies alone, the growth was relatively slower. In the presence of human dermal fibroblasts however cell proliferation continued similar to controls. Furthermore, the nanoscale assemblies were found to induce apoptosis in mouse breast cancer cells. To examine live binding interactions, SPR analysis revealed that tamoxifen encapsulated IED-AFP peptide nanoassemblies bound to the breast cancer cells more efficiently compared to unencapsulated assemblies. Thus, we have developed nanoscale assemblies that can specifically bind to and target tumor cells, with increased toxicity in the presence of a chemotherapeutic drug.
Fang, Changming; Filipp, Fabian V; Smith, Jeffrey W
2012-04-01
Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA.
Fang, Changming; Filipp, Fabian V.; Smith, Jeffrey W.
2012-01-01
Ursodeoxycholic acid (UDCA, ursodiol) is used to prevent damage to the liver in patients with primary biliary cirrhosis. The drug also prevents the progression of colorectal cancer and the recurrence of high-grade colonic dysplasia. However, the molecular mechanism by which UDCA elicits its beneficial effects is not entirely understood. The aim of this study was to determine whether ileal bile acid binding protein (IBABP) has a role in mediating the effects of UDCA. We find that UDCA binds to a single site on IBABP and increases the affinity for major human bile acids at a second binding site. As UDCA occupies one of the bile acid binding sites on IBABP, it reduces the cooperative binding that is often observed for the major human bile acids. Furthermore, IBABP is necessary for the full activation of farnesoid X receptor α (FXRα) by bile acids, including UDCA. These observations suggest that IBABP may have a role in mediating some of the intestinal effects of UDCA. PMID:22223860
Bile acid aspiration in suspected ventilator-associated pneumonia.
Wu, Yu-Chung; Hsu, Po-Kuei; Su, Kang-Cheng; Liu, Lung-Yu; Tsai, Cheng-Chien; Tsai, Shu-Ho; Hsu, Wen-Hu; Lee, Yu-Chin; Perng, Diahn-Warng
2009-07-01
The aims of this study were to measure the levels of bile acids in patients with suspected ventilator-associated pneumonia (VAP) and provide a possible pathway for neutrophilic inflammation to explain its proinflammatory effect on the airway. Bile acid levels were measured by spectrophotometric enzymatic assay, and liquid chromatography mass spectrometry was used to quantify the major bile acids. Alveolar cells were grown on modified air-liquid interface culture inserts, and bile acids were then employed to stimulate the cells. Reverse transcriptase polymerase chain reaction and Western blots were used to determine the involved gene expression and protein levels. The mean (+/- SE) concentration of total bile acids in tracheal aspirates was 6.2 +/- 2.1 and 1.1 +/- 0.4 mumol/L/g sputum, respectively, for patients with and without VAP (p < 0.05). The interleukin (IL)-8 level was significantly higher in the VAP group (p < 0.05). The major bile acid, chenodeoxycholic acid, stimulated alveolar epithelial cells to increase IL-8 production at both the messenger RNA and protein level through p38 and c-Jun N-terminal kinase (JNK) activation. The selective p38 and JNK inhibitors, as well as dexamethasone, successfully inhibited IL-8 production. These data suggest that early intervention to prevent bile acid aspiration may reduce the intensity of neutrophilic inflammation in intubated and mechanically ventilated patients in the ICU.
Walker, Alesia; Pfitzner, Barbara; Neschen, Susanne; Kahle, Melanie; Harir, Mourad; Lucio, Marianna; Moritz, Franco; Tziotis, Dimitrios; Witting, Michael; Rothballer, Michael; Engel, Marion; Schmid, Michael; Endesfelder, David; Klingenspor, Martin; Rattei, Thomas; Castell, Wolfgang zu; de Angelis, Martin Hrabé; Hartmann, Anton; Schmitt-Kopplin, Philippe
2014-01-01
A combinatory approach using metabolomics and gut microbiome analysis techniques was performed to unravel the nature and specificity of metabolic profiles related to gut ecology in obesity. This study focused on gut and liver metabolomics of two different mouse strains, the C57BL/6J (C57J) and the C57BL/6N (C57N) fed with high-fat diet (HFD) for 3 weeks, causing diet-induced obesity in C57N, but not in C57J mice. Furthermore, a 16S-ribosomal RNA comparative sequence analysis using 454 pyrosequencing detected significant differences between the microbiome of the two strains on phylum level for Firmicutes, Deferribacteres and Proteobacteria that propose an essential role of the microbiome in obesity susceptibility. Gut microbial and liver metabolomics were followed by a combinatory approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and ultra performance liquid chromatography time of tlight MS/MS with subsequent multivariate statistical analysis, revealing distinctive host and microbial metabolome patterns between the C57J and the C57N strain. Many taurine-conjugated bile acids (TBAs) were significantly elevated in the cecum and decreased in liver samples from the C57J phenotype likely displaying different energy utilization behavior by the bacterial community and the host. Furthermore, several metabolite groups could specifically be associated with the C57N phenotype involving fatty acids, eicosanoids and urobilinoids. The mass differences based metabolite network approach enabled to extend the range of known metabolites to important bile acids (BAs) and novel taurine conjugates specific for both strains. In summary, our study showed clear alterations of the metabolome in the gastrointestinal tract and liver within a HFD-induced obesity mouse model in relation to the host–microbial nutritional adaptation. PMID:24906017
Estiú, Maria C; Monte, Maria J; Rivas, Laura; Moirón, Maria; Gomez-Rodriguez, Laura; Rodriguez-Bravo, Tomas; Marin, Jose JG; Macias, Rocio IR
2015-01-01
Aim Intrahepatic cholestasis of pregnancy (ICP) is characterized by pruritus and elevated bile acid concentrations in maternal serum. This is accompanied by an enhanced risk of intra-uterine and perinatal complications. High concentrations of sulphated progesterone metabolites (PMS) have been suggested to be involved in the multifactorial aetiopathogenesis of ICP. The aim of this study was to investigate further the mechanism accounting for the beneficial effect of oral administration of ursodeoxycholic acid (UDCA), which is the standard treatment, regarding bile acid and PMS homeostasis in the mother-placenta-foetus trio. Method Using HPLC-MS/MS bile acids and PMS were determined in maternal and foetal serum and placenta. The expression of ABC proteins in placenta was determined by real time quantitative PCR (RT-QPCR) and immunofluorescence. Results In ICP, markedly increased concentrations of bile acids (tauroconjugates > glycoconjugates >> unconjugated), progesterone and PMS in placenta and maternal serum were accompanied by enhanced concentrations in foetal serum of bile acids, but not of PMS. UDCA treatment reduced bile acid accumulation in the mother-placenta-foetus trio, but had no significant effect on progesterone and PMS concentrations. ABCG2 mRNA abundance was increased in placentas from ICP patients vs. controls and remained stable following UDCA treatment, despite an apparent further increase in ABCG2. Conclusion UDCA administration partially reduces ICP-induced bile acid accumulation in mothers and foetuses despite the lack of effect on concentrations of progesterone and PMS in maternal serum. Up-regulation of placental ABCG2 may play an important role in protecting the foetus from high concentrations of bile acids and PMS during ICP. PMID:25099365
Estiú, Maria C; Monte, Maria J; Rivas, Laura; Moirón, Maria; Gomez-Rodriguez, Laura; Rodriguez-Bravo, Tomas; Marin, Jose J G; Macias, Rocio I R
2015-02-01
Intrahepatic cholestasis of pregnancy (ICP) is characterized by pruritus and elevated bile acid concentrations in maternal serum. This is accompanied by an enhanced risk of intra-uterine and perinatal complications. High concentrations of sulphated progesterone metabolites (PMS) have been suggested to be involved in the multifactorial aetiopathogenesis of ICP. The aim of this study was to investigate further the mechanism accounting for the beneficial effect of oral administration of ursodeoxycholic acid (UDCA), which is the standard treatment, regarding bile acid and PMS homeostasis in the mother-placenta-foetus trio. Using HPLC-MS/MS bile acids and PMS were determined in maternal and foetal serum and placenta. The expression of ABC proteins in placenta was determined by real time quantitative PCR (RT-QPCR) and immunofluorescence. In ICP, markedly increased concentrations of bile acids (tauroconjugates > glycoconjugates > unconjugated), progesterone and PMS in placenta and maternal serum were accompanied by enhanced concentrations in foetal serum of bile acids, but not of PMS. UDCA treatment reduced bile acid accumulation in the mother-placenta-foetus trio, but had no significant effect on progesterone and PMS concentrations. ABCG2 mRNA abundance was increased in placentas from ICP patients vs. controls and remained stable following UDCA treatment, despite an apparent further increase in ABCG2. UDCA administration partially reduces ICP-induced bile acid accumulation in mothers and foetuses despite the lack of effect on concentrations of progesterone and PMS in maternal serum. Up-regulation of placental ABCG2 may play an important role in protecting the foetus from high concentrations of bile acids and PMS during ICP. © 2014 The British Pharmacological Society.
Herbert Falk: a vital force in the renaissance of bile acid research and bile acid therapy.
Hofmann, Alan F
2011-01-01
Herbert Falk died on August 8, 2008, after a long illness. It was his vision that initiated the Bile Acid Meetings and brought to market chenodeoxycholic acid and ursodeoxycholic acid for the dissolution of cholesterol gallstones as well as the successful treatment of cholestatic liver disease. The 1st Bile Acid Meeting was a small workshop held at the University Hospital of Freiburg in 1970. Great interest in the topic was evident at that small meeting and led to a larger meeting in 1972, whose scope included both the basic and clinical aspects of bile acids. These meetings have continued at biennial intervals, the 2010 meeting being the 21st. The program has always included discussions of the most fundamental aspects of bile acid biosynthesis and metabolism as well as clinical applications of bile acid therapy. The meetings featured brief presentations, ample time for discussion, and imaginative social programs. They have always been flawlessly organized. Social programs usually included a hike through the beautiful countryside of the Black Forest followed by dinner in a rustic restaurant. Herbert Falk took part in these programs, personally welcoming every participant. In the warm glow of the 'Badische' hospitality, friendships developed, and scientific collaborations were often arranged. From a scientific standpoint, there has been enormous progress in understanding the chemistry and biology of bile acids. Herbert Falk established the Windaus Prize in 1978, and the prize has been given to individuals whose contributions moved the field forward. These bile acid meetings have been marvelous, rewarding experiences. We must all be grateful to Herbert Falk's vision in establishing the Falk Foundation that has so generously sponsored these meetings. We also express our gratitude to his widow, Ursula Falk, who continues this worthy tradition. Copyright © 2011 S. Karger AG, Basel.
Assfalg, Michael; Gianolio, Eliana; Zanzoni, Serena; Tomaselli, Simona; Russo, Vito Lo; Cabella, Claudia; Ragona, Laura; Aime, Silvio; Molinari, Henriette
2007-11-01
The binding affinities of a selected series of Gd(III) chelates bearing bile acid residues, potential hepatospecific MRI contrast agents, to a liver cytosolic bile acid transporter, have been determined through relaxivity measurements. The Ln(III) complexes of compound 1 were selected for further NMR structural analysis aimed at assessing the molecular determinants of binding. A number of NMR experiments have been carried out on the bile acid-like adduct, using both diamagnetic Y(III) and paramagnetic Gd(III) complexes, bound to a liver bile acid binding protein. The identified protein "hot spots" defined a single binding site located at the protein portal region. The presented findings will serve in a medicinal chemistry approach for the design of hepatocytes-selective gadolinium chelates for liver malignancies detection.
Intestinal bile acid malabsorption in cystic fibrosis.
O'Brien, S; Mulcahy, H; Fenlon, H; O'Broin, A; Casey, M; Burke, A; FitzGerald, M X; Hegarty, J E
1993-08-01
This study aimed at examining the mechanisms participating in excessive faecal bile acid loss in cystic fibrosis. The study was designed to define the relation between faecal fat and faecal bile acid loss in patients with and without cystic fibrosis related liver disease; to assess terminal ileal bile acid absorption by a seven day whole body retention of selenium labelled homotaurocholic acid (SeHCAT); and to determine if small intestinal bacterial overgrowth contributes to faecal bile acid loss. The study population comprised 40 patients (27 men; median age 18 years) with cystic fibrosis (n = 8) and without (n = 32) liver disease and eight control subjects. Faecal bile acid excretion was significantly higher in cystic fibrosis patients without liver disease compared with control subjects (mean (SEM) 21.5 (2.4) and 7.3 (1.2) micromoles/kg/24 hours respectively; p < 0.01) and patients with liver disease (7.9 (1.3) micromoles/kg/24 hours; p < 0.01). No correlation was found between faecal fat (g fat/24 hours) and faecal bile acid (micromoles 24 hours) excretion. Eight (33%) of cystic fibrosis patients had seven day SeHCAT retention < 10% (normal retention > 20%). SeHCAT retention in cystic fibrosis patients with liver disease was comparable with control subjects (30.0 (SEM) 8.3% v 36.8 (5.9)%; p = NS) while SeHCAT retention in cystic fibrosis patients who did not have liver disease was significantly reduced (19.9 (3.8); p < 0.05). Although evidence of small bowel bacterial overgrowth was present in 40% of patients no relation was found between breath hydrogen excretion, faecal fat, and faecal bile acid loss. The results are consistent with the presence of an abnormality in terminal ideal function in patients with cystic fibrosis who do not have liver disease and that a defect in the ileal absorption of bile acids may be a contributory factor to excessive faecal bile acid loss. Faecal bile acid loss in cystic fibrosis is unrelated to the presence of intraluminal fat or intestinal bacterial overgrowth.
Intestinal bile acid malabsorption in cystic fibrosis.
O'Brien, S; Mulcahy, H; Fenlon, H; O'Broin, A; Casey, M; Burke, A; FitzGerald, M X; Hegarty, J E
1993-01-01
This study aimed at examining the mechanisms participating in excessive faecal bile acid loss in cystic fibrosis. The study was designed to define the relation between faecal fat and faecal bile acid loss in patients with and without cystic fibrosis related liver disease; to assess terminal ileal bile acid absorption by a seven day whole body retention of selenium labelled homotaurocholic acid (SeHCAT); and to determine if small intestinal bacterial overgrowth contributes to faecal bile acid loss. The study population comprised 40 patients (27 men; median age 18 years) with cystic fibrosis (n = 8) and without (n = 32) liver disease and eight control subjects. Faecal bile acid excretion was significantly higher in cystic fibrosis patients without liver disease compared with control subjects (mean (SEM) 21.5 (2.4) and 7.3 (1.2) micromoles/kg/24 hours respectively; p < 0.01) and patients with liver disease (7.9 (1.3) micromoles/kg/24 hours; p < 0.01). No correlation was found between faecal fat (g fat/24 hours) and faecal bile acid (micromoles 24 hours) excretion. Eight (33%) of cystic fibrosis patients had seven day SeHCAT retention < 10% (normal retention > 20%). SeHCAT retention in cystic fibrosis patients with liver disease was comparable with control subjects (30.0 (SEM) 8.3% v 36.8 (5.9)%; p = NS) while SeHCAT retention in cystic fibrosis patients who did not have liver disease was significantly reduced (19.9 (3.8); p < 0.05). Although evidence of small bowel bacterial overgrowth was present in 40% of patients no relation was found between breath hydrogen excretion, faecal fat, and faecal bile acid loss. The results are consistent with the presence of an abnormality in terminal ideal function in patients with cystic fibrosis who do not have liver disease and that a defect in the ileal absorption of bile acids may be a contributory factor to excessive faecal bile acid loss. Faecal bile acid loss in cystic fibrosis is unrelated to the presence of intraluminal fat or intestinal bacterial overgrowth. PMID:8174969
Sepe, Valentina; Renga, Barbara; Festa, Carmen; D'Amore, Claudio; Masullo, Dario; Cipriani, Sabrina; Di Leva, Francesco Saverio; Monti, Maria Chiara; Novellino, Ettore; Limongelli, Vittorio; Zampella, Angela; Fiorucci, Stefano
2014-09-25
Bile acids are signaling molecules interacting with the nuclear receptor FXR and the G-protein coupled receptor 1 (GP-BAR1/TGR5). GP-BAR1 is a promising pharmacological target for the treatment of steatohepatitis, type 2 diabetes, and obesity. Endogenous bile acids and currently available semisynthetic bile acids are poorly selective toward GP-BAR1 and FXR. Thus, in the present study we have investigated around the structure of UDCA, a clinically used bile acid devoid of FXR agonist activity, to develop a large family of side chain modified 3α,7β-dihydroxyl cholanoids that selectively activate GP-BAR1. In vivo and in vitro pharmacological evaluation demonstrated that administration of compound 16 selectively increases the expression of pro-glucagon 1, a GP-BAR1 target, in the small intestine, while it had no effect on FXR target genes in the liver. Further, compound 16 results in a significant reshaping of bile acid pool in a rodent model of cholestasis. These data demonstrate that UDCA is a useful scaffold to generate novel and selective steroidal ligands for GP-BAR1.
Facina, G; de Lima, G R; Simões, M J; Novo, N F; Gebrim, L H
1997-01-01
Tamoxifen, an anti-estrogenic drug used in the adjuvant treatment of breast cancer, deserves more investigation for the determination of its efficacy as a prophylactic agent against breast cancer in high risk women. Thus, the action of tamoxifen on the human mammary gland was studied by measuring the number of lysosomes in normal mammary epithelium during the administration of tamoxifen. Tamoxifen was administered only during the luteal phase of the menstrual cycle to avoid interference with corpus luteum formation. A fragment of breast tissue adjacent to a fibroadenoma was obtained during surgery from 35 premenopausal women aged 15 to 37 years who had been eumenorrheic for at least 6 months; 18 of these patients were treated with tamoxifen and 17 were used as controls. Lysosome counts were performed under the light microscope on slides submitted to the acid phosphatase cytochemical technique and the data were analyzed statistically by the Mann-Whitney test. The fragments from the group treated with tamoxifen showed a significant decrease in lysosome numbers. Tamoxifen administered after ovulation significantly decreases the number of lysosomes in the cells of normal mammary epithelium, demonstrating the antiestrogenic effect of the drug on this target tissue.
Iguchi, Yusuke; Yamaguchi, Masafumi; Sato, Hiroyuki; Kihira, Kenji; Nishimaki-Mogami, Tomoko; Une, Mizuho
2010-01-01
TGR5 is a G protein-coupled receptor that is activated by bile acids, resulting in an increase in cAMP levels and the subsequent modulation of energy expenditure in brown adipose tissue and muscle. Therefore, the development of a TGR5-specific agonist could lead to the prevention and treatment of various metabolic disorders related to obesity. In the present study, we evaluated the ability of bile alcohols, which are structurally and physiologically similar to bile acids and are produced as the end products of cholesterol catabolism in evolutionarily primitive vertebrates, to act as TGR5 agonists. In a cell-based reporter assay and a cAMP production assay performed in vitro, most bile alcohols with a side chain containing hydroxyl group(s) were highly efficacious agonists for TGR5 comparable to its most potent ligand in the naturally occurring bile acid, lithocholic acid. However, the abilities of the bile alcohols to activate TGR5 varied with the position and number of the hydroxyl substituent in the side chain. Additionally, the conformation of the steroidal nucleus of bile alcohols is also important for its activity as a TGR5 agonist. Thus, we have provided new insights into the structure-activity relationships of bile alcohols as TGR5 agonists. PMID:20023205
Pattni, S S; Brydon, W G; Dew, T; Johnston, I M; Nolan, J D; Srinivas, M; Basumani, P; Bardhan, K D; Walters, J R F
2013-10-01
Bile acid diarrhoea is a common, under-diagnosed cause of chronic watery diarrhoea, responding to specific treatment with bile acid sequestrants. We previously showed patients with bile acid diarrhoea have lower median levels compared with healthy controls, of the ileal hormone fibroblast growth factor 19 (FGF19), which regulates bile acid synthesis. To measure serum FGF19 and SeHCAT retention prospectively in patients with chronic diarrhoea. One hundred and fifty-two consecutive patients were grouped according to (75) Se-homocholic acid taurine (SeHCAT) 7-day retention: normal (>15%) in 72 (47%) diarrhoea controls; ≤15% in 54 (36%) with primary bile acid diarrhoea, and in 26 (17%) with secondary bile acid diarrhoea. Fasting blood was assayed for FGF19, 7α-hydroxy-4-cholesten-3-one (C4) and total bile acids. FGF19 was significantly lower in the primary bile acid diarrhoea group compared with the diarrhoea control group (median 147 vs. 225 pg/mL, P < 0.001), and also in the secondary group (P < 0.006). FGF19 and SeHCAT values were positively correlated (rs = 0.44, P < 0.001); both were inversely related to C4. Other significant relationships included SeHCAT and body mass index (BMI)(P = 0.02), and FGF19 with age (P < 0.01). The negative and positive predictive values of FGF19 ≤ 145 pg/mL for a SeHCAT <10% were 82% and 61%, respectively, and were generally improved in an index including BMI, age and C4. In a subset of 28 primary patients, limited data suggested that FGF19 could predict response to sequestrant therapy. Reduced fibroblast growth factor 19 is a feature of bile acid diarrhoea. Further studies will fully define its role in predicting the response of these patients to therapy. © 2013 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiller, L.R.; Hogan, R.B.; Morawski, S.G.
1987-01-01
We studied radiolabeled fecal bile acid excretion in 11 normal subjects and 17 patients with idiopathic chronic diarrhea for three major purposes: to establish normal values for this test in the presence of increased stool volumes (induced in normal subjects by ingestion of poorly absorbable solutions); to test for bile acid malabsorption in the patients and to correlate this with an independent test of ileal function, the Schilling test; and to compare the results of the bile acid excretion test with the subsequent effect of a bile acid binding agent (cholestyramine) on stool weight. In normal subjects fecal excretion ofmore » the radiolabel was increased with increasing stool volumes. As a group, patients with idiopathic chronic diarrhea excreted radiolabeled bile acid more rapidly than normal subjects with induced diarrhea (t1/2 56 +/- 8 vs. 236 +/- 60 h, respectively, p less than 0.005). There was a statistically significant positive correlation between t1/2 of radiolabeled bile acid and Schilling test results in these patients. Although 14 of 17 patients absorbed labeled taurocholic acid less well than any of the normal subjects with comparable volumes of induced diarrhea, cholestyramine had no statistically significant effect on stool weight in the patient group, and in none of the patients was stool weight reduced to within the normal range. In summary, most patients with idiopathic chronic diarrhea have bile acid malabsorption (as measured by fecal excretion of labeled bile acid), but they do not respond to cholestyramine therapy with a significant reduction in stool weight. Although the significance of these findings was not clearly established, the most likely interpretation is that bile acid malabsorption is a manifestation of an underlying intestinal motility or absorptive defect rather than the primary cause of diarrhea.« less
Cheng, Long; Zhao, Lijin; Li, Dajiang; Liu, Zipei; Chen, Geng; Tian, Feng; Li, Xiaowu; Wang, Shuguang
2010-07-27
The pathogenesis of nonanastomotic strictures with a patent hepatic artery remains to be investigated. This study focuses on the role of cholangiocyte bile acid transporters in bile duct injury after liver transplantation. Sprague-Dawley rats were divided into three groups (n=20 for each): the sham-operated group (Sham), the transplant group with 1-hr donor liver cold preservation (CP-1h), and the transplant group with 12-hr donor liver cold preservation (CP-12h). Bile was collected for biochemical analysis. The histopathologic evaluation of bile duct injury was performed and the cholangiocyte bile acid transporters apical sodium-dependent bile acid transporter (ASBT), ileal lipid binding protein (ILBP), and Ostalpha/Ostbeta were investigated. RESULTS.: The immunohistochemical assay suggested that ASBT and ILBP were expressed exclusively on large bile duct epithelial cells, whereas Ostalpha and Ostbeta were expressed on both small and large bile ducts. Western blot and quantitative polymerase chain reaction analysis showed that the expression levels of these transporters dramatically decreased after transplantation. It took seven to 14 days for ILBP, Ostalpha, and Ostbeta to recover, whereas ASBT recovered within 3 days and even reached a peak above the normal level seven days after operation. In the CP-12h group, the ratios of the ASBT/ILBP, ASBT/Ostalpha and ASBT/Ostbeta expression levels were correlated with the injury severity scores of large but not small bile ducts. The results suggest that the unparallel alteration of cholangiocyte bile acid transporters may play a potential role in large bile duct injury after liver transplantation with prolonged donor liver preservation.
Appleby, R N; Bajor, A; Gillberg, P-G; Graffner, H; Simrén, M; Ung, K A; Walters, Jrf
2017-04-01
Primary bile acid diarrhoea (BAD) is associated with increased bile acid synthesis and low fibroblast growth factor 19 (FGF19). Bile acid sequestrants are used as therapy, but are poorly tolerated and may exacerbate FGF19 deficiency. The purpose of this study was to evaluate the pharmacological effects of conventional sequestrants and a colonic-release formulation preparation of colestyramine (A3384) on bile acid metabolism and bowel function in patients with BAD. Patients with seven-day 75 selenium-homocholic acid taurine (SeHCAT) scan retention <10% were randomised in a double-blind protocol to two weeks treatment with twice-daily A3384 250 mg ( n = 6), 1 g ( n = 7) or placebo ( n = 6). Thirteen patients were taking conventional sequestrants at the start of the study. Symptoms were recorded and serum FGF19 and 7α-hydroxy-4-cholesten-3-one (C4) measured. Median serum FGF19 on conventional sequestrant treatment was 28% lower than baseline values in BAD ( p < 0.05). C4 on conventional sequestrant treatment was 58% higher in BAD ( p < 0.001). No changes were seen on starting or withdrawing A3384. A3384 improved diarrhoeal symptoms, with a median reduction of 2.2 points on a 0-10 Likert scale compared to placebo, p < 0.05. Serum FGF19 was suppressed and bile acid production up-regulated on conventional bile acid sequestrants, but not with A3384. This colonic-release formulation of colestyramine produced symptomatic benefit in patients with BAD.
Bajor, A; Gillberg, P-G; Graffner, H; Simrén, M; Ung, KA; Walters, JRF
2016-01-01
Background Primary bile acid diarrhoea (BAD) is associated with increased bile acid synthesis and low fibroblast growth factor 19 (FGF19). Bile acid sequestrants are used as therapy, but are poorly tolerated and may exacerbate FGF19 deficiency. Aim The purpose of this study was to evaluate the pharmacological effects of conventional sequestrants and a colonic-release formulation preparation of colestyramine (A3384) on bile acid metabolism and bowel function in patients with BAD. Methods Patients with seven-day 75selenium-homocholic acid taurine (SeHCAT) scan retention <10% were randomised in a double-blind protocol to two weeks treatment with twice-daily A3384 250 mg (n = 6), 1 g (n = 7) or placebo (n = 6). Thirteen patients were taking conventional sequestrants at the start of the study. Symptoms were recorded and serum FGF19 and 7α-hydroxy-4-cholesten-3-one (C4) measured. Results Median serum FGF19 on conventional sequestrant treatment was 28% lower than baseline values in BAD (p < 0.05). C4 on conventional sequestrant treatment was 58% higher in BAD (p < 0.001). No changes were seen on starting or withdrawing A3384. A3384 improved diarrhoeal symptoms, with a median reduction of 2.2 points on a 0–10 Likert scale compared to placebo, p < 0.05. Conclusions Serum FGF19 was suppressed and bile acid production up-regulated on conventional bile acid sequestrants, but not with A3384. This colonic-release formulation of colestyramine produced symptomatic benefit in patients with BAD. PMID:28507750
Bile acid malabsorption in Crohn's disease and indications for its assessment using SeHCAT.
Nyhlin, H; Merrick, M V; Eastwood, M A
1994-01-01
Patients with Crohn's disease who suffer from longstanding diarrhoea that does not respond to conventional treatment pose a common clinical problem. Bile acid malabsorption is a possible cause, although its prevalence and clinical importance is unclear. This paper explores the clinical indications for referring patients with Crohn's disease for bile acid assessment and the extent of bile acid malabsorption in this selected group of patients. The selenium labelled bile acid SeHCAT was used to assess the effect of disease on the integrity of the enterohepatic circulation. Altogether 76% of the patients referred for bile acid assessment had longstanding diarrhoea that had not responded to conventional anti-diarrhoeal treatment or an increase in steroid therapy as their sole or predominant symptom. Ninety per cent of patients with bowel resections, almost exclusively ileocaecal, had abnormal SeHCAT retention (< 5% at seven days). Twenty eight per cent of patients with Crohn's disease who had not undergone resection 28% had a SeHCAT retention < 5%, signifying bile acid malabsorption. Nineteen of 22 patients given cholestyramine treatment subsequent to the SeHCAT test had a good symptomatic response. In conclusion, the prevalence of bile acid malabsorption in this selected group with Crohn's disease is sufficiently high to justify performing the SeHCAT test in order to separate the various differential diagnoses. PMID:8307458
Effects of dose, flow rate, and bile acid on diclofenac disposition in the perfused rat liver.
Uraki, Misato; Kawase, Atsushi; Matsushima, Yuka; Iwaki, Masahiro
2016-06-01
An in situ perfused rat liver system is useful for studying the hepatic disposition of drugs and their metabolites. However, the effects of the perfusion conditions on drug disposition are unclear. We examined the effects of conditions such as flow rate (13 or 26 mL/min) and bile acid on disposition of diclofenac (DF) as a model drug and DF metabolites [diclofenac-1-O-acyl glucuronide (DF-Glu) or 4'-hydroxydiclofenac (DF-4'OH)] in the absence of albumin. DF, DF-Glu, and DF-4'OH concentrations in the perfusate and cumulative amounts of DF-Glu excreted in bile were measured using high-performance liquid chromatography methods. DF in the perfusate was rapidly eliminated as the perfusate flow rate increased. The area under the plasma concentration-time curve from 0 to 60 min (AUC0-60) for DF-Glu and DF-4'OH in a perfusate containing bile acid was lower at a flow rate of 26 and 13 mL/min, respectively. The bile flow rate at 26 mL/min with 24 μM of bile acid in the perfusate was significantly higher (ca. 3.5 times) compared with that at 13 mL/min without bile acid. Cumulative biliary DF-Glu excretion was also dramatically affected by the flow rate and addition of bile acid. This study indicated that the flow rate and bile acid in the perfused rat liver were key factors for bile flow rate and DF, DF-Glu, and DF-4'OH disposition in the absence of albumin.
Binding of bile acids by pastry products containing bioactive substances during in vitro digestion.
Dziedzic, Krzysztof; Górecka, Danuta; Szwengiel, Artur; Smoczyńska, Paulina; Czaczyk, Katarzyna; Komolka, Patrycja
2015-03-01
The modern day consumer tends to choose products with health enhancing properties, enriched in bioactive substances. One such bioactive food component is dietary fibre, which shows a number of physiological properties including the binding of bile acids. Dietary fibre should be contained in everyday, easily accessible food products. Therefore, the aim of this study was to determine sorption capacities of primary bile acid (cholic acid - CA) and secondary bile acids (deoxycholic - DCA and lithocholic acids - LCA) by muffins (BM) and cookies (BC) with bioactive substances and control muffins (CM) and cookies (CC) in two sections of the in vitro gastrointestinal tract. Variations in gut flora were also analysed in the process of in vitro digestion of pastry products in a bioreactor. Enzymes: pepsin, pancreatin and bile salts: cholic acid, deoxycholic acid and lithocholic acid were added to the culture. Faecal bacteria, isolated from human large intestine, were added in the section of large intestine. The influence of dietary fibre content in cookies and concentration of bile acids in two stages of digestion were analysed. Generally, pastry goods with bioactive substances were characterized by a higher content of total fibre compared with the control samples. These products also differ in the profile of dietary fibre fractions. Principal Component Analysis (PCA) showed that the bile acid profile after two stages of digestion depends on the quality and quantity of fibre. The bile acid profile after digestion of BM and BC forms one cluster, and with the CM and CC forms a separate cluster. High concentration of H (hemicellulose) is positively correlated with LCA (low binding effect) and negatively correlated with CA and DCA contents. The relative content of bile acids in the second stage of digestion was in some cases above the content in the control sample, particularly LCA. This means that the bacteria introduced in the 2nd stage of digestion synthesize the LCA.
Torres, J; Palmela, C; Brito, H; Bao, X; Ruiqi, H; Moura-Santos, P; Pereira da Silva, J; Oliveira, A; Vieira, C; Perez, K; Itzkowitz, S H; Colombel, J F; Humbert, L; Rainteau, D; Cravo, M; Rodrigues, C M; Hu, J
2018-02-01
Patients with primary sclerosing cholangitis associated with inflammatory bowel disease (PSC-IBD) have a very high risk of developing colorectal neoplasia. Alterations in the gut microbiota and/or gut bile acids could account for the increase in this risk. However, no studies have yet investigated the net result of cholestasis and a potentially altered bile acid pool interacting with a dysbiotic gut flora in the inflamed colon of PSC-IBD. The aim of this study was to compare the gut microbiota and stool bile acid profiles, as well as and their correlation in patients with PSC-IBD and inflammatory bowel disease alone. Thirty patients with extensive colitis (15 with concomitant primary sclerosing cholangitis) were prospectively recruited and fresh stool samples were collected. The microbiota composition in stool was profiled using bacterial 16S rRNA sequencing. Stool bile acids were assessed by high-performance liquid chromatography tandem mass spectrometry. The total stool bile acid pool was significantly reduced in PSC-IBD. Although no major differences were observed in the individual bile acid species in stool, their overall combination allowed a good separation between PSC-IBD and inflammatory bowel disease. Compared with inflammatory bowel disease alone, PSC-IBD patients demonstrated a different gut microbiota composition with enrichment in Ruminococcus and Fusobacterium genus compared with inflammatory bowel disease. At the operational taxonomic unit level major shifts were observed within the Firmicutes (73%) and Bacteroidetes phyla (17%). Specific microbiota-bile acid correlations were observed in PSC-IBD, where 12% of the operational taxonomic units strongly correlated with stool bile acids, compared with only 0.4% in non-PSC-IBD. Patients with PSC-IBD had distinct microbiota and microbiota-stool bile acid correlations as compared with inflammatory bowel disease. Whether these changes are associated with, or may predispose to, an increased risk of colorectal neoplasia needs to be further clarified.
Gallstones in patients with liver cirrhosis: Incidence, etiology, clinical and therapeutical aspects
Acalovschi, Monica
2014-01-01
Gallstones occur in about one third of the patients having liver cirrhosis. Pigment gallstones are the most frequent type, while cholesterol stones represent about 15% of all stones in cirrhotics. Increased secretion of unconjugated bilirubin, increased hydrolysis of conjugated bilirubin in the bile, reduced secretion of bile acids and phospholipds in bile favor pigment lithogenesis in cirrhotics. Gallbladder hypomotility also contributes to lithogenesis. The most recent data regarding risk factors for gallstones are presented. Gallstone prevalence increases with age, with a ratio male/female higher than in the general population. Chronic alcoholism, viral C cirrhosis, and non-alcoholic fatty liver disease are the underlying liver diseases most often associated with gallstones. Gallstones are often asymptomatic, and discovered incidentally. If asymptomatic, expectant management is recommended, as for asymptomatic gallstones in the general population. However, a closer follow-up of these patients is necessary in order to earlier treat symptoms or complications. For symptomatic stones, laparoscopic cholecystectomy has become the therapy of choice. Child-Pugh class and MELD score are the best predictors of outcome after cholecystectomy. Patients with severe liver disease are at highest surgical risk, therefore gallstone complications should be treated using noninvasive or minimally invasive procedures, until stabilization of the patient condition. PMID:24966598
Walters, Julian R. F.; Pattni, Sanjeev S.
