Sample records for bimetallic nanoparticles modified

  1. VAPOR PHASE MERCURY SORPTION BY ORGANIC SULFIDE MODIFIED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES

    EPA Science Inventory

    Novel organic sulfide modified bimetallic iron-copper nanoparticle aggregate sorbent materials have been synthesized for removing elemental mercury from vapor streams at elevated temperatures (120-140 °C). Silane based (disulfide silane and tetrasulfide silane) and alkyl sulfide ...

  2. Real-time cellular and molecular dynamics of bi-metallic self-therapeutic nanoparticle in cancer cells

    NASA Astrophysics Data System (ADS)

    Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Paspala, Syed Ameer Basha; Habeeb, Md. Aejaz; Khan, Aleem Ahmed

    2018-02-01

    Since last decades various kinds of nanoparticles have been functionalized to improve their biomedical applications. However, the biological effect of un-modified/non-functionalized bi-metallic magnetic nanoparticles remains under investigated. Herein we demonstrate a multifaceted non-functionalized bi-metallic inorganic Gd-SPIO nanoparticle which passes dual high MRI contrast and can kill the cancer cells through several mechanisms. The results of the present study demonstrate that Gd-SPIO nanoparticles have potential to induce cancer cell death by production of reactive oxygen species and apoptotic events. Furthermore, Gd-SPIO nanoparticles also enhance the expression levels of miRNA-199a and miRNA-181a-7p which results in decreased levels of cancer markers such as C-met, TGF-β and hURP. One very interesting finding of this study reveals side scatter-based real-time analysis of nanoparticle uptake in cancer cells using flow cytometry analysis. In conclusion, this study paves a way for future investigation of un-modified inorganic nanoparticles to purport enhanced therapeutic effect in combination with potential anti-tumor drugs/molecules in cancer cells.

  3. Advanced STEM microanalysis of bimetallic nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Lyman, Charles E.; Dimick, Paul S.

    2012-05-01

    Individual particles within bimetallic nanoparticle populations are not always identical, limiting the usefulness of bulk analysis techniques such as EXAFS. The scanning transmission electron microscope (STEM) is the only instrument able to characterize supported nanoparticle populations on a particle-by-particle basis. Quantitative elemental analyses of sub-5-nm particles reveal phase separations among particles and surface segregation within particles. This knowledge can lead to improvements in bimetallic catalysts. Advanced STEMs with field-emission guns, aberration-corrected optics, and efficient signal detection systems allow analysis of sub-nanometer particles.

  4. Effect of nanoparticle metal composition: mono- and bimetallic gold/copper dendrimer stabilized nanoparticles as solvent-free styrene oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Blanckenberg, A.; Kotze, G.; Swarts, A. J.; Malgas-Enus, R.

    2018-02-01

    A range of mono- and bimetallic AumCun nanoparticles (NPs), with varying metal compositions, was prepared by using a third-generation diaminobutane poly(propylene imine) (G3 DAB-PPI) dendrimer, modified with alkyl chains, as a stabilizer. It was found that the length of the peripheral alkyl chain, ( M1 (C15), M2 (C11), and M3 (C5)), had a direct influence on the average nanoparticle size obtained, confirming the importance of the nanoparticle stabilizer during synthesis. The Au NPs showed the highest degree of agglomeration and polydispersity, whereas the Cu NPs were the smallest and most monodisperse of the NPs. The bimetallic NPs sizes were found to vary between those of the monometallic NPs, depending on the metal composition. Interestingly, the bimetallic NPs were found to be the most stable, showing very little variation in size over time, even up to 9 months. The DSNs were evaluated in the catalytic oxidation of styrene, using either H2O2 or TBHP as oxidant. Here, we show that the bimetallic DSNs are indeed the superior catalysts when compared to their monometallic analogues, under the same reaction conditions, since a good compromise between stability and activity can be achieved where the Au provides catalytic activity and the Cu serves as a stabilizer. These AumCun bimetallic DSNs present a less expensive and more stable catalyst with negligible loss of activity, opening the door to green catalysis.

  5. Polyamidoamine dendrimers-assisted electrodeposition of gold-platinum bimetallic nanoflowers.

    PubMed

    Qian, Lei; Yang, Xiurong

    2006-08-24

    Novel Au-Pt bimetallic flower nanostructures fabricated on a polyamidoamine dendrimers-modified surface by electrodeposition are reported. These polyamidoamine dendrimers were stable, and they assisted the formation of Au-Pt bimetallic nanoflowers during the electrodeposition process. These nanoflowers were characterized by field-emitted scanning electron microscopy (FE-SEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction, and electrochemical methods. FE-SEM images showed that the bimetallic nanoflower included two parts: the "light" and the "pale" part. The two parts consisted of many small bimetallic nanoparticles, which was attributed to the progressive nucleation process. Moreover, the "light" part contained more bimetallic nanoparticles. The morphologies of bimetallic nanoflowers depended on the electrodeposition time and potential and the layer number of assembled dendrimers. The average size of nanoflowers increased with the increase in electrodeposition time. The layer number of assembled dendrimers obviously affected the size and morphologies of the "pale" parts of deposited nanoflowers. EDS and XPS indicated that the content of Au element was higher than that of Pt element in the nanoflowers. The bimetallic nanoflowers-modified electrode had electrochemical properties similar to those of bare gold and platinum electrodes. It also exhibited significant electrocatalytic activities toward oxygen reduction.

  6. Mono and bimetallic nanoparticles of gold, silver and palladium-catalyzed NADH oxidation-coupled reduction of Eosin-Y

    NASA Astrophysics Data System (ADS)

    Santhanalakshmi, J.; Venkatesan, P.

    2011-02-01

    Mono metallic (Au, Ag, Pd) and bimetallic (Au-Ag, Ag-Pd, Au-Pd) with 1:1 mol stoichiometry, nanoparticles are synthesized using one-pot, temperature controlled chemical method using cetyltrimethylammonium bromide (CTAB) as the capping agent. The particle sizes (Au = 5.6, Ag = 5.0, Pd = 6.0, Au-Ag = 9.2, Ag-Pd = 9.6, Au-Pd = 9.4 nm) are characterized by UV-Vis, HRTEM, and XRD measurements, respectively. CTAB bindings onto mono and bimetallic nanoparticles are analyzed by FTIR spectra. The catalytic activities of mono and bimetallic nanoparticles are tested on the reaction between NADH oxidation and Eosin-Y reduction. The effects of base, pH, ionic strength, nature of mono and bimetallic catalysts are studied and the reaction conditions are optimized. Bimetallic nanoparticles exhibited better catalysis than the mono metallic nanoparticles, which may be due to the electronic effects of the core to shell metal atoms.

  7. Characterization of Magnetic NiFe Nanoparticles with Controlled Bimetallic Composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yan; Chi, Yanxiu; Shan, Shiyao

    2014-02-25

    The exploration of the magnetic properties of bimetallic alloy nanoparticles for various technological applications requires the ability to control the morphology, composition, and surface properties. In this report, we describe new findings of an investigation of the morphology and composition of NiFe alloy nanoparticles synthesized under controlled conditions. The controllability over the bimetallic composition has been demonstrated by the observation of an approximate linear relationship between the composition in the nanoparticles and in the synthetic feeding. The morphology of the NiFe nanoparticles is consistent with an fcc-type alloy, with the lattice strain increasing linearly with the iron content in themore » nanoparticles. The alloy nanoparticles exhibit remarkable resistance to air oxidation in comparison with Ni or Fe particles. The thermal stability and the magnetic properties of the as-synthesized alloy nanoparticles are shown to depend on the composition. The alloy nanoparticles have also be sown to display low saturation magnetization and coercivity values in comparison with the Ni nanoparticles, in line with the superparamagnetic characteristic. These findings have important implications for the design of stable and controllable magnetic nanoparticles for various technological applications.« less

  8. Low-Cost Label-Free Biosensing Bimetallic Cellulose Strip with SILAR-Synthesized Silver Core-Gold Shell Nanoparticle Structures.

    PubMed

    Kim, Wansun; Lee, Jae-Chul; Lee, Gi-Ja; Park, Hun-Kuk; Lee, Anbok; Choi, Samjin

    2017-06-20

    We introduce a label-free biosensing cellulose strip sensor with surface-enhanced Raman spectroscopy (SERS)-encoded bimetallic core@shell nanoparticles. Bimetallic nanoparticles consisting of a synthesis of core Ag nanoparticles (AgNP) and a synthesis of shell gold nanoparticles (AuNPs) were fabricated on a cellulose substrate by two-stage successive ionic layer absorption and reaction (SILAR) techniques. The bimetallic nanoparticle-enhanced localized surface plasmon resonance (LSPR) effects were theoretically verified by computational calculations with finite element models of optimized bimetallic nanoparticles interacting with an incident laser source. Well-dispersed raspberry-like bimetallic nanoparticles with highly polycrystalline structure were confirmed through X-ray and electron analyses despite ionic reaction synthesis. The stability against silver oxidation and high sensitivity with superior SERS enhancement factor (EF) of the low-cost SERS-encoded cellulose strip, which achieved 3.98 × 10 8 SERS-EF, 6.1%-RSD reproducibility, and <10%-degraded sustainability, implicated the possibility of practical applications in high analytical screening methods, such as single-molecule detection. The remarkable sensitivity and selectivity of this bimetallic biosensing strip in determining aquatic toxicities for prohibited drugs, such as aniline, sodium azide, and malachite green, as well as monitoring the breast cancer progression for urine, confirmed its potential as a low-cost label-free point-of-care test chip for the early diagnosis of human diseases.

  9. Bimetallic Nanoparticles as Efficient Catalysts: Facile and Green Microwave Synthesis

    PubMed Central

    Blosi, Magda; Ortelli, Simona; Costa, Anna Luisa; Dondi, Michele; Lolli, Alice; Andreoli, Sara; Benito, Patricia; Albonetti, Stefania

    2016-01-01

    This work deals with the development of a green and versatile synthesis of stable mono- and bi-metallic colloids by means of microwave heating and exploiting ecofriendly reagents: water as the solvent, glucose as a mild and non-toxic reducer and polyvinylpirrolidone (PVP) as the chelating agent. Particle size-control, total reaction yield and long-term stability of colloids were achieved with this method of preparation. All of the materials were tested as effective catalysts in the reduction of p-nitrophenol in the presence of NaBH4 as the probe reaction. A synergistic positive effect of the bimetallic phase was assessed for Au/Cu and Pd/Au alloy nanoparticles, the latter showing the highest catalytic performance. Moreover, monoand bi-metallic colloids were used to prepare TiO2- and CeO2-supported catalysts for the liquid phase oxidation of 5-hydroxymethylfufural (HMF) to 2,5-furandicarboxylic acid (FDCA). The use of Au/Cu and Au/Pd bimetallic catalysts led to an increase in FDCA selectivity. Finally, preformed Pd/Cu nanoparticles were incorporated into the structure of MCM-41-silica. The resulting Pd/Cu MCM-41 catalysts were tested in the hydrodechlorination of CF3OCFClCF2Cl to CF3OCF=CF2. The effect of Cu on the hydrogenating properties of Pd was demonstrated. PMID:28773672

  10. Monodispersed bimetallic PdAg nanoparticles with twinned structures: Formation and enhancement for the methanol oxidation

    PubMed Central

    Yin, Zhen; Zhang, Yining; Chen, Kai; Li, Jing; Li, Wenjing; Tang, Pei; Zhao, Huabo; Zhu, Qingjun; Bao, Xinhe; Ma, Ding

    2014-01-01

    Monodispersed bimetallic PdAg nanoparticles can be fabricated through the emulsion-assisted ethylene glycol (EG) ternary system. Different compositions of bimetallic PdAg nanoparticles, Pd80Ag20, Pd65Ag35 and Pd46Ag54 can be obtained via adjusting the reaction parameters. For the formation process of the bimetallic PdAg nanoparticles, there have two-stage growth processes: firstly, nucleation and growth of the primary nanoclusters; secondly, formation of the secondary nanoparticles with the size-selection and relax process via the coalescence or aggregation of the primary nanoclusters. The as-prepared PdAg can be supported on the carbon black without any post-treatment, which exhibited high electro-oxidation activity towards methanol oxidation under alkaline media. More importantly, carbon-supported Pd80Ag20 nanoparticles reveal distinctly superior activities for the methanol oxidation, even if compared with commercial Pt/C electro-catalyst. It is concluded that the enhanced activity is dependant on the unique twinning structure with heterogeneous phase due to the dominating coalescence growth in EG ternary system. PMID:24608736

  11. Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential.

    PubMed

    Mittal, Amit Kumar; Kumar, Sanjay; Banerjee, Uttam Chand

    2014-10-01

    In this study a synthetic approach for the stable, mono-dispersed high yielding bimetallic (Ag-Se) nanoparticles by quercetin and gallic acid is described. The bimetallic nanoparticles were synthesized at room temperature. Different reaction parameters (concentration of quercetin, gallic acid and Ag/Se salt, pH, temperature and reaction time) were optimized to control the properties of nanoparticles. The nanoparticles were characterized by various analytical techniques and their size was determined to be 30-35 nm. Our findings suggest that both the reduction as well as stabilization of nanoparticles were achieved by the flavonoids and phenolics. This study describes the efficacy of quercetin and gallic acid mediated synthesis of bimetallic (Ag-Se) nanoparticles and their in vitro antioxidant, antimicrobial (Gram-positive and Gram-negative bacteria) and antitumor potentials. The synthesized Ag-Se nanoparticles were used as anticancer agents for Dalton lymphoma (DL) cells and in in vitro 80% of its viability was reduced at 50 μg/mL. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy.

    PubMed

    Chen, Ching-Hsiang; Sarma, Loka Subramanyam; Chen, Jium-Ming; Shih, Shou-Chu; Wang, Guo-Rung; Liu, Din-Goa; Tang, Mau-Tsu; Lee, Jyh-Fu; Hwang, Bing-Joe

    2007-09-01

    In this study, we demonstrate the unique application of X-ray absorption spectroscopy (XAS) as a fundamental characterization tool to help in designing and controlling the architecture of Pd-Au bimetallic nanoparticles within a water-in-oil microemulsion system of water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane. Structural insights obtained from the in situ XAS measurements recorded at each step during the formation process revealed that Pd-Au bimetallic clusters with various Pd-Au atomic stackings are formed by properly performing hydrazine reduction and redox transmetalation reactions sequentially within water-in-oil microemulsions. A structural model is provided to explain reasonably each reaction step and to give detailed insight into the nucleation and growth mechanism of Pd-Au bimetallic clusters. The combination of in situ XAS analysis at both the Pd K-edge and the Au L(III)-edge and UV-vis absorption spectral features confirms that the formation of Pd-Au bimetallic clusters follows a (Pd(nuclei)-Au(stack))-Pd(surf) stacking. This result further implies that the thickness of Au(stack) and Pd(surf) layers may be modulated by varying the dosage of the Au precursor and hydrazine, respectively. In addition, a bimetallic (Pd-Au)(alloy) nanocluster with a (Pd(nuclei)-Au(stack))-(Pd-Au(alloy))(surf) stacking was also designed and synthesized in order to check the feasibility of Pd(surf) layer modification. The result reveals that the Pd(surf) layer of the stacked (Pd(nuclei)-Au)(stack) bimetallic clusters can be successfully modified to form a (Au-Pd alloy)(surf) layer by a co-reduction of Pd and Au ions by hydrazine. Further, we demonstrate the alloying extent or atomic distribution of Pd and Au in Pd-Au bimetallic nanoparticles from the derived XAS structural parameters. The complete XAS-based methodology, demonstrated here on the Pd-Au bimetallic system, can easily be extended to design and control the alloying extent or atomic distribution, atomic

  13. Strategies to initiate and control the nucleation behavior of bimetallic nanoparticles.

    PubMed

    Krishnan, Gopi; de Graaf, Sytze; Ten Brink, Gert H; Persson, Per O Å; Kooi, Bart J; Palasantzas, George

    2017-06-22

    In this work we report strategies to nucleate bimetallic nanoparticles (NPs) made by gas phase synthesis of elements showing difficulty in homogeneous nucleation. It is shown that the nucleation assisted problem of bimetallic NP synthesis can be solved via the following pathways: (i) selecting an element which can itself nucleate and act as a nucleation center for the synthesis of bimetallic NPs; (ii) introducing H 2 or CH 4 as an impurity/trace gas to initiate nucleation during the synthesis of bimetallic NPs. The latter can solve the problem if none of the elements in a bimetallic NP can initiate nucleation. We illustrate the abovementioned strategies for the case of Mg based bimetallic NPs, which are interesting as hydrogen storage materials and exhibit both nucleation and oxidation issues even under ultra-high vacuum conditions. In particular, it is shown that adding H 2 in small proportions favors the formation of a solid solution/alloy structure even in the case of immiscible Mg and Ti, where normally phase separation occurs during synthesis. In addition, we illustrate the possibility of improving the nucleation rate, and controlling the structure and size distribution of bimetallic NPs using H 2 /CH 4 as a reactive/nucleating gas. This is shown to be associated with the dimer bond energies of the various formed species and the vapor pressures of the metals, which are key factors for NP nucleation.

  14. Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports

    NASA Astrophysics Data System (ADS)

    Wong, A.; Liu, Q.; Griffin, S.; Nicholls, A.; Regalbuto, J. R.

    2017-12-01

    Supported nanoparticles containing more than one metal have a variety of applications in sensing, catalysis, and biomedicine. Common synthesis techniques for this type of material often result in large, unalloyed nanoparticles that lack the interactions between the two metals that give the particles their desired characteristics. We demonstrate a relatively simple, effective, generalizable method to produce highly dispersed, well-alloyed bimetallic nanoparticles. Ten permutations of noble and base metals (platinum, palladium, copper, nickel, and cobalt) were synthesized with average particle sizes from 0.9 to 1.4 nanometers, with tight size distributions. High-resolution imaging and x-ray analysis confirmed the homogeneity of alloying in these ultrasmall nanoparticles.

  15. Continuous-flow biosynthesis of Au-Ag bimetallic nanoparticles in a microreactor

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Huang, Jiale; Sun, Daohua; Odoom-Wubah, Tareque; Li, Jun; Li, Qingbiao

    2014-11-01

    Herein, a microfluidic biosynthesis of Au-Ag bimetallic nanoparticle (NP) in a tubular microreactor, based on simultaneous reduction of HAuCl4 and AgNO3 precursors in the presence of Cacumen Platycladi ( C. Platycladi) extract was studied. The flow velocity profile was numerically analyzed with computational fluid dynamics. Au-Ag bimetallic NPs with Ag/Au molar ratios of 1:1 and 2:1 were synthesized, respectively. The alloy formation, morphology, structure, and size were investigated by UV-Vis spectra analysis, transmission electron microscopy (TEM), high resolution TEM, scanning TEM, and energy-dispersive X-ray analysis. In addition, the effects of volumetric flow rate, reaction temperature, and concentration of C. Platycladi extract and NaOH on the properties of the as-synthesized Au-Ag bimetallic NPs were investigated. The results indicated that these factors could not only affect the molar ratios of the two elements in the Au-Ag bimetallic NPs, but also affect particle size which can be adjusted from 3.3 to 5.6 nm. The process was very rapid and green, since a microreactor was employed with no additional synthetic reagents used. This work is anticipated to provide useful parameters for continuous-flow biosynthesis of bimetallic NPs in microreactors.

  16. Bimetallic Effect of Single Nanocatalysts Visualized by Super-Resolution Catalysis Imaging

    DOE PAGES

    Chen, Guanqun; Zou, Ningmu; Chen, Bo; ...

    2017-11-01

    Compared with their monometallic counterparts, bimetallic nanoparticles often show enhanced catalytic activity associated with the bimetallic interface. Direct quantitation of catalytic activity at the bimetallic interface is important for understanding the enhancement mechanism, but challenging experimentally. Here using single-molecule super-resolution catalysis imaging in correlation with electron microscopy, we report the first quantitative visualization of enhanced bimetallic activity within single bimetallic nanoparticles. We focus on heteronuclear bimetallic PdAu nanoparticles that present a well-defined Pd–Au bimetallic interface in catalyzing a photodriven fluorogenic disproportionation reaction. Our approach also enables a direct comparison between the bimetallic and monometallic regions within the same nanoparticle. Theoreticalmore » calculations further provide insights into the electronic nature of N–O bond activation of the reactant (resazurin) adsorbed on bimetallic sites. Subparticle activity correlation between bimetallic enhancement and monometallic activity suggests that the favorable locations to construct bimetallic sites are those monometallic sites with higher activity, leading to a strategy for making effective bimetallic nanocatalysts. Furthermore, the results highlight the power of super-resolution catalysis imaging in gaining insights that could help improve nanocatalysts.« less

  17. Kinetic Study on the Formation of Bimetallic Core-Shell Nanoparticles via Microemulsions

    PubMed Central

    Tojo, Concha; Vila-Romeu, Nuria

    2014-01-01

    Computer calculations were carried out to determine the reaction rates and the mean structure of bimetallic nanoparticles prepared via a microemulsion route. The rates of reaction of each metal were calculated for a particular microemulsion composition (fixed intermicellar exchange rate) and varying reduction rate ratios between both metal and metal salt concentration inside the micelles. Model predictions show that, even in the case of a very small difference in reduction potential of both metals, the formation of an external shell in a bimetallic nanoparticle is possible if a large reactant concentration is used. The modification of metal arrangement with concentration was analyzed from a mechanistic point of view, and proved to be due to the different impact of confinement on each metal: the reaction rate of the faster metal is only controlled by the intermicellar exchange rate but the slower metal is also affected by a cage-like effect. PMID:28788260

  18. Synthesis and hydrogenation application of Pt-Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

    NASA Astrophysics Data System (ADS)

    Jin, Zhijun; Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-12-01

    Different generations of poly(propylene imine) (Gn-PPI) terminated with N-containing 15-membered triolefinic macrocycle (GnM) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts GnM-(Ptx/Pd10-x) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between GnM and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properties of GnM-(Ptx/Pd10-x) were characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd-Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd-Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations (n) of GnM-(Pt3/Pd7) (n = 2, 3, 4, 5).

  19. Direct Measurement of the Surface Energy of Bimetallic Nanoparticles: Evidence of Vegard's Rulelike Dependence.

    PubMed

    Chmielewski, Adrian; Nelayah, Jaysen; Amara, Hakim; Creuze, Jérôme; Alloyeau, Damien; Wang, Guillaume; Ricolleau, Christian

    2018-01-12

    We use in situ transmission electron microscopy to monitor in real time the evaporation of gold, copper, and bimetallic copper-gold nanoparticles at high temperature. Besides, we extend the Kelvin equation to two-component systems to predict the evaporation rates of spherical liquid mono- and bimetallic nanoparticles. By linking this macroscopic model to experimental TEM data, we determine the surface energies of pure gold, pure copper, Cu_{50}Au_{50}, and Cu_{25}Au_{75} nanoparticles in the liquid state. Our model suggests that the surface energy varies linearly with the composition in the liquid Cu-Au nanoalloy; i.e., it follows a Vegard's rulelike dependence. To get atomic-scale insights into the thermodynamic properties of Cu-Au alloys on the whole composition range, we perform Monte Carlo simulations employing N-body interatomic potentials. These simulations at a microscopic level confirm the Vegard's rulelike behavior of the surface energy obtained from experiments combined with macroscopic modeling.

  20. Direct Measurement of the Surface Energy of Bimetallic Nanoparticles: Evidence of Vegard's Rulelike Dependence

    NASA Astrophysics Data System (ADS)

    Chmielewski, Adrian; Nelayah, Jaysen; Amara, Hakim; Creuze, Jérôme; Alloyeau, Damien; Wang, Guillaume; Ricolleau, Christian

    2018-01-01

    We use in situ transmission electron microscopy to monitor in real time the evaporation of gold, copper, and bimetallic copper-gold nanoparticles at high temperature. Besides, we extend the Kelvin equation to two-component systems to predict the evaporation rates of spherical liquid mono- and bimetallic nanoparticles. By linking this macroscopic model to experimental TEM data, we determine the surface energies of pure gold, pure copper, Cu50 Au50 , and Cu25 Au75 nanoparticles in the liquid state. Our model suggests that the surface energy varies linearly with the composition in the liquid Cu-Au nanoalloy; i.e., it follows a Vegard's rulelike dependence. To get atomic-scale insights into the thermodynamic properties of Cu-Au alloys on the whole composition range, we perform Monte Carlo simulations employing N -body interatomic potentials. These simulations at a microscopic level confirm the Vegard's rulelike behavior of the surface energy obtained from experiments combined with macroscopic modeling.

  1. Noble-metal-free bimetallic alloy nanoparticle-catalytic gasification of phenol in supercritical water

    DOE PAGES

    Jia, Lijuan; Yu, Jiangdong; Chen, Yuan; ...

    2017-08-01

    The exploration of non-noble-metal catalysts for high efficiency gasification of biomass in supercritical water (SCW) is of great significance for the sustainable development. A series of Ni–M (M = Co or Zn) bimetallic nanoparticles supported on graphitized carbon black were synthesized and examined as catalysts for gasification of phenol in SCW. We found that a nearly complete gasification of phenol can be achieved even at a low temperature of 450 °C with the bimetallic nanoparticles catalysts. Kinetic study indicated the activation energy for phenol gasification were 20.4 ± 2.6 and 43.6 ± 2.6 kJ/mol for Ni20Zn15 and Ni20Co15 catalyst, respectively.more » Furthermore, XRD, XPS and TEM were performed to characterize the catalysts and the results showed the formation of NiCo and NiZn alloy phase. Catalyst recycling experiments were also conducted to evaluate the stability of the catalysts. The characterization of used catalysts suggest that the severe agglomeration of nanoparticles leads to the decrease in catalytic activity.« less

  2. Noble-metal-free bimetallic alloy nanoparticle-catalytic gasification of phenol in supercritical water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Lijuan; Yu, Jiangdong; Chen, Yuan

    The exploration of non-noble-metal catalysts for high efficiency gasification of biomass in supercritical water (SCW) is of great significance for the sustainable development. A series of Ni–M (M = Co or Zn) bimetallic nanoparticles supported on graphitized carbon black were synthesized and examined as catalysts for gasification of phenol in SCW. We found that a nearly complete gasification of phenol can be achieved even at a low temperature of 450 °C with the bimetallic nanoparticles catalysts. Kinetic study indicated the activation energy for phenol gasification were 20.4 ± 2.6 and 43.6 ± 2.6 kJ/mol for Ni20Zn15 and Ni20Co15 catalyst, respectively.more » Furthermore, XRD, XPS and TEM were performed to characterize the catalysts and the results showed the formation of NiCo and NiZn alloy phase. Catalyst recycling experiments were also conducted to evaluate the stability of the catalysts. The characterization of used catalysts suggest that the severe agglomeration of nanoparticles leads to the decrease in catalytic activity.« less

  3. Toward rational nanoparticle synthesis: predicting surface intermixing in bimetallic alloy nanocatalysts

    DOE PAGES

    Roling, Luke T.; Mavrikakis, Manos

    2017-09-19

    In this paper, we present a database of first-principles calculated activation energy barriers for two competitive processes involving bimetallic adatom-surface permutations of ten transition metals: (i) adatom “hopping” diffusion and (ii) adatom substitution into the surface. We consider the surface structure sensitivity of these events as well as coverage effects. We find that surface hopping mechanisms are facile and always preferred to substitution events on close-packed fcc(111) and hcp(0001) surfaces. However, surface atom substitution is more facile on the more open fcc(100) surfaces and is competitive with adatom surface hopping, which is more difficult than on the close-packed surfaces. Finally,more » by comparing the absolute and relative magnitudes of the energetics of hopping and substitution, our calculations can offer qualitative predictions of intermixing and other phenomena relevant to nanocrystal growth, such as the tendency to form intermixed alloys or core–shell structures during layer-by-layer nanoparticle synthesis involving a given bimetallic pair, and thereby inform the rational design and synthesis of novel bimetallic nanomaterials.« less

  4. Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films

    NASA Astrophysics Data System (ADS)

    Oh, Yoonseok; Lee, Jeeyoung; Lee, Myeongkyu

    2018-03-01

    We here show that Ag-Au bimetallic nanoparticles (NPs) can be produced by dewetting an Ag/Au bilayer film coated on glass using a nanosecond-pulsed laser beam. Elemental analysis revealed that the obtained bimetallic NPs are Ag-Au alloys, with two elements well mixed over the whole volume of the particle. The composition of the produced particles was controllable by changing the relative thickness of each layer. The localized surface plasmon resonance (LSPR) peak was red-shifted with an increasing Au content and the LSPR wavelength could be tuned from 415 to 525 nm by varying the alloy composition. A film area of several square centimeters could be transformed into Ag-Au NPs by a single laser pulse of 6 ns duration. This study provides a facile and scalable route to prepare bimetallic NPs for plasmonic and other applications.

  5. Synthesis and hydrogenation application of Pt–Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

    PubMed Central

    Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-01-01

    Different generations of poly(propylene imine) (Gn-PPI) terminated with N-containing 15-membered triolefinic macrocycle (GnM) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts GnM-(Ptx/Pd10−x) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between GnM and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properties of GnM-(Ptx/Pd10−x) were characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd–Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd–Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations (n) of GnM-(Pt3/Pd7) (n = 2, 3, 4, 5). PMID:29308263

  6. Synthesis and hydrogenation application of Pt-Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer.

    PubMed

    Jin, Zhijun; Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-12-01

    Different generations of poly(propylene imine) (G n -PPI) terminated with N-containing 15-membered triolefinic macrocycle (G n M) ( n  = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts G n M-(Pt x /Pd 10- x ) ( x  = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between G n M and the complexes of Pt(PPh 3 ) 4 and Pd(PPh 3 ) 4 . The structure and catalytic properties of G n M-(Pt x /Pd 10- x ) were characterized via Fourier transform infrared spectroscopy, 1 H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd-Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd-Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations ( n ) of G n M-(Pt 3 /Pd 7 ) ( n  = 2, 3, 4, 5).

  7. STEM-EDX tomography of bimetallic nanoparticles: A methodological investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, Thomas J. A.; Janssen, Arne; Camargo, Pedro H. C.

    This paper presents an investigation of the limitations and optimization of energy dispersive X-ray (EDX) tomography within the scanning transmission electron microscope, focussing on application of the technique to characterising the 3D elemental distribution of bimetallic AgAu nanoparticles. The detector collection efficiency when using a standard tomography holder is characterised using a tomographic data set from a single nanoparticle and compared to a standard low background double tilt holder. Optical depth profiling is used to investigate the angles and origin of detector shadowing as a function of specimen field of view. A novel time-varied acquisition scheme is described to compensatemore » for variations in the intensity of spectrum images at each sample tilt. Lastly, the ability of EDX spectrum images to satisfy the projection requirement for nanoparticle samples is discussed, with consideration of the effect of absorption and shadowing variations« less

  8. STEM-EDX tomography of bimetallic nanoparticles: A methodological investigation

    DOE PAGES

    Slater, Thomas J. A.; Janssen, Arne; Camargo, Pedro H. C.; ...

    2015-10-22

    This paper presents an investigation of the limitations and optimization of energy dispersive X-ray (EDX) tomography within the scanning transmission electron microscope, focussing on application of the technique to characterising the 3D elemental distribution of bimetallic AgAu nanoparticles. The detector collection efficiency when using a standard tomography holder is characterised using a tomographic data set from a single nanoparticle and compared to a standard low background double tilt holder. Optical depth profiling is used to investigate the angles and origin of detector shadowing as a function of specimen field of view. A novel time-varied acquisition scheme is described to compensatemore » for variations in the intensity of spectrum images at each sample tilt. Lastly, the ability of EDX spectrum images to satisfy the projection requirement for nanoparticle samples is discussed, with consideration of the effect of absorption and shadowing variations« less

  9. Gold-copper bimetallic nanoparticles supported on nano P zeolite modified carbon paste electrode as an efficient electrocatalyst and sensitive sensor for determination of hydrazine.

    PubMed

    Amiripour, Fatemeh; Azizi, Seyed Naser; Ghasemi, Shahram

    2018-06-01

    In this report, a facile, efficient and low cost electrochemical sensor based on bimetallic Au-Cu nanoparticles supported on P nanozeolite modified carbon paste electrode (Au-Cu/NPZ/CPE) was constructed and its efficiency for determination of hydrazine in trace level was studied. For this purpose, agro waste material, stem sweep ash (SSA) was employed as the starting material (silica source) for the synthesis of nano P zeolite (NPZ). After characterization of the synthesized NPZ by analytical instruments (scanning electronic microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy), construction of Au-Cu/NPZ/CPE was performed by three steps procedure involving preparation of nano P zeolite modified carbon paste electrode (NPZ/CPE), introducing Cu +2 ions into nano zeolite structure by ion exchange and electrochemical reduction of Cu +2 ions upon applying constant potential. This procedure is followed by partial replacement of Cu by Au due to galvanic replacement reaction (GRR). The electrochemical properties of hydrazine at the surface of Au-Cu/NPZ/CPE was evaluated using cyclic voltammetry (CV), amperometry, and chronoamperometry methods in 0.1 M phosphate buffer solution (PBS). It was found that the prepared sensor has higher electrocatalytic activity at a relatively lower potential compared to other modified electrodes including Au/NPZ/CPE, Cu/NPZ/CPE, Au-Cu/CPE and etc. Moreover, the proposed electrochemical sensor presented the favorable analytical properties for determination of hydrazine such as low detection limit (0.04 µM), rapid response time (3 s), wide linear range (0.01-150 mM), and high sensitivity (99.53 µA mM -1 ) that are related to the synergic effect of bimetallic of Au-Cu, porous structure and enough surface area of NPZ. In addition, capability of Au-Cu/NPZ/CPE sensor was successfully tested in real samples with good accuracy and precision. Copyright

  10. Kinetics of Spontaneous Bimetallization between Silver and Noble Metal Nanoparticles.

    PubMed

    Hirakawa, Kazutaka; Kaneko, Tetsuya; Toshima, Naoki

    2018-06-05

    A physical mixture of polymer-protected Ag nanoparticles and Rh, Pd, or Pt nanoparticles spontaneously forms Ag-core bimetallic nanoparticles. The formed nanoparticles were smaller than the parent Ag nanoparticles. In the initial process of this reaction, the surface plasmon absorption of Ag nanoparticles diminished and then almost ceased within one hour. Within several minutes, the decrease in Ag surface plasmon absorption could be analyzed by second-order reaction. This reaction was accelerated with an increase of temperature and the energy gap in the Fermi level between Ag and the other metals. The activation energy (E a ) of this reaction could be determined. An electron transfer reaction from Ag to other metal nanoparticles was proposed as the initial interaction between these metal nanoparticles because the Fermi level of Ag is relatively high, and the electron transfer is possible in terms of energy. The Marcus plot between the rate constant and the driving force, roughly estimated from the work function of metals, and the observed E a values reasonably explained the proposed electron transfer mechanism. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A theoretical approach for estimation of ultimate size of bimetallic nanocomposites synthesized in microemulsion systems

    NASA Astrophysics Data System (ADS)

    Salabat, Alireza; Saydi, Hassan

    2012-12-01

    In this research a new idea for prediction of ultimate sizes of bimetallic nanocomposites synthesized in water-in-oil microemulsion system is proposed. In this method, by modifying Tabor Winterton approximation equation, an effective Hamaker constant was introduced. This effective Hamaker constant was applied in the van der Waals attractive interaction energy. The obtained effective van der Waals interaction energy was used as attractive contribution in the total interaction energy. The modified interaction energy was applied successfully to predict some bimetallic nanoparticles, at different mass fraction, synthesized in microemulsion system of dioctyl sodium sulfosuccinate (AOT)/isooctane.

  12. Green synthesis and applications of Au-Ag bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Meena Kumari, M.; Jacob, John; Philip, Daizy

    2015-02-01

    This paper reports for the first time the synthesis of bimetallic nanoparticles at room temperature using the fruit juice of pomegranate. Simultaneous reduction of gold and silver ions in different molar ratios leads to the formation of alloy as well as core-shell nanostructures. The nanoparticles have been characterized using UV-vis spectroscopy, transmission electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. The synthesized alloy particles are used as catalysts in the reduction of 2-, 3-, 4-nitrophenols to the corresponding amines and in the degradation of methyl orange. The reduction kinetics for all the reactions follows pseudo-first order. The rate constants follow the order k4-nitrophenol < k2-nitrophenol < k3-nitrophenol. Thermal conductivity is measured as a function of volume fraction and it is observed that the incorporation of the alloy nanoparticles enhances the thermal conductivity of the base fluid (water) showing nanofluid application. The nitric oxide and hydroxyl radical scavenging activity shown by the nanoparticles promise the potential application in biomedical field.

  13. Electrochemical Co-Reduction Synthesis of AuPt Bimetallic Nanoparticles-Graphene Nanocomposites for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid

    PubMed Central

    Zhao, Zongya; Zhang, Mingming; Chen, Xiang; Li, Youjun; Wang, Jue

    2015-01-01

    In this paper, AuPt bimetallic nanoparticles-graphene nanocomposites were obtained by electrochemical co-reduction of graphene oxide (GO), HAuCl4 and H2PtCl6. The as-prepared AuPt bimetallic nanoparticles-graphene nanocomposites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and other electrochemical methods. The morphology and composition of the nanocomposite could be easily controlled by adjusting the HAuCl4/H2PtCl6 concentration ratio. The electrochemical experiments showed that when the concentration ratio of HAuCl4/H2PtCl6 was 1:1, the obtained AuPt bimetallic nanoparticles-graphene nanocomposite (denoted as Au1Pt1NPs-GR) possessed the highest electrocatalytic activity toward dopamine (DA). As such, Au1Pt1NPs-GR nanocomposites were used to detect DA in the presence of ascorbic acid (AA) and uric acid (UA) using the differential pulse voltammetry (DPV) technique and on the modified electrode, there were three separate DPV oxidation peaks with the peak potential separations of 177 mV, 130 mV and 307 mV for DA and AA, DA and UA, AA and UA, respectively. The linear range of the constructed DA sensor was from 1.6 μM to 39.7 μM with a detection limit of 0.1 μM (S/N = 3). The obtained DA sensor with good stability, high reproducibility and excellent selectivity made it possible to detect DA in human urine samples. PMID:26184200

  14. Electrochemical Co-Reduction Synthesis of AuPt Bimetallic Nanoparticles-Graphene Nanocomposites for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid.

    PubMed

    Zhao, Zongya; Zhang, Mingming; Chen, Xiang; Li, Youjun; Wang, Jue

    2015-07-09

    In this paper, AuPt bimetallic nanoparticles-graphene nanocomposites were obtained by electrochemical co-reduction of graphene oxide (GO), HAuCl4 and H2PtCl6. The as-prepared AuPt bimetallic nanoparticles-graphene nanocomposites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and other electrochemical methods. The morphology and composition of the nanocomposite could be easily controlled by adjusting the HAuCl4/H2PtCl6 concentration ratio. The electrochemical experiments showed that when the concentration ratio of HAuCl4/H2PtCl6 was 1:1, the obtained AuPt bimetallic nanoparticles-graphene nanocomposite (denoted as Au1Pt1NPs-GR) possessed the highest electrocatalytic activity toward dopamine (DA). As such, Au1Pt1NPs-GR nanocomposites were used to detect DA in the presence of ascorbic acid (AA) and uric acid (UA) using the differential pulse voltammetry (DPV) technique and on the modified electrode, there were three separate DPV oxidation peaks with the peak potential separations of 177 mV, 130 mV and 307 mV for DA and AA, DA and UA, AA and UA, respectively. The linear range of the constructed DA sensor was from 1.6 μM to 39.7 μM with a detection limit of 0.1 μM (S/N = 3). The obtained DA sensor with good stability, high reproducibility and excellent selectivity made it possible to detect DA in human urine samples.

  15. Preparation of Rh/Ag bimetallic nanoparticles as effective catalyst for hydrogen generation from hydrolysis of KBH4

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Jiao, Chengpeng; Wang, Liqiong; Huang, Zili; Liang, Feng; Liu, Simin; Wang, Yuhua; Zhang, Haijun; Zhang, Shaowei

    2018-01-01

    ISOBAM-104 protected Rh/Ag bimetallic nanoparticles (NPs) with average diameter less than 3.0 nm were synthesized by a co-reduction method. Ultraviolet-visible spectroscopy, transmission electron microscopy (TEM), high-resolution TEM and x-ray photoelectron spectroscopy (XPS) were employed to characterize the structure, particle size, and electronic structure of the prepared bimetallic NPs. The catalytic activities of prepared bimetallic NPs for hydrogen generation from hydrolysis of a basic KBH4 solution were evaluated in detail. The results indicated that as-prepared Rh/Ag bimetallic NPs showed a higher catalytic activity than corresponding monometallic NPs. Among all the monometallic NPs and bimetallic NPs, Rh80Ag20 bimetallic NPs exhibited the highest catalytic activity with a value of 6010 mol-H2·h-1·mol-catalyst-1 at pH = 12 and 303 K. The high catalytic activities of Rh/Ag bimetallic NPs could be attributed to presence of negatively charged Rh atoms and positively charged Ag atoms, which is supported by the results of XPS and density functional theory calculation. Based on the kinetic study, the apparent activation energy for the hydrolysis reaction of the basic KBH4 solution catalyzed by Rh80Ag20 bimetallic NPs was about 47.0 ± 3.9 kJ mol-1.

  16. Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles.

    PubMed

    Chen, Xi; Yao, Xiaoyan; Yu, Chunna; Su, Xiaomei; Shen, Chaofeng; Chen, Chen; Huang, Ronglang; Xu, Xinhua

    2014-04-01

    Soil pollution by polychlorinated biphenyls (PCBs) arising from the crude disposal and recycling of electronic and electrical waste (e-waste) is a serious issue, and effective remediation technologies are urgently needed. Nanoscale zerovalent iron (nZVI) and bimetallic systems have been shown to promote successfully the destruction of halogenated organic compounds. In the present study, nZVI and Pd/Fe bimetallic nanoparticles synthesized by chemical deposition were used to remove 2,2',4,4',5,5'-hexachlorobiphenyl from deionized water, and then applied to PCBs contaminated soil collected from an e-waste recycling area. The results indicated that the hydrodechlorination of 2,2',4,4',5,5'-hexachlorobiphenyl by nZVI and Pd/Fe bimetallic nanoparticles followed pseudo-first-order kinetics and Pd loading was beneficial to the hydrodechlorination process. It was also found that the removal efficiencies of PCBs from soil achieved using Pd/Fe bimetallic nanoparticles were higher than that achieved using nZVI and that PCBs degradation might be affected by the soil properties. Finally, the potential challenges of nZVI application to in situ remediation were explored.

  17. Tuning structural motifs and alloying of bulk immiscible Mo-Cu bimetallic nanoparticles by gas-phase synthesis

    NASA Astrophysics Data System (ADS)

    Krishnan, Gopi; Verheijen, Marcel A.; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2013-05-01

    Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still remains a formidable challenge. Hence, we present here a general methodology for gas phase synthesis of bimetallic NPs with distinctively different structural motifs ranging at a single particle level from a fully mixed alloy to core-shell, to onion (multi-shell), and finally to a Janus/dumbbell, with the same overall particle composition. These concepts are illustrated for Mo-Cu NPs, where the precise control of the bimetallic NPs with various degrees of chemical ordering, including different shapes from spherical to cube, is achieved by tailoring the energy and thermal environment that the NPs experience during their production. The initial state of NP growth, either in the liquid or in the solid state phase, has important implications for the different structural motifs and shapes of synthesized NPs. Finally we demonstrate that we are able to tune the alloying regime, for the otherwise bulk immiscible Mo-Cu, by achieving an increase of the critical size, below which alloying occurs, closely up to an order of magnitude. It is discovered that the critical size of the NP alloy is not only affected by controlled tuning of the alloying temperature but also by the particle shape.Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still

  18. Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities

    PubMed Central

    Ghosh, Sougata; Nitnavare, Rahul; Dewle, Ankush; Tomar, Geetanjali B; Chippalkatti, Rohan; More, Piyush; Kitture, Rohini; Kale, Sangeeta; Bellare, Jayesh; Chopade, Balu A

    2015-01-01

    Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum–palladium bimetallic nanoparticles (Pt–PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2–5 nm, while PdNPs and Pt–PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88%±1.73% elemental Pt and 68.96%±1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm−1, attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm−1, associated with C–H stretching, N–H bending in primary amines, N–O stretching in nitro group, and C–C stretch, respectively. Anticancer activity against HeLa cells showed that Pt–PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt–PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals. PMID:26719690

  19. Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities.