2010-01-01
Bowel symptoms including diarrhoea can be produced when excess bile acids (BA) are present in the colon. This condition, known as bile acid or bile salt malabsorption, has been under recognized, as the best diagnostic method, the 75Se-homocholic acid taurine (SeHCAT) test, is not available in many countries and is not fully utilized in others. Reduced SeHCAT retention establishes that this is a complication of many other gastrointestinal diseases. Repeated studies show SeHCAT tests are abnormal in about 30% of patients otherwise diagnosed as diarrhoea-predominant irritable bowel syndrome or functional diarrhoea, with an estimated population prevalence of around 1%. Recent work suggests that the condition previously called idiopathic bile acid malabsorption (BAM) is not in fact due to a defect in absorption, but results from an overproduction of BA because of defective feedback inhibition of hepatic bile acid synthesis, a function of the ileal hormone fibroblast growth factor 19 (FGF19). The approach to treatment currently depends on binding excess BA, to reduce their secretory actions, using colestyramine, colestipol and, most recently, colesevelam. Colesevelam has a number of potential advantages that merit further investigation in trials directed at patients with bile acid diarrhoea. PMID:21180614
Walters, Julian R F; Pattni, Sanjeev S
2010-11-01
Bowel symptoms including diarrhoea can be produced when excess bile acids (BA) are present in the colon. This condition, known as bile acid or bile salt malabsorption, has been under recognized, as the best diagnostic method, the (75)Se-homocholic acid taurine (SeHCAT) test, is not available in many countries and is not fully utilized in others. Reduced SeHCAT retention establishes that this is a complication of many other gastrointestinal diseases. Repeated studies show SeHCAT tests are abnormal in about 30% of patients otherwise diagnosed as diarrhoea-predominant irritable bowel syndrome or functional diarrhoea, with an estimated population prevalence of around 1%. Recent work suggests that the condition previously called idiopathic bile acid malabsorption (BAM) is not in fact due to a defect in absorption, but results from an overproduction of BA because of defective feedback inhibition of hepatic bile acid synthesis, a function of the ileal hormone fibroblast growth factor 19 (FGF19). The approach to treatment currently depends on binding excess BA, to reduce their secretory actions, using colestyramine, colestipol and, most recently, colesevelam. Colesevelam has a number of potential advantages that merit further investigation in trials directed at patients with bile acid diarrhoea.
2015-01-01
A novel trifluorinated cholic acid derivative, CA-lys-TFA, was designed and synthesized for use as a tool to measure bile acid transport noninvasively using magnetic resonance imaging (MRI). In the present study, the in vivo performance of CA-lys-TFA for measuring bile acid transport by MRI was investigated in mice. Gallbladder CA-lys-TFA content was quantified using MRI and liquid chromatography/tandem mass spectrometry. Results in wild-type (WT) C57BL/6J mice were compared to those in mice lacking expression of Asbt, the ileal bile acid transporter. 19F signals emanating from the gallbladders of WT mice 7 h after oral gavage with 150 mg/kg CA-lys-TFA were reproducibly detected by MRI. Asbt-deficient mice administered the same dose had undetectable 19F signals by MRI, and gallbladder bile CA-lys-TFA levels were 30-fold lower compared to WT animals. To our knowledge, this represents the first report of in vivo imaging of an orally absorbed drug using 19F MRI. Fluorinated bile acid analogues have potential as tools to measure and detect abnormal bile acid transport by MRI. PMID:24708306
Wang, Lirui; Hartmann, Phillipp; Haimerl, Michael; Bathena, Sai P.; Sjöwall, Christopher; Almer, Sven; Alnouti, Yazen; Hofmann, Alan F.; Schnabl, Bernd
2014-01-01
Background & aims Chronic liver disease is characterized by fibrosis that may progress to cirrhosis. Nucleotide oligomerization domain 2 (Nod2), a member of the Nod-like receptor (NLR) family of intracellular immune receptors, plays an important role in the defense against bacterial infection through binding to the ligand muramyl dipeptide (MDP). Here, we investigated the role of Nod2 in the development of liver fibrosis. Methods We studied experimental cholestatic liver disease induced by bile duct ligation or toxic liver disease induced by carbon tetrachloride in wild type and Nod2−/− mice. Results Nod2 deficiency protected mice from cholestatic but not toxin-induced liver injury and fibrosis. Most notably, the hepatic bile acid concentration was lower in Nod2−/− mice than wild type mice following bile duct ligation for 3 weeks. In contrast to wild type mice, Nod2−/− mice had increased urinary excretion of bile acids, including sulfated bile acids, and an upregulation of the bile acid efflux transporters MRP2 and MRP4 in tubular epithelial cells of the kidney. MRP2 and MRP4 were downregulated by IL-1β in a Nod2 dependent fashion. Conclusions Our findings indicate that Nod2 deficiency protects mice from cholestatic liver injury and fibrosis through enhancing renal excretion of bile acids that in turn contributes to decreased concentration of bile acids in the hepatocyte. PMID:24560660
Njauw, Ching-Wei; Cheng, Chih-Yang; Ivanov, Viktor A; Khokhlov, Alexei R; Tung, Shih-Huang
2013-03-26
It has been known that the addition of bile salts to lecithin organosols induces the formation of reverse wormlike micelles and that the worms are similar to long polymer chains that entangle each other to form viscoelastic solutions. In this study, we further investigated the effects of different bile salts and bile acids on the growth of lecithin reverse worms in cyclohexane and n-decane. We utilized rheological and small-angle scattering techniques to analyze the properties and structures of the reverse micelles. All of the bile salts can transform the originally spherical lecithin reverse micelles into wormlike micelles and their rheological behaviors can be described by the single-relaxation-time Maxwell model. However, their efficiencies to induce the worms are different. In contrast, before phase separation, bile acids can induce only short cylindrical micelles that are not long enough to impart viscoelasticity. We used Fourier transform infrared spectroscopy to investigate the interactions between lecithin and bile salts/acids and found that different bile salts/acids employ different functional groups to form hydrogen bonds with lecithin. Such effects determine the relative positions of the bile salts/acids in the headgroups of lecithin, thus resulting in varying efficiencies to alter the effective critical packing parameter for the formation of wormlike micelles. This work highlights the importance of intermolecular interactions in molecular self-assembly.
Circadian dysregulation disrupts bile acid homeostasis
USDA-ARS?s Scientific Manuscript database
Bile acids are potentially toxic compounds and their levels of hepatic production, uptake, and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis. Both restricted feedi...
Zhou, Yong; Doyen, Rand; Lichtenberger, Lenard M.
2013-01-01
In cholestatic liver diseases, the ability of hydrophobic bile acids to damage membranes of hepatocytes/ductal cells contributes to their cytotoxicity. However, ursodeoxycholic acid (UDC), a hydrophilic bile acid, is used to treat cholestasis because it protects membranes. It has been well established that bile acids associate with and solubilize free cholesterol (CHOL) contained within the lumen of the gallbladder because of their structural similarities. However, there is a lack of understanding of how membrane CHOL, which is a well-established membrane stabilizing agent, is involved in cytotoxicity of hydrophobic bile acids and the cytoprotective effect of UDC. We utilized phospholipid liposomes to examine the ability of membrane CHOL to influence toxicity of individual bile acids, such as UDC and the highly toxic sodium deoxycholate (SDC), as well as the cytoprotective mechanism of UDC against SDC-induced cytotoxicity by measuring membrane permeation and intramembrane dipole potential. The kinetics of bile acid solubilization of phosphatidylcholine liposomes containing various levels of CHOL was also characterized. It was found that the presence of CHOL in membranes significantly reduced the ability of bile acids to damage synthetic membranes. UDC effectively prevented damaging effects of SDC on synthetic membranes only in the presence of membrane CHOL, while UDC enhances the damaging effects of SDC in the absence of CHOL. This further demonstrates that the cytoprotective effects of UDC depend upon the level of CHOL in the lipid membrane. Thus, changes in cell membrane composition, such as CHOL content, potentially influence the efficacy of UDC as the primary drug used to treat cholestasis. PMID:19150330
Jiang, Meixiu; Zhang, Ling; Ma, Xingzhe; Hu, Wenquan; Chen, Yuanli; Yu, Miao; Wang, Qixue; Li, Xiaoju; Yin, Zhinan; Zhu, Yan; Gao, Xiumei; Hajjar, David P; Duan, Yajun; Han, Jihong
2013-09-15
Macrophage adipocyte fatty acid-binding protein (FABP4) plays an important role in foam cell formation and development of atherosclerosis. Tamoxifen inhibits this disease process. In the present study, we determined whether the anti-atherogenic property of tamoxifen was related to its inhibition of macrophage FABP4 expression. We initially observed that tamoxifen inhibited macrophage/foam cell formation, but the inhibition was attenuated when FABP4 expression was selectively inhibited by siRNA.We then observed that tamoxifen and 4-hydroxytamoxifen inhibited FABP4 protein expression in primary macrophages isolated from both the male and female wild-type mice, suggesting that the inhibition is sex-independent. Tamoxifen and 4-hydroxytamoxifen inhibited macrophage FABP4 protein expression induced either by activation of GR (glucocorticoid receptor) or PPARγ (peroxisome-proliferator-activated receptor γ). Associated with the decreased protein expression, Fabp4 mRNA expression and promoter activity were also inhibited by tamoxifen and 4-hydroxytamoxifen, indicating transcriptional regulation. Analysis of promoter activity and EMSA/ChIP assays indicated that tamoxifen and 4-hydroxytamoxifen activated the nGRE (negative glucocorticoid regulatory element), but inhibited the PPRE (PPARγ regulatory element) in the Fabp4 gene. In vivo, administration of tamoxifen to ApoE (apolipoprotein E)-deficient (apoE-/-) mice on a high-fat diet decreased FABP4 expression in macrophages and adipose tissues as well as circulating FABP4 levels. Tamoxifen also inhibited FABP4 protein expression by human blood monocyte-derived macrophages. Taken together, the results of the present study show that tamoxifen inhibited FABP4 expression through the combined effects of GR and PPARγ signalling pathways. Our findings suggest that the inhibition of macrophage FABP4 expression can be attributed to the antiatherogenic properties of tamoxifen.
Studer, Nicolas; Desharnais, Lyne; Beutler, Markus; Brugiroux, Sandrine; Terrazos, Miguel A; Menin, Laure; Schürch, Christian M; McCoy, Kathy D; Kuehne, Sarah A; Minton, Nigel P; Stecher, Bärbel; Bernier-Latmani, Rizlan; Hapfelmeier, Siegfried
2016-01-01
Bile acids, important mediators of lipid absorption, also act as hormone-like regulators and as antimicrobial molecules. In all these functions their potency is modulated by a variety of chemical modifications catalyzed by bacteria of the healthy gut microbiota, generating a complex variety of secondary bile acids. Intestinal commensal organisms are well-adapted to normal concentrations of bile acids in the gut. In contrast, physiological concentrations of the various intestinal bile acid species play an important role in the resistance to intestinal colonization by pathogens such as Clostridium difficile . Antibiotic therapy can perturb the gut microbiota and thereby impair the production of protective secondary bile acids. The most important bile acid transformation is 7α-dehydroxylation, producing deoxycholic acid (DCA) and lithocholic acid (LCA). The enzymatic pathway carrying out 7α-dehydroxylation is restricted to a narrow phylogenetic group of commensal bacteria, the best-characterized of which is Clostridium scindens . Like many other intestinal commensal species, 7-dehydroxylating bacteria are understudied in vivo . Conventional animals contain variable and uncharacterized indigenous 7α-dehydroxylating organisms that cannot be selectively removed, making controlled colonization with a specific strain in the context of an undisturbed microbiota unfeasible. In the present study, we used a recently established, standardized gnotobiotic mouse model that is stably associated with a simplified murine 12-species "oligo-mouse microbiota" (Oligo-MM 12 ). It is representative of the major murine intestinal bacterial phyla, but is deficient for 7α-dehydroxylation. We find that the Oligo-MM 12 consortium carries out bile acid deconjugation, a prerequisite for 7α-dehydroxylation, and confers no resistance to C. difficile infection (CDI). Amendment of Oligo-MM 12 with C. scindens normalized the large intestinal bile acid composition by reconstituting 7α-dehydroxylation. These changes had only minor effects on the composition of the native Oligo-MM 12 , but significantly decreased early large intestinal C. difficile colonization and pathogenesis. The delayed pathogenesis of C. difficile in C. scindens -colonized mice was associated with breakdown of cecal microbial bile acid transformation.
van Hasselt, P M; Janssens, G E P J; Slot, T K; van der Ham, M; Minderhoud, T C; Talelli, M; Akkermans, L M; Rijcken, C J F; van Nostrum, C F
2009-01-19
The purpose of this study was to assess the ability of polymeric micelles to enable gastrointestinal absorption of the extremely hydrophobic compound vitamin K, by comparison of its absorption in bile duct ligated and sham operated rats. Hereto, vitamin K was encapsulated in micelles composed of mPEG(5000)-b-p(HPMAm-lac(2)), a thermosensitive block copolymer. Vitamin K plasma levels rose significantly upon gastric administration of 1 mg vitamin K encapsulated in polymeric micelles in sham operated rats, but not after bile duct ligation (AUC 4543 and 1.64 ng/mL/h respectively, p<0.01). Duodenal administration of polymeric micelles together with bile acids in bile duct ligated rats fully restored absorption. Dynamic light scattering time series showed a significant and dose dependent rise in micellar size in the presence of bile acids in vitro, indicating the gradual formation of mixed micelles during the first 3 h of incubation. The highest bile acid amounts (11 mM deoxycholic acid and 41 mM taurocholic acid) eventually caused aggregation of the loaded micelles after the formation of mixed micelles. These data suggest that the gastrointestinal absorption of encapsulated vitamin K from polymeric micelles is mediated by free bile and that uptake of intact micelles through pinocytosis is insignificant.
Binding of cholesterol and bile acid to hemicelluloses from rice bran.
Hu, Guohua; Yu, Wenjian
2013-06-01
The objective of this study was to investigate the possibility of using hemicellulose from rice bran to scavenge cholesterol and bile acid in vitro study. This paper demonstrates that rice bran hemicellulose A (RBHA), rice bran hemicellulose B (RBHB) and rice bran hemicellulose C (RBHC) have the potential for binding cholesterol and bile acid. The quantity of cholesterol and bile acid bound varies from one rice bran fibre to another. As it can be inferred from the results of the study, RBHB was characterized by the highest capacity for cholesterol binding, followed by RBHC and RBHA. Binding of cholesterol and bile acid to rice bran insoluble dietary fibre (RBDF) and cellulose from rice bran was found to be poor. Lignin from rice bran was the least active fraction for binding cholesterol and bile acid. This confirms that the RBHB preparation from defatted rice bran has great potential in food applications, especially in the development of functional foods.
Alvarez, Genoveva; Heredia, Norma; García, Santos
2003-12-01
The effects of low pH and human bile juice on Vibrio cholerae were investigated. A mild stress condition (exposure to acid shock at pH 5.5 or exposure to 3 mg of bile per ml for 20 min) slightly decreased (by < or = 1 log unit) V. cholerae cell viability. However, these treatments induced tolerance to subsequent exposures to more severe stress. In the O1 strain, four proteins were induced in response to acid shock (ca. 101, 94, 90, and 75 kDa), whereas only one protein (ca. 101 kDa) was induced in response to acid shock in the O139 strain. Eleven proteins were induced in response to bile shock in the O1 strain (ca. 106, 103, 101, 96, 88, 86, 84, 80, 66, 56, and 46 kDa), whereas only one protein was induced in response to bile shock in the O139 strain (ca. 88 kDa). V. cholerae O1 and O139 cells that had been preexposed to mild acid shock were twofold more resistant to pH 4.5 (with times required to inactivate 90% of the cell population [D-values] of 59 to 73 min) than were control cells (with D-values of 24 to 27 min). Likewise, cells that were preexposed to mild bile shock (3 mg/ml) were almost twofold more tolerant of severe bile shock (30 mg/ml; D-values, 68 to 87 min) than were control cells (with D-values of 37 to 43 min). These protective effects persisted for at least 1 h after the initial shock but were abolished when chloramphenicol was added to the culture during the shock. Cells preexposed to acid shock exhibited cross-protection against subsequent bile shock. However, cells preexposed to bile shock exhibited no changes in acid tolerance. Bile shock induced a modest reduction (0 to 20%) in enterotoxin production in V. cholerae, whereas acid shock had no effect on enterotoxin levels. Adaptation to acid and bile juice and protection against bile shock in response to preexposure to acid shock would be predicted to enhance the survival of V. cholerae in hosts and in foods. Thus, these adaptations may play an important role in the development of cholera disease.
[Structure determination of three novel bile acids from bear bile powder].
Jian, Long-Hai; Mao, Xiu-Hong; Wang, Ke; Ji, Shen
2013-08-01
A method of LC-QTOF/MS combining with chemical synthesis has been used to determine the structures of three novel bile acids from bear bile powder. Reference substances of tauroursodeoxycholic acid and taurochenodeoxycholic acid were oxidized by pyridinium chlorochromate. The products were analyzed by LC-QTOF/MS. Total 4 products including 3 isomers were predicted and identified according to the PCC oxidation theory and LC-QTOF/MS results. Bear bile powder samples were dissolved by methanol and analyzed by LC-QTOF/MS. Three unknown peaks were found and identified as 2-[[(3beta, 5beta)-3-hydroxy-7, 24-dioxocholan-24-yl]amino]-ethanesulfonic acid, 2-[[(5beta)-3, 7, 24-trioxocholan-24-yl]amino]-ethanesulfonic acid and 2-[[(5beta, 7beta)-7-hydroxy-3, 24-dioxocholan-24-yl]amino]-ethanesulfonic acid, separately, by matching their results with that of oxidation products above.
CYP2E1-dependent elevation of serum cholesterol, triglycerides, and hepatic bile acids by isoniazid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Jie; Krausz, Kristopher W.; Li, Feng
Isoniazid is the first-line medication in the prevention and treatment of tuberculosis. Isoniazid is known to have a biphasic effect on the inhibition–induction of CYP2E1 and is also considered to be involved in isoniazid-induced hepatotoxicity. However, the full extent and mechanism of involvement of CYP2E1 in isoniazid-induced hepatotoxicity remain to be thoroughly investigated. In the current study, isoniazid was administered to wild-type and Cyp2e1-null mice to investigate the potential toxicity of isoniazid in vivo. The results revealed that isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice, but produced elevated serum cholesterol and triglycerides, and hepatic bile acids in wild-typemore » mice, as well as decreased abundance of free fatty acids in wild-type mice and not in Cyp2e1-null mice. Metabolomic analysis demonstrated that production of isoniazid metabolites was elevated in wild-type mice along with a higher abundance of bile acids, bile acid metabolites, carnitine and carnitine derivatives; these were not observed in Cyp2e1-null mice. In addition, the enzymes responsible for bile acid synthesis were decreased and proteins involved in bile acid transport were significantly increased in wild-type mice. Lastly, treatment of targeted isoniazid metabolites to wild-type mice led to similar changes in cholesterol, triglycerides and free fatty acids. These findings suggest that while CYP2E1 is not involved in isoniazid-induced hepatotoxicity, while an isoniazid metabolite might play a role in isoniazid-induced cholestasis through enhancement of bile acid accumulation and mitochondria β-oxidation. -- Highlights: ► Isoniazid metabolites were elevated only in wild-type mice. ► Isoniazid caused no hepatotoxicity in wild-type and Cyp2e1-null mice. ► Isoniazid elevated serum cholesterol and triglycerides, and hepatic bile acids. ► Bile acid transporters were significantly decreased in isoniazid-treated mice.« less
Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2)[S
Lionarons, Daniël A.; Boyer, James L.; Cai, Shi-Ying
2012-01-01
The apical Na+-dependent bile salt transporter (ASBT/SLC10A2) is essential for maintaining the enterohepatic circulation of bile salts. It is not known when Slc10a2 evolved as a bile salt transporter or how it adapted to substantial changes in bile salt structure during evolution. We characterized ASBT orthologs from two primitive vertebrates, the lamprey that utilizes early 5α-bile alcohols and the skate that utilizes structurally different 5β-bile alcohols, and compared substrate specificity with ASBT from humans who utilize modern 5β-bile acids. Everted gut sacs of skate but not the more primitive lamprey transported 3H-taurocholic acid (TCA), a modern 5β-bile acid. However, molecular cloning identified ASBT orthologs from both species. Cell-based assays using recombinant ASBT/Asbt's indicate that lamprey Asbt has high affinity for 5α-bile alcohols, low affinity for 5β-bile alcohols, and lacks affinity for TCA, whereas skate Asbt showed high affinity for 5α- and 5β-bile alcohols but low affinity for TCA. In contrast, human ASBT demonstrated high affinity for all three bile salt types. These findings suggest that ASBT evolved from the earliest vertebrates by gaining affinity for modern bile salts while retaining affinity for older bile salts. Also, our results indicate that the bile salt enterohepatic circulation is conserved throughout vertebrate evolution. PMID:22669917
Glucuronidation of 6 alpha-hydroxy bile acids by human liver microsomes.
Radomińska-Pyrek, A; Zimniak, P; Irshaid, Y M; Lester, R; Tephly, T R; St Pyrek, J
1987-01-01
The glucuronidation of 6-hydroxylated bile acids by human liver microsomes has been studied in vitro; for comparison, several major bile acids lacking a 6-hydroxyl group were also investigated. Glucuronidation rates for 6 alpha-hydroxylated bile acids were 10-20 times higher than those of substrates lacking a hydroxyl group in position 6. The highest rates measured were for hyodeoxy- and hyocholic acids, and kinetic analyses were carried out using these substrates. Rigorous product identification by high-field proton nuclear magnetic resonance and by electron impact mass spectrometry of methyl ester/peracetate derivatives revealed that 6-O-beta-D-glucuronides were the exclusive products formed in these enzymatic reactions. These results, together with literature data, indicate that 6 alpha-hydroxylation followed by 6-O-glucuronidation constitutes an alternative route of excretion of toxic hydrophobic bile acids. PMID:3110212
Centuori, Sara M; Martinez, Jesse D
2014-10-01
A high-fat diet coincides with increased levels of bile acids. This increase in bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR)-mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR-MAPK pathway.
Centuori, Sara M.; Martinez, Jesse D.
2014-01-01
A high fat diet coincides with elevated levels of bile acids. This elevation of bile acids, particularly deoxycholic acid (DCA), has been strongly associated with the development of colon cancer. Conversely, ursodeoxycholic acid (UDCA) may have chemopreventive properties. Although structurally similar, DCA and UDCA present different biological and pathological effects in colon cancer progression. The differential regulation of cancer by these two bile acids is not yet fully understood. However, one possible explanation for their diverging effects is their ability to differentially regulate signaling pathways involved in the multistep progression of colon cancer, such as the epidermal growth factor receptor (EGFR) mitogen-activated protein kinase (MAPK) pathway. This review will examine the biological effects of DCA and UDCA on colon cancer development, as well as the diverging effects of these bile acids on the oncogenic signaling pathways that play a role in colon cancer development, with a particular emphasis on bile acid regulation of the EGFR-MAPK pathway. PMID:25027205
Vargas, Luis A; Olson, Douglas W; Aryana, Kayanush J
2015-04-01
Acid tolerance and bile tolerance are important probiotic characteristics. Whey proteins contain branched-chain amino acids, which play a role in muscle building and are popular among athletes. Increasing emphasis is being placed on diets containing less carbohydrate, less fat, and more protein. The effect of incremental additions of whey protein isolate (WPI) on probiotic characteristics of pure cultures is not known. The objective of this study was to determine the influence of added WPI on acid tolerance and bile tolerance of pure cultures of Streptococcus thermophilus ST-M5 and Lactobacillus bulgaricus LB-12. The WPI was used at 0 (control), 1, 2 and 3% (wt/vol). Assessment of acid tolerance was conducted on pure cultures at 30-min intervals for 2h of acid exposure and bile tolerance at 1-h intervals for 5h of bile exposure. Use of 1, 2, and 3% WPI improved acid tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12. The highest counts for acid tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12 were obtained when 3% WPI was used. Use of 2 and 3% WPI improved bile tolerance of Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12 over 5h of bile exposure. The use of WPI is recommended to improve acid and bile tolerance of the yogurt culture bacteria Strep. thermophilus ST-M5 and Lb. bulgaricus LB-12. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bile Acids Improve the Antimicrobial Effect of Rifaximin▿ †
Darkoh, Charles; Lichtenberger, Lenard M.; Ajami, Nadim; Dial, Elizabeth J.; Jiang, Zhi-Dong; DuPont, Herbert L.
2010-01-01
Diarrhea is one of the most common infirmities affecting international travelers, occurring in 20 to 50% of persons from industrialized countries visiting developing regions. Enterotoxigenic Escherichia coli (ETEC) is the most common causative agent and is isolated from approximately half of the cases of traveler's diarrhea. Rifaximin, a largely water-insoluble, nonabsorbable (<0.4%) antibiotic that inhibits bacterial RNA synthesis, is approved for use for the treatment of traveler's diarrhea caused by diarrheagenic E. coli. However, the drug has minimal effect on the bacterial flora or the infecting E. coli strain in the aqueous environment of the colon. The purpose of the present study was to evaluate the antimicrobial effect and bioavailability of rifaximin in aqueous solution in the presence and absence of physiologic concentrations of bile acids. The methods used included growth measurement of ETEC (strain H10407), rifaximin solubility measurements, total bacterial protein determination, and assessment of the functional activity of rifaximin by monitoring inhibition of bacterial β-galactosidase expression. Solubility studies showed rifaximin to be 70- to 120-fold more soluble in bile acids (approximately 30% in 4 mM bile acids) than in aqueous solution. Addition of both purified bile acids and human bile to rifaximin at subinhibitory and inhibitory concentrations significantly improved the drug's anti-ETEC effect by 71% and 73%, respectively, after 4 h. This observation was confirmed by showing a decrease in the overall amount of total bacterial protein expressed during incubation of rifaximin plus bile acids. Rifaximin-treated samples containing bile acids inhibited the expression of ETEC β-galactosidase at a higher magnitude than samples that did not contain bile acids. The study provides data showing that bile acids solubilize rifaximin on a dose-response basis, increasing the drug's bioavailability and antimicrobial effect. These observations suggest that rifaximin may be more effective in the treatment of infections in the small intestine, due to the higher concentration of bile in this region of the gastrointestinal tract than in the colon. The water insolubility of rifaximin is the likely explanation for the drug's minimal effects on colonic flora and fecal pathogens, despite in vitro susceptibility. PMID:20547807
Bertolo, Lisa; Boncheff, Alexander G; Ma, Zuchao; Chen, Yu-Han; Wakeford, Terra; Friendship, Robert M; Rosseau, Joyce; Weese, J Scott; Chu, Michele; Mallozzi, Michael; Vedantam, Gayatri; Monteiro, Mario A
2012-06-01
Clostridium difficile is responsible for severe diarrhea in humans that may cause death. Spores are the infectious form of C. difficile, which germinate into toxin-producing vegetative cells in response to bile acids. Recently, we discovered that C. difficile cells possess three complex polysaccharides (PSs), named PSI, PSII, and PSIII, in which PSI was only associated with a hypervirulent ribotype 027 strain, PSII was hypothesized to be a common antigen, and PSIII was a water-insoluble polymer. Here, we show that (i) C. difficile spores contain, at least in part, a D-glucan, (ii) PSI is not a ribotype 027-unique antigen, (iii) common antigen PSII may in part be present as a low molecular weight lipoteichoic acid, (iv) selective hydrolysis of PSII yields single PSII repeat units, (v) the glycosyl diester-phosphate linkage affords high flexibility to PSII, and (vi) that PSII is immunogenic in sows. Also, with the intent of creating a dual anti-diarrheal vaccine against C. difficile and enterotoxin Escherichia coli (ETEC) infections in humans, we describe the conjugation of PSII to the ETEC-associated LTB enterotoxin. Copyright © 2012 Elsevier Ltd. All rights reserved.
[Simultaneous determination of eight kinds of conjunct bile acids in human bile by R-HPLC].
Dai, Z; Tan, G; Qian, K; Chen, X
1997-01-01
A method for the simultaneous determination of eight kinds of conjunct bile acids in human bile was developed by HPLC. They were separated on a YWG-C18 (3 microns) column at 30 degrees C, with methanol/water (65/35, V/V, pH3.0) as mobile phase, and detection wavelength at UV 210 nm. The linear ranges were 50-1,000 microns.ml-1, the recoveries were 91.2%-108.6%. The biles of 30 cases with cholelithiasis cholecystolithiasis and 20 cases without gallstone were detected by HPLC. The results showed that the constitution of bile acids was different between patients with cholelithiasis cholecystolithiasis and patients without gallstone.
Role of Aldo-Keto Reductase Family 1 (AKR1) Enzymes in Human Steroid Metabolism
Rižner, Tea Lanišnik; Penning, Trevor M.
2013-01-01
Human aldo-keto reductases AKR1C1-AKR1C4 and AKR1D1 play essential roles in the metabolism of all steroid hormones, the biosynthesis of neurosteroids and bile acids, the metabolism of conjugated steroids, and synthetic therapeutic steroids. These enzymes catalyze NADPH dependent reductions at the C3, C5, C17 and C20 positions on the steroid nucleus and side-chain. AKR1C1-AKR1C4 act as 3-keto, 17-keto and 20-ketosteroid reductases to varying extents, while AKR1D1 acts as the sole Δ4-3-ketosteroid-5β-reductase (steroid 5β-reductase) in humans. AKR1 enzymes control the concentrations of active ligands for nuclear receptors and control their ligand occupancy and trans-activation, they also regulate the amount of neurosteroids that can modulate the activity of GABAA and NMDA receptors. As such they are involved in the pre-receptor regulation of nuclear and membrane bound receptors. Altered expression of individual AKR1C genes is related to development of prostate, breast, and endometrial cancer. Mutations in AKR1C1 and AKR1C4 are responsible for sexual development dysgenesis and mutations in AKR1D1 are causative in bile-acid deficiency. PMID:24189185
Perreault, Martin; Wunsch, Ewa; Białek, Andrzej; Trottier, Jocelyn; Verreault, Mélanie; Caron, Patrick; Poirier, Guy G; Milkiewicz, Piotr; Barbier, Olivier
2018-01-01
Biliary obstruction, a severe cholestatic complication, causes accumulation of toxic bile acids (BAs) in liver cells. Glucuronidation, catalyzed by UDP-glucuronosyltransferase (UGT) enzymes, detoxifies cholestatic BAs. Using liquid chromatography coupled to tandem mass spectrometry, 11 BA glucuronide (-G) species were quantified in prebiliary and postbiliary stenting serum and urine samples from 17 patients with biliary obstruction. Stenting caused glucuronide- and fluid-specific changes in BA-G levels and BA-G/BA metabolic ratios. In vitro glucuronidation assays with human liver and kidney microsomes revealed that even if renal enzymes generally displayed lower K M values, the two tissues shared similar glucuronidation capacities for BAs. By contrast, major differences between the two tissues were observed when four human BA-conjugating UGTs 1A3, 1A4, 2B4, and 2B7 were analyzed for mRNA and protein levels. Notably, the BA-24G producing UGT1A3 enzyme, abundant in the liver, was not detected in kidney microsomes. In conclusion, the circulating and urinary BA-G profiles are hugely impacted under severe cholestasis. The similar BA-glucuronidating abilities of hepatic and renal extracts suggest that both the liver and kidney may contribute to the urine BA-G pool.
Perreault, Martin; Białek, Andrzej; Trottier, Jocelyn; Verreault, Mélanie; Caron, Patrick; Poirier, Guy G.
2018-01-01
Biliary obstruction, a severe cholestatic complication, causes accumulation of toxic bile acids (BAs) in liver cells. Glucuronidation, catalyzed by UDP-glucuronosyltransferase (UGT) enzymes, detoxifies cholestatic BAs. Using liquid chromatography coupled to tandem mass spectrometry, 11 BA glucuronide (-G) species were quantified in prebiliary and postbiliary stenting serum and urine samples from 17 patients with biliary obstruction. Stenting caused glucuronide- and fluid-specific changes in BA-G levels and BA-G/BA metabolic ratios. In vitro glucuronidation assays with human liver and kidney microsomes revealed that even if renal enzymes generally displayed lower KM values, the two tissues shared similar glucuronidation capacities for BAs. By contrast, major differences between the two tissues were observed when four human BA-conjugating UGTs 1A3, 1A4, 2B4, and 2B7 were analyzed for mRNA and protein levels. Notably, the BA-24G producing UGT1A3 enzyme, abundant in the liver, was not detected in kidney microsomes. In conclusion, the circulating and urinary BA-G profiles are hugely impacted under severe cholestasis. The similar BA-glucuronidating abilities of hepatic and renal extracts suggest that both the liver and kidney may contribute to the urine BA-G pool. PMID:29850459
Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease
Jiang, Changtao; Xie, Cen; Li, Fei; Zhang, Limin; Nichols, Robert G.; Krausz, Kristopher W.; Cai, Jingwei; Qi, Yunpeng; Fang, Zhong-Ze; Takahashi, Shogo; Tanaka, Naoki; Desai, Dhimant; Amin, Shantu G.; Albert, Istvan; Patterson, Andrew D.; Gonzalez, Frank J.
2014-01-01
Nonalcoholic fatty liver disease (NAFLD) is a major worldwide health problem. Recent studies suggest that the gut microbiota influences NAFLD pathogenesis. Here, a murine model of high-fat diet–induced (HFD-induced) NAFLD was used, and the effects of alterations in the gut microbiota on NAFLD were determined. Mice treated with antibiotics or tempol exhibited altered bile acid composition, with a notable increase in conjugated bile acid metabolites that inhibited intestinal farnesoid X receptor (FXR) signaling. Compared with control mice, animals with intestine-specific Fxr disruption had reduced hepatic triglyceride accumulation in response to a HFD. The decrease in hepatic triglyceride accumulation was mainly due to fewer circulating ceramides, which was in part the result of lower expression of ceramide synthesis genes. The reduction of ceramide levels in the ileum and serum in tempol- or antibiotic-treated mice fed a HFD resulted in downregulation of hepatic SREBP1C and decreased de novo lipogenesis. Administration of C16:0 ceramide to antibiotic-treated mice fed a HFD reversed hepatic steatosis. These studies demonstrate that inhibition of an intestinal FXR/ceramide axis mediates gut microbiota–associated NAFLD development, linking the microbiome, nuclear receptor signaling, and NAFLD. This work suggests that inhibition of intestinal FXR is a potential therapeutic target for NAFLD treatment. PMID:25500885
Acid and bile tolerance of spore-forming lactic acid bacteria.
Hyronimus, B; Le Marrec, C; Sassi, A H; Deschamps, A
2000-11-01
Criteria for screening probiotics such as bile tolerance and resistance to acids were studied with 13 spore-forming lactic acid producing bacteria. Different strains of Sporolactobacillus, Bacillus laevolacticus, Bacillus racemilacticus and Bacillus coagulans grown in MRS broth were subjected to low pH conditions (2, 2.5 and 3) and increasing bile concentrations. Among these microorganisms, Bacillus laevolacticus DSM 6475 and all Sporolactobacillus strains tested except Sporolactobacillus racemicus IAM 12395, were resistant to pH 3. Only Bacillus racemilacticus and Bacillus coagulans strains were tolerant to bile concentrations over 0.3% (w/v).
Schlörmann, W; Birringer, M; Lochner, A; Lorkowski, S; Richter, I; Rohrer, C; Glei, M
2016-09-01
The consumption of foods rich in dietary fiber and polyunsaturated fatty acids such as nuts can contribute to a healthy diet. Therefore, the formation of fermentation end-products which might exert chemopreventive effects regarding colon cancer was investigated after an in vitro simulated digestion and fermentation of nuts using human fecal microbiota. Fermentation supernatants (FS) and pellets (FP) were obtained after an in vitro fermentation of hazelnuts, almonds, macadamia, pistachios and walnuts. Short-chain fatty acids (SCFA) and bile acids (BA) in FS as well as fatty acids in FP were analyzed via gas chromatography. Malondialdehyde (MDA) levels in FS were determined photometrically. Fermentation of nuts resulted in 1.9- to 2.8-fold higher concentrations of SCFA compared to the control and a shift of molar ratios toward butyrate production. In vitro fermentation resulted in the formation of vaccenic acid (C18:1t11, 32.1 ± 3.2 % FAME; fatty acid methyl ester) and conjugated linoleic acid (c9,t11 CLA, 2.4 ± 0.7 % FAME) exclusively in fermented walnut samples. Concentrations of secondary BA deoxycholic-/iso-deoxycholic acid (6.8-24.1-fold/4.9-10.9-fold, respectively) and levels of MDA (1.3-fold) were significantly reduced in fermented nut samples compared to the control. This is the first study that demonstrates the ability of the human fecal microbiota to convert polyunsaturated fatty acids from walnuts to c9,t11 CLA as a potential chemopreventive metabolite. In addition, the production of butyrate and reduction in potential carcinogens such as secondary BA and lipid peroxidation products might contribute to the protective effects of nuts regarding colon cancer development.
Park, Miseon; Rafii, Fatemeh
2018-01-01
Clostridium perfringens is the second most common cause of bacterial foodborne illness in the United States, with nearly a million cases each year. C. perfringens enterotoxin (CPE), produced during sporulation, damages intestinal epithelial cells by pore formation, which results in watery diarrhea. The effects of low concentrations of nisin and bile acids on sporulation and toxin production were investigated in C. perfringens SM101, which carries an enterotoxin gene on the chromosome, in a nutrient-rich medium. Bile acids and nisin increased production of enterotoxin in cultures; bile acids had the highest effect. Both compounds stimulated the transcription of enterotoxin and sporulation-related genes and production of spores during the early growth phase. They also delayed spore outgrowth and nisin was more inhibitory. Bile acids and nisin enhanced enterotoxin production in some but not all other C. perfringens isolates tested. Low concentrations of bile acids and nisin may act as a stress signal for the initiation of sporulation and the early transcription of sporulation-related genes in some strains of C. perfringens , which may result in increased strain-specific production of enterotoxin in those strains. This is the first report showing that nisin and bile acids stimulated the transcription of enterotoxin and sporulation-related genes in a nutrient-rich bacterial culture medium.
Matsuhisa, Takeshi; Tsukui, Taku
2012-05-01
During endoscopic examinations we collected fluid in the stomach that included reflux fluid from the duodenum, and assessed the effect of quantitatively determined bile acids on glandular atrophy and intestinal metaplasia using biopsy specimens. A total of 294 outpatients were enrolled in this study. Total bile acid concentration was measured by an enzyme immunoassay. Glandular atrophy and intestinal metaplasia scores were graded according to the Updated Sydney System. An effect of refluxed bile acids on atrophy and intestinal metaplasia was shown in the high-concentration reflux group in comparison with the control group. However, when the odds ratios (ORs) were calculated according to whether Helicobacter pylori (H. pylori) infection was present, no significant associations were shown between reflux bile acids and atrophy in either the H. pylori-positive cases or -negative cases. The same was true for intestinal metaplasia in the H. pylori-positive cases, whereas intestinal metaplasia was more pronounced in the high-concentration reflux group in the H. pylori-negative cases (OR 2.4, 95%CI 1.1-5.6). We could not clarify the effect of the reflux of bile acids into the stomach in the progression of atrophy. High-concentration bile acids had an effect on the progression of intestinal metaplasia in the H. pylori-negative cases.
Pournaras, Dimitri J.; Glicksman, Clare; Vincent, Royce P.; Kuganolipava, Shophia; Alaghband-Zadeh, Jamie; Mahon, David; Bekker, Jan H.R.; Ghatei, Mohammad A.; Bloom, Stephen R.; Walters, Julian R.F.; le Roux, Carel W.
2012-01-01
Gastric bypass leads to the remission of type 2 diabetes independently of weight loss. Our hypothesis is that changes in bile flow due to the altered anatomy may partly explain the metabolic outcomes of the operation. We prospectively studied 12 patients undergoing gastric bypass and six patients undergoing gastric banding over a 6-wk period. Plasma fibroblast growth factor (FGF)19, stimulated by bile acid absorption in the terminal ileum, and plasma bile acids were measured. In canine and rodent models, we investigated changes in the gut hormone response after altered bile flow. FGF19 and total plasma bile acids levels increased after gastric bypass compared with no change after gastric banding. In the canine model, both food and bile, on their own, stimulated satiety gut hormone responses. However, when combined, the response was doubled. In rats, drainage of endogenous bile into the terminal ileum was associated with an enhanced satiety gut hormone response, reduced food intake, and lower body weight. In conclusion, after gastric bypass, bile flow is altered, leading to increased plasma bile acids, FGF19, incretin. and satiety gut hormone concentrations. Elucidating the mechanism of action of gastric bypass surgery may lead to novel treatments for type 2 diabetes. PMID:22673227
Binkhorst, Lisette; Mathijssen, Ron H J; Ghobadi Moghaddam-Helmantel, Inge M; de Bruijn, Peter; van Gelder, Teun; Wiemer, Erik A C; Loos, Walter J
2011-12-15
In view of future pharmacokinetic studies, a highly sensitive ultra performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method has been developed for the simultaneous quantification of tamoxifen and three of its main phase I metabolites in human lithium heparinized plasma. The analytical method has been thoroughly validated in agreement with FDA recommendations. Plasma samples of 200 μl were purified by liquid-liquid extraction with 1 ml n-hexane/isopropanol, after deproteination through addition of 50 μl acetone and 50 μl deuterated internal standards in acetonitrile. Tamoxifen, N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen and endoxifen were chromatographically separated on an Acquity UPLC(®) BEH C18 1.7 μm 2.1 mm×100 mm column eluted at a flow-rate of 0.300 ml/min on a gradient of 0.2mM ammonium formate and acetonitrile, both acidified with 0.1% formic acid. The overall run time of the method was 10 min, with elution times of 2.9, 3.0, 4.1 and 4.2 min for endoxifen, 4-hydroxy-tamoxifen, N-desmethyl-tamoxifen and tamoxifen, respectively. Tamoxifen and its metabolites were quantified by triple-quadrupole mass spectrometry in the positive ion electrospray ionization mode. The multiple reaction monitoring transitions were set at 372>72 (m/z) for tamoxifen, 358>58 (m/z) for N-desmethyl-tamoxifen, 388>72 (m/z) for 4-hydroxy-tamoxifen and 374>58 (m/z) for endoxifen. The analytical method was highly sensitive with the lower limit of quantification validated at 5.00 nM for tamoxifen and N-desmethyl-tamoxifen and 0.500 nM for 4-hydroxy-tamoxifen and endoxifen, which is equivalent to 1.86, 1.78, 0.194 and 0.187 ng/ml for tamoxifen, N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen and endoxifen, respectively. The method was also precise and accurate, with within-run and between-run precisions within 12.0% and accuracy ranging from 89.5 to 105.3%. The method has been applied to samples from a clinical study and cross-validated with a validated LC-MS/MS method in serum. Copyright © 2011 Elsevier B.V. All rights reserved.
Begley, Máire; Gahan, Cormac G. M.; Hill, Colin
2002-01-01
Bile is one of many barriers that Listeria monocytogenes must overcome in the human gastrointestinal tract in order to infect and cause disease. We demonstrated that stationary-phase cultures of L. monocytogenes LO28 were able to tolerate concentrations of bovine, porcine, and human bile and bile acids well in excess of those encountered in vivo. Strain LO28 was relatively bile resistant compared with other clinical isolates of L. monocytogenes, as well as with Listeria innocua, Salmonella enterica serovar Typhimurium LT2, and Lactobacillus sakei. While exponential-phase L. monocytogenes LO28 cells were exquisitely sensitive to unconjugated bile acids, prior adaptation to sublethal levels of bile acids or heterologous stresses, such as acid, heat, salt, or sodium dodecyl sulfate (SDS), significantly enhanced bile resistance. This adaptive response was independent of protein synthesis, and in the cases of bile and SDS adaptation, occurred in seconds. In order to identify genetic loci involved in the bile tolerance phenotype of L. monocytogenes LO28, transposon (Tn917) and plasmid (pORI19) integration banks were screened for bile-sensitive mutants. The disrupted genes included a homologue of the capA locus required for capsule formation in Bacillus anthracis; a gene encoding the transcriptional regulator ZurR; a homologue of an Escherichia coli gene, lytB, involved in isoprenoid biosynthesis; a gene encoding a homologue of the Bacillus subtilis membrane protein YxiO; and a gene encoding an amino acid transporter with a putative role in pH homeostasis, gadE. Interestingly, all of the identified loci play putative roles in maintenance of the cell envelope or in stress responses. PMID:12450822
Mostarda, Serena; Passeri, Daniela; Carotti, Andrea; Cerra, Bruno; Colliva, Carolina; Benicchi, Tiziana; Macchiarulo, Antonio; Pellicciari, Roberto; Gioiello, Antimo
2018-01-20
Glucuronidation is considered an important detoxification pathway of bile acids especially in cholestatic conditions. Glucuronides are less toxic than the parent free forms and are more easily excreted in urine. However, the pathophysiological significance of bile acid glucuronidation is still controversial and debated among the scientific community. Progress in this field has been strongly limited by the lack of appropriate methods for the preparation of pure glucuronides in the amount needed for biological and pharmacological studies. In this work, we have developed a new synthesis of bile acid C3-glucuronides enabling the convenient preparation of gram-scale quantities. The synthesized compounds have been characterized in terms of physicochemical properties and abilities to modulate key nuclear receptors including the farnesoid X receptor (FXR). In particular, we found that C3-glucuronides of chenodeoxycholic acid and lithocholic acid, respectively the most abundant and potentially cytotoxic species formed in patients affected by cholestasis, behave as FXR agonists and positively regulate the gene expression of transporter proteins, the function of which is critical in human conditions related to imbalances of bile acid homeostasis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Murashita, Koji; Yoshiura, Yasutoshi; Chisada, Shin-Ichi; Furuita, Hirofumi; Sugita, Tsuyoshi; Matsunari, Hiroyuki; Iwashita, Yasuro; Yamamoto, Takeshi
2014-04-01
Bile acid transporters belonging to the SLC10A protein family, Na+ taurocholate cotransporting polypeptide (NTCP or SLC10A1), apical sodium-dependent bile salt transporter (ASBT or SLC10A2), and organic solute transporter alpha (Ost-alpha) have been known to play critical roles in the enterohepatic circulation of bile acids in mammals. In this study, ntcp, asbt, and ost-alpha-1/-2 cDNA were cloned, their tissue distributions were characterized, and the effects of fasting and bile acid administration on their expression were examined in rainbow trout Oncorhynchus mykiss. The structural characteristics of Ntcp, Asbt, and Ost-alpha were well conserved in trout, and three-dimensional structure analysis showed that Ntcp and Asbt were similar to each other. Tissue distribution analysis revealed that trout asbt was primarily expressed in the hindgut, while ntcp expression occurred in the brain, and ost-alpha-1/-2 was mainly expressed in the liver or ovary. Although asbt and ost-alpha-1 mRNA levels in the gut increased in response to fasting for 4 days, ost-alpha-1 expression in the liver decreased. Similarly, bile acid administration increased asbt and ost-alpha-1 expression levels in the gut, while those of ntcp and ost-alpha-2 in the liver decreased. These results suggested that the genes asbt, ntcp, and ost-alpha are involved in bile acid transport in rainbow trout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazaki, Makoto; Miyake, Manami; Sato, Hiroko
2013-04-01
Drug-induced liver injury (DILI) is a significant consideration for drug development. Current preclinical DILI assessment relying on histopathology and clinical chemistry has limitations in sensitivity and discordance with human. To gain insights on DILI pathogenesis and identify potential biomarkers for improved DILI detection, we performed untargeted metabolomic analyses on rats treated with thirteen known hepatotoxins causing various types of DILI: necrosis (acetaminophen, bendazac, cyclosporine A, carbon tetrachloride, ethionine), cholestasis (methapyrilene and naphthylisothiocyanate), steatosis (tetracycline and ticlopidine), and idiosyncratic (carbamazepine, chlorzoxasone, flutamide, and nimesulide) at two doses and two time points. Statistical analysis and pathway mapping of the nearly 1900 metabolitesmore » profiled in the plasma, urine, and liver revealed diverse time and dose dependent metabolic cascades leading to DILI by the hepatotoxins. The most consistent change induced by the hepatotoxins, detectable even at the early time point/low dose, was the significant elevations of a panel of bile acids in the plasma and urine, suggesting that DILI impaired hepatic bile acid uptake from the circulation. Furthermore, bile acid amidation in the hepatocytes was altered depending on the severity of the hepatotoxin-induced oxidative stress. The alteration of the bile acids was most evident by the necrosis and cholestasis hepatotoxins, with more subtle effects by the steatosis and idiosyncratic hepatotoxins. Taking together, our data suggest that the perturbation of bile acid homeostasis is an early event of DILI. Upon further validation, selected bile acids in the circulation could be potentially used as sensitive and early DILI preclinical biomarkers. - Highlights: ► We used metabolomics to gain insights on drug induced liver injury (DILI) in rats. ► We profiled rats treated with thirteen hepatotoxins at two doses and two time points. ► The toxins decreased the liver's ability to uptake bile acid from the circulation. ► Oxidative stress induced by the toxins altered bile acid biosynthesis in the liver. ► Selected bile acids in the plasma and urine could be sensitive DILI biomarkers.« less
Masubuchi, Noriko; Nishiya, Takayoshi; Imaoka, Masako; Mizumaki, Kiyoko; Okazaki, Osamu
2016-08-05
Promising biomarkers were identified in adult male Crl:CD (SD) rats for the screening of new chemical entities for their potential to cause liver injury. We examined the serum biochemistry, liver histopathology, and bile acid profiles by LC-MS/MS, and the mRNA expression of transporters and CYPs by an RT-PCR after the following treatments to male Crl:CD (SD) rats: (a) bile duct ligation (BDL); (b) a single oral dose of 150 mg/kg α-naphthylisothiocyanate (ANIT); and (c) repeated oral doses of a novel pyrrolidinecarboxylic acid derivative (abbreviated as PCA) at 30, 300, and 1000 mg/kg. The serum total bile acid levels and bilirubin concentrations were found to be elevated in all of the groups. However, the bile acid component profiles of the PCA group differed significantly from BDL and ANIT models: deoxycholic acid, lithocholic acid, and sulfated bile acids were upregulated in a dose-dependent manner only in the PCA group. In addition, the PCA group demonstrated high levels of hepatic heme oxygenase-1 expression, whereas the profiles of the mRNA levels of the hepatic transporters and CYPs of all groups were found to be similar. The histopathological findings, for both the BDL and ANIT groups, were of bile duct hyperplasia, hepatocyte degeneration and necrosis. In contrast, only bile duct hyperplasia and hepatocyte degeneration were observed in the PCA group, even at a lethal dose. These results indicated that PCA induced a cholestatic condition and the increase of oxidative stress markers implies that this will also lead hepatocellular injury. In conclusion, the serum bile acid components and sulfated bile acid levels, and the expression of oxidative stress markers could provide information that aids in the diagnosis of liver injury type and helps to elucidate the mechanisms of hepatotoxicity. These findings can be extrapolated into our clinical investigation. The analysis of these crucial biomarkers is likely to be a useful screening tool in the lead optimization phase of drug discovery. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Olfactory sensitivity of Pacific Lampreys to lamprey bile acids
Robinson, T. Craig; Sorensen, Peter W.; Bayer, Jennifer M.; Seelye, James G.
2009-01-01
Pacific lampreys Lampetra tridentata are in decline throughout much of their historical range in the Columbia River basin. In support of restoration efforts, we tested whether larval and adult lamprey bile acids serve as migratory and spawning pheromones in adult Pacific lampreys, as they do in sea lampreys Petromyzon marinus. The olfactory sensitivity of adult Pacific lampreys to lamprey bile acids was measured by electro-olfactogram recording from the time of their capture in the spring until their spawning in June of the following year. As controls, we tested L-arginine and a non-lamprey bile acid, taurolithocholic acid 3-sulfate (TLS). Migrating adult Pacific lampreys were highly sensitive to petromyzonol sulfate (a component of the sea lamprey migratory pheromone) and 3-keto petromyzonol sulfate (a component of the sea lamprey sex pheromone) when first captured. This sensitivity persisted throughout their long migratory and overwinter holding period before declining to nearly unmeasurable levels by the time of spawning. The absolute magnitudes of adult Pacific lamprey responses to lamprey bile acids were smaller than those of the sea lamprey, and unlike the sea lamprey, the Pacific lamprey did not appear to detect TLS. No sexual dimorphism was noted in olfactory sensitivity. Thus, Pacific lampreys are broadly similar to sea lampreys in showing sensitivity to the major lamprey bile acids but apparently differ in having a longer period of sensitivity to those acids. The potential utility of bile acid-like pheromones in the restoration of Pacific lampreys warrants their further investigation in this species.
McNeilly, Alison D.; Macfarlane, David P.; O’Flaherty, Emmett; Livingstone, Dawn E.; Mitić, Tijana; McConnell, Kirsty M.; McKenzie, Scott M.; Davies, Eleanor; Reynolds, Rebecca M.; Thiesson, Helle C.; Skøtt, Ole; Walker, Brian R.; Andrew, Ruth
2010-01-01
Background & Aims Suppression of the hypothalamic–pituitary–adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5β-reductase. Methods The effect of bile acids on glucocorticoid metabolism was studied in vitro in hepatic subcellular fractions and hepatoma cells, allowing quantitation of the kinetics and transcript abundance of 5β-reductase. Metabolism was subsequently examined in vivo in rats following dietary manipulation or bile duct ligation. Finally, glucocorticoid metabolism was assessed in humans with obstructive jaundice. Results In rat hepatic cytosol, chenodeoxycholic acid competitively inhibited 5β-reductase (Ki 9.19 ± 0.40 μM) and reduced its transcript abundance (in H4iiE cells) and promoter activity (reporter system, HepG2 cells). In Wistar rats, dietary chenodeoxycholic acid (1% w/w chow) inhibited hepatic 5β-reductase activity, reduced urinary excretion of 3α,5β-tetrahydrocorticosterone and reduced adrenal weight. Conversely, a fat-free diet suppressed bile acid levels and increased hepatic 5β-reductase activity, supplementation of the fat-free diet with CDCA reduced 5β-reductase activity, and urinary 3α,5β-reduced corticosterone. Cholestasis in rats suppressed hepatic 5β-reductase activity and transcript abundance. In eight women with obstructive jaundice, relative urinary excretion of 3α,5β-tetrahydrocortisol was significantly lower than in healthy controls. Conclusion These data suggest a novel role for bile acids in inhibiting hepatic glucocorticoid clearance, of sufficient magnitude to suppress hypothalamic–pituitary–adrenal axis activity. Elevated hepatic bile acids may account for adrenal insufficiency in liver disease. PMID:20347173
Iida, T; Momose, T; Chang, F C; Goto, J; Nambara, T
1989-12-01
The 4 beta-hydroxylated derivatives of lithocholic, deoxycholic, chenodeoxycholic, and cholic acids were synthesized from their respective parent compounds. The principal reactions employed were 1) beta-face cis-dihydroxylation of delta 3 intermediates with osmium tetroxide-N-methylmorpholine N-oxide, 2) selective cathylation of vicinal 3 beta,4 beta-diols followed by oxidation of the resulting 4 beta-monocathylates, or direct selective oxidation at C-3 of 3 beta,4 beta-diols with pyridinium chlorochromate, and 3) stereoselective reduction of the 3-oxo compounds with tert-butylamine-borane complex. The results of analysis of the prepared 4 beta-hydroxylated bile acids with a diequatorial trans-glycol structure and their 3 beta-epimers by proton and carbon-13 nuclear magnetic resonance spectroscopies are briefly discussed along with the mass spectrometric properties.
Yanguas-Casás, Natalia; Barreda-Manso, M Asunción; Nieto-Sampedro, Manuel; Romero-Ramírez, Lorenzo
2014-03-19
Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain unknown. The acute neuroinflammation model of intracerebroventricular (icv) injection with bacterial lipopolysaccharide (LPS) in C57BL/6 adult mice was used herein. Immunoreactivity against Iba-1, GFAP, and VCAM-1 was measured in coronal sections in the mice hippocampus. Primary cultures of microglial cells and astrocytes were obtained from neonatal Wistar rats. Glial cells were treated with proinflammatory stimuli to determine the effect of TUDCA on nitrite production and activation of inducible enzyme nitric oxide synthase (iNOS) and NFκB luciferase reporters. We studied the effect of TUDCA on transcriptional induction of iNOS and monocyte chemotactic protein-1 (MCP-1) mRNA as well as induction of protein expression and phosphorylation of different proteins from the NFκB pathway. TUDCA specifically reduces microglial reactivity in the hippocampus of mice treated by icv injection of LPS. TUDCA treatment reduced the production of nitrites by microglial cells and astrocytes induced by proinflammatory stimuli that led to transcriptional and translational diminution of the iNOS. This effect might be due to inhibition of the NFκB pathway, activated by proinflammatory stimuli. TUDCA decreased in vitro microglial migration induced by both IFN-γ and astrocytes treated with LPS plus IFN-γ. TUDCA inhibition of MCP-1 expression induced by proinflammatory stimuli could be in part responsible for this effect. VCAM-1 inmunoreactivity in the hippocampus of animals treated by icv LPS was reduced by TUDCA treatment, compared to animals treated with LPS alone. We show a triple anti-inflammatory effect of TUDCA on glial cells: i) reduced glial cell activation, ii) reduced microglial cell migratory capacity, and iii) reduced expression of chemoattractants (e.g., MCP-1) and vascular adhesion proteins (e.g., VCAM-1) required for microglial migration and blood monocyte invasion to the CNS inflammation site. Our results present a novel TUDCA anti-inflammatory mechanism, with therapeutic implications for inflammatory CNS diseases.
Satoh, Rika; Ogata, Hiroaki; Saito, Tetsuya; Zhou, Biao; Omura, Kaoru; Kurabuchi, Satoshi; Mitamura, Kuniko; Ikegawa, Shigeo; Hagey, Lee R; Hofmann, Alan F; Iida, Takashi
2016-06-01
Two major bile acids were isolated from the gallbladder bile of two hornbill species from the Bucerotidae family of the avian order Bucerotiformes Buceros bicornis (great hornbill) and Penelopides panini (Visayan tarictic hornbill). Their structures were determined to be 3α,7α,24-dihydroxy-5β-cholestan-27-oic acid and its 12α-hydroxy derivative, 3α,7α,12α,24-tetrahydroxy-5β-cholestan-27-oic acid (varanic acid, VA), both present in bile as their corresponding taurine amidates. The four diastereomers of varanic acid were synthesized and their assigned structures were confirmed by X-ray crystallographic analysis. VA and its 12-deoxy derivative were found to have a (24R,25S)-configuration. 13 additional hornbill species were also analyzed by HPLC and showed similar bile acid patterns to B. bicornis and P. panini. The previous stereochemical assignment for (24R,25S)-VA isolated from the bile of varanid lizards and the Gila monster should now be revised to the (24S,25S)-configuration.
Pleiotropic Roles of Bile Acids in Metabolism
de Aguiar Vallim, Thomas Q.; Tarling, Elizabeth J.; Edwards, Peter A.
2013-01-01
Summary Enzymatic oxidation of cholesterol generates numerous distinct bile acids that function both as detergents that facilitate digestion and absorption of dietary lipids, and as hormones that activate four distinct receptors. Activation of these receptors alters gene expression in multiple tissues leading to changes not only in bile acid metabolism, but also in glucose homeostasis, lipid and lipoprotein metabolism, energy expenditure, intestinal motility and bacterial growth, inflammation, liver regeneration and hepato-carcinogenesis. This review covers the roles of specific bile acids, synthetic agonists and their cognate receptors in controlling these diverse functions, as well as their current use in treating human diseases. PMID:23602448
Protection of dried probiotic bacteria from bile using bile adsorbent resins.
Mahbubani, Krishnaa T; Slater, Nigel K H; Edwards, Alexander D
2014-01-25
Enteric coated oral tablets or capsules can deliver dried live cells directly into the intestine. Previously, we found that a live attenuated bacterial vaccine acquired sensitivity to intestinal bile when dried, raising the possibility that although gastric acid can be bypassed, significant loss of viability might occur on release from an enteric coated oral formulations. Here we demonstrate that some food-grade lyophilised preparations of Lactobacillus casei and Lactobacillus salivarius also show temporary bile sensitivity that can be rapidly reversed by rehydration. To protect dried bacterial cells from temporary bile sensitivity, we propose using bile acid adsorbing resins, such as cholestyramine, which are bile acid binding agents, historically used to lower cholesterol levels. Vcaps™ HPMC capsules alone provided up to 830-fold protection from bile. The inclusion of 50% w/w cholestyramine in Vcaps™ HPMC capsules resulted in release of up to 1700-fold more live Lactobacillus casei into simulated intestinal fluid containing 1% bile, when compared to dried cells added directly to bile. We conclude that delivery of dried live probiotic organisms to the intestine may be improved by providing protection from bile by addition of bile adsorbing resins and the use of HPMC capsules. Copyright © 2013 Elsevier B.V. All rights reserved.
Trifunović, Jovana; Borčić, Vladan; Mikov, Momir
2017-05-01
Some biological properties of bile acids and their oxo derivatives have not been sufficiently investigated, although the interest in bile acids as signaling molecules is rising. The aim of this work was to evaluate physico-chemical parametar b (slope) that represents the lipophilicity of the examined molecules and to investigate interactions of bile acids with carbonic anhydrase I, II, androgen receptor and CYP450s. Thirteen candidates were investigated using normal-phase thin-layer chromatography in two solvent systems. Retention parameters were used in further quantitative structure-activity relationship analysis and docking studies to predict interactions and binding affinities of examined molecules with enzymes and receptors. Prediction of activity on androgen receptor showed that compounds 3α-hydroxy-12-oxo-5β-cholanoic and 3α-hydroxy-7-oxo-5β-cholanoic acid have stronger antiandrogen activity than natural bile acids. The inhibitory potential for carbonic anhydrase I and II was tested and it was concluded that molecules 3α-hydroxy-12-oxo-5β-cholanoic, 3α-hydroxy-7-oxo-5β-cholanoic, 3,7,12-trioxo-5β-cholanoic acid and hyodeoxycholic acid show the best results. Substrate behavior for CYP3A4 was confirmed for all investigated compounds. Oxo derivatives of bile acids show stronger interactions with enzymes and receptors as classical bile acids and lower membranolytic activity compared with them. These significant observations could be valuable in consideration of oxo derivatives as building blocks in medicinal chemistry. Copyright © 2016 John Wiley & Sons, Ltd.
Murine model of long term obstructive jaundice
Aoki, Hiroaki; Aoki, Masayo; Yang, Jing; Katsuta, Eriko; Mukhopadhyay, Partha; Ramanathan, Rajesh; Woelfel, Ingrid A.; Wang, Xuan; Spiegel, Sarah; Zhou, Huiping; Takabe, Kazuaki
2016-01-01
Background With the recent emergence of conjugated bile acids as signaling molecules in cancer, a murine model of obstructive jaundice by cholestasis with long-term survival is in need. Here, we investigated the characteristics of 3 murine models of obstructive jaundice. Methods C57BL/6J mice were used for total ligation of the common bile duct (tCL), partial common bile duct ligation (pCL), and ligation of left and median hepatic bile duct with gallbladder removal (LMHL) models. Survival was assessed by Kaplan-Meier method. Fibrotic change was determined by Masson-Trichrome staining and Collagen expression. Results 70% (7/10) of tCL mice died by Day 7, whereas majority 67% (10/15) of pCL mice survived with loss of jaundice. 19% (3/16) of LMHL mice died; however, jaundice continued beyond Day 14, with survival of more than a month. Compensatory enlargement of the right lobe was observed in both pCL and LMHL models. The pCL model demonstrated acute inflammation due to obstructive jaundice 3 days after ligation but jaundice rapidly decreased by Day 7. The LHML group developed portal hypertension as well as severe fibrosis by Day 14 in addition to prolonged jaundice. Conclusion The standard tCL model is too unstable with high mortality for long-term studies. pCL may be an appropriate model for acute inflammation with obstructive jaundice but long term survivors are no longer jaundiced. The LHML model was identified to be the most feasible model to study the effect of long-term obstructive jaundice. PMID:27916350
Murine model of long-term obstructive jaundice.
Aoki, Hiroaki; Aoki, Masayo; Yang, Jing; Katsuta, Eriko; Mukhopadhyay, Partha; Ramanathan, Rajesh; Woelfel, Ingrid A; Wang, Xuan; Spiegel, Sarah; Zhou, Huiping; Takabe, Kazuaki
2016-11-01
With the recent emergence of conjugated bile acids as signaling molecules in cancer, a murine model of obstructive jaundice by cholestasis with long-term survival is in need. Here, we investigated the characteristics of three murine models of obstructive jaundice. C57BL/6J mice were used for total ligation of the common bile duct (tCL), partial common bile duct ligation (pCL), and ligation of left and median hepatic bile duct with gallbladder removal (LMHL) models. Survival was assessed by Kaplan-Meier method. Fibrotic change was determined by Masson-Trichrome staining and Collagen expression. Overall, 70% (7 of 10) of tCL mice died by day 7, whereas majority 67% (10 of 15) of pCL mice survived with loss of jaundice. A total of 19% (3 of 16) of LMHL mice died; however, jaundice continued beyond day 14, with survival of more than a month. Compensatory enlargement of the right lobe was observed in both pCL and LMHL models. The pCL model demonstrated acute inflammation due to obstructive jaundice 3 d after ligation but jaundice rapidly decreased by day 7. The LHML group developed portal hypertension and severe fibrosis by day 14 in addition to prolonged jaundice. The standard tCL model is too unstable with high mortality for long-term studies. pCL may be an appropriate model for acute inflammation with obstructive jaundice, but long-term survivors are no longer jaundiced. The LHML model was identified to be the most feasible model to study the effect of long-term obstructive jaundice. Copyright © 2016 Elsevier Inc. All rights reserved.
Wedlake, L; A'Hern, R; Russell, D; Thomas, K; Walters, J R F; Andreyev, H J N
2009-10-01
Recurrent, watery diarrhoea affects one-third of patients diagnosed with irritable bowel syndrome ('IBS-D'). Idiopathic bile acid malabsorption ('I-BAM') may be the cause. To determine the prevalence of I-BAM in patients suffering from IBS-D. A systematic search was performed of publications reporting patients presenting with IBS-D type symptoms, who were subsequently confirmed as having I-BAM by SeHCAT scanning. Eighteen relevant studies, 15 prospective, comprising 1223 patients were identified. Five studies (429 patients) indicated that 10% (CI: 7-13) patients had severe bile acid malabsorption (SeHCAT 7 day retention <5% of baseline value). 17 studies (1073 patients) indicated that 32% (CI: 29-35) patients had moderate bile acid malabsorption (SeHCAT <10%). 7 studies (618 patients) indicated that 26% (CI: 23-30) patients had mild (SeHCAT <15%) bile acid malabsorption. Pooled data from 15 studies showed a dose-response relationship according to severity of malabsorption to treatment with a bile acid binder: response to colestyramine occurred in 96% of patients with <5% retention, 80% at <10% retention and 70% at <15% retention. Idiopathic adult-onset bile acid malabsorption is not rare. International guidelines for the management of irritable bowel syndrome need to be revised so that clinicians become more aware of this possibility.
Park, Miseon
2018-01-01
Clostridium perfringens is the second most common cause of bacterial foodborne illness in the United States, with nearly a million cases each year. C. perfringens enterotoxin (CPE), produced during sporulation, damages intestinal epithelial cells by pore formation, which results in watery diarrhea. The effects of low concentrations of nisin and bile acids on sporulation and toxin production were investigated in C. perfringens SM101, which carries an enterotoxin gene on the chromosome, in a nutrient-rich medium. Bile acids and nisin increased production of enterotoxin in cultures; bile acids had the highest effect. Both compounds stimulated the transcription of enterotoxin and sporulation-related genes and production of spores during the early growth phase. They also delayed spore outgrowth and nisin was more inhibitory. Bile acids and nisin enhanced enterotoxin production in some but not all other C. perfringens isolates tested. Low concentrations of bile acids and nisin may act as a stress signal for the initiation of sporulation and the early transcription of sporulation-related genes in some strains of C. perfringens, which may result in increased strain-specific production of enterotoxin in those strains. This is the first report showing that nisin and bile acids stimulated the transcription of enterotoxin and sporulation-related genes in a nutrient-rich bacterial culture medium. PMID:29675044
Bristow, P; Tivers, M; Packer, R; Brockman, D; Ortiz, V; Newson, K; Lipscomb, V
2017-08-01
To report the long-term bile acid stimulation test results for dogs that have undergone complete suture ligation of a single congenital extrahepatic portosystemic shunt. Data were collected from the hospital records of all dogs that had undergone a complete suture ligation of a single congenital extrahepatic portosystemic shunt. Owners were invited to return to the referral centre or their local veterinarian for repeat serum bile acid measurement. Dogs diagnosed with idiopathic epilepsy and undergoing bile acid stimulation tests were used as a comparison population. Fifty-one study dogs were included, with a mean follow-up time of 62 months. 48 dogs had no evidence of multiple acquired shunts and a significant reduction in the pre- and post-prandial serum bile acid concentrations at long-term follow-up compared with pre-operative measurements. Pre- and post-prandial serum bile acids were statistically significantly greater for dogs that had undergone a full ligation (with no evidence of multiple acquired shunts) at all time points compared to the control dogs (P<0·001 for all comparisons). The results suggest that in dogs treated with complete suture ligation mild increases in serum bile acids are not clinically relevant if there are no physical examination abnormalities, a normal body condition score and no relapse in clinical signs. © 2017 British Small Animal Veterinary Association.
The mechanism of enterohepatic circulation in the formation of gallstone disease.
Cai, Jian-Shan; Chen, Jin-Hong
2014-11-01
Bile acids entering into enterohepatic circulating are primary acids synthesized from cholesterol in hepatocyte. They are secreted actively across canalicular membrane and carried in bile to gallbladder, where they are concentrated during digestion. About 95% BAs are actively taken up from the lumen of terminal ileum efficiently, leaving only approximately 5% (or approximately 0.5 g/d) in colon, and a fraction of bile acids are passively reabsorbed after a series of modifications in the human large intestine including deconjugation and oxidation of hydroxy groups. Bile salts hydrolysis and hydroxy group dehydrogenation reactions are performed by a broad spectrum of intestinal anaerobic bacteria. Next, hepatocyte reabsorbs bile acids from sinusoidal blood, which are carried to liver through portal vein via a series of transporters. Bile acids (BAs) transporters are critical for maintenance of the enterohepatic BAs circulation, where BAs exert their multiple physiological functions including stimulation of bile flow, intestinal absorption of lipophilic nutrients, solubilization, and excretion of cholesterol. Tight regulation of BA transporters via nuclear receptors (NRs) is necessary to maintain proper BA homeostasis. In conclusion, disturbances of enterohepatic circulation may account for pathogenesis of gallstones diseases, including BAs transporters and their regulatory NRs and the metabolism of intestinal bacterias, etc.