    PubMed

    Ghosh, Sougata; Nitnavare, Rahul; Dewle, Ankush; Tomar, Geetanjali B; Chippalkatti, Rohan; More, Piyush; Kitture, Rohini; Kale, Sangeeta; Bellare, Jayesh; Chopade, Balu A

    2015-01-01

    Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum-palladium bimetallic nanoparticles (Pt-PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2-5 nm, while PdNPs and Pt-PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88% ± 1.73% elemental Pt and 68.96% ± 1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm(-1), attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm(-1), associated with C-H stretching, N-H bending in primary amines, N-O stretching in nitro group, and C-C stretch, respectively. Anticancer activity against HeLa cells showed that Pt-PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt-PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals.

  20. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    DOE PAGES

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; ...

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  1. Immobilized Pd-Ag bimetallic nanoparticles on polymeric nanofibers as an effective catalyst: effective loading of Ag with bimetallic functionality through Pd nucleated nanofibers.

    PubMed

    Ranjith, Kugalur Shanmugam; Celebioglu, Asli; Uyar, Tamer

    2018-06-15

    Here, we present a precise process for synthesizing Pd-Ag bimetallic nanoparticles (NPs) onto polymeric nanofibers by decorating Pd-NPs through atomic layer deposition followed by a chemical reduction process for tagging Ag nanostructures with bimetallic functionality. The results show that Pd-NPs act as a nucleation platform for tagging Ag and form Pd-Ag bimetallic NPs with a monodisperse nature with significant catalytic enhancement to the reaction rate over the bimetallic nature of the Pd-Ag ratio. A Pd-NP decorated polymeric nanofibrous web acts as an excellent platform for the encapsulation or interaction of Ag, which prevents agglomeration and promotes the interaction of Ag ions only on the surface of the Pd-NPs. We observed an effective reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH 4 ) to access the catalytic activity of Pd-Ag bimetallic NPs on a free-standing flexible polymeric nanofibrous web as a support. The captive formation of the polymeric nanofibrous web with Pd-Ag bimetallic functionality exhibited superior and stable catalytic performance with reduction rates of 0.0719, 0.1520, and 0.0871 min -1 for different loadings of Ag on Pd decorated nanofibrous webs such as Pd/Ag(0.01), Pd/Ag(0.03), and Pd/Ag(0.05), respectively. The highly faceted Pd-Ag NPs with an immobilized nature improves the catalytic functionality by enhancing the binding energy of the 4-NP adsorbate to the surface of the NPs. With the aid of bimetallic functionality, the nanofibrous web was demonstrated as a hybrid heterogeneous photocatalyst with a 3.16-fold enhancement in the reaction rate as compared with the monometallic decorative nature of NaBH 4 as a reducing agent. The effective role of the monodisperse nature of Pd ions with an ultralow content as low as 3 wt% and the tunable ratio of Ag on the nanofibrous web induced effective catalytic activity over multiple cycles.

  2. Immobilized Pd-Ag bimetallic nanoparticles on polymeric nanofibers as an effective catalyst: effective loading of Ag with bimetallic functionality through Pd nucleated nanofibers

    NASA Astrophysics Data System (ADS)

    Shanmugam Ranjith, Kugalur; Celebioglu, Asli; Uyar, Tamer

    2018-06-01

    Here, we present a precise process for synthesizing Pd-Ag bimetallic nanoparticles (NPs) onto polymeric nanofibers by decorating Pd-NPs through atomic layer deposition followed by a chemical reduction process for tagging Ag nanostructures with bimetallic functionality. The results show that Pd-NPs act as a nucleation platform for tagging Ag and form Pd-Ag bimetallic NPs with a monodisperse nature with significant catalytic enhancement to the reaction rate over the bimetallic nature of the Pd-Ag ratio. A Pd-NP decorated polymeric nanofibrous web acts as an excellent platform for the encapsulation or interaction of Ag, which prevents agglomeration and promotes the interaction of Ag ions only on the surface of the Pd-NPs. We observed an effective reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH4) to access the catalytic activity of Pd-Ag bimetallic NPs on a free-standing flexible polymeric nanofibrous web as a support. The captive formation of the polymeric nanofibrous web with Pd-Ag bimetallic functionality exhibited superior and stable catalytic performance with reduction rates of 0.0719, 0.1520, and 0.0871 min‑1 for different loadings of Ag on Pd decorated nanofibrous webs such as Pd/Ag(0.01), Pd/Ag(0.03), and Pd/Ag(0.05), respectively. The highly faceted Pd-Ag NPs with an immobilized nature improves the catalytic functionality by enhancing the binding energy of the 4-NP adsorbate to the surface of the NPs. With the aid of bimetallic functionality, the nanofibrous web was demonstrated as a hybrid heterogeneous photocatalyst with a 3.16-fold enhancement in the reaction rate as compared with the monometallic decorative nature of NaBH4 as a reducing agent. The effective role of the monodisperse nature of Pd ions with an ultralow content as low as 3 wt% and the tunable ratio of Ag on the nanofibrous web induced effective catalytic activity over multiple cycles.

  3. Preparation and catalytic activities for H{sub 2}O{sub 2} decomposition of Rh/Au bimetallic nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn; The State Key Laboratory of Refractory and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081; Deng, Xiangong

    2016-07-15

    Graphical abstract: PVP-protected Rh/Au bimetallic nanoparticles (BNPs) were prepared by using hydrogen sacrificial reduction method, the activity of Rh80Au20 BNPs were about 3.6 times higher than that of Rh NPs. - Highlights: • Rh/Au bimetallic nanoparticles (BNPs) of 3∼5 nm in diameter were prepared. • Activity for H{sub 2}O{sub 2} decomposition of BNPs is 3.6 times higher than that of Rh NPs. • The high activity of BNPs was caused by the existence of charged Rh atoms. • The apparent activation energy for H{sub 2}O{sub 2} decomposition over the BNPs was calculated. - Abstract: PVP-protected Rh/Au bimetallic nanoparticles (BNPs) weremore » prepared by using hydrogen sacrificial reduction method and characterized by UV–vis, XRD, FT-IR, XPS, TEM, HR-TEM and DF-STEM, the effects of composition on their particle sizes and catalytic activities for H{sub 2}O{sub 2} decomposition were also studied. The as-prepared Rh/Au BNPs possessed a high catalytic activity for the H{sub 2}O{sub 2} decomposition, and the activity of the Rh{sub 80}Au{sub 20} BNPs with average size of 2.7 nm were about 3.6 times higher than that of Rh monometallic nanoparticles (MNPs) even the Rh MNPs possess a smaller particle size of 1.7 nm. In contrast, Au MNPs with size of 2.7 nm show no any activity. Density functional theory (DFT) calculation as well as XPS results showed that charged Rh and Au atoms formed via electronic charge transfer effects could be responsible for the high catalytic activity of the BNPs.« less

  4. Graphene-bimetallic nanoparticle composites with enhanced electro-catalytic detection of bisphenol A

    NASA Astrophysics Data System (ADS)

    Pogacean, Florina; Biris, Alexandru R.; Socaci, Crina; Coros, Maria; Magerusan, Lidia; Rosu, Marcela-Corina; Lazar, Mihaela D.; Borodi, Gheorghe; Pruneanu, Stela

    2016-12-01

    This study brings for the first time novel knowledge about the synthesis by catalytic chemical vapor deposition with induction heating of graphene-bimetallic nanoparticle composites (Gr-AuCu and Gr-AgCu) and their morphological and structural characterization by transmission electron microscopy, Raman spectroscopy, and x-ray powder diffraction. Gold electrodes modified with the obtained materials exhibit an enhanced electro-catalytic effect towards one of the most encountered estrogenic disruptive chemicals, bisphenol A (BPA). The BPA behavior in varying pH solutions was investigated using the electrochemical quartz crystal microbalance, which allowed the accurate determination of the number of molecules involved in the oxidation process. The modified electrodes promote the oxidation of BPA at significantly lower potentials (0.66 V) compared to bare gold (0.78 V). In addition, the peak current density recorded with such electrodes greatly exceeded that obtained with bare gold (e.g. one order of magnitude larger, for a Au/Gr-AgCu electrode). The two modified electrodes have low detection limits, of 1.31 × 10-6 M and 1.91 × 10-6 M for Au/Gr-AgCu and Au/Gr-AuCu, respectively. The bare gold electrode has a higher detection limit of 5.1 × 10-6 M. The effect of interfering species (e.g. catechol and 3-nitrophenol) was also investigated. Their presence influenced not only the BPA peak potential, but also the peak current. With both modified electrodes, no peak currents were recorded below 3 × 10-5 M BPA.

  5. Influence of shell thickness on thermal stability of bimetallic Al-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Wen, John Z.; Nguyen, Ngoc Ha; Rawlins, John; Petre, Catalin F.; Ringuette, Sophie

    2014-07-01

    Aluminum-based bimetallic core-shell nanoparticles have shown promising applications in civil and defense industries. This study addresses the thermal stability of aluminum-palladium (Al-Pd) core/shell nanoparticles with a varying shell thickness of 5, 6, and 7 Å, respectively. The classic molecular dynamics (MD) simulations are performed in order to investigate the effects of the shell thickness on the ignition mechanism and subsequent energetic processes of these nanoparticles. The histograms of temperature change and structural evolution clearly show the inhibition role of the Pd shell during ignition. While the nanoparticle with a thicker shell is more thermally stable and hence requires more excess energy, stored as the potential energy of the nanoparticle and provided through numerically heating, to initiate the thermite reaction, a higher adiabatic temperature can be produced from this nanoparticle, thanks to its greater content of Pd. The two-stage thermite reactions are discussed with their activation energy based on the energy balance processes during MD heating and production. Analyses of the simulation results reveal that the inner pressure of the core-shell nanoparticle increases with both temperature and the absorbed thermal energy during heating, which may result in a breakup of the Pd shell.

  6. Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution.

    PubMed

    Xu, You; Li, Yinghao; Yin, Shuli; Yu, Hongjie; Xue, Hairong; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-06-01

    Design of highly active and cost-effective electrocatalysts is very important for the generation of hydrogen by electrochemical water-splitting. Herein, we report the fabrication of ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles (CoRu@NCs) and demonstrate their promising feasibility for efficiently catalyzing the hydrogen evolution reaction (HER) over a wide pH range. The resultant CoRu@NC nanohybrids possess an alloy-carbon core-shell structure with encapsulated low-ruthenium-content CoRu bimetallic alloy nanoparticles (10-30 nm) as the core and ultrathin nitrogen-doped graphitized carbon layers (2-6 layers) as the shell. Remarkably, the optimized catalyst (CoRu@NC-2 sample) with a Ru content as low as 2.04 wt% shows superior catalytic activity and excellent durability for HER in acidic, neutral, and alkaline conditions. This work offers a new method for the design and synthesis of non-platium-based electrocatalysts for HER in all-pH.

  7. Ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles for enhanced electrocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Xu, You; Li, Yinghao; Yin, Shuli; Yu, Hongjie; Xue, Hairong; Li, Xiaonian; Wang, Hongjing; Wang, Liang

    2018-06-01

    Design of highly active and cost-effective electrocatalysts is very important for the generation of hydrogen by electrochemical water-splitting. Herein, we report the fabrication of ultrathin nitrogen-doped graphitized carbon shell encapsulating CoRu bimetallic nanoparticles (CoRu@NCs) and demonstrate their promising feasibility for efficiently catalyzing the hydrogen evolution reaction (HER) over a wide pH range. The resultant CoRu@NC nanohybrids possess an alloy–carbon core–shell structure with encapsulated low-ruthenium-content CoRu bimetallic alloy nanoparticles (10–30 nm) as the core and ultrathin nitrogen-doped graphitized carbon layers (2–6 layers) as the shell. Remarkably, the optimized catalyst (CoRu@NC-2 sample) with a Ru content as low as 2.04 wt% shows superior catalytic activity and excellent durability for HER in acidic, neutral, and alkaline conditions. This work offers a new method for the design and synthesis of non-platium-based electrocatalysts for HER in all-pH.

  8. Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedford, Nicholas M.; Showalter, Allison R.; Woehl, Taylor J.

    Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when mixing two different metallic species at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesizedmore » with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods were then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence-dependence in both surface structure and surface composition. Replica exchange solute tempering molecular dynamic simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Finally, taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be

  9. Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials

    DOE PAGES

    Bedford, Nicholas M.; Showalter, Allison R.; Woehl, Taylor J.; ...

    2016-09-01

    Bimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when mixing two different metallic species at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles. Recently, it has been demonstrated that peptide-enabled routes for nanoparticle synthesis result in materials with sequence-dependent catalytic properties, providing an opportunity for rational design through sequence manipulation. In this study, bimetallic PdAu nanoparticles are synthesizedmore » with a small set of peptides containing known Pd and Au binding motifs. The resulting nanoparticles were extensively characterized using high-resolution scanning transmission electron microscopy, X-ray absorption spectroscopy and high-energy X-ray diffraction coupled to atomic pair distribution function analysis. Structural information obtained from synchrotron radiation methods were then used to generate model nanoparticle configurations using reverse Monte Carlo simulations, which illustrate sequence-dependence in both surface structure and surface composition. Replica exchange solute tempering molecular dynamic simulations were also used to predict the modes of peptide binding on monometallic surfaces, indicating that different sequences bind to the metal interfaces via different mechanisms. As a testbed reaction, electrocatalytic methanol oxidation experiments were performed, wherein differences in catalytic activity are clearly observed in materials with identical bimetallic composition. Finally, taken together, this study indicates that peptides could be used to arrive at bimetallic surfaces with enhanced catalytic properties, which could be

  10. Electrochemical and in vitro neuronal recording characteristics of multi-electrode arrays surface-modified with electro-co-deposited gold-platinum nanoparticles.

    PubMed

    Kim, Yong Hee; Kim, Ah Young; Kim, Gook Hwa; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2016-02-01

    In order to complement the high impedance electrical property of gold nanoparticles (Au NPs) we have performed electro-co-deposition of gold-platinum nanoparticles (Au-Pt NPs) onto the Au multi-electrode array (MEA) and modified the Au-Pt NPs surface with cell adhesive poly-D-lysine via thiol chemistry based covalent binding. The Au-Pt NPs were analyzed to have bimetallic nature not the mixture of Au NPs and Pt NPs by X-ray diffraction analysis and to have impedance value (4.0 × 10(4) Ω (at 1 kHz)) comparable to that of Pt NPs. The performance of Au-Pt NP-modified MEAs was also checked in relation to neuronal signal recording. The noise level in Au-Pt NP-modified MEAs was lower than in that of Au NP-modified MEA.

  11. Synthesis and Catalytic Activity of Pluronic Stabilized Silver-Gold Bimetallic Nanoparticles.

    PubMed

    Holden, Megan S; Nick, Kevin E; Hall, Mia; Milligan, Jamie R; Chen, Qiao; Perry, Christopher C

    2014-01-01

    In this report, we demonstrate a rapid, simple, and green method for synthesizing silver-gold (Ag-Au) bimetallic nanoparticles (BNPs). We used a novel modification to the galvanic replacement reaction by suspending maltose coated silver nanoparticles (NPs) in ≈ 2% aqueous solution of EO 100 PO 65 EO 100 (Pluronic F127) prior to HAuCl 4 addition. The Pluronic F127 stabilizes the BNPs, imparts biocompatibility, and mitigates the toxicity issues associated with other surfactant stabilizers. BNPs with higher Au:Ag ratios and, subsequently, different morphologies were successfully synthesized by increasing the concentration of gold salt added to the Ag NP seeds. These BNPs have enhanced catalytic activities than typically reported for monometallic Au or Ag NPs (∼ 2-10 fold) of comparable sizes in the sodium borohydride reduction of 4-nitrophenol. The 4-nitrophenol reduction rates were highest for partially hollow BNP morphologies.

  12. Catalytic Sorption of (Chloro)Benzene and Napthalene in Aqueous Solutions by Granular Activated Carbon Supported Bimetallic Iron and Palladium Nanoparticles

    EPA Science Inventory

    Adsorption of benzene, chlorobenzene, and naphthalene on commercially available granular activated carbon (GAC) and bimetallic nanoparticle (Fe/Pd) loaded GAC was investigated for the potential use in active capping of contaminated sediments. Freundlich and Langmuir linearizatio...

  13. A bimetallic nanocomposite modified genosensor for recognition and determination of thalassemia gene.

    PubMed

    Hamidi-Asl, Ezat; Raoof, Jahan Bakhsh; Naghizadeh, Nahid; Akhavan-Niaki, Haleh; Ojani, Reza; Banihashemi, Ali

    2016-10-01

    The main roles of DNA in the cells are to maintain and properly express genetic information. It is important to have analytical methods capable of fast and sensitive detection of DNA damage. DNA hybridization sensors are well suited for diagnostics and other purposes, including determination of bacteria and viruses. Beta thalassemias (βth) are due to mutations in the β-globin gene. In this study, an electrochemical biosensor which detects the sequences related to the β-globin gene issued from real samples amplified by polymerase chain reaction (PCR) is described for the first time. The biosensor relies on the immobilization of 20-mer single stranded oligonucleotide (probe) related to βth sequence on the carbon paste electrode (CPE) modified by 15% silver (Ag) and platinum (Pt) nanoparticles to prepare the bimetallic nanocomposite electrode and hybridization of this oligonucleotide with its complementary sequence (target). The extent of hybridization between the probe and target sequences was shown by using linear sweep voltammetry (LSV) with methylene blue (MB) as hybridization indicator. The selectivity of sensor was investigated using PCR samples containing non-complementary oligonucleotides. The detection limit of biosensor was calculated about 470.0pg/μL. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Bimetallic magnetic PtPd-nanoparticles as efficient catalyst for PAH removal from liquid media

    NASA Astrophysics Data System (ADS)

    Zanato, A. F. S.; Silva, V. C.; Lima, D. A.; Jacinto, M. J.

    2017-11-01

    Monometallic Pd- and bimetallic PtPd-nanoparticles supported on a mesoporous magnetic magnetite@silica matrix resembling a core-shell structure (Fe3O4@mSiO2) have been fabricated. The material was characterized by transmission electron microscope (TEM), high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM), X-ray photoelectron spectra (XPS), energy dispersive spectroscopy (EDS) and inductively coupled plasma mass spectrometry (ICP-MS). The catalysts were applied in the removal of anthracene from liquid phase via catalytic hydrogenation. It was found that anthracene as a model compound could be completely converted into the partially hydrogenated species by the monometallic and bimetallic solids. However, during the recycling study the bimetallic material (Fe3O4@mSiO2PtPd-) showed an enhanced activity towards anthracene removal compared with the monometallic materials. A single portion of the PtPd-based catalyst can be used up to 11 times in the hydrogenation of anthracene under mild conditions (6 atm of H2, 75 °C, 20 min). Thanks to the presence of a dense magnetic core, the catalysts were capable of responding to an applied external magnetic field and once the reaction was completed, catalyst/product separation was straightforward.

  15. The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on TiO2 by radiolytic method

    NASA Astrophysics Data System (ADS)

    Klein, Marek; Nadolna, Joanna; Gołąbiewska, Anna; Mazierski, Paweł; Klimczuk, Tomasz; Remita, Hynd; Zaleska-Medynska, Adriana

    2016-08-01

    TiO2 (P25) was modified with small and relatively monodisperse mono- and bimetallic clusters (Ag, Pd, Pt, Ag/Pd, Ag/Pt and Pd/Pt) induced by radiolysis to improve its photocatalytic activity. The as-prepared samples were characterized by X-ray fluorescence spectrometry (XRF), photoluminescence spectrometry (PL), diffuse reflectance spectroscopy (DRS), X-ray powder diffractometry (XRD), scanning transition electron microscopy (STEM) and BET surface area analysis. The effect of metal type (mono- and bimetallic modification) as well as deposition method (simultaneous or subsequent deposition of two metals) on the photocatalytic activity in toluene removal in gas phase under UV-vis irradiation (light-emitting diodes- LEDs) and phenol degradation in liquid phase under visible light irradiation (λ > 420 nm) were investigated. The highest photoactivity under Vis light was observed for TiO2 co-loaded with platinum (0.1%) and palladium (0.1%) clusters. Simultaneous addition of metal precursors results in formation of larger metal nanoparticles (15-30 nm) on TiO2 surface and enhances the Vis-induced activity of Ag/Pd-TiO2 up to four times, while the subsequent metal ions addition results in formation of metal particle size ranging from 4 to 20 nm. Subsequent addition of metal precursors results in formation of BNPs (bimetallic nanoparticle) composites showing higher stability in four cycles of toluene degradation under UV-vis. Obtained results indicated that direct electron transfer from the BNPs to the conduction band of the semiconductor is responsible for visible light photoactivity, whereas superoxide radicals (such as O2rad- and rad OOH) are responsible for pollutants degradation over metal-TiO2 composites.

  16. Synthesis of polymer-stabilized monometallic Cu and bimetallic Cu/Ag nanoparticles and their surface-enhanced Raman scattering properties

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui; Liu, Xiaoheng

    2013-03-01

    The present study demonstrates a facile process for the production of spherical-shaped Cu and Ag nanoparticles synthesized and stabilized by hydrazine and gelatin, respectively. Advantages of the synthetic method include its production of water dispersible copper and copper/silver nanoparticles at room temperature under no inert atmosphere. The resulting nanoparticles (copper or copper/silver) are investigated by X-ray diffraction (XRD), UV-vis spectroscopy, and transmission electron microscopy (TEM). The nanometallic dispersions were characterized by surface plasmon absorbance measuring at 420 and 572 nm for Ag and Cu nanoparticles, respectively. Transmission electron microscopy showed the formation of nanoparticles in the range of ˜10 nm (silver), and ˜30 nm (copper). The results also demonstrate that the reducing order of Cu2+/Ag+ is important for the formation of the bimetallic nanoparticles. The surface-enhanced Raman scattering effects of copper and copper/silver nanoparticles were also displayed. It was found that the enhancement ability of copper/silver nanoparticles was little higher than the copper nanoparticles.

  17. Boosting hot electron flux and catalytic activity at metal-oxide interfaces of PtCo bimetallic nanoparticles.

    PubMed

    Lee, Hyosun; Lim, Juhyung; Lee, Changhwan; Back, Seoin; An, Kwangjin; Shin, Jae Won; Ryoo, Ryong; Jung, Yousung; Park, Jeong Young

    2018-06-08

    Despite numerous studies, the origin of the enhanced catalytic performance of bimetallic nanoparticles (NPs) remains elusive because of the ever-changing surface structures, compositions, and oxidation states of NPs under reaction conditions. An effective strategy for obtaining critical clues for the phenomenon is real-time quantitative detection of hot electrons induced by a chemical reaction on the catalysts. Here, we investigate hot electrons excited on PtCo bimetallic NPs during H 2 oxidation by measuring the chemicurrent on a catalytic nanodiode while changing the Pt composition of the NPs. We reveal that the presence of a CoO/Pt interface enables efficient transport of electrons and higher catalytic activity for PtCo NPs. These results are consistent with theoretical calculations suggesting that lower activation energy and higher exothermicity are required for the reaction at the CoO/Pt interface.

  18. Manipulating the architecture of bimetallic nanostructures and their plasmonic properties

    NASA Astrophysics Data System (ADS)

    DeSantis, Christopher John

    There has been much interest in colloidal noble metal nanoparticles due to their fascinating plasmonic and catalytic properties. These properties make noble metal nanoparticles potentially useful for applications such as targeted drug delivery agents and hydrogen storage devices. Historically, shape-controlled noble metal nanoparticles have been predominantly monometallic. Recent synthetic advances provide access to bimetallic noble metal nanoparticles wherein their inherent multifunctionality and ability to fine tune or expand their surface chemistry and light scattering properties of metal nanoparticles make them popular candidates for many applications. Even so, there are currently few synthetic strategies to rationally design shape-controlled bimetallic nanocrystals; for this reason, few architectures are accessible. For example, the "seed-mediated method" is a popular means of achieving monodisperse shape-controlled bimetallic nanocrystals. In this process, small metal seeds are used as platforms for additional metal addition, allowing for conformal core shell nanostructures. However, this method has only been applied to single metal core/single metal shell structures; therefore, the surface compositions and architectures achievable are limited. This thesis expands upon the seed-mediated method by coupling it with co-reduction. In short, two metal precursors are simultaneously reduced to deposit metal onto pre-formed seeds in hopes that the interplay between two metal species facilitates bimetallic shell nanocrystals. Au/Pd was used as a test system due to favorable reduction potentials of metal precursors and good lattice match between Au and Pd. Alloyed shelled Au Au/Pd nanocrystals were achieved using this "seed-mediated co-reduction" approach. Symmetric eight-branched Au/Pd nanocrystals (octopods) are also prepared using this method. This thesis investigates many synthetic parameters that determine the shape outcome in Au/Pd nanocrystals during seed

  19. An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures

    DOE PAGES

    Pei, Yuchen; Maligal-Ganesh, Raghu V.; Xiao, Chaoxian; ...

    2015-09-11

    Metal nanostructures have attracted great attention in various fields due to their tunable properties through precisely tailored sizes, compositions and structures. Using mesoporous silica (mSiO 2) as the inorganic capping agent and encapsulated Pt nanoparticles as the seeds, we developed a robust seeded growth method to prepare uniform bimetallic nanoparticles encapsulated in mesoporous silica shells (PtM@mSiO 2, M = Pd, Rh, Ni and Cu). Unexpectedly, we found that the inorganic silica shell is able to accommodate an eight-fold volume increase in the metallic core by reducing its thickness. The bimetallic nanoparticles encapsulated in mesoporous silica shells showed enhanced catalytic propertiesmore » and thermal stabilities compared with those prepared with organic capping agents. As a result, this inorganic capping strategy could find a broad application in the synthesis of versatile bimetallic nanostructures with exceptional structural control and enhanced catalytic properties.« less

  20. Morphological and Spectral Characteristics of Hybrid Nanosystems Based on Mono- and Bimetallic Platinum Nanoparticles and Silver

    NASA Astrophysics Data System (ADS)

    Valueva, S. V.; Vylegzhanina, M. E.; Sukhanova, T. E.

    2018-02-01

    Morphological and spectral characteristics of hybrid nanosystems (NSes) based on mono- and bimetallic silver and platinum nanoparticles (NPs) stabilized by a cationic polyelectrolyte (CP), poly- N,N,N,N-trimethylmethacryloyloxyethylammonium methylsulfate, are determined via static/dynamic light scattering, UV spectroscopy, and atomic force microscopy. The formation of dense spherical polymolecular nanostructures is established. The possibility of controlling the morphological and spectral characteristics of the NS is shown by varying the nature and composition of NPs.

  1. Recent progress in the structure control of Pd–Ru bimetallic nanomaterials

    PubMed Central

    Wu, Dongshuang; Kusada, Kohei; Kitagawa, Hiroshi

    2016-01-01

    Abstract Pd and Ru are two key elements of the platinum-group metals that are invaluable to areas such as catalysis and energy storage/transfer. To maximize the potential of the Pd and Ru elements, significant effort has been devoted to synthesizing Pd–Ru bimetallic materials. However, most of the reports dealing with this subject describe phase-separated structures such as near-surface alloys and physical mixtures of monometallic nanoparticles (NPs). Pd–Ru alloys with homogenous structure and arbitrary metallic ratio are highly desired for basic scientific research and commercial material design. In the past several years, with the development of nanoscience, Pd–Ru bimetallic alloys with different architectures including heterostructure, core-shell structure and solid-solution alloy were successfully synthesized. In particular, we have now reached the stage of being able to obtain Pd–Ru solid-solution alloy NPs over the whole composition range. These Pd–Ru bimetallic alloys are better catalysts than their parent metal NPs in many catalytic reactions, because the electronic structures of Pd and Ru are modified by alloying. In this review, we describe the recent development in the structure control of Pd–Ru bimetallic nanomaterials. Aiming for a better understanding of the synthesis strategies, some fundamental details including fabrication methods and formation mechanisms are discussed. We stress that the modification of electronic structure, originating from different nanoscale geometry and chemical composition, profoundly affects material properties. Finally, we discuss open issues in this field. PMID:27877905

  2. Eco-friendly synthesis of gelatin-capped bimetallic Au-Ag nanoparticles for chemiluminescence detection of anticancer raloxifene hydrochloride.

    PubMed

    Alarfaj, Nawal A; El-Tohamy, Maha F

    2016-09-01

    This study described the utility of green analytical chemistry in the synthesis of gelatin-capped silver, gold and bimetallic gold-silver nanoparticles (NPs). The preparation of nanoparticles was based on the reaction of silver nitrate or chlorauric acid with a 1.0 wt% aqueous gelatin solution at 50°C. The gelatin-capped silver, gold and bimetallic NPs were characterized using transmission electron microscopy, UV-vis, X-ray diffraction and Fourier transform infrared spectroscopy, and were used to enhance a sensitive sequential injection chemiluminescence luminol-potassium ferricyanide system for determination of the anticancer drug raloxifene hydrochloride. The developed method is eco-friendly and sensitive for chemiluminescence detection of the selected drug in its bulk powder, pharmaceutical injections and biosamples. After optimizing the conditions, a linear relationship in the range of 1.0 × 10(-9) to 1.0 × 10(-1)  mol/L was obtained with a limit of detection of 5.0 × 10(-10)  mol/L and a limit of quantification of 1.0 × 10(-9)  mol/L. Statistical treatment and method validation were performed based on ICH guidelines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Yolk@Shell Nanoarchitectures with Bimetallic Nanocores-Synthesis and Electrocatalytic Applications.

    PubMed

    Guiet, Amandine; Unmüssig, Tobias; Göbel, Caren; Vainio, Ulla; Wollgarten, Markus; Driess, Matthias; Schlaad, Helmut; Polte, Jörg; Fischer, Anna

    2016-10-10

    In the present paper, we demonstrate a versatile approach for the one-pot synthesis of metal oxide yolk@shell nanostructures filled with bimetallic nanocores. This novel approach is based on the principles of hydrophobic nanoreactor soft-templating and is exemplified for the synthesis of various AgAu NP @tin-rich ITO (AgAu@ITO TR ) yolk@shell nanomaterials. Hydrophobic nanoreactor soft-templating thereby takes advantage of polystyrene-block-poly(4-vinylpiridine) inverse micelles as two-compartment nanoreactor template, in which the core and the shell of the micelles serve as metal and metal oxide precursor reservoir, respectively. The composition, size and number of AuAg bimetallic nanoparticles incorporated within the ITO TR yolk@shell can easily be tuned. The conductivity of the ITO TR shell and the bimetallic composition of the AuAg nanoparticles, the as-synthesized AuAg NP @ITO TR yolk@shell materials could be used as efficient electrocatalysts for electrochemical glucose oxidation with improved onset potential when compared to their gold counterpart.

  4. Synthesis and characteristics of Ag/Pt bimetallic nanocomposites by arc-discharge solution plasma processing.

    PubMed

    Pootawang, Panuphong; Saito, Nagahiro; Takai, Osamu; Lee, Sang-Yul

    2012-10-05

    Arc discharge in solution, generated by applying a high voltage of unipolar pulsed dc to electrodes of Ag and Pt, was used as a method to form Ag/Pt bimetallic nanocomposites via electrode erosion by the effects of the electric arc at the cathode (Ag rod) and the sputtering at the anode (Pt rod). Ag/Pt bimetallic nanocomposites were formed as colloidal particles dispersed in solution via the reduction of hydrogen radicals generated during discharge without the addition of chemical precursor or reducing agent. At a discharge time of 30 s, the fine bimetallic nanoparticles with a mean particle size of approximately 5 nm were observed by transmission electron microscopy (TEM). With increasing discharge time, the bimetallic nanoparticle size tended to increase by forming an agglomeration. The presence of the relatively small amount of Pt dispersed in the Ag matrix could be observed by the analytical mapping mode of energy-dispersive x-ray spectroscopy and high-resolution TEM. This demonstrated that the synthesized particle was in the form of a nanocomposite. No contamination of other chemical substances was detected by x-ray photoelectron spectroscopy. Hence, solution plasma could be a clean and simple process to effectively synthesize Ag/Pt bimetallic nanocomposites and it is expected to be widely applicable in the preparation of several types of nanoparticle.

  5. Reverse Micelle Synthesis and Characterization of Supported Pt/Ni Bimetallic Catalysts on gamma-Al2O3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B Cheney; J Lauterbach; J Chen

    2011-12-31

    Reverse micelle synthesis was used to improve the nanoparticle size uniformity of bimetallic Pt/Ni nanoparticles supported on {gamma}-Al{sub 2}O{sub 3}. Two impregnation methods were investigated to optimize the use of the micelle method: (1) step-impregnation, where Ni nanoparticles were chemically reduced in microemulsion and then supported, followed by Pt deposition using incipient wetness impregnation, and (2) co-impregnation, where Ni and Pt were chemically reduced simultaneously in microemulsion and then supported. Transmission electron microscopy (TEM) was used to characterize the particle size distribution. Atomic absorption spectroscopy (AAS) was used to perform elemental analysis of bimetallic catalysts. Extended X-ray absorption fine structuremore » (EXAFS) measurements were utilized to confirm the formation of the Pt-Ni bimetallic bond in the step-impregnated catalyst. CO pulse chemisorption and Fourier transform infrared spectroscopy (FTIR) studies of 1,3-butadiene hydrogenation in a batch reactor were performed to determine the catalytic activity. Step-impregnated Pt/Ni catalyst demonstrated enhanced hydrogenation activity over the parent monometallic Pt and Ni catalysts due to bimetallic bond formation. The catalyst synthesized using co-impregnation showed no enhanced activity, behaving similarly to monometallic Ni. Overall, our results indicate that reverse micelle synthesis combined with incipient wetness impregnation produced small, uniform nanoparticles with bimetallic bonds that enhanced hydrogenation activity.« less

  6. Gyroscopic behavior exhibited by the optical Kerr effect in bimetallic Au-Pt nanoparticles suspended in ethanol

    NASA Astrophysics Data System (ADS)

    Fernández-Valdés, D.; Torres-Torres, C.; Martínez-González, C. L.; Trejo-Valdez, M.; Hernández-Gómez, L. H.; Torres-Martínez, R.

    2016-07-01

    The modification in the third-order nonlinear optical response exhibited by rotating bimetallic Au-Pt nanoparticles in an ethanol solution was analyzed. The samples were prepared by a sol-gel processing route. The anisotropy associated to the elemental composition of the nanoparticles was confirmed by high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. The size of the nanoparticles varies in the range from 9 to 13 nm, with an average size of 11 nm. Changes in the spatial orientation of the nanomaterials automatically generated a variation in their plasmonic response evaluated by UV-Vis spectroscopy. A two-wave mixing experiment was conducted to explore an induced birefringence at 532 nm wavelength with nanosecond pulses interacting with the samples. A strong optical Kerr effect was identified to be the main responsible effect for the third-order nonlinear optical phenomenon exhibited by the nanoparticles. It was estimated that the rotation of inhomogeneous nanostructures can provide a remarkable change in the participation of different surface plasmon resonances, if they correspond to multimetallic nanoparticles. Potential applications for developing low-dimensional gyroscopic systems can be contemplated.

  7. Biosupported Bimetallic Pd Au Nanocatalysts for Dechlorination of Environmental Contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Corte, S.; Fitts, J.; Hennebel, T.

    2011-08-30

    Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze the degradation of other important recalcitrant halogenated compounds. This study represents the first report of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts were tested for the dechlorination of diclofenac and trichloroethylene. When aqueous bivalent Pd(II) and trivalent Au(III) ions were both added to concentrations of 50 mg L{sup -1} and reduced simultaneously by Shewanella oneidensis in the presence of H{sub 2}, the resulting cell-associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78% of the initially added diclofenacmore » after 24 h; in comparison, no dehalogenation was observed using monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based X-ray diffraction, (scanning) transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the simultaneous reduction of Pd and Au supported on cells of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This study demonstrates that the catalytic activity and functionality of possibly environmentally more benign biosupported Pd-catalysts can be improved by coprecipitation with Au.« less

  8. A hierarchical flower-like hollow alumina supported bimetallic AuPd nanoparticle catalyst for enhanced solvent-free ethylbenzene oxidation.

    PubMed

    Dong, Huijuan; Xie, Renfeng; Yang, Lan; Li, Feng

    2018-06-12

    Currently, oxidation of alkylaromatics is considered as one of the most crucial chemical technologies to produce high added-value alcohols, ketones and carboxylic acids, due to its significant importance both in fine synthetic chemistry and in the academic field. In this work, a novel hierarchical marigold-like hollow alumina supported bimetallic AuPd nanoparticle catalyst was successfully fabricated and employed for highly efficient solvent-free ethylbenzene oxidation to produce acetophenone with the coexistence of both molecular oxygen and tert-butyl hydroperoxide as the oxidant and the initiator. The as-fabricated bimetallic AuPd nanocatalyst conferred a superior catalytic performance to the corresponding monometallic counterparts and commercial Al2O3 or solid Al2O3 microsphere supported AuPd ones, along with a high acetophenone selectivity of 88.2% at a conversion of 50.9% under mild reaction conditions (120 °C and oxygen pressure of 1.0 MPa), as well as an unprecedentedly high turnover frequency value of 46 768 h-1. Such exceptional efficiency of the catalyst was related to both the significant synergy between the Au-Pd atoms and strong metal-support interactions, and the unique hierarchical micro/nanostructure of the support being beneficial to the close contact of reactants with surface adsorption and reaction sites and easy product diffusion. Moreover, the present bimetallic AuPd catalyst was recyclable and stable. The developed approach is expected to offer exciting opportunities for designing other supported monometallic or bimetallic catalysts with various active components applied in heterogeneous catalysis.

  9. Spontaneous formation of Au-Pt alloyed nanoparticles using pure nano-counterparts as starters: a ligand and size dependent process.

    PubMed

    Usón, Laura; Sebastian, Victor; Mayoral, Alvaro; Hueso, Jose L; Eguizabal, Adela; Arruebo, Manuel; Santamaria, Jesus

    2015-06-14

    In this work we investigate the formation of PtAu monodisperse alloyed nanoparticles by ageing pure metallic Au and Pt small nanoparticles (sNPs), nanoparticle size <5 nm, under certain conditions. We demonstrate that those bimetallic entities can be obtained by controlling the size of the initial metallic sNPs separately prepared and by selecting their appropriate capping agents. The formation of this spontaneous phenomenon was studied using HR-STEM, EDS, ionic conductivity, UV-Vis spectroscopy and cyclic voltammetry. Depending on the type of capping agent used and the size of the initial Au sNPs, three different materials were obtained: (i) AuPt bimetallic sNPs showing a surface rich in Au atoms, (ii) segregated Au and Pt sNPs and (iii) a mixture of bimetallic nanoparticles as well as Pt sNPs and Au NPs. Surface segregation energies and the nature of the reaction environment are the driving forces to direct the distribution of atoms in the bimetallic sNPs. PtAu alloyed nanoparticles were obtained after 150 h of reaction at room temperature if a weak capping agent was used for the stabilization of the nanoparticles. It was also found that Au atoms diffuse towards Pt sNPs, producing a surface enriched in Au atoms. This study shows that even pure nanoparticles are prone to be modified by the surrounding nanoparticles to give rise to new nanomaterials if atomic diffusion is feasible.

  10. Nanoparticles modified with multiple organic acids

    DOEpatents

    Cook, Ronald Lee [Lakewood, CO; Luebben, Silvia DeVito [Golden, CO; Myers, Andrew William [Arvada, CO; Smith, Bryan Matthew [Boulder, CO; Elliott, Brian John [Superior, CO; Kreutzer, Cory [Brighton, CO; Wilson, Carolina [Arvada, CO; Meiser, Manfred [Aurora, CO

    2007-07-17

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  11. Nanoparticles modified with multiple organic acids

    NASA Technical Reports Server (NTRS)

    Luebben, Silvia DeVito (Inventor); Cook, Ronald Lee (Inventor); Wilson, Carolina (Inventor); Meiser, Manfred (Inventor); Myers, Andrew William (Inventor); Smith, Bryan Matthew (Inventor); Elliott, Brian John (Inventor); Kreutzer, Cory (Inventor)

    2007-01-01

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  12. Enhanced Formation of Oxidants from Bimetallic Nickel-Iron Nanoparticles in the Presence of Oxygen

    PubMed Central

    Lee, Changha; Sedlak, David L.

    2009-01-01

    Nanoparticulate zero-valent iron (nZVI) rapidly reacts with oxygen to produce strong oxidants, capable of transforming organic contaminants in water. However, the low yield of oxidants with respect to the iron added normally limits the application of this system. Bimetallic nickel-iron nanoparticles (nNi-Fe; i.e., Ni-Fe alloy and Ni-coated Fe nanoparticles) exhibited enhanced yields of oxidants compared to nZVI. nNi-Fe (Ni-Fe alloy nanoparticles with [Ni]/[Fe] = 0.28 and Ni-coated Fe nanoparticles with [Ni]/[Fe] = 0.035) produced approximately 40% and 85% higher yields of formaldehyde from the oxidation of methanol relative to nZVI at pH 4 and 7, respectively. Ni-coated Fe nanoparticles showed a higher efficiency for oxidant production relative to Ni-Fe alloy nanoparticles based on Ni content. Addition of Ni did not enhance the oxidation of 2-propanol or benzoic acid, indicating that Ni addition did not enhance hydroxyl radical formation. The enhancement in oxidant yield was observed over a pH range of 4 – 9. The enhanced production of oxidant by nNi-Fe appears to be attributable to two factors. First, the nNi-Fe surface is less reactive toward hydrogen peroxide (H2O2) than the nZVI surface, which favors the reaction of H2O2 with dissolved Fe(II) (the Fenton reaction). Second, the nNi-Fe surface promotes oxidant production from the oxidation of ferrous ion by oxygen at neutral pH values. PMID:19068843

  13. Pt-Pd bimetallic nanoparticles on MWCNTs: catalyst for hydrogen peroxide electrosynthesis

    NASA Astrophysics Data System (ADS)

    Félix-Navarro, R. M.; Beltrán-Gastélum, M.; Salazar-Gastélum, M. I.; Silva-Carrillo, C.; Reynoso-Soto, E. A.; Pérez-Sicairos, S.; Lin, S. W.; Paraguay-Delgado, F.; Alonso-Núñez, G.

    2013-08-01

    Bimetallic nanoparticles of Pt-Pd were deposited by the microemulsion method on a multiwall carbon nanotube (MWCNTs) to obtain a Pt-Pd/MWCNTs for electrocatalytic reduction of O2 to H2O2. The activity and selectivity of the catalyst was determined qualitatively by the rotating disk electrode method in acidic medium. The catalyst was spray-coated onto a reticulated vitreous carbon substrate and quantitatively was tested in bulk electrolysis for 20 min under potentiostatic conditions (0.5 V vs Ag/AgCl) in a 0.5 M H2SO4 electrolyte using dissolved O2. The bulk electrolysis experiments show that the Pt-Pd/MWCNTs catalyst is more efficient for H2O2 electrogeneration than a MWCNTs catalyst. Nitrobenzene degradation by electrogenerated H2O2 alone and Electro-Fenton process were also tested. Our results show that both processes decompose nitrobenzene, but the Electro-Fenton process does it more efficiently. The prepared nanoparticulated catalyst shows a great potential in environmental applications.