Balzer, K; Schmitt, G; Reiners, C; Goebell, H
1995-01-15
For that reason absorption of bile acids was investigated using the 75Se-homotaurocholate (SeHCAT) in 239 patients with diarrhoea. SeHCAT retention time was measured as 7 day retention time in a whole body counter. An intact bile acid absorption (negative SeHCAT test) was confirmed in 23 healthy volunteers within the range of 11 to 50% (mean +/- double standard deviation). In 135 patients with a possible type I bile salt malabsorption the SeHCAT test was positive in 78%, thus indicating bile salt malabsorption. The test is very sensitive detecting bile salt malabsorption in Crohn's disease, identifying ileal disease more precisely than radiology. The SeHCAT test ascertained type II primary bile salt malabsorption in 7 patients, as well as type III bile salt malabsorption in patients (9 out of 28) with cholecystectomy, vagotomy, partial gastrectomy and chronic pancreatitis. In addition, a positive SeHCAT test indicating bile acid malabsorption was found in 5 out of 11 patients with irritable syndrome, diarrhoeic form, and in 4 out of 12 patients with lactose intolerance. SeHCAT retention should be measured routinely in patients with chronic diarrhoea for which the cause is not obvious.
Sinha, L; Liston, R; Testa, H J; Moriarty, K J
1998-09-01
Idiopathic bile acid malabsorption is a poorly recognized cause of chronic diarrhoea. The SeHCAT (75Selenium HomotauroCholic Acid Test) can accurately diagnose this condition. To identify patients with idiopathic bile acid malabsorption, to describe their clinical features, both qualitatively and quantitatively, and to assess the response to cholestyramine. Idiopathic bile acid malabsorption was considered in all patients complaining of chronic diarrhoea. They were included in the study if their SeHCATs were positive (< 15% retention) and secondary causes of bile acid malabsorption were excluded. The response to therapy with cholestyramine was assessed. Nine patients were diagnosed with idiopathic bile acid malabsorption (median SeHCAT retention 8%, range 3-12.6). Their median daily faecal weight was 285 g (range 85-676) and median faecal fat output was 17 mmol/24 h (range 8.3-38.8). Six patients had an immediate response to cholestyramine. There was a marked reduction in stool frequency (median stool frequency pre-treatment 5/day vs. 2/day post-treatment, P = 0.03). Five patients had large volume diarrhoea (faecal weight > 200 g/day) and three had steatorrhoea. Idiopathic bile acid malabsorption, once suspected, especially by documenting true 'large volume' watery diarrhoea or steatorrhoea, is easily diagnosed and response to therapy is often very good. There is often a previous history of gastrointestinal infection and this condition should be considered in patients with chronic diarrhoea of undetermined origin, especially before they are labelled as having irritable bowel syndrome.
Yamada, Shoji; Takashina, Yoko; Watanabe, Mitsuhiro; Nagamine, Ryogo; Saito, Yoshimasa; Kamada, Nobuhiko; Saito, Hidetsugu
2018-01-01
Gut microbiota plays a significant role in the development of hepatocellular carcinoma (HCC) in non-alcoholic steatohepatitis (NASH). However, understanding of the precise mechanism of this process remains incomplete. A new class steatohepatitis-inducing high-fat diet (HFD), namely STHD-01, can promote the development of HCC without the administration of chemical carcinogens. Using this diet, we comprehensively analyzed changes in the gut microbiota and its metabolic functions during the development of HCC in NASH. Mice fed the STHD-01 developed NASH within 9 weeks. NASH further progressed into HCC by 41 weeks. Treatment with antibiotics significantly attenuated liver pathology and suppressed tumor development, indicating the critical role of the gut microbiota in tumor development in this model. Accumulation of cholesterol and bile acids in the liver and feces increased after feeding the mice with STHD-01. Treatment with antibiotics did not reverse these phenotypes. In contrast, accumulation of secondary bile acids was dramatically reduced after the treatment with antibiotics, suggesting the critical role of the gut microbiota in the conversion of primary bile acids to secondary bile acids. Secondary bile acids such as deoxycholic acid activated the mTOR, pathway in hepatocytes. Activation of mTOR was observed in the liver of mice fed STHD-01, and the activation was reduced when mice were treated with antibiotics. Collectively, bile acid metabolism by the gut microbiota promotes HCC development in STHD-01-induced NASH. PMID:29515780
Diet1, bile acid diarrhea, and FGF15/19: mouse model and human genetic variants.
Lee, Jessica M; Ong, Jessica R; Vergnes, Laurent; de Aguiar Vallim, Thomas Q; Nolan, Jonathan; Cantor, Rita M; Walters, Julian R F; Reue, Karen
2018-03-01
Diet1 modulates intestinal production of the hormone, fibroblast growth factor (FGF)15, which signals in liver to regulate bile acid synthesis. C57BL/6ByJ mice with a spontaneous Diet1 -null mutation are resistant to hypercholesterolemia compared with wild-type C57BL/6J mice through enhanced cholesterol conversion to bile acids. To further characterize the role of Diet1 in metabolism, we generated Diet1 -/- mice on the C57BL/6J genetic background. C57BL/6J Diet1 -/- mice had elevated bile acid levels, reduced Fgf15 expression, and increased gastrointestinal motility and intestinal luminal water content, which are symptoms of bile acid diarrhea (BAD) in humans. Natural genetic variation in Diet1 mRNA expression levels across 76 inbred mouse strains correlated positively with Ffg15 mRNA and negatively with serum bile acid levels. This led us to investigate the role of DIET1 genetic variation in primary BAD patients. We identified a DIET1 coding variant ( rs12256835 ) that had skewed prevalence between BAD cases and controls. This variant causes an H1721Q amino acid substitution that increases the levels of FGF19 protein secreted from cultured cells. We propose that genetic variation in DIET1 may be a determinant of FGF19 secretion levels, and may affect bile acid metabolism in both physiological and pathological conditions. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.
Vageli, Dimitra P.; Doukas, Sotirios G.; Sasaki, Clarence T.
2018-01-01
Bile-containing gastro-duodenal reflux has been clinically considered an independent risk factor in hypopharyngeal carcinogenesis. We recently showed that the chronic effect of acidic bile, at pH 4.0, selectively induces NF-κB activation and accelerates the transcriptional levels of genes, linked to head and neck cancer, in normal hypopharyngeal epithelial cells. Here, we hypothesize that NF-κB inhibition is capable of preventing the acidic bile-induced and cancer-related mRNA phenotype, in treated normal human hypopharyngeal cells. In this setting we used BAY 11-7082, a specific and well documented pharmacologic inhibitor of NF-κB, and we observed that BAY 11-7082 effectively inhibits the acidic bile-induced gene expression profiling of the NF-κB signaling pathway (down-regulation of 72 out of 84 analyzed genes). NF-κB inhibition significantly prevents the acidic bile-induced transcriptional activation of NF-κB transcriptional factors, RELA (p65) and c-REL, as well as genes related to and commonly found in established HNSCC cell lines. These include anti-apoptotic bcl-2, oncogenic STAT3, EGFR, ∆Np63, TNF-α and WNT5A, as well as cytokines IL-1β and IL-6. Our findings are consistent with our hypothesis demonstrating that NF-κB inhibition effectively prevents the acidic bile-induced cancer-related mRNA phenotype in normal human hypopharyngeal epithelial cells supporting an understanding that NF-κB may be a critical link between acidic bile and early preneoplastic events in this setting. PMID:29464041
Andreasen, C B; Pearson, E G; Smith, B B; Gerros, T C; Lassen, E D
1998-04-01
Fifty clinically healthy llamas, 0.5-13 years of age (22 intact males, 10 neutered males, 18 females), with no biochemical evidence of liver disease or hematologic abnormalities, were selected to establish serum bile acid reference intervals. Serum samples submitted to the clinical pathology laboratory were analyzed using a colorimetric enzymatic assay to establish bile acid reference intervals. A nonparametric distribution of llama bile acid concentrations was 1-23 micromol/liter for llamas >1 year of age and 10-44 micromol/liter for llamas < or = 1 year of age. A significant difference was found between these 2 age groups. No correlation was detected between gender and bile acid concentrations. The reference intervals were 1.1-22.9 micromol/liter for llamas >1 year of age and 1.8-49.8 micromol/liter for llamas < or = 1 year of age. Additionally, a separate group of 10 healthy adult llamas (5 males, 5 females, 5-11 years of age) without biochemical or hematologic abnormalities was selected to assess the effects of feeding and time intervals on serum bile acid concentrations. These 10 llamas were provided fresh water and hay ad libitum, and serum samples were obtained via an indwelling jugular catheter hourly for 11 hours. Llamas were then kept from food overnight (12 hours), and subsequent samples were taken prior to feeding (fasting baseline time, 23 hours after trial initiation) and postprandially at 0.5, 1, 2, 4, and 8 hours. In feeding trials, there was no consistent interaction between bile acid concentrations and time, feeding, or 12-hour fasting. Prior feeding or time of day did not result in serum bile acid concentrations outside the reference interval, but concentrations from individual llamas varied within this interval over time.
Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.
Inagaki, Takeshi; Moschetta, Antonio; Lee, Youn-Kyoung; Peng, Li; Zhao, Guixiang; Downes, Michael; Yu, Ruth T; Shelton, John M; Richardson, James A; Repa, Joyce J; Mangelsdorf, David J; Kliewer, Steven A
2006-03-07
Obstruction of bile flow results in bacterial proliferation and mucosal injury in the small intestine that can lead to the translocation of bacteria across the epithelial barrier and systemic infection. These adverse effects of biliary obstruction can be inhibited by administration of bile acids. Here we show that the farnesoid X receptor (FXR), a nuclear receptor for bile acids, induces genes involved in enteroprotection and inhibits bacterial overgrowth and mucosal injury in ileum caused by bile duct ligation. Mice lacking FXR have increased ileal levels of bacteria and a compromised epithelial barrier. These findings reveal a central role for FXR in protecting the distal small intestine from bacterial invasion and suggest that FXR agonists may prevent epithelial deterioration and bacterial translocation in patients with impaired bile flow.
Lanzini, A; De Tavonatti, M G; Panarotto, B; Scalia, S; Mora, A; Benini, F; Baisini, O; Lanzarotto, F
2003-09-01
Whether ileal absorption of bile acid is up or downregulated in chronic cholestasis is still debated, and most evidence has come from animal studies. To compare ileal bile acid absorption in patients with primary biliary cirrhosis (PBC) and in healthy control subjects, and to assess the effect of ursodeoxycholic acid (UDCA). We studied 14 PBC patients before and during (n=11) UDCA administration, 14 healthy control subjects, and 14 Crohn's disease patients (as disease controls). We used cholescintigraphy to measure retention in the enterohepatic circulation over five successive days of the bile acid analogue (75)Se-homocholic acid-taurine ((75)SeHCAT) as an index of ileal bile acid absorption. Results were expressed as (75)SeHCAT fractional turnover rate (FTR) and t(1/2)12. (75)SeHCAT FTR was 0.19 (0.11)/day, 0.34 (0.11)/day (p<0.001), and 0.83 (0.32)/day in PBC patients, healthy controls (p<0.0001), and Crohn's patients (p<0.001), respectively, which increased to 0.36 (0.16)/day in PBC patients during UDCA treatment (p<0.005). (75)SeHCAT t(1/2)12 was 4.8 (2.1) days in PBC patients, 2.2 (0.5) days (p<0.001) in healthy controls, and 1.0 (0.5) days (p<0.001) in Crohn's disease patients. (75)SeHCAT t(1/2)12 decreased to 2.2 (0.93) days (p< 0.001) in PBC patients during UDCA treatment. Our results support the concept that ileal bile acid absorption is upregulated in PBC patients, and that this effect may contribute towards damaging the cholestatic liver. This upregulation of bile acid absorption is abolished by UDCA.
Okada, K; Kanoh, H; Mohri, K
2011-10-01
Benoxaprofen (BOP) is a 2-methyl propionic acid derivative with anti-inflammatory activity. BOP has an asymmetric carbon, and receives chiral inversion from R to S in vivo. BOP is metabolized to glucuronide (BOP-G) and taurine conjugate (BOP-T). The configuration of BOP-G is mainly S, and that of BOP-T is R. Chiral inversion of R to S of the propionic acid moiety and amino acid conjugation of carboxyl compounds proceed via an acyl CoA intermediate. It is known that fibrates, used in hyperlipidemia, induce acyl CoA synthetase and increase CoA concentration. We administered racemic BOP (10 mg/kg body weight) to rats (CFA+) pre-administered clofibric acid (CFA, 280 mg/kg/day), and studied BOP, BOP-G, and BOP-T enantiomer concentrations in plasma and bile up to 12 h after administration. The findings were compared with those in rats (CFA-) that had not received CFA. Furthermore, we studied the amounts of BOP-G enantiomer produced by glucuronidation in vitro using microsomes pretreated with CFA. The amounts of (S)-BOP-G in CFA+ rats were 2.7-fold larger than that in CFA- rats. Although (R)-BOP-T was excreted in CFA- rats, BOP-T could not be detected in CFA+ rats. Plasma clearance values of racemic BOP and (S)-BOP in CFA+ rats were 5-fold and 6-fold larger than those in CFA- rats, respectively. (S)-BOP-G formation activities were higher than (R)-BOP-G formation activities in both CFA+and CFA- microsomes. These findings suggest that CFA increases biliary excretion of (S)-BOP-G and facilitates plasma elimination of BOP, and further suggests that CFA predominantly induces chiral inversion to S rather than metabolic reaction to (R)-BOP-T, resulting in an increase of (S)-BOP-G.
Quantitative PET of liver functions
Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord
2018-01-01
Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[18F]fluoro-D-galactose (18F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value (SUV) from a static liver 18F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11C-palmitate and with the conjugated bile acid tracer [N-methyl-11C]cholylsarcosine (11C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood (K 1; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion, SUV of non-invasive static PET with 18F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET. PMID:29755841
Quantitative PET of liver functions.
Keiding, Susanne; Sørensen, Michael; Frisch, Kim; Gormsen, Lars C; Munk, Ole Lajord
2018-01-01
Improved understanding of liver physiology and pathophysiology is urgently needed to assist the choice of new and upcoming therapeutic modalities for patients with liver diseases. In this review, we focus on functional PET of the liver: 1) Dynamic PET with 2-deoxy-2-[ 18 F]fluoro- D -galactose ( 18 F-FDGal) provides quantitative images of the hepatic metabolic clearance K met (mL blood/min/mL liver tissue) of regional and whole-liver hepatic metabolic function. Standard-uptake-value ( SUV ) from a static liver 18 F-FDGal PET/CT scan can replace K met and is currently used clinically. 2) Dynamic liver PET/CT in humans with 11 C-palmitate and with the conjugated bile acid tracer [ N -methyl- 11 C]cholylsarcosine ( 11 C-CSar) can distinguish between individual intrahepatic transport steps in hepatic lipid metabolism and in hepatic transport of bile acid from blood to bile, respectively, showing diagnostic potential for individual patients. 3) Standard compartment analysis of dynamic PET data can lead to physiological inconsistencies, such as a unidirectional hepatic clearance of tracer from blood ( K 1 ; mL blood/min/mL liver tissue) greater than the hepatic blood perfusion. We developed a new microvascular compartment model with more physiology, by including tracer uptake into the hepatocytes from the blood flowing through the sinusoids, backflux from hepatocytes into the sinusoidal blood, and re-uptake along the sinusoidal path. Dynamic PET data include information on liver physiology which cannot be extracted using a standard compartment model. In conclusion , SUV of non-invasive static PET with 18 F-FDGal provides a clinically useful measurement of regional and whole-liver hepatic metabolic function. Secondly, assessment of individual intrahepatic transport steps is a notable feature of dynamic liver PET.
Kiso, Yoshinobu
2004-01-01
Sesamin was orally administered to rats, and blood, bile and urine were collected periodically. Over 40% of the dose of sesamin was detected in bile as glucuronides of 2-(3, 4-methylenedioxyphenyl)-6-(3, 4-dihydroxyphenyl)-cis-dioxabicyclo[3.3.0] octane and 2-(3, 4-dihydroxyphenyl)-6-(3, 4-dihydroxyphenyl)-cis-dioxabicyclo[3.3.0] octane by 24 hr after administration. Antioxidant activities of these metabolites were compared and catechol metabolites showed strong radical scavenging activities against not only superoxide anion radical but also hydroxyl radical. It was suggested that sesamin was absorbed by the route of portal vein and metabolized to mono- or di-catechol metabolite by drug metabolizing enzymes in the liver cells. Both metabolites exhibited antioxidant activity in the liver and were finally conjugated with glucuronic acid and to excrete in bile. Sesamin can be classified as a pro-antioxidant. The profiles of gene expression of the liver in rats given sesamin or vehicle were compared. The gene expression levels of the late stage enzymes of beta-oxidation including trifunctional enzyme, acyl-CoA oxidase, bifunctional enzyme and 3-ketoacyl-CoA thiolase were significantly increased by sesamin. On the other hand, the transcription of the genes encoding the enzymes for fatty acid synthesis was decreased. Moreover, in sesamin rats, the gene expression of aldehyde dehydrogenase was increased about 3-fold, whereas alcohol dehydrogenase, liver catalase and CYP2E1 were not changed. These results suggested that sesamin ingestion regulated the transcription levels of hepatic metabolizing enzymes for lipids and alcohol.
Boldine enhances bile production in rats via osmotic and Farnesoid X receptor dependent mechanisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cermanova, Jolana; Kadova, Zuzana; Deparment of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove
Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that themore » effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine. - Highlights: • Boldine may increase bile production by direct as well as indirect mechanisms. • Biliary concentrations of boldine above 10 μM directly stimulate bile production. • Long-term oral boldine administration increases bile acid (BA) biliary secretion. • Boldine induces Bsep-mediated transport of BA by FXR receptor stimulation.« less
cGMP stimulates bile acid-independent bile formation and biliary bicarbonate excretion.
Myers, N C; Grune, S; Jameson, H L; Sawkat-Anwer, M
1996-03-01
The effect of guanosine 3',5'-cyclic monophosphate (cGMP) on hepatic bile formation was studied in isolated perfused rat livers and rat hepatocytes. Studies in isolated perfused rat livers showed that infusion of 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP, 3 micromol/min or 100 microM) 1) increased bile flow without affecting biliary excretion of simultaneously infused taurocholate, 2) increased biliary concentration and excretion of HCO3(-) but did not affect biliary excretion of glutathione, and 3) increased net perfusate H+ efflux without affecting hepatic O2 uptake. Studies in isolated rat hepatocytes showed that 1) 8-BrcGMP increased intracellular pH in the presence (but not in the absence) of extracellular HCO-3, and effect inhibited by 4,4' -diisothiocyanostilbene-2,2'-disulfonic acid and Na+ replacement, 2) 8-BrcGMP did not affect taurocholate uptake and intracellular [Ca2+], and 3) bile acids, like ursodeoxycholate and cholate, did not increase cellular cGMP. Taken together, these results indicate that cGMP stimulates bile acid-independent bile formation, in part by stimulating biliary HCO3- excretion. cGMP may increase HCO3- excretion by stimulating sinusoidal Na+ - HCO3- cotransport, but not Na+/H+ exchange. cGMP, unlike adenosine 3',5'-cyclic monophosphate, may not regulate hepatic taurocholate transport, and bile acid-induced HCO3- rich choleresis may not be mediated via cGMP.
Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases.
Aldhahrani, Adil; Verdon, Bernard; Ward, Chris; Pearson, Jeffery
2017-01-01
Gastro-oesophageal reflux and aspiration have been associated with chronic and end-stage lung disease and with allograft injury following lung transplantation. This raises the possibility that bile acids may cause lung injury by damaging airway epithelium. The aim of this study was to investigate the effect of bile acid challenge using the immortalised human bronchial epithelial cell line (BEAS-2B). The immortalised human bronchial epithelial cell line (BEAS-2B) was cultured. A 48-h challenge evaluated the effect of individual primary and secondary bile acids. Post-challenge concentrations of interleukin (IL)-8, IL-6 and granulocyte-macrophage colony-stimulating factor were measured using commercial ELISA kits. The viability of the BEAS-2B cells was measured using CellTiter-Blue and MTT assays. Lithocholic acid, deoxycholic acid, chenodeoxycholic acid and cholic acid were successfully used to stimulate cultured BEAS-2B cells at different concentrations. A concentration of lithocholic acid above 10 μmol·L -1 causes cell death, whereas deoxycholic acid, chenodeoxycholic acid and cholic acid above 30 μmol·L -1 was required for cell death. Challenge with bile acids at physiological levels also led to a significant increase in the release of IL-8 and IL6 from BEAS-2B. Aspiration of bile acids could potentially cause cell damage, cell death and inflammation in vivo . This is relevant to an integrated gastrointestinal and lung physiological paradigm of chronic lung disease, where reflux and aspiration are described in both chronic lung diseases and allograft injury.
USDA-ARS?s Scientific Manuscript database
Bile acid binding potential of foods and food fractions has been related to lowering the risk of heart disease and that of cancer. Sautéing or steam cooking has been observed to significantly improve bile acid binding of green/leafy vegetables. It was hypothesized that microwave cooking could impr...
[Combined effect of benzylpenicillin, furagin and bile acids on staphylococci].
Sytnik, I A; Tkachuk, N I
1982-11-01
The results of the study of the effect of benzylpenicillin or furagin in combination with bile acids, such as cholic, glycocholic and desoxycholic on the collection cultures of staphylococci are presented. The study showed that the subbacteriostatic doses of the bile acids increased the bacteriostatic and bactericidal effects of benzylpenicillin and furagin by tens and hundreds times. The highest potentiation effect was attained with the use of the furagin combination and desoxycholic acid.
Zelcer, Noam; Saeki, Tohru; Bot, Ilse; Kuil, Annemieke; Borst, Piet
2003-01-01
Many of the transporters involved in the transport of bile acids in the enterohepatic circulation have been characterized. The basolateral bile-acid transporter of ileocytes and cholangiocytes remains an exception. It has been suggested that rat multidrug resistance protein 3 (Mrp3) fulfills this function. Here we analyse bile-salt transport by human MRP3. Membrane vesicles from insect ( Spodoptera frugiperda ) cells expressing MRP3 show time-dependent uptake of glycocholate and taurocholate. Furthermore, sulphated bile salts were high-affinity competitive inhibitors of etoposide glucuronide transport by MRP3 (IC50 approximately 10 microM). Taurochenodeoxycholate, taurocholate and glycocholate inhibited transport at higher concentrations (IC50 approximately 100, 250 and 500 microM respectively). We used mouse fibroblast-like cell lines derived from mice with disrupted Mdr1a, Mdr1b and Mrp1 genes to generate transfectants that express the murine apical Na+-dependent bile-salt transporter (Asbt) and MRP3. Uptake of glycocholate by these cells is Na+-dependent, with a K(m) and V(max) of 29+/-7 microM and 660 +/- 63 pmol/min per mg of protein respectively and is inhibited by several organic-aniontransport inhibitors. Expression of MRP3 in these cells limits the accumulation of glycocholate and increases the efflux from cells preloaded with taurocholate or glycocholate. In conclusion, we find that MRP3 transports both taurocholate and glycocholate, albeit with low affinity, in contrast with the high-affinity transport by rat Mrp3. Our results suggest that MRP3 is unlikely to be the principal basolateral bile-acid transporter of ileocytes and cholangiocytes, but that it may have a role in the removal of bile acids from the liver in cholestasis. PMID:12220224
Cui, Yunfeng; Li, Zhonglian; Zhao, Erpeng; Zhang, Ju; Cui, Naiqiang
2012-01-01
Aims: We designed this study to get insight into the disorder of lipid metabolism during cholesterol gallstone formation and evaluate the effect of ursodeoxycholic acid on the improvement of bile lithogenicity and on expression of lipid related genes. Methods: Rabbit cholesterol gallstone models were induced by high cholesterol diet. Bile, blood and liver tissues were obtained from rabbits after 0, 1, 2, 3, 4 and 5 weeks. Bile and blood lipids were measured enzymatically. 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), cytochrome P450, family 7, subfamily A, polypeptide 1 (CYP7A1) and sterol carrier protein 2 (SCP2) mRNA expressions were detected by using quantitative real-time RT-PCR. Cholesterol saturation index (CSI) was calculated by using Carey table to represent the bile lithogenicity. Results: Rates of gallstone formation of the 4 and 5 week treatment groups were 100 %, but that of the ursodeoxycholic acid treatment group was only 33.3 %. Expression of HMGCR and SCP2 mRNA in the 4 week group was upregulated and that of CYP7A1 mRNA decreased as compared with the 0 week group. Ursodeoxycholic acid could significantly extend nucleation time of bile and lower CSI. Ursodeoxycholic acid could reduce the expression of SCP2, but couldn't influence expression of HMGCR and CYP7A1. Conclusions: Abnormal expression of HMGCR, CYP7A1 and SCP2 might lead to high lithogenicity of bile. Ursodeoxycholic acid could improve bile lipids and lower bile lithogenicity, thereby reducing the incidence of gallstones. So it might be a good preventive drug for cholesterol gallstones. PMID:27847447
Bile salt kinetics in cystic fibrosis: influence of pancreatic enzyme replacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, J.B.; Tercyak, A.M.; Szczepanik, P.
1977-01-01
Bile acid kinetics was investigated by stable isotope dilution technique in 6 children (ages 3/sup 1///sub 2/ months to 4/sup 1///sub 2/ years) with previously untreated cystic fibrosis. All of the patients had clinical and laboratory evidence of malabsorption, normal intestinal mucosal function, as judged by glucose absorption, intestinal histology, disaccharidase levels, and normally functioning gallbladders. The children were maintained on a constant diet throughout the study period; fat intake averaged 4.2 g per kg per day. Before administration of pancreatic enzyme replacement, fat excretion equalled 50 +- 4% (mean +- SE) of intake and was reduced to 20 +-more » 1.0% of intake after therapy. Total bile acid pool size nearly doubled during enzyme replacement from 379 +- 32 ..mu..moles per kg to 620 +- 36 ..mu..moles per kg with secondary bile acids comprising 57% of the total pool before therapy and 40% after therapy. The data indicate that both primary and secondary bile acids are conserved within the enterohepatic circulation during enzyme therapy, and that the mechanism for the regulation of hepatic bile acid synthesis is intact in cystic fibrosis. However, the demonstration that large amounts of bile acid continue to be excreted during therapy suggests that interruption of the enterohepatic circulation continues and that deficiencies of the intraluminal phase may persist during enzyme therapy in this disease.« less
Indirect electrochemical detection for total bile acids in human serum.
Zhang, Xiaoqing; Zhu, Mingsong; Xu, Biao; Cui, Yue; Tian, Gang; Shi, Zhenghu; Ding, Min
2016-11-15
Bile acids level in serum is a useful index for screening and diagnosis of hepatobiliary diseases. As bile acids concentration is closely related to the degree of hepatobiliary diseases, detecting it is a vital factor to understand the stage of the diseases. The prevalent determination for bile acids is the enzymatic cycling method which has low sensitivity while reagent-consuming. It is desirable to develop a new method with lower cost and higher sensitivity. An indirect electrochemical detection (IED) for bile acids in human serum was established using the screen printed carbon electrode (SPCE). Since bile acids do not show electrochemical signals, they were converted to 3-ketosteroids by 3-α-hydroxysteroid dehydrogenase (3α-HSD) in the presence of nicotinamide adenine dinucleotide (NAD(+)), which was reduced to NADH. NADH could then be oxidized on the surface of SPCE, generating a signal that was used to calculate the total bile acids (TBA) concentration. A good linear calibration for TBA was obtained at the concentration range from 5.00μM to 400μM in human serum. Both the precisions and recoveries were sufficient to be used in a clinical setting. The TBA concentrations in 35 human serum samples by our IED method didn't show significant difference with the result by enzymatic cycling method, using the paired t-test. Moreover, our IED method is reagent-saving, sensitive and cost-effective. Copyright © 2016. Published by Elsevier B.V.
The role of the gallbladder in humans.
Turumin, J L; Shanturov, V A; Turumina, H E
2013-01-01
The basic function of the gallbladder in humans is one of protection. The accumulation of the primary bile acids (cholic acid and chenodeoxycholic acid) in the gallbladder reduces the formation of the secondary bile acids (deoxycholic acid and lithocholic acid), thus diminishing their concentration in the so-called gallbladder-independent enterohepatic circulation and protecting the liver, the stomach mucosa, the gallbladder, and the colon from their toxic hydrophobic effects. The presence or absence of the gallbladder in mammals is a determining factor in the synthesis of hydrophobic or hydrophilic bile acids. Because the gallbladder contracts 5-20 min after food is in the stomach and the "gastric chyme" moves from the stomach to the duodenum 1-3 h later, the function of the gallbladder bile in digestion may be insignificant. The aim of this article was to provide a detailed review of the role of the gallbladder and the mechanisms related to bile formation in humans. Copyright © 2012 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.
Zhang, Linlin; Su, Huizong; Li, Yue; Fan, Yujuan; Wang, Qian; Jiang, Jian; Hu, Yiyang; Chen, Gaofeng; Tan, Bo; Qiu, Furong
2018-03-01
The aim of this study was to determine the effect of ursodeoxycholic acid (UDCA) on the alpha-naphthylisothiocyanate (ANIT)-induced acute and recovery stage of cholestasis model mice. In the acute stage of model mice, pretreatment with UDCA (25, 50, and 100 mg·kg -1 , ig) for 12 days prior to ANIT administration (50 mg·kg -1 , ig) resulted in the dramatic increase in serum biochemistry, with aggrevation of bile infarcts and hepatocyte necrosis. The elevation of beta-muricholic acid (β-MCA), cholic acid (CA), and taurocholic acid (TCA) in serum and liver, and reduction of these bile acids (BAs) in bile was observed. In contrast, in the recovery stage of model mice, treatment with UDCA (25, 50, and 100 mg·kg -1 , ig) for 7 days after ANIT administration (50 mg·kg -1 , ig) resulted in the significant decrease in levels of serum alanine aminotransferase (ALT) and total bile acid (TBA). Liver injury was attenuated, and the levels of TBA, CA, TCA, and β-MCA in the liver were significantly decreased. Additionally, UDCA can upregulate expression of BSEP, but it cannot upregulate expression of AE2. UDCA, which induced BSEP to increase bile acid-dependent bile flow, aggravated cholestasis and liver injury when the bile duct was obstructed in the acute stage of injury in model mice. In contrast, UDCA alleviated cholestasis and liver injury induced by ANIT when the obstruction was improved in the recovery stage. Copyright © 2018. Published by Elsevier Inc.
Feng, Lu; Yuen, Yee-Lok; Xu, Jian; Liu, Xing; Chan, Martin Yan-Chun; Wang, Kai; Fong, Wing-Ping; Cheung, Wing-Tai; Lee, Susanna Sau-Tuen
2017-01-01
PPARα has been known to play a pivotal role in orchestrating lipid, glucose, and amino acid metabolism via transcriptional regulation of its target gene expression during energy deprivation. Recent evidence has also suggested that PPARα is involved in bile acid metabolism, but how PPARα modulates the homeostasis of bile acids during fasting is still not clear. In a mechanistic study aiming to dissect the spectrum of PPARα target genes involved in metabolic response to fasting, we identified a novel mouse gene (herein named mL-STL for mouse liver-sulfotransferase-like) that shared extensive homology with the Sult2a subfamily of a superfamily of cytosolic sulfotransferases, implying its potential function in sulfonation. The mL-STL gene expressed predominantly in liver in fed state, but PPARα was required to sustain its expression during fasting, suggesting a critical role of PPARα in regulating the mL-STL-mediated sulfonation during fasting. Functional studies using recombinant His-tagged mL-STL protein revealed its narrow sulfonating activities toward 7α-hydroxyl primary bile acids, including cholic acid, chenodeoxycholic acid, and α-muricholic acid, and thus suggesting that mL-STL may be the major hepatic bile acid sulfonating enzyme in mice. Together, these studies identified a novel PPARα-dependent gene and uncovered a new role of PPARα as being an essential regulator in bile acid biotransformation via sulfonation during fasting. PMID:28442498
TAUROURSODEOXYCHOLIC ACID PREVENTS HEARING LOSS AND HAIR CELL DEATH IN Cdh23erl/erl MICE
HU, J.; XU, M.; YUAN, J.; LI, B.; Entenman, S.; YU, H.; ZHENG, Q.Y.
2016-01-01
Sensorineural hearing loss has long been the subject of experimental and clinical research for many years. The recently identified novel mutation of the Cdh23 gene, Cdh23erl/erl, was proven to be a mouse model of human autosomal recessive nonsyndromic deafness (DFNB12). Tauroursodeoxycholic acid (TUDCA), a taurine-conjugated bile acid, has been used in experimental research and clinical applications related to liver disease, diabetes, neurodegenerative diseases, and other diseases associated with apoptosis. Because hair cell apoptosis was implied to be the cellular mechanism leading to hearing loss in Cdh23erl/erl mice (erl mice), this study investigated TUDCA’s otoprotective effects in erl mice: preventing hearing impairment and protecting against hair cell death. Our results showed that systemic treatment with TUDCA significantly alleviated hearing loss and suppressed hair cell death in erl mice. Additionally, TUDCA inhibited apoptotic genes and caspase-3 activation in erl mouse cochleae. The data suggest that TUDCA could be a potential therapeutic agent for human DFNB12. PMID:26748055
Dai, Fuhong; Yoo, Won Gi; Lee, Ji-Yun; Lu, Yanyan; Pak, Jhang Ho; Sohn, Woon-Mok; Hong, Sung-Jong
2017-11-21
Multidrug resistance-associated protein 4 (MRP4) is a member of the C subfamily of the ABC family of ATP-binding cassette (ABC) transporters. MRP4 regulates ATP-dependent efflux of various organic anionic substrates and bile acids out of cells. Since Clonorchis sinensis lives in host's bile duct, accumulation of bile juice can be toxic to the worm's tissues and cells. Therefore, C. sinensis needs bile transporters to reduce accumulation of bile acids within its body. We cloned MRP4 (CsMRP4) from C. sinensis and obtained a cDNA encoding an open reading frame of 1469 amino acids. Phylogenetic analysis revealed that CsMRP4 belonged to the MRP/SUR/CFTR subfamily. A tertiary structure of CsMRP4 was generated by homology modeling based on multiple structures of MRP1 and P-glycoprotein. CsMRP4 had two membrane-spanning domains (MSD1 & 2) and two nucleotide-binding domains (NBD1 & 2) as common structural folds. Docking simulation with nine bile acids showed that CsMRP4 transports bile acids through the inner cavity. Moreover, it was found that CsMRP4 mRNA was more abundant in the metacercariae than in the adults. Mouse immune serum, generated against the CsMRP4-NBD1 (24.9 kDa) fragment, localized CsMRP4 mainly in mesenchymal tissues and oral and ventral suckers of the metacercariae and the adults. Our findings shed new light on MRPs and their homologs and provide a platform for further structural and functional investigations on the bile transporters and parasites' survival.
... the digestive tract. Bile contains: Mostly cholesterol Bile acids (also called bile salts) Bilirubin (a breakdown product or red blood cells) It also contains: Water Body salts (such as potassium and sodium) Copper and other metals
Microbiome-mediated bile acid modification: Role in intestinal drug absorption and metabolism.
Enright, Elaine F; Griffin, Brendan T; Gahan, Cormac G M; Joyce, Susan A
2018-04-13
Once regarded obscure and underappreciated, the gut microbiota (the microbial communities colonizing the gastrointestinal tract) is gaining recognition as an influencer of many aspects of human health. Also increasingly apparent is the breadth of interindividual variation in these co-evolved microbial-gut associations, presenting novel quests to explore implications for disease and therapeutic response. In this respect, the unearthing of the drug-metabolizing capacity of the microbiota has provided impetus for the integration of microbiological and pharmacological research. This review considers a potential mechanism, 'microbial bile acid metabolism', by which the intricate interplay between the host and gut bacteria may influence drug pharmacokinetics. Bile salts traditionally regarded as biological surfactants, synthesized by the host and biotransformed by gut bacteria, are now also recognized as signalling molecules that affect diverse physiological processes. Accumulating data indicate that bile salts are not equivalent with respect to their physicochemical properties, micellar solubilization capacities for poorly water-soluble drugs, crystallization inhibition tendencies nor potencies for bile acid receptor activation. Herein, the origin, physicochemical properties, physiological functions, plasticity and pharmaceutical significance of the human bile acid pool are discussed. Microbial dependant differences in the composition of the human bile acid pool, simulated intestinal media and commonly used preclinical species is highlighted to better understand in vivo performance predictiveness. While the precise impact of an altered gut microbiome, and consequently bile acid pool, in the biopharmaceutical setting remains largely elusive, the objective of this article is to aid knowledge acquisition through a detailed review of the literature. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yan, Huan; Peng, Bo; Liu, Yang; Xu, Guangwei; He, Wenhui; Ren, Bijie; Jing, Zhiyi; Sui, Jianhua
2014-01-01
ABSTRACT The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a specific interaction between NTCP and the pre-S1 domain of HBV large envelope protein. However, it remains unknown if these two functions of NTCP are independent or if they interfere with each other. Here we show that binding of the pre-S1 domain to human NTCP blocks taurocholate uptake by the receptor; conversely, some bile acid substrates of NTCP inhibit HBV and HDV entry. Mutations of NTCP residues critical for bile salts binding severely impair viral infection by HDV and HBV; to a lesser extent, the residues important for sodium binding also inhibit viral infection. The mutation S267F, corresponding to a single nucleotide polymorphism (SNP) found in about 9% of the East Asian population, renders NTCP without either taurocholate transporting activity or the ability to support HBV or HDV infection in cell culture. These results demonstrate that molecular determinants critical for HBV and HDV entry overlap with that for bile salts uptake by NTCP, indicating that viral infection may interfere with the normal function of NTCP, and bile acids and their derivatives hold the potential for further development into antiviral drugs. IMPORTANCE Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), are important human pathogens. Available therapeutics against HBV are limited, and there is no drug that is clinically available for HDV infection. A liver bile acids transporter (sodium taurocholate cotransporting polypeptide [NTCP]) critical for maintaining homeostasis of bile acids serves as a functional receptor for HBV and HDV. We report here that the NTCP-binding lipopeptide that originates from the first 47 amino acids of the pre-S1 domain of the HBV L protein blocks taurocholate transport. Some bile salts dose dependently inhibit HBV and HDV infection mediated by NTCP; molecular determinants of NTCP critical for HBV and HDV entry overlap with that for bile acids transport. This work advances our understanding of NTCP-mediated HBV and HDV infection in relation to NTCP's physiological function. Our results also suggest that bile acids or their derivatives hold potential for development into novel drugs against HBV and HDV infection. PMID:24390325
Chiesa, Luca; Nobile, Maria; Panseri, Sara; Vigo, Daniele; Pavlovic, Radmila; Arioli, Francesco
2015-12-01
The administration of boldenone and androstadienedione to cattle is forbidden in the European Union, while prednisolone is permitted for therapeutic purposes. They are pseudoendogenous substances (endogenously produced under certain circumstances). The commonly used matrices in control analyses are urine or liver. With the aim of improving the residue controls, we previously validated a method for steroid analysis in bile. We now compare urine (a 'classic' matrix) to bile, both collected at the slaughterhouse, to understand whether the detection of steroids in the latter is easier. With the aim of having clearer results, we tested the presence of the synthetic corticosteroid dexamethasone. The results show that bile does not substantially improve the detection of boldenone, or its conjugates, prednisolone and prednisone. Dexamethasone, instead, was found in 10 out of 53 bovine bile samples, but only in one urine sample from the same animals. Bile could constitute a novel matrix for the analysis of residues in food-producing animals, and possibly not only of synthetic corticosteroids. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cheng, Yaofeng; Chen, Shenjue; Freeden, Chris; Chen, Weiqi; Zhang, Yueping; Abraham, Pamela; Nelson, David M; Humphreys, W Griffith; Gan, Jinping; Lai, Yurong
2017-09-01
The interference of bile acid secretion through bile salt export pump (BSEP) inhibition is one of the mechanisms for troglitazone (TGZ)-induced hepatotoxicity. Here, we investigated the impact of single or repeated oral doses of TGZ (200 mg/kg/day, 7 days) on bile acid homoeostasis in wild-type (WT) and Bsep knockout (KO) rats. Following oral doses, plasma exposures of TGZ were not different between WT and KO rats, and were similar on day 1 and day 7. However, plasma exposures of the major metabolite, troglitazone sulfate (TS), in KO rats were 7.6- and 9.3-fold lower than in WT on day 1 and day 7, respectively, due to increased TS biliary excretion. With Bsep KO, the mRNA levels of multidrug resistance-associated protein 2 (Mrp2), Mrp3, Mrp4, Mdr1, breast cancer resistance protein (Bcrp), sodium taurocholate cotransporting polypeptide, small heterodimer partner, and Sult2A1 were significantly altered in KO rats. Following seven daily TGZ treatments, Cyp7A1 was significantly increased in both WT and KO rats. In the vehicle groups, plasma exposures of individual bile acids demonstrated variable changes in KO rats as compared with WT. WT rats dosed with TGZ showed an increase of many bile acid species in plasma on day 1, suggesting the inhibition of Bsep. Conversely, these changes returned to base levels on day 7. In KO rats, alterations of most bile acids were observed after seven doses of TGZ. Collectively, bile acid homeostasis in rats was regulated through bile acid synthesis and transport in response to Bsep deficiency and TGZ inhibition. Additionally, our study is the first to demonstrate that repeated TGZ doses can upregulate Cyp7A1 in rats. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Ursodeoxycholic acid treatment of vanishing bile duct syndromes
Pusl, Thomas; Beuers, Ulrich
2006-01-01
Vanishing bile duct syndromes (VBDS) are characterized by progressive loss of small intrahepatic ducts caused by a variety of different diseases leading to chronic cholestasis, cirrhosis, and premature death from liver failure. The majority of adult patients with VBDS suffer from primary biliary cirrhosis (PBC) and primary sclerosing cholangitis (PSC). Ursodeoxycholic acid (UDCA), a hydrophilic dihydroxy bile acid, is the only drug currently approved for the treatment of patients with PBC, and anticholestatic effects have been reported for several other cholestatic syndromes. Several potential mechanisms of action of UDCA have been proposed including stimulation of hepatobiliary secretion, inhibition of apoptosis and protection of cholangiocytes against toxic effects of hydrophobic bile acids. PMID:16773706
Mosińska, Paula; Fichna, Jakub; Storr, Martin
2015-06-28
Chronic idiopathic constipation is a common disorder of the gastrointestinal tract that encompasses a wide profile of symptoms. Current treatment options for chronic idiopathic constipation are of limited value; therefore, a novel strategy is necessary with an increased effectiveness and safety. Recently, the inhibition of the ileal bile acid transporter has become a promising target for constipation-associated diseases. Enhanced delivery of bile acids into the colon achieves an accelerated colonic transit, increased stool frequency, and relief of constipation-related symptoms. This article provides insight into the mechanism of action of ileal bile acid transporter inhibitors and discusses their potential clinical use for pharmacotherapy of constipation in chronic idiopathic constipation.
Biliary Polyunsaturated Fatty Acids and Telocytes in Gallstone Disease
Pasternak, Artur; Bugajska, Jolanta; Szura, Mirosław; Walocha, Jerzy A.; Matyja, Andrzej; Gajda, Mariusz; Sztefko, Krystyna; Gil, Krzysztof
2017-01-01
It has been reported that intake of ω-3 polyunsaturated fatty acids (PUFAs) reduces the risk of coronary heart disease. It also influences bile composition, decreasing biliary cholesterol saturation in the bile of patients with gallstones. In addition to bile composition disturbances, gallbladder hypomotility must be a cofactor in the pathogenesis of cholelithiasis, as it leads to the prolonged nucleation phase. Our current knowledge about gallbladder motility has been enhanced by the study of a population of newly described interstitial (stromal) cells—telocytes (TCs). The purpose of this study was to determine whether TC loss, reported by our team recently, might be related to bile lithogenicity, expressed as cholesterol saturation index or the difference in biliary PUFA profiles in patients who suffer from cholecystolithiasis and those not affected by this disease. We determined biliary lipid composition including the fatty acid composition of the phospholipid species in bile. Thus, we investigated whether differences in biliary fatty acid profiles (ω-3 PUFA and ω-6 PUFA) in gallbladder bile may influence its lithogenicity and the quantity of TCs within the gallbladder wall. We conclude that the altered PUFA concentrations in the gallbladder bile, with elevation of ω-6 PUFA, constitute important factors influencing TC density in the gallbladder wall, being one of the possible pathophysiological components for the gallstone disease development. This study established that altered bile composition in patients with cholelithiasis may influence TC quantity within the gallbladder muscle, and we concluded that reduction in TC number may be a consequence of the supersaturated bile toxicity, while some other bile components (ω-3 PUFA, glycocholic, and taurocholic acids) may exert protective effects on TC and thus possibly influence the mechanisms regulating gallbladder and extrahepatic bile duct motility. Thus, ω-3 PUFA may represent a possible option to prevent formation of cholesterol gallstones. PMID:27502173
Kinetic characterization of bile salt transport by human NTCP (SLC10A1).
Jani, Márton; Beéry, Erzsébet; Heslop, Teresa; Tóth, Beáta; Jagota, Bhavana; Kis, Emese; Kevin Park, B; Krajcsi, Peter; Weaver, Richard J
2018-02-01
The transport of bile acids facilitated by NTCP is an important factor in establishing bile flow. In this study, we examine the kinetics associated with human NTCP-dependent transport of two quantitatively important bile acids comprising the human bile acid pool, chenodeoxycholic acid and glycine-chenodeoxycholate, and secondary bile salt, 3-sulfo-glycolithocholate of potential toxicological significance. The study employed human NTCP overexpressing Chinese Hamster Ovary cells and results compared with taurocholate, a prototypical bile salt commonly used in transporter studies. GCDC and 3S-GLC but not CDCA were transported by NTCP. The efficient uptake of GCDC, TCA and 3S-GLC by NTCP enabled the determination of kinetics. GCDC displayed a lower K M (0.569±0.318μM) than TCA (6.44±3.83μM) and 3S-GLC (3.78±1.17μM). The apparent CL int value for GCDC was 20-fold greater (153±53μl/mg protein/min) than the apparent CL int for TCA (6.92±4.72μl/mg protein/min) and apparent CL int for 3S-GLC (8.05±1.33μl/mg protein/min). These kinetic results provide important complementary data on the substrate selectivity and specificity of NTCP to transport bile acids. NTCP transports GCDC with greater efficiency than TCA and has the same efficacy for 3S-GLC and TCA. Copyright © 2017. Published by Elsevier Ltd.
Scheurlen, C; Kruis, W; Büll, U; Stellaard, F; Lang, P; Paumgartner, G
1986-01-01
Measurement of the retention of 23-75Se-25-homotaurocholic acid (SeHCAT) has been suggested as a new test for ileal function. We investigated 31 patients with chronic diarrhea, 10 with ileal Crohn's disease and 21 with diarrhea but without ileal disease. The whole-body retention half-life of 1 mu Ci SeHCAT was determined and compared to the fecal content of total and individual bile acids. Patients with ileal disease had increased primary fecal bile acids (chenodeoxycholic acid: mean 6.95 mg/g dry weight, range 3.15-10.6 mg/g; cholic acid: mean 18.15 mg/g, range 10.3-33.9 mg/g) and a short SeHCAT retention (mean 11.9 h, range 2-24 h), whereas patients with intact ileum had normal fecal bile acids and a SeHCAT retention of 85.9 h (range 28-216 h). SeHCAT retention half-life differentiated well between patients with ileal disease and patients with normal ileum, thus indicating the SeHCAT test as a valid investigation method for detection of primary bile acid malabsorption in patients with chronic diarrhea and ileal dysfunction.
Jena, Prasant K; Sheng, Lili; Liu, Hui-Xin; Kalanetra, Karen M; Mirsoian, Annie; Murphy, William J; French, Samuel W; Krishnan, Viswanathan V; Mills, David A; Wan, Yu-Jui Yvonne
2017-08-01
Patients who have liver cirrhosis and liver cancer also have reduced farnesoid X receptor (FXR). The current study analyzes the effect of diet through microbiota that affect hepatic inflammation in FXR knockout (KO) mice. Wild-type and FXR KO mice were on a control (CD) or Western diet (WD) for 10 months. In addition, both CD- and WD-fed FXR KO male mice, which had hepatic lymphocyte and neutrophil infiltration, were treated by vancomycin, polymyxin B, and Abx (ampicillin, neomycin, metronidazole, and vancomycin). Mice were subjected to morphological analysis as well as gut microbiota and bile acid profiling. Male WD-fed FXR KO mice had the most severe steatohepatitis. FXR KO also had reduced Firmicutes and increased Proteobacteria, which could be reversed by Abx. In addition, Abx eliminated hepatic neutrophils and lymphocytes in CD-fed, but not WD-fed, FXR KO mice. Proteobacteria and Bacteroidetes persisted in WD-fed FXR KO mice even after Abx treatment. Only polymyxin B could reduce hepatic lymphocytes in WD-fed FXR KO mice. The reduced hepatic inflammation by antibiotics was accompanied by decreased free and conjugated secondary bile acids as well as changes in gut microbiota. Our data revealed that Lactococcus, Lactobacillus, and Coprococcus protect the liver from inflammation. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism.
Rižner, Tea Lanišnik; Penning, Trevor M
2014-01-01
Human aldo-keto reductases AKR1C1-AKR1C4 and AKR1D1 play essential roles in the metabolism of all steroid hormones, the biosynthesis of neurosteroids and bile acids, the metabolism of conjugated steroids, and synthetic therapeutic steroids. These enzymes catalyze NADPH dependent reductions at the C3, C5, C17 and C20 positions on the steroid nucleus and side-chain. AKR1C1-AKR1C4 act as 3-keto, 17-keto and 20-ketosteroid reductases to varying extents, while AKR1D1 acts as the sole Δ(4)-3-ketosteroid-5β-reductase (steroid 5β-reductase) in humans. AKR1 enzymes control the concentrations of active ligands for nuclear receptors and control their ligand occupancy and trans-activation, they also regulate the amount of neurosteroids that can modulate the activity of GABAA and NMDA receptors. As such they are involved in the pre-receptor regulation of nuclear and membrane bound receptors. Altered expression of individual AKR1C genes is related to development of prostate, breast, and endometrial cancer. Mutations in AKR1C1 and AKR1C4 are responsible for sexual development dysgenesis and mutations in AKR1D1 are causative in bile-acid deficiency. Copyright © 2013 Elsevier Inc. All rights reserved.
Jarocki, Piotr; Podleśny, Marcin; Glibowski, Paweł; Targoński, Zdzisław
2014-01-01
This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche.
Sinakos, Emmanouil; Marschall, Hanns-Ulrich; Kowdley, Kris V.; Befeler, Alex; Keach, Jill; Lindor, Keith
2010-01-01
High-dose (28-30mg/kg/day) ursodeoxycholic acid (UDCA) treatment improves serum liver tests in patients with primary sclerosing cholangitis (PSC) but does not improve survival and is associated with increased rates of serious adverse events. The mechanism for the latter undesired effect remains unclear. High-dose UDCA could result in the production of hepatotoxic bile acids, such as lithocholic acid (LCA), due to limited small bowel absorption of UDCA and conversion of UDCA by bacteria in the colon. We determined the serum bile acid composition in 56 patients with PSC previously enrolled in a randomized, double-blind controlled trial of high dose UDCA versus placebo. Samples for analysis were obtained at baseline and at the end of treatment. The mean changes in UDCA (16.86 vs 0.05 μmol/L) and total bile acid (17.21 vs −0.55 μmol/L) levels were significantly higher in the UDCA group (n=29) compared to placebo (n=27) when pretreatment levels were compared (p<0.0001). LCA was also markedly increased (0.22 vs 0.01 μmol/L) in the UDCA group compared to placebo (p=0.001). No significant changes were detected for cholic acid (CA), deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA). Patients (n=9) in the UDCA group who reached clinical endpoints of disease progression (development of cirrhosis, varices, liver transplantation or death) tend to have greater increase in their post-treatment total bile acid levels (34.99 vs 9.21 μmol/L) (p<0.08) compared to those who did not. Conclusion High-dose UDCA treatment in PSC patients results in marked UDCA enrichment and significant expansion of the total serum bile acid pool including lithocholic acid. PMID:20564380
Crawford, Robert W.; Keestra, A. Marijke; Winter, Sebastian E.; Xavier, Mariana N.; Tsolis, Renée M.; Tolstikov, Vladimir; Bäumler, Andreas J.
2012-01-01
Intestinal inflammation changes the luminal habitat for microbes through mechanisms that have not been fully resolved. We noticed that the FepE regulator of very long O-antigen chain assembly in the enteric pathogen Salmonella enterica serotype Typhimurium (S. Typhimurium) conferred a luminal fitness advantage in the mouse colitis model. However, a fepE mutant was not defective for survival in tissue, resistance to complement or resistance to polymyxin B. We performed metabolite profiling to identify changes in the luminal habitat that accompany S. Typhimurium-induced colitis. This analysis suggested that S. Typhimurium-induced colitis increased the luminal concentrations of total bile acids. A mutation in fepE significantly reduced the minimal inhibitory concentration (MIC) of S. Typhimurium for bile acids in vitro. Oral administration of the bile acid sequestrant cholestyramine resin lowered the concentrations of total bile acids in colon contents during S. Typhimurium infection and significantly reduced the luminal fitness advantage conferred by the fepE gene in the mouse colitis model. Collectively, these data suggested that very long O-antigen chains function in bile acid resistance of S. Typhimurium, a property conferring a fitness advantage during luminal growth in the inflamed intestine. PMID:23028318
Suhr, O; Danielsson, A; Steen, L
1992-01-01
Gastrointestinal dysfunction due to autonomous neuropathy is a complication described in various diseases such as diabetes mellitus, multiple sclerosis, and familial amyloidosis with polyneuropathy. We present the results of a prospective investigation of bile acid malabsorption in 17 patients with familial amyloidosis by means of 75Se-labelled homocholic-tauro acid (SeHCAT). The diagnosis was in all cases verified by the DNA test for mutation of transthyretin in position 30. Small-intestinal biopsy specimens were examined for deposits of amyloid, and the presence of gastric retention was evaluated by gastroscopy. In addition, the patients were investigated for bacterial overgrowth by means of the bile acid breath test (BABT). A high frequency of abnormal BABT results (44%) was encountered. However, 65% also had abnormal low SeHCAT values, indicating bile acid malabsorption. Only two patients had abnormal BABT and normal SeHCAT results, indicating bacterial contamination of the small intestine. Bile acid losses increased with the duration of gastrointestinal symptoms. Significantly lower SeHCAT values were encountered in patients with gastric retention, whereas the occurrence of amyloid deposits in small-intestinal biopsy specimens was without effect on SeHCAT retention. Bile acid malabsorption is frequently encountered in familial amyloidosis with polyneuropathy and seems to be more closely associated with gastrointestinal motility dysfunction than with amyloid deposits in the intestinal mucosa.
Chronic diarrhoea after radiotherapy for gynaecological cancer: occurrence and aetiology.
Danielsson, A; Nyhlin, H; Persson, H; Stendahl, U; Stenling, R; Suhr, O
1991-01-01
The occurrence of chronic diarrhoea was evaluated in 173 consecutive patients previously treated with radiation for gynaecological cancer. A survey of gastrointestinal symptoms showed a high frequency of diarrhoea; 13% of the patients had 21 or more bowel movements a week and 3% had 28 or more. Significantly more patients who had a cholecystectomy were in the group with diarrhoea (chi 2 = 6.26; p less than 0.02). Twenty patients with chronic or intermittent diarrhoea were subject to extended gastrointestinal investigation. Bile acid malabsorption was evaluated by the 75Selenahomocholic acid-taurine test (SeHCAT). Bile acid malabsorption was found in 13 (65%) of the 20 patients further investigated, of whom seven had extremely low whole body retention values, which is consistent with severe malabsorption. The results suggest that bile acid malabsorption is a common cause of diarrhoea after radiation treatment for gynaecological cancer. Bacterial contamination was diagnosed in nine patients (45%) by the [14C]-D-xylose breath test or by the cholyl-[14C]-glycine breath test in combination with a normal test for bile acid malabsorption. All patients with vitamin B-12 deficiency, who were tested for bile acid malabsorption, had low retention times for the SeHCAT (p = 0.05). A significant decline in the frequency of diarrhoea was found after treatment with antibiotics or bile acid sequestrants, or both, in combination with a reduced fat diet. PMID:1955174
Kramer, W; Sauber, K; Baringhaus, K H; Kurz, M; Stengelin, S; Lange, G; Corsiero, D; Girbig, F; König, W; Weyland, C
2001-03-09
The ileal lipid-binding protein (ILBP) is the only physiologically relevant bile acid-binding protein in the cytosol of ileocytes. To identify the bile acid-binding site(s) of ILBP, recombinant rabbit ILBP photolabeled with 3-azi- and 7-azi-derivatives of cholyltaurine was analyzed by a combination of enzymatic fragmentation, gel electrophoresis, and matrix-assisted laser desorption ionization (MALDI)-mass spectrometry. The attachment site of the 3-position of cholyltaurine was localized to the amino acid triplet His(100)-Thr(101)-Ser(102) using the photoreactive 3,3-azo-derivative of cholyltaurine. With the corresponding 7,7-azo-derivative, the attachment point of the 7-position could be localized to the C-terminal part (position 112-128) as well as to the N-terminal part suggesting more than one binding site for bile acids. By chemical modification and NMR structure of ILBP, arginine residue 122 was identified as the probable contact point for the negatively charged side chain of cholyltaurine. Consequently, bile acids bind to ILBP with the steroid nucleus deep inside the protein cavity and the negatively charged side chain near the entry portal. The combination of photoaffinity labeling, enzymatic fragmentation, MALDI-mass spectrometry, and NMR structure was successfully used to determine the topology of bile acid binding to ILBP.
Lanzini, A; De Tavonatti, M G; Panarotto, B; Scalia, S; Mora, A; Benini, F; Baisini, O; Lanzarotto, F
2003-01-01
Background: Whether ileal absorption of bile acid is up or downregulated in chronic cholestasis is still debated, and most evidence has come from animal studies. Aims: To compare ileal bile acid absorption in patients with primary biliary cirrhosis (PBC) and in healthy control subjects, and to assess the effect of ursodeoxycholic acid (UDCA). Patients: We studied 14 PBC patients before and during (n=11) UDCA administration, 14 healthy control subjects, and 14 Crohn’s disease patients (as disease controls). Methods: We used cholescintigraphy to measure retention in the enterohepatic circulation over five successive days of the bile acid analogue 75Se-homocholic acid-taurine (75SeHCAT) as an index of ileal bile acid absorption. Results were expressed as 75SeHCAT fractional turnover rate (FTR) and t½12. Results: 75SeHCAT FTR was 0.19 (0.11)/day, 0.34 (0.11)/day (p<0.001), and 0.83 (0.32)/day in PBC patients, healthy controls (p<0.0001), and Crohn’s patients (p<0.001), respectively, which increased to 0.36 (0.16)/day in PBC patients during UDCA treatment (p<0.005). 75SeHCAT t½12 was 4.8 (2.1) days in PBC patients, 2.2 (0.5) days (p<0.001) in healthy controls, and 1.0 (0.5) days (p<0.001) in Crohn’s disease patients. 75SeHCAT t½12 decreased to 2.2 (0.93) days (p< 0.001) in PBC patients during UDCA treatment. Conclusions: Our results support the concept that ileal bile acid absorption is upregulated in PBC patients, and that this effect may contribute towards damaging the cholestatic liver. This upregulation of bile acid absorption is abolished by UDCA. PMID:12912872
Bile acid malabsorption in chronic diarrhea: Pathophysiology and treatment
Barkun, Alan; Love, Jonathan; Gould, Michael; Pluta, Henryk; Steinhart, A Hillary
2013-01-01
BACKGROUND: Bile acid malabsorption (BAM) is a common but frequently under-recognized cause of chronic diarrhea, with an estimated prevalence of 4% to 5%. METHODS: The published literature for the period 1965 to 2012 was examined for articles regarding the pathophysiology and treatment of BAM to provide an overview of the management of BAM in gastroenterology practice. RESULTS: BAM is classified as type 1 (secondary to ileal dysfunction), type 2 (idiopathic) or type 3 (secondary to gastrointestinal disorders not associated with ileal dysfunction). The estimated prevalence of BAM is >90% in patients with resected Crohn disease (CD) and 11% to 52% of unresected CD patients (type 1); 33% in diarrhea-predominant irritable bowel syndrome (type 2); and is a frequent finding postcholecystectomy or postvagotomy (type 3). Investigations include BAM fecal bile acid assay, 23-seleno-25-homo-tauro-cholic acid (SeHCAT) testing and high-performance liquid chromatography of serum 7-α-OH-4-cholesten-3-one (C4), to determine the level of bile acid synthesis. A less time-consuming and expensive alternative in practice is an empirical trial of the bile acid sequestering agent cholestyramine. An estimated 70% to 96% of chronic diarrhea patients with BAM respond to short-course cholestyramine. Adverse effects include constipation, nausea, borborygmi, flatulence, bloating and abdominal pain. Other bile acid sequestering agents, such as colestipol and colesevelam, are currently being investigated for the treatment of BAM-associated diarrhea. CONCLUSIONS: BAM is a common cause of chronic diarrhea presenting in gastroenterology practice. In accordance with current guidelines, an empirical trial of a bile acid sequestering agent is warranted as part of the clinical workup to rule out BAM. PMID:24199211
Prevalence of, and predictors of, bile acid malabsorption in outpatients with chronic diarrhea.
Gracie, D J; Kane, J S; Mumtaz, S; Scarsbrook, A F; Chowdhury, F U; Ford, A C
2012-11-01
Many physicians do not consider the diagnosis of bile acid malabsorption in patients with chronic diarrhea, or do not have access to testing. We examined yield of 23-seleno-25-homo-tauro-cholic acid (SeHCAT) scanning in chronic diarrhea patients, and attempted to identify predictors of a positive test. Consecutive patients with chronic diarrhea undergoing SeHCAT scan over a 7-year period were identified retrospectively. Bile acid malabsorption was defined as present at a retention of <15%. Medical records were reviewed to obtain information regarding proposed risk factors. Gastrointestinal symptoms were recorded, and patients were classified as having diarrhea-predominant irritable bowel syndrome (IBS-D) if they reported abdominal pain or discomfort. Independent risk factors were assessed using multivariate logistic regression, and odds ratios (ORs) with 99% confidence intervals (CIs) were calculated. Of 373 patients, 190 (50.9%) had bile acid malabsorption. Previous cholecystectomy (OR 2.51; 99% CI 1.10-5.77), terminal ileal resection or right hemicolectomy for Crohn's disease (OR 12.4; 99% CI 2.42-63.8), and terminal ileal resection or right hemicolectomy for other reasons (OR 7.94; 99% CI 1.02-61.6) were associated with its presence. Seventy-seven patients had IBS-D, and 21 (27.3%) tested positive. There were 168 patients with no risk factors for a positive SeHCAT scan, other than chronic diarrhea, and 63 (37.5%) had bile acid malabsorption. Bile acid malabsorption was present in 50% of patients undergoing SeHCAT scanning. Almost 40% of those without risk factors had evidence of bile acid malabsorption, and in those meeting criteria for IBS-D prevalence was almost 30%. © 2012 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Zidong Donna; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu
Previous studies showed glucose and insulin signaling can regulate bile acid (BA) metabolism during fasting or feeding. However, limited knowledge is available on the effect of calorie restriction (CR), a well-known anti-aging intervention, on BA homeostasis. To address this, the present study utilized a “dose–response” model of CR, where male C57BL/6 mice were fed 0, 15, 30, or 40% CR diets for one month, followed by BA profiling in various compartments of the enterohepatic circulation by UPLC-MS/MS technique. This study showed that 40% CR increased the BA pool size (162%) as well as total BAs in serum, gallbladder, and smallmore » intestinal contents. In addition, CR “dose-dependently” increased the concentrations of tauro-cholic acid (TCA) and many secondary BAs (produced by intestinal bacteria) in serum, such as tauro-deoxycholic acid (TDCA), DCA, lithocholic acid, ω-muricholic acid (ωMCA), and hyodeoxycholic acid. Notably, 40% CR increased TDCA by over 1000% (serum, liver, and gallbladder). Interestingly, 40% CR increased the proportion of 12α-hydroxylated BAs (CA and DCA), which correlated with improved glucose tolerance and lipid parameters. The CR-induced increase in BAs correlated with increased expression of BA-synthetic (Cyp7a1) and conjugating enzymes (BAL), and the ileal BA-binding protein (Ibabp). These results suggest that CR increases BAs in male mice possibly through orchestrated increases in BA synthesis and conjugation in liver as well as intracellular transport in ileum. - Highlights: • Dose response effects of short-term CR on BA homeostasis in male mice. • CR increased the BA pool size and many individual BAs. • CR altered BA composition (increased proportion of 12α-hydroxylated BAs). • Increased mRNAs of BA enzymes in liver (Cyp7a1 and BAL) and ileal BA binding protein.« less
History of Hepatic Bile Formation: Old Problems, New Approaches
ERIC Educational Resources Information Center
Javitt, Norman B.
2014-01-01
Studies of hepatic bile formation reported in 1958 established that it was an osmotically generated water flow. Intravenous infusion of sodium taurocholate established a high correlation between hepatic bile flow and bile acid excretion. Secretin, a hormone that stimulates bicarbonate secretion, was also found to increase hepatic bile flow. The…
Takahama, Umeo; Hirota, Sachiko
2011-06-08
During the digestion of starch in foods, starch is mixed with bile in the duodenum. Because fatty acids and some kinds of polyphenols could bind to starch, it was postulated that bile salts might also bind to starch. The purpose of this paper is to study the effects of bile and bile salts on starch/iodine complex formation and pancreatin-induced starch digestion. Bile suppressed starch/iodine complex formation and inhibited pancreatin-induced starch digestion slightly in control buckwheat starch, but did so significantly in buckwheat starch from which fatty acids and polyphenols had been extracted. Such significant suppression and inhibition by bile were also observed in a reagent soluble starch. The effects of cholate and taurocholate on the starch/iodine complex formation and the pancreatin-induced starch digestion were essentially the same as those of bile. Bile, cholate, and taurocholate suppressed amylose/iodine complex formation more significantly than amylopectin/iodine complex formation and inhibited pancreatin-induced amylose digestion more effectively than the digestion of amylopectin. It is concluded from the results that bile salts could bind to starch, especially amylose, the helical structures of which were not occupied by other molecules such as fatty acids and polyphenols, and that the binding resulted in the inhibition of starch digestion by pancreatin. The conclusion suggests that the function of bile salts can be discussed from the point of not only lipid digestion but also starch digestion.
Qi, Yunpeng; Jiang, Changtao; Cheng, Jie; Krausz, Kristopher W.; Li, Tiangang; Ferrell, Jessica M.; Gonzalez, Frank J.; Chiang, John Y.L.
2014-01-01
Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. PMID:24796972
IL-17A Synergistically Enhances Bile Acid–Induced Inflammation during Obstructive Cholestasis
O'Brien, Kate M.; Allen, Katryn M.; Rockwell, Cheryl E.; Towery, Keara; Luyendyk, James P.; Copple, Bryan L.
2014-01-01
During obstructive cholestasis, increased concentrations of bile acids activate ERK1/2 in hepatocytes, which up-regulates early growth response factor 1, a key regulator of proinflammatory cytokines, such as macrophage inflammatory protein 2 (MIP-2), which, in turn, exacerbates cholestatic liver injury. Recent studies have indicated that IL-17A contributes to hepatic inflammation during obstructive cholestasis, suggesting that bile acids and IL-17A may interact to regulate hepatic inflammatory responses. We treated mice with an IL-17A neutralizing antibody or control IgG and subjected them to bile duct ligation. Neutralization of IL-17A prevented up-regulation of proinflammatory cytokines, hepatic neutrophil accumulation, and liver injury, indicating an important role for IL-17A in neutrophilic inflammation during cholestasis. Treatment of primary mouse hepatocytes with taurocholic acid (TCA) increased the expression of MIP-2. Co-treatment with IL-17A synergistically enhanced up-regulation of MIP-2 by TCA. In contrast to MIP-2, IL-17A did not affect up-regulation of Egr-1 by TCA, indicating that IL-17A does not affect bile acid–induced activation of signaling pathways upstream of early growth response factor 1. In addition, bile acids increased expression of IL-23, a key regulator of IL-17A production in hepatocytes in vitro and in vivo. Collectively, these data identify bile acids as novel triggers of the IL-23/IL-17A axis and suggest that IL-17A promotes hepatic inflammation during cholestasis by synergistically enhancing bile acid–induced production of proinflammatory cytokines by hepatocytes. PMID:24012680
A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects.
Lee, Jae Man; Lee, Yoon Kwang; Mamrosh, Jennifer L; Busby, Scott A; Griffin, Patrick R; Pathak, Manish C; Ortlund, Eric A; Moore, David D
2011-05-25
Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine (DLPC)) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver-specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signalling pathway that regulates bile acid metabolism and glucose homeostasis.
Boldine enhances bile production in rats via osmotic and farnesoid X receptor dependent mechanisms.
Cermanova, Jolana; Kadova, Zuzana; Zagorova, Marie; Hroch, Milos; Tomsik, Pavel; Nachtigal, Petr; Kudlackova, Zdenka; Pavek, Petr; Dubecka, Michaela; Ceckova, Martina; Staud, Frantisek; Laho, Tomas; Micuda, Stanislav
2015-05-15
Boldine, the major alkaloid from the Chilean Boldo tree, is used in traditional medicine to support bile production, but evidence to support this function is controversial. We analyzed the choleretic potential of boldine, including its molecular background. The acute- and long-term effects of boldine were evaluated in rats either during intravenous infusion or after 28-day oral treatment. Infusion of boldine instantly increased the bile flow 1.4-fold in healthy rats as well as in animals with Mrp2 deficiency or ethinylestradiol induced cholestasis. This effect was not associated with a corresponding increase in bile acid or glutathione biliary excretion, indicating that the effect is not related to stimulation of either bile acid dependent or independent mechanisms of bile formation and points to the osmotic activity of boldine itself. We subsequently analyzed bile production under conditions of changing biliary excretion of boldine after bolus intravenous administration and found strong correlations between both parameters. HPLC analysis showed that bile concentrations of boldine above 10 μM were required for induction of choleresis. Importantly, long-term pretreatment, when the bile collection study was performed 24-h after the last administration of boldine, also accelerated bile formation despite undetectable levels of the compound in bile. The effect paralleled upregulation of the Bsep transporter and increased biliary clearance of its substrates, bile acids. We consequently confirmed the ability of boldine to stimulate the Bsep transcriptional regulator, FXR receptor. In conclusion, our study clarified the mechanisms and circumstances surrounding the choleretic activity of boldine. Copyright © 2015 Elsevier Inc. All rights reserved.