  14. Chemical synthesis and structural characterization of small AuZn nanoparticles

    NASA Astrophysics Data System (ADS)

    Juárez-Ruiz, E.; Pal, U.; Lombardero-Chartuni, J. A.; Medina, A.; Ascencio, J. A.

    2007-03-01

    In this paper, we report the aqueous synthesis of bimetallic Au-Zn nanoparticles of different compositions by the simultaneous reduction technique. The stability and atomic configuration of the particles are studied through high-resolution transmission electron microscopy (HRTEM) and UV-Vis optical absorption techniques. Depending on the composition, small bimetallic nanoparticles of 1 15 nm in size were obtained. The average size and size distribution of the bimetallic nanoparticles are seen to be critically dependent on the atomic ratio of the constituting elements Au and Zn. While a 1:1 atomic proportion of Au and Zn produced most stable nanoparticles of smallest average size, nanoparticles produced with higher content of either of the component elements are unstable, inducing agglomeration and coalescence to form elongated structures with uneven morphologies. Au3Zn1 nanoparticles followed a directional growth pattern, producing bimetallic nanorods with multiple crystalline domains. Interestingly, in these rod-like nanostructures, the domains are in well array of solid solution-like bimetallic and pure mono-metallic regions alternatively. Such nanostructures with uneven morphology and compositions might show distinct catalytic selectivity in chemical reactions.

  15. Determination of the structure and composition of Au-Ag bimetallic spherical nanoparticles using single particle ICP-MS measurements performed with normal and high temporal resolution.

    PubMed

    Kéri, Albert; Kálomista, Ildikó; Ungor, Ditta; Bélteki, Ádám; Csapó, Edit; Dékány, Imre; Prohaska, Thomas; Galbács, Gábor

    2018-03-01

    In this study, the information that can be obtained by combining normal and high resolution single particle ICP-MS (spICP-MS) measurements for spherical bimetallic nanoparticles (BNPs) was assessed. One commercial certified core-shell Au-Ag nanoparticle and three newly synthesized and fully characterized homogenous alloy Au-Ag nanoparticle batches of different composition were used in the experiments as BNP samples. By scrutinizing the high resolution spICP-MS signal time profiles, it was revealed that the width of the signal peak linearly correlates with the diameter of nanoparticles. It was also observed that the width of the peak for same-size nanoparticles is always significantly larger for Au than for Ag. It was also found that it can be reliably determined whether a BNP is of homogeneus alloy or core-shell structure and that, in the case of the latter, the core comprises of which element. We also assessed the performance of several ICP-MS based analytical methods in the analysis of the quantitative composition of bimetallic nanoparticles. Out of the three methods (normal resolution spICP-MS, direct NP nebulization with solution-mode ICP-MS, and solution-mode ICP-MS after the acid dissolution of the nanoparticles), the best accuracy and precision was achieved by spICP-MS. This method allows the determination of the composition with less than 10% relative inaccuracy and better than 3% precision. The analysis is fast and only requires the usual standard colloids for size calibration. Combining the results from both quantitative and structural analyses, the core diameter and shell thickness of core-shell particles can also be calculated. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. A photoactive bimetallic framework for direct aminoformylation of nitroarenes

    EPA Science Inventory

    A bimetallic catalyst, AgPd@g-C3N4, was synthesized by immobilizing silver and palladium nanoparticles over the surface of graphitic carbon nitride (g-C3N4) and its utility was demonstrated for the concerted aminoformylation of aromatic nitro compounds under visible light conditi...

  17. Hydroxylation of Benzene via CH Activation Using Bimetallic ...

    EPA Pesticide Factsheets

    A photoactive bimetallic CuAg@g-C3N4 catalyst system has been designed and synthesized by impregnating copper and silver nanoparticles over the graphitic carbon nitride surface. Its application has been demonstrated in the hydroxylation of benzene under visible light. Prepared for submission to American Chemical Society (ACS) journal, ACS Sustainable Chemistry & Engineering.

  18. Bimetallic Cu-Ni nanoparticles supported on activated carbon for catalytic oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Kimi, Melody; Jaidie, Mohd Muazmil Hadi; Pang, Suh Cem

    2018-01-01

    A series of bimetallic copper-nickel (CuNix, x = 0.1, 0.2, 0.5 and 1) nanoparticles supported on activated carbon (AC) were prepared by deposition-precipitation method for the oxidation of benzyl alcohol to benzaldehyde using hydrogen peroxide as oxidising agent. Analyses by means of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) confirmed that Cu and Ni was successfully added on the surface of activated carbon. CuNi1/AC showed the best catalytic activity for the oxidation of benzyl alcohols to the corresponding aldehyde within a short reaction period at 80 °C. The catalytic performance is significantly enhanced by the addition of equal amount of Ni as compared to the monometallic counterpart. This result indicates the synergistic effect between Ni and Cu particles in the catalytic oxidation reaction.

  19. Tuning the onset of ferromagnetism in heterogeneous bimetallic nanoparticles by gas phase doping

    NASA Astrophysics Data System (ADS)

    Bohra, Murtaza; Grammatikopoulos, Panagiotis; Singh, Vidyadhar; Zhao, Junlei; Toulkeridou, Evropi; Steinhauer, Stephan; Kioseoglou, Joseph; Bobo, Jean-François; Nordlund, Kai; Djurabekova, Flyura; Sowwan, Mukhles

    2017-11-01

    In the nanoregime, chemical species can reorganize in ways not predicted by their equilibrium bulk behavior. Here, we engineer Ni-Cr nanoalloys at the magnetic end of their compositional range (i.e., 0-15 at. % Cr), and we investigate the effect of Cr incorporation on their structural stability and resultant magnetic ordering. To ensure their stoichiometric compositions, the nanoalloys are grown by cluster beam deposition, a method that allows one-step, chemical-free fabrication of bimetallic nanoparticles. While full Cr segregation toward nanoparticle surfaces is thermodynamically expected for low Cr concentrations, metastability occurs as the Cr dopant level increases in the form of residual Cr in the core region, yielding desirable magnetic properties in a compensatory manner. Using nudged elastic band calculations, residual Cr in the core is explained based on modifications in the local environment of individual Cr atoms. The resultant competition between ferromagnetic and antiferromagnetic ordering gives rise to a wide assortment of interesting phenomena, such as a cluster-glass ground state at very low temperatures and an increase in Curie temperature values. We emphasize the importance of obtaining the commonly elusive magnetic nanophase diagram for M -Cr (M =Fe , Co, and Ni) nanoalloys, and we propose an efficient single-parameter method of tuning the Curie temperature for various technological applications.

  20. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction.

    PubMed

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-12-18

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.

  1. Synthesis of Au@Pt bimetallic nanoparticles with concave Au nanocuboids as seeds and their enhanced electrocatalytic properties in the ethanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Tan, Lingyu; Li, Lidong; Peng, Yi; Guo, Lin

    2015-12-01

    Herein, a new type of uniform and well-structured Au@Pt bimetallic nanoparticles (BNPs) with highly active concave Au nanocuboids (NCs) as seeds was successfully synthesized by using the classic seed-mediated method. Electrochemical measurements were conducted to demonstrate their greatly enhanced catalytic performance in the ethanol oxidation reaction (EOR). It was found that the electrochemical performance for Au@Pt BNPs with the concave Au NCs as seeds, which were enclosed by {611} high-index facets, could be seven times higher than that of the Au@Pt bimetallic nanoparticles with regular spherical Au NPs as seeds. Furthermore, our findings show that the morphology and electrocatalytic activity of the Au@Pt BNPs can be tuned simply by changing the compositional ratios of the growth solution. The lower the amount of H2PtCl6 used in the growth solution, the thinner the Pt shell grew, and the more high-index facets of concave Au NCs seeds were exposed in Au@Pt BNPs, leading to higher electrochemical activity. These as-prepared concave Au@Pt BNPs will open up new strategies for improving catalytic efficiency and reducing the use of the expensive and scarce resource of platinum in the ethanol oxidation reaction, and are potentially applicable as electrochemical catalysts for direct ethanol fuel cells.

  2. DNA-templated synthesis of PtAu bimetallic nanoparticle/graphene nanocomposites and their application in glucose biosensor

    PubMed Central

    2014-01-01

    In this paper, single-stranded DNA (ss-DNA) is demonstrated to functionalize graphene (GR) and to further guide the growth of PtAu bimetallic nanoparticles (PtAuNPs) on GR with high densities and dispersion. The obtained nanocomposites (PtAuNPs/ss-DNA/GR) were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectrometer (EDS), and electrochemical techniques. Then, an enzyme nanoassembly was prepared by self-assembling glucose oxidase (GOD) on PtAuNP/ss-DNA/GR nanocomposites (GOD/PtAuNPs/ss-DNA/GR). The nanocomposites provided a suitable microenvironment for GOD to retain its biological activity. The direct and reversible electron transfer process between the active site of GOD and the modified electrode was realized without any extra electron mediator. Thus, the prepared GOD/PtAuNP/ss-DNA/GR electrode was proposed as a biosensor for the quantification of glucose. The effects of pH, applied potential, and temperature on the performance of the biosensor were discussed in detail and were optimized. Under optimal conditions, the biosensor showed a linearity with glucose concentration in the range of 1.0 to 1,800 μM with a detection limit of 0.3 μM (S/N = 3). The results demonstrate that the developed approach provides a promising strategy to improve the sensitivity and enzyme activity of electrochemical biosensors. PMID:24572068

  3. Ferritin-mediated biomimetic synthesis of bimetallic Au-Ag nanoparticles on graphene nanosheets for electrochemical detection of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Jiku; Ni, Pengjuan; Li, Zhuang

    2015-03-01

    We demonstrated a biomimetic green synthesis of bimetallic Au-Ag nanoparticles (NPs) on graphene nanosheets (GNs). The spherical protein, ferritin (Fr), was bound onto GNs and served as the template for the synthesis of GN/Au-Ag nanohybrids. The created GN/Au-Ag nanohybrids were further utilized to fabricate a non-enzymatic amperometric biosensor for the sensitive detection of hydrogen peroxide (H2O2), and this biosensor displayed high performances to determine H2O2 with a detection limit of 20.0 × 10-6 M and a linear detection range from 2.0 μM to 7.0 mM.

  4. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  5. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  6. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  7. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  8. 40 CFR 721.10119 - Siloxane modified silica nanoparticles (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Siloxane modified silica nanoparticles... Specific Chemical Substances § 721.10119 Siloxane modified silica nanoparticles (generic). (a) Chemical... as siloxane modified silica nanoparticles (PMN P-05-673) is subject to reporting under this section...

  9. Porous nanocrystalline silicon supported bimetallic Pd-Au catalysts: preparation, characterization and direct hydrogen peroxide synthesis

    NASA Astrophysics Data System (ADS)

    Potemkin, Dmitriy I.; Maslov, Dmitry K.; Loponov, Konstantin; Snytnikov, Pavel V.; Shubin, Yuri V.; Plyusnin, Pavel E.; Svintsitskiy, Dmitry A.; Sobyanin, Vladimir A.; Lapkin, Alexei A.

    2018-03-01

    Bimetallic Pd-Au catalysts were prepared on the porous nanocrystalline silicon (PSi) for the first time. The catalysts were tested in the reaction of direct hydrogen peroxide synthesis and characterised by standard structural and chemical techniques. It was shown that the Pd-Au/PSi catalyst prepared from conventional H2[PdCl4] and H[AuCl4] precursors contains monometallic Pd and a range of different Pd-Au alloy nanoparticles over the oxidized PSi surface. The PdAu2/PSi catalyst prepared from the [Pd(NH3)4][AuCl4]2 double complex salt single-source precursor predominantly contains bimetallic Pd-Au alloy nanoparticles. For both catalysts the surface of bimetallic nanoparticles is Pd-enriched and contains palladium in Pd0 and Pd2+ states. Among the catalysts studied, the PdAu2/PSi catalyst was the most active and selective in the direct H2O2 synthesis with H2O2 productivity of 0.5 at selectivity of 50 % and H2O2 concentration of 0.023 M in 0.03 M H2SO4-methanol solution after 5 h on stream at -10 °C and atmospheric pressure. This performance is due to high activity in the H2O2 synthesis reaction and low activities in the undesirable H2O2 decomposition and hydrogenation reactions. Good performance of the PdAu2/PSi catalyst was associated with the major part of Pd in the catalyst being in the form of the bimetallic Pd-Au nanoparticles. Porous silicon was concluded to be a promising catalytic support for direct hydrogen peroxide synthesis due to its inertness with respect to undesirable side reactions, high thermal stability and conductivity, possibility of safe operation at high temperatures and pressures and a well-established manufacturing process.

  10. Efficiency of bimetallic PtPd on polydopamine modified on various carbon supports for alcohol oxidations

    NASA Astrophysics Data System (ADS)

    Pinithchaisakula, A.; Ounnunkad, K.; Themsirimongkon, S.; Promsawan, N.; Waenkaew, P.; Saipanya, S.

    2017-02-01

    In this work, the preparation, characterization, and electrocatalytic analysis of the catalysts on various carbon substrates for direct alcohol fuel cells were studied. Selected carbons were modified with/without polydopamine (labelled as PDA-C and C) and further metal electrodeposited incorporated onto the glassy carbon (labelled as 5Pt1Pd/PDA-C and 5Pt1Pd/C). Four various carbon materials were used e.g. graphite (G), carbon nanotube (CNT), graphene (GP) and graphene oxide (GO) and the carbons were modified with PDA denoted as PDA-G, PDA-CNT, PDA-GP and PDA-GO, respectively. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) experimental observation showed narrow size distribution of metal anchored on the PDA-C and C materials. Chemical compositions and oxidation states of the catalysts were determined by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX). The catalytic performances for small organic electro-oxidation (e.g. methanol and ethanol) were measured by cyclic voltammetry (CV). Among different PDA-C and C catalysts, monometallic Pt showed less activity than the bimetallic catalysts. Among catalysts with PDA, the 5Pt1Pd/PDA-GO catalyst facilitated methanol and ethanol oxidations with high oxidation currents and If/Ib value and stability with low potentials while among catalysts without PDA, the 5Pt1Pd/CNT provides highest activity and stability. It was found that the catalysts with PDA provided high activity and stability than the catalysts without PDA. The improved catalytic performance of the prepared catalysts could be related to the higher active surface area from polymer modification and bimetallic catalyst system in the catalyst composites.

  11. Tunable SPR-based remote actuation of bimetallic core-shell nanoparticles-coated stimuli responsive polymer for switchable chemo-photothermal synergistic cancer therapy.

    PubMed

    Amoli-Diva, Mitra; Sadighi-Bonabi, Rasoul; Pourghazi, Kamyar

    2018-06-14

    New dual light/temperature-responsive nanocarriers were synthesized using bimetallic plasmonic Au-Ag and Ag-Au nanoparticles (NPs) as cores of vehicles which subsequently functionalized with a UCST-based poly acrylamide-co-acrylonitrile using reversible addition-fragmentation chain transfer for spatiotemporally controlled chemo-photothermal synergistic cancer therapy. The bimetallic cores were assigned to sense wavelengths close to the localized SPR of monometallic NP shell to produce heat which not only can increase the surrounding temperature over the UCST of polymer to open the its valves and promote drug diffusion, but also can kill cancerous cells through photothermal effects with increasing in environment temperature nearly 18 °C after about 5 min radiation. The bimetallic NPs were shown good reusability even after five heating/cooling cycles and the efficiency of both photothermal/chemotherapic procedures can be modulated by manipulating carrier's concentration and radiation time. In addition, the cytotoxicity of drug-free nanocarriers on normal L929 fibroblast and letrozole-loaded nanocarriers on MDAMB 231 breast-cancer cell lines were investigated in the absence/presence of laser radiation. Finally, the prepared nanocomposites were exhibited switchable on/off drug release in two buffered solutions (pH 5.5 and 7.4) with light actuation. The results revealed that the prepared nanocarriers can be served as efficient delivery platforms for remote-control chemo-photothermal synergistic cancer therapy. Copyright © 2018. Published by Elsevier Inc.

  12. As(V) removal capacity of FeCu bimetallic nanoparticles in aqueous solutions: The influence of Cu content and morphologic changes in bimetallic nanoparticles.

    PubMed

    Sepúlveda, Pamela; Rubio, María A; Baltazar, Samuel E; Rojas-Nunez, J; Sánchez Llamazares, J L; Garcia, Alejandra García; Arancibia-Miranda, Nicolás

    2018-08-15

    In this study, bimetallic nanoparticles (BMNPs) with different mass ratios of Cu and Fe were evaluated. The influence of the morphology on the removal of pollutants was explored through theoretical and experimental studies, which revealed the best structure for removing arsenate (As(V)) in aqueous systems. To evidence the surface characteristics and differences among BMNPs with different mass proportions of Fe and Cu, several characterization techniques were used. Microscopy techniques and molecular dynamics simulations were applied to determine the differences in morphology and structure. In addition, X-ray diffraction (XRD) was used to determine the presence of various oxides. Finally, the magnetization response was evaluated, revealing differences among the materials. Our cumulative data show that BMNPs with low amounts of Cu (Fe 0.9 Cu 0.1 ) had a non-uniform core-shell structure with agglomerate-type chains of magnetite, whereas a Janus-like structure was observed in BMNPs with high amounts of Cu (Fe 0.5 Cu 0.5 ). However, a non-uniform core-shell structure (Fe 0.9 Cu 0.1 ) facilitated electron transfer among Fe, Cu and As, which increased the adsorption rate (k), capacity (q e ) and intensity (n). The mechanism of As removal was also explored in a comparative study of the phase and morphology of BMNPs pre- and post-sorption. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Investigation of gold and bimetallic gold/silver nanoparticles in soda-lime-silicate glasses formed by means of excimer laser irradiation

    NASA Astrophysics Data System (ADS)

    Heinz, M.; Dubiel, M.; Meinertz, J.; Ihlemann, J.; Hoell, A.

    2017-02-01

    In this study, plasmonic Au and Au/Ag nanostructures in soda-lime-silicate glasses have been generated by means of ArF-excimer laser irradiation (193 nm) below the ablation threshold of the glass. For this purpose pure and silver/sodium ion-exchanged float glasses have been coated by gold and then irradiated by the laser. The formation of Au and Au/Ag nanoparticles could be verified by the surface plasmon resonances between 420 and 620 nm, which were obtained by optical spectroscopy. Both, pure Au and Ag particles as well as bimetallic Au/Ag nanoparticles, could be observed by means of small angle X-ray scattering experiments. These results demonstrate that such procedures enable the spaceselected generation of plasmonic nanostructures in glass surfaces by excimer laser irradiation.

  14. Antitumor Activity of Alloy and Core-Shell-Type Bimetallic AgAu Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shmarakov, Igor; Mukha, Iuliia; Vityuk, Nadiia; Borschovetska, Vira; Zhyshchynska, Nelya; Grodzyuk, Galyna; Eremenko, Anna

    2017-05-01

    Nanoparticles (NPs) of noble metals, namely gold and silver, remain promising anticancer agents capable of enhancing current surgery- and chemotherapeutic-based approaches in cancer treatment. Bimetallic AgAu composition can be used as a more effective agent due to the synergetic effect. Among the physicochemical parameters affecting gold and silver nanoparticle biological activity, a primary concern relates to their size, shape, composition, charge, etc. However, the impact of metal components/composition as well as metal topological distribution within NPs is incompletely characterized and remains to be further elucidated and clarified. In the present work, we tested a series of colloidal solutions of AgAu NPs of alloy and core-shell type for an antitumor activity depending on metal molar ratios (Ag:Au = 1:1; 1:3; 3:1) and topological distribution of gold and silver within NPs (AucoreAgshell; AgcoreAushell). The efficacy at which an administration of the gold and silver NPs inhibits mouse Lewis lung carcinoma (LLC) growth in vivo was compared. The data suggest that in vivo antitumor activity of the studied NPs strongly depends on gold and silver interaction arising from their ordered topological distribution. NPs with Ag core covered by Au shell were the most effective among the NPs tested towards LLC tumor growth and metastasizing inhibition. Our data show that among the NPs tested in this study, AgcoreAushell NPs may serve as a suitable anticancerous prototype.

  15. Ru-core/Cu-shell bimetallic nanoparticles with controlled size formed in one-pot synthesis.

    PubMed

    Helgadottir, I; Freychet, G; Arquillière, P; Maret, M; Gergaud, P; Haumesser, P H; Santini, C C

    2014-12-21

    Suspensions of bimetallic nanoparticles (NPs) of Ru and Cu have been synthesized by simultaneous decomposition of two organometallic compounds in an ionic liquid. These suspensions have been characterized by Anomalous Small-Angle X-ray Scattering (ASAXS) at energies slightly below the Ru K-edge. It is found that the NPs adopt a Ru-core, a Cu-shell structure, with a constant Ru core diameter of 1.9 nm for all Ru : Cu compositions, while the Cu shell thickness increases with Cu content up to 0.9 nm. The formation of RuCuNPs thus proceeds through rapid decomposition of the Ru precursor into RuNPs of constant size followed by the reaction of the Cu precursor and agglomeration as a Cu shell. Thus, the different decomposition kinetics of precursors make possible the elaboration of core-shell NPs composed of two metals without chemical affinity.

  16. Three strategies to stabilise nearly monodispersed silver nanoparticles in aqueous solution

    NASA Astrophysics Data System (ADS)

    Stevenson, Amadeus PZ; Blanco Bea, Duani; Civit, Sergi; Antoranz Contera, Sonia; Iglesias Cerveto, Alberto; Trigueros, Sonia

    2012-02-01

    Silver nanoparticles are extensively used due to their chemical and physical properties and promising applications in areas such as medicine and electronics. Controlled synthesis of silver nanoparticles remains a major challenge due to the difficulty in producing long-term stable particles of the same size and shape in aqueous solution. To address this problem, we examine three strategies to stabilise aqueous solutions of 15 nm citrate-reduced silver nanoparticles using organic polymeric capping, bimetallic core-shell and bimetallic alloying. Our results show that these strategies drastically improve nanoparticle stability by distinct mechanisms. Additionally, we report a new role of polymer functionalisation in preventing further uncontrolled nanoparticle growth. For bimetallic nanoparticles, we attribute the presence of a higher valence metal on the surface of the nanoparticle as one of the key factors for improving their long-term stability. Stable silver-based nanoparticles, free of organic solvents, will have great potential for accelerating further environmental and nanotoxicity studies. PACS: 81.07.-b; 81.16.Be; 82.70.Dd.

  17. Increased cellular uptake of peptide-modified PEGylated gold nanoparticles.

    PubMed

    He, Bo; Yang, Dan; Qin, Mengmeng; Zhang, Yuan; He, Bing; Dai, Wenbing; Wang, Xueqing; Zhang, Qiang; Zhang, Hua; Yin, Changcheng

    2017-12-09

    Gold nanoparticles are promising drug delivery vehicles for nucleic acids, small molecules, and proteins, allowing various modifications on the particle surface. However, the instability and low bioavailability of gold nanoparticles compromise their clinical application. Here, we functionalized gold nanoparticles with CPP fragments (CALNNPFVYLI, CALRRRRRRRR) through sulfhydryl PEG to increase their stability and bioavailability. The resulting gold nanoparticles were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), UV-visible spectrometry and X-ray photoelectron spectroscopy (XPS), and the stability in biological solutions was evaluated. Comparing to PEGylated gold nanoparticles, CPP (CALNNPFVYLI, CALRRRRRRRR)-modified gold nanoparticles showed 46 folds increase in cellular uptake in A549 and B16 cell lines, as evidenced by the inductively coupled plasma atomic emission spectroscopy (ICP-AES). The interactions between gold nanoparticles and liposomes indicated CPP-modified gold nanoparticles bind to cell membrane more effectively than PEGylated gold nanoparticles. Surface plasmon resonance (SPR) was used to measure interactions between nanoparticles and the membrane. TEM and uptake inhibitor experiments indicated that the cellular entry of gold nanoparticles was mediated by clathrin and macropinocytosis. Other energy independent endocytosis pathways were also identified. Our work revealed a new strategy to modify gold nanoparticles with CPP and illustrated the cellular uptake pathway of CPP-modified gold nanoparticles. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Competition by aquifer materials in a bimetallic nanoparticle/persulfate system for the treatment of trichloroethylene.

    PubMed

    Al-Shamsi, Mohammed Ahmad; Thomson, Neil R

    2013-10-01

    It has been suggested in the literature that aquifer materials can compete with the target organic compounds in an activated peroxygen system. In this study, we employed a rapid treatment method using persulfate activated with bimetallic nanoparticles to investigate the competition between aquifer materials and the dissolved phase of a target organic compound. The concentration of dissolved trichloroethylene (TCE) remaining after using the activated persulfate system was two- to three-fold higher in a soil slurry batch system than in an aqueous batch system. For all five aquifer materials investigated, an increase in the mass of the aquifer solids significantly decreased the degradation of TCE. A linear relationship was observed between the mass of aquifer materials and the initial TCE degradation rate, suggesting that the organic carbon and/or aquifer material constituents (e.g., carbonates and bicarbonates) compete with the oxidation of TCE.

  19. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  20. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  1. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  2. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  3. 40 CFR 721.10120 - Siloxane modified alumina nanoparticles (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nanoparticles (generic). 721.10120 Section 721.10120 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10120 Siloxane modified alumina nanoparticles (generic). (a) Chemical... as siloxane modified alumina nanoparticles (PMN P-05-687) is subject to reporting under this section...

  4. Bimetallic nanoparticles synthesized in microemulsions: A computer simulation study on relationship between kinetics and metal segregation.

    PubMed

    Tojo, Concha; Buceta, David; López-Quintela, M Arturo

    2018-01-15

    Computer simulations were carried out to study the origin of the different metal segregation showed by bimetallic nanoparticles synthesized in microemulsions. Our hypothesis is that the kinetics of nanoparticle formation in microemulsions has to be considered on terms of two potentially limiting factors, chemical reaction itself and the rate of reactants exchange between micelles. From the kinetic study it is deduced that chemical reduction in microemulsions is a pseudo first-order process, but not from the beginning. At the initial stage of the synthesis, redistribution of reactants between micelles is controlled by the intermicellar exchange rate, meanwhile the core and middle layers are being built. This exchange control has a different impact depending on the reduction rate of the particular metal in relation to the intermicellar exchange rate. For the case of Au/Pt nanoparticles, the kinetic constant of Au (fast reduction) is strongly dependent on intermicellar exchange rate and reactant concentration. On the contrary, the kinetic constant of Pt (slower reduction) remains constant. Therefore, the fact that the reaction takes place in a microemulsion affects more or less depending on the reduction rate of the metals. As a consequence, the final nanostructure not only depends on difference between the reduction rates of both metals, but also on the reduction rate of each metal in relation to the intermicellar exchange rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Highly Stable Bimetallic AuIr/TiO₂ Catalyst: Physical Origins of the Intrinsic High Stability against Sintering.

    PubMed

    Han, Chang Wan; Majumdar, Paulami; Marinero, Ernesto E; Aguilar-Tapia, Antonio; Zanella, Rodolfo; Greeley, Jeffrey; Ortalan, Volkan

    2015-12-09

    It has been a long-lived research topic in the field of heterogeneous catalysts to find a way of stabilizing supported gold catalyst against sintering. Herein, we report highly stable AuIr bimetallic nanoparticles on TiO2 synthesized by sequential deposition-precipitation. To reveal the physical origin of the high stability of AuIr/TiO2, we used aberration-corrected scanning transmission electron microscopy (STEM), STEM-tomography, and density functional theory (DFT) calculations. Three-dimensional structures of AuIr/TiO2 obtained by STEM-tomography indicate that AuIr nanoparticles on TiO2 have intrinsically lower free energy and less driving force for sintering than Au nanoparticles. DFT calculations on segregation behavior of AuIr slabs on TiO2 showed that the presence of Ir near the TiO2 surface increases the adhesion energy of the bimetallic slabs to the TiO2 and the attractive interactions between Ir and TiO2 lead to higher stability of AuIr nanoparticles as compared to Au nanoparticles.

  6. Bimetallic Metal-Organic Frameworks for Controlled Catalytic Graphitization of Nanoporous Carbons

    PubMed Central

    Tang, Jing; Salunkhe, Rahul R.; Zhang, Huabin; Malgras, Victor; Ahamad, Tansir; Alshehri, Saad M.; Kobayashi, Naoya; Tominaka, Satoshi; Ide, Yusuke; Kim, Jung Ho; Yamauchi, Yusuke

    2016-01-01

    Single metal-organic frameworks (MOFs), constructed from the coordination between one-fold metal ions and organic linkers, show limited functionalities when used as precursors for nanoporous carbon materials. Herein, we propose to merge the advantages of zinc and cobalt metals ions into one single MOF crystal (i.e., bimetallic MOFs). The organic linkers that coordinate with cobalt ions tend to yield graphitic carbons after carbonization, unlike those bridging with zinc ions, due to the controlled catalytic graphitization by the cobalt nanoparticles. In this work, we demonstrate a feasible method to achieve nanoporous carbon materials with tailored properties, including specific surface area, pore size distribution, degree of graphitization, and content of heteroatoms. The bimetallic-MOF-derived nanoporous carbon are systematically characterized, highlighting the importance of precisely controlling the properties of the carbon materials. This can be done by finely tuning the components in the bimetallic MOF precursors, and thus designing optimal carbon materials for specific applications. PMID:27471193

  7. Enhanced debromination of decabrominated diphenyl ether in aqueous solution by attapulgite supported Fe/Ni bimetallic nanoparticles: kinetics and pathways

    NASA Astrophysics Data System (ADS)

    Liu, Zongtang; Gu, Chenggang; Bian, Yongrong; Jiang, Xin; Sun, Yufeng; Fei, Zhenghao; Dai, Jingtao

    2017-08-01

    In this study, Fe/Ni bimetallic nanoparticles were supported on the attapulgite (A-Fe/Ni) to enhance the degradation reactivity of decabrominated diphenyl ether (BDE209) in aqueous solution. The Fe/Ni nanoparticles were well distributed on the attapulgite surface with an average diameter of 20-40 nm. The removal percentage of BDE209 by A-Fe/Ni was 1.59 times higher than Fe/Ni nanoparticles alone because attapulgite could act as supporting material to disperse Fe/Ni nanoparticles and prevent Fe/Ni nanoparticles from aggregation. The degradation kinetics for BDE209 debromination by A-Fe/Ni could be well described by a pseudo-first-order model, and the debromination rate constant of BDE209 increased with increasing the dosage of A-Fe/Ni, water/THF ratio, and decreasing the initial BDE209 concentration and solution pH. The degradation products were identified using a third-order polynomial regression equation between the experimental and reference gas chromatography relative retention times. Stepwise debromination from n-bromo-DE to (n  -  1)-bromo-DE was a possible pathway with bromines being substituted sequentially by hydrogen. The preferred elimination of bromines of BDE209 by A-Fe/Ni followed the debromination preference of para-Br  >  meta-Br  >  ortho-Br. The results provide evidences for understanding the debromination mechanism of polybrominated diphenyl ether by clay-supported Fe/Ni nanoparticles.

  8. Porous Nanocrystalline Silicon Supported Bimetallic Pd-Au Catalysts: Preparation, Characterization, and Direct Hydrogen Peroxide Synthesis

    PubMed Central

    Potemkin, Dmitriy I.; Maslov, Dmitry K.; Loponov, Konstantin; Snytnikov, Pavel V.; Shubin, Yuri V.; Plyusnin, Pavel E.; Svintsitskiy, Dmitry A.; Sobyanin, Vladimir A.; Lapkin, Alexei A.

    2018-01-01

    Bimetallic Pd-Au catalysts were prepared on the porous nanocrystalline silicon (PSi) for the first time. The catalysts were tested in the reaction of direct hydrogen peroxide synthesis and characterized by standard structural and chemical techniques. It was shown that the Pd-Au/PSi catalyst prepared from conventional H2[PdCl4] and H[AuCl4] precursors contains monometallic Pd and a range of different Pd-Au alloy nanoparticles over the oxidized PSi surface. The PdAu2/PSi catalyst prepared from the [Pd(NH3)4][AuCl4]2 double complex salt (DCS) single-source precursor predominantly contains bimetallic Pd-Au alloy nanoparticles. For both catalysts the surface of bimetallic nanoparticles is Pd-enriched and contains palladium in Pd0 and Pd2+ states. Among the catalysts studied, the PdAu2/PSi catalyst was the most active and selective in the direct H2O2 synthesis with H2O2 productivity of 0.5 mol gPd-1 h-1 at selectivity of 50% and H2O2 concentration of 0.023 M in 0.03 M H2SO4-methanol solution after 5 h on stream at −10°C and atmospheric pressure. This performance is due to high activity in the H2O2 synthesis reaction and low activities in the undesirable H2O2 decomposition and hydrogenation reactions. Good performance of the PdAu2/PSi catalyst was associated with the major part of Pd in the catalyst being in the form of the bimetallic Pd-Au nanoparticles. Porous silicon was concluded to be a promising catalytic support for direct hydrogen peroxide synthesis due to its inertness with respect to undesirable side reactions, high thermal stability, and conductivity, possibility of safe operation at high temperatures and pressures and a well-established manufacturing process. PMID:29637068

  9. In Situ Generation of Two-Dimensional Au–Pt Core–Shell Nanoparticle Assemblies

    PubMed Central

    2010-01-01

    Two-dimensional assemblies of Au–Pt bimetallic nanoparticles are generated in situ on polyethyleneimmine (PEI) silane functionalized silicon and indium tin oxide (ITO) coated glass surfaces. Atomic force microscopy (AFM), UV–Visible spectroscopy, and electrochemical measurements reveal the formation of core–shell structure with Au as core and Pt as shell. The core–shell structure is further supported by comparing with the corresponding data of Au nanoparticle assemblies. Static contact angle measurements with water show an increase in hydrophilic character due to bimetallic nanoparticle generation on different surfaces. It is further observed that these Au–Pt core–shell bimetallic nanoparticle assemblies are catalytically active towards methanol electro-oxidation, which is the key reaction for direct methanol fuel cells (DMFCs). PMID:20651923

  10. Gelatin modified lipid nanoparticles for anti- viral drug delivery.

    PubMed

    K S, Joshy; S, Snigdha; Kalarikkal, Nandakumar; Pothen, Laly A; Thomas, Sabu

    2017-10-01

    The major challenges to clinical application of zidovudine are its moderate aqueous solubility and relative short half-life and serious side effects due to frequent administrations. We investigated the preparation of zidovudine-loaded nanoparticles based on lipids which were further modified with the polymer gelatin. Formulation and stability of the modified nanoparticles were analysed from the physico-chemical characterizations. The interactions of nanoparticles with blood components were tested by haemolysis and aggregation studies. The drug content and entrapment efficiencies were assessed by UV analysis. The effect of nanoparticles on protein adsorption was assessed by native polyacrylamide gel electrophoresis (PAGE). In vitro release studies showed a sustained release profile of zidovudine. In vitro cytotoxicity and cellular uptake of the zidovudine-loaded nanoparticles were performed in MCF-7 and neuro 2a brain cells. The enhanced cellular internalization of drug loaded modified nanoparticles in both the cell lines were revealed by fluorescence microscopy. Hence the present study focuses on the feasibility of zidovudine-loaded polymer modified lipid nanoparticles as carriers for safe and efficient HIV/AIDS therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Understanding the Role of M/Pt(111) (M = Fe, Co, Ni, Cu) Bimetallic Surfaces for Selective Hydrodeoxygenation of Furfural

    DOE PAGES

    Jiang, Zhifeng; Wan, Weiming; Lin, Zhexi; ...

    2017-07-24

    Selectively cleaving the C=O bond of the aldehyde group in furfural is critical for converting this biomass-derived platform chemical to an important biofuel molecule, 2-methylfuran. This work combined density functional theory (DFT) calculations and temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) measurements to investigate the hydrodeoxygenation (HDO) activity of furfural on bimetallic surfaces prepared by modifying Pt(111) with 3d transition metals (Cu, Ni, Fe, and Co). The stronger binding energy of furfural and higher tilted degree of the furan ring on the Co-terminated bimetallic surface resulted in a higher activity for furfural HDO to produce 2-methylfuran inmore » comparison to that on either Pt(111) or Pt-terminated PtCoPt(111). The 3d-terminated bimetallic surfaces with strongly oxophilic 3d metals (Co and Fe) showed higher 2-methylfuran yield in comparison to those surfaces modified with weakly oxophilic 3d metals (Cu and Ni). The effect of oxygen on the HDO selectivity was also investigated on oxygen-modified bimetallic surfaces, revealing that the presence of surface oxygen resulted in a decrease in 2-methylfuran yield. Furthermore, the combined theoretical and experimental results presented here should provide useful guidance for designing Pt-based bimetallic HDO catalysts.« less

  12. Understanding the Role of M/Pt(111) (M = Fe, Co, Ni, Cu) Bimetallic Surfaces for Selective Hydrodeoxygenation of Furfural

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Zhifeng; Wan, Weiming; Lin, Zhexi

    Selectively cleaving the C=O bond of the aldehyde group in furfural is critical for converting this biomass-derived platform chemical to an important biofuel molecule, 2-methylfuran. This work combined density functional theory (DFT) calculations and temperature-programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) measurements to investigate the hydrodeoxygenation (HDO) activity of furfural on bimetallic surfaces prepared by modifying Pt(111) with 3d transition metals (Cu, Ni, Fe, and Co). The stronger binding energy of furfural and higher tilted degree of the furan ring on the Co-terminated bimetallic surface resulted in a higher activity for furfural HDO to produce 2-methylfuran inmore » comparison to that on either Pt(111) or Pt-terminated PtCoPt(111). The 3d-terminated bimetallic surfaces with strongly oxophilic 3d metals (Co and Fe) showed higher 2-methylfuran yield in comparison to those surfaces modified with weakly oxophilic 3d metals (Cu and Ni). The effect of oxygen on the HDO selectivity was also investigated on oxygen-modified bimetallic surfaces, revealing that the presence of surface oxygen resulted in a decrease in 2-methylfuran yield. Furthermore, the combined theoretical and experimental results presented here should provide useful guidance for designing Pt-based bimetallic HDO catalysts.« less

  13. The catalytic behavior of precisely synthesized Pt–Pd bimetallic catalysts for use as diesel oxidation catalysts

    DOE PAGES

    Wong, Andrew P.; Kyriakidou, Eleni A.; Toops, Todd J.; ...

    2016-04-17

    The demands of stricter diesel engine emission regulations have created challenges for current exhaust systems. With advances in low-temperature internal combustion engines and their operations, advances must also be made in vehicle exhaust catalysts. Most current diesel oxidation catalysts use heavy amounts of precious group metals (PGMs) for hydrocarbon (HC), CO, and NO oxidation. These catalysts are expensive and are most often synthesized with poor bimetallic interaction and dispersion. In this paper, the goal was to study the effect of aging on diesel emission abatement of Pt–Pd bimetallic nanoparticles precisely prepared with different morphologies: well dispersed core–shell vs. well dispersedmore » homogeneously alloyed vs. poorly dispersed, poorly alloyed particles. Alumina and silica supports were studied. Particle morphology and dispersion were analyzed before and after hydrothermal treatments by XRD, EDX, and STEM. Reactivity as a function of aging was measured in simulated diesel engine exhaust. While carefully controlled bimetallic catalyst nanoparticle structure has a profound influence on initial or low temperature catalytic activity, the differences in behavior disappear with higher temperature aging as thermodynamic equilibrium is achieved. The metallic character of Pt-rich alumina-supported catalysts is such that behavior rather closely follows the Pt–Pd metal phase diagram. Nanoparticles disparately composed as well-dispersed core–shell (via seq-SEA), well-dispersed homogeneously alloyed (via co-SEA), and poorly dispersed, poorly alloyed (via co-DI) end up as well alloyed, large particles of almost the same size and activity. With Pd-rich systems, the oxidation of Pd also figures into the equilibrium, such that Pd-rich oxide phases appear in the high temperature forms along with alloyed metal cores. Finally, the small differences in activity after high temperature aging can be attributed to the synthesis methods, sequential SEA and co

  14. Synthesis of Highly Dispersed and Highly Stable Supported Au–Pt Bimetallic Catalysts by a Two-Step Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaofeng; Zhao, Haiyan; Wu, Tianpin

    2016-11-01

    Highly dispersed and highly stable supported bimetallic catalysts were prepared using a two-step process. Pt nanoparticles (NPs) were first deposited on porous γ-Al2O3 particles by atomic layer deposition (ALD). Au NPs were synthesized by using gold(III) chloride as the Au precursor, and then immobilized on ALD Pt/γ-Al2O3 particles. The Au–Pt bimetallic catalysts were highly active and highly stable in a vigorously stirred liquid phase reaction of glucose oxidation.

  15. The key role of biochar in the rapid removal of decabromodiphenyl ether from aqueous solution by biochar-supported Ni/Fe bimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yi, Yunqiang; Wu, Juan; Wei, Yufen; Fang, Zhanqiang; Tsang, Eric Pokeung

    2017-07-01

    Some problems exist in the current remediation of polybrominated diphenyl ethers (PBDEs) from aqueous solution by using iron-based nanoparticles. Our efforts have contributed to the synthesis of biochar-supported Ni/Fe bimetallic nanoparticle composites (BC@Ni/Fe). Under the optimum operating parameters of BC@Ni/Fe, the morphologic analysis revealed that biochar effectively solved the agglomeration of Ni/Fe nanoparticles and the removal efficiency of BDE209 obtained by BC@Ni/Fe (91.29%) was seven times higher than the sum of biochar (2.55%) and Ni/Fe (11.22%) in 10 min. The degradation products of BDE209 in the solution and absorbed on the BC@Ni/Fe were analyzed with gas chromatography-mass spectroscopy, which indicated that the degradation of BDE209 was mainly a process of stepwise debromination. Meanwhile, compared with Ni/Fe nanoparticles, the adsorption ability of the by-products of BDE209 by BC@Ni/Fe was greater, to a certain extent, which reduced the additional environmental burden. In addition, the concentration of nickle ion leaching from the Ni/Fe nanoparticles was 3.09 mg/L; conversely, the concentration of nickle leaching from BC@Ni/Fe was not detected. This excellent performance in our study indicates a possible means to enhance the reactivity and reduce the secondary risks of Ni/Fe nanoparticles.

  16. Characterization of bimetallic Fe/Pd nanoparticles by grape leaf aqueous extract and identification of active biomolecules involved in the synthesis.

    PubMed

    Luo, Fang; Yang, Die; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-08-15

    This paper reports the detailed composition and morphology of one-step green synthesized bimetallic Fe/Pd nanoparticles (NPs) using grape leaf aqueous extract and identification of active biomolecules involved in the synthesis employing various techniques. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) revealed that Fe/Pd NPs were polydispersed and quasi-spherical with a diameter ranging from 2 to 20nm. X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDS) provided evidence for the composition of Fe and Pd and for their species existing on the surface of Fe/Pd NPs. In addition, biomolecules in the grape leaf aqueous extract were identified but their functions are still unclear. Biomolecules in the aqueous extract such as methoxy-phenyl-oxime, N-benzoyl-2-cyano-histamine, 2-ethyl-phenol, 1,2-benzenediol, β-hydroxyquebracamine, hydroquinone, 2-methoxy-4-vinylphenol, 5-methyl-2-furancarboxaldehyde, 4-(3-hydroxybutyl)-3,5,5-trimethyl-2-cyclohexen and some polyphenolic compounds were identified as reducing and capping agents, which were studied by Chromatography-Mass Spectroscopy (GC-MS), XPS and Fourier Transform Infrared Spectroscopy (FTIR). Our finding suggests a new insight into cost-effective, simple, and environmentally benign production of bimetallic Fe/Pd NPs. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A photoactive bimetallic framework for direct aminoformylation ...