[Combined action of nitrofuran preparations and bile acids on staphylococci].
Tkachuk, N I
1984-03-01
The effect of cholic, glycocholic and deoxycholic bile acids on the antimicrobial activity of furacin, furadonin, furagin and furoxone was studied with the use of collection strains and fresh isolates of staphylococci. The method of dilutions in liquid media was used. Cholic and glycocholic acids lowered the MIC of furacin, furadonin, furoxone and furagin with respect to the collection strains by 4-16, 5, 4-6 and 22-37 times, respectively. The potentiating effect of deoxycholic acid on the nitrofuran drugs was even more pronounced. Thus, when the nitrofurans were used in combination with deoxycholic acid, their MIC dropped by 16-114 times. A significant increase in the antimicrobial activity of the nitrofurans under the effect of the bile acids was also observed with respect to the fresh isolates of Staphylococcus, while it was somewhat lower. The subbacteriostatic doses of cholic, glycocholic and deoxycholic bile acids also increased the bactericidal effect of the nitrofuran drugs. The minimum bactericidal concentrations (MBC) of furacin, furoxone, furadonin and furagin decreased from 12.5, 2.08, 25.0 and 1.82 to 0.78, 0.26, 2.34 and 0.032 micrograms/ml, respectively. The most pronounced decrease in the MBC was observed under the effect of deoxycholic acid. Therefore, the bile acids potentiated the nitrofuran antistaphylococcal activity. The combinations of deoxycholic acid with furagin or furoxone were the most effective.
Mroz, Magdalena S; Lajczak, Natalia K; Goggins, Bridie J; Keely, Simon; Keely, Stephen J
2018-03-01
The intestinal epithelium constitutes an innate barrier which, upon injury, undergoes self-repair processes known as restitution. Although bile acids are known as important regulators of epithelial function in health and disease, their effects on wound healing processes are not yet clear. Here we set out to investigate the effects of the colonic bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on epithelial restitution. Wound healing in T 84 cell monolayers grown on transparent, permeable supports was assessed over 48 h with or without bile acids. Cell migration was measured in Boyden chambers. mRNA and protein expression were measured by RT-PCR and Western blotting. DCA (50-150 µM) significantly inhibited wound closure in cultured epithelial monolayers and attenuated cell migration in Boyden chamber assays. DCA also induced nuclear accumulation of the farnesoid X receptor (FXR), whereas an FXR agonist, GW4064 (10 µM), inhibited wound closure. Both DCA and GW4064 attenuated the expression of CFTR Cl - channels, whereas inhibition of CFTR activity with either CFTR- inh -172 (10 µM) or GlyH-101 (25 µM) also prevented wound healing. Promoter/reporter assays revealed that FXR-induced downregulation of CFTR is mediated at the transcriptional level. In contrast, UDCA (50-150 µM) enhanced wound healing in vitro and prevented the effects of DCA. Finally, DCA inhibited and UDCA promoted mucosal healing in an in vivo mouse model. In conclusion, these studies suggest bile acids are important regulators of epithelial wound healing and are therefore good targets for development of new drugs to modulate intestinal barrier function in disease treatment. NEW & NOTEWORTHY The secondary bile acid, deoxycholic acid, inhibits colonic epithelial wound healing, an effect which appears to be mediated by activation of the nuclear bile acid receptor, FXR, with subsequent downregulation of CFTR expression and activity. In contrast, ursodeoxycholic acid promotes wound healing, suggesting it may provide an alternative approach to prevent the losses of barrier function that are associated with mucosal inflammation in IBD patients.
Irinotecan (CPT-11)-induced elevation of bile acids potentiates suppression of IL-10 expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zhong-Ze; Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University, Dalian
Irinotecan (CPT-11) is a first-line anti-colon cancer drug, however; CPT-11-induced toxicity remains a key factor limiting its clinical application. To search for clues to the mechanism of CPT-11-induced toxicity, metabolomics was applied using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. Intraperitoneal injection of 50 mg/kg of CPT-11 induced loss of body weight, and intestine toxicity. Changes in gallbladder morphology suggested alterations in bile acid metabolism, as revealed at the molecular level by analysis of the liver, bile, and ileum metabolomes between the vehicle-treated control group and the CPT-11-treated group. Analysis of immune cell populations further showedmore » that CPT-11 treatment significantly decreased the IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes, but not in spleen or mesenteric lymph nodes. In vitro cell culture studies showed that the addition of bile acids deoxycholic acid and taurodeoxycholic acid accelerated the CPT-11-induced suppression of IL-10 secretion by activated CD4{sup +} naive T cells isolated from mouse splenocytes. These results showed that CPT-11 treatment caused metabolic changes in the composition of bile acids that altered CPT-11-induced suppression of IL-10 expression. - Highlights: • CPT-11 is an effective anticancer drug, but induced toxicity limits its application in the clinic. • CPT-11 decreased IL-10-producing CD4 T cell frequency in intestinal lamina propria lymphocytes. • CPT-11 altered the composition of bile acid metabolites, notably DCA and TDCA in liver, bile and intestine. • DCA and TDCA potentiated CPT-11-induced suppression of IL-10 secretion by active CD4{sup +} naive T cells.« less
Sereg-Bahar, M; Jerin, A; Jansa, R; Stabuc, B; Hocevar-Boltezar, I
2015-06-01
Laryngopharyngeal reflux (LPR) and biliary duodenogastric reflux can cause damage to the laryngeal mucosa and voice disorders. The aim of this study was to find out whether levels of pepsin and bile acids in the saliva can serve as diagnostic markers of LPR. A prospective comparative study. Twenty-eight patients with LPR proven via high-resolution manometry and combined multichannel intraluminal impedance and 24-h pH monitoring and 48 healthy controls without symptoms of LPR were included in the study. In the patients with LPR symptoms, oesophagogastroscopy with oesophageal biopsy was performed. The levels of total pepsin, active pepsin, bile acids and the pH of the saliva were determined in all participants and compared between the groups. Reflux symptom index (RSI) and reflux finding score (RFS) were also obtained and compared. The groups differed significantly in RSI (P = 0.00), RFS (P = 0.00), the levels of bile acids (P = 0.005) and total pepsin in saliva (P = 0.023). The levels of total pepsin and bile acids were about three times higher in the patients with LPR than in the healthy controls. There was a significant correlation between the RSI and RFS score and the level of total pepsin and bile acids in the saliva. Histopathological examination of the oesophageal biopsy taken 5 cm above the lower oesophageal sphincter confirmed reflux in almost 93% of patients with symptoms. The study results show that the levels of total pepsin and bile acids in saliva are significantly higher in patients with LPR than in the controls, thus suggesting this as a useful tool in the diagnosis of LPR and particularly biliary LPR. © 2014 John Wiley & Sons Ltd.
Baba, M; Schols, D; Nakashima, H; Pauwels, R; Parmentier, G; Meijer, D K; De Clercq, E
1989-01-01
Several cholic acid derivatives such as taurolithocholic acid, lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate, and glycolithocholic acid 3-sulfate were shown to inhibit selectively the replication of human immunodeficiency virus type 1 (HIV-1) in vitro. These compounds completely protected MT-4 cells against HIV-1-induced cytopathogenicity at a concentration of 100 micrograms/ml, whereas no toxicity for the host cells was observed at 200 micrograms/ml. They also inhibited HIV-1 antigen expression in HIV-1-infected CEM cells. The bile acids (cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid) did not show any inhibitory effect on HIV-1 replication at concentrations that were not toxic to the host (MT-4) cells. From a structure-function analysis of a number of cholic acid derivatives, the presence of either a sulfonate (as in the tauro conjugates) or a sulfate group as well as the "litho" configuration appeared to be necessary for the expression of anti-HIV-1 activity. The active cholic acid derivatives did not directly inactivate the virus particles at the concentrations that were not toxic to the host cells. Lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate, and glycolithocholic acid 3-sulfate, but not taurolithocholic acid, partially inhibited virus adsorption to MT-4 cells. These three compounds were also inhibitory to the reverse transcriptase activity associated with HIV-1.
Farsad-Naeimi, Alireza; Imani, Saeid; Arefhosseini, Seyed R; Alizadeh, Mohammad
2015-01-01
Conjugated linoleic acid (CLA) is a special fatty acid in dairy products with unique antioxidant and anti-cancerous effects. Kefir, a milk product, comprises normalized homogenized cow's milk, the fructose and lactulose syrup as well as a symbiotic starter which has improved probiotic characteristics. The study was aimed to discuss patents and to examine the effect of different safflower oil concentrations on CLA content of the kefir drink prepared by low-fat milk. Safflower oil was added at 0.1, 0.3 and 0.5% (V/V) to low-fat cow's milk and six formulations of kefir samples were prepared. The CLA content of the kefir products was measured at pH=6.0 and pH=6.8 by gas chromatography. Acid and bile tolerance of bacterial microenvironment in the products were also determined. Substitution of natural fat content of milk with safflower oil resulted in proportional increase in the CLA contents of kefir in a dose dependent manner. The highest concentration of CLA was found under 0.5% (V/V) of safflower oil at pH 6.0 and temperature of 37 °C. Adding the Safflower oil into milk used for kefir production, increased CLA content from 0.123 (g/100 g) in pure safflower free samples to 0.322 (g/100 g) in samples with 0.5% (V/V) of safflower oil. The current study revealed that substitution of safflower oil with natural fat of cow's milk may help the production of kefir samples with remarkable increase in CLA content of final product.
Chen, Karen Lee Ann; Liu, Xiaoji; Zhao, Yiru Chen; Hieronymi, Kadriye; Rossi, Gianluigi; Auvil, Loretta Sue; Welge, Michael; Bushell, Colleen; Smith, Rebecca Lee; Carlson, Kathryn E; Kim, Sung Hoon; Katzenellenbogen, John A; Miller, Michael Joseph; Madak-Erdogan, Zeynep
2018-05-25
Conjugated estrogens (CE) and Bazedoxifene (BZA) combination is used to alleviate menopause-associated symptoms in women. CE+BZA undergo first-pass-metabolism in the liver and deconjugation by gut microbiome via β-glucuronidase (GUS) enzyme inside the distal gut. To date, the impact of long-term exposure to CE+BZA on the gut microbiome or GUS activity has not been examined. Our study using an ovariectomized mouse model showed that CE+BZA administration did not affect the overall cecal or fecal microbiome community except that it decreased the abundance of Akkermansia, which was identified as a fecal biomarker correlated with weight gain. The fecal GUS activity was reduced significantly and was positively correlated with the abundance of Lactobacillaceae in the fecal microbiome. We further confirmed in Escherichia coli K12 and Lactobacillus gasseri ADH that Tamoxifen-, 4-hydroxy-Tamoxifen- and Estradiol-Glucuronides competed for GUS activity. Our study for the first time demonstrated that long-term estrogen supplementation directly modulated gut microbial GUS activity. Our findings implicate that long-term estrogen supplementation impacts composition of gut microbiota and microbial activity, which affects estrogen metabolism in the gut. Thus, it is possible to manipulate such activity to improve the efficacy and safety of long-term administered estrogens for postmenopausal women or breast cancer patients.
Shen, Zhuo-Wei; Luo, Meng-Yue; Hu, Hai-Hong; Zhou, Hui; Jiang, Hui-Di; Yu, Lu-Shan; Zeng, Su
2016-07-01
NTCP is specifically expressed on the basolateral membrane of hepatocytes, participating in the enterohepatic circulation of bile salts, especially conjugated bile salts, to maintain bile salts homeostasis. In addition, recent studies have found that NTCP is a functional receptor of HBV and HDV. Therefore, it is important to study the interaction between drugs and NTCP and identify the inhibitors/substrates of NTCP. In the present study, a LLC-PK1 cell model stably expressing human NTCP was established, which was simple and suitable for high throughput screening, and utilized to screen and verify the potential inhibitors of NTCP from 102 herbal medicinal ingredients. The results showed that ginkgolic acid (GA) (13 : 0), GA (15 : 1), GA (17 : 1), erythrosine B, silibinin, and emodin have inhibitory effects on NTCP uptake of TCNa in a concentration-dependent manner. Among them, GA (13 : 0) and GA (15 : 1) exhibited the stronger inhibitory effects, with IC50 values being less than 8.3 and 13.5 μmol·L(-1), respectively, than the classical inhibitor, cyclosporin A (CsA) (IC50 = 20.33 μmol·L(-1)). Further research demonstrated that GA (13 : 0), GA (15 : 1), GA (17 : 1), silibinin, and emodin were not substrates of NTCP. These findings might contribute to a better understanding of the disposition of the herbal ingredients in vivo, especially in biliary excretion. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Bile Cast Nephropathy in Cirrhotic Patients: Effects of Chronic Hyperbilirubinemia.
Foshat, Michelle; Ruff, Heather M; Fischer, Wayne G; Beach, Robert E; Fowler, Mark R; Ju, Hyunsu; Aronson, Judith F; Afrouzian, Marjan
2017-05-01
The aim of this study was to determine the prevalence of bile cast nephropathy (BCN) in autopsied cirrhotic patients and to correlate BCN with clinical and laboratory data to direct attention to this underrecognized renal complication of liver failure. We assessed 114 autopsy cases of cirrhosis for the presence of renal intratubular bile casts using Hall stain for bile. Presence of bile casts was correlated with etiology of cirrhosis, clinical and laboratory data, and histologic findings. Bile casts were identified in 55% of cases. The most common etiology of cirrhosis was hepatitis C virus (HCV) infection (52%), and serum creatinine ( P = .02) and serum urea nitrogen ( P = .01) were significantly higher in the Hall-positive group. Conjugated bilirubin was below 20 mg/dL in 90%, and levels below 10 mg/dL were noted in 80% of cases. To our knowledge, this is the largest study of BCN in human subjects and a first report describing the association of BCN with HCV-related cirrhosis. We demonstrated that in the face of protracted chronic hyperbilirubinemia, bile casts are formed at much lower bilirubin levels than previously thought. Furthermore, we proposed an algorithm to assist in better identification of bile casts. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Residue dynamics of quinaldine and TFM in rainbow trout
Hunn, J.B.; Allen, J.L.
1975-01-01
Study of the residue dynamics of 2-methylquinoline (quinaldine) and 3- trifluoromethy1-4-nitrophenol (TFM) in rainbow trout yielded the following findings: (1) Uptake and distribution of TFM by trout was influenced by the biotransformation of the lipid-soluble free phenol. No such effect was observed with quinaldine. (2) Disappearance of quinaldine and TFM from gallbladder bile was slower than from plasma or muscle during 24 hr of withdrawal in fresh water. (3) The conc of TFM conjugate may exceed that of free TFM in bile by a factor of 10 Super(3).
2014-01-01
Background Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain unknown. Methods The acute neuroinflammation model of intracerebroventricular (icv) injection with bacterial lipopolysaccharide (LPS) in C57BL/6 adult mice was used herein. Immunoreactivity against Iba-1, GFAP, and VCAM-1 was measured in coronal sections in the mice hippocampus. Primary cultures of microglial cells and astrocytes were obtained from neonatal Wistar rats. Glial cells were treated with proinflammatory stimuli to determine the effect of TUDCA on nitrite production and activation of inducible enzyme nitric oxide synthase (iNOS) and NFκB luciferase reporters. We studied the effect of TUDCA on transcriptional induction of iNOS and monocyte chemotactic protein-1 (MCP-1) mRNA as well as induction of protein expression and phosphorylation of different proteins from the NFκB pathway. Results TUDCA specifically reduces microglial reactivity in the hippocampus of mice treated by icv injection of LPS. TUDCA treatment reduced the production of nitrites by microglial cells and astrocytes induced by proinflammatory stimuli that led to transcriptional and translational diminution of the iNOS. This effect might be due to inhibition of the NFκB pathway, activated by proinflammatory stimuli. TUDCA decreased in vitro microglial migration induced by both IFN-γ and astrocytes treated with LPS plus IFN-γ. TUDCA inhibition of MCP-1 expression induced by proinflammatory stimuli could be in part responsible for this effect. VCAM-1 inmunoreactivity in the hippocampus of animals treated by icv LPS was reduced by TUDCA treatment, compared to animals treated with LPS alone. Conclusions We show a triple anti-inflammatory effect of TUDCA on glial cells: i) reduced glial cell activation, ii) reduced microglial cell migratory capacity, and iii) reduced expression of chemoattractants (e.g., MCP-1) and vascular adhesion proteins (e.g., VCAM-1) required for microglial migration and blood monocyte invasion to the CNS inflammation site. Our results present a novel TUDCA anti-inflammatory mechanism, with therapeutic implications for inflammatory CNS diseases. PMID:24645669
Hattori, Y; Tazuma, S; Yamashita, G; Ochi, H; Sunami, Y; Nishioka, T; Hyogo, H; Yasumiba, S; Kajihara, T; Nakai, K; Tsuboi, K; Asamoto, Y; Sakomoto, M; Kajiyama, G
2000-07-01
Phospholipase A2 plays a role in cholesterol gallstone development by hydrolyzing bile phospholipids into lysolecithin and free fatty acids. Lysolecithin and polyunsaturated free fatty acids are known to stimulate the synthesis and/or secretion of gallbladder mucin via a prostanoid pathway, leading to enhancing cholesterol crystal nucleation and growth, and therefore, the action of phospholipase A2 is associated, in part, with bile phospholipid fatty acid. To clarify this hypothesis, we evaluated the effect on bile lipid metastability in vitro of replacing phospholipids with lysolecithin and various free fatty acids. Supersaturated model biles were created with an identical composition (cholesterol saturation index, 1.8; egg yolk lecithin, 34 mM; taurocholate, 120 mM; cholesterol, 25 mM) except for 5%, 10%, or 20% replacement of egg yolk lecithin with a combination of palmitoyl-lysolecithin and a free fatty acid (palmitate, stearate, oleate, linoleate, or arachidonate), followed by time-sequentially monitoring of vesicles and cholesterol crystals using spectrophotometer and video-enhanced differential contrast microscopy. Replacement with hydrophilic fatty acids (linoleate and arachidonate) reduced vesicle formation and promoted cholesterol crystallization, whereas an enhanced cholesterol-holding capacity was evident after replacement with hydrophobic fatty acids (palmitate and stearate). These results indicate that the effect of phospholipase A2 on bile lithogenecity is modulated by the fatty acid species in bile phospholipids, and therefore, that the role of phospholipase A2 in cholesterol gallstone formation is dependent, in part, on biliary phospholipid species selection at the site of hepatic excretion.
Lee, Ja-Young; Arai, Hisashi; Nakamura, Yusuke; Fukiya, Satoru; Wada, Masaru; Yokota, Atsushi
2013-11-01
Bile acid composition in the colon is determined by bile acid flow in the intestines, the population of bile acid-converting bacteria, and the properties of the responsible bacterial enzymes. Ursodeoxycholic acid (UDCA) is regarded as a chemopreventive beneficial bile acid due to its low hydrophobicity. However, it is a minor constituent of human bile acids. Here, we characterized an UDCA-producing bacterium, N53, isolated from human feces. 16S rDNA sequence analysis identified this isolate as Ruminococcus gnavus, a novel UDCA-producer. The forward reaction that produces UDCA from 7-oxo-lithocholic acid was observed to have a growth-dependent conversion rate of 90-100% after culture in GAM broth containing 1 mM 7-oxo-lithocholic acid, while the reverse reaction was undetectable. The gene encoding 7β-hydroxysteroid dehydrogenase (7β-HSDH), which facilitates the UDCA-producing reaction, was cloned and overexpressed in Escherichia coli. Characterization of the purified 7β-HSDH revealed that the kcat/Km value was about 55-fold higher for the forward reaction than for the reverse reaction, indicating that the enzyme favors the UDCA-producing reaction. As R. gnavus is a common, core bacterium of the human gut microbiota, these results suggest that this bacterium plays a pivotal role in UDCA formation in the colon.
Lee, Ja-Young; Arai, Hisashi; Nakamura, Yusuke; Fukiya, Satoru; Wada, Masaru; Yokota, Atsushi
2013-01-01
Bile acid composition in the colon is determined by bile acid flow in the intestines, the population of bile acid-converting bacteria, and the properties of the responsible bacterial enzymes. Ursodeoxycholic acid (UDCA) is regarded as a chemopreventive beneficial bile acid due to its low hydrophobicity. However, it is a minor constituent of human bile acids. Here, we characterized an UDCA-producing bacterium, N53, isolated from human feces. 16S rDNA sequence analysis identified this isolate as Ruminococcus gnavus, a novel UDCA-producer. The forward reaction that produces UDCA from 7-oxo-lithocholic acid was observed to have a growth-dependent conversion rate of 90–100% after culture in GAM broth containing 1 mM 7-oxo-lithocholic acid, while the reverse reaction was undetectable. The gene encoding 7β-hydroxysteroid dehydrogenase (7β-HSDH), which facilitates the UDCA-producing reaction, was cloned and overexpressed in Escherichia coli. Characterization of the purified 7β-HSDH revealed that the kcat/Km value was about 55-fold higher for the forward reaction than for the reverse reaction, indicating that the enzyme favors the UDCA-producing reaction. As R. gnavus is a common, core bacterium of the human gut microbiota, these results suggest that this bacterium plays a pivotal role in UDCA formation in the colon. PMID:23729502
Antidiabetic actions of a phosphatidylcholine ligand for nuclear receptor LRH-1
Lee, Jae Man; Lee, Yoon Kwang; Mamrosh, Jennifer L.; Busby, Scott A.; Griffin, Patrick R.; Pathak, Manish C.; Ortlund, Eric A.; Moore, David D.
2011-01-01
Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (NR5A2) regulates bile acid biosynthesis1,2. Structural studies have identified phospholipids as potential LRH-1 ligands3–5, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine, DLPC) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signaling pathway that regulates bile acid metabolism and glucose homeostasis. PMID:21614002
Miyabe, Y; Amano, T; Deyashiki, Y; Hara, A; Tsukada, F
1995-01-01
We have investigated the steady-state kinetics for a cytosolic 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme of human liver and its inhibition by several bile acids and anti-inflammatory drugs such as indomethacin, flufemanic acid and naproxen. Initial velocity and product inhibition studies performed in the NADP(+)-linked (S)-1-indanol oxidation at pH 7.4 were consistent with a sequential ordered mechanism in which NADP+ binds first and leaves last. The bile acids and drugs, competitive inhibitors with respect to the alcohol substrate, exhibited uncompetitive inhibition with respect to the coenzyme, with Ki values less than 1 microM, whereas indomethacin exhibited noncompetitive inhibition (Ki < 24 microM). The kinetics of the inhibition by a mixture of the two inhibitors suggests that bile acids and drugs, except indomethacin, bind to overlapping sites at the active center of the enzyme-coenzyme binary complex.
Maillette de Buy Wenniger, Lucas J; Hohenester, Simon; Maroni, Luca; van Vliet, Sandra J; Oude Elferink, Ronald P; Beuers, Ulrich
2015-01-01
Destruction of cholangiocytes is the hallmark of chronic cholangiopathies such as primary biliary cirrhosis. Under physiologic conditions, cholangiocytes display a striking resistance to the high, millimolar concentrations of toxic bile salts present in bile. We recently showed that a 'biliary HCO3(-) umbrella', i.e. apical cholangiocellular HCO3(-) secretion, prevents cholangiotoxicity of bile acids, and speculated on a role for extracellular membrane-bound glycans in the stabilization of this protective layer. This paper summarizes published and thus far unpublished evidence supporting the role of the glycocalyx in stabilizing the 'biliary HCO3(-) umbrella' and thus preventing cholangiotoxicity of bile acids. The apical glycocalyx of a human cholangiocyte cell line and mouse liver sections were visualized by electron microscopy. FACS analysis was used to characterize the surface glycan profile of cultured human cholangiocytes. Using enzymatic digestion with neuraminidase the cholangiocyte glycocalyx was desialylated to test its protective function. Using lectin assays, we demonstrated that the main N-glycans in human and mouse cholangiocytes were sialylated biantennary structures, accompanied by high expression of the H-antigen (α1-2 fucose). Apical neuraminidase treatment induced desialylation without affecting cell viability, but lowered cholangiocellular resistance to bile acid-induced toxicity: both glycochenodeoxycholate and chenodeoxycholate (pKa ≥4), but not taurochenodeoxycholate (pKa <2), displayed cholangiotoxic effects after desialylation. A 24-hour reconstitution period allowed cholangiocytes to recover to a pretreatment bile salt susceptibility pattern. Experimental evidence indicates that an apical cholangiocyte glycocalyx with glycosylated mucins and other glycan-bearing membrane glycoproteins stabilizes the 'biliary HCO3(-) umbrella', thus aiding in the protection of human cholangiocytes against bile acid toxicity. 2015 S. Karger AG, Basel.
Halpern, Z; Moshkowitz, M; Laufer, H; Peled, Y; Gilat, T
1993-01-01
Much research in the pathophysiology of gall stones has been devoted to various molecular species of bile salts. Recent findings have shown the importance of phospholipids in biliary pathophysiology. In the present study the addition of increasing doses of egg lecithin to human and model biles progressively prolonged the nucleation time. Concurrently biliary cholesterol was shifted from the vesicular to the non-vesicular carrier(s) while the cholesterol/phospholipid ratio of the remaining vesicles was progressively lowered. Model bile solutions of identical lipid concentration were prepared using phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine as the only phospholipid. With phosphatidylethanolamine most of the cholesterol was shifted to the vesicular carrier while phosphatidylserine shifted most of the cholesterol to the non-vesicular carrier(s). With phosphatidylcholine the cholesterol was distributed in both carriers. Phosphatidyl choline species composed of various acyl fatty acids in the sn-1 and sn-2 positions were used as the sole phospholipid in otherwise identical model bile solutions. With palmitic acid in the sn-1 position and arachidonic acid in the sn-2 position most of the cholesterol was found in the non-vesicular carrier. When stearic acid was used in sn-2 position instead of arachidonic acid most of the cholesterol was found in the vesicular carrier. These and other variations in phospholipid molecular species shifted cholesterol among its carriers and also modified the nucleation time of model biles. Most of these effects were also found upon addition of the various phospholipid species to human biles. These findings show the importance of phospholipid species in biliary pathophysiology and may be useful when trying to manipulate cholesterol carriers and solubility in bile. PMID:8432440
Morad, Samy A. F.; Tan, Su-Fern; Feith, David J.; Kester, Mark; Claxton, David F.; Loughran, Thomas P.; Barth, Brian M.; Fox, Todd E.; Cabot, Myles C.
2015-01-01
The triphenylethylene antiestrogen, tamoxifen, can be an effective inhibitor of sphingolipid metabolism. This off-target activity makes tamoxifen an interesting ancillary for boosting the apoptosis-inducing properties of ceramide, a sphingolipid with valuable tumor censoring activity. Here we show for the first time that tamoxifen and metabolite, N –desmethyltamoxifen (DMT) block ceramide glycosylation and inhibit ceramide hydrolysis (by acid ceramidase, AC) in human acute myelogenous leukemia (AML) cell lines and in AML cells derived from patients. Tamoxifen (1-10 μM) inhibition of AC in AML cells was accompanied by decreases in AC protein expression. Tamoxifen also depressed expression and activity of sphingosine kinase 1 (SphK1), the enzyme catalyzing production of mitogenic sphingosine 1-phosphate (S1-P). Results from mass spectroscopy showed that tamoxifen and DMT, i ) increased the levels of endogenous C16:0- and C24:1 ceramide molecular species, ii) nearly totally halted production of respective glucosylceramide (GC) molecular species, iii ) drastically reduced levels of sphingosine ( to 9% of control), and iv ) reduced levels of S1-P by 85%, in vincristine-resistant HL-60/VCR cells. Co-administration of tamoxifen with either N-(4-hydroxyphenyl)retinamide (4-HPR), a ceramide-generating retinoid, or a cell-deliverable form of ceramide, C6-ceramide, resulted in marked decreases in HL-60/VCR cell viability that far exceeded single agent potency. Combination treatments resulted in synergistic apoptotic cell death as gauged by increased Annexin V binding and DNA fragmentation and activation of caspase-3. These results show the versatility of adjuvant triphenylethylene with ceramide-centric therapies for magnifying therapeutic potential in AML. Such drug regimens could serve as effective strategies, even in the multidrug resistant setting. PMID:25769964
Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen and NPPB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Kai; College of Life Science and Technology, Jinan University, Guangzhou; Chen, Maoyun
2014-04-18
Highlights: • We analyze the anti-HSV potential of chloride channel inhibitors. • Tamoxifen and NPPB show anti-HSV-1 and anti-ACV-resistant HSV-1 activities. • HSV-1 infection induces intracellular chloride concentration increasing. • Tamoxifen and NPPB inhibit HSV-1 early infection. • Tamoxifen and NPPB prevent the fusion process of HSV-1. - Abstract: Herpes simplex virus type 1 (HSV-1) infection is very common worldwide and can cause significant health problems from periodic skin and corneal lesions to encephalitis. Appearance of drug-resistant viruses in clinical therapy has made exploring novel antiviral agents emergent. Here we show that chloride channel inhibitors, including tamoxifen and 5-nitro-2-(3-phenyl-propylamino) benzoicmore » acid (NPPB), exhibited extensive antiviral activities toward HSV-1 and ACV-resistant HSV viruses. HSV-1 infection induced chloride ion influx while treatment with inhibitors reduced the increase of intracellular chloride ion concentration. Pretreatment or treatment of inhibitors at different time points during HSV-1 infection all suppressed viral RNA synthesis, protein expression and virus production. More detailed studies demonstrated that tamoxifen and NPPB acted as potent inhibitors of HSV-1 early entry step by preventing viral binding, penetration and nuclear translocation. Specifically the compounds appeared to affect viral fusion process by inhibiting virus binding to lipid rafts and interrupting calcium homeostasis. Taken together, the observation that tamoxifen and NPPB can block viral entry suggests a stronger potential for these compounds as well as other ion channel inhibitors in antiviral therapy against HSV-1, especially the compound tamoxifen is an immediately actionable drug that can be reused for treatment of HSV-1 infections.« less
Singh, Manish; Bajaj, Avinash
2014-09-28
We used eight bile acid cationic lipids differing in the number of hydroxyl groups and performed in-depth differential scanning calorimetry studies on model membranes doped with different percentages of these cationic bile acids. These studies revealed that the number and positioning of free hydroxyl groups on bile acids modulate the phase transition and co-operativity of membranes. Lithocholic acid based cationic lipids having no free hydroxyl groups gel well with dipalmitoylphosphatidylcholine (DPPC) membranes. Chenodeoxycholic acid lipids having one free hydroxyl group at the 7'-carbon position disrupt the membranes and lower their co-operativity. Deoxycholic acid and cholic acid based cationic lipids have free hydroxyl groups at the 12'-carbon position, and at 7'- and 12'-carbon positions respectively. Doping of these lipids at high concentrations increases the co-operativity of membranes suggesting that these lipids might induce self-assembly in DPPC membranes. These different modes of interactions between cationic lipids and model membranes would help in future for exploring their use in DNA/drug delivery.
Mohamed, Mohamed H; Wang, Chen; Peru, Kerry M; Headley, John V; Wilson, Lee D
2017-08-07
Herein, we report on the systematic design and characterization of cross-linked polymer carriers containing β-cyclodextrin (β-CD) and divinyl sulfone (DVS). The polymer carriers were prepared at variable feed ratios (β-CD-DVS; 1:1, 1:2, 1:3, and 1:6) and characterized using spectroscopy (IR, 1 H solution NMR, and 13 C CP-MAS solids NMR spectroscopy), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and a dye decolorization method using phenolphthalein. Uptake studies were carried out at pH 9.00 for the polymer carriers using single component bile acids (cholic acid, deoxycholic acid, glycodeoxycholic acid, and taurodeoxycholic acid). Equilibrium uptake results were evaluated by the Langmuir isotherm model where variable equilibrium parameters were related to the relative apolar character of the bile acid. The Langmuir model yields a carrier/bile acid binding affinity of ∼10 3 M -1 where the lipophilic inclusion sites of the polymer play a prominent role, while the DVS linker framework sites have a lower adsorption affinity, in accordance with the greater hydrophilic character of such sites.
Thaysen, E H; Orholm, M; Arnfred, T; Carl, J; Rødbro, P
1982-01-01
In eight patients without gastrointestinal complaints and 30 patients with various gastrointestinal disorders ileal bile acid conservation was assessed by oral administration of 75Se 23-selena-25-homocholic acid (SeHCAT) followed by abdominal gamma counting (SeHCAT-test). The results of the test correlated fairly well with the clinical features and with the [1-14C]-cholylglycine breath test including faecal 14C measurements (breath test). Of the two bile acid absorption tests the new is perhaps the more sensitive and is the one most easily performed. PMID:7117906
Inoue, Yoshihiro; Imai, Yoshiro; Fujii, Kensuke; Hirokawa, Fumitoshi; Hayashi, Michihiro; Uchiyama, Kazuhisa
2017-06-01
The purpose of this retrospective study was to evaluate the utility of the new intraoperative bile leakage test as a preventive measure of postoperative bile leakage. 737 patients were retrospectively analyzed with respect to the management of intra- and post-operative bile leakage. Nine (8.3%) of 109 patients evaluated using conventional white light fluorescent imaging were recognized as having intra-operative bile leakage. However, performance of 5-aminolevulinic acid (5-ALA)-mediated PDD detected bile leakage intraoperatively not only in these 9 patients, but also in an additional 6 patients, such that 'red fluorescence' at the cut surface of the liver, was visualized in a total of 15 patients. The postoperative courses of most patients were uneventful, and postoperative bile leakages occurred in only one (0.9%) patient. 5-ALA fluorescence imaging may be needed to prevent postoperative bile leakage in patients at high risk for this surgical complication after hepatic resection. Copyright © 2016 Elsevier Inc. All rights reserved.
Bile acid sequestrants for cholesterol
... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...
Yang, Yongshou; Nirmagustina, Dwi Eva; Kumrungsee, Thanutchaporn; Okazaki, Yukako; Tomotake, Hiroyuki; Kato, Norihisa
2017-09-01
Consumption of reishi mushroom has been reported to prevent colon carcinogenesis in rodents, although the underlying mechanisms remain unclear. To investigate this effect, rats were fed a high-fat diet supplemented with 5% water extract from either the reishi mushroom (Ganoderma lingzhi) (WGL) or the auto-digested reishi G. lingzhi (AWGL) for three weeks. Both extracts markedly reduced fecal secondary bile acids, such as lithocholic acid and deoxycholic acid (colon carcinogens). These extracts reduced the numbers of Clostridium coccoides and Clostridium leptum (secondary bile acids-producing bacteria) in a per g of cecal digesta. Fecal mucins and cecal propionate were significantly elevated by both extracts, and fecal IgA was significantly elevated by WGL, but not by AWGL. These results suggest that the reishi extracts have an impact on colon luminal health by modulating secondary bile acids, microflora, mucins, and propionate that related to colon cancer.
Kanemitsu, Takumi; Tsurudome, Yuya; Kusunose, Naoki; Oda, Masayuki; Matsunaga, Naoya; Koyanagi, Satoru; Ohdo, Shigehiro
2017-12-29
Xanthine oxidase (XOD), also known as xanthine dehydrogenase, is a rate-limiting enzyme in purine nucleotide degradation, which produces uric acid. Uric acid concentrations in the blood and liver exhibit circadian oscillations in both humans and rodents; however, the underlying mechanisms remain unclear. Here, we demonstrate that XOD expression and enzymatic activity exhibit circadian oscillations in the mouse liver. We found that the orphan nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) transcriptionally activated the mouse XOD gene and that bile acids suppressed XOD transactivation. The synthesis of bile acids is known to be under the control of the circadian clock, and we observed that the time-dependent accumulation of bile acids in hepatic cells interfered with the recruitment of the co-transcriptional activator p300 to PPARα, thereby repressing XOD expression. This time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the hepatic expression of XOD, which, in turn, led to circadian alterations in uric acid production. Finally, we also demonstrated that the anti-hyperuricemic effect of the XOD inhibitor febuxostat was enhanced by administering it at the time of day before hepatic XOD activity increased. These results suggest an underlying mechanism for the circadian alterations in uric acid production and also underscore the importance of selecting an appropriate time of day for administering XOD inhibitors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
The solute carrier family 10 (SLC10): beyond bile acid transport
da Silva, Tatiana Claro; Polli, James E.; Swaan, Peter W.
2012-01-01
The solute carrier (SLC) family 10 (SLC10) comprises influx transporters of bile acids, steroidal hormones, various drugs, and several other substrates. Because the seminal transporters of this family, namely, sodium/taurocholate cotransporting polypeptide (NTCP; SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT; SLC10A2), were primarily bile acid transporters, the term “sodium bile salt cotransporting family” was used for the SLC10 family. However, this notion became obsolete with the finding of other SLC10 members that do not transport bile acids. For example, the sodium-dependent organic anion transporter (SOAT; SLC10A6) transports primarily sulfated steroids. Moreover, NTCP was shown to also transport steroids and xenobiotics, including HMG-CoA inhibitors (statins). The SLC10 family contains four additional members, namely, P3 (SLC10A3; SLC10A3), P4 (SLC10A4; SLC10A4), P5 (SLC10A5; SLC10A5) and SLC10A7 (SLC10A7), several of which were unknown or considered hypothetical until approximately a decade ago. While their substrate specificity remains undetermined, great progress has been made towards their characterization in recent years. SLC10A4 may participate in vesicular storage or exocytosis of neurotransmitters or mastocyte mediators, whereas SLC10A5 and SLC10A7 may be involved in solute transport and SLC10A3 may have a role as a housekeeping protein. Finally, the newly found role of bile acids in glucose and energy homeostasis, via the TGR5 receptor, sheds new light on the clinical relevance of ASBT and NTCP. The present mini-review provides a brief summary of recent progress on members of the SLC10 family. PMID:23506869
Pereira-Fantini, Prue M; Lapthorne, Susan; Gahan, Cormac G M; Joyce, Susan A; Charles, Jenny; Fuller, Peter J; Bines, Julie E
2017-07-01
Options for the prevention of short-bowel syndrome-associated liver disease (SBS-ALDs) are limited and often ineffective. The farnesoid X receptor (FXR) is a newly emerging pharmaceutical target and FXR agonists have been shown to ameliorate cholestasis and metabolic disorders. The aim of this study was to assess the efficacy of obeticholic acid (OCA) treatment in preventing SBS-ALDs. Piglets underwent 75% small-bowel resection (SBS) or sham surgery (sham) and were assigned to either a daily dose of OCA (2.4 mg/kg/day) or were untreated. Clinical measures included weight gain and stool studies. Histologic features were assessed. Ultraperformance liquid chromatography tandem mass spectrometry was used to determine bile acid composition in end point bile and portal serum samples. Gene expression of key FXR targets was assessed in intestinal and hepatic tissues via quantitative polymerase chain reaction. OCA-treated SBS piglets showed decreased stool fat and altered liver histology when compared with nontreated SBS piglets. OCA prevented SBS-associated taurine depletion, however, further analysis of bile and portal serum samples indicated that OCA did not prevent SBS-associated alterations in bile acid composition. The expression of FXR target genes involved in bile acid transport and synthesis increased within the liver of SBS piglets after OCA administration whereas, paradoxically, intestinal expression of FXR target genes were decreased by OCA administration. Administration of OCA in SBS reduced fat malabsorption and altered bile acid composition, but did not prevent the development of SBS-ALDs. We postulate that extensive small resection impacts the ability of the remnant intestine to respond to FXR activation.
Eusufzai, S; Ericsson, S; Cederlund, T; Einarsson, K; Angelin, B
1991-09-01
The effects of urodeoxycholic acid on ileal absorption of bile acids and on serum bile acid and lipoprotein concentrations were studied. Eight healthy subjects were investigated. The gamma emitting bile acid analogue, SeHCAT, was given orally and its fractional catabolic rate and seven day retention were assessed by repeated external counting over the upper abdomen during the next seven days. Ursodeoxycholic acid was then given orally at a dose of 15 mg/kg/day for three weeks and the study was repeated during treatment. The fractional catabolic rate increased by 64% (mean (SD), 0.333 (0.159) v 0.203 (0.061)/day; p less than 0.05) and seven day retention decreased by 44% (15(10) v 27(10)%, p less than 0.001), indicating bile acid malabsorption. Total serum cholesterol fell from 5.79 (1.22) to 5.50 (1.18) mmol/l (p = 0.05), while serum ursodeoxycholic acid increased 22 fold (7.87 (2.67) v 0.34 (0.24) mumol/l, p less than 0.001). Five of the subjects continued taking 30 mg/kg/day of ursodeoxycholic acid for one week and showed an increase in fractional catabolic rate of 81% (0.300 (0.091) v 0.166 (0.037)/day; p less than 0.05) and a fall in seven day retention of 50% (16 (12) v 32 (8)%, p less than 0.01). There were significant reductions in total cholesterol (5.36 (1.71) v 6.08 (1.47) mmol/l; p less than 0.05) and low density lipoprotein cholesterol (3.70 (1.33) v 4.58 (1.16) mmol/l; p less than 0.05). The results support the concept tht ursodeoxycholic acid treatment interferes with the absorption of endogenous bile acids, and emphasise the beneficial effects of this treatment of lipoprotein concentrations in man.
Eusufzai, S; Ericsson, S; Cederlund, T; Einarsson, K; Angelin, B
1991-01-01
The effects of urodeoxycholic acid on ileal absorption of bile acids and on serum bile acid and lipoprotein concentrations were studied. Eight healthy subjects were investigated. The gamma emitting bile acid analogue, SeHCAT, was given orally and its fractional catabolic rate and seven day retention were assessed by repeated external counting over the upper abdomen during the next seven days. Ursodeoxycholic acid was then given orally at a dose of 15 mg/kg/day for three weeks and the study was repeated during treatment. The fractional catabolic rate increased by 64% (mean (SD), 0.333 (0.159) v 0.203 (0.061)/day; p less than 0.05) and seven day retention decreased by 44% (15(10) v 27(10)%, p less than 0.001), indicating bile acid malabsorption. Total serum cholesterol fell from 5.79 (1.22) to 5.50 (1.18) mmol/l (p = 0.05), while serum ursodeoxycholic acid increased 22 fold (7.87 (2.67) v 0.34 (0.24) mumol/l, p less than 0.001). Five of the subjects continued taking 30 mg/kg/day of ursodeoxycholic acid for one week and showed an increase in fractional catabolic rate of 81% (0.300 (0.091) v 0.166 (0.037)/day; p less than 0.05) and a fall in seven day retention of 50% (16 (12) v 32 (8)%, p less than 0.01). There were significant reductions in total cholesterol (5.36 (1.71) v 6.08 (1.47) mmol/l; p less than 0.05) and low density lipoprotein cholesterol (3.70 (1.33) v 4.58 (1.16) mmol/l; p less than 0.05). The results support the concept tht ursodeoxycholic acid treatment interferes with the absorption of endogenous bile acids, and emphasise the beneficial effects of this treatment of lipoprotein concentrations in man. PMID:1916489
Cheng, Yaofeng; Freeden, Chris; Zhang, Yueping; Abraham, Pamela; Shen, Hong; Wescott, Debra; Humphreys, W Griffith; Gan, Jinping; Lai, Yurong
2016-07-01
The bile salt export pump (BSEP) is expressed on the canalicular membrane of hepatocytes regulating liver bile salt excretion, and impairment of BSEP function may lead to cholestasis in humans. This study explored drug biliary excretion, as well as serum chemistry, individual bile acid concentrations and liver transporter expressions, in the SAGE Bsep knockout (KO) rat model. It was observed that the Bsep protein in KO rats was decreased to 15% of that in the wild type (WT), as quantified using LC-MS/MS. While the levels of Ntcp and Mrp2 were not significantly altered, Mrp3 expression increased and Oatp1a1 decreased in KO animals. Compared with the WT rats, the KO rats had similar serum chemistry and showed normal liver transaminases. Although the total plasma bile salts and bile flow were not significantly changed in Bsep KO rats, individual bile acids in plasma and liver demonstrated variable changes, indicating the impact of Bsep KO. Following an intravenous dose of deuterium labeled taurocholic acid (D4-TCA, 2 mg/kg), the D4-TCA plasma exposure was higher and bile excretion was delayed by approximately 0.5 h in the KO rats. No differences were observed for the pravastatin plasma concentration-time profile or the biliary excretion after intravenous administration (1 mg/kg). Collectively, the results revealed that these rats have significantly lower Bsep expression, therefore affecting the biliary excretion of endogenous bile acids and Bsep substrates. However, these rats are able to maintain a relatively normal liver function through the remaining Bsep protein and via the regulation of other transporters. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Ferraris, R; Fracchia, M; Galatola, G
1992-01-01
The availability of the gamma-labelled bile acid 75SeHCAT, that allows a non-invasive assessment of the enterohepatic circulation of bile acids, has prompted in the last 10 years the implementation of several studies involving wide series of normal subjects and patients with various organic and functional bowel disorders. The clinical indications for performing a SeHCAT test have been clearly defined: the test can identify with high accuracy, in the setting of the irritable bowel syndrome, the patients with bile acid malabsorption that can be confidently and successfully treated with cholestyramine; it can also assess whether, and to what extent, the diarrhoea presenting in patients with intestinal organic disorders is due to bile acid malabsorption, permitting an optimal therapeutic strategy to be designed. The parameters of the hepatic handling of SeHCAT after bolus intravenous administration have been characterized in normals, and studies on various chronic hepatic disorders are now in progress. Interesting results are emerging from studies performed in patients with chronic non-obstructive cholestatic disease, where a specific defect in the excretion rate of SeHCAT is present: these studies may cast more light on the abnormalities of bile secretion and on the mechanism of action of drugs used to treat this condition, forming the rationale for the use of intravenous SeHCAT for hepatobiliary dynamic scintigraphy as a sophisticated liver function test. In conclusion, the SeHCAT test has become an important diagnostic tool for the gastroenterologist studying the diarrhoea, and awaits more studies to be used also by the hepatologist. The relatively long physical half-life of 75Se (180 days), preventing a wider use of the test, could theoretically be overcome by the synthesis of a similar gamma-labelled bile acid with a shorter half-life.
Fecal bile acids of black-footed ferrets
Richardson, Louise; Johnson, M.K.; Clark, T.W.; Schroder, M.H.
1986-01-01
Fecal bile acid characteristics have been used to identify scats to species of origin. Fecal bile acids in scats from 20 known black-footed ferrets ( Mustela nigripes ), 7 other known small carnivores, and 72 of unknown origin were analyzed to determine if this procedure could be used as a tool to verify ferret presence in an area. Seventeen ferret scats were suitable for analysis and had a mean fecal bile acid index of 156 ± 9. This was significantly different from mean indices for the other carnivores; however, substantial overlap among confidence intervals occurred for badgers, kit foxes, and especially long-tailed weasels. We conclude this method is not useful for making positive identifications if individual ferret scats and suggest that we may be able to definitively identify individual scats with reasonable confidence by using gas-liquid chromatography.
Posa, Mihalj; Pilipović, Ana; Lalić, Mladena; Popović, Jovan
2011-02-15
Linear dependence between temperature (t) and retention coefficient (k, reversed phase HPLC) of bile acids is obtained. Parameters (a, intercept and b, slope) of the linear function k=f(t) highly correlate with bile acids' structures. Investigated bile acids form linear congeneric groups on a principal component (calculated from k=f(t)) score plot that are in accordance with conformations of the hydroxyl and oxo groups in a bile acid steroid skeleton. Partition coefficient (K(p)) of nitrazepam in bile acids' micelles is investigated. Nitrazepam molecules incorporated in micelles show modified bioavailability (depo effect, higher permeability, etc.). Using multiple linear regression method QSAR models of nitrazepams' partition coefficient, K(p) are derived on the temperatures of 25°C and 37°C. For deriving linear regression models on both temperatures experimentally obtained lipophilicity parameters are included (PC1 from data k=f(t)) and in silico descriptors of the shape of a molecule while on the higher temperature molecular polarisation is introduced. This indicates the fact that the incorporation mechanism of nitrazepam in BA micelles changes on the higher temperatures. QSAR models are derived using partial least squares method as well. Experimental parameters k=f(t) are shown to be significant predictive variables. Both QSAR models are validated using cross validation and internal validation method. PLS models have slightly higher predictive capability than MLR models. Copyright © 2010 Elsevier B.V. All rights reserved.
Midzak, Andrew; Papadopoulos, Vassilios
2014-09-01
Steroid hormones, bioactive oxysterols and bile acids are all derived from the biological metabolism of lipid cholesterol. The enzymatic pathways generating these compounds have been an area of intense research for almost a century, as cholesterol and its metabolites have substantial impacts on human health. Owing to its high degree of hydrophobicity and the chemical properties that it confers to biological membranes, the distribution of cholesterol in cells is tightly controlled, with subcellular organelles exhibiting highly divergent levels of cholesterol. The manners in which cells maintain such sterol distributions are of great interest in the study of steroid and bile acid synthesis, as limiting cholesterol substrate to the enzymatic pathways is the principal mechanism by which production of steroids and bile acids is regulated. The mechanisms by which cholesterol moves within cells, however, remain poorly understood. In this review, we examine the subcellular machinery involved in cholesterol metabolism to steroid hormones and bile acid, relating it to both lipid- and protein-based mechanisms facilitating intracellular and intraorganellar cholesterol movement and delivery to these pathways. In particular, we examine evidence for the involvement of specific protein domains involved in cholesterol binding, which impact cholesterol movement and metabolism in steroidogenesis and bile acid synthesis. A better understanding of the physical mechanisms by which these protein- and lipid-based systems function is of fundamental importance to understanding physiological homeostasis and its perturbation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-IL; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y.L.; Choi, Hueng-Sik
2017-01-01
Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ -binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907
Chemoprevention of esophageal adenocarcinoma in a rat model by ursodeoxycholic acid.
Ojima, Eisuke; Fujimura, Takashi; Oyama, Katsunobu; Tsukada, Tomoya; Kinoshita, Jun; Miyashita, Tomoharu; Tajima, Hidehiro; Fushida, Sachio; Harada, Shin-ichi; Mukaisho, Ken-ichi; Hattori, Takanori; Ohta, Tetsuo
2015-08-01
Reflux of bile acid into the esophagus induces esophagitis, inflammation-stimulated hyperplasia, metaplasia such as Barrett's esophagus (BE), and esophageal adenocarcinoma (EAC). Caudal-type homeobox 2 (Cdx2) via nuclear factor (NF)-κB induced by bile acid is an important factor in the development of BE and EAC. In colorectal cancer, experimental data suggest a chemopreventive effect of ursodeoxycholic acid (UDCA). We hypothesized that UDCA may protect against the esophageal inflammation-metaplasia-carcinoma sequence by decreasing the overall proportion of the toxic bile acids. Wistar male rats that underwent a duodenoesophageal reflux procedure were divided into two groups. One group was given commercial chow (control group), and the other was given experimental chow containing UDCA (UDCA group). The animals were killed at 40 weeks after surgery, and their bile and esophagus were examined. In the UDCA group, the esophagitis was milder and the incidence of BE was significantly lower (p < 0.05) than in the control group, and EAC was not observed (p < 0.05). In analysis of the compartment of bile acid, UDCA was markedly increased in the UDCA group compared with the control group (32.7 ± 11.4 vs. 0.82 ± 0.33 mmol/L, p < 0.05) and cholic acid was decreased (32.7 ± 4.05 vs. 60.9 ± 8.26 mmol/L, p < 0.05). Expression intensity of Cdx2 and NF-κB was greater in the control group than in the UDCA group (p < 0.05). UDCA may be a chemopreventive agent against EAC by varying the bile acid composition.
Comparative evaluation of in vitro efficacy of colesevelam hydrochloride tablets.
Krishnaiah, Yellela S R; Yang, Yongsheng; Bykadi, Srikant; Sayeed, Vilayat A; Khan, Mansoor A
2014-09-01
Colesevelam hydrochloride is used as an adjunct to diet and exercise to reduce elevated low-density lipoprotein (LDL) cholesterol in patients with primary hyperlipidemia as well as to improve glycemic control in patients with type 2 diabetes. This is likely to result in submission of abbreviated new drug applications (ANDA). This study was conducted to compare the efficacy of two tablet products of colesevelam hydrochloride based on the in vitro binding of bile acid sodium salts of glycocholic acid (GC), glycochenodeoxycholic acid (GCDA) and taurodeoxycholic acid (TDCA). Kinetic binding study was carried out with constant initial bile salt concentrations as a function of time. Equilibrium binding studies were conducted under conditions of constant incubation time and varying initial concentrations of bile acid sodium salts. The unbound concentration of bile salts was determined in the samples of these studies. Langmuir equation was utilized to calculate the binding constants k1 and k2. The amount of the three bile salts bound to both the products reached equilibrium at 3 h. The similarity factor (f2) was 99.5 based on the binding profile of total bile salts to the test and reference colesevelam tablets as a function of time. The 90% confidence interval for the test to reference ratio of k2 values were 96.06-112.07 which is within the acceptance criteria of 80-120%. It is concluded from the results that the test and reference tablets of colesevelam hydrochloride showed a similar in vitro binding profile and capacity to bile salts.
Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk
Lien, Fleur; Berthier, Alexandre; Bouchaert, Emmanuel; Gheeraert, Céline; Alexandre, Jeremy; Porez, Geoffrey; Prawitt, Janne; Dehondt, Hélène; Ploton, Maheul; Colin, Sophie; Lucas, Anthony; Patrice, Alexandre; Pattou, François; Diemer, Hélène; Van Dorsselaer, Alain; Rachez, Christophe; Kamilic, Jelena; Groen, Albert K.; Staels, Bart; Lefebvre, Philippe
2014-01-01
The nuclear bile acid receptor farnesoid X receptor (FXR) is an important transcriptional regulator of bile acid, lipid, and glucose metabolism. FXR is highly expressed in the liver and intestine and controls the synthesis and enterohepatic circulation of bile acids. However, little is known about FXR-associated proteins that contribute to metabolic regulation. Here, we performed a mass spectrometry–based search for FXR-interacting proteins in human hepatoma cells and identified AMPK as a coregulator of FXR. FXR interacted with the nutrient-sensitive kinase AMPK in the cytoplasm of target cells and was phosphorylated in its hinge domain. In cultured human and murine hepatocytes and enterocytes, pharmacological activation of AMPK inhibited FXR transcriptional activity and prevented FXR coactivator recruitment to promoters of FXR-regulated genes. Furthermore, treatment with AMPK activators, including the antidiabetic biguanide metformin, inhibited FXR agonist induction of FXR target genes in mouse liver and intestine. In a mouse model of intrahepatic cholestasis, metformin treatment induced FXR phosphorylation, perturbed bile acid homeostasis, and worsened liver injury. Together, our data indicate that AMPK directly phosphorylates and regulates FXR transcriptional activity to precipitate liver injury under conditions favoring cholestasis. PMID:24531544
Chai, Jin; Du, Xiaohuang; Chen, Sheng; Feng, XinChan; Cheng, Ying; Zhang, Liangjun; Gao, Yu; Li, Shaoxue; He, Xiaochong; Wang, Rongquan; Zhou, Xiangdong; Yang, Yong; Luo, Weizao; Chen, Wensheng
2015-01-01
Background & aims: Oleanolic acid is abundantly distributed in Swertia mussotii Franch, a Chinese traditional herb for the treatment of jaundice. However, the hepatoprotective role of oleanolic acid in obstructive cholestasis and its underlying molecular mechanism are unclear. Methods: Normal rats and bile duct-ligated (BDL) rats were given oleanolic acid and serum biochemistry, bile salts, and pro-inflammatory factors were measured, as well as the expression levels of liver bile acid synthesis and detoxification enzymes, membrane transporters, nuclear receptors, and transcriptional factors. Results: Oral administration of oleanolic acid at 100 mg/kg did not cause rat liver injury. However, it significantly reduced the serum levels of alanine aminotransferase (ALT) on days 7 and 14, aspartate aminotransferase (AST) and TNF-α on day 14, and alkaline phosphatase (ALP) and IL-1β on days 3, 7, and 14 in the BDL rats. Furthermore, the serum levels of total bile acid (TBA) and bile acids, including CDCA, CA, DCA, and Tα/βMCA were significantly reduced by oleanolic acid on day 3 in the BDL rats. In addition, the expression levels of detoxification enzymes Cyp3a, Ugt2b, Sult2a1, Gsta1-2, and Gstm1-3, membrane transporters Mrp3, Mrp4, Ostβ, Mdr1, Mdr2, and Bsep, nuclear receptors Pxr, Vdr, Hnf4α, Rxrα, Rarα, Lxr, and Lrh-1, and transcriptional factors Nrf2, Hnf3β, and Ahr were significantly increased in oleanolic acid-treated rats. Conclusion: We demonstrated that the oral administration of oleanolic acid attenuates liver injury, inflammation, and cholestasis in BDL rats. The anti-cholestatic effect may be associated with the induction of hepatic detoxification enzymes and efflux transporters mediated by nuclear receptors and transcriptional factors. PMID:25932098
Chae, Su Young; Kim, Hyun June; Lee, Min Sang; Jang, Yeon Lim; Lee, Yuhan; Lee, Soo Hyeon; Lee, Kyuri; Kim, Sun Hwa; Kim, Hong Tae; Chi, Sang-Cheol; Park, Tae Gwan; Jeong, Ji Hoon
2011-09-09
Efficient gene transfer into mammalian cells mediated by small molecular amphiphile-polymer conjugates, bile acid-polyethylenimine (BA-PEI), is demonstrated, opening an efficient transport route for genetic materials across the cell membrane. This process occurs without the aid of endocytosis or other energy-consuming processes, thus mimicking macromolecular transduction by cell-penetrating peptides. The exposure of a hydrophilic face of the amphiphilic BA moiety on the surface of BA-PEI/DNA complex that mediates direct contact of the BA molecules to the cell surface seems to play an important role in the endocytosis- and energy-independent internalization process. The new modality of the polymeric biomimetics can be applied to enhanced delivery of macromolecular therapeutics. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jian, Long-Hai; Hu, Chun; Yu, Hong; Wang, Ke; Ji, Shen
2013-07-01
A rapid method of Liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) combined with pyridinium chlorochromate (PCC) oxidation has been developed to determine chemical structures of two novel isomers in bear bile powder. Derivatives of ursodeoxycholic acid (UDCA) and chenodeoxycholic acid (CDCA) were semi-synthesized by PCC oxidation, then were analyzed by LC-Q-TOF-MS. Separation was carried out on a reverse column with the mobile phase of acetonitrile-0.1% formic acid (45:55). The data of Q-TOF-MS was acquired by MS, MS/MS, positive and negative modes. Since UDCA and CDCA were stereochemical isomeric at an alcohol position, two oxidation products were same and have been confirmed by LC-Q-TOF-MS. Other two products were also determined based on the PCC oxidation theory. Samples of bear bile powder were dissolved by methanol and measured by LC-Q-TOF-MS. Two unknown peaks were found and identified by matching their retention times and accurate mass spectra ions with PCC oxidation productS. Finally, the structures of two new bile acids in bear bile powder were confirmed as 3alpha-hydroxy-7-oxo-5beta-cholanic acid, 7alpha-hydroxy-3-oxo-5beta-cholanic acid, respectively.
Strugala, Vicki; Avis, Jeanine; Jolliffe, Ian G; Johnstone, Lesley M; Dettmar, Peter W
2009-08-01
During a reflux event the oesophagus is exposed to a heterogeneous mixture of gastric juice components. The role of non-acid components of the refluxate in causing damage to the oesophagus is now well established but no therapeutic option exists to address this. The role of Gaviscon Advance (GA), a raft-forming alginate suspension, in protecting the oesophagus from damage by pepsin and bile acids (aggressors) was investigated using a series of in-vitro models. GA was able to dose-dependently inhibit pepsin activity over and above the neutralisation effect of the formulation. This was evident against both protein and collagen substrates using two distinct colorimetric assays. GA was able to retard the diffusion of pepsin and multiple bile acids using a Franz cell model. Using the raft-forming mode of action GA was able to remove both pepsin and multiple bile acids from a simulated reflux event. There was capacity in the GA raft to accommodate aggressors from multiple reflux events. GA can specifically remove both pepsin and bile acids from the refluxate, limit their diffusion and affect enzymatic activity of pepsin. There is a role for GA to reduce the damaging potential of the refluxate and thus protect the oesophagus.
[Joint action of nitrofuran preparations and bile acids on bacteria of the genus Proteus].
Sytnik, I A; Puzakova, E V
1975-01-01
Sensitivity of 25 fresh isolates of Proteus to some nitrofuran drugs most widely used in the clinical practice, such as furacillin, furagin, furazolidone and nitrofurantoin was studied. When the drugs were used in combination with some bile acids, i.e. desoxycholic, dehydrocholic, cholic and glycocholic acids, significant in vitro potentiation of the antibacterial activity of the nitrofurans against the isolates was observed. The combinations of the drugs with desoxycholic acid proved to be most effective. In the presence of this acid the bacteriostatic dose of the drugs decreased several thousand times. Combination of the nitrofurans with the other acids resulted in an increase in the antimicrobial activity amounting to several hundred times. The combinations of the drugs with the bile acids had not only bacteriostatic but also bactericidal effect.
... PBC; a type of liver disease that destroys bile ducts, which allows bile to stay in the liver and cause damage) ... agonists. It works by decreasing the production of bile in the liver and increasing the removal of ...
... medications. But there is little evidence pinpointing the effects of bile reflux in people. Unlike acid reflux, bile reflux usually can't be completely controlled by changes in diet or lifestyle. Treatment involves medications or, in severe cases, surgery. ...
Bilirubin and bile acids removal by haemoperfusion through synthetic resin "Persorb".
Filip, K; Malý, J; Horký, J; Tlustáková, M; Kálal, J; Vrána, M
1990-01-01
A new type of styrene-divinylbenzene copolymer coated with polyhema was tested for biocompatibility and ability to remove bile acid, bilirubin, phenols and cholesterol in dogs with surgically induced biliary obstruction. After 4-hr hemoperfusion through a polypropylene column containing 325 g of resin, performed 7-10 days after the ligature of the cystic and common bile duct, the serum levels of bile acids, bilirubin, phenols and cholesterol decreased by 60.9 +/- 30.3% (p less than 0.001), 34.8 +/- 12.2% (p less than 0.001), 19.4 +/- 15.6% (p less than 0.001) and 15.3 +/- 4.2% (p less than 0.05), respectively. The procedure was well tolerated, no bleeding or other adverse reactions occurred. The average platelet count decreased by 19.4 +/- 15.6% (p less than 0.05). Hemoperfusion through the Czechoslovak resin coated with polyhema is safe and efficient for removal of bile acids and other protein-bound and lipid-soluble substances which accumulate in cholestatic syndromes and hepatic failure. Thus, it may play an important role in the treatment of such events as a method of artificial liver support.
Desai, Aditya J.; Dong, Maoqing; Harikumar, Kaleeckal G.
2015-01-01
Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation. PMID:26138469
Desai, Aditya J; Dong, Maoqing; Harikumar, Kaleeckal G; Miller, Laurence J
2015-09-01
Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation. Copyright © 2015 the American Physiological Society.
Colombo, Carla; Crosignani, Andrea; Alicandro, Gianfranco; Zhang, Wujuan; Biffi, Arianna; Motta, Valentina; Corti, Fabiola; Setchell, Kenneth D R
2016-10-01
To evaluate the fasting and postprandial serum bile acid composition in patients with cystic fibrosis-associated liver disease (CFLD) after chronic administration of ursodeoxycholic acid (UDCA) (20 mg/kg/day). The aim was to specifically focus on the extent of biotransformation of UDCA to its hepatotoxic metabolite, lithocholic acid, because of recent concerns regarding the safety of long-term, high-dose UDCA treatment for CFLD. Twenty patients with CFLD (median age 16 years, range: 2.4-35.0) prescribed UDCA therapy for at least 2 years were studied. Total and individual serum bile acids were measured by stable-isotope dilution mass spectrometry, in fasting and 2-hour postprandial samples taken during chronic UDCA (20 mg/kg/day) administration. During chronic UDCA administration (median duration 8 years, IQR: 6-16), UDCA became the predominant serum bile acid in all patients (median, IQR: 3.17, 1.25-5.56 μmol/L) and chenodeoxycholic acid concentrations were greater than cholic acid (1.86, 1.00-4.70 μmol/L vs 0.40, 0.24-2.71 μmol/L). The secondary bile acids, deoxycholate and lithocholate, were present in very low concentrations in fasted serum (<0.05 μmol/L). After UDCA administration, 2-hour postprandial concentrations of both UDCA and chenodeoxycholic acid significantly increased (P < .01), but no significant changes in serum lithocholic acid concentrations were observed. These data do not support recent suggestions that enhanced biotransformation of UDCA to the hepatotoxic secondary bile acid lithocholic occurs when patients with CFLD are treated with relatively high doses of UDCA. Copyright © 2016 Elsevier Inc. All rights reserved.
Lajczak, Natalia K; Saint-Criq, Vinciane; O'Dwyer, Aoife M; Perino, Alessia; Adorini, Luciano; Schoonjans, Kristina; Keely, Stephen J
2017-09-01
Bile acids and epithelial-derived human β-defensins (HβDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HβD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HβD1 and HβD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HβD1 and HβD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 μM), but not by the farnesoid X receptor agonist, GW4064 (10 μM). INT-777 also stimulated colonic HβD1 and HβD2 release from wild-type, but not Takeda GPCR 5 -/- , mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 μM), inhibited DCA-induced HβD2, but not HβD1, release. We conclude that bile acids can differentially regulate colonic epithelial HβD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells. © FASEB.
Brydon, W G; Nyhlin, H; Eastwood, M A; Merrick, M V
1996-02-01
To assess the reliability of serum 7 alpha-hydroxy-4-cholesten-3-one (7 alpha-3ox-C) in the differential diagnosis of bile acid induced diarrhoea by comparison with 75selenohomocholyltaurine whole body retention (SeHCAT WBR). One hundred and sixty-four patients with chronic diarrhoea were investigated prospectively in two centres (Edinburgh and Sweden) by two different tests which measure bile acid loss or synthesis: the SeHCAT test which measures the 7-day SeHCAT WBR and serum 7 alpha-3ox-C which reflects the rate of bile acid synthesis. Forty-six patients had SeHCAT WBR of less than 10% (19 with ileal disease or resection, nine with idiopathic bile acid induced diarrhoea and 18 with miscellaneous causes for bile acid induced diarrhoea). All patients with ileal or idiopathic disease showed a favorable response to treatment as did 13 of the miscellaneous group. Serum 7 alpha-3ox-C was raised in all subjects with ileal disease/resection, seven patients with idiopathic disease and all subjects in the miscellaneous group who responded to treatment. Sixteen out of 118 patients with SeHCAT WBR greater than or equal to 10% had raised serum 7 alpha-3ox-C. The positive predictive value of serum 7 alpha-3ox-C was 74%. The high negative predictive value (98%) of serum 7 alpha-3ox-C indicates the possible use of this test for excluding bile acid malabsorption in this population. All but two subjects who responded to treatment had raised serum 7 alpha-3ox-C concentrations. The possibility that the sensitivity of the test can be improved by repeat testing needs to be further investigated. There was a significant correlation between fractional catabolic rate (FCR) SeHCAT and serum 7 alpha-3ox-C (r = 0.63, P < 0.0001). Further data are required to validate the reference range in women over 70 years of age.
Liu, Hailiang; Pathak, Preeti; Boehme, Shannon; Chiang, John Y. L.
2016-01-01
Cholesterol 7α-hydroxylase (CYP7A1) plays a critical role in control of bile acid and cholesterol homeostasis. Bile acids activate farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) to regulate lipid, glucose, and energy metabolism. However, the role of bile acids in hepatic inflammation and fibrosis remains unclear. In this study, we showed that adenovirus-mediated overexpression of Cyp7a1 ameliorated lipopolysaccharide (LPS)-induced inflammatory cell infiltration and pro-inflammatory cytokine production in WT and TGR5-deficient (Tgr5−/−) mice, but not in FXR-deficient (Fxr−/−) mice, suggesting that bile acid signaling through FXR protects against hepatic inflammation. Nuclear factor κ light-chain enhancer of activated B cells (NF-κB)-luciferase reporter assay showed that FXR agonists significantly inhibited TNF-α-induced NF-κB activity. Furthermore, chromatin immunoprecipitation and mammalian two-hybrid assays showed that ligand-activated FXR interacted with NF-κB and blocked recruitment of steroid receptor coactivator-1 to cytokine promoter and resulted in inhibition of NF-κB activity. Methionine/choline-deficient (MCD) diet increased hepatic inflammation, free cholesterol, oxidative stress, apoptosis, and fibrosis in CYP7A1-deficient (Cyp7a1−/−) mice compared with WT mice. Remarkably, adenovirus-mediated overexpression of Cyp7a1 effectively reduced hepatic free cholesterol and oxidative stress and reversed hepatic inflammation and fibrosis in MCD diet-fed Cyp7a1−/− mice. Current studies suggest that increased Cyp7a1 expression and bile acid synthesis ameliorate hepatic inflammation through activation of FXR, whereas reduced bile acid synthesis aggravates MCD diet-induced hepatic inflammation and fibrosis. Maintaining bile acid and cholesterol homeostasis is important for protecting against liver injury and nonalcoholic fatty liver disease. PMID:27534992
Reder, Nicholas P; Davis, Christopher S; Kovacs, Elizabeth J; Fisichella, P Marco
2014-06-01
Gastroesophageal reflux disease (GERD) is thought to lead to aspiration and bronchiolitis obliterans syndrome after lung transplantation. Unfortunately, the identification of patients with GERD who aspirate still lacks clear diagnostic indicators. The authors hypothesized that symptoms of GERD and detection of pepsin and bile acids in the bronchoalveolar lavage fluid (BAL) and exhaled breath condensate (EBC) are effective for identifying lung transplantation patients with GERD-induced aspiration. From November 2009 to November 2010, 85 lung transplantation patients undergoing surveillance bronchoscopy were prospectively enrolled. For these patients, self-reported symptoms of GERD were correlated with levels of pepsin and bile acids in BAL and EBC and with GERD status assessed by 24-h pH monitoring. The sensitivity and specificity of pepsin and bile acids in BAL and EBC also were compared with the presence of GERD in 24-h pH monitoring. The typical symptoms of GERD (heartburn and regurgitation) had modest sensitivity and specificity for detecting GERD and aspiration. The atypical symptoms of GERD (aspiration and bronchitis) showed better identification of aspiration as measured by detection of pepsin and bile acids in BAL. The sensitivity and specificity of pepsin in BAL compared with GERD by 24-h pH monitoring were respectively 60 and 45 %, whereas the sensitivity and specificity of bile acids in BAL were 67 and 80 %. These data indicate that the measurement of pepsin and bile acids in BAL can provide additional data for identifying lung transplantation patients at risk for GERD-induced aspiration compared with symptoms or 24-h pH monitoring alone. These results support a diagnostic role for detecting markers of aspiration in BAL, but this must be validated in larger studies.