    EPA Pesticide Factsheets

    A bimetallic catalyst, AgPd@g-C3N4, was synthesized by immobilizing silver and palladium nanoparticles over the surface of graphitic carbon nitride (g-C3N4) and its utility was demonstrated for the concerted aminoformylation of aromatic nitro compounds under visible light conditions. The entwined AgPd@g-C3N4 catalyst was very effective in exploiting formic acid as a source of hydrogen and acting as a formylating agent under photochemical conditions. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry

  18. Nitrogen-Doped Ordered Mesoporous Carbon Supported Bimetallic PtCo Nanoparticles for Upgrading of Biophenolics.

    PubMed

    Wang, Guang-Hui; Cao, Zhengwen; Gu, Dong; Pfänder, Norbert; Swertz, Ann-Christin; Spliethoff, Bernd; Bongard, Hans-Josef; Weidenthaler, Claudia; Schmidt, Wolfgang; Rinaldi, Roberto; Schüth, Ferdi

    2016-07-25

    Hydrodeoxygenation (HDO) is an attractive route for the upgrading of bio-oils produced from lignocellulose. Current catalysts require harsh conditions to effect HDO, decreasing the process efficiency in terms of energy and carbon balance. Herein we report a novel and facile method for synthesizing bimetallic PtCo nanoparticle catalysts (ca. 1.5 nm) highly dispersed in the framework of nitrogen-doped ordered mesoporous carbon (NOMC) for this reaction. We demonstrate that NOMC with either 2D hexagonal (p6m) or 3D cubic (Im3‾ m) structure can be easily synthesized by simply adjusting the polymerization temperature. We also demonstrate that PtCo/NOMC (metal loading: Pt 9.90 wt %; Co 3.31 wt %) is a highly effective catalyst for HDO of phenolic compounds and "real-world" biomass-derived phenolic streams. In the presence of PtCo/NOMC, full deoxygenation of phenolic compounds and a biomass-derived phenolic stream is achieved under conditions of low severity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oral Delivery of DMAB-Modified Docetaxel-Loaded PLGA-TPGS Nanoparticles for Cancer Chemotherapy

    NASA Astrophysics Data System (ADS)

    Chen, Hongbo; Zheng, Yi; Tian, Ge; Tian, Yan; Zeng, Xiaowei; Liu, Gan; Liu, Kexin; Li, Lei; Li, Zhen; Mei, Lin; Huang, Laiqiang

    2011-12-01

    Three types of nanoparticle formulation from biodegradable PLGA-TPGS random copolymer were developed in this research for oral administration of anticancer drugs, which include DMAB-modified PLGA nanoparticles, unmodified PLGA-TPGS nanoparticles and DMAB-modified PLGA-TPGS nanoparticles. Firstly, the PLGA-TPGS random copolymer was synthesized and characterized. DMAB was used to increase retention time at the cell surface, thus increasing the chances of particle uptake and improving oral drug bioavailability. Nanoparticles were found to be of spherical shape with an average particle diameter of around 250 nm. The surface charge of PLGA-TPGS nanoparticles was changed to positive after DMAB modification. The results also showed that the DMAB-modified PLGA-TPGS nanoparticles have significantly higher level of the cellular uptake than that of DMAB-modified PLGA nanoparticles and unmodified PLGA-TPGS nanoparticles. In vitro, cytotoxicity experiment showed advantages of the DMAB-modified PLGA-TPGS nanoparticle formulation over commercial Taxotere® in terms of cytotoxicity against MCF-7 cells. In conclusion, oral chemotherapy by DMAB-modified PLGA-TPGS nanoparticle formulation is an attractive and promising treatment option for patients.

  20. Bi-metallic nanoparticles as cathode electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jun; Amine, Khalil; Wang, Xiaoping

    A lithium-air battery cathode catalyst includes core-shell nanoparticles on a carbon support, wherein: a core of the core-shell nanoparticles is platinum metal; and a shell of the core-shell nanoparticles is copper metal; wherein: the core-shell nanoparticles have a weight ratio of the copper metal to the platinum metal from about 4% to about 6% copper to from about 2% to about 12% platinum, with a remaining percentage being the carbon support.

  1. Investigation of follicular and non-follicular pathways for polyarginine and oleic acid modified nanoparticles

    PubMed Central

    Hayden, Patrick; Singh, Mandip

    2013-01-01

    Purpose The aim of the current study was to investigate the percutaneous permeation pathways of cell penetrating peptide modified lipid nanoparticles and oleic acid modified polymeric nanoparticles. Methods Confocal microscopy was performed on skin cultures (EpiDermFT™) for modified and un-modified nanoparticles. Differential stripping was performed following in vitro skin permeation of Ibuprofen (Ibu) encapsulated nanoparticles to estimate Ibu levels in different skin layers and receiver compartment. The hair follicles (HF) were blocked and in vitro skin permeation of nanoparticles was then compared with unblocked HF. The surface modified nanoparticles were investigated for response on allergic contact dermatitis (ACD). Results Surface modified nanoparticles showed a significant higher (p < 0.05) in fluorescence in EpiDermFT™ cultures compared to controls. The HF play less than 5% role in total nanoparticle permeation into the skin. The Ibu levels were significantly high (p<0.05) for surface modified nanoparticles compared to controls. The Ibu levels in skin and receiver compartment were not significantly different when HF were open or closed. Modified nanoparticles showed significant improvement in treatment of ACD compared to solution. Conclusions Our studies demonstrate that increased skin permeation of surface modified nanoparticles is not only dependent on a follicular pathway but also occur through non-follicular pathway(s). PMID:23187866

  2. Investigation on the morphological and optical evolution of bimetallic Pd-Ag nanoparticles on sapphire (0001) by the systematic control of composition, annealing temperature and time.

    PubMed

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2017-01-01

    Multi-metallic alloy nanoparticles (NPs) can offer additional opportunities for modifying the electronic, optical and catalytic properties by the control of composition, configuration and size of individual nanostructures that are consisted of more than single element. In this paper, the fabrication of bimetallic Pd-Ag NPs is systematically demonstrated via the solid state dewetting of bilayer thin films on c-plane sapphire by governing the temperature, time as well as composition. The composition of Pd-Ag bilayer remarkably affects the morphology of alloy nanostructures, in which the higher Ag composition, i.e. Pd0.25Ag0.75, leads to the enhanced dewetting of bilayers whereas the higher Pd composition (Pd0.75Ag0.25) hinders the dewetting. Depending on the annealing temperature, Pd-Ag alloy nanostructures evolve with a series of configurations, i.e. nucleation of voids, porous network, elongated nanoclusters and round alloy NPs. In addition, with the annealing time set, the gradual configuration transformation from the elongated to round alloy NPs as well as size reduction is demonstrated due to the enhanced diffusion and sublimation of Ag atoms. The evolution of various morphology of Pd-Ag nanostructures is described based on the surface diffusion and inter-diffusion of Pd and Ag adatoms along with the Ag sublimation, Rayleigh instability and energy minimization mechanism. The reflectance spectra of bimetallic Pd-Ag nanostructures exhibit various quadrupolar and dipolar resonance peaks, peak shifts and absorption dips owing to the surface plasmon resonance of nanostructures depending on the surface morphology. The intensity of reflectance spectra is gradually decreased along with the surface coverage and NP size evolution. The absorption dips are red-shifted towards the longer wavelength for the larger alloy NPs and vice-versa.

  3. Investigation on the morphological and optical evolution of bimetallic Pd-Ag nanoparticles on sapphire (0001) by the systematic control of composition, annealing temperature and time

    PubMed Central

    Pandey, Puran; Kunwar, Sundar; Sui, Mao; Bastola, Sushil

    2017-01-01

    Multi-metallic alloy nanoparticles (NPs) can offer additional opportunities for modifying the electronic, optical and catalytic properties by the control of composition, configuration and size of individual nanostructures that are consisted of more than single element. In this paper, the fabrication of bimetallic Pd-Ag NPs is systematically demonstrated via the solid state dewetting of bilayer thin films on c-plane sapphire by governing the temperature, time as well as composition. The composition of Pd-Ag bilayer remarkably affects the morphology of alloy nanostructures, in which the higher Ag composition, i.e. Pd0.25Ag0.75, leads to the enhanced dewetting of bilayers whereas the higher Pd composition (Pd0.75Ag0.25) hinders the dewetting. Depending on the annealing temperature, Pd-Ag alloy nanostructures evolve with a series of configurations, i.e. nucleation of voids, porous network, elongated nanoclusters and round alloy NPs. In addition, with the annealing time set, the gradual configuration transformation from the elongated to round alloy NPs as well as size reduction is demonstrated due to the enhanced diffusion and sublimation of Ag atoms. The evolution of various morphology of Pd-Ag nanostructures is described based on the surface diffusion and inter-diffusion of Pd and Ag adatoms along with the Ag sublimation, Rayleigh instability and energy minimization mechanism. The reflectance spectra of bimetallic Pd-Ag nanostructures exhibit various quadrupolar and dipolar resonance peaks, peak shifts and absorption dips owing to the surface plasmon resonance of nanostructures depending on the surface morphology. The intensity of reflectance spectra is gradually decreased along with the surface coverage and NP size evolution. The absorption dips are red-shifted towards the longer wavelength for the larger alloy NPs and vice-versa. PMID:29253017

  4. Segregation Phenomena in Size-Selected Bimetallic CuNi Nanoparticle Catalysts

    DOE PAGES

    Pielsticker, Lukas; Zegkinoglou, Ioannis; Divins, Nuria J.; ...

    2017-10-25

    Surface segregation, restructuring, and sintering phenomena in size-selected copper–nickel nanoparticles (NPs) supported on silicon dioxide substrates were systematically investigated as a function of temperature, chemical state, and reactive gas environment. Using near-ambient pressure (NAP-XPS) and ultrahigh vacuum X-ray photoelectron spectroscopy (XPS), we showed that nickel tends to segregate to the surface of the NPs at elevated temperatures in oxygen- or hydrogen-containing atmospheres. It was found that the NP pretreatment, gaseous environment, and oxide formation free energy are the main driving forces of the restructuring and segregation trends observed, overshadowing the role of the surface free energy. The depth profile ofmore » the elemental composition of the particles was determined under operando CO 2 hydrogenation conditions by varying the energy of the X-ray beam. The temperature dependence of the chemical state of the two metals was systematically studied, revealing the high stability of nickel oxides on the NPs and the important role of high valence oxidation states in the segregation behavior. Atomic force microscopy (AFM) studies revealed a remarkable stability of the NPs against sintering at temperatures as high as 700 °C. The results provide new insights into the complex interplay of the various factors which affect alloy formation and segregation phenomena in bimetallic NP systems, often in ways different from those previously known for their bulk counterparts. In conclusion, this leads to new routes for tuning the surface composition of nanocatalysts, for example, through plasma and annealing pretreatments.« less

  5. Site selective generation of sol-gel deposits in layered bimetallic macroporous electrode architectures.

    PubMed

    Lalo, Hélène; Bon-Saint-Côme, Yémima; Plano, Bernard; Etienne, Mathieu; Walcarius, Alain; Kuhn, Alexander

    2012-02-07

    The elaboration of an original composite bimetallic macroporous electrode containing a site-selective sol-gel deposit is reported. Regular colloidal crystals, obtained by a modified Langmuir-Blodgett approach, are used as templates for the electrogeneration of the desired metals in the form of a well-defined layered bimetallic porous electrode. This porous matrix shows a spatially modulated electroactivity which is subsequently used as a strategy for targeted electrogeneration of a sol-gel deposit, exclusively in one predefined part of the porous electrode.

  6. One step electrochemical synthesis of bimetallic PdAu supported on nafion–graphene ribbon film for ethanol electrooxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shendage, Suresh S., E-mail: sureshsshendage@gmail.com; Singh, Abilash S.; Nagarkar, Jayashree M., E-mail: jm.nagarkar@ictmumbai.edu.in

    2015-10-15

    Highlights: • Electrochemical deposition of bimetallic PdAu NPs. • Highly loaded PdAu NPs are obtained. • Nafion–graphene supported PdAu NPs shows good activity for ethanol electrooxidation. - Abstract: A nafion–graphene ribbon (Nf–GR) supported bimetallic PdAu nanoparticles (PdAu/Nf–GR) catalyst was prepared by electrochemical codeposition of Pd and Au at constant potential. The prepared catalyst was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), transmission electron microscopy (TEM) and X-ray diffraction analysis (XRD). The average particle size of PdAu nanoparticles (NPs) determined from XRD was 3.5 nm. The electrocatalytic activity of the PdAu/Nf–GR catalyst was examined by cyclic voltametry.more » It was observed that the as prepared catalyst showed efficient activity and good stability for ethanol electrooxidation in alkaline medium.« less

  7. Hydroxylation of Benzene via C-H Activation Using Bimetallic CuAg@g-C3N4

    EPA Science Inventory

    A photoactive bimetallic CuAg@g-C3N4 catalyst system has been designed and synthesized by impregnating copper and silver nanoparticles over the graphitic carbon nitride surface. Its application has been demonstrated in the hydroxylation of benzene under visible light.

  8. Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance

    NASA Astrophysics Data System (ADS)

    Yasmin, Sabina; Cho, Sung; Jeon, Seungwon

    2018-03-01

    We report a simple and facile method for the fabrication of bimetallic nanoparticles on electrochemically reduced graphene oxide (ErGO) for electrocatalytic oxygen reduction reaction (ORR) in alkaline media. First, reduced graphene oxide supported palladium and manganese oxide nanoparticle (rGO/Pd-Mn2O3) catalyst was synthesized via a simple chemical method at room temperature; then, it was electrochemically reduced for oxidation reduction reaction (ORR) in alkaline media. The chemical composition and morphological properties of ErGO/Pd-Mn2O3 was characterized by X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDS). The TEM images reveals that, nano-sized Pd and Mn2O3 particles were disperse on the ErGO sheet without aggregation. The as-prepared ErGO/Pd-Mn2O3 was employed for ORR in alkaline media which shows higher ORR activity with more positive onset and half-wave potential, respectively. Remarkably, ErGO/Pd-Mn2O3 reduced oxygen via four-electron transfer pathway with negligible amount of intermediate peroxide species (HO2-). Furthermore, the higher stability and excellent methanol tolerance of the ErGO/Pd-Mn2O3 compared to commercial Pt/C (20 wt%) catalyst, indicating its suitability for fuel cells.

  9. Fabrication of bimetallic microfluidic surface-enhanced Raman scattering sensors on paper by screen printing.

    PubMed

    Qu, Lu-Lu; Song, Qi-Xia; Li, Yuan-Ting; Peng, Mao-Pan; Li, Da-Wei; Chen, Li-Xia; Fossey, John S; Long, Yi-Tao

    2013-08-20

    Au-Ag bimetallic microfluidic, dumbbell-shaped, surface enhanced Raman scattering (SERS) sensors were fabricated on cellulose paper by screen printing. These printed sensors rely on a sample droplet injection zone, and a SERS detection zone at either end of the dumbbell motif, fabricated by printing silver nanoparticles (Ag NPs) and gold nanoparticles (Au NPs) successively with microscale precision. The microfluidic channel was patterned using an insulating ink to connect these two zones and form a hydrophobic circuit. Owing to capillary action of paper in the millimeter-sized channels, the sensor could enable self-filtering of fluids to remove suspended particles within wastewater without pumping. This sensor also allows sensitive SERS detection, due to advantageous combination of the strong surface enhancement of Ag NPs and excellent chemical stability of Au NPs. The SERS performance of the sensors was investigated by employing the probe rhodamine 6G, a limit of detection (LOD) of 1.1×10(-13)M and an enhancement factor of 8.6×10(6) could be achieved. Moreover, the dumbbell-shaped bimetallic sensors exhibited good stability with SERS performance being maintained over 14 weeks in air, and high reproducibility with less than 15% variation in spot-to-spot SERS intensity. Using these dumbbell-shaped bimetallic sensors, substituted aromatic pollutants in wastewater samples could be quantitatively analyzed, which demonstrated their excellent capability for rapid trace pollutant detection in wastewater samples in the field without pre-separation. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. pH-Triggered SERS via Modulated Plasmonic Coupling in Individual Bimetallic Nanocobs

    DTIC Science & Technology

    2011-01-01

    dry states. In contrast with previous examples of such bimetallic nano- cobs, we utilize here a responsive polyacrylic acid (PAA) nanocoating that...Moreover, placing nanoparticles inside a polymer- gel layer in close proximity to the nanowire surface effectively prevents any potential aggregation of...unexpected result even for gel materials. This expanded state allowed for observation of the molecular ordering in the swollen-dried state (Figure 3

  11. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review.

    PubMed

    Sharma, Gaurav; Kumar, Deepak; Kumar, Amit; Al-Muhtaseb, Ala'a H; Pathania, Deepak; Naushad, Mu; Mola, Genene Tessema

    2017-02-01

    Trimetallic nanoparticles are mainly formed by the combination of three different metals. The trimetallic catalysts were considerably more professional than bimetallic one. The trimetallic and bimetallic nanoparticles are of enormous attention than that of monometallic in both technological and scientific view as in these nanoparticles the catalytic properties can be tailored better than that of in the single monometallic catalyst. The trimetallic nanoparticles have been synthesized by different methods such as microwave, selective catalytic reduction, micro-emulsion, co-precipitation and hydrothermal etc. The surfaces area of trimetallic nanoparticles is comparatively unstable and thus gets simply precipitated away from their solution and ultimately resulted in their reduced catalytic activity. By using stabilizers like block copolymers, organic ligands, surfactants and dendrimers the trimetallic nanoparticles can be stabilized. The nanocomposites of trimetallics have been synthesized with inorganic and organic compounds such as: carbon, graphene, gelatin, cellulose, starch, chitosan, alginate, collagen and Al 2 O 3 etc. Trimetallic nanoparticles are used as a catalyst due to their outstanding electrochemical catalytic activity in comparison with the monometallic or bimetallic nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    NASA Astrophysics Data System (ADS)

    Jiang, Liqin; Li, Xuemin; Liu, Lingrong; Zhang, Qiqing

    2013-02-01

    Oral chemotherapy is a key step towards `chemotherapy at home', a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer.

  13. Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer

    PubMed Central

    2013-01-01

    Oral chemotherapy is a key step towards ‘chemotherapy at home’, a dream of cancer patients, which will radically change the clinical practice of chemotherapy and greatly improve the quality of life of the patients. In this research, three types of nanoparticle formulation from commercial PCL and self-synthesized d-α-tocopheryl polyethylene glycol 1000 succinate (PLA-PCL-TPGS) random copolymer were prepared in this research for oral delivery of antitumor agents, including thiolated chitosan-modified PCL nanoparticles, unmodified PLA-PCL-TPGS nanoparticles, and thiolated chitosan-modified PLA-PCL-TPGS nanoparticles. Firstly, the PLA-PCL-TPGS random copolymer was synthesized and characterized. Thiolated chitosan greatly increases its mucoadhesiveness and permeation properties, thus increasing the chances of nanoparticle uptake by the gastrointestinal mucosa and improving drug absorption. The PLA-PCL-TPGS nanoparticles were found by FESEM that they are of spherical shape and around 200 nm in diameter. The surface charge of PLA-PCL-TPGS nanoparticles was reversed from anionic to cationic after thiolated chitosan modification. The thiolated chitosan-modified PLA-PCL-TPGS nanoparticles have significantly higher level of the cell uptake than that of thiolated chitosan-modified PLGA nanoparticles and unmodified PLA-PCL-TPGS nanoparticles. In vitro cell viability studies showed advantages of the thiolated chitosan-modified PLA-PCL-TPGS nanoparticles over Taxol® in terms of cytotoxicity against A549 cells. It seems that the mucoadhesive nanoparticles can increase paclitaxel transport by opening tight junctions and bypassing the efflux pump of P-glycoprotein. In conclusion, PLA-PCL-TPGS nanoparticles modified by thiolated chitosan could enhance the cellular uptake and cytotoxicity, which revealed a potential application for oral chemotherapy of lung cancer. PMID:23394588

  14. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications

    PubMed Central

    Yang, Gaixiu; Chen, Dong; Lv, Pengmei; Kong, Xiaoying; Sun, Yongming; Wang, Zhongming; Yuan, Zhenhong; Liu, Hui; Yang, Jun

    2016-01-01

    Bimetallic nanoparticles with core-shell structures usually display enhanced catalytic properties due to the lattice strain created between the core and shell regions. In this study, we demonstrate the application of bimetallic Au-Pd nanoparticles with an Au core and a thin Pd shell as cathode catalysts in microbial fuel cells, which represent a promising technology for wastewater treatment, while directly generating electrical energy. In specific, in comparison with the hollow structured Pt nanoparticles, a benchmark for the electrocatalysis, the bimetallic core-shell Au-Pd nanoparticles are found to have superior activity and stability for oxygen reduction reaction in a neutral condition due to the strong electronic interaction and lattice strain effect between the Au core and the Pd shell domains. The maximum power density generated in a membraneless single-chamber microbial fuel cell running on wastewater with core-shell Au-Pd as cathode catalysts is ca. 16.0 W m−3 and remains stable over 150 days, clearly illustrating the potential of core-shell nanostructures in the applications of microbial fuel cells. PMID:27734945

  15. Characterization of MWCNT/Nanoclay Binary Nanoparticles Modified Composites and Fatigue Performance Evaluation of Nanoclay Modified Fiber Reinforced Composites

    DTIC Science & Technology

    2014-04-21

    modified with binary nanoparticles consist of multi-walled carbon nanotubes (MWCNTs) and nanoclays together. First, epoxy SC-15 resin was reinforced...modified with binary nanoparticles consist of multi-walled carbon nanotubes (MWCNTs) and nanoclays together. First, epoxy SC-15 resin was reinforced with...7 2.2.1 Carbon Nanotube

  16. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    PubMed Central

    2011-01-01

    Herein, the generation of gold, silver, and silver–gold (Ag–Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV–visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device. PMID:27502645

  17. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Liu, Xiaoheng; Wang, Xin

    2011-12-01

    Herein, the generation of gold, silver, and silver-gold (Ag-Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV-visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device.

  18. Bimetallic clustered thin films with variable electro-optical properties

    NASA Astrophysics Data System (ADS)

    Antipov, A.; Bukharov, D.; Arakelyan, S.; Osipov, A.; Lelekova, A.

    2018-01-01

    The drop deposition of colloidal nanoparticles was performed from water-based colloidal solutions. The proposed procedure is based on the agglomeration of colloidal particles in laser-assisted evaporation processes. The evaporation process was resulted in the formation of clustered thin films on a glass substrate. In the experiments with bimetallic Au:Ag solutions, the clustered films are grown, the formation of the clustered films with the average height of 100 nm was achieved. Optical properties of the deposited structures were investigated experimentally. It is shown that the obtained films may become transparent and its properties are defined by its morphology.

  19. Fabrication, characterisation and voltammetric studies of gold amalgam nanoparticle modified electrodes.

    PubMed

    Welch, Christine M; Nekrassova, Olga; Dai, Xuan; Hyde, Michael E; Compton, Richard G

    2004-09-20

    The tabrication, characterisation, and electroanalytical application of gold and gold amalgam nanoparticles on glassy carbon electrodes is examined. Once the deposition parameters for gold nanoparticle electrodes were optimised, the analytical utility of the electrodes was examined in CrIII electroanalysis. It was found that gold nanoparticle modified (Au-NM) electrodes possess higher sensitivity than gold macroelectrodes. In addition, gold amalgam nanoparticle modified (AuHg-NM) electrodes were fabricated and characterised. The response of those electrodes was recorded in the presence of important environmental analytes (heavy metal cations). It was found AuHg-NM electrodes demonstrate a unique voltammetric behaviour and can be applied for electroanalysis when enhanced sensitivity is crucial.

  20. Bimetallic Nanocatalysts in Mesoporous Silica for Hydrogen Production from Coal-Derived Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuila, Debasish; Ilias, Shamsuddin

    2013-02-13

    In steam reforming reactions (SRRs) of alkanes and alcohols to produce H 2, noble metals such as platinum (Pt) and palladium (Pd) are extensively used as catalyst. These metals are expensive; so, to reduce noble-metal loading, bi-metallic nanocatalysts containing non-noble metals in MCM-41 (Mobil Composition of Material No. 41, a mesoporous material) as a support material with high-surface area were synthesized using one-pot hydrothermal procedure with a surfactant such as cetyltrimethylammonium bromide (CTAB) as a template. Bi-metallic nanocatalysts of Pd-Ni and Pd-Co with varying metal loadings in MCM-41 were characterized by x-ray diffraction (XRD), N 2 adsorption, and Transmission electronmore » microscopy (TEM) techniques. The BET surface area of MCM-41 (~1000 m 2/g) containing metal nanoparticles decreases with the increase in metal loading. The FTIR studies confirm strong interaction between Si-O-M (M = Pd, Ni, Co) units and successful inclusion of metal into the mesoporous silica matrix. The catalyst activities were examined in steam reforming of methanol (SRM) reactions to produce hydrogen. Reference tests using catalysts containing individual metals (Pd, Ni and Co) were also performed to investigate the effect of the bimetallic system on the catalytic behavior in the SRM reactions. The bimetallic system remarkably improves the hydrogen selectivity, methanol conversion and stability of the catalyst. The results are consistent with a synergistic behavior for the Pd-Ni-bimetallic system. The performance, durability and thermal stability of the Pd-Ni/MCM-41 and Pd-Co/MCM-41 suggest that these materials may be promising catalysts for hydrogen production from biofuels. A part of this work for synthesis and characterization of Pd-Ni-MCM-41 and its activity for SRM reactions has been published (“Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production” in “Production and Purification of Ultraclean Transportation Fuels

  1. Enhancement of catalytic activity of platinum-based nanoparticles towards electrooxidation of ethanol through interfacial modification with heteropolymolybdates

    NASA Astrophysics Data System (ADS)

    Barczuk, Piotr J.; Lewera, Adam; Miecznikowski, Krzysztof; Zurowski, Artur; Kulesza, Pawel J.

    As evidenced from the increase of electrocatalytic currents measured under voltammetric and chronoamperometric conditions, the activity of bimetallic Pt-Ru and Pt-Sn nanoparticles towards oxidation of ethanol is increased by modification of their surfaces with ultra-thin films of phosphododecamolybdic acid (H 3PMo 12O 40). The enhancement effect has been most pronounced in a case of heteropolymolybdate-modified carbon-supported Pt-Sn catalysts. Independent high-resolution XPS measurements indicate the ability of heteropolymolybdates to stabilize tin (in bimetallic Pt-Sn particles) at higher oxidation states (presumably as tin oxo species). The overall activation effect may also be ascribed to changes in the morphology of catalytic films following modification with heteropolymolybdates. Presence of the polyoxometallate is also likely to increase of the interfacial population of reactive oxo groups in the vicinity of platinum centers.

  2. Fractal bimetallic plasmonic structures obtained by laser deposition of colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bukharov, D. N.; Arakelyan, S. M.; Kutrovskaya, S. V.; Kucherik, A. O.; Osipov, A. V.; Istratov, A. V.; Vartanyan, T. A.; Itina, T. E.; Kavokin, A. V.

    2017-09-01

    We produce bimetallic Au:Ag thin films by laser irradiation of the mixed solutions. After several laser scans, granular nanometric films are found to grow with a well-controlled composition, thickness and morphology. By changing laser scanning parameters, the film morphology can be varied from island structures to quasi-periodic arrays. The optical properties of the deposited structures are found to depend on the film composition, thickness and spacing between the particles. The transmittance spectra of the deposited films are shown to be governed by their morphology.

  3. Structure of Hydrophobically Modified Phytoglycogen Nanoparticles

    NASA Astrophysics Data System (ADS)

    Atkinson, John; Nickels, Jonathan; Dutcher, John; Katsaras, John

    Phytoglycogen is a highly branched, polysaccharide nanoparticle produced by some varieties of plants including sweet corn. These particles are attractive candidates for cosmetic, industrial and biomedical applications. Many of these applications result from phytoglycogen's unique interaction with water: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Neutron scattering measurements of native phytoglycogen revealed that the particles have uniform size, uniform radial particle density, and a high level of hydration. Hydrophobically modifying the outer surface of the hydrophilic nanoparticles opens up new applications in food and biomedicine, such as solubilizing and stabilizing bioactive compounds. One such modification is octenyl succinate anhydride (OSA), where the hydrophobicity can be tuned by adjusting the degree of substitution. I will present the results of small angle neutron scattering (SANS) measurements of aqueous dispersions of OSA-modified phytoglycogen with two different degrees of modification. Contrast series SANS measurements have yielded information about the radial density profile, providing insight into the nature of the chemical modification of the particles.

  4. Physicochemical and antibacterial characterization of ionocity Ag/Cu powder nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, A., E-mail: ana.maria.nowak@gmail.com; Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów; Szade, J.

    Metal ion in bimetallic nanoparticles has shown vast potential in a variety of applications. In this paper we show the results of physical and chemical investigations of powder Ag/Cu nanoparticles obtained by chemical synthesis. Transmission electron microscopy (TEM) experiment indicated the presence of bimetallic nanoparticles in the agglomerated form. The average size of silver and copper nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu) basing on the X-ray diffraction (XRD) data. X-ray photoelectron (XPS) and Raman spectroscopies revealed the existence of metallic silver and copper as well as Cu{sub 2}O and CuO being a part of the nanoparticles. Moreover,more » UV–Vis spectroscopy showed surface alloy of Ag and Cu while Time of Flight Secondary Ion Mass Spectroscopy (ToF-SIMS) and Energy Dispersive X-ray Spectroscopy (EDX) showed heterogeneously distributed Ag structures placed on spherical Cu nanoparticles. The tests of antibacterial activity show promising killing/inhibiting growth behaviour for Gram positive and Gram negative bacteria. - Highlights: • Ag/Cu nanoparticles were obtained in the powder form. • The average size of nanoparticles is 17.1(4) nm (Ag) and 28.9(2) nm (Cu). • Ag/Cu powder nanoparticle shows promising antibacterial properties.« less

  5. Direct electrochemical oxidation of S-captopril using gold electrodes modified with graphene-AuAg nanocomposites

    PubMed Central

    Pogacean, Florina; Biris, Alexandru R; Coros, Maria; Lazar, Mihaela Diana; Watanabe, Fumiya; Kannarpady, Ganesh K; Al Said, Said A Farha; Biris, Alexandru S; Pruneanu, Stela

    2014-01-01

    In this paper, we present a novel approach for the electrochemical detection of S-captopril based on graphene AuAg nanostructures used to modify an Au electrode. Multi-layer graphene (Gr) sheets decorated with embedded bimetallic AuAg nanoparticles were successfully synthesized catalytically with methane as the carbon source. The two catalytic systems contained 1.0 wt% Ag and 1.0 wt% Au, while the second had a larger concentration of metals (1.5 wt% Ag and 1.5 wt% Au) and was used for the synthesis of the Gr-AuAg-1 and Gr-AuAg-1.5 multicomponent samples. High-resolution transmission electron microscopy analysis indicated the presence of graphene flakes that had regular shapes (square or rectangular) and dimensions in the tens to hundreds of nanometers. We found that the size of the embedded AuAg nanoparticles varied between 5 and 100 nm, with the majority being smaller than 20 nm. Advanced scanning transmission electron microscopy studies indicated a bimetallic characteristic of the metallic clusters. The resulting Gr-AuAg-1 and Gr-AuAg-1.5 samples were used to modify the surface of commonly used Au substrates and subsequently employed for the direct electrochemical oxidation of S-captopril. By comparing the differential pulse voltammograms recorded with the two modified electrodes at various concentrations of captopril, the peak current was determined to be well-defined, even at relatively low concentration (10−5 M), for the Au/Gr-AuAg-1.5 electrode. In contrast, the signals recorded with the Au/Gr-AuAg-1 electrode were poorly defined within a 5×10−6 to 5×10−3 M concentration range, and many of them overlapped with the background. Such composite materials could find significant applications in nanotechnology, sensing, or nanomedicine. PMID:24596464

  6. Probing the interaction of Rh, Co and bimetallic Rh-Co nanoparticles with the CeO2 support: catalytic materials for alternative energy generation.

    PubMed

    Varga, E; Pusztai, P; Óvári, L; Oszkó, A; Erdőhelyi, A; Papp, C; Steinrück, H-P; Kónya, Z; Kiss, J

    2015-10-28

    The interaction of CeO2-supported Rh, Co and bimetallic Rh-Co nanoparticles, which are active catalysts in hydrogen production via steam reforming of ethanol, a process related to renewable energy generation, was studied by X-ray diffraction (XRD), high resolution electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and low energy ion scattering (LEIS). Furthermore, diffuse reflectance infrared spectroscopy (DRIFTS) of adsorbed CO as a probe molecule was used to characterize the morphology of metal particles. At small loadings (0.1%), Rh is in a much dispersed state on ceria, while at higher contents (1-5%), Rh forms 2-8 nm particles. Between 473-673 K pronounced oxygen transfer from ceria to Rh is observed and at 773 K significant agglomeration of Rh occurs. On reduced ceria, XPS indicates a possible electron transfer from Rh to ceria. The formation of smaller ceria crystallites upon loading with Co was concluded from XRD and HRTEM; for 10% Co, the CeO2 particle size decreased from 27.6 to 10.7 nm. A strong dissolution of Co into ceria and a certain extent of encapsulation by ceria were deduced by XRD, XPS and LEIS. In the bimetallic system, the presence of Rh enhances the reduction of cobalt and ceria. During thermal treatments, reoxidation of Co occurs, and Rh agglomeration as well as oxygen migration from ceria to Rh are hindered in the presence of cobalt.

  7. Rapid synthesis of platinum-ruthenium bimetallic nanoparticles dispersed on carbon support as improved electrocatalysts for ethanol oxidation.

    PubMed

    Gu, Zhulan; Li, Shumin; Xiong, Zhiping; Xu, Hui; Gao, Fei; Du, Yukou

    2018-07-01

    Bimetallic nanocatalysts with small particle size benefit from markedly enhanced electrocatalytic activity and stability during small molecule oxidation. Herein, we report a facile method to synthesize binary Pt-Ru nanoparticles dispersed on a carbon support at an optimum temperature. Because of its monodispersed nanostructure, synergistic effects were observed between Pt and Ru and the PtRu/C electrocatalysts showed remarkably enhanced electrocatalytic activity towards ethanol oxidation. The peak current density of the Pt 1 Ru 1 /C electrocatalyst is 3731 mA mg -1 , which is 9.3 times higher than that of commercial Pt/C (401 mA mg -1 ). Furthermore, the synthesized Pt 1 Ru 1 /C catalyst exhibited higher stability during ethanol oxidation in an alkaline medium and maintained a significantly higher current density after successive cyclic voltammograms (CVs) of 500 cycles than commercial Pt/C. Our work highlights the significance of the reaction temperature during electrocatalyst synthesis, leading to enhanced catalytic performance towards ethanol oxidation. The Pt 1 Ru 1 /C electrocatalyst has great potential for application in direct ethanol fuel cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Fluorescence imaging of the nanoparticles modified with indocyanine green

    NASA Astrophysics Data System (ADS)

    Gareev, K. G.; Babikova, K. Y.; Postnov, V. N.; Naumisheva, E. B.; Korolev, D. V.

    2017-11-01

    The comparative research of silica, the magnetite and magnetite-silica nanoparticles modified with fluorescent dyes using gas-phase and liquid-phase methods was conducted. At the content of fluorescent dye comparable in size a particular spectrophotometric method, nanoparticles with fluorescein have up to 1000 times larger overall luminous efficiency. It is revealed that magnetic nanoparticles are characterized by a smaller light efficiency in comparison with silica particles, at the same time particles of a magnetite are most effective at modification with fluorescein, and magnetite-silica particles - at modification with indocyanine green.

  9. Bimetallic nanocomposite as hole transport co-buffer layer in organic solar cell

    NASA Astrophysics Data System (ADS)

    Mola, Genene Tessema; Arbab, Elhadi A. A.

    2017-12-01

    Silver-zinc bimetallic nanocomposite (Ag:Zn BiM-NPs) was used as an inter-facial buffer layer in the preparation of thin film organic solar cell (TFOSC). The current investigation focuses on the effect of bimetallic nanoparticles on the performance of TFOSC. A number experiments were conducted by employing Ag:Zn nanocomposite buffer layer of thickness 1 nm at various positions of the device structure. In all cases, we found significant improvement on the power conversion efficiency of the solar cells. It is also noted that the open circuit voltage of the devices are decreasing when Ag:Zn form direct contact with the ITO electrode and without the inclusion of PEDOT:PSS. However, all results show that the introduction of Ag:Zn nanocomposite layer close to PEDOT:PSS could be beneficial to improve the charge transport processes in the preparation of thin film organic solar cell. The Ag:Zn BiM-NPs and the device properties were presented and discussed in terms of optical, electrical and film morphologies of the devices.

  10. A pathway for the growth of core-shell Pt-Pd nanoparticles

    DOE PAGES

    Narula, Chaitanya Kumar; Yang, Xiaofan; Li, Chen; ...

    2015-10-12

    In this study, the aging of both Pt-Pd nanoparticles and core-shell Pt-Pd nanoparticles has been reported to result in alloying of Pt with Pd. In comparison to monometallic Pt catalysts, the growth of Pd-Pt bimetallics is slower; however, the mechanism of growth of particles and the mechanism by which Pd improves the hydrothermal durability of bimetallic Pd-Pt particles remains uncertain. In our work on hydrothermal aging of core-shell Pt-Pd nanoparticles, synthesized by solution methods, with varying Pd:Pt ratio of 1:4, 1:1, and 4:1, we compare the growth of core-shell Pt-Pd nanoparticles and find that particles grow by migrating and joiningmore » together. The unique feature of the observed growth is that Pd shells from both particles open up and join, allowing the cores to merge. At high temperatures, alloying occurs in good agreement with reports by other workers.« less

  11. Structural-Phase States of Fe-Cu and Fe-Ag Bimetallic Particles Produced by Electric Explosion of Two Wires

    NASA Astrophysics Data System (ADS)

    Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.

    2018-05-01

    X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.

  12. Structural-Phase States of Fe–Cu and Fe–Ag Bimetallic Particles Produced by Electric Explosion of Two Wires

    NASA Astrophysics Data System (ADS)

    Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.

    2018-05-01

    X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.

  13. Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: in situ observation of the linear composition-strain-activity relationship.

    PubMed

    Jia, Qingying; Liang, Wentao; Bates, Michael K; Mani, Prasanna; Lee, Wendy; Mukerjee, Sanjeev

    2015-01-27

    Despite recent progress in developing active and durable oxygen reduction catalysts with reduced Pt content, lack of elegant bottom-up synthesis procedures with knowledge over the control of atomic arrangement and morphology of the Pt-alloy catalysts still hinders fuel cell commercialization. To follow a less empirical synthesis path for improved Pt-based catalysts, it is essential to correlate catalytic performance to properties that can be easily controlled and measured experimentally. Herein, using Pt-Co alloy nanoparticles (NPs) with varying atomic composition as an example, we show that the atomic distribution of Pt-based bimetallic NPs under operating conditions is strongly dependent on the initial atomic ratio by employing microscopic and in situ spectroscopic techniques. The PtxCo/C NPs with high Co content possess a Co concentration gradient such that Co is concentrated in the core and gradually depletes in the near-surface region, whereas the PtxCo/C NPs with low Co content possess a relatively uniform distribution of Co with low Co population in the near-surface region. Despite their different atomic structure, the oxygen reduction reaction (ORR) activity of PtxCo/C and Pt/C NPs is linearly related to the bulk average Pt-Pt bond length (RPt-Pt). The RPt-Pt is further shown to contract linearly with the increase in Co/Pt composition. These linear correlations together demonstrate that (i) the improved ORR activity of PtxCo/C NPs over pure Pt NPs originates predominantly from the compressive strain and (ii) the RPt-Pt is a valid strain descriptor that bridges the activity and atomic composition of Pt-based bimetallic NPs.

  14. Activity Descriptor Identification for Oxygen Reduction on Platinum-Based Bimetallic Nanoparticles: In Situ Observation of the Linear Composition–Strain–Activity Relationship

    PubMed Central

    2016-01-01

    Despite recent progress in developing active and durable oxygen reduction catalysts with reduced Pt content, lack of elegant bottom-up synthesis procedures with knowledge over the control of atomic arrangement and morphology of the Pt–alloy catalysts still hinders fuel cell commercialization. To follow a less empirical synthesis path for improved Pt-based catalysts, it is essential to correlate catalytic performance to properties that can be easily controlled and measured experimentally. Herein, using Pt–Co alloy nanoparticles (NPs) with varying atomic composition as an example, we show that the atomic distribution of Pt-based bimetallic NPs under operating conditions is strongly dependent on the initial atomic ratio by employing microscopic and in situ spectroscopic techniques. The PtxCo/C NPs with high Co content possess a Co concentration gradient such that Co is concentrated in the core and gradually depletes in the near-surface region, whereas the PtxCo/C NPs with low Co content possess a relatively uniform distribution of Co with low Co population in the near-surface region. Despite their different atomic structure, the oxygen reduction reaction (ORR) activity of PtxCo/C and Pt/C NPs is linearly related to the bulk average Pt–Pt bond length (RPt–Pt). The RPt–Pt is further shown to contract linearly with the increase in Co/Pt composition. These linear correlations together demonstrate that (i) the improved ORR activity of PtxCo/C NPs over pure Pt NPs originates predominantly from the compressive strain and (ii) the RPt–Pt is a valid strain descriptor that bridges the activity and atomic composition of Pt-based bimetallic NPs. PMID:25559440

  15. Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications.

    PubMed

    Zain, N Mat; Stapley, A G F; Shama, G

    2014-11-04

    Silver and copper nanoparticles were produced by chemical reduction of their respective nitrates by ascorbic acid in the presence of chitosan using microwave heating. Particle size was shown to increase by increasing the concentration of nitrate and reducing the chitosan concentration. Surface zeta potentials were positive for all nanoparticles produced and these varied from 27.8 to 33.8 mV. Antibacterial activities of Ag, Cu, mixtures of Ag and Cu, and Ag/Cu bimetallic nanoparticles were tested using Bacillus subtilis and Escherichia coli. Of the two, B. subtilis proved more susceptible under all conditions investigated. Silver nanoparticles displayed higher activity than copper nanoparticles and mixtures of nanoparticles of the same mean particle size. However when compared on an equal concentration basis Cu nanoparticles proved more lethal to the bacteria due to a higher surface area. The highest antibacterial activity was obtained with bimetallic Ag/Cu nanoparticles with minimum inhibitory concentrations (MIC) of 0.054 and 0.076 mg/L against B. subtilis and E. coli, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Sensitizing of pyrene fluorescence by β-cyclodextrin-modified TiO2 nanoparticles.

    PubMed

    Shown, Indrajit; Ujihara, Masaki; Imae, Toyoko

    2010-12-15

    TiO(2) nanoparticles were synthesized by hydrolysis of tetraisopropyl orthotitanate in an aqueous solution of cyclodextrin. The β-cyclodextrin-modified spherical TiO(2) nanoparticles were water-dispersible and had an average particle diameter of 4.4 ± 1 nm. Pyrene fluorescence was enhanced by increasing the concentration of β-cyclodextrin-modified TiO(2) nanoparticle and the sensitization effect was triply stronger than the case of the β-cyclodextrin only. The increase in a concentration of host (β-cyclodextrin) changes its microenvironment for guest (pyrene), that is, the interaction of pyrene with apolar cavity of β-cyclodextrin increases, resulting in enhancement of fluorescence. The sensitization behavior of pyrene fluorescence in the presence of TiO(2) nanoparticles occurs from the increase in the extinction coefficient of pyrene, demonstrating the charge transfer between pyrene and metal oxide nanoparticle. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.

  17. Bimetallic Catalysts.

    ERIC Educational Resources Information Center

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…

  18. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    PubMed

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea.

    PubMed

    Attama, A A; Reichl, S; Müller-Goymann, C C

    2009-08-01

    The aim of the study was to formulate and evaluate surface-modified solid lipid nanoparticles sustained delivery system of timolol hydrogen maleate, a prototype ocular drug using a human cornea construct. Surface-modified solid lipid nanoparticles containing timolol with and without phospholipid were formulated by melt emulsification with high-pressure homogenization and characterized by particle size, wide-angle X-ray diffraction, encapsulation efficiency, and in vitro drug release. Drug transport studies through cornea bioengineered from human donor cornea cells were carried out using a modified Franz diffusion cell and drug concentration analyzed by high-performance liquid chromatography. Results show that surface-modified solid lipid nanoparticles possessed very small particles (42.9 +/- 0.3 nm, 47.2 +/- 0.3 nm, 42.7 +/- 0.7 nm, and 37.7 +/- 0.3 nm, respectively for SM-SLN 1, SM-SLN 2, SM-SLN 3, and SM-SLN 4) with low polydispersity indices, increased encapsulation efficiency (> 44%), and sustained in vitro release compared with unmodified lipid nanoparticles whose particles were greater than 160 nm. Permeation of timolol hydrogen maleate from the surface-modified lipid nanoparticles across the cornea construct was sustained compared with timolol hydrogen maleate solution in distilled water. Surface-modified solid lipid nanoparticles could provide an efficient way of improving ocular bioavailability of timolol hydrogen maleate.

  20. Solvent-free Hydrodeoxygenation of Bio-oil Model Compounds Cyclopentanone and Acetophenone over Flame-made Bimetallic Pt-Pd/ZrO2 Catalysts

    PubMed Central

    Jiang, Yijiao; Büchel, Robert; Huang, Jun; Krumeich, Frank; Pratsinis, Sotiris E.; Baiker, Alfons

    2013-01-01

    Bimetallic Pt-Pd/ZrO2 catalysts with different Pt/Pd atomic ratio and homogeneous dispersion of the metal nanoparticles were prepared in a single step by flame-spray pyrolysis. The catalysts show high activity and tuneable product selectivity for the solvent-free hydrodeoxygenation of the bio-oil model compounds cyclopentanone and acetophenone. PMID:22674738

  1. Surface modified PLGA nanoparticles for brain targeting of Bacoside-A.

    PubMed

    Jose, S; Sowmya, S; Cinu, T A; Aleykutty, N A; Thomas, S; Souto, E B

    2014-10-15

    The present paper focuses on the development and in vitro/in vivo characterization of nanoparticles composed of poly-(D,L)-Lactide-co-Glycolide (PLGA) loading Bacoside-A, as a new approach for the brain delivery of the neuroprotective drug for the treatment of neurodegenerative disorders (e.g. Alzheimer Disease). Bacoside-A-loaded PLGA nanoparticles were prepared via o/w emulsion solvent evaporation technique. Surface of the nanoparticles were modified by coating with polysorbate 80 to facilitate the crossing of the blood brain barrier (BBB), and the processing parameters (i.e. sonication time, the concentration of polymer (PLGA) and surfactant (polysorbate 80), and drug-polymer ratio) were optimized with the aim to achieve a high production yield. Brain targeting potential of the nanoparticles was evaluated by in vivo studies using Wistar albino rats. The nanoparticles produced by optimal formulation were within the nanosized range (70-200 nm) with relatively low polydispersity index (0.391 ± 1.2). The encapsulation efficiency of Bacoside-A in PLGA nanoparticles was 57.11 ± 7.11%, with a drug loading capacity of 20.5 ± 1.98%. SEM images showed the spherical shape of the PLGA nanoparticles, whereas their low crystallinity was demonstrated by X-ray studies, which also confirmed no chemical interactions between the drug and polymer molecules. The in vitro release of Bacoside-A from the PLGA nanoparticles followed a sustained release pattern with a maximum release of up to 83.04 ± 2.55% in 48 h. When compared to pure drug solution (2.56 ± 1.23 μg/g tissue), in vivo study demonstrated higher brain concentration of Bacoside-A (23.94 ± 1.74 μg/g tissue) suggesting a significant role of surface coated nanoparticles on brain targeting. The results indicate the potential of surface modified PLGA nanoparticles for the delivery of Bacoside-A to the brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Computer-assisted electrochemical fabrication of a highly selective and sensitive amperometric nitrite sensor based on surface decoration of electrochemically reduced graphene oxide nanosheets with CoNi bimetallic alloy nanoparticles.

    PubMed

    Gholivand, Mohammad-Bagher; Jalalvand, Ali R; Goicoechea, Hector C

    2014-07-01

    For the first time, a novel, robust and very attractive statistical experimental design (ED) using minimum-run equireplicated resolution IV factorial design (Min-Run Res IV FD) coupled with face centered central composite design (FCCCD) and Derringer's desirability function (DF) was developed to fabricate a highly selective and sensitive amperometric nitrite sensor based on electrodeposition of CoNi bimetallic alloy nanoparticles (NPs) on electrochemically reduced graphene oxide (ERGO) nanosheets. The modifications were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), energy dispersive X-ray spectroscopic (EDS), scanning electron microscopy (SEM) techniques. The CoNi bimetallic alloy NPs were characterized using digital image processing (DIP) for particle counting (density estimation) and average diameter measurement. Under the identified optimal conditions, the novel sensor detects nitrite in concentration ranges of 0.1-30.0 μM and 30.0-330.0 μM with a limit of detection (LOD) of 0.05 μM. This sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferents therefore, we found that the sensor is highly selective. The sensor also demonstrated an excellent operational stability and good antifouling properties. The proposed sensor was used to the determination of nitrite in several foodstuff and water samples. Copyright © 2014. Published by Elsevier B.V.

  3. Surface-modified silk hydrogel containing hydroxyapatite nanoparticle with hyaluronic acid-dopamine conjugate.

    PubMed

    Kim, Hyung Hwan; Park, Jong Bo; Kang, Min Ji; Park, Young Hwan

    2014-09-01

    Silk fibroin/hydroxyapatite (SF/HAp) composite hydrogels were fabricated in this study, having different HAp contents (0-33 wt%) in SF matrix hydrogel. Surface modification of HAp nanoparticle with hyaluronic acid (HA)-dopamine (DA) conjugate improved a dispersibility of HAp in aqueous SF solution due to its negatively charged surface and therefore, fabrication of the SF composite hydrogel having HAp nanoparticles inside could be possible. Zeta potential of surface-modified HAP was examined by ELS. It demonstrates that surface of HAp was well modified to a negative charge with HA-DA. Morphological structure of SF hydrogel containing surface-modified HAp was examined by FE-SEM for analyzing pore structure of hydrogel and deposition of HAp nanoparticle in SF hydrogel. It was found that HAp nanoparticles were uniformly deposited on the pore wall of SF hydrogel. Structural characteristics of SF/HAp composite hydrogel was performed using X-ray diffraction and FT-IR analysis. It was found that β-sheet crystal conformation of SF was significantly influenced by the HAp content during gelation of a mixture of SF and HAp. As a result of MTT assay, the SF/HAp composite hydrogel showed excellent cell proliferation ability. Therefore, it is expected that SF hydrogel containing HAp nanoparticles has a high potential as bone regeneration scaffold. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst.

    PubMed

    Wu, Chien-Chen; Chen, Dong-Hwang

    2012-06-19

    A novel magnetically recoverable Au nanocatalyst was fabricated by spontaneous green synthesis of Au nanoparticles on the surface of gum arabic-modified Fe3O4 nanoparticles. A layer of Au nanoparticles with thickness of about 2 nm was deposited on the surface of gum arabic-modified Fe3O4 nanoparticles, because gum arabic acted as a reducing agent and a stabilizing agent simultaneously. The resultant magnetically recoverable Au nanocatalyst exhibited good catalytic activity for the reduction of 4-nitrophenol with sodium borohydride. The rate constants evaluated in terms of pseudo-first-order kinetic model increased with increase in the amount of Au nanocatalyst or decrease in the initial concentration of 4-nitrophenol. The kinetic data suggested that this catalytic reaction was diffusion-controlled, owing to the presence of gum arabic layer. In addition, this nanocatalyst exhibited good stability. Its activity had no significant decrease after five recycles. This work is useful for the development and application of magnetically recoverable Au nanocatalyst on the basis of green chemistry principles.

  5. Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst

    PubMed Central

    2012-01-01

    A novel magnetically recoverable Au nanocatalyst was fabricated by spontaneous green synthesis of Au nanoparticles on the surface of gum arabic-modified Fe3O4 nanoparticles. A layer of Au nanoparticles with thickness of about 2 nm was deposited on the surface of gum arabic-modified Fe3O4 nanoparticles, because gum arabic acted as a reducing agent and a stabilizing agent simultaneously. The resultant magnetically recoverable Au nanocatalyst exhibited good catalytic activity for the reduction of 4-nitrophenol with sodium borohydride. The rate constants evaluated in terms of pseudo-first-order kinetic model increased with increase in the amount of Au nanocatalyst or decrease in the initial concentration of 4-nitrophenol. The kinetic data suggested that this catalytic reaction was diffusion-controlled, owing to the presence of gum arabic layer. In addition, this nanocatalyst exhibited good stability. Its activity had no significant decrease after five recycles. This work is useful for the development and application of magnetically recoverable Au nanocatalyst on the basis of green chemistry principles. PMID:22713480

  6. Nano-particle modified stationary phases for high-performance liquid chromatography.

    PubMed

    Nesterenko, Ekaterina P; Nesterenko, Pavel N; Connolly, Damian; He, Xiaoyun; Floris, Patrick; Duffy, Emer; Paull, Brett

    2013-08-07

    This review covers the latest developments and applications of nano-materials in stationary phase development for various modes of high-performance liquid chromatography. Specific attention is placed upon the development of new composite phases, including the synthetic and immobilisation strategies used, to produce either encapsulated nano-particles, or surface attached nano-particles, layers, coatings and other structures. The resultant chromatographic applications, where applicable, are discussed with comment upon enhanced selectivity and/or efficiency of the nano-particle modified phases, where such effects have been identified. In the main this review covers developments over the past five years and is structured according to the nature of the nano-particles themselves, including carbonaceous, metallic, inorganic, and organopolymer based materials.

  7. Surface-modified nanoparticles as anti-biofilm filler for dental polymers

    PubMed Central

    Zaltsman, Nathan; Ionescu, Andrei C.; Weiss, Ervin I.; Brambilla, Eugenio; Beyth, Shaul

    2017-01-01

    The objective of the study was to synthesis silica nanoparticles modified with (i) a tertiary amine bearing two t-cinnamaldehyde substituents or (ii) dimethyl-octyl ammonium, alongside the well-studied quaternary ammonium polyethyleneimine nanoparticles. These were to be evaluated for their chemical and mechanical properties, as well for antibacterial and antibiofilm activity. Samples were incorporated in commercial dental resin material and the degree of monomer conversion, mechanical strength, and water contact angle were tested to characterize the effect of the nanoparticles on resin material. Antibacterial activity was evaluated with the direct contact test and the biofilm inhibition test against Streptococcus mutans. Addition of cinnamaldehyde-modified particles preserved the degree of conversion and compressive strength of the base material and increased surface hydrophobicity. Quaternary ammonium functional groups led to a decrease in the degree of conversion and to low compressive strength, without altering the hydrophilic nature of the base material. In the direct contact test and the anti-biofilm test, the polyethyleneimine particles exhibited the strongest antibacterial effect. The cinnamaldehyde-modified particles displayed antibiofilm activity, silica particles with quaternary ammonium were ineffective. Immobilization of t-cinnamaldehyde onto a solid surface via amine linkers provided a better alternative to the well-known quaternary ammonium bactericides. PMID:29244848

  8. PD/MG BIMETALLIC CORROSION CELLS FOR DECHLORINATING PCBS

    EPA Science Inventory

    Two dissimilar metals immersed in a conducting solution develop different corrosion potentials forming a bimetallic corrosion cell. Enhanced corrosion of an active metal like Mg combined with catalytic hydrogenation properties of a noble metal like Pd in such bimetallic cells can...

  9. Solution Plasma-assisted Bimetallic Oxide Alloy Nanoparticles of Pt and Pd Embedded within Two-dimensional Ti3C2Tx Nanosheets as Highly Active Electrocatalysts for Overall Water-splitting.

    PubMed

    Cui, Bingbing; Hu, Bin; Liu, Jiameng; Wang, Minghua; Song, Yingpan; Tian, Kuan; Zhang, Zhihong; He, Linghao

    2018-06-25

    Exploiting high-efficiency and low-cost bifunctional electrocatalysts for hydrogen evolution (HER) and oxygen evolution reactions (OER) has been actively encouraged because of their potential applications in the field of clean energy. In this paper, we reported a novel electrocatalyst based on an exfoliated two-dimensional (2D) MXene (Ti3C2Tx) loaded with bimetallic oxide alloy nanoparticles (NPs) of Pt and Pd (represented by PtOaPdObNPs@Ti3C2Tx), which was synthesized via solution plasma (SP) modification. The prepared materials were then utilized as highly efficient bifunctional electrocatalysts toward HER and OER in alkaline solution. At a high plasma input power (200 W), bimetallic oxide alloy nanoparticles of Pt and Pd or nanoclusters with different metallic valence states deposited onto the Ti3C2Tx nanosheets. Due to the synergism of the noble metal NPs and the Ti3C2Tx nanosheets, the electrocatalytic results revealed that the as-prepared PtOaPdObNPs@Ti3C2Tx nanosheets under the plasma input power of 200 W for 3 min catalyst only required a low overpotential to attain 10 mA cm-2 for HER (57 mV) in 0.5 M H2SO4 solution and OER (1.63 V) in 0.1 M KOH sollution. Moreover, water electrolysis using this catalyst achieved a water splitting current density of 10 mA cm-2 at a low cell voltage of 1.53 V in 1.0 M KOH solution. These results suggested that the hybridization of the ultra-extremely low usage of PtOa/PdOb NPs (1.07 μg cm-2) and Ti3C2Tx nanosheets by SP will expand the applications of other clean energy reactions to achieve sustainable energy.

  10. Core-Shell Photonic Nanoparticles for Enhanced Solar-to-Fuel Photocatalytic Conversion

    DTIC Science & Technology

    2017-10-11

    photocatalytic activity of semiconducting materials. They synthesized and functionalized titanium dioxide nanoparticles with a partial shell of gold...Their research also characterized the photocatalytic activity . The second area was the tuning the dielectric environment of the nanoparticles with think...successful investigation of bimetallic nanoshells that enhance the photocatalytic activity of semiconducting materials. Our earlier work focused on the

  11. Reductive dechlorination of trichloroethylene by iron bimetallics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orth, R.G.; Dauda, T.; McKenzie, D.E.

    1998-07-01

    Reductive dechlorination using a zero valence metal such as iron has seen an increase in interest with the extension of iron dechlorination to in-situ treatment of ground water. Studies to increase the rate of dechlorination and the long term stability have lead many to examine the use of bimetallic iron systems. Results are shown for bimetallic iron systems of Cu, Sn, Ni, Ag, Au, and Pd. All of these bimetallic couples form a galvanic couple which increase corrosion rates and the production of hydrogen. Increased rates of reaction normalized to surface area were observed for all the couples. The reactionmore » rates were found to depended on surface area and surface coverage of the iron. The results of studies in deuterium oxide indicate that the pathways changed as the bimetallic is changed and that the pathway in all cases could be a combination of dehydrohalgenation and sequential dechlorination. Degradation of DNAPL TCE by iron was found to be zero order and the type of product observed was different from that observed for TCE dissolved in water.« less

  12. Controlling hydrogenation activity and selectivity of bimetallic surfaces and catalysts

    NASA Astrophysics Data System (ADS)

    Murillo, Luis E.

    Studies of bimetallic systems are of great interest in catalysis due to the novel properties that they often show in comparison with the parent metals. The goals of this dissertation are: (1) to expand the studies of self-hydrogenation and hydrogenation reactions on bimetallic surfaces under ultra high vacuum conditions (UHV) using different hydrocarbon as probe molecules; (2) to attempt to correlate the surface science findings with supported catalyst studies under more realistic conditions; and (3) to investigate the competitive hydrogenation of C=C versus C=O bonds on Pt(111) modified by different 3d transition metals. Hydrogenation studies using temperature programmed desorption (TPD) on Ni/Pt(111) bimetallic surfaces have demonstrated an enhancement in the low temperature hydrogenation activity relative to that of clean Pt(111). This novel hydrogenation pathway can be achieved under UHV conditions by controlling the structures of the bimetallic surfaces. A low temperature hydrogenation activity of 1-hexene and 1-butene has been observed on a Pt-Ni-Pt(111) subsurface structure, where Ni atoms are mainly present on the second layer of the Pt(111) single crystal. These results are in agreement with previous studies of self-hydrogenation and hydrogenation of cyclohexene. However, a much higher dehydrogenation activity is observed in the reaction of cyclohexene to produce benzene, demonstrating that the hydrocarbon structure has an effect on the reaction pathways. On the other hand, self-hydrogenation of 1-butene is not observed on the Pt-Ni-Pt(111) surface, indicating that the chain length (or molecular weight) has a significant effect on the selfhydrogenation activity. The gas phase reaction of cyclohexene on Ni/Pt supported on alumina catalysts has also shown a higher self-hydrogenation activity in comparison with the same reaction performed on supported monometallic catalysts. The effects of metal loading and impregnation sequence of the metal precursors are

  13. A Silver Nanoparticle-Modified Evanescent Field Optical Fiber Sensor for Methylene Blue Detection

    PubMed Central

    Luo, Ji; Yao, Jun; Lu, Yonggang; Ma, Wenying; Zhuang, Xuye

    2013-01-01

    A silver nanoparticle-modified evanescent field optical fiber sensor based on a MEMS microchannel chip has been successfully fabricated. Experimental results show that the sensor response decreases linearly with increasing concentration of analyte. Over a range of methylene blue concentrations from 0 to 0.4 μmol/mL, the sensor response is linear (R = 0.9496). A concentration variation of 0.1 μmol/mL can cause an absorbance change of 0.402 dB. Moreover, the optical responses of the same sensing fiber without decoration and modified with silver nanoparticles have also been compared. It can be observed that the output intensity of the Ag nanoparticle-modified sensor is enhanced and the sensitivity is higher. Meanwhile, the absorbance spectra are found to be more sensitive to concentration changes compared to the spectra of the peak wavelength. PMID:23519353

  14. Green synthesis and characterization of Au@Pt core-shell bimetallic nanoparticles using gallic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Guojun; Zheng, Hongmei; Shen, Ming; Wang, Lei; Wang, Xiaosan

    2015-06-01

    In this study, we developed a facile and benign green synthesis approach for the successful fabrication of well-dispersed urchin-like Au@Pt core-shell nanoparticles (NPs) using gallic acid (GA) as both a reducing and protecting agent. The proposed one-step synthesis exploits the differences in the reduction potentials of AuCl4- and PtCl62-, where the AuCl4- ions are preferentially reduced to Au cores and the PtCl62- ions are then deposited continuously onto the Au core surface as a Pt shell. The as-prepared Au@Pt NPs were characterized by transmission electron microscope (TEM); high-resolution transmission electron microscope (HR-TEM); scanning electron microscope (SEM); UV-vis absorption spectra (UV-vis); X-ray diffraction (XRD); Fourier transmission infrared spectra (FT-IR). We systematically investigated the effects of some experimental parameters on the formation of the Au@Pt NPs, i.e., the reaction temperature, the molar ratios of HAuCl4/H2PtCl6, and the amount of GA. When polyvinylpyrrolidone K-30 (PVP) was used as a protecting agent, the Au@Pt core-shell NPs obtained using this green synthesis method were better dispersed and smaller in size. The as-prepared Au@Pt NPs exhibited better catalytic activity in the reaction where NaBH4 reduced p-nitrophenol to p-aminophenol. However, the results showed that the Au@Pt bimetallic NPs had a lower catalytic activity than the pure Au NPs obtained by the same method, which confirmed the formation of Au@Pt core-shell nanostructures because the active sites on the surfaces of the Au NPs were covered with a Pt shell.

  15. Fabrication of PdCo Bimetallic Nanoparticles Anchored on Three-Dimensional Ordered N-Doped Porous Carbon as an Efficient Catalyst for Oxygen Reduction Reaction.

    PubMed

    Xue, Hairong; Tang, Jing; Gong, Hao; Guo, Hu; Fan, Xiaoli; Wang, Tao; He, Jianping; Yamauchi, Yusuke

    2016-08-17

    PdCo bimetallic nanoparticles (NPs) anchored on three-dimensional (3D) ordered N-doped porous carbon (PdCo/NPC) were fabricated by an in situ synthesis. Within this composite, N-doped porous carbon (NPC) with an ordered mesoporous structure possesses a high surface area (659.6 m(2) g(-1)), which can facilitate electrolyte infiltration. NPC also acts as a perfect 3D conductive network, guaranteeing fast electron transport. In addition, homogeneously distributed PdCo alloy NPs (∼15 nm) combined with the doping of the N element can significantly improve the electrocatalytic activity for the oxygen reduction reaction (ORR). Due to the structural and material superiority, although the weight percentage of PdCo NPs (∼8 wt%) is much smaller than that of commercial Pt/C (20 wt%), the PdCo/NPC catalyst exhibits similar excellent electrocatalytic activity; however, its superior durability and methanol-tolerance ability of the ORR are as great as those of commercial Pt/C in alkaline media.

  16. Revealing the Atomic Restructuring of Pt–Co Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Huolin L.; Alayoglu, Selim; Tao, Runzhe

    2014-06-11

    We studied Pt-Co bimetallic nanoparticles during oxidation in O2 and reduction in H2 atmospheres using an aberration corrected environmental transmission electron microscope. During oxidation Co migrates to the nanoparticle surface forming a strained epitaxial CoO film. It subsequently forms islands via strain relaxation. The atomic restructuring is captured as a function of time. During reduction cobalt migrates back to the bulk, leaving a monolayer of platinum on the surface.

  17. Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations.

    PubMed

    Ramasamy, Mohankandhasamy; Lee, Jin-Hyung; Lee, Jintae

    2016-09-01

    The objective of this study was to develop a bimetallic nanoparticle with enhanced antibacterial activity that would improve the therapeutic efficacy against bacterial biofilms. Bimetallic gold-silver nanoparticles were bacteriogenically synthesized using γ-proteobacterium, Shewanella oneidensis MR-1. The antibacterial activities of gold-silver nanoparticles were assessed on the planktonic and biofilm phases of individual and mixed multi-cultures of pathogenic Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive bacteria (Enterococcus faecalis and Staphylococcus aureus), respectively. The minimum inhibitory concentration of gold-silver nanoparticles was 30-50 µM than that of other nanoparticles (>100 µM) for the tested bacteria. Interestingly, gold-silver nanoparticles were more effective in inhibiting bacterial biofilm formation at 10 µM concentration. Both scanning and transmission electron microscopy results further accounted the impact of gold-silver nanoparticles on biocompatibility and bactericidal effect that the small size and bio-organic materials covering on gold-silver nanoparticles improves the internalization and thus caused bacterial inactivation. Thus, bacteriogenically synthesized gold-silver nanoparticles appear to be a promising nanoantibiotic for overcoming the bacterial resistance in the established bacterial biofilms. © The Author(s) 2016.

  18. Enhancement of Thermal Damage to Adenocarcinoma Cells by Iron Nanoparticles Modified with MUC1 Aptamer.

    PubMed

    Guo, Fangqin; Hu, Yan; Yu, Lianyuan; Deng, Xiaoyuan; Meng, Jie; Wang, Chen; Yang, Xian-Da

    2016-03-01

    Hyperthermia cancer treatment is an adjunctive therapy that aims at killing the tumor cells with excessive heat that is usually generated by metal contrasts exposed to alternating magnetic field. The efficacy of hyperthermia is often limited by the heat damage to normal tissue due to indiscriminate distribution of the metal contrasts within the body. Tumor-targeting metal contrasts may reduce the toxicity of hyperthermia and improve the efficacy of thermotherapy against cancer. MUC1 is a glycoprotein over expressed in most adenocarcinomas, and represents an attractive therapeutic target. In this study, a MUC1 aptamer is conjugated with iron nanoparticles to construct adenocarcinoma-targeting metal contrasts. DNA hybridization studies confirmed that the aptamers were conjugated to the iron nanoparticles. Importantly, more aptamer-modified nanoparticles attached to the MUC1-positive cancer cells compared with the unmodified nanoparticles. Moreover, aptamer-modified nanoparticles significantly enhanced the targeted hyperthermia damage to MUC1-positive cancer cells in vitro (p < 0.05). The results suggest that MUC1 aptamer-modified metal particles may have potential in development of targeted hyperthermia therapy against adenocarcinomas.

  19. Size-Controlled Synthesis of Sub-10 nm PtNi3 Alloy Nanoparticles and their Unusual Volcano-Shaped Size Effect on ORR Electrocatalysis.

    PubMed

    Gan, Lin; Rudi, Stefan; Cui, Chunhua; Heggen, Marc; Strasser, Peter

    2016-06-01

    Dealloyed Pt bimetallic core-shell catalysts derived from low-Pt bimetallic alloy nanoparticles (e.g, PtNi3 ) have recently shown unprecedented activity and stability on the cathodic oxygen reduction reaction (ORR) under realistic fuel cell conditions and become today's catalyst of choice for commercialization of automobile fuel cells. A critical step toward this breakthrough is to control their particle size below a critical value (≈10 nm) to suppress nanoporosity formation and hence reduce significant base metal (e.g., Ni) leaching under the corrosive ORR condition. Fine size control of the sub-10 nm PtNi3 nanoparticles and understanding their size dependent ORR electrocatalysis are crucial to further improve their ORR activity and stability yet still remain unexplored. A robust synthetic approach is presented here for size-controlled PtNi3 nanoparticles between 3 and 10 nm while keeping a constant particle composition and their size-selected growth mechanism is studied comprehensively. This enables us to address their size-dependent ORR activities and stabilities for the first time. Contrary to the previously established monotonic increase of ORR specific activity and stability with increasing particle size on Pt and Pt-rich bimetallic nanoparticles, the Pt-poor PtNi3 nanoparticles exhibit an unusual "volcano-shaped" size dependence, showing the highest ORR activity and stability at the particle sizes between 6 and 8 nm due to their highest Ni retention during long-term catalyst aging. The results of this study provide important practical guidelines for the size selection of the low Pt bimetallic ORR electrocatalysts with further improved durably high activity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Magneto-optical response in bimetallic metamaterials

    NASA Astrophysics Data System (ADS)

    Atmatzakis, Evangelos; Papasimakis, Nikitas; Fedotov, Vassili; Vienne, Guillaume; Zheludev, Nikolay I.

    2018-01-01

    We demonstrate resonant Faraday polarization rotation in plasmonic arrays of bimetallic nano-ring resonators consisting of Au and Ni sections. This metamaterial design allows the optimization of the trade-off between the enhancement of magneto-optical effects and plasmonic dissipation. Nickel sections corresponding to as little as 6% of the total surface of the metamaterial result in magneto-optically induced polarization rotation equal to that of a continuous nickel film. Such bimetallic metamaterials can be used in compact magnetic sensors, active plasmonic components, and integrated photonic circuits.

  1. Chitosan nanoparticles as a modified diclofenac drug release system

    NASA Astrophysics Data System (ADS)

    Duarte Junior, Anivaldo Pereira; Tavares, Eraldo José Madureira; Alves, Taís Vanessa Gabbay; de Moura, Márcia Regina; da Costa, Carlos Emmerson Ferreira; Silva Júnior, José Otávio Carréra; Ribeiro Costa, Roseane Maria

    2017-08-01

    This study evaluated a modified nanostructured release system employing diclofenac as a drug model. Biodegradable chitosan nanoparticles were prepared with chitosan concentrations between 0.5 and 0.8% ( w/ v) by template polymerization method using methacrylic acid in aqueous solution. Chitosan-poly(methacrylic acid) (CS-PMAA) nanoparticles showed uniform size around 50-100 nm, homogeneous morphology, and spherical shape. Raw material and chitosan nanoparticles were characterized by thermal analysis, Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM), confirming the interaction between chitosan and methacrylic acid during nanoparticles preparation. Diclofenac sorption on the chitosan nanoparticles surface was achieved by incubation in water/ethanol (1:1) drug solution in concentrations of 0.5 and 0.8 mg/mL. The diclofenac amount sorbed per gram of CS-PMAA nanoparticles, when in a 0.5 mg/mL sodium diclofenac solution, was as follows: 12.93, 15, 20.87, and 29.63 mg/g for CS-PMAA nanoparticles 0.5, 0.6, 0.7, and 0.8% ( w/ v), respectively. When a 0.8 mg/mL sodium diclofenac solution was used, higher sorption efficiencies were obtained: For CS-PMAA nanoparticles with chitosan concentrations of 0.5, 0.6, 0.7, and 0.8% ( w/ v), the sorption efficiencies were 33.39, 49.58, 55.23, and 67.2 mg/g, respectively. Diclofenac sorption kinetics followed a second-order kinetics. Drug release from nanoparticles occurred in a period of up to 48 h and obeyed Korsmeyer-Peppas model, which was characterized mainly by Fickian diffusion transport. [Figure not available: see fulltext.

  2. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Wang, Niejun; Zhou, Lilin; Guo, Jun; Ye, Qiquan; Lin, Jin-Ming; Yuan, Jinying

    2014-06-01

    Graft through strategy was utilized to coat magnetic Fe3O4 nanoparticles with poly(glycidyl methacrylate) using ordinary radical polymerization and then β-cyclodextrin was linked onto the surface of nanoparticles. With these nanoparticles modified with cyclodextrin groups, adsorption of two model environmental pollutants, bisphenol A and copper ions, was studied. Host-guest interactions between cyclodextrin and aromatic molecules had a great contribution to the adsorption of bisphenol A, while multiple hydroxyls of cyclodextrin also helped the adsorption of copper ions. These magnetic nanoparticles could be applied in the elimination, enrichment and detection of some environmental pollutants.

  3. Structural and electrical study of ZrO{sub 2} nanoparticles modified with surfactants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sidhu, Gaganpreet Kaur; Kumar, Rajesh, E-mail: rajeshbaboria@gmail.com; Tripathi, S. K.

    2015-06-24

    Zirconia ceramic is one of the most investigated materials for its outstanding mechanical properties and ionic conduction properties, due to its high oxygen ion conduction. In order to achieve novel properties of zirconia nanoparticles, nanoparticles of zirconia are modified by using two different surfactants (SDS and CTAB) were prepared by in-situ method using zirconia/surfactant dispersions. Zirconia nanoparticles with surfactant (SDS or CTAB) were synthesized by hydrothermal method. The structural and optical properties of Zirconia/surfactant nanoparticles were investigated comprehensively by X-Ray diffraction (XRD), and electrical measurements. XRD highlights the crystalline behavior of nanoparticles.

  4. Hydrophobically Modified Glycol Chitosan Nanoparticles for Targeting Breast Cancer Microcalcification Using Alendronate Probes

    NASA Astrophysics Data System (ADS)

    Vishnu, Kamalakannan

    In 2016, invasive breast cancer was diagnosed in about 246,660 women and 2,600 men. An additional 61,000 new cases of in situ breast cancer was diagnosed in women. Microcalcifications are most common abnormalities detected by mammography for breast cancer, present in about 30% of all malignant breast lesions. Tumor specific biomarkers are used for targeting these abnormalities. Nanoparticles with multimodal and combinatorial therapies and conjunction of bio-ligands for specific molecular targeting using surface modifications effectually deliver a variety of drugs and are simultaneously used to image tumor progression. Alendronate, a germinal bisphosphonate conjugation as a targeting ligand would improve the nanoparticle's direct binding to hydroxyapatite (HA) mimicking calcified spots in breast cancer lesions. In this study, the hydrophobically modified glycol chitosan (HGC) micelle was modified with alendronate surface functionalization using a biotin-avidin interaction to improve the nanomicelle's calcification targeting ability. Biotinylated, avidinlyated hydrophobically modified iv glycol chitosan particles were linked to biotinylated alendronate via a strong biotin-avidin linkage. Cyanine 3, a red fluorescent dye was conjugated to the amine groups on HGC for visualization of micelles. The size of the nanoparticles measured was 254.0 +/- 0.43 nm and 209.7 +/- 1.0 nm for Cy3- BHGCA and Cy3-BHGCA-BALN nanoparticles respectively. The average surface charge was measured to be +26.9 +/- 0.19 mV and +27.68 +/- 0.20 mV for Cy3-BHGCA and Cy3-BHGCA- BALN nanoparticles respectively. Binding affinity using hydroxyapatite (HA) revealed that both Cy3 BHGCA BALN and Cy3 BHGCA nanoparticles displayed 95% binding in 24 hours. However, the biotin quenched nanoparticle Cy3 BHGCAB displayed 68% binding in 24 hours. The synthesis and binding chemistry was verified using Fourier transform infrared spectroscopy (FTIR).

  5. Bimetallic Porous Iron (pFe) Materials for Remediation/Removal of Tc from Aqueous Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, D.

    Remediation of Tc remains an unresolved challenge at SRS and other DOE sites. The objective of this project was to develop novel bimetallic porous iron (pFe) materials for Tc removal from aqueous systems. We showed that the pFe is much more effective in removing TcO 4 - (×30) and ReO 4 - (×8) from artificial groundwater than granular iron. Tc K-edge XANES spectroscopy indicated that Tc speciation on the pFe was 18% adsorbed TcO 4 -, 28% Tc(IV) in Tc dioxide and 54% Tc(IV) into the structure of Fe hydroxide. A variety of catalytic metal nanoparticles (i.e., Ni, Cu, Zn,more » Ag, Sn and Pd) were successfully deposited on the pFe using scalable chemical reduction methods. The Zn-pFe was outstanding among the six bimetallic pFe materials, with a capacity increase of >100% for TcO 4 - removal and of 50% for ReO 4 - removal, compared to the pFe. These results provide a highly applicable platform for solving critical DOE and industrial needs related to nuclear environmental stewardship and nuclear power production.« less

  6. Bimetallic nanosized solids with acid and redox properties for catalytic activation of C–C and C–H bonds† †Electronic supplementary information (ESI) available: General procedures, additional figures and tables, compound characterization and NMR copies. See DOI: 10.1039/c6sc03335k Click here for additional data file.

    PubMed Central

    Cabrero-Antonino, Jose R.; Tejeda-Serrano, María; Quesada, Manuel; Vidal-Moya, Jose A.

    2017-01-01

    A new approach is presented to form self-supported bimetallic nanosized solids with acid and redox catalytic properties. They are water-, air- and H2-stable, and are able to activate demanding C–C and C–H reactions. A detailed mechanistic study on the formation of the Ag–Fe bimetallic system shows that a rapid redox-coupled sequence between Ag+, O2 (air) and Fe2+ occurs, giving monodisperse Ag nanoparticles supported by O-bridged diatomic Fe3+ triflimides. The system can be expanded to Ag nanoparticles embedded within a matrix of Cu2+, Bi3+ and Yb3+ triflimide. PMID:28451218

  7. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts.

    PubMed

    Dimas-Rivera, Gloria Lourdes; de la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J; De Los Reyes Heredia, José Antonio; González, Virgilio González; Hernández, Tomás

    2014-01-20

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al₂O₃ 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al₂O₃ support helped to stabilize the furfural molecule on the surface.

  8. Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition.

    PubMed

    Dupuis, V; Khadra, G; Hillion, A; Tamion, A; Tuaillon-Combes, J; Bardotti, L; Tournus, F

    2015-11-14

    In this paper, we present some specific chemical and magnetic order obtained very recently on characteristic bimetallic nanoalloys prepared by mass-selected Low Energy Cluster Beam Deposition (LECBD). We study how the competition between d-atom hybridization, complex structure, morphology and chemical affinity affects their intrinsic magnetic properties at the nanoscale. The structural and magnetic properties of these nanoalloys were investigated using various experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron techniques such as Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Magnetic Circular Dichroism (XMCD). Depending on the chemical nature of the nanoalloys we observe different magnetic responses compared to their bulk counterparts. In particular, we show how specific relaxation in nanoalloys impacts their magnetic anisotropy; and how finite size effects (size reduction) inversely enhance their magnetic moment.

  9. Modified surface of titanium dioxide nanoparticles-based biosensor for DNA detection

    NASA Astrophysics Data System (ADS)

    Nadzirah, Sh.; Hashim, U.; Rusop, M.

    2018-05-01

    A new technique was used to develop a simple and selective picoammeter DNA biosensor for identification of E. coli O157:H7. This biosensor was fabricated from titanium dioxide nanoparticles that was synthesized by sol-gel method and spin-coated on silicon dioxide substrate via spinner. 3-Aminopropyl triethoxy silane (APTES) was used to modify the surface of TiO2. Simple surface modification approach has been applied; which is single dropping of APTES onto the TiO2 nanoparticles surface. Carboxyl modified probe DNA has been bind onto the surface of APTES/TiO2 without any amplifier element. Electrical signal has been used as the indicator to differentiate each step (surface modification of TiO2 and probe DNA immobilization). The I-V measurements indicate extremely low current (pico-ampere) flow through the device which is 2.8138E-10 A for pure TiO2 nanoparticles, 2.8124E-10 A after APTES modification and 3.5949E-10 A after probe DNA immobilization.

  10. Adsorption, hydrogenation and dehydrogenation of C2H on a CoCu bimetallic layer

    NASA Astrophysics Data System (ADS)

    Wu, Donghai; Yuan, Jinyun; Yang, Baocheng; Chen, Houyang

    2018-05-01

    In this paper, adsorption, hydrogenation and dehydrogenation of C2H on a single atomic layer of bimetallic CoCu were investigated using first-principles calculations. The CoCu bimetallic layer is formed by Cu replacement of partial Co atoms on the top layer of a Co(111) surface. Our adsorption and reaction results showed those sites, which have stronger adsorption energy of C2H, possess higher reactivity. The bimetallic layer possesses higher reactivity than either of the pure monometallic layer. A mechanism of higher reactivity of the bimetallic layer is proposed and identified, i.e. in the bimetallic catalyst, the catalytic performance of one component is promoted by the second component, and in our work, the catalytic performance of Co atoms in the bimetallic layer are improved by introducing Cu atoms, lowing the activation barrier of the reaction of C2H. The bimetallic layer could tune adsorption and reaction of C2H by modulating the ratio of Co and Cu. Results of adsorption energies and adsorption configurations reveal that C2H prefers to be adsorbed in parallel on both the pure Co metallic and CoCu bimetallic layers, and Co atoms in subsurface which support the metallic or bimetallic layer have little effect on C2H adsorption. For hydrogenation reactions, the products greatly depend on the concentration and initial positions of hydrogen atoms, and the C2H hydrogenation forming acetylene is more favorable than forming vinylidene in both thermodynamics and kinetics. This study would provide fundamental guidance for hydrocarbon reactions on Co-based and/or Cu-based bimetallic surface chemistry and for development of new bimetallic catalysts.

  11. Optical spectroscopy of arrays of Ag-Au nanoparticles obtained by vacuum-thermal evaporation

    NASA Astrophysics Data System (ADS)

    Gromov, D. G.; Mel'nikov, I. V.; Savitskii, A. I.; Trifonov, A. Yu.; Redichev, E. N.; Astapenko, V. A.

    2017-03-01

    The possibility of creating irregular arrays of bimetallic Ag-Au nanoparticles is investigated. The ability to manipulate their optical properties based on the simple engineering processes of thermal spraying followed by low-temperature annealing is demonstrated.

  12. Hyaluronic acid-modified zirconium phosphate nanoparticles for potential lung cancer therapy.

    PubMed

    Li, Ranwei; Liu, Tiecheng; Wang, Ke

    2017-02-01

    Novel tumor-targeting zirconium phosphate (ZP) nanoparticles modified with hyaluronic acid (HA) were developed (HA-ZP), with the aim of combining the drug-loading property of ZP and the tumor-targeting ability of HA to construct a tumor-targeting paclitaxel (PTX) delivery system for potential lung cancer therapy. The experimental results indicated that PTX loading into the HA-ZP nanoparticles was as high as 20.36%±4.37%, which is favorable for cancer therapy. PTX-loaded HA-ZP nanoparticles increased the accumulation of PTX in A549 lung cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity in vitro. In vivo anticancer efficacy assay revealed that HA-ZP nanoparticles possessed preferable anticancer abilities, which exhibited minimized toxic side effects of PTX and strong tumor-suppression potential in clinical application.

  13. Monodisperse magnetite (Fe3O4) nanoparticles modified with water soluble polymers for the diagnosis of breast cancer by MRI method

    NASA Astrophysics Data System (ADS)

    Rezayan, Ali Hossein; Mousavi, Majid; Kheirjou, Somayyeh; Amoabediny, Ghasem; Ardestani, Mehdi Shafiee; Mohammadnejad, Javad

    2016-12-01

    In this study, magnetic nanoparticles (MNPs) were synthesized via co-precipitation method. To enhance the biocompatibility and colloidal stability of the synthesized nanoparticles, they were modified with carboxyl functionalized PEG via dopamine (DPA) linker. Both modified and unmodified Fe3O4 nanoparticles exhibited super paramagnetic behavior (particle size below 20 nm). The saturation magnetization (Ms) of PEGdiacid-modified Fe3O4 was 45 emu/g, which was less than the unmodified Fe3O4 nanoparticles (70 emu/g). This difference indicated that PEGdiacid polymer was immobilized on the surface of Fe3O4 nanoparticles successfully. To evaluate the efficiency of the resulting nanoparticles as contrast agents for magnetic resonance imaging (MRI), different concentration of MNPs and different value of echo time TE were investigated. The results showed that by increasing the concentration of the nanoparticles, transverse relaxation time (T2) decreased, which subsequently resulted in MR signal enhancement. T2-weighted MR images of the different concentration of MNPs in different value of echo time TE indicated that MR signal intensity increased with increase in TE value up to 66 and then remained constant. The cytotoxicity effect of the modified and unmodified nanoparticles was evaluated in three different concentrations (12, 60 and 312 mg l-1) on MDA-MB-231 cancer cells for 24 and 48 h. In both tested time (24 and 48 h) for all three samples, the modified nanoparticles had long life time than unmodified nanoparticles. Cellular uptake of modified MNPs was 80% and reduced to 9% by the unmodified MNPs.

  14. Interaction and cellular uptake of surface-modified carbon dot nanoparticles by J774.1 macrophages

    PubMed Central

    Thoo, Lester; Fahmi, Mochamad Z; Zulkipli, Ihsan N; Keasberry, Natasha

    2017-01-01

    Carbon dot (Cdot) nanoparticles are an emerging class of carbon nanomaterials with a promising potential for drug delivery and bio imaging applications. Although the interaction between Cdots and non-immune cell types has been well studied, Cdot interactions with macrophages have not been investigated. Exposure of Cdot nanoparticles to J774.1 cells, a murine macrophage cell line, resulted in minimal toxicity, where notable toxicity was only seen with Cdot concentrations higher than 0.5 mg/ml. Flow cytometric analysis revealed that Cdots prepared from citric acid were internalized at significantly higher levels by macrophages compared with those prepared from bamboo leaves. Interestingly, macrophages preferentially took up phenylboronic acid (PB)-modified nanoparticles. By fluorescence microscopy, strong blue light-specific punctate Cdot fluorescence resembling Cdot structures in the cytosolic space was mostly observed in J774.1 macrophages exposed to PB-modified nanoparticles and not unmodified Cdot nanoparticles. PB binds to sialic acid residues that are overexpressed on diseased cell surfaces. Our findings demonstrate that PB-conjugated Cdots can be taken up by macrophages with low toxicity and high efficiency. These modified Cdots can be used to deliver drugs to suppress or eliminate aberrant immune cells such as macrophages associated with tumors such as tumor-associated macrophages. PMID:29204100

  15. Aptamer-modified nanoparticles and their use in cancer diagnostics and treatment.

    PubMed

    Reinemann, Christine; Strehlitz, Beate

    2014-01-06

    Aptamers are single-stranded deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) oligonucleotides, which are able to bind their target with high selectivity and affinity. Owing to their multiple talents, aptamers combined with nanoparticles are nanosystems well qualified for the development of new biomedical devices for analytical, imaging, drug delivery and many other medical applications. Because of their target affinity, aptamers can direct the transport of aptamer-nanoparticle conjugates. The binding of the aptamers to the target "anchors" the nanoparticle-aptamer conjugates at their site of action. In this way, nanoparticle-based bioimaging and smart drug delivery are enabled, especially by use of systematically developed aptamers for cancer-associated biomarkers. This review article gives a brief overview of recent relevant research into aptamers and trends in their use in cancer diagnostics and therapy. A concise description of aptamers, their development and functionalities relating to nanoparticle modification is given. The main part of the article is dedicated to current developments of aptamer-modified nanoparticles and their use in cancer diagnostics and treatment.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanningmore » transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. As a result, these catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy

    The surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. Moreover, the evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annularmore » dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. The catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.« less

  18. Negotiation of intracellular membrane barriers by TAT-modified gold nanoparticles.

    PubMed

    Krpetić, Zeljka; Saleemi, Samia; Prior, Ian A; Sée, Violaine; Qureshi, Rumana; Brust, Mathias

    2011-06-28

    This paper contributes to the debate on how nanosized objects negotiate membrane barriers inside biological cells. The uptake of peptide-modified gold nanoparticles by HeLa cells has been quantified using atomic emission spectroscopy. The TAT peptide from the HIV virus was singled out as a particularly effective promoter of cellular uptake. The evolution of the intracellular distribution of TAT-modified gold nanoparticles with time has been studied in detail by TEM and systematic image analysis. An unusual trend of particles disappearing from the cytosol and the nucleus and accumulating massively in vesicular bodies was observed. Subsequent release of the particles, both by membrane rupture and by direct transfer across the membrane boundary, was frequently found. Ultimately, near total clearing of particles from the cells occurred. This work provides support for the hypothesis that cell-penetrating peptides can enable small objects to negotiate membrane barriers also in the absence of dedicated transport mechanisms.

  19. Polyelectrolyte-modified cowpea mosaic virus for the synthesis of gold nanoparticles.

    PubMed

    Aljabali, Alaa A A; Evans, David J

    2014-01-01

    Polyelectrolyte surface-modified cowpea mosaic virus (CPMV) can be used for the templated synthesis of narrowly dispersed gold nanoparticles. Cationic polyelectrolyte, poly(allylamine) hydrochloride, is electrostatically bound to the external surface of the virus capsid. The polyelectrolyte-coated CPMV promotes adsorption of aqueous gold hydroxide anionic species, prepared from gold(III) chloride and potassium carbonate, that are easily reduced to form CPMV-templated gold nanoparticles. The process is simple and environmentally benign using only water as solvent at ambient temperature.

  20. Effect of Surface-Modified TiO2 Nanoparticles on the Anti-Ultraviolet Aging Performance of Foamed Wheat Straw Fiber/Polypropylene Composites

    PubMed Central

    Xuan, Lihui; Han, Guangping; Wang, Dong; Cheng, Wanli; Gao, Xun; Chen, Feng; Li, Qingde

    2017-01-01

    Surface modification and characterization of titanium dioxide (TiO2) nanoparticles and their roles in thermal, mechanical, and accelerated aging behavior of foamed wheat straw fiber/polypropylene (PP) composites are investigated. To improve the dispersion of nanoparticles and increase the possible interactions between wheat straw fiber and the PP matrix, the surface of the TiO2 nanoparticles was modified with ethenyltrimethoxy silane (A171), a silane coupling agent. The grafting of A171 on the TiO2 nanoparticles’ surface was characterized by Fourier transform infrared spectroscopy (FTIR). The wheat straw fibers treated with A171 and modified TiO2 nanoparticles were characterized by FTIR and thermogravimetric analysis (TGA). FTIR spectra confirmed that the organic functional groups of A171 were successfully grafted onto the TiO2 nanoparticles and wheat straw fibers, and the modified TiO2 nanoparticles were adsorbed onto the wheat straw fibers. Thermogravimetric analysis showed that a higher thermal stability of the wheat straw fiber was obtained with the modified TiO2 nanoparticles. The flexural, tensile, and impact properties were improved. A higher ultraviolet (UV) stability of the samples treated with modified TiO2 nanoparticles was exhibited by the study of the color change and loss in mechanical properties. PMID:28772816

  1. Heavy-metal detectors based on modified ferrite nanoparticles

    PubMed Central

    Klekotka, Urszula; Wińska, Ewelina; Zambrzycka-Szelewa, Elżbieta; Satuła, Dariusz

    2018-01-01

    In this work, we analyze artificial heavy-metal solutions with ferrite nanoparticles. Measurements of adsorption effectiveness of different kinds of particles, pure magnetite or magnetite doped with calcium, cobalt, manganese, or nickel ions, were carried out. A dependence of the adsorption efficiency on the composition of the inorganic core has been observed. Ferrites surfaces were modified by phthalic anhydride (PA), succinic anhydride (SA), acetic anhydride (AA), 3-phosphonopropionic acid (3-PPA), or 16-phosphohexadecanoic acid (16-PHDA) to compare the adsorption capability of the heavy metals Cd, Cu and Pb. The obtained nanoparticles were structurally characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Mössbauer spectroscopy. The amounts of Cd, Cu and Pb were measured out by atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) as comparative techniques. The performed study shows that SA linker appears to be the most effective in the adsorption of heavy metals. Moreover, regarding the influence of the composition of the inorganic core on the detection ability, the most effective ferrite Mn0.5Fe2.5O4 was selected for discussion. The highest heavy-metal adsorption capability and universality was observed for SA as a surface modifier. PMID:29600137

  2. Heavy-metal detectors based on modified ferrite nanoparticles.

    PubMed

    Klekotka, Urszula; Wińska, Ewelina; Zambrzycka-Szelewa, Elżbieta; Satuła, Dariusz; Kalska-Szostko, Beata

    2018-01-01

    In this work, we analyze artificial heavy-metal solutions with ferrite nanoparticles. Measurements of adsorption effectiveness of different kinds of particles, pure magnetite or magnetite doped with calcium, cobalt, manganese, or nickel ions, were carried out. A dependence of the adsorption efficiency on the composition of the inorganic core has been observed. Ferrites surfaces were modified by phthalic anhydride (PA), succinic anhydride (SA), acetic anhydride (AA), 3-phosphonopropionic acid (3-PPA), or 16-phosphohexadecanoic acid (16-PHDA) to compare the adsorption capability of the heavy metals Cd, Cu and Pb. The obtained nanoparticles were structurally characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Mössbauer spectroscopy. The amounts of Cd, Cu and Pb were measured out by atomic absorption spectroscopy (AAS) and energy dispersive X-ray (EDX) as comparative techniques. The performed study shows that SA linker appears to be the most effective in the adsorption of heavy metals. Moreover, regarding the influence of the composition of the inorganic core on the detection ability, the most effective ferrite Mn 0.5 Fe 2.5 O 4 was selected for discussion. The highest heavy-metal adsorption capability and universality was observed for SA as a surface modifier.

  3. Raman gas sensing of modified Ag nanoparticle SERS

    NASA Astrophysics Data System (ADS)

    Myoung, NoSoung; Yoo, Hyung Keun; Hwang, In-Wook

    2014-03-01

    Recent progress in modified Surface Enhanced Raman Scattering (SERS) using Ag nanoparticles makes them promising optical technique for direct gas sensing of interest. However, SERS has been shown to provide sub ppb level detection of the compounds in the vapor phase. The major problem with the sensitivity scaling-up was in the development of fabrication technology for stability and reproducibility of SERS substrates. We report an optimization of 1-propanethiol coated multiple Ag nanoparticle layers on SiO2 substrate as well as new records of real-time, simultaneous vapor phase detection of toluene and 1-2 dichlorobenzene by the radiation of fiber optic coupled 785 nm diode laser and spectrograph. Multiple depositions of Ag NPs were loaded on SiO2 and soaked in 1-propanethiol solution for 24 hours to modify the surface into hydrophobic due to the characteristics of vapor phase of our interests. Raman bands at 1003 cm-1 and 1130 cm-1 for toluene and 12DCB, respectively were compared to 1089 cm-1 and each gas concentration in 1000 mL flask were calculated as a function of each vapor phase ratio. The saturation of toluene and 12DCB were limited only by 800 ppm and the detectable range was 0.6-800 ppm.

  4. Apparently enhanced magnetization of Cu(I)-modified γ-Fe2O3 based nanoparticles

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaoyan; He, Zhenghong; Mao, Hong; Zhang, Ting; Lin, Yueqiang; Liu, Xiaodong; Li, Decai; Meng, Xiangshen; Li, Jian

    2017-11-01

    Using a chemically induced transition method in FeCl2 solution, γ-Fe2O3 based magnetic nanoparticles, in which γ-Fe2O3 crystallites were coated with FeCl3ṡ6H2O, were prepared. During the synthesis of the γ-Fe2O3 nanoparticles Cu(I) modification of the particles was attempted. According to the results from both magnetization measurements and structural characterization, it was judged that a magnetic silent "dead layer", which can be attributed to spin disorder in the surface of the γ-Fe2O3 crystallites due to breaking of the crystal symmetry, existed in the unmodified particles. For the Cu(I)-modified sample, the CuCl thin layer on the γ-Fe2O3 crystallites incurred the crystal symmetry to reduce the spin disorder, which "awakened" the "dead layer" on the surface of the γ-Fe2O3 crystallites, enhancing the apparent magnetization of the Cu(I)-modified nanoparticles. It was determined that the surface spin disorder of the magnetic crystallite could be related to the coating layer on the crystallite, and can be modified by altering the coating layer to enhance the effective magnetization of the magnetic nanoparticles.

  5. Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Uzun, K.; Çevik, E.; Şenel, M.; Sözeri, H.; Baykal, A.; Abasıyanık, M. F.; Toprak, M. S.

    2010-10-01

    In this study, polyamidoamine (PAMAM) dendrimer was synthesized on the surface of superparamagnetite nanoparticles to enhance invertase immobilization. The amount of immobilized enzyme on the surface-hyperbranched magnetite nanoparticle was up to 2.5 times (i.e., 250%) as much as that of magnetite nanoparticle modified with only amino silane. Maximum reaction rate ( V max) and Michaelis-Menten constant ( K m) were determined for the free and immobilized enzymes. Various characteristics of immobilized invertase such as; the temperature activity, thermal stability, operational stability, and storage stability were evaluated and results revealed that stability of the enzyme is improved upon immobilization.

  6. Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell

    PubMed Central

    Xu, Wei; Zhang, Huimin; Li, Gang; Wu, Zucheng

    2014-01-01

    Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm−2 when 0.33 M urea was used as fuel, O2 as oxidant at 60°C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm−2 with an open circuit voltage of 0.38 V at 60°C. PMID:25168632

  7. Desorption of Furfural from Bimetallic Pt-Fe Oxides/Alumina Catalysts

    PubMed Central

    Dimas-Rivera, Gloria Lourdes; de la Rosa, Javier Rivera; Lucio-Ortiz, Carlos J.; De los Reyes Heredia, José Antonio; González, Virgilio González; Hernández, Tomás

    2014-01-01

    In this work, the desorption of furfural, which is a competitive intermediate during the production of biofuel and valuable aromatic compounds, was studied using pure alumina, as well as alumina impregnated with iron and platinum oxides both individually and in combination, using thermogravimetric analysis (TGA). The bimetallic sample exhibited the lowest desorption percentage for furfural. High-resolution transmission electron microscopy (HRTEM) imaging revealed the intimate connection between the iron and platinum oxide species on the alumina support. The mechanism of furfural desorption from the Pt-Fe/Al2O3 0.5%-0.5% sample was determined using physisorbed furfural instead of chemisorbed furfural; this mechanism involved the oxidation of the C=O group on furfural by the catalyst. The oxide nanoparticles on γ-Al2O3 support helped to stabilize the furfural molecule on the surface. PMID:28788472

  8. Transformation of Sodium Bicarbonate and CO2 into Sodium Formate over NiPd Nanoparticle Catalyst

    NASA Astrophysics Data System (ADS)

    Wang, Mengnan; Zhang, Jiaguang; Yan, Ning

    2013-09-01

    The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs). Ni NPs and eight NiM (M stands for a second metal) NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability.

  9. Structural and Magnetic Response in Bimetallic Core/Shell Magnetic Nanoparticles

    PubMed Central

    Nairan, Adeela; Khan, Usman; Iqbal, Munawar; Khan, Maaz; Javed, Khalid; Riaz, Saira; Naseem, Shahzad; Han, Xiufeng

    2016-01-01

    Bimagnetic monodisperse CoFe2O4/Fe3O4 core/shell nanoparticles have been prepared by solution evaporation route. To demonstrate preferential coating of iron oxide onto the surface of ferrite nanoparticles X-ray diffraction (XRD), High resolution transmission electron microscope (HR-TEM) and Raman spectroscopy have been performed. XRD analysis using Rietveld refinement technique confirms single phase nanoparticles with average seed size of about 18 nm and thickness of shell is 3 nm, which corroborates with transmission electron microscopy (TEM) analysis. Low temperature magnetic hysteresis loops showed interesting behavior. We have observed large coercivity 15.8 kOe at T = 5 K, whereas maximum saturation magnetization (125 emu/g) is attained at T = 100 K for CoFe2O4/Fe3O4 core/shell nanoparticles. Saturation magnetization decreases due to structural distortions at the surface of shell below 100 K. Zero field cooled (ZFC) and Field cooled (FC) plots show that synthesized nanoparticles are ferromagnetic till room temperature and it has been noticed that core/shell sample possess high blocking temperature than Cobalt Ferrite. Results indicate that presence of iron oxide shell significantly increases magnetic parameters as compared to the simple cobalt ferrite. PMID:28335200

  10. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin.

    PubMed

    Cui, Yan-Na; Xu, Qing-Xing; Davoodi, Pooya; Wang, De-Ping; Wang, Chi-Hwa

    2017-06-01

    Owing to the presence of multidrug resistance in tumor cells, conventional chemotherapy remains clinically intractable. To enhance the therapeutic efficacy of chemotherapeutic agents, targeting strategies based on magnetic polymeric nanoparticles modified with targeting ligands have gained significant attention in cancer therapy. In this study, we synthesized transferrin (Tf)-modified poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NPs) loaded with paclitaxel (PTX) and superparamagnetic nanoparticle (MNP) using a solid-in-oil-in-water solvent evaporation method, followed by Tf adsorption on the surface of NPs. The Tf-modified magnetic PLGA NPs were characterized in terms of particle morphology and size, magnetic properties, encapsulation efficiency and drug release. Furthermore, the cytotoxicity and cellular uptake of the drug-loaded magnetic PLGA NPs were evaluated in both MCF-7 breast cancer and U-87 glioma cells in vitro. We found that Tf-modified PTX-MNP-PLGA NPs showed the highest cytotoxicity effect and cellular uptake efficiency under Tf receptor mediation in both MCF-7 and U-87 cells compared to unmodified PLGA NPs and free PTX. The cellular uptake efficiency of Tf-modified magnetic PLGA NPs appeared to be facilitated by the applied magnetic field, but the difference did not reach statistical significance. This study illustrates that this proposed formulation can be used as one new alternative treatment for patients bearing inaccessible tumors.

  11. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin

    PubMed Central

    Cui, Yan-na; Xu, Qing-xing; Davoodi, Pooya; Wang, De-ping; Wang, Chi-Hwa

    2017-01-01

    Owing to the presence of multidrug resistance in tumor cells, conventional chemotherapy remains clinically intractable. To enhance the therapeutic efficacy of chemotherapeutic agents, targeting strategies based on magnetic polymeric nanoparticles modified with targeting ligands have gained significant attention in cancer therapy. In this study, we synthesized transferrin (Tf)-modified poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NPs) loaded with paclitaxel (PTX) and superparamagnetic nanoparticle (MNP) using a solid-in-oil-in-water solvent evaporation method, followed by Tf adsorption on the surface of NPs. The Tf-modified magnetic PLGA NPs were characterized in terms of particle morphology and size, magnetic properties, encapsulation efficiency and drug release. Furthermore, the cytotoxicity and cellular uptake of the drug-loaded magnetic PLGA NPs were evaluated in both MCF-7 breast cancer and U-87 glioma cells in vitro. We found that Tf-modified PTX-MNP-PLGA NPs showed the highest cytotoxicity effect and cellular uptake efficiency under Tf receptor mediation in both MCF-7 and U-87 cells compared to unmodified PLGA NPs and free PTX. The cellular uptake efficiency of Tf-modified magnetic PLGA NPs appeared to be facilitated by the applied magnetic field, but the difference did not reach statistical significance. This study illustrates that this proposed formulation can be used as one new alternative treatment for patients bearing inaccessible tumors. PMID:28552909

  12. Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model

    PubMed Central

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L.; Tschickardt, Sabrina E.; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U.; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    Background The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. Methodology/Principal Findings In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. Conclusions/Significance This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier. PMID:22396775

  13. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    PubMed

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L; Tschickardt, Sabrina E; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  14. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.

    PubMed

    El-Naggar, Mehrez E; Shaheen, Tharwat I; Fouda, Moustafa M G; Hebeish, Ali A

    2016-01-20

    Herein, we present a new approach for the synthesis of gold nanoparticles (AuNPs) individually and as bimetallic core-shell nanoparticles (AgNPs-AuNPs). The novelty of the approach is further maximized by using curdlan (CRD) biopolymer to perform the dual role of reducing and capping agents and microwave-aided technology for affecting the said nanoparticles with varying concentrations in addition to those affected by precursor concentrations. Thus, for preparation of AuNPs, curdlan was solubilized in alkali solution followed by an addition of tetrachloroauric acid (HAuCl4). The curdlan solution containing HAuCl4 was then subjected to microwave radiation for up to 10 min. The optimum conditions obtained with the synthesis of AuNPs were employed for preparation of core-shell silver-gold nanoparticles by replacing definite portion of HAuCl4 with an equivalent portion of silver nitrate (AgNO3). The portion of AgNO3 was added initially and allowed to be reduced by virtue of the dual role of curdlan under microwave radiation. The corresponding portion of HAuCl4 was then added and allowed to complete the reaction. Characterization of AuNPs and AgNPs-AuNPs core-shell were made using UV-vis spectra, TEM, FTIR, XRD, zeta potential, and AFM analysis. Accordingly, strong peaks of the colloidal particles show surface plasmon resonance (SPR) at maximum wavelength of 540 nm, proving the formation of well-stabilized gold nanoparticles. TEM investigations reveal that the major size of AuNPs formed at different Au(+3)concentration lie below 20 nm with narrow size distribution. Whilst, the SPR bands of AgNPs-AuNPs core-shell differ than those obtained from original AgNPs (420 nm) and AuNPs (540 nm). Such shifting due to SPR of Au nanoshell deposited onto AgNPs core was significantly affected by the variation of bimetallic ratios applied. TEM micrographs show variation in contrast between dark silver core and the lighter gold shell. Increasing the ratio of silver ions leads to

  15. A sustained release formulation of chitosan modified PLCL:poloxamer blend nanoparticles loaded with optical agent for animal imaging

    NASA Astrophysics Data System (ADS)

    Ranjan, Amalendu P.; Zeglam, Karim; Mukerjee, Anindita; Thamake, Sanjay; Vishwanatha, Jamboor K.

    2011-07-01

    The objective of this study was to develop optical imaging agent loaded biodegradable nanoparticles with indocynanine green (ICG) using chitosan modified poly(L-lactide-co-epsilon-caprolactone) (PLCL):poloxamer (Pluronic F68) blended polymer. Nanoparticles were formulated with an emulsification solvent diffusion technique using PLCL and poloxamer as blend-polymers. Polyvinyl alcohol (PVA) and chitosan were used as stabilizers. The particle size, shape and zeta potential of the formulated nanoparticles and the release kinetics of ICG from these nanoparticles were determined. Further, biodistribution of these nanoparticles was studied in mice at various time points until 24 h following intravenous administration, using a non-invasive imaging system. The average particle size of the nanoparticles was found to be 146 ± 3.7 to 260 ± 4.5 nm. The zeta potential progressively increased from - 41.6 to + 25.3 mV with increasing amounts of chitosan. Particle size and shape of the nanoparticles were studied using transmission electron microscopy (TEM) which revealed the particles to be smooth and spherical in shape. These nanoparticles were efficiently delivered to the cytoplasm of the cells, as observed in prostate and breast cancer cells using confocal laser scanning microscopy. In vitro release studies indicated sustained release of ICG from the nanoparticles over a period of seven days. Nanoparticle distribution results in mice showing improved uptake and accumulation with chitosan modified nanoparticles in various organs and slower clearance at different time points over a 24 h period as compared to unmodified nanoparticles. The successful formulation of such cationically modified nanoparticles for encapsulating optical agents may lead to a potential deep tissue imaging technique for tumor detection, diagnosis and therapy.

  16. Selective Oxidation of 1,6-Hexanediol to 6-Hydroxycaproic Acid over Reusable Hydrotalcite-Supported Au-Pd Bimetallic Catalysts.

    PubMed

    Tuteja, Jaya; Nishimura, Shun; Choudhary, Hemant; Ebitani, Kohki

    2015-06-08

    Selective oxidation of 1,6-hexanediol into 6-hydroxycaproic acid was achieved over hydrotalcite-supported Au-Pd bimetallic nanoparticles as heterogeneous catalyst using aqueous H2 O2 . N,N-dimethyldodecylamine N-oxide (DDAO) was used as an efficient capping agent. Spectroscopic analyses by UV/Vis, TEM, XPS, and X-ray absorption spectroscopy suggested that interactions between gold and palladium atoms are responsible for the high activity of the reusable Au40 Pd60 -DDAO/HT catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preparation and characterization of bi-metallic nanoparticle catalyst having better anti-coking properties using reverse micelle technique

    NASA Astrophysics Data System (ADS)

    Zacharia, Thomas

    Energy needs are rising on an exponential basis. The mammoth energy sources like coal, natural gas and petroleum are the cause of pollution. The large outcry for an alternate energy source which is environmentally friendly and energy efficient is heard during the past few years. This is where “Clean-Fuel” like hydrogen gained its ground. Hydrogen is mainly produced by steam methane reforming (SMR). An alternate sustainable process which can reduce the cost as well as eliminate the waste products is Tri-reforming. In both these reforming processes nickel is used as catalyst. However as the process goes on the catalyst gets deactivated due to coking on the catalytic surface. This goal of this thesis work was to develop a bi-metallic catalyst which has better anti-coking properties compared to the conventional nickel catalyst. Tin was used to dope nickel. It was found that Ni3Sn complex around a core of Ni is coking resistant compared to pure nickel catalyst. Reverse micelle synthesis of catalyst preparation was used to control the size and shape of catalytic particles. These studies will benefit researches on hydrogen production and catalyst manufactures who work on different bi-metallic combinations.

  18. Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles.

    PubMed

    Singh, Kunwar P; Singh, Arun K; Gupta, Shikha; Rai, Premanjali

    2012-07-01

    The present study aims to investigate the individual and combined effects of temperature, pH, zero-valent bimetallic nanoparticles (ZVBMNPs) dose, and chloramphenicol (CP) concentration on the reductive degradation of CP using ZVBMNPs in aqueous medium. Iron-silver ZVBMNPs were synthesized. Batch experimental data were generated using a four-factor statistical experimental design. CP reduction by ZVBMNPs was optimized using the response surface modeling (RSM) and artificial neural network-genetic algorithm (ANN-GA) approaches. The RSM and ANN methodologies were also compared for their predictive and generalization abilities using the same training and validation data set. Reductive by-products of CP were identified using liquid chromatography-mass spectrometry technique. The optimized process variables (RSM and ANN-GA approaches) yielded CP reduction capacity of 57.37 and 57.10 mg g(-1), respectively, as compared to the experimental value of 54.0 mg g(-1) with un-optimized variables. The ANN-GA and RSM methodologies yielded comparable results and helped to achieve a higher reduction (>6%) of CP by the ZVBMNPs as compared to the experimental value. The root mean squared error, relative standard error of prediction and correlation coefficient between the measured and model-predicted values of response variable were 1.34, 3.79, and 0.964 for RSM and 0.03, 0.07, and 0.999 for ANN models for the training and 1.39, 3.47, and 0.996 for RSM and 1.25, 3.11, and 0.990 for ANN models for the validation set. Predictive and generalization abilities of both the RSM and ANN models were comparable. The synthesized ZVBMNPs may be used for an efficient reductive removal of CP from the water.

  19. Ti, Ni and TiNi nanoparticles physically synthesized by Ar+ beam milling.

    PubMed

    Torres Castro, A; López Cuéllar, E; José Yacamán, M; Ortiz Méndez, U

    2008-12-01

    When the size of a particle decreases around 100 nm or less, there is a change in properties from those shown in the bulk material. In this work approximately 3 nm nanoparticles of Ni, Ti and TiNi bimetallic are produced using physical vapor deposition (PVD). Nanoparticles are characterized by High Resolution Transmission Electron Microscopy (HRTEM), High Angle Annular Dark Field (HAADF), Electron Diffraction (ED). The results show that all nanoparticles maintain the same crystal structure of bulk material but a change in their lattice parameter is produced.

  20. Modified Polymeric Nanoparticles Exert In Vitro Antimicrobial Activity Against Oral Bacteria.

    PubMed

    Toledano-Osorio, Manuel; Babu, Jegdish P; Osorio, Raquel; Medina-Castillo, Antonio L; García-Godoy, Franklin; Toledano, Manuel

    2018-06-14

    Polymeric nanoparticles were modified to exert antimicrobial activity against oral bacteria. Nanoparticles were loaded with calcium, zinc and doxycycline. Ions and doxycycline release were measured by inductively coupled plasma optical emission spectrometer and high performance liquid chromatography. Porphyromonas gingivalis , Lactobacillus lactis , Streptoccocus mutans , gordonii and sobrinus were grown and the number of bacteria was determined by optical density. Nanoparticles were suspended in phosphate-buffered saline (PBS) at 10, 1 and 0.1 mg/mL and incubated with 1.0 mL of each bacterial suspension for 3, 12, and 24 h. The bacterial viability was assessed by determining their ability to cleave the tetrazolium salt to a formazan dye. Data were analyzed by ANOVA and Scheffe’s F ( p < 0.05). Doxycycline doping efficacy was 70%. A burst liberation effect was produced during the first 7 days. After 21 days, a sustained release above 6 µg/mL, was observed. Calcium and zinc liberation were about 1 and 0.02 µg/mL respectively. The most effective antibacterial material was found to be the Dox-Nanoparticles (60% to 99% reduction) followed by Ca-Nanoparticles or Zn-Nanoparticles (30% to 70% reduction) and finally the non-doped nanoparticles (7% to 35% reduction). P. gingivalis , S. mutans and L. lactis were the most susceptible bacteria, being S. gordonii and S. sobrinus the most resistant to the tested nanoparticles.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guanqun; Zou, Ningmu; Chen, Bo

    Compared with their monometallic counterparts, bimetallic nanoparticles often show enhanced catalytic activity associated with the bimetallic interface. Direct quantitation of catalytic activity at the bimetallic interface is important for understanding the enhancement mechanism, but challenging experimentally. Here using single-molecule super-resolution catalysis imaging in correlation with electron microscopy, we report the first quantitative visualization of enhanced bimetallic activity within single bimetallic nanoparticles. We focus on heteronuclear bimetallic PdAu nanoparticles that present a well-defined Pd–Au bimetallic interface in catalyzing a photodriven fluorogenic disproportionation reaction. Our approach also enables a direct comparison between the bimetallic and monometallic regions within the same nanoparticle. Theoreticalmore » calculations further provide insights into the electronic nature of N–O bond activation of the reactant (resazurin) adsorbed on bimetallic sites. Subparticle activity correlation between bimetallic enhancement and monometallic activity suggests that the favorable locations to construct bimetallic sites are those monometallic sites with higher activity, leading to a strategy for making effective bimetallic nanocatalysts. Furthermore, the results highlight the power of super-resolution catalysis imaging in gaining insights that could help improve nanocatalysts.« less

  2. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles.

    PubMed

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile.

  3. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Wei; Vlachos, Dionisios G.

    In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-Hmore » bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.« less

  4. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    DOE PAGES

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-07

    In this study, ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material’s structure. Core–shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core–shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-Hmore » bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.« less

  5. Patched bimetallic surfaces are active catalysts for ammonia decomposition.

    PubMed

    Guo, Wei; Vlachos, Dionisios G

    2015-10-07

    Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  6. Patched bimetallic surfaces are active catalysts for ammonia decomposition

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Vlachos, Dionisios G.

    2015-10-01

    Ammonia decomposition is often used as an archetypical reaction for predicting new catalytic materials and understanding the very reason of why some reactions are sensitive on material's structure. Core-shell or surface-segregated bimetallic nanoparticles expose outstanding activity for many heterogeneously catalysed reactions but the reasons remain elusive owing to the difficulties in experimentally characterizing active sites. Here by performing multiscale simulations in ammonia decomposition on various nickel loadings on platinum (111), we show that the very high activity of core-shell structures requires patches of the guest metal to create and sustain dual active sites: nickel terraces catalyse N-H bond breaking and nickel edge sites drive atomic nitrogen association. The structure sensitivity on these active catalysts depends profoundly on reaction conditions due to kinetically competing relevant elementary reaction steps. We expose a remarkable difference in active sites between transient and steady-state studies and provide insights into optimal material design.

  7. A microwave assisted one-pot route synthesis of bimetallic PtPd alloy cubic nanocomposites and their catalytic reduction for 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn

    2017-10-01

    We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.

  8. Heterogeneous enantioselective hydrogenation of beta-keto esters using chirally modified supported Ni nanoparticles

    NASA Astrophysics Data System (ADS)

    Acharya, Sushma

    Enantioselective heterogeneous catalysis is an important and rapidly expanding research area. The two most heavily researched examples of this type of catalysis are the enantioselective hydrogenation of α-keto-esters over Pt-based catalysts and the enantioselective hydrogenation of β-keto-esters over Ni-based catalysts. These enantioselective surface reactions are controlled by the presence of adsorbed chiral molecules i.e. tartaric acid on the surface of the metal component of the catalyst. The work presented in this thesis focuses on two parts, the synthesis of pure nickel nanoparticles and enantioselective behavior of the modified nickel nanoparticles. The works on the synthesis of pure nickel nanoparticles were carried out using two methods, the reverse microemulsion and the reduction method. It was discovered that the reverse microemulsion method produced nickel oxide nanoparticles, whereas the reduction method produced pure nickel nanoparticles. Chiral modifications of Raney nickel (RNi) and C-supported catalysts were studied. The catalysts were employed in enantioselective hydrogenation of methyl acetoacetate (MAA) to (R) - and (S)-enantiomers of methyl 3-hydroxybutyrate (MHB). The effects of modification and hydrogenation parameters such as concentration of modifier temperature, pressure and solvent on the enantioselectivity of MAA hydrogenation were discussed. For RNi methanol was found to be the best solvent, with tartaric acid concentration 0.2 mol/L for achieving the highest enantiomeric excess under 8 bar at 70 oC. Characteristic features of the in-situ modification of Raney nickel and C-supported Ni were also evaluated and the results obtained were compared with the conventional (pre-modification) approach. Parameters for the conventional and in-situ methods were optimised in a series of experiments for both types of catalysts. The in-situ modified catalyst was found more active for both RNi and C-supported catalysts with 98 % and 42% enantiomeric

  9. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF.

  10. Hydrophobically modified polysaccharide-based on polysialic acid nanoparticles as carriers for anticancer drugs.

    PubMed

    Jung, Bom; Shim, Man-Kyu; Park, Min-Ju; Jang, Eun Hyang; Yoon, Hong Yeol; Kim, Kwangmeyung; Kim, Jong-Ho

    2017-03-30

    This study presented the development of hydrophobically modified polysialic acid (HPSA) nanoparticles, a novel anticancer drug nanocarrier that increases therapeutic efficacy without causing nonspecific toxicity towards normal cells. HPSA nanoparticles were prepared by 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-hydroxysuccinimide (NHS) coupling between N-deacetylated polysialic acid (PSA) and 5β-cholanic acid. The physicochemical characteristics of HPSA nanoparticles (zeta-potential, morphology and size) were measured, and in vitro cytotoxicity and cellular uptake of PSA and HPSA nanoparticles were tested in A549 cells. In vivo cancer targeting of HPSA nanoparticles was evaluated by labeling PSA and HPSA nanoparticles with Cy5.5, a near-infrared fluorescent dye, for imaging. HPSA nanoparticles showed improved cancer-targeting ability compared with PSA. Doxorubicin-loaded HPSA (DOX-HPSA) nanoparticles were prepared using a simple dialysis method. An analysis of the in vitro drug-release profile and drug-delivery behavior showed that DOX was effectively released from DOX-HPSA nanoparticles. In vivo cancer therapy with DOX-HPSA nanoparticles in mice showed antitumor effects that resembled those of free DOX. Moreover, DOX-HPSA nanoparticles had low toxicity toward other organs, reflecting their tumor-targeting property. Hence, HPSA nanoparticles are considered a potential nanocarrier for anticancer agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Transformation of sodium bicarbonate and CO2 into sodium formate over NiPd nanoparticle catalyst

    PubMed Central

    Wang, Mengnan; Zhang, Jiaguang; Yan, Ning

    2013-01-01

    The present research systematically investigated, for the first time, the transformation of sodium bicarbonate and CO2 into sodium formate over a series of Ni based metal nanoparticles (NPs). Ni NPs and eight NiM (M stands for a second metal) NPs were prepared by a facile wet chemical process and then their catalytic performance were evaluated in sodium bicarbonate hydrogenation. Bimetallic NiPd NPs with a composition of 7:3 were found to be superior for this reaction, which are more active than both pure Ni and Pd NPs. Hot filtration experiment suggested the NPs to be the truly catalytic active species and kinetic analysis indicated the reaction mechanism to be different than most homogeneous catalysts. The enhanced activity of the bimetallic nanoparticles may be attributed to their smaller size and improved stability. PMID:24790945

  12. Melting phenomena: effect of composition for 55-atom Ag-Pd bimetallic clusters.

    PubMed

    Cheng, Daojian; Wang, Wenchuan; Huang, Shiping

    2008-05-14

    Understanding the composition effect on the melting processes of bimetallic clusters is important for their applications. Here, we report the relationship between the melting point and the metal composition for the 55-atom icosahedral Ag-Pd bimetallic clusters by canonical Monte Carlo simulations, using the second-moment approximation of the tight-binding potentials (TB-SMA) for the metal-metal interactions. Abnormal melting phenomena for the systems of interest are found. Our simulation results reveal that the dependence of the melting point on the composition is not a monotonic change, but experiences three different stages. The melting temperatures of the Ag-Pd bimetallic clusters increase monotonically with the concentration of the Ag atoms first. Then, they reach a plateau presenting almost a constant value. Finally, they decrease sharply at a specific composition. The main reason for this change can be explained in terms of the relative stability of the Ag-Pd bimetallic clusters at different compositions. The results suggest that the more stable the cluster, the higher the melting point for the 55-atom icosahedral Ag-Pd bimetallic clusters at different compositions.

  13. Effect of the nanostructure and the surface composition of bimetallic Ni-Ru nanoparticles on the performance of CO methanation

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Yuan, Changkun; Yao, Nan; Li, Xiaonian

    2018-05-01

    The Ni/SiO2 catalysts with trace Ru promoter were prepared by either polyethylene glycol (PEG)-assisted or PEG-free impregnation method and were used in CO methanation reaction. The presence of PEG molecules was beneficial to form bimetallic Ni-Ru particles with smaller size, better anti-sintering property and low-temperature reducibility on SiO2 support than the conventional PEG-free derived NiRu/SiO2 catalyst. Moreover, it was found that the low-temperature reduction at 573 K was favorable to form bimetallic Ni-Ru particles with more surface Ru atoms. This nanostructure not only allowed the electron transfer happening from Ru0 to Ni0 which led to its higher electron cloud density, but also could reduce the deposition of less reactive carbon on the catalyst. Therefore, the low-temperature reduction enhanced the reaction stability of NiRu/SiO2 catalyst. The increase of reduction temperature from 573 K to 693 K did not change the size of metallic particles, but decreased the amount of surface Ru atoms. It deactivated the catalyst due to the deposition of more less reactive carbon. Although the higher reduction temperature (e.g. 693 and 793 K) was unfavorable to the reaction stability, it created more surface defects. The amount of defects showed a volcano-shaped correlation with the reduction temperature which was consistent with the variation tendency of turnover frequency of CO conversion. Consequently, it evidenced that the amount of surface Ru atoms and defects on the bimetallic Ni-Ru particle played the critical roles on the stability and the intrinsic activity of methanation, respectively.

  14. Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers

    PubMed Central

    Cho, Jongmin; Wang, Min; Gonzalez-Lepera, Carlos; Mawlawi, Osama; Cho, Sang Hyun

    2016-01-01

    Purpose: Gold nanoparticles (GNPs) are being investigated actively for various applications in cancer diagnosis and therapy. As an effort to improve the imaging of GNPs in vivo, the authors developed bimetallic hybrid Zn@Au NPs with zinc cores and gold shells, aiming to render them in vivo visibility through positron emission tomography (PET) after the proton activation of the zinc core as well as capability to induce radiosensitization through the secondary electrons produced from the gold shell when irradiated by various radiation sources. Methods: Nearly spherical zinc NPs (∼5-nm diameter) were synthesized and then coated with a ∼4.25-nm gold layer to make Zn@Au NPs (∼13.5-nm total diameter). 28.6 mg of these Zn@Au NPs was deposited (∼100 μm thick) on a thin cellulose target and placed in an aluminum target holder and subsequently irradiated with 14.15-MeV protons from a GE PETtrace cyclotron with 5-μA current for 5 min. After irradiation, the cellulose matrix with the NPs was placed in a dose calibrator to assess the induced radioactivity. The same procedure was repeated with 8-MeV protons. Gamma ray spectroscopy using an high-purity germanium detector was conducted on a very small fraction (<1 mg) of the irradiated NPs for each proton energy. In addition to experimental measurements, Monte Carlo simulations were also performed with radioactive Zn@Au NPs and solid GNPs of the same size irradiated with 160-MeV protons and 250-kVp x-rays. Results: The authors measured 168 μCi of activity 32 min after the end of bombardment for the 14.15-MeV proton energy sample using the 66Ga setting on a dose calibrator; activity decreased to 2 μCi over a 24-h period. For the 8-MeV proton energy sample, PET imaging was additionally performed for 5 min after a 12-h delay. A 12-h gamma ray spectrum showed strong peaks at 511 keV (2.05 × 106 counts) with several other peaks of smaller magnitude for each proton energy sample. PET imaging showed strong PET signals from

  15. Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers.

    PubMed

    Cho, Jongmin; Wang, Min; Gonzalez-Lepera, Carlos; Mawlawi, Osama; Cho, Sang Hyun

    2016-08-01

    Gold nanoparticles (GNPs) are being investigated actively for various applications in cancer diagnosis and therapy. As an effort to improve the imaging of GNPs in vivo, the authors developed bimetallic hybrid Zn@Au NPs with zinc cores and gold shells, aiming to render them in vivo visibility through positron emission tomography (PET) after the proton activation of the zinc core as well as capability to induce radiosensitization through the secondary electrons produced from the gold shell when irradiated by various radiation sources. Nearly spherical zinc NPs (∼5-nm diameter) were synthesized and then coated with a ∼4.25-nm gold layer to make Zn@Au NPs (∼13.5-nm total diameter). 28.6 mg of these Zn@Au NPs was deposited (∼100 μm thick) on a thin cellulose target and placed in an aluminum target holder and subsequently irradiated with 14.15-MeV protons from a GE PETtrace cyclotron with 5-μA current for 5 min. After irradiation, the cellulose matrix with the NPs was placed in a dose calibrator to assess the induced radioactivity. The same procedure was repeated with 8-MeV protons. Gamma ray spectroscopy using an high-purity germanium detector was conducted on a very small fraction (<1 mg) of the irradiated NPs for each proton energy. In addition to experimental measurements, Monte Carlo simulations were also performed with radioactive Zn@Au NPs and solid GNPs of the same size irradiated with 160-MeV protons and 250-kVp x-rays. The authors measured 168 μCi of activity 32 min after the end of bombardment for the 14.15-MeV proton energy sample using the (66)Ga setting on a dose calibrator; activity decreased to 2 μCi over a 24-h period. For the 8-MeV proton energy sample, PET imaging was additionally performed for 5 min after a 12-h delay. A 12-h gamma ray spectrum showed strong peaks at 511 keV (2.05 × 10(6) counts) with several other peaks of smaller magnitude for each proton energy sample. PET imaging showed strong PET signals from mostly decaying (66)Ga

  16. Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Jongmin, E-mail: jongmin.cho@okstate.edu

    2016-08-15

    Purpose: Gold nanoparticles (GNPs) are being investigated actively for various applications in cancer diagnosis and therapy. As an effort to improve the imaging of GNPs in vivo, the authors developed bimetallic hybrid Zn@Au NPs with zinc cores and gold shells, aiming to render them in vivo visibility through positron emission tomography (PET) after the proton activation of the zinc core as well as capability to induce radiosensitization through the secondary electrons produced from the gold shell when irradiated by various radiation sources. Methods: Nearly spherical zinc NPs (∼5-nm diameter) were synthesized and then coated with a ∼4.25-nm gold layer tomore » make Zn@Au NPs (∼13.5-nm total diameter). 28.6 mg of these Zn@Au NPs was deposited (∼100 μm thick) on a thin cellulose target and placed in an aluminum target holder and subsequently irradiated with 14.15-MeV protons from a GE PETtrace cyclotron with 5-μA current for 5 min. After irradiation, the cellulose matrix with the NPs was placed in a dose calibrator to assess the induced radioactivity. The same procedure was repeated with 8-MeV protons. Gamma ray spectroscopy using an high-purity germanium detector was conducted on a very small fraction (<1 mg) of the irradiated NPs for each proton energy. In addition to experimental measurements, Monte Carlo simulations were also performed with radioactive Zn@Au NPs and solid GNPs of the same size irradiated with 160-MeV protons and 250-kVp x-rays. Results: The authors measured 168 μCi of activity 32 min after the end of bombardment for the 14.15-MeV proton energy sample using the {sup 66}Ga setting on a dose calibrator; activity decreased to 2 μCi over a 24-h period. For the 8-MeV proton energy sample, PET imaging was additionally performed for 5 min after a 12-h delay. A 12-h gamma ray spectrum showed strong peaks at 511 keV (2.05 × 10{sup 6} counts) with several other peaks of smaller magnitude for each proton energy sample. PET imaging showed

  17. Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhang, Jun; Guan, Huijuan; Zhao, Yafei; Yang, Jing-He; Zhang, Bing

    2018-01-01

    In present work, we prepared the bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes (Cu-Co/PDDA-HNTs) by a deposition-reduction technique at room temperature. The analysis of XRD, SEM, TEM, HAADF-STEM and XPS were employed to systematically investigate the morphology, particle size, structure and surface properties of the nanocomposite. The results reveal that the PDDA coating with thickness of ∼15 nm could be formed on the surface of HNTs, and the existence of PDDA is beneficial to deposit Cu and Co nanoparticles (NPs) with high dispersibility on the surface. While the cost-effective nanocomposite was used for the hydrolytic dehydrogenation of ammonia-borane (NH3BH3), the nanocatalyst showed extraordinary catalytic properties with high total turnover frequency of 30.8 molH2/(molmetal min), low activation energy of 35.15 kJ mol-1 and high recycling stability (>90% conversion at 10th reuse). These results indicate that the bimetallic Cu-Co nanocatalysts on PDDA functionalized HNTs have particular potential for application in release hydrogen process.

  18. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells.

    PubMed

    K S, Joshy; Sharma, Chandra P; Kalarikkal, Nandakumar; Sandeep, K; Thomas, Sabu; Pothen, Laly A

    2016-09-01

    Zidovudine loaded solid lipid nanoparticles of stearic acid modified with Aloe Vera (AV) have been prepared via simple emulsion solvent evaporation method which showed excellent stability at room temperature and refrigerated condition. The nanoparticles were examined by Fourier transform infrared spectroscopy (FT-IR), which revealed the overlap of the AV absorption peak with the absorption peak of modified stearic acid nanoparticles. The inclusion of AV to stearic acid decreased the crystallinity and improved the hydrophilicity of lipid nanoparticles and thereby improved the drug loading efficacy of lipid nanoparticles. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) imaging revealed that, the average particle size of unmodified (bare) nanoparticles was 45.66±12.22nm and modified solid lipid nanoparticles showed an average size of 265.61±80.44nm. Solid lipid nanoparticles with well-defined morphology were tested in vitro for their possible application in drug delivery. Cell culture studies using C6 glioma cells on the nanoparticles showed enhanced growth and proliferation of cells without exhibiting any toxicity. In addition, normal cell morphology and improved uptake were observed by fluorescence microscopy images of rhodamine labeled modified solid lipid nanoparticles compared with unmodified nanoparticles. The cellular uptake study suggested that these nanoparticles could be a promising drug delivery system to enhance the uptake of antiviral drug by brain cells and it could be a suitable drug carrier system for the treatment of HIV. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. SERS activity studies of Ag/Au bimetallic films prepared by galvanic replacement

    NASA Astrophysics Data System (ADS)

    Wang, Chaonan; Fang, Jinghuai; Jin, Yonglong

    2012-10-01

    Ag films on Si substrates were fabricated by immersion plating, which served as sacrificial materials for preparation of Ag/Au bimetallic films by galvanic replacement method. SEM images displayed that the sacrificial Ag films presenting island morphology experienced interesting structural evolution process during galvanic replacement reaction, and nano-scaled holes were formed in the resultant bimetallic films. SERS measurements using crystal violet as an analyte showed that SERS intensities of bimetallic films were enhanced significantly compared with that of pure Ag films and related mechanisms were discussed. Immersion plating experiment carried out on Ag films on PEN substrates fabricated by photoinduced reduction method further confirmed that galvanic replacement is an easy method to fabricate Ag/Au bimetallic and a potential approach to improve the SERS performance of Ag films.

  20. Acute and subchronic toxicity analysis of surface modified paclitaxel attached hydroxyapatite and titanium dioxide nanoparticles

    PubMed Central

    Venkatasubbu, Gopinath Devanand; Ramasamy, S; Gaddam, Pramod Reddy; Kumar, J

    2015-01-01

    Nanoparticles are widely used for targeted drug delivery applications. Surface modification with appropriate polymer and ligands is carried out to target the drug to the affected area. Toxicity analysis is carried out to evaluate the safety of the surface modified nanoparticles. In this study, paclitaxel attached, folic acid functionalized, polyethylene glycol modified hydroxyapatite and titanium dioxide nanoparticles were used for targeted drug delivery system. The toxicological behavior of the system was studied in vivo in rats and mice. Acute and subchronic studies were carried out. Biochemical, hematological, and histopathological analysis was also done. There were no significant alterations in the biochemical parameters at a low dosage. There was a small change in alkaline phosphatase (ALP) level at a high dosage. The results indicate a safe toxicological profile. PMID:26491315

  1. Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Xu, Hui; Yan, Bo; Wang, Jin; Gu, Zhulan; Du, Yukou

    2017-12-01

    This article reports a rapid synthetic method for the preparation of dendritic platinum-lead bimetallic catalysts by using an oil bath for 5 min in the presence of hexadecyltrimethylammonium chloride (CTAC) and ascorbic acid (AA). CTAC acts as a shape-direction agent, and AA acts as a reducing agent during the reaction process. A series of physical techniques are used to characterize the morphology, structure and electronic properties of the dendritic Pt/Pb nanoparticles, indicating the Pt/Pb dendrites are porous, highly alloying, and self-supported nanostructures. Various electrochemical techniques were also investigated the catalytic performance of the Pt/Pb catalysts toward the ethanol electrooxidation reaction. Cyclic voltammetry and chronoamperometry indicated that the synthesized dendritic Pt/Pb nanoparticles possessed much higher electrocatalytic performance than bulk Pt catalyst. This study may inspire the engineering of dendritic bimetallic catalysts, which are expected to have great potential applications in fuel cells.

  2. Design and preparation of bi-functionalized short-chain modified zwitterionic nanoparticles.

    PubMed

    Hu, Fenglin; Chen, Kaimin; Xu, Hong; Gu, Hongchen

    2018-05-01

    (FBS). The modified nanoparticles can also be successfully functionalized with a specific antibody for CLEIA assay with a prominent bio-detection performance even in 50% FBS. In this paper, we also investigated an unexpectedly fast hydrolysis behavior of NHS-activated carboxylic groups within the pure short-chain zwitterionic molecule that led to no protein binding in the short-chain zwitterion modified nanoparticle. Our findings pave a new way for the designing of high performance bio-carriers, demonstrating their strong potential as a robust platform for diagnosis and therapy. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts

    NASA Astrophysics Data System (ADS)

    Zielińska-Jurek, Anna; Wei, Zhishun; Wysocka, Izabela; Szweda, Piotr; Kowalska, Ewa

    2015-10-01

    Ag-Pt-modified TiO2 nanocomposites were synthesized using the sol-gel method. Bimetallic modified TiO2 nanoparticles exhibited improved photocatalytic activity under visible-light irradiation, better than monometallic Ag/TiO2 and Pt/TiO2 nanoparticles (NPs). All modified powders showed localized surface plasmon resonance (LSPR) in visible region. The photocatalysts' characteristics by X-ray diffractometry (XRD), scanning transmission electron microscopy (STEM), diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption (BET method for specific surface area) showed that sample with the highest photocatalytic activity had anatase structure, about 93 m2/g specific surface area, maximum plasmon absorption at ca. 420 nm and contained small NPs of silver of 6 nm and very fine platinum NPs of 3 nm. The photocatalytic activity was estimated by measuring the decomposition rate of phenol in 0.2 mM aqueous solution under Vis and UV/vis light irradiation. It was found that size of platinum was decisive for the photocatalytic activity under visible light irradiation, i.e., the smaller Pt NPs were, the higher was photocatalytic activity. While, antimicrobial activities, estimated for bacteria Escherichia coli and Staphylococcus aureus, and pathogenic fungi belonging to Candida family, were only observed for photocatalysts containing silver, i.e., Ag/TiO2 and Ag-Pt/TiO2 nanocomposites.

  4. Structures of small Pd Pt bimetallic clusters by Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Cheng, Daojian; Huang, Shiping; Wang, Wenchuan

    2006-11-01

    Segregation phenomena of Pd-Pt bimetallic clusters with icosahedral and decahedral structures are investigated by using Monte Carlo method based on the second-moment approximation of the tight-binding (TB-SMA) potentials. The simulation results indicate that the Pd atoms generally lie on the surface of the smaller clusters. The three-shell onion-like structures are observed in 55-atom Pd-Pt bimetallic clusters, in which a single Pd atom is located in the center, and the Pt atoms are in the middle shell, while the Pd atoms are enriched on the surface. With the increase of Pd mole fraction in 55-atom Pd-Pt bimetallic clusters, the Pd atoms occupy the vertices of clusters first, then edge and center sites, and finally the interior shell. It is noticed that some decahedral structures can be transformed into the icosahedron-like structure at 300 and 500 K. Comparisons are made with previous experiments and theoretical studies of Pd-Pt bimetallic clusters.

  5. Studies on plasmon characteristics and the local density of states of Au and Ag based nanoparticles

    NASA Astrophysics Data System (ADS)

    Vinod, M.; Biju, V.; Gopchandran, K. G.

    2016-01-01

    Knowledge about the conductive properties and the local density of states of chemically pure Au, Ag, Ag@Au core-shell and Au-Ag bimetallic nanoparticles is technologically important. Herein, the I-V characteristics and the density of states derived from scanning tunneling microscopy measurements made under atmospheric conditions is reported. The nanoparticles in thin film form used in this study were prepared by laser ablation in water followed by drop and evaporation. The morphology of the surface of the nanostructures was observed from optimizing tunneling current in each case. The monometallic Au and Ag particles shows almost similar current characteristics as well as discrete energy states but the slope of I-V characteristics was different for bimetallic structures. An attempt has also been made to compare the current measurements done in the nanoscale with the surface plasmon characteristics.

  6. Thermal dewetting behavior of polystyrene composite thin films with organic-modified inorganic nanoparticles.

    PubMed

    Kubo, Masaki; Takahashi, Yosuke; Fujii, Takeshi; Liu, Yang; Sugioka, Ken-ichi; Tsukada, Takao; Minami, Kimitaka; Adschiri, Tadafumi

    2014-07-29

    The thermal dewetting of polystyrene composite thin films with oleic acid-modified CeO2 nanoparticles prepared by the supercritical hydrothermal synthesis method was investigated, varying the nanoparticle concentration (0-30 wt %), film thickness (approximately 50 and 100 nm), and surface energy of silanized silicon substrates on which the composite films were coated. The dewetting behavior of the composite thin films during thermal annealing was observed by an optical microscope. The presence of nanoparticles in the films affected the morphology of dewetting holes, and moreover suppressed the dewetting itself when the concentration was relatively high. It was revealed that there was a critical value of the surface energy of the substrate at which the dewetting occurred. In addition, the spatial distributions of nanoparticles in the composite thin films before thermal annealing were investigated using AFM and TEM. As a result, we found that most of nanoparticles segregated to the surface of the film, and that such distributions of nanoparticles contribute to the stabilization of the films, by calculating the interfacial potential of the films with nanoparticles.

  7. Brain Localization and Neurotoxicity Evaluation of Polysorbate 80-Modified Chitosan Nanoparticles in Rats

    PubMed Central

    Yuan, Zhong-Yue; Hu, Yu-Lan; Gao, Jian-Qing

    2015-01-01

    The toxicity evaluation of inorganic nanoparticles has been reported by an increasing number of studies, but toxicity studies concerned with biodegradable nanoparticles, especially the neurotoxicity evaluation, are still limited. For example, the potential neurotoxicity of Polysorbate 80-modified chitosan nanoparticles (Tween 80-modified chitosan nanoparticles, TmCS-NPs), one of the most widely used brain targeting vehicles, remains unknown. In the present study, TmCS-NPs with a particle size of 240 nm were firstly prepared by ionic cross-linking of chitosan with tripolyphosphate. Then, these TmCS-NPs were demonstrated to be entered into the brain and specially deposited in the frontal cortex and cerebellum after systemic injection. Moreover, the concentration of TmCS-NPs in these two regions was found to decrease over time. Although no obvious changes were observed for oxidative stress in the in vivo rat model, the body weight was found to remarkably decreased in a dose-dependent manner after exposure to TmCS-NPs for seven days. Besides, apoptosis and necrosis of neurons, slight inflammatory response in the frontal cortex, and decrease of GFAP expression in the cerebellum were also detected in mouse injected with TmCS-NPs. This study is the first report on the sub-brain biodistribution and neurotoxicity studies of TmCS-NPs. Our results provide new insights into the toxicity evaluation of nanoparticles and our findings would help contribute to a better understanding of the neurotoxicity of biodegradable nanomaterials used in pharmaceutics. PMID:26248340

  8. Brain Localization and Neurotoxicity Evaluation of Polysorbate 80-Modified Chitosan Nanoparticles in Rats.

    PubMed

    Yuan, Zhong-Yue; Hu, Yu-Lan; Gao, Jian-Qing

    2015-01-01

    The toxicity evaluation of inorganic nanoparticles has been reported by an increasing number of studies, but toxicity studies concerned with biodegradable nanoparticles, especially the neurotoxicity evaluation, are still limited. For example, the potential neurotoxicity of Polysorbate 80-modified chitosan nanoparticles (Tween 80-modified chitosan nanoparticles, TmCS-NPs), one of the most widely used brain targeting vehicles, remains unknown. In the present study, TmCS-NPs with a particle size of 240 nm were firstly prepared by ionic cross-linking of chitosan with tripolyphosphate. Then, these TmCS-NPs were demonstrated to be entered into the brain and specially deposited in the frontal cortex and cerebellum after systemic injection. Moreover, the concentration of TmCS-NPs in these two regions was found to decrease over time. Although no obvious changes were observed for oxidative stress in the in vivo rat model, the body weight was found to remarkably decreased in a dose-dependent manner after exposure to TmCS-NPs for seven days. Besides, apoptosis and necrosis of neurons, slight inflammatory response in the frontal cortex, and decrease of GFAP expression in the cerebellum were also detected in mouse injected with TmCS-NPs. This study is the first report on the sub-brain biodistribution and neurotoxicity studies of TmCS-NPs. Our results provide new insights into the toxicity evaluation of nanoparticles and our findings would help contribute to a better understanding of the neurotoxicity of biodegradable nanomaterials used in pharmaceutics.

  9. Detection of telomerase on upconversion nanoparticle modified cellulose paper.

    PubMed

    Wang, Faming; Li, Wen; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2015-07-25

    Herein we report a convenient and sensitive method for the detection of telomerase activity based on upconversion nanoparticle (UCNP) modified cellulose paper. Compared with many solution-phase systems, this paper chip is more stable and easily stores the test results. What's more, the low background fluorescence of the UCNPs increases the sensitivity of this method, and the low telomerase levels in different cell lines can clearly be discriminated by the naked eye.

  10. General and programmable synthesis of hybrid liposome/metal nanoparticles

    PubMed Central

    Lee, Jin-Ho; Shin, Yonghee; Lee, Wooju; Whang, Keumrai; Kim, Dongchoul; Lee, Luke P.; Choi, Jeong-Woo; Kang, Taewook

    2016-01-01

    Hybrid liposome/metal nanoparticles are promising candidate materials for biomedical applications. However, the poor selectivity and low yield of the desired hybrid during synthesis pose a challenge. We designed a programmable liposome by selective encoding of a reducing agent, which allows self-crystallization of metal nanoparticles within the liposome to produce stable liposome/metal nanoparticles alone. We synthesized seven types of liposome/monometallic and more complex liposome/bimetallic hybrids. The resulting nanoparticles are tunable in size and metal composition, and their surface plasmon resonance bands are controllable in visible and near infrared. Owing to outer lipid bilayer, our liposome/Au nanoparticle shows better colloidal stability in biologically relevant solutions as well as higher endocytosis efficiency than gold nanoparticles without the liposome. We used this hybrid in intracellular imaging of living cells via surface-enhanced Raman spectroscopy, taking advantage of its improved physicochemical properties. We believe that our method greatly increases the utility of metal nanoparticles in in vivo applications. PMID:28028544

  11. General and programmable synthesis of hybrid liposome/metal nanoparticles.

    PubMed

    Lee, Jin-Ho; Shin, Yonghee; Lee, Wooju; Whang, Keumrai; Kim, Dongchoul; Lee, Luke P; Choi, Jeong-Woo; Kang, Taewook

    2016-12-01

    Hybrid liposome/metal nanoparticles are promising candidate materials for biomedical applications. However, the poor selectivity and low yield of the desired hybrid during synthesis pose a challenge. We designed a programmable liposome by selective encoding of a reducing agent, which allows self-crystallization of metal nanoparticles within the liposome to produce stable liposome/metal nanoparticles alone. We synthesized seven types of liposome/monometallic and more complex liposome/bimetallic hybrids. The resulting nanoparticles are tunable in size and metal composition, and their surface plasmon resonance bands are controllable in visible and near infrared. Owing to outer lipid bilayer, our liposome/Au nanoparticle shows better colloidal stability in biologically relevant solutions as well as higher endocytosis efficiency than gold nanoparticles without the liposome. We used this hybrid in intracellular imaging of living cells via surface-enhanced Raman spectroscopy, taking advantage of its improved physicochemical properties. We believe that our method greatly increases the utility of metal nanoparticles in in vivo applications.

  12. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery.

    PubMed

    Zhang, Hui-zhu; Li, Xue-min; Gao, Fu-ping; Liu, Ling-rong; Zhou, Zhi-min; Zhang, Qi-qing

    2010-01-01

    The purpose of this work was to develop a novel nano-carrier with targeting property to tumor. In this study, pullulan acetate (PA) was synthesized by the acetylation of pullulan to simplify the preparation technique of nanoparticles. Folic acid (FA) was conjugated to PA in order to improve the cancer-targeting activity. The products were characterized by proton nuclear magnetic resonance (¹H NMR) spectroscopy. Epirubicin-loaded nanoparticles were prepared by a solvent diffusion method. The loading efficiencies and EPI content increased with the amount of triethylamine (TEA) increasing in some degree. FPA nanoparticles could incorporate more epirubicin than PA nanoparticles. The folate-modified PA nanoparticles (FPA/EPI NPs) exhibited faster drug release than PA nanoparticles (PA/EPI NPs) in vitro. Confocal image analysis and flow cytometry test revealed that FPA/EPI NPs exhibited a greater extent of cellular uptake than PA/EPI NPs against KB cells over-expressing folate receptors on the surface. FPA/EPI NPs also showed higher cytotoxicity than PA/EPI NPs. The cytotoxic effect of FPA/EPI NPs to KB cells was inhibited by an excess amount of folic acid, suggesting that the binding and/or uptake were mediated by the folate receptor.

  13. Tuning Ni-catalyzed CO 2 hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation

    DOE PAGES

    Winter, Lea R.; Gomez, Elaine; Yan, Binhang; ...

    2017-10-16

    CO 2 hydrogenation over Fe-modified Ni/CeO 2 catalysts was investigated in a batch reactor using time-resolved in situ FTIR spectroscopy. Low loading of Ni/CeO 2 was associated with high selectivity to CO over CH 4, while higher Ni loading improved CO 2 hydrogenation activity with a reduced CO selectivity. X-ray absorption near-edge structure (XANES) analysis revealed Ni to be metallic for all catalysts including the CO-selective low loading 0.5% Ni catalyst, suggesting that the selectivity trend is due to structural rather than oxidation state effects. The loading amount of 1.5% Ni was selected for co-impregnation with Fe, based on themore » significant shift in product selectivity towards CH 4 for that loading amount, in order to shift the selectivity towards CO while maintaining high activity. Temperature programmed reduction (TPR) results indicated bimetallic interactions between Ni and Fe, and XANES analysis showed that about 70% of Fe in the bimetallic catalysts was oxidized. The Ni-Fe catalysts demonstrated improved selectivity towards CO without significantly compromising activity, coupling the high activity of Ni catalysts and the high CO selectivity of Fe. The general trends in Ni loading and bimetallic modification should guide efforts to develop non-precious metal catalysts for the selective production of CO by CO 2 hydrogenation.« less

  14. Catalytic performance of M@Ni (M = Fe, Ru, Ir) core-shell nanoparticles towards ammonia decomposition for CO x -free hydrogen production

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zhou, Junwei; Chen, Shuangjing; Zhang, Hui

    2018-06-01

    To reduce the use of precious metals and maintain the catalytic activity for NH3 decomposition reaction, it is an effective way to construct bimetallic nanoparticles with special structures. In this paper, by using density functional theory methods, we investigated NH3 decomposition reaction on three types of core-shell nanoparticles M@Ni (M = Fe, Ru, Ir) with 13 core M atoms and 42 shell Ni atoms. The size of these three particles is about 1 nm. Benefit from alloying with Ru in this nanocluster, Ru@Ni core-shell nanoparticles exhibit catalytic activity comparable to that of single metal Ru, based on the analysis of the adsorption energy and potential energy diagram of NH3 decomposition, as well as N2 desorption processes. However, as for Fe@Ni and Ir@Ni core-shell nanoparticles, their catalytic activities are still unsatisfactory compared to the active metal Ru. In addition, in order to further explain the synergistic effect of bimetallic core-shell nanoparticles, the partial density of states were also calculated. The results show that d-band electrons provided by the core metal are the main factors affecting the entire catalytic process.

  15. Stainless Steel to Titanium Bimetallic Transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaluzny, J. A.; Grimm, C.; Passarelli, D.

    In order to use stainless steel piping in an LCLS-II (Linac Coherent Light Source Upgrade) cryomodule, stainless steel to titanium bimetallic transitions are needed to connect the stainless steel piping to the titanium cavity helium vessel. Explosion bonded stainless steel to titanium transition pieces and bimetallic transition material samples have been tested. A sample transition tube was subjected to tests and x-ray examinations between tests. Samples of the bonded joint material were impact and tensile tested at room temperature as well as liquid helium temperature. The joint has been used successfully in horizontal tests of LCLS-II cavity helium vessels andmore » is planned to be used in LCLS-II cryomodules. Results of material sample and transition tube tests will be presented.« less

  16. Reinforcement effect of soy protein nanoparticles in amine-modified natural rubber latex

    USDA-ARS?s Scientific Manuscript database

    Mechanical properties of natural rubber reinforced with soy protein nanoparticles are useful for various rubber applications. However, the properties is further improved by improving interactions between soy protein and rubber. A novel method is used to modify particle surface of natural rubber late...

  17. Imposed Environmental Stresses Facilitate Cell-Free Nanoparticle Formation by Deinococcus radiodurans

    PubMed Central

    2017-01-01

    ABSTRACT The biological synthesis of metal nanoparticles has been examined in a wide range of organisms, due to increased interest in green synthesis and environmental remediation applications involving heavy metal ion contamination. Deinococcus radiodurans is particularly attractive for environmental remediation involving metal reduction, due to its high levels of resistance to radiation and other environmental stresses. However, few studies have thoroughly examined the relationships between environmental stresses and the resulting effects on nanoparticle biosynthesis. In this work, we demonstrate cell-free nanoparticle production and study the effects of metal stressor concentrations and identity, temperature, pH, and oxygenation on the production of extracellular silver nanoparticles by D. radiodurans R1. We also report the synthesis of bimetallic silver and gold nanoparticles following the addition of a metal stressor (silver or gold), highlighting how production of these particles is enabled through the application of environmental stresses. Additionally, we found that both the morphology and size of monometallic and bimetallic nanoparticles were dependent on the environmental stresses imposed on the cells. The nanoparticles produced by D. radiodurans exhibited antimicrobial activity comparable to that of pure silver nanoparticles and displayed catalytic activity comparable to that of pure gold nanoparticles. Overall, we demonstrate that biosynthesized nanoparticle properties can be partially controlled through the tuning of applied environmental stresses, and we provide insight into how their application may affect nanoparticle production in D. radiodurans during bioremediation. IMPORTANCE Biosynthetic production of nanoparticles has recently gained prominence as a solution to rising concerns regarding increased bacterial resistance to antibiotics and a desire for environmentally friendly methods of bioremediation and chemical synthesis. To date, a range of

  18. Imposed Environmental Stresses Facilitate Cell-Free Nanoparticle Formation by Deinococcus radiodurans.

    PubMed

    Chen, Angela; Contreras, Lydia M; Keitz, Benjamin K

    2017-09-15

    The biological synthesis of metal nanoparticles has been examined in a wide range of organisms, due to increased interest in green synthesis and environmental remediation applications involving heavy metal ion contamination. Deinococcus radiodurans is particularly attractive for environmental remediation involving metal reduction, due to its high levels of resistance to radiation and other environmental stresses. However, few studies have thoroughly examined the relationships between environmental stresses and the resulting effects on nanoparticle biosynthesis. In this work, we demonstrate cell-free nanoparticle production and study the effects of metal stressor concentrations and identity, temperature, pH, and oxygenation on the production of extracellular silver nanoparticles by D. radiodurans R1. We also report the synthesis of bimetallic silver and gold nanoparticles following the addition of a metal stressor (silver or gold), highlighting how production of these particles is enabled through the application of environmental stresses. Additionally, we found that both the morphology and size of monometallic and bimetallic nanoparticles were dependent on the environmental stresses imposed on the cells. The nanoparticles produced by D. radiodurans exhibited antimicrobial activity comparable to that of pure silver nanoparticles and displayed catalytic activity comparable to that of pure gold nanoparticles. Overall, we demonstrate that biosynthesized nanoparticle properties can be partially controlled through the tuning of applied environmental stresses, and we provide insight into how their application may affect nanoparticle production in D. radiodurans during bioremediation. IMPORTANCE Biosynthetic production of nanoparticles has recently gained prominence as a solution to rising concerns regarding increased bacterial resistance to antibiotics and a desire for environmentally friendly methods of bioremediation and chemical synthesis. To date, a range of organisms

  19. Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery

    NASA Astrophysics Data System (ADS)

    Roy, Indrajit; Ohulchanskyy, Tymish Y.; Bharali, Dhruba J.; Pudavar, Haridas E.; Mistretta, Ruth A.; Kaur, Navjot; Prasad, Paras N.

    2005-01-01

    This article reports a multidisciplinary approach to produce fluorescently labeled organically modified silica nanoparticles as a nonviral vector for gene delivery and biophotonics methods to optically monitor intracellular trafficking and gene transfection. Highly monodispersed, stable aqueous suspensions of organically modified silica nanoparticles, encapsulating fluorescent dyes and surface functionalized by cationic-amino groups, are produced by micellar nanochemistry. Gel-electrophoresis studies reveal that the particles efficiently complex with DNA and protect it from enzymatic digestion of DNase 1. The electrostatic binding of DNA onto the surface of the nanoparticles, due to positively charged amino groups, is also shown by intercalating an appropriate dye into the DNA and observing the Förster (fluorescence) resonance energy transfer between the dye (energy donor) intercalated in DNA on the surface of nanoparticles and a second dye (energy acceptor) inside the nanoparticles. Imaging by fluorescence confocal microscopy shows that cells efficiently take up the nanoparticles in vitro in the cytoplasm, and the nanoparticles deliver DNA to the nucleus. The use of plasmid encoding enhanced GFP allowed us to demonstrate the process of gene transfection in cultured cells. Our work shows that the nanomedicine approach, with nanoparticles acting as a drug-delivery platform combining multiple optical and other types of probes, provides a promising direction for targeted therapy with enhanced efficacy as well as for real-time monitoring of drug action. nonviral vector | ORMOSIL nanoparticles | confocal microscopy

  20. Synthesis and immobilization of Ag(0) nanoparticles on diazonium modified electrodes: SECM and cyclic voltammetry studies of the modified interfaces.

    PubMed

    Noël, Jean-Marc; Zigah, Dodzi; Simonet, Jacques; Hapiot, Philippe

    2010-05-18

    A versatile method was used to prepare modified surfaces on which metallic silver nanoparticles are immobilized on an organic layer. The preparation method takes advantage, on one hand, of the activated reactivity of some alkyl halides with Ag-Pd alloys to produce metallic silver nanoparticles and, on the other hand, of the facile production of an anchoring polyphenyl acetate layer by the electrografting of substituted diazonium salts on carbon surfaces. Transport properties inside such modified layers were investigated by cyclic voltammetry, scanning electrochemical microscopy (SECM) in feedback mode, and conducting AFM imaging for characterizing the presence and nature of the conducting pathways. The modification of the blocking properties of the surface (or its conductivity) was found to vary to a large extent on the solvents used for surface examination (H(2)O, CH(2)Cl(2), and DMF).

  1. Immobilized cobalt/rhodium heterobimetallic nanoparticle-catalyzed silylcarbocylization and carbonylative silylcarbocyclization of 1,6-enynes.

    PubMed

    Park, Kang Hyun; Jung, Il Gu; Kim, So Yeon; Chung, Young Keun

    2003-12-25

    Reaction of 1,6-enynes with a hydrosilane in the presence of immobilized cobalt/rhodium bimetallic nanoparticles gives 2-methyl-1-silylmethylidene-2-cyclopentanes in the absence of carbon monoxide and 2-formylmethyl-1-silylmethylidene-2-cyclopentanes under 1 atm of carbon monoxide, respectively. [reaction: see text

  2. Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying, Jie; Li, Jing; Jiang, Gaopeng

    Pt-based nanomaterials are regarded as the most efficient electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, widespread adoption of PEMFCs requires solutions to major challenges encountered with ORR catalysts, namely high cost, sluggish kinetics, and low durability. In this paper, a new efficient method utilizing Co-based metal-organic frameworks is developed to produce PtCo bimetallic nanoparticles embedded in unique nitrogen-doped hollow porous carbon capsules. The obtained catalyst demonstrates an outstanding ORR performance, with a mass activity that is 5.5 and 13.5 times greater than that of commercial Pt/C and Pt black, respectively. Most importantly,more » the product exhibits dramatically improved durability in terms of both electrochemically active surface area (ECAS) and mass activity compared to commercial Pt/C and Pt black catalysts. Finally, the remarkable ORR performance demonstrated here can be attributed to the structural features of the catalyst (its alloy structure, high dispersion and fine particle size) and the carbon support (its nitrogen dopant, large surface area and hollow porous structure).« less

  3. Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction

    DOE PAGES

    Ying, Jie; Li, Jing; Jiang, Gaopeng; ...

    2017-11-29

    Pt-based nanomaterials are regarded as the most efficient electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, widespread adoption of PEMFCs requires solutions to major challenges encountered with ORR catalysts, namely high cost, sluggish kinetics, and low durability. In this paper, a new efficient method utilizing Co-based metal-organic frameworks is developed to produce PtCo bimetallic nanoparticles embedded in unique nitrogen-doped hollow porous carbon capsules. The obtained catalyst demonstrates an outstanding ORR performance, with a mass activity that is 5.5 and 13.5 times greater than that of commercial Pt/C and Pt black, respectively. Most importantly,more » the product exhibits dramatically improved durability in terms of both electrochemically active surface area (ECAS) and mass activity compared to commercial Pt/C and Pt black catalysts. Finally, the remarkable ORR performance demonstrated here can be attributed to the structural features of the catalyst (its alloy structure, high dispersion and fine particle size) and the carbon support (its nitrogen dopant, large surface area and hollow porous structure).« less

  4. Efficient removal of pathogenic bacteria and viruses by multifunctional amine-modified magnetic nanoparticles.

    PubMed

    Zhan, Sihui; Yang, Yang; Shen, Zhiqiang; Shan, Junjun; Li, Yi; Yang, Shanshan; Zhu, Dandan

    2014-06-15

    A novel amine-functionalized magnetic Fe3O4-SiO2-NH2 nanoparticle was prepared by layer-by-layer method and used for rapid removal of both pathogenic bacteria and viruses from water. The nanoparticles were characterized by TEM, EDS, XRD, XPS, FT-IR, BET surface analysis, magnetic property tests and zeta-potential measurements, respectively, which demonstrated its well-defined core-shell structures and strong magnetic responsivity. Pathogenic bacteria and viruses are often needed to be removed conveniently because of a lot of co-existing conditions. The amine-modified nanoparticles we prepared were attractive for capturing a wide range of pathogens including not only bacteriophage f2 and virus (Poliovirus-1), but also various bacteria such as S. aureus, E. coli O157:H7, P. aeruginosa, Salmonella, and B. subtilis. Using as-prepared amine-functionalized MNPs as absorbent, the nonspecific removal efficiency of E. coli O157:H7 or virus was more than 97.39%, while it is only 29.8% with Fe3O4-SiO2 particles. From joint removal test of bacteria and virus, there are over 95.03% harmful E. coli O157:H7 that can be removed from mixed solution with polyclonal anti-E. coli O157:H7 antibody modified nanoparticles. Moreover, the synergy effective mechanism has also been suggested. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Physical and Numerical Analysis of Extrusion Process for Production of Bimetallic Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misiolek, W.Z.; Sikka, V.K.

    2006-08-10

    Bimetallic tubes are used for very specific applications where one of the two metals provides strength and the other provides specific properties such as aqueous corrosion and carburization, coking resistance, and special electrical and thermal properties. Bimetallic tubes have application in pulp and paper industry for heat-recovery boilers, in the chemical industry for ethylene production, and in the petrochemical industry for deep oil well explorations. Although bimetallic tubes have major applications in energy-intensive industry, they often are not used because of their cost and manufacturing sources in the United States. This project was intended to address both of these issues.

  6. Properties of Ag nanoparticles prepared by modified Tollens' process with the use of different saccharide types

    NASA Astrophysics Data System (ADS)

    Michalcová, Alena; Machado, Larissa; Marek, Ivo; Martinec, Marek; Sluková, Marcela; Vojtěch, Dalibor

    2018-02-01

    Silver nanoparticles are well known for their catalytic and antimicrobial properties. In their production, the modified Tollens' process using saccharides as reduction agents is very popular. In this paper, the possibility of silver nanoparticles reduction by fructose, glucose, galactose, mannose, maltose, lactose and saccharose is shown. The size of successfully prepared nanoparticles was 16-70 nm depending on the saccharide type. The influence of NaOH and NH3 presence in reaction mixture on size of nanoparticles was described. Surprisingly good results were obtained using saccharose that is, however, known as non-reducing disaccharide.

  7. Folic acid-modified soy protein nanoparticles for enhanced targeting and inhibitory.

    PubMed

    Cheng, Xu; Wang, Xin; Cao, Zhipeng; Yao, Weijing; Wang, Jun; Tang, Rupei

    2017-02-01

    Soy protein isolate (SPI) was hydrolyzed by compound enzymes to give water soluble low molecular soy protein (SP). SP and folic acid (FA) modified SP was polymerized with N-3- acrylamidophenylboronic acid (APBA) monomer in aqueous solution to give SP nanoparticles (SP NPs) and FA modified nanoparticles (FA-SP NPs), respectively. These NPs display excellent stability in different conditions, and have a uniform spherical shape with a diameter around of 200nm. Doxorubicin (DOX) was then successfully loaded into SP and FA-SP NPs with a desirable loading content of 13.33% and 16.01%, respectively. The cellular uptake and cytotoxicity of DOX-loaded SP NPs and FA-SP NPs were investigated using the two-dimensional (2D) monolayer cell model and three-dimensional (3D) multicellular spheroids (MCs). In vivo, tumor accumulation and growth inhibitory were then examined using H22 tumor-bearing mice. All these results demonstrated that conjugation of FA can efficiently enhance SP-based NPs' tumor accumulation and antitumor effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Immobilization of Ag nanoparticles/FGF-2 on a modified titanium implant surface and improved human gingival fibroblasts behavior.

    PubMed

    Ma, Qianli; Mei, Shenglin; Ji, Kun; Zhang, Yumei; Chu, Paul K

    2011-08-01

    The objective of this study was to form a rapid and firm soft tissue sealing around dental implants that resists bacterial invasion. We present a novel approach to modify Ti surface by immobilizing Ag nanoparticles/FGF-2 compound bioactive factors onto a titania nanotubular surface. The titanium samples were anodized to form vertically organized TiO(2) nanotube arrays and Ag nanoparticles were electrodeposited onto the nanotubular surface, on which FGF-2 was immobilized with repeated lyophilization. A uniform distribution of Ag nanoparticles/FGF-2 was observed on the TiO(2) nanotubular surface. The L929 cell line was used for cytotoxicity assessment. Human gingival fibroblasts (HGFs) were cultured on the modified surface for cytocompatibility determination. The Ag/FGF-2 immobilized samples displayed excellent cytocompatibility, negligible cytotoxicity, and enhanced HGF functions such as cell attachment, proliferation, and ECM-related gene expression. The Ag nanoparticles also exhibit some bioactivity. In conclusion, this modified TiO(2) nanotubular surface has a large potential for use in dental implant abutment. Copyright © 2011 Wiley Periodicals, Inc.

  9. Effect of linoleic-acid modified carboxymethyl chitosan on bromelain immobilization onto self-assembled nanoparticles

    NASA Astrophysics Data System (ADS)

    Tan, Yu-long; Liu, Chen-guang; Yu, Le-jun; Chen, Xi-guang

    2008-06-01

    Hydrogel nanoparticles could be prepared by using linoleic acid (LA) modified carboxymethyl chitosan (CMCS) after sonication. Bromelain could be loaded onto nanoparticles of LA-CMCS. Factors affecting the activity of the immobilized enzyme, including temperature, storage etc., were investigated in this study. The results showed that the stability of bromelain for heat and storage was improved after immobilization on nanoparticles. The Michaelis constant ( K m) of the immobilized enzyme was smaller than that of free enzyme, indicating that the immobilization could promote the stability of the enzyme and strengthen the affinity of the enzyme for the substrate.

  10. Melting and solidification behavior of Cu/Al and Ti/Al bimetallic core/shell nanoparticles during additive manufacturing by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Rahmani, Farzin; Jeon, Jungmin; Jiang, Shan; Nouranian, Sasan

    2018-05-01

    Molecular dynamics (MD) simulations were performed to investigate the role of core volume fraction and number of fusing nanoparticles (NPs) on the melting and solidification of Cu/Al and Ti/Al bimetallic core/shell NPs during a superfast heating and slow cooling process, roughly mimicking the conditions of selective laser melting (SLM). One recent trend in the SLM process is the rapid prototyping of nanoscopically heterogeneous alloys, wherein the precious core metal maintains its particulate nature in the final manufactured part. With this potential application in focus, the current work reveals the fundamental role of the interface in the two-stage melting of the core/shell alloy NPs. For a two-NP system, the melting zone gets broader as the core volume fraction increases. This effect is more pronounced for the Ti/Al system than the Cu/Al system because of a larger difference between the melting temperatures of the shell and core metals in the former than the latter. In a larger six-NP system (more nanoscopically heterogeneous), the melting and solidification temperatures of the shell Al roughly coincide, irrespective of the heating or cooling rate, implying that in the SLM process, the part manufacturing time can be reduced due to solidification taking place at higher temperatures. The nanostructure evolution during the cooling of six-NP systems is further investigated. [Figure not available: see fulltext.

  11. Bimetallic redox synergy in oxidative palladium catalysis.

    PubMed

    Powers, David C; Ritter, Tobias

    2012-06-19

    Polynuclear transition metal complexes, which are embedded in the active sites of many metalloenzymes, are responsible for effecting a diverse array of oxidation reactions in nature. The range of chemical transformations remains unparalleled in the laboratory. With few noteworthy exceptions, chemists have primarily focused on mononuclear transition metal complexes in developing homogeneous catalysis. Our group is interested in the development of carbon-heteroatom bond-forming reactions, with a particular focus on identifying reactions that can be applied to the synthesis of complex molecules. In this context, we have hypothesized that bimetallic redox chemistry, in which two metals participate synergistically, may lower the activation barriers to redox transformations relevant to catalysis. In this Account, we discuss redox chemistry of binuclear Pd complexes and examine the role of binuclear intermediates in Pd-catalyzed oxidation reactions. Stoichiometric organometallic studies of the oxidation of binuclear Pd(II) complexes to binuclear Pd(III) complexes and subsequent C-X reductive elimination from the resulting binuclear Pd(III) complexes have confirmed the viability of C-X bond-forming reactions mediated by binuclear Pd(III) complexes. Metal-metal bond formation, which proceeds concurrently with oxidation of binuclear Pd(II) complexes, can lower the activation barrier for oxidation. We also discuss experimental and theoretical work that suggests that C-X reductive elimination is also facilitated by redox cooperation of both metals during reductive elimination. The effect of ligand modification on the structure and reactivity of binuclear Pd(III) complexes will be presented in light of the impact that ligand structure can exert on the structure and reactivity of binuclear Pd(III) complexes. Historically, oxidation reactions similar to those discussed here have been proposed to proceed via mononuclear Pd(IV) intermediates, and the hypothesis of mononuclear Pd

  12. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.

    PubMed

    Erwin, William R; Coppola, Andrew; Zarick, Holly F; Arora, Poorva; Miller, Kevin J; Bardhan, Rizia

    2014-11-07

    In this work, we employed wet chemically synthesized bimetallic Au-Ag core-shell nanostructures (Au-AgNSs) to enhance the photocurrent density of mesoporous TiO2 for water splitting and we compared the results with monometallic Au nanoparticles (AuNPs). While Au-AgNSs incorporated photoanodes give rise to 14× enhancement in incident photon to charge carrier efficiency, AuNPs embedded photoanodes result in 6× enhancement. By varying nanoparticle concentration in the photoanodes, we observed ∼245× less Au-AgNSs are required relative to AuNPs to generate similar photocurrent enhancement for solar fuel conversion. Power-dependent measurements of Au-AgNSs and AuNPs showed a first order dependence to incident light intensity, relative to half-order dependence for TiO2 only photoanodes. This indicated that plasmonic nanostructures enhance charge carriers formed on the surface of the TiO2 which effectively participate in photochemical reactions. Our experiments and simulations suggest the enhanced near-field, far-field, and multipolar resonances of Au-AgNSs facilitating broadband absorption of solar radiation collectively gives rise to their superior performance in water splitting.

  13. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying

    NASA Astrophysics Data System (ADS)

    Semaltianos, N. G.; Chassagnon, R.; Moutarlier, V.; Blondeau-Patissier, V.; Assoul, M.; Monteil, G.

    2017-04-01

    Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also

  14. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying.

    PubMed

    Semaltianos, N G; Chassagnon, R; Moutarlier, V; Blondeau-Patissier, V; Assoul, M; Monteil, G

    2017-04-18

    Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also

  15. Thin films of Ag–Au nanoparticles dispersed in TiO2: influence of composition and microstructure on the LSPR and SERS responses

    NASA Astrophysics Data System (ADS)

    Borges, Joel; Ferreira, Catarina G.; Fernandes, João P. C.; Rodrigues, Marco S.; Proença, Manuela; Apreutesei, Mihai; Alves, Eduardo; Barradas, Nuno P.; Moura, Cacilda; Vaz, Filipe

    2018-05-01

    Thin films containing monometallic (Ag,Au) and bimetallic (Ag–Au) noble nanoparticles were dispersed in TiO2, using reactive magnetron sputtering and post-deposition thermal annealing. The influence of metal concentration and thermal annealing in the (micro)structural evolution of the films was studied, and its correlation with the localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) behaviours was evaluated. The Ag/TiO2 films presented columnar to granular microstructures, developing Ag clusters at the surface for higher annealing temperatures. In some cases, the films presented dendrite-type fractal geometry, which led to an almost flat broadband optical response. The Au/TiO2 system revealed denser microstructures, with Au nanoparticles dispersed in the matrix, whose size increased with annealing temperature. This microstructure led to the appearance of LSPR bands, although some Au segregation to the surface hindered this effect for higher concentrations. The structural results of the Ag–Au/TiO2 system suggested the formation of bimetallic Ag–Au nanoparticles, which presence was supported by the appearance of a single narrow LSPR band. In addition, the Raman spectra of Rhodamine-6G demonstrated the viability of these systems for SERS applications, with some indication that the Ag/TiO2 system might be preferential, contrasting to the notorious behaviour of the bimetallic system in terms of LSPR response.

  16. Preparation and characterization of APTES modified magnetic MMT capable of using as anisotropic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yingjun; Chen, Hua; Wu, Jie; He, Qin; Li, Yintao; Yang, Wenbin; Zhou, Yuanlin

    2018-07-01

    Montmorillonite (MMT) based anisotropic magnetic nanoparticles (Fe3O4/APTES/MMT) with high anisotropy and reliable magnetism were prepared by using Fe3O4 as magnetic nanoparticles and γ-aminopropyltriethoxysilane (ATPES) as modifier. The characterization indicated that the interactions between Fe3O4 nanoparticles and MMT in Fe3O4/APTES/MMT were stronger than that of directly deposited on to MMT (Fe3O4-MMT) because APTES was chemically bonded to both Fe3O4 and MMT. Fe3O4/APTES/MMT had a greater Ms value (25.16 emu/g) than Fe3O4-MMT (23.71 emu/g). Also, ultrasonication was used to test the interactions between Fe3O4 and MMT. With 30 min of ultrasonication, the amount of Fe3O4 nanoparticles on the surface of Fe3O4/APTES/MMT was more than that of Fe3O4-MMT, and Fe3O4/APTES/MMT had a faster magnetic response to a magnetic field than that of Fe3O4-MMT because of enhanced interactions between Fe3O4 and MMT in Fe3O4/APTES/MMT. In addition, Fe3O4 nanoparticles were densely immobilized onto Fe3O4/APTES/MMT with a smaller average diameter, and the distribution of Fe3O4 nanoparticles on the surface of MMT was more uniform than that of Fe3O4-MMT. Fe3O4/APTES/MMT possessed stable and high magnetism, in ease of orientation and recycling in the magnetic field, and this makes it a promising candidate as anisotropic nanoparticles for use in preparing anisotropic inorganic/polymer composites and anisotropic adsorbents used in wastewater treatment. Finally, the mechanism of ATPES-modified magnetic MMT was investigated.

  17. Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions

    NASA Astrophysics Data System (ADS)

    Liu, Xiangsheng; Huang, Haoyuan; Liu, Gongyan; Zhou, Wenbo; Chen, Yangjun; Jin, Qiao; Ji, Jian

    2013-04-01

    Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt conditions, wide pH range and serum or plasma containing media. The AuNPs also show strong resistance to competition from dithiothreitol (as high as 1.5 M). Moreover, the modified AuNPs demonstrate low cytotoxicity investigated by both MTT and LDH assays, and good hemocompatibility evaluated by hemolysis of human red blood cells. In addition, the intracellular fate of AuNPs was investigated by ICP-MS and TEM. It showed that the AuNPs are uptaken by cells in a concentration dependent manner, and they can escape from endosomes/lysosomes to cytosol and tend to accumulate around the nucleus after 24 h incubation but few of them are excreted out of the cells. Gold nanorods are also stabilized by this ligand, which demonstrates robust dispersion stability and excellent hemocompatibility. This kind of multidentate zwitterionic chitosan derivative could be widely used for stabilizing other inorganic nanoparticles, which will greatly improve their performance in a variety of bio-related applications.Surface engineering of nanoparticles plays an essential role in their colloidal stability, biocompatibility and interaction with biosystems. In this study, a novel multidentate zwitterionic biopolymer derivative is obtained from conjugating dithiolane lipoic acid and zwitterionic acryloyloxyethyl phosphorylcholine to the chitosan oligosaccharide backbone. Gold nanoparticles (AuNPs) modified by this polymer exhibit remarkable colloidal stabilities under extreme conditions including high salt

  18. Bimetallic catalysis involving dipalladium(I) and diruthenium(I) complexes.

    PubMed

    Das, Raj K; Saha, Biswajit; Rahaman, S M Wahidur; Bera, Jitendra K

    2010-12-27

    Dipalladium(I) and diruthenium(I) compounds bridged by two [{(5,7-dimethyl-1,8-naphthyridin-2-yl)amino}carbonyl]ferrocene (L) ligands have been synthesized. The X-ray structures of [Pd(2)L(2)][BF(4)](2) (1) and [Ru(2)L(2)(CO)(4)][BF(4)](2) (2) reveal dinuclear structures with short metal-metal distances. In both of these structures, naphthyridine bridges the dimetal unit, and the site trans to the metal-metal bond is occupied by weakly coordinating oxygen from the amido fragment. The catalytic utilities of these bimetallic compounds are evaluated. Compound 1 is an excellent catalyst for phosphine-free, Suzuki cross-coupling reactions of aryl bromides with arylboronic acids and provides high yields in short reaction times. Compound 1 is also found to be catalytically active for aryl chlorides, although the corresponding yields are lower. A bimetallic mechanism is proposed, which involves the oxidative addition of aryl bromide across the Pd-Pd bond and the bimetallic reductive elimination of the product. Compound 1 is also an efficient catalyst for the Heck cross-coupling of aryl bromides with styrenes. The mechanism for aldehyde olefination with ethyl diazoacetate (EDA) and PPh(3), catalyzed by 2, has been fully elucidated. It is demonstrated that 2 catalyzes the formation of phosphorane utilizing EDA and PPh(3), which subsequently reacts with aldehyde to produce a new olefin and phosphine oxide. The efficacy of bimetallic complexes in catalytic organic transformations is illustrated in this work.

  19. Combinatorial synthesis of bimetallic complexes with three halogeno bridges.

    PubMed

    Gauthier, Sébastien; Quebatte, Laurent; Scopelliti, Rosario; Severin, Kay

    2004-06-07

    Methods for the synthesis of bimetallic complexes in which two different metal fragments are connected by three chloro or bromo bridges are reported. The reactions are general, fast, and give rise to structurally defined products in quantitative yields. Therefore, they are ideally suited for generating a library of homo- and heterobimetallic complexes in a combinatorial fashion. This is of special interest for applications in homogeneous catalysis. Selected members of this library were synthesized and comprehensively characterized; single-crystal X-ray analyses were performed for 15 new bimetallic compounds.

  20. Uniform Pt/Pd Bimetallic Nanocrystals Demonstrate Platinum Effect on Palladium Methane Combustion Activity and Stability

    DOE PAGES

    Goodman, Emmett D.; Dai, Sheng; Yang, An-Chih; ...

    2017-05-18

    Bimetallic catalytic materials are in widespread use for numerous reactions, as the properties of a monometallic catalyst are often improved upon addition of a second metal. In studies with bimetallic catalysts, it remains challenging to establish clear structure–property relationships using traditional impregnation techniques, due to the presence of multiple coexisting active phases of different sizes, shapes, and compositions. Here, a convenient approach to prepare small and uniform Pt/Pd bimetallic nanocrystals with tailorable composition is demonstrated, despite the metals being immiscible in the bulk. By depositing this set of controlled nanocrystals onto a high-surface-area alumina support, we systematically investigate the effectmore » of adding platinum to palladium catalysts for methane combustion. At low temperatures and in the absence of steam, all bimetallic catalysts show activity nearly identical with that of Pt/Al 2O 3, with much lower rates in comparison to that of the Pd/Al 2O 3 sample. BUt, unlike Pd/Al 2O 3, which experiences severe low-temperature steam poisoning, all Pt/Pd bimetallic catalysts maintain combustion activity on exposure to excess steam. These features are due to the influence of Pt on the Pd oxidation state, which prevents the formation of a bulk-type PdO phase. Despite lower initial combustion rates, hydrothermal aging of the Pd-rich bimetallic catalyst induces segregation of a PdO phase in close contact to a Pd/Pt alloy phase, forming more active and highly stable sites for methane combustion. Altogether, this work unambiguously clarifies the activity and stability attributes of Pt/Pd phases which often coexist in traditionally synthesized bimetallic catalysts and demonstrates how well-controlled bimetallic catalysts elucidate structure–property relationships.« less

  1. Uniform Pt/Pd Bimetallic Nanocrystals Demonstrate Platinum Effect on Palladium Methane Combustion Activity and Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Emmett D.; Dai, Sheng; Yang, An-Chih

    Bimetallic catalytic materials are in widespread use for numerous reactions, as the properties of a monometallic catalyst are often improved upon addition of a second metal. In studies with bimetallic catalysts, it remains challenging to establish clear structure–property relationships using traditional impregnation techniques, due to the presence of multiple coexisting active phases of different sizes, shapes, and compositions. Here, a convenient approach to prepare small and uniform Pt/Pd bimetallic nanocrystals with tailorable composition is demonstrated, despite the metals being immiscible in the bulk. By depositing this set of controlled nanocrystals onto a high-surface-area alumina support, we systematically investigate the effectmore » of adding platinum to palladium catalysts for methane combustion. At low temperatures and in the absence of steam, all bimetallic catalysts show activity nearly identical with that of Pt/Al 2O 3, with much lower rates in comparison to that of the Pd/Al 2O 3 sample. BUt, unlike Pd/Al 2O 3, which experiences severe low-temperature steam poisoning, all Pt/Pd bimetallic catalysts maintain combustion activity on exposure to excess steam. These features are due to the influence of Pt on the Pd oxidation state, which prevents the formation of a bulk-type PdO phase. Despite lower initial combustion rates, hydrothermal aging of the Pd-rich bimetallic catalyst induces segregation of a PdO phase in close contact to a Pd/Pt alloy phase, forming more active and highly stable sites for methane combustion. Altogether, this work unambiguously clarifies the activity and stability attributes of Pt/Pd phases which often coexist in traditionally synthesized bimetallic catalysts and demonstrates how well-controlled bimetallic catalysts elucidate structure–property relationships.« less

  2. NIR-assisted orchid virus therapy using urchin bimetallic nanomaterials in phalaenopsis

    NASA Astrophysics Data System (ADS)

    Chen, Shin-Yu; Cheng, Liang-Chien; Chen, Chieh-Wei; Lee, Po-Han; Yu, Fengjiao; Zhou, Wuzong; Liu, Ru-Shi; Do, Yi-Yin; Huang, Pung-Ling

    2013-12-01

    The use of nanoparticles has drawn special attention, particularly in the treatment of plant diseases. Cymbidium mosaic virus (CymMV) and Odontoglossum ring spot virus (ORSV) are the most prevalent and serious diseases that affect the development of the orchid industry. In this study we treated nanoparticles as a strategy for enhancing the resistance of orchids against CymMV and ORSV. After chitosan-modified gold nanoparticles (Au NPs) were injected into Phalaenopsis leaves, the injected leaves were exposed to 980 nm laser for light-heat conversion. To evaluate virus elimination in the treated Phalaenopsis leaves, the transcripts of coat protein genes and the production of viral proteins were assessed by reverse transcription-Polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The expression of coat protein genes for both CymMV and ORSV was significantly lower in the chitosan-modified Au NP-treated Phalaenopsis leaves than in the control. Similarly, the amount of coat proteins for both viruses in the Phalaenopsis leaves was lower than that in the control (without nanoparticle injection). We propose that the temperature increase in the chitosan-modified Au NP-treated Phalaenopsis tissues after laser exposure reduces the viral population, consequently conferring resistance against CymMV and ORSV. Our findings suggest that the application of chitosan-modified Au NPs is a promising new strategy for orchid virus therapy.

  3. In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity

    PubMed Central

    Zhao, Zongya; Gong, Ruxue; Zheng, Liang; Wang, Jue

    2016-01-01

    In order to reduce the impedance and improve in vivo neural recording performance of our developed Michigan type silicon electrodes, rough-surfaced AuPt alloy nanoparticles with nanoporosity were deposited on gold microelectrode sites through electro-co-deposition of Au-Pt-Cu alloy nanoparticles, followed by chemical dealloying Cu. The AuPt alloy nanoparticles modified gold microelectrode sites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and in vivo neural recording experiment. The SEM images showed that the prepared AuPt alloy nanoparticles exhibited cauliflower-like shapes and possessed very rough surfaces with many different sizes of pores. Average impedance of rough-surfaced AuPt alloy nanoparticles modified sites was 0.23 MΩ at 1 kHz, which was only 4.7% of that of bare gold microelectrode sites (4.9 MΩ), and corresponding in vitro background noise in the range of 1 Hz to 7500 Hz decreased to 7.5 μVrms from 34.1 μVrms at bare gold microelectrode sites. Spontaneous spike signal recording was used to evaluate in vivo neural recording performance of modified microelectrode sites, and results showed that rough-surfaced AuPt alloy nanoparticles modified microelectrode sites exhibited higher average spike signal-to-noise ratio (SNR) of 4.8 in lateral globus pallidus (GPe) due to lower background noise compared to control microelectrodes. Electro-co-deposition of Au-Pt-Cu alloy nanoparticles combined with chemical dealloying Cu was a convenient way for increasing the effective surface area of microelectrode sites, which could reduce electrode impedance and improve the quality of in vivo spike signal recording. PMID:27827893

  4. Physicochemical properties and in vitro cytotoxicity of iron oxide-based nanoparticles modified with antiangiogenic and antitumor peptide A7R

    NASA Astrophysics Data System (ADS)

    Niescioruk, Anna; Nieciecka, Dorota; Puszko, Anna K.; Królikowska, Agata; Kosson, Piotr; Perret, Gerard Y.; Krysinski, Pawel; Misicka, Aleksandra

    2017-05-01

    Superparamagnetic iron oxide-based nanoparticles (SPIONs) are promising carriers as targeted drug delivery vehicles, because they can be guided to their target with the help of an external magnetic field. Functionalization of nanoparticles' surface with molecules, which bind with high affinity to receptors on target tissue significantly facilitates delivery of coated nanoparticles to their targeted site. Here, we demonstrate conjugation of an antiangiogenic and antitumor peptide ATWLPPR (A7R) to SPIONs modified with sebacic acid (SPIONs-SA). Successful conjugation was confirmed by various analytical techniques (FTIR, SERS, SEM-EDS, TEM, TGA). Cell cytotoxicity studies, against two cell lines (HUVEC and MDA-MB-231) indicated that SPIONs modified with A7R reduced HUVEC cell viability at concentrations higher than 0.01 mg Fe/mL, in comparison to cells that were exposed to either the nanoparticles modified with sebacic acid or A7R peptide solely, what might be partially caused by a process of internalization.

  5. Facile and one-pot synthesis of uniform PtRu nanoparticles on polydopamine-modified multiwalled carbon nanotubes for direct methanol fuel cell application.

    PubMed

    Chen, Fengxia; Ren, Junkai; He, Qian; Liu, Jun; Song, Rui

    2017-07-01

    A facile, environment-friendly and one-pot synthesis method for the preparation of high performance PtRu electrocatalysts on the multiwalled carbon nanotubes (MWCNTs) is reported. Herein, bimetallic PtRu electrocatalysts are deposited onto polydopamine (Pdop) - functionalized MWCNTs by mildly stirring at room temperature. Without the use of expensive chemicals or corrosive acids, this noncovalent functionalization of MWCNTs by Pdop is simple, facile and eco-friendly, and thus preserving the integrity and electronic structure of MWCNTs. Due to the well improved dispersion and the decreased size of alloy nanoparticles, the PtRu electrocatalysts on Pdop-functionalized MWCNTs show much better dispersion, higher electrochemically active surface area, and higher electrocatalytic activity for the electrooxidation of methanol in direct methanol fuel cells, compared with the conventional acid-treated MWCNTs. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Optimization and characterization of high pressure homogenization produced chemically modified starch nanoparticles.

    PubMed

    Ding, Yongbo; Kan, Jianquan

    2017-12-01

    Chemically modified starch (RS4) nanoparticles were synthesized through homogenization and water-in-oil mini-emulsion cross-linking. Homogenization was optimized with regard to z-average diameter by using a three-factor-three-level Box-Behnken design. Homogenization pressure (X 1 ), oil/water ratio (X 2 ), and surfactant (X 3 ) were selected as independent variables, whereas z-average diameter was considered as a dependent variable. The following optimum preparation conditions were obtained to achieve the minimum average size of these nanoparticles: 50 MPa homogenization pressure, 10:1 oil/water ratio, and 2 g surfactant amount, when the predicted z-average diameter was 303.6 nm. The physicochemical properties of these nanoparticles were also determined. Dynamic light scattering experiments revealed that RS4 nanoparticles measuring a PdI of 0.380 and an average size of approximately 300 nm, which was very close to the predicted z-average diameter (303.6 nm). The absolute value of zeta potential of RS4 nanoparticles (39.7 mV) was higher than RS4 (32.4 mV), with strengthened swelling power. X-ray diffraction results revealed that homogenization induced a disruption in crystalline structure of RS4 nanoparticles led to amorphous or low-crystallinity. Results of stability analysis showed that RS4 nanosuspensions (particle size) had good stability at 30 °C over 24 h.

  7. Use of hydroxypropyl-β-cyclodextrin/polyethylene glycol 400, modified Fe3O4 nanoparticles for congo red removal.

    PubMed

    Yu, Lan; Xue, Weihua; Cui, Lei; Xing, Wen; Cao, Xinli; Li, Hongyu

    2014-03-01

    Fe3O4 nanoparticles were modified with Hydroxypropyl-β-cyclodextrin (HP-β-CD) and Polyethylene glycol 400 (PEG400) by a facile one-pot homogeneous precipitation method, and were used as a novel nano-adsorbent for the removal of congo red (CR) from aqueous solutions. The polymer-modified composites were characterized by FTIR, TEM, TGA, XRD and VSM, and showed excellent adsorption efficiency for CR. The value of the maximum adsorption capacity calculated according to the Langmuir isotherm model were 1.895g/g, which are much high and about 19 times that of Fe3O4 nanoparticles. Desorption study further indicates the good regeneration ability of the nanocomposites. The results suggest that the HP-β-CD/PEG400-modified Fe3O4 nanoparticles is a promising adsorbent for CR removal from aqueous solutions, and it is easily recycled owing to its large specific surface area and unique magnetic responsiveness. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  8. Organically Modified Silica Nanoparticles Are Biocompatible and Can Be Targeted to Neurons In Vivo

    PubMed Central

    Kumar, Rajiv; Iacobucci, Gary J.; Kuznicki, Michelle L.; Kosterman, Andrew; Bergey, Earl J.; Prasad, Paras N.; Gunawardena, Shermali

    2012-01-01

    The application of nanotechnology in biological research is beginning to have a major impact leading to the development of new types of tools for human health. One focus of nanobiotechnology is the development of nanoparticle-based formulations for use in drug or gene delivery systems. However most of the nano probes currently in use have varying levels of toxicity in cells or whole organisms and therefore are not suitable for in vivo application or long-term use. Here we test the potential of a novel silica based nanoparticle (organically modified silica, ORMOSIL) in living neurons within a whole organism. We show that feeding ORMOSIL nanoparticles to Drosophila has no effect on viability. ORMOSIL nanoparticles penetrate into living brains, neuronal cell bodies and axonal projections. In the neuronal cell body, nanoparticles are present in the cytoplasm, but not in the nucleus. Strikingly, incorporation of ORMOSIL nanoparticles into the brain did not induce aberrant neuronal death or interfered with normal neuronal processes. Our results in Drosophila indicate that these novel silica based nanoparticles are biocompatible and not toxic to whole organisms, and has potential for the development of long-term applications. PMID:22238611

  9. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors.

    PubMed

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-02-16

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 μM and 8.0 μA/μM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications.

  10. Ag Nanoparticles-Modified 3D Graphene Foam for Binder-Free Electrodes of Electrochemical Sensors

    PubMed Central

    Han, Tao; Jin, Jianli; Wang, Congxu; Sun, Youyi; Zhang, Yinghe; Liu, Yaqing

    2017-01-01

    Ag nanoparticles-modified 3D graphene foam was synthesized through a one-step in-situ approach and then directly applied as the electrode of an electrochemical sensor. The composite foam electrode exhibited electrocatalytic activity towards Hg(II) oxidation with high limit of detection and sensitivity of 0.11 µM and 8.0 µA/µM, respectively. Moreover, the composite foam electrode for the sensor exhibited high cycling stability, long-term durability and reproducibility. These results were attributed to the unique porous structure of the composite foam electrode, which enabled the surface of Ag nanoparticles modified reduced graphene oxide (Ag NPs modified rGO) foam to become highly accessible to the metal ion and provided more void volume for the reaction with metal ion. This work not only proved that the composite foam has great potential application in heavy metal ions sensors, but also provided a facile method of gram scale synthesis 3D electrode materials based on rGO foam and other electrical active materials for various applications. PMID:28336878

  11. Ferrocenyl-cymantrenyl hetero-bimetallic chalcones: Synthesis, structure and biological properties

    NASA Astrophysics Data System (ADS)

    Mishra, Sasmita; Tirkey, Vijaylakshmi; Ghosh, Avishek; Dash, Hirak R.; Das, Surajit; Shukla, Madhulata; Saha, Satyen; Mobin, Sheikh M.; Chatterjee, Saurav

    2015-04-01

    Two new ferrocenyl-cymantrenyl bimetallic chalcones, [(CO)3Mn(η5-C5H4)C(O)CHdbnd CH(η5-C5H4)Fe(η5-C5H5)] (1) and [{(CO)3Mn(η5-C5H4)C(O)CHdbnd CH(η5-C5H4)}2Fe] (2) have been synthesized. Their reactivity study with triphenylphosphine and bis-(diphenylphosphino)ferrocene led to the isolation of phosphine substituted bimetallic chalcones (3-6). Single crystal X-ray structural characterization for 1 and its phosphine analogue (3) reveals their different conformational identity with anti-conformation for 1, while syn-conformation for 3. Investigation of antimalarial and antibacterial activities was carried out for compounds 1 and 2 against two strains of Plasmodium falciparum (3D7, K1) and four bacterial strains. TD-DFT calculation was performed for compound 1 and electrochemical properties were studied for bimetallic chalcone compounds by cyclic voltammetric technique.

  12. Development of a nanoparticle-based surface-modified fluorescence assay for the detection of prion proteins.

    PubMed

    Henry, James; Anand, Ashish; Chowdhury, Mustafa; Coté, Gerard; Moreira, Rosana; Good, Theresa

    2004-11-01

    A nanoparticle-based immunoassay for the detection of recombinant bovine prion protein (PrP) was developed as a step in the development of screening tools for the prevention of the spread of transmissible spongiform encephalopathies. The assay is based on the competitive binding between PrP and a peptide-fluorophore to a nanoparticle-labeled antibody which is specific for a conserved prion sequence. The fluorophore, when bound to the antibody, is subject to surfaced-modified fluorescence, enabling detection of changes in the concentration of bound fluorophore in the presence of prion protein. Important factors considered during the development of the assay were ease of use, robustness, and detection level. The effects of pH and nanoparticle conjugation chemistry on surface-modified fluorescence observed in the assay were explored. Effects of concentrations of antibody and fluorophore on reproducibility and detection limits were examined. At present, the detection limits of the system are approximately equal to the antibody-peptide fluorophore equilibrium dissociation constant, which is near one nanomolar concentration. Improved assay performance could be obtained by optimization of the nanoparticle surface resonance effects. The simplicity of the assay and ease of use may make the type of assay described in this report attractive for screening purposes in the food industry.

  13. Theoretical studies of the work functions of Pd-based bimetallic surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Zhao-Bin; Wu, Feng; Wang, Yue-Chao

    2015-06-07

    Work functions of Pd-based bimetallic surfaces, including mainly M/Pd(111), Pd/M, and Pd/M/Pd(111) (M = 4d transition metals, Cu, Au, and Pt), are studied using density functional theory. We find that the work function of these bimetallic surfaces is significantly different from that of parent metals. Careful analysis based on Bader charges and electron density difference indicates that the variation of the work function in bimetallic surfaces can be mainly attributed to two factors: (1) charge transfer between the two different metals as a result of their different intrinsic electronegativity, and (2) the charge redistribution induced by chemical bonding between themore » top two layers. The first factor can be related to the contact potential, i.e., the work function difference between two metals in direct contact, and the second factor can be well characterized by the change in the charge spilling out into vacuum. We also find that the variation in the work functions of Pd/M/Pd(111) surfaces correlates very well with the variation of the d-band center of the surface Pd atom. The findings in this work can be used to provide general guidelines to design new bimetallic surfaces with desired electronic properties.« less

  14. An electrochemical immunoassay for Escherichia coli O157:H7 using double functionalized Au@Pt/SiO2 nanocomposites and immune magnetic nanoparticles.

    PubMed

    Ye, Lingxian; Zhao, Guangying; Dou, Wenchao

    2018-05-15

    A sensitive Point-of-Care Testing (POCT) with Au-Pt bimetallic nanoparticles (Au@Pt) functionalized silica nanoparticle (SiO 2 NPs) and Fe 3 O 4 magnetic nanoparticles (Fe 3 O 4 NPs) was designed for the quantitative detection of Escherichia coli O157:H7 (E. coli O157:H7). The poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as a negatively charged polyelectrolyte can be easily coated on surface of the amino group modified SiO 2 NPs via electrostatic force. PSSMA is also a good stabilizer for water-soluble bimetallic nanostructures. The PSSMA is first time used as a "bridge" to connect the negative charge Au@Pt NPs to the SiO 2 NPs, forming Au@Pt/SiO 2 NPs. Antibody and invertase conjugated Au@Pt/SiO 2 NPs (denoted as Ab/invertase-Au@Pt/SiO 2 NPs) were used as signal labels. Monoclonal antibody against E. coli O157:H7 (Ab) functionalized magnetic nanoparticles (denoted as Ab-Fe 3 O 4 @SiO 2 NPs) were used to enrich and capture the E. coli O157:H7 in positive sample. The immunosensing platform also composed of a personal glucometer (PGM) using for signal readout. Based on this sandwich-type immunoassay, the invertase in the final formed sandwich immunocomplex catalyzed the hydrolysis of sucrose to produce a large amount of glucose for quantitative readout by the PGM. Under optimal conditions, a linear relationship between the glucose concentration and the logarithm of E. coli O157:H7 concentration was obtained in the concentration range from 3.5 × 10 2 to 3.5 × 10 8 CFU mL -1 with a detection limit of 1.83 × 10 2 CFU mL -1 (3σ). This method was used to detect E. coli O157:H7 in spiked milk samples, indicating its potential practical application. This protocol can be applied in various fields of study. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. First-principles configurational thermodynamics of alloyed nanoparticles with adsorbates

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Lin; Tan, Teck L.; Johnson, Duane D.

    2014-03-01

    Transition-metal, alloyed nanoparticles (NPs) are key components in current and emerging energy technologies because they are found to improve catalytic activity and selectivity for many energy-conversion processes. However, thermodynamic investigations of the compositional profile of alloyed nanoparticles, which determines their catalytic properties, have been limited mostly to NP core-shell preference without the presence of adsorbates. Here, by extending cluster expansion methods to treat both alloyed nanoparticles and adsorbates, we study the configurational thermodynamics of bimetallic NPs under chemically reactive conditions, using databases from density functional theory calculations. With a few examples, we show that such simulations can provide information needed for rational design of NP catalysts. DOE/BES under DE-FG02-03ER15476 (Catalysis) and DE-AC02-07CH11358 at the Ames Laboratory.

  16. Surface analysis of gold nanoparticles functionalized with thiol-modified glucose SAMs for biosensor applications.

    NASA Astrophysics Data System (ADS)

    Spampinato, Valentina; Parracino, Mariaantonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo

    2016-02-01

    In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behaviour of the glucose-modified particles in presence of the maltose binding protein.

  17. Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode.

    PubMed

    Rafiee, Banafsheh; Fakhari, Ali Reza

    2013-08-15

    Nickel oxide nanoparticles modified nafion-multiwalled carbon nanotubes screen printed electrode (NiONPs/Nafion-MWCNTs/SPE) were prepared using pulsed electrodeposition of NiONPs on the MWCNTs/SPE surface. The size, distribution and structure of the NiONPs/Nafion-MWCNTs were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and also the results show that NiO nanoparticles were homogeneously electrodeposited on the surfaces of MWCNTs. Also, the electrochemical behavior of NiONPs/Nafion-MWCNTs composites in aqueous alkaline solutions of insulin was studied by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). It was found that the prepared nanoparticles have excellent electrocatalytic activity towards insulin oxidation due to special properties of NiO nanoparticles. Cyclic voltammetric studies showed that the NiONPs/Nafion-MWCNTs film modified SPE, lowers the overpotentials and improves electrochemical behavior of insulin oxidation, as compared to the bare SPE. Amperometry was also used to evaluate the analytical performance of modified electrode in the quantitation of insulin. Excellent analytical features, including high sensitivity (1.83 μA/μM), low detection limit (6.1 nM) and satisfactory dynamic range (20.0-260.0 nM), were achieved under optimized conditions. Moreover, these sensors show good repeatability and a high stability after a while or successive potential cycling. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A thermal study on the structural changes of bimetallic ZrO2-modified TiO2 nanotubes synthesized using supercritical CO2.

    PubMed

    Lucky, R A; Charpentier, P A

    2009-05-13

    In this study the thermal behavior of bimetallic ZrO(2)-TiO(2) (10/90 mol/mol) nanotubes are discussed which were synthesized via a sol-gel process in supercritical carbon dioxide (scCO(2)). The effects of calcination temperature on the morphology, phase structure, mean crystallite size, specific surface area and pore volume of the nanotubes were investigated by using a variety of physiochemical techniques. We report that SEM and TEM images showed that the nanotubular structure was preserved at up to 800 degrees C calcination temperature. When exposed to higher temperatures (900-1000 degrees C) the ZrO(2)-TiO(2) tubes deformed and the crystallites fused together, forming larger crystallites, and a bimetallic ZrTiO(4) species was detected. These results were further examined using TGA, FTIR, XRD and HRTEM analysis. The BET textural properties demonstrated that the presence of a small amount of Zr in the TiO(2) matrix inhibited the grain growth, stabilized the anatase phase and increased the thermal stability.

  19. Curcumin modified silver nanoparticles for highly efficient inhibition of respiratory syncytial virus infection

    NASA Astrophysics Data System (ADS)

    Yang, Xiao Xi; Li, Chun Mei; Huang, Cheng Zhi

    2016-01-01

    Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition effect against respiratory syncytial virus (RSV) infection, giving a decrease of viral titers about two orders of magnitude at the concentration of cAgNPs under which no toxicity was found to the host cells. Mechanism investigations showed that cAgNPs could prevent RSV from infecting the host cells by inactivating the virus directly, indicating that cAgNPs are a novel promising efficient virucide for RSV.Interactions between nanoparticles and viruses have attracted increasing attention due to the antiviral activity of nanoparticles and the resulting possibility to be employed as biomedical interventions. In this contribution, we developed a very simple route to prepare uniform and stable silver nanoparticles (AgNPs) with antiviral properties by using curcumin, which is a member of the ginger family isolated from rhizomes of the perennial herb Curcuma longa and has a wide range of biological activities like antioxidant, antifungal, antibacterial and anti-inflammatory effects, and acts as reducing and capping agents in this synthetic route. The tissue culture infectious dose (TCID50) assay showed that the curcumin modified silver nanoparticles (cAgNPs) have a highly efficient inhibition

  20. Modified denatured lysozyme effectively solubilizes fullerene c60 nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Siepi, Marialuisa; Politi, Jane; Dardano, Principia; Amoresano, Angela; De Stefano, Luca; Monti, Daria Maria; Notomista, Eugenio

    2017-08-01

    Fullerenes, allotropic forms of carbon, have very interesting pharmacological effects and engineering applications. However, a very low solubility both in organic solvents and water hinders their use. Fullerene C60, the most studied among fullerenes, can be dissolved in water only in the form of nanoparticles of variable dimensions and limited stability. Here the effect on the production of C60 nanoparticles by a native and denatured hen egg white lysozyme, a highly basic protein, has been systematically studied. In order to obtain a denatured, yet soluble, lysozyme derivative, the four disulfides of the native protein were reduced and exposed cysteines were alkylated by 3-bromopropylamine, thus introducing eight additional positive charges. The C60 solubilizing properties of the modified denatured lysozyme proved to be superior to those of the native protein, allowing the preparation of biocompatible highly homogeneous and stable C60 nanoparticles using lower amounts of protein, as demonstrated by dynamic light scattering, transmission electron microscopy and atomic force microscopy studies. This lysozyme derivative could represent an effective tool for the solubilization of other carbon allotropes.

  1. Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes

    PubMed Central

    Kim, Kyoung-Min; Choi, Mun-Hyoung; Lee, Jong-Kwon; Jeong, Jayoung; Kim, Yu-Ri; Kim, Meyoung-Kon; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    In this study, four types of standardized ZnO nanoparticles were prepared for assessment of their potential biological risk. Powder-phased ZnO nanoparticles with different particle sizes (20 nm and 100 nm) were coated with citrate or L-serine to induce a negative or positive surface charge, respectively. The four types of coated ZnO nanoparticles were subjected to physicochemical evaluation according to the guidelines published by the Organisation for Economic Cooperation and Development. All four samples had a well crystallized Wurtzite phase, with particle sizes of ∼30 nm and ∼70 nm after coating with organic molecules. The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding. Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about −40 mV) or positive (about +25 mV). Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties. PMID:25565825

  2. PHOTONICS AND NANOTECHNOLOGY Laser synthesis and modification of composite nanoparticles in liquids

    NASA Astrophysics Data System (ADS)

    Tarasenko, N. V.; Butsen, A. V.

    2010-12-01

    The works devoted to the formation and modification of nanoparticles using laser ablation of solid targets in liquids are reviewed. Several approaches to implement laser ablation in liquids, aimed at synthesising nanoparticles of complex composition, are considered: direct laser ablation of a target of corresponding composition, laser ablation of a combined target composed of two different metals, laser irradiation of a mixture of two or more colloidal solutions, and laser ablation in reactive liquids. The properties of two-component bimetallic systems (Ag — Cu, Ag — Au), semiconductor nanocrystals (ZnO, CdSe), chalcopyrite nanoparticles, and doped oxide nanoparticles (ZnO:Ag, Gd2O2:Tb3+) formed as a result of single- and double-pulse laser ablation in different liquids (water, ethanol, acetone, solutions of polysaccharides) are discussed.

  3. Critical assessment of Pt surface energy - An atomistic study

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Seol, Donghyuk; Lee, Byeong-Joo

    2018-04-01

    Despite the fact that surface energy is a fundamental quantity in understanding surface structure of nanoparticle, the results of experimental measurements and theoretical calculations for the surface energy of pure Pt show a wide range of scattering. It is necessary to further ensure the surface energy of Pt to find the equilibrium shape and atomic configuration in Pt bimetallic nanoparticles accurately. In this article, we critically assess and optimize the Pt surface energy using a semi-empirical atomistic approach based on the second nearest-neighbor modified embedded-atom method interatomic potential. That is, the interatomic potential of pure Pt was adjusted in a way that the surface segregation tendency in a wide range of Pt binary alloys is reproduced in accordance with experimental information. The final optimized Pt surface energy (mJ/m2) is 2036 for (100) surface, 2106 for (110) surface, and 1502 for (111) surface. The potential can be utilized to find the equilibrium shape and atomic configuration of Pt bimetallic nanoparticles more accurately.

  4. Novel synthesis of core-shell Au-Pt dendritic nanoparticles supported on carbon black for enhanced methanol electro-oxidation

    NASA Astrophysics Data System (ADS)

    Cao, Ribing; Xia, Tiantian; Zhu, Ruizhi; Liu, Zhihua; Guo, Jinming; Chang, Gang; Zhang, Zaoli; Liu, Xiong; He, Yunbin

    2018-03-01

    Core-shell Au-Pt dendritic nanoparticles (Au-Pt NPs) has been synthesized via a facile seed-mediated growth method, in which dendritic Pt nanoparticles as shell grow on the surface of gold nanocores by using ascorbic acid (AA) as "green" reducing reagents. The morphologies and compositions of the as-prepared nanocomposites with core-shell structure are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Electrochemical experiments, including cyclic voltammetry (CV) and chronoamperometry (CA) are performed to investigate the electrocatalytic properties of the Au-Pt NPs loaded carbon black composites (Au-Pt NPs/V) towards methanol oxidation in an alkaline solution. It is found that the reduction time of AA could regulate the thickness and amount of Pt on the Au nanocores, which significantly affect catalytic activity of the Au-Pt NPs/V toward methanol oxidation. Au-Pt NPs/V with optimum reduction time 4 h exhibit 2.3-times higher electrocatalytic activity than that of a commercial catalyst (Pt/carbon black) and an excellent CO tolerance toward methanol oxidation. This behavior is attributed to large active electrochemical area of the bimetallic nanocomposites and the change in the electronic structure of Pt when Au surface modified with fewer Pt nanoparticles.

  5. Preparation of glucose sensors using gold nanoparticles modified diamond electrode

    NASA Astrophysics Data System (ADS)

    Fachrurrazie; Ivandini, T. A.; Wibowo, W.

    2017-04-01

    A glucose sensor was successfully developed by immobilizing glucose oxidase (GOx) at boron-doped diamond (BDD) electrodes. Prior to GOx immobilization, the BDD was modified with gold nanoparticles (AuNPs). To immobilize AuNPs, the gold surface was modified to nitrogen termination. The characterization of the electrode surface was performed using an X-ray photoelectron spectroscopy and a scanning electron microscope, while the electrochemical properties of the enzyme electrode were characterized using cyclic voltammetry. Cyclic voltammograms of the prepared electrode for D-glucose in phosphate buffer solution pH 7 showed a new reduction peak at +0.16 V. The currents of the peak were linear in the concentration range of 0.1 M to 0.9 M, indicated that the GOx-AuNP-BDD can be applied for electrochemical glucose detection.

  6. Synthesis and characterization of hollow magnetic nanospheres modified with Au nanoparticles for bio-encapsulation

    NASA Astrophysics Data System (ADS)

    Seisno, Satoshi; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO2 nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO2 templates were fully coated with magnetite nanoparticles. Dissolution of the SiO2 core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe3O4 grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO2 templates contributed to the adsorption of the Fe ion precursor and/or Fe3O4 seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere.

  7. Silymarin-Loaded Nanoparticles Based on Stearic Acid-Modified Bletilla striata Polysaccharide for Hepatic Targeting.

    PubMed

    Ma, Yanni; He, Shaolong; Ma, Xueqin; Hong, Tongtong; Li, Zhifang; Park, Kinam; Wang, Wenping

    2016-02-29

    Silymarin has been widely used as a hepatoprotective drug in the treatment of various liver diseases, yet its effectiveness is affected by its poor water solubility and low bioavailability after oral administration, and there is a need for the development of intravenous products, especially for liver-targeting purposes. In this study, silymarin was encapsulated in self-assembled nanoparticles of Bletilla striata polysaccharide (BSP) conjugates modified with stearic acid and the physicochemical properties of the obtained nanoparticles were characterized. The silymarin-loaded micelles appeared as spherical particles with a mean diameter of 200 nm under TEM. The encapsulation of drug molecules was confirmed by DSC thermograms and XRD diffractograms, respectively. The nanoparticles exhibited a sustained-release profile for nearly 1 week with no obvious initial burst. Compared to drug solutions, the drug-loaded nanoparticles showed a lower viability and higher uptake intensity on HepG2 cell lines. After intravenous administration of nanoparticle formulation for 30 min to mice, the liver became the most significant organ enriched with the fluorescent probe. These results suggest that BSP derivative nanoparticles possess hepatic targeting capability and are promising nanocarriers for delivering silymarin to the liver.

  8. Highly sensitive and rapid detection of acetylcholine using an ITO plate modified with platinum-graphene nanoparticles.

    PubMed

    Chauhan, Nidhi; Narang, Jagriti; Jain, Utkarsh

    2015-03-21

    Determining the concentrations of acetylcholine (ACh) and choline (Ch) is clinically important. ACh is a neurotransmitter that acts as a key link in the communication between neurons in the spinal cord and in nerve skeletal junctions in vertebrates, and plays an important role in transmitting signals in the brain. A bienzymatic sensor for the detection of ACh was prepared by co-immobilizing choline oxidase (ChO) and acetylcholinesterase (AChE) on graphene matrix/platinum nanoparticles, and then electrodepositing them on an ITO-coated glass plate. Graphene nanoparticles were decorated with platinum nanoparticles and were electrodeposited on a modified ITO-coated glass plate to form a modified electrode. The modified electrode was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) studies. The optimum response of the enzyme electrode was obtained at pH 7.0 and 35 °C. The response time of this ACh-sensing system was shown to be 4 s. The linear range of responses to ACh was 0.005-700 μM. This biosensor exhibits excellent anti-interferential abilities and good stability, retaining 50% of its original current even after 4 months. It has been applied for the detection of ACh levels in human serum samples.

  9. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts.

    PubMed

    Chang, Xin; Liu, An-Feng; Cai, Bo; Luo, Jin-Yue; Pan, Hui; Huang, Yao-Bing

    2016-12-08

    The catalytic transfer hydrogenation of furfural to the fuel additives 2-methylfuran (2-MF) and 2-methyltetrahydrofuran (2-MTHF) was investigated over various bimetallic catalysts in the presence of the hydrogen donor 2-propanol. Of all the as-prepared catalysts, bimetallic Cu-Pd catalysts showed the highest catalytic activities towards the formation of 2-MF and 2-MTHF with a total yield of up to 83.9 % yield at 220 °C in 4 h. By modifying the Pd ratios in the Cu-Pd catalyst, 2-MF or 2-MTHF could be obtained selectively as the prevailing product. The other reaction conditions also had a great influence on the product distribution. Mechanistic studies by reaction monitoring and intermediate conversion revealed that the reaction proceeded mainly through the hydrogenation of furfural to furfuryl alcohol, which was followed by deoxygenation to 2-MF in parallel to deoxygenation/ring hydrogenation to 2-MTHF. Finally, the catalyst showed a high reactivity and stability in five catalyst recycling runs, which represents a significant step forward toward the catalytic transfer hydrogenation of furfural. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structure and optical properties of silica-supported Ag-Au nanoparticles.

    PubMed

    Barreca, Davide; Gasparotto, Alberto; Maragno, Cinzia; Tondello, Eugenio; Gialanella, Stefano

    2007-07-01

    Bimetallic Ag-Au nanoparticles are synthesized by sequential deposition of Au and Ag on amorphous silica by Radio Frequency (RF)-sputtering under mild conditions. Specimens are thoroughly characterized by a multi-technique approach, aimed at investigating the system properties as a function of the Ag/Au content, as well as the evolution induced by ex-situ annealing under inert (N2) or reducing (4% H2/N2) atmospheres. The obtained results demonstrate the possibility to obtain Ag-Au alloyed nanoparticles with controllable size, shape, structure, and dispersion under mild conditions, so that the optical properties can be finely tuned as a function of the synthesis and thermal treatment conditions.

  11. Multi-component Fe–Ni hydroxide nanocatalyst for oxygen evolution and methanol oxidation reactions under alkaline conditions

    DOE PAGES

    Candelaria, Stephanie L.; Bedford, Nicholas M.; Woehl, Taylor J.; ...

    2016-11-29

    Here, iron-incorporated nickel-based materials show promise as catalysts for the oxygen evolution reac-tion (OER) half-reaction of water electrolysis. Nickel has also exhibited high catalytic activity for methanol oxidation, particularly when in the form of a bimetallic catalyst. In this work, bimetallic iron-nickel nanoparticles were synthesized using a multi-step procedure in water under ambient conditions. When compared to monometallic iron and nickel nanoparticles, Fe-Ni nanoparticles show enhanced catalytic activity for both OER and methanol oxidation under alkaline conditions. At 1 mA/cm 2, the overpotential for monometallic iron and nickel nanoparticles was 421 mV and 476 mV, respectively, while the bimetallic Fe-Nimore » nanoparticles had a greatly reduced overpotential of 256 mV. At 10 mA/cm 2, bimetallic Fe-Ni nanoparticles had an overpotential of 311 mV. Spec-troscopy characterization suggests that the primary phase of nickel in Fe-Ni nanoparticles is the more disordered alpha phase of nickel hydroxide.« less

  12. Surface Analysis of Gold Nanoparticles Functionalized with Thiol-Modified Glucose SAMs for Biosensor Applications

    PubMed Central

    Spampinato, Valentina; Parracino, Maria Antonietta; La Spina, Rita; Rossi, Francois; Ceccone, Giacomo

    2016-01-01

    In this work, Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS), Principal Component Analysis (PCA) and X-ray Photoelectron Spectroscopy (XPS) have been used to characterize the surface chemistry of gold substrates before and after functionalization with thiol-modified glucose self-assembled monolayers and subsequent biochemical specific recognition