Giles, David K.; Hankins, Jessica V.; Guan, Ziqiang; Trent, M. Stephen
2011-01-01
Summary The Gram-negative bacteria Vibrio cholerae poses significant public health concerns by causing an acute intestinal infection afflicting millions of people each year. V. cholerae motility, as well as virulence factor expression and outer membrane protein production, have been shown to be affected by bile (Childers & Klose, 2007). The current study examines the effects of bile on V. cholerae phospholipids. Bile exposure caused significant alterations to the phospholipid profile of V. cholerae but not of other enteric pathogens. These changes consisted of a quantitative increase and migratory difference in cardiolipin, decreases in phosphatidylglycerol and phosphatidylethanolamine, and the dramatic appearance of an unknown phospholipid determined to be lyso-phosphatidylethanolamine. Major components of bile were not responsible for the observed changes, but long chain polyunsaturated fatty acids, which are minor components of bile, were shown to be incorporated into phospholipids of V. cholerae. Although the bile-induced phospholipid profile was independent of the V. cholerae virulence cascade, we identified another relevant environment in which V. cholerae assimilates unique fatty acids into its membrane phospholipids—marine sediment. Our results suggest that Vibrio species possess unique machinery conferring the ability to take up a wider range of exogenous fatty acids than other enteric bacteria. PMID:21255114
Incorporation of Exogenous Fatty Acids Protects Enterococcus faecalis from Membrane-Damaging Agents
Saito, Holly E.; Harp, John R.
2014-01-01
Enterococcus faecalis is a commensal bacterium of the mammalian intestine that can persist in soil and aquatic systems and can be a nosocomial pathogen to humans. It employs multiple stress adaptation strategies in order to survive such a wide range of environments. Within this study, we sought to elucidate whether membrane fatty acid composition changes are an important component for stress adaptation. We noted that E. faecalis OG1RF was capable of changing its membrane composition depending upon growth phase and temperature. The organism also readily incorporated fatty acids from bile, serum, and medium supplemented with individual fatty acids, often dramatically changing the membrane composition such that a single fatty acid was predominant. Growth in either low levels of bile or specific individual fatty acids was found to protect the organism from membrane challenges such as high bile exposure. In particular, we observed that when grown in low levels of bile, serum, or the host-derived fatty acids oleic acid and linoleic acid, E. faecalis was better able to survive the antibiotic daptomycin. Interestingly, the degree of membrane saturation did not appear to be important for protection from the stressors examined here; instead, it appears that a specific fatty acid or combination of fatty acids is critical for stress resistance. PMID:25128342
Experimental Chagas disease-induced perturbations of the fecal microbiome and metabolome.
McCall, Laura-Isobel; Tripathi, Anupriya; Vargas, Fernando; Knight, Rob; Dorrestein, Pieter C; Siqueira-Neto, Jair L
2018-03-01
Trypanosoma cruzi parasites are the causative agents of Chagas disease. These parasites infect cardiac and gastrointestinal tissues, leading to local inflammation and tissue damage. Digestive Chagas disease is associated with perturbations in food absorption, intestinal traffic and defecation. However, the impact of T. cruzi infection on the gut microbiota and metabolome have yet to be characterized. In this study, we applied mass spectrometry-based metabolomics and 16S rRNA sequencing to profile infection-associated alterations in fecal bacterial composition and fecal metabolome through the acute-stage and into the chronic stage of infection, in a murine model of Chagas disease. We observed joint microbial and chemical perturbations associated with T. cruzi infection. These included alterations in conjugated linoleic acid (CLA) derivatives and in specific members of families Ruminococcaceae and Lachnospiraceae, as well as alterations in secondary bile acids and members of order Clostridiales. These results highlight the importance of multi-'omics' and poly-microbial studies in understanding parasitic diseases in general, and Chagas disease in particular.
Liu, Yonggang; Tan, Peng; Liu, Shanshan; Shi, Hang; Feng, Xin; Ma, Qun
2015-01-01
Objective: Calculus bovis have been widely used in Chinese herbology for the treatment of hyperpyrexia, convulsions, and epilepsy. Nowadays, due to the limited source and high market price, the substitutes, artificial and in vitro cultured Calculus bovis, are getting more and more commonly used. The adulteration phenomenon is serious. Therefore, it is crucial to establish a fast and simple method in discriminating the natural, artificial and in vitro cultured Calculus bovis. Bile acids, one of the main active constituents, are taken as an important indicator for evaluating the quality of Calculus bovis and the substitutes. Several techniques have been built to analyze bile acids in Calculus bovis. Whereas, as bile acids are with poor ultraviolet absorbance and high structural similarity, effective technology for identification and quality control is still lacking. Methods: In this study, high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (LC/MS/MS) was applied in the analysis of bile acids, which effectively identified natural, artificial and in vitro cultured Calculus bovis and provide a new method for their quality control. Results: Natural, artificial and in vitro cultured Calculus bovis were differentiated by bile acids analysis. A new compound with protonated molecule at m/z 405 was found, which we called 3α, 12α-dihydroxy-7-oxo-5α-cholanic acid. This compound was discovered in in vitro cultured Calculus bovis, but almost not detected in natural and artificial Calculus bovis. A total of 13 constituents was identified. Among them, three bio-markers, including glycocholic acid, glycodeoxycholic acid and taurocholic acid (TCA) were detected in both natural and artificial Calculus bovis, but the density of TCA was different in two kinds of Calculus bovis. In addition, the characteristics of bile acids were illustrated. Conclusions: The HPLC coupled with tandem MS (LC/MS/MS) method was feasible, easy, rapid and accurate in identifying natural, artificial and in vitro cultured Calculus bovis. PMID:25829769
Zhu, Lili; Wang, Lei; Cao, Fei; Liu, Peng; Bao, Haidong; Yan, Yumei; Dong, Xin; Wang, Dong; Wang, Zhongyu; Gong, Peng
2018-03-01
The purpose of the present study was to investigate the effect and potential mechanism of chlorogenic acid (CA) on liver injury induced by cholestasis in a rat model of bile duct ligation (BDL). Rats received vehicle or CA (20, 50, or 100 mg/kg per day) orally for 3 days. On the 4th day, the rats underwent sham or BDL surgery, and were orally administrated vehicle or CA for 3 or 7 days. mRNA and protein expression levels were evaluated by qRT-PCR and western blot. After BDL, plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and total bile acids (TBA) were increased and typical pathological changes were observed in liver morphology. Hepatic uptake transporters (Ntcp, Oatp 1a4, and Oatp 1b2) were downregulated, while efflux transporters (Bsep and Mrp 2/3/4) were upregulated. BDL inhibited the expressions of Cyp7a1, Cyp8b1, and Cyp27a1 and induced Ugt1a1. CA treatment decreased ALT, AST, TBIL, and TBA (P < 0.05) and alleviated the liver pathological changes. The degree of expression changes in the transporters and enzymes was extended by CA (P < 0.05). SIRT1 protein was induced after CA treatment in BDL rats. Chlorogenic acid attenuated hepatotoxicity and cholestasis by decreasing the uptake and synthesis of bilirubin and bile acids and accelerating the metabolism and efflux of bilirubin and bile acids. © 2018 Japanese Society of Hepato-Biliary-Pancreatic Surgery.
Murray, John W; Thosani, Amar J; Wang, Pijun; Wolkoff, Allan W
2011-07-01
Sodium taurocholate-cotransporting polypeptide (ntcp) is considered to be a major determinant of bile acid uptake into hepatocytes. However, the regulation of ntcp and the degree that it participates in the accumulation of specific substrates are not well understood. We utilized fluorescent bile acid derivatives and direct quantitation of fluorescent microscopy images to examine the regulation of ntcp and its role in the cell-to-cell variability of fluorescent bile acid accumulation. Primary-cultured rat hepatocytes rapidly accumulated the fluorescent bile acids, chenodeoxycholylglycylamidofluorescein (CDCGamF), 7-β- nitrobenzoxadiazole 3-α hydroxy 5-β cholan-24-oic acid (NBD-CA), and cholyl-glycylamido-fluorescein (CGamF). However, in stably transfected HeLa cells, ntcp preferred CDCGamF, whereas the organic anion transporter, organic anion transporting polypeptide 1 (oatp1a1), preferred NBD-CA, and neither ntcp nor oatp1a1 showed strong accumulation of CGamF by these methods. Ntcp-mediated transport of CDCGamF was inhibited by taurocholate, cyclosporin, actin depolymerization, and an inhibitor of atypical PKC-ζ. The latter two agents altered the cellular distribution of ntcp as visualized in ntcp-green fluorescent protein-transfected cells. Although fluorescent bile acid accumulation was reproducible by the imaging assays, individual cells showed variable accumulation that was not attributable to changes in membrane permeability or cell viability. In HeLa cells, this was accounted for by variable levels of ntcp, whereas, in hepatocytes, ntcp expression was uniform, and low accumulation was seen in a large portion of cells despite the presence of ntcp. These studies indicate that single-cell imaging can provide insight into previously unrecognized details of anion transport in the complex environment of polarized hepatocytes.
Thosani, Amar J.; Wang, Pijun; Wolkoff, Allan W.
2011-01-01
Sodium taurocholate-cotransporting polypeptide (ntcp) is considered to be a major determinant of bile acid uptake into hepatocytes. However, the regulation of ntcp and the degree that it participates in the accumulation of specific substrates are not well understood. We utilized fluorescent bile acid derivatives and direct quantitation of fluorescent microscopy images to examine the regulation of ntcp and its role in the cell-to-cell variability of fluorescent bile acid accumulation. Primary-cultured rat hepatocytes rapidly accumulated the fluorescent bile acids, chenodeoxycholylglycylamidofluorescein (CDCGamF), 7-β- nitrobenzoxadiazole 3-α hydroxy 5-β cholan-24-oic acid (NBD-CA), and cholyl-glycylamido-fluorescein (CGamF). However, in stably transfected HeLa cells, ntcp preferred CDCGamF, whereas the organic anion transporter, organic anion transporting polypeptide 1 (oatp1a1), preferred NBD-CA, and neither ntcp nor oatp1a1 showed strong accumulation of CGamF by these methods. Ntcp-mediated transport of CDCGamF was inhibited by taurocholate, cyclosporin, actin depolymerization, and an inhibitor of atypical PKC-ζ. The latter two agents altered the cellular distribution of ntcp as visualized in ntcp-green fluorescent protein-transfected cells. Although fluorescent bile acid accumulation was reproducible by the imaging assays, individual cells showed variable accumulation that was not attributable to changes in membrane permeability or cell viability. In HeLa cells, this was accounted for by variable levels of ntcp, whereas, in hepatocytes, ntcp expression was uniform, and low accumulation was seen in a large portion of cells despite the presence of ntcp. These studies indicate that single-cell imaging can provide insight into previously unrecognized details of anion transport in the complex environment of polarized hepatocytes. PMID:21474652
Okamura, Ayako; Koyanagi, Satoru; Dilxiat, Adila; Kusunose, Naoki; Chen, Jia Jun; Matsunaga, Naoya; Shibata, Shigenobu; Ohdo, Shigehiro
2014-01-01
Digested proteins are mainly absorbed as small peptides composed of two or three amino acids. The intestinal absorption of small peptides is mediated via only one transport system: the proton-coupled peptide transporter-1 (PepT1) encoded from the soluble carrier protein Slc15a1. In mammals, intestinal expression of PepT1/Slc15a1 oscillates during the daily feeding cycle. Although the oscillation in the intestinal expression of PepT1/Slc15a1 is suggested to be controlled by molecular components of circadian clock, we demonstrated here that bile acids regulated the oscillation of PepT1/Slc15a1 expression through modulating the activity of peroxisome proliferator-activated receptor α (PPARα). Nocturnally active mice mainly consumed their food during the dark phase. PPARα activated the intestinal expression of Slc15a1 mRNA during the light period, and protein levels of PepT1 peaked before the start of the dark phase. After food intake, bile acids accumulated in intestinal epithelial cells. Intestinal accumulated bile acids interfered with recruitment of co-transcriptional activator CREB-binding protein/p300 on the promoter region of Slc15a1 gene, thereby suppressing PPARα-mediated transactivation of Slc15a1. The time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the intestinal expression of PepT1/Slc15a1 during the daily feeding cycle that led to circadian changes in the intestinal absorption of small peptides. These findings suggest a molecular clock-independent mechanism by which bile acid-regulated PPARα activity governs the circadian expression of intestinal peptide transporter. PMID:25016014
Kim, Kang Ho; Choi, Jong Min; Li, Feng; Arizpe, Armando; Wooton-Kee, Clavia Ruth; Anakk, Sayeepriyadarshini; Jung, Sung Yun; Finegold, Milton J; Moore, David D
2018-06-01
Progressive familial intrahepatic cholestasis (PFIC) is a genetically heterogeneous disorder of bile flow disruption due to abnormal canalicular transport or impaired bile acid (BA) metabolism, causing excess BA accumulation and liver failure. We previously reported an intrahepatic cholestasis mouse model based on loss of function of both farnesoid X receptor (FXR; NR1H4) and a small heterodimer partner (SHP; NR0B2) [double knockout (DKO)], which has strong similarities to human PFIC5. We compared the pathogenesis of DKO livers with that of another intrahepatic cholestasis model, Bsep-/-, which represents human PFIC2. Both models exhibit severe hepatomegaly and hepatic BA accumulation, but DKO showed greater circulating BA and liver injury, and Bsep-/- had milder phenotypes. Molecular profiling of BAs uncovered specific enrichment of cholic acid (CA)-derived BAs in DKO livers but chenodeoxycholate-derived BAs in Bsep-/- livers. Transcriptomic and proteomic analysis revealed specific activation of CA synthesis and alternative basolateral BA transport in DKO but increased chenodeoxycholic acid synthesis and canalicular transport in Bsep-/-. The constitutive androstane receptor (CAR)/pregnane X receptor (PXR)-CYP2B/CYP2C axis is activated in DKO livers but not in other cholestasis models. Loss of this axis in Fxr:Shp:Car:Pxr quadruple knockouts blocked Cyp2b/Cyp2c gene induction, impaired bilirubin conjugation/elimination, and increased liver injury. Differential CYP2B expression in DKO and Bsep-/- was recapitulated in human PFIC5 and PFIC2 livers. In conclusion, loss of FXR/SHP results in distinct molecular pathogenesis and CAR/PXR activation, which promotes Cyp2b/Cyp2c gene transcription and bilirubin clearance. CAR/PXR activation was not observed in Bsep-/- mice or PFIC2 patients. These findings provide a deeper understanding of the heterogeneity of intrahepatic cholestasis.
Bajor, Antal; Kilander, Anders; Sjövall, Henrik; Rudling, Mats; Ung, Kjell-Arne
2008-11-01
The stability of bile acid turnover rate was evaluated retrospectively using repeat SeHCAT tests in patients with chronic diarrhoea and prospectively for 16 years in healthy subjects. The SeHCAT values were stable in 39 patients with chronic diarrhoea, as shown by a comparison of the test results [data presented as median and (25th-75th percentile)]: 18% (8-23) in the first test versus 14% (9-21) in the second test [n = 39, P = 0.37, time interval 44 months (16-68), repeatability index >95%]. In contrast, they were reduced after 16 years in healthy subjects: 38% (30-49.5) in the first test versus 31% (21-49.5) in the second test (P < 0.03). In healthy subjects, the body mass index increased by 13% from 23.2 kg/m(2) (21-24.6) to 26.2 kg/m(2) (22.5-27.8) (P < 0.01) during the 16 years. There was a negative correlation between hepatic bile acid synthesis and the SeHCAT values (r = -0.615, P = 0.02, n = 14). In conclusion, the turnover rate of bile acids is stable over a long period of time in patients with chronic diarrhoea irrespective of bile acid malabsorption, suggesting that a repeat SeHCAT test is dispensable. There is a significant negative correlation between bile acid synthesis and SeHCAT test results in healthy subjects. The SeHCAT test values are slightly reduced in healthy subjects after 16 years.
NASA Astrophysics Data System (ADS)
de Marino, Simona; Carino, Adriana; Masullo, Dario; Finamore, Claudia; Marchianò, Silvia; Cipriani, Sabrina; di Leva, Francesco Saverio; Catalanotti, Bruno; Novellino, Ettore; Limongelli, Vittorio; Fiorucci, Stefano; Zampella, Angela
2017-02-01
Bile acids are extensively investigated for their potential in the treatment of human disorders. The liver X receptors (LXRs), activated by oxysterols and by a secondary bile acid named hyodeoxycholic acid (HDCA), have been found essential in the regulation of lipid homeostasis in mammals. Unfortunately, LXRα activates lipogenic enzymes causing accumulation of lipid in the liver. In addition to LXRs, HDCA has been also shown to function as ligand for GPBAR1, a G protein coupled receptor for secondary bile acids whose activation represents a promising approach to liver steatosis. In the present study, we report a library of HDCA derivatives endowed with modulatory activity on the two receptors. The lead optimization of HDCA moiety was rationally driven by the structural information on the binding site of the two targets and results from pharmacological characterization allowed the identification of hyodeoxycholane derivatives with selective agonistic activity toward LXRα and GPBAR1 and notably to the identification of the first example of potent dual LXRα/GPBAR1 agonists. The new chemical entities might hold utility in the treatment of dyslipidemic disorders.
Mullish, Benjamin H; Pechlivanis, Alexandros; Barker, Grace F; Thursz, Mark R; Marchesi, Julian R; McDonald, Julie A K
2018-04-26
There is an ever-increasing recognition that bile acids are not purely simple surfactant molecules that aid in lipid digestion, but are a family of molecules contributing to a diverse range of key systemic functions in the host. It is now also understood that the specific composition of the bile acid milieu within the host is related to the expression and activity of bacterially-derived enzymes within the gastrointestinal tract, as such creating a direct link between the physiology of the host and the gut microbiota. Coupled to the knowledge that perturbation of the structure and/or function of the gut microbiota may contribute to the pathogenesis of a range of diseases, there is a high level of interest in the potential for manipulation of the gut microbiota-host bile acid axis as a novel approach to therapeutics. Much of the growing understanding of the biology of this area reflects the recent development and refinement of a range of novel techniques; this study applies a number of those techniques to the analysis of human samples, aiming to illustrate their strengths, drawbacks and biological significance at all stages. Specifically, we used microbial profiling (using 16S rRNA gene sequencing), bile acid profiling (using liquid chromatography-mass spectrometry), bsh and baiCD qPCR, and a BSH enzyme activity assay to demonstrate differences in the gut microbiota and bile metabolism in stool samples from healthy and antibiotic-exposed individuals. Copyright © 2018 Elsevier Inc. All rights reserved.
Wu, Wei-Bin; Menon, Ramkumar; Xu, Yue-Ying; Zhao, Jiu-Ru; Wang, Yan-Lin; Liu, Yuan; Zhang, Hui-Juan
2016-01-01
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific disorder characterised by raised bile acids in foetal-maternal circulation, which threatens perinatal health. During the progression of ICP, the effect of oxidative stress is underscored. Peroxiredoxin-3 (PRDX3) is a mitochondrial antioxidant enzyme that is crucial to balance intracellular oxidative stress. However, the role of PRDX3 in placental trophoblast cells under ICP is not fully understood. We demonstrated that the level of PRDX3 was downregulated in ICP placentas as well as bile acids–treated trophoblast cells and villous explant in vitro. Toxic levels of bile acids and PRDX3 knockdown induced oxidative stress and mitochondrial dysfunction in trophoblast cells. Moreover, silencing of PRDX3 in trophoblast cell line HTR8/SVneo induced growth arrest and cellular senescence via activation of p38-mitogen-activated protein kinase (MAPK) and induction of p21WAF1/CIP and p16INK4A. Additionally, enhanced cellular senescence, determined by senescence-associated beta-galactosidase staining, was obviously attenuated by p38-MAPK inhibitor SB203580. Our data determined that exposure to bile acid decreased PRDX3 level in human trophoblasts. PRDX3 protected trophoblast cells against mitochondrial dysfunction and cellular senescence induced by oxidative stress. Our results suggest that decreased PRDX3 by excessive bile acids in trophoblasts plays a critical role in the pathogenesis and progression of ICP. PMID:27958341
Koay, Debbie C; Zerillo, Cynthia; Narayan, Murli; Harris, Lyndsay N; DiGiovanna, Michael P
2010-01-01
HER2 and estrogen receptor (ER) are important in breast cancer and are therapeutic targets of trastuzumab (Herceptin) and tamoxifen, respectively. Retinoids inhibit breast cancer growth, and modulate signaling by HER2 and ER. We hypothesized that treatment with retinoids and simultaneous targeting of HER2 and/or ER may have enhanced anti-tumor effects. The effects of retinoids combined with trastuzumab or tamoxifen were examined in two human breast cancer cell lines in culture, BT474 and SKBR3. Assays of proliferation, apoptosis, differentiation, cell cycle distribution, and receptor signaling were performed. In HER2-overexpressing/ER-positive BT474 cells, combining all-trans retinoic acid (atRA) with tamoxifen or trastuzumab synergistically inhibited cell growth, and altered cell differentiation and cell cycle. Only atRA/trastuzumab-containing combinations induced apoptosis. BT474 and HER2-overexpressing/ER-negative SKBR3 cells were treated with a panel of retinoids (atRA, 9-cis-retinoic acid, 13-cis-retinoic acid, or N-(4-hydroxyphenyl) retinamide (fenretinide) (4-HPR)) combined with trastuzumab. In BT474 cells, none of the single agents except 4-HPR induced apoptosis, but again combinations of each retinoid with trastuzumab did induce apoptosis. In contrast, the single retinoid agents did cause apoptosis in SKBR3 cells; this was only modestly enhanced by addition of trastuzumab. The retinoid drug combinations altered signaling by HER2 and ER. Retinoids were inactive in trastuzumab-resistant BT474 cells. Combining retinoids with trastuzumab maximally inhibits cell growth and induces apoptosis in trastuzumab-sensitive cells. Treatment with such combinations may have benefit for breast cancer patients.
Hu, Guanying; Yuan, Xing; Zhang, Sanyin; Wang, Ruru; Yang, Miao; Wu, Chunjie; Wu, Zhigang; Ke, Xiao
2015-02-01
Danshu capsule (DSC) is a medicinal compound in traditional Chinese medicine (TCM). It is commonly used for the treatment of acute & chronic cholecystitis as well as choleithiasis. To study its choleretic effect, healthy rats were randomly divided into DSC high (DSCH, 900mg/kg), medium (DSCM, 450mg/kg), and low (DSCL, 225mg/kg) group, Xiaoyan Lidan tablet (XYLDT, 750mg/kg), and saline group. The bile was collected for 1h after 20-minute stabilization as the base level, and at 1h, 2h, 3h, and 4h after drug administration, respectively. Bile volume, total cholesterol, and total bile acid were measured at each time point. The results revealed that DSC significantly stimulated bile secretion, decreased total cholesterol level and increased total bile acid level. Therefore, it had choleretic effects. To identify the active components contributing to its choleretic effects, five major constituents which are menthol (39.33mg/kg), menthone (18.02mg/kg), isomenthone (8.18mg/kg), pluegone (3.31mg/kg), and limonene (4.39mg/kg) were tested on our rat model. The results showed that menthol and limonene could promote bile secretion when compared to DSC treatment (p > 0.05); Menthol, menthol and limonene could significantly decrease total cholesterol level (p<0.05 or p<0.01) as well as increase total bile acid level (p<0.05 or p<0.01); Isomenthone, as a isomer of menthone, existed slightly choleretic effects; Pluegone had no obvious role in bile acid efflux. These findings indicated that the choleretic effects of DSC may be attributed mainly to its three major constituents: menthol, menthone and limonene. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Goldman, Aaron; Shahidullah, Mohammad; Goldman, David; Khailova, Ludmila; Watts, George; Delamere, Nicholas; Dvorak, Katerina
2010-12-01
Barrett's oesophagus is a premalignant disease associated with oesophageal adenocarcinoma. The major goal of this study was to determine the mechanism responsible for bile acid-induced alteration in intracellular pH (pH(i)) and its effect on DNA damage in cells derived from normal oesophagus (HET1A) or Barrett's oesophagus (CP-A). Cells were exposed to bile acid cocktail (BA) and/or acid in the presence/absence of inhibitors of nitric oxide synthase (NOS) or sodium-hydrogen exchanger (NHE). Nitric oxide (NO), pH(i) and DNA damage were measured by fluorescent imaging and comet assay. Expression of NHE1 and NOS in cultured cells and biopsies from Barrett's oesophagus or normal squamous epithelium was determined by RT-PCR, immunoblotting or immunohistochemistry. A dose dependent decrease in pH(i) was observed in CP-A cells exposed to BA. This effect of BA is the consequence of NOS activation and increased NO production, which leads to NHE inhibition. Exposure of oesophageal cells to acid in combination with BA synergistically decreased pH(i). The decrease was more pronounced in CP-A cells and resulted in >2-fold increase in DNA damage compared to acid treatment alone. Examination of biopsies and cell lines revealed robust expression of NHE1 in Barrett's oesophagus but an absence of NHE1 in normal epithelium. The results of this study identify a new mechanism of bile acid-induced DNA damage. We found that bile acids present in the refluxate activate immediately all three isoforms of NOS, which leads to an increased NO production and NHE inhibition. This consequently results in increased intracellular acidification and DNA damage, which may lead to mutations and cancer progression. Therefore, we propose that in addition to gastric reflux, bile reflux should be controlled in patients with Barrett's oesophagus.
Ursodeoxycholic Acid in Treatment of Non-cholestatic Liver Diseases: A Systematic Review.
Reardon, Jillian; Hussaini, Trana; Alsahafi, Majid; Azalgara, Vladimir Marquez; Erb, Siegfried R; Partovi, Nilufar; Yoshida, Eric M
2016-09-28
Aims: To systematically evaluate the literature for evidence to support the use of bile acids in non-cholestatic liver conditions. Methods: Searches were conducted on the databases of Medline (1948-March 31, 2015), Embase (1980-March 31, 2015) and the Cochrane Central Register of Controlled Trials, and on Google and Google Scholar to identify articles describing ursodeoxycholic acid (UDCA) and its derivatives for non-cholestatic hepatic indications. Combinations of the following search terms were used: ursodeoxycholic acid, ursodiol, bile acids and/or salts, non alcoholic fatty liver, non alcoholic steatohepatitis, fatty liver, alcoholic hepatitis, alcohol, liver disease, autoimmune, autoimmune hepatitis, liver transplant, liver graft, transplant rejection, graft rejection, ischemic reperfusion injury, reperfusion injury, hepatitis B, hepatitis C, viral hepatitis, chronic hepatitis, acute hepatitis, transaminases, alanine transaminase, liver enzymes, aspartate aminotransferase, gamma-glutamyl transferase, gamma-glutamyl transpeptidase, bilirubin, alkaline phosphatase. No search limits were applied. Additionally, references of the included studies were reviewed to identify additional articles. Results: The literature search yielded articles meeting inclusion criteria for the following indications: non-alcoholic fatty liver disease (n = 5); alcoholic liver disease (n = 2); autoimmune hepatitis (n = 6), liver transplant (n = 2) and viral hepatitis (n = 9). Bile acid use was associated with improved normalization of liver biochemistry in non-alcoholic fatty liver disease, autoimmune hepatitis and hepatitis B and C infections. In contrast, liver biochemistry normalization was inconsistent in alcoholic liver disease and liver transplantation. The majority of studies reviewed showed that normalization of liver biochemistry did not correlate to improvement in histologic disease. In the prospective trials reviewed, adverse effects associated with the bile acids were limited to minor gastrointestinal complaints (most often, diarrhea) and did not occur at increased frequency as compared to controls. As administration of bile acids was often limited to durations of 12 months or less, long-term side effects for non-cholestatic indications cannot be excluded. Conclusions: Based on the available literature, bile acids cannot be widely recommended for non-cholestatic liver diseases at present.
Májer, Ferenc; Salomon, Johanna J; Sharma, Ruchika; Etzbach, Simona V; Najib, Mohd Nadzri Mohd; Keaveny, Ray; Long, Aideen; Wang, Jun; Ehrhardt, Carsten; Gilmer, John F
2012-03-01
Deoxycholic acid (DCA), a secondary bile acid (BA), and ursodeoxycholic acid (UDCA), a tertiary BA, cause opposing effects in vivo and in cell suspensions. Fluorescent analogues of DCA and UDCA could help investigate important questions about their cellular interactions and distribution. We have prepared a set of isomeric 3α- and 3β-amino analogues of UDCA and DCA and derivatised these with the discrete fluorophore, 4-nitrobenzo-2-oxa-1,3-diazol (NBD), forming the corresponding four fluorescent adducts. These absorb in the range 465-470 nm and fluoresce at approx. 535 nm. In order to determine the ability of the new fluorescent bile acids to mimic the parents, their uptake was studied using monolayers of Caco-2 cells, which are known to express multiple proteins of the organic anion-transporting peptide (OATP) subfamily of transporters. Cellular uptake was monitored over time at 4 and 37°C to distinguish between passive and active transport. All four BA analogues were taken up but in a strikingly stereo- and structure-specific manner, suggesting highly discriminatory interactions with transporter protein(s). The α-analogues of DCA and to a lesser extent UDCA were actively transported, whereas the β-analogues were not. The active transport process was saturable, with Michaelis-Menten constants for 3α-NBD DCA (5) being K(m)=42.27±12.98 μM and V(max)=2.8 ± 0.4 nmol/(mg protein*min) and for 3α-NBD UDCA (3) K(m)=28.20 ± 7.45 μM and V(max)=1.8 ± 0.2 nmol/(mg protein*min). These fluorescent bile acids are promising agents for investigating questions of bile acid biology and for detection of bile acids and related organic anion transport processes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Leonard, J D; Hellou, J
2001-03-01
Speckled trout, Salvelinus fontinalis, were orally exposed to individual polycyclic aromatic compounds (PACs) represented by benzo[a]pyrene, carbazole, chrysene, dibenzofuran, dibenzothiophene, fluorene, phenanthrene, and pyrene. Fish were sacrificed 7 d after exposure and the gall bladder removed for bile analysis. High pressure liquid chromatography (HPLC) with fluorescence (F) and ultraviolet (UV) detection was used to determine the presence of PAC derivatives in the bile without pretreatment. Glucuronide conjugates were predominant in all exposures with variable amounts (0-53%) of phenols and starting material. Identification of compounds was confirmed by selective extraction of less polar nonconjugated PACs and enzymatic hydrolysis of water-soluble material. This was followed by HPLC and/or gas chromatography-mass spectrometry (GCMS) characterization of the produced phenols. Total metabolite levels varied widely among compounds.
Amarasinghe, Kande; Chu, Pak-Sin; Evans, Eric; Reimschuessel, Renate; Hasbrouck, Nicholas; Jayasuriya, Hiranthi
2012-05-23
This paper describes the development of a fast method to screen and confirm methyltestosterone 17-O-glucuronide (MT-glu) in tilapia bile. The method consists of solid-phase extraction (SPE) followed by high-performance liquid chromatography-mass spectrometry. The system used was an Agilent 6530 Q-TOF with an Agilent Jet stream electrospray ionization interface. The glucuronide detected in the bile was characterized as MT-glu by comparison with a chemically synthesized standard. MT-glu was detected in bile for up to 7 days after dosing. Semiquantification was done with matrix-matched calibration curves, because MT-glu showed signal suppression due to matrix effects. This method provides a suitable tool to monitor the illegal use of methyltestosterone in tilapia culture.
Salen, G; Shefer, S; Setoguchi, T; Mosbach, E H
1975-01-01
To study the role of C25-HYDROXY BILE ALCOHOLS AS PRECURSORS OF CHOlic acid, [G-3-H]5beta-cholestane-3alpha,7alpha12alpha,25-tetrol was administered intravenously to two subjects with cerebrotendinous xanthomatosis (CTX) and two normal individuals. One day after pulse labeling, radioactivity was present in the cholic acid isolated from the bile and feces of the subjects with CTX and the bile of the normal individuals. In the two normal subjects, the sp act decay curves of [G-3-H]-cholic acid were exponential, and no traces of [G-3-H]-5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol were detected. In contrast, appreciable quantities of labeled 5beta-cholestane-3alpha,-7aopha,12alpha,25-tetrol were present in the bile and feces of the CTX subjects. The sp act vs. time curves of fecal [G-3-H]5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol and [G-3-H]-cholic acid showed a precursor-product relationship. Although these results suggest that 5beta-cholestane-3alpha,7alpha,12alpha,25-tetrol may be a precursor of cholic acid in man, the possibility that C26-hydroxy intermediates represent the normal pathway can not be excluded. PMID:1141434
Williams, A J; Merrick, M V; Eastwood, M A
1991-01-01
Between 1982 and 1989, the seven day retention of 75SeHCAT was measured in 181 patients with chronic diarrhoea that remained unexplained after full investigation. Altogether 121 of the 181 had a seven day 75SeHCAT retention greater than or equal to 15% and thus had no evidence of abnormal bile acid turnover. Twenty one had a seven day 75SeHCAT retention greater than or equal to 10% but less than 15%. Their clinical features were typical of the irritable bowel syndrome, and none of eight treated with cholestyramine showed symptomatic improvement. Sixteen patients had a seven day retention greater than or equal to 5% and less than 10%, six of whom had improved symptoms after treatment with bile acid chelating agents. The remaining 23 patients had a 75SeHCAT retention of less than 5% at seven days and responded to bile acid chelators. This group had a characteristic illness with intermittent watery diarrhoea, but no constitutional upset. It was not possible to distinguish the patients with bile acid malabsorption exclusively on the basis of the clinical symptoms and investigations, other than 75SeHCAT retention. We conclude that the measurement of 75SeHCAT retention is useful, appropriate, and necessary in patients with unexplained chronic diarrhoea. PMID:1916479
Nizamutdinov, Damir; DeMorrow, Sharon; McMillin, Matthew; Kain, Jessica; Mukherjee, Sanjib; Zeitouni, Suzanne; Frampton, Gabriel; Bricker, Paul Clint S; Hurst, Jacob; Shapiro, Lee A
2017-01-20
Annually, there are over 2 million incidents of traumatic brain injury (TBI) and treatment options are non-existent. While many TBI studies have focused on the brain, peripheral contributions involving the digestive and immune systems are emerging as factors involved in the various symptomology associated with TBI. We hypothesized that TBI would alter hepatic function, including bile acid system machinery in the liver and brain. The results show activation of the hepatic acute phase response by 2 hours after TBI, hepatic inflammation by 6 hours after TBI and a decrease in hepatic transcription factors, Gli 1, Gli 2, Gli 3 at 2 and 24 hrs after TBI. Bile acid receptors and transporters were decreased as early as 2 hrs after TBI until at least 24 hrs after TBI. Quantification of bile acid transporter, ASBT-expressing neurons in the hypothalamus, revealed a significant decrease following TBI. These results are the first to show such changes following a TBI, and are compatible with previous studies of the bile acid system in stroke models. The data support the emerging idea of a systemic influence to neurological disorders and point to the need for future studies to better define specific mechanisms of action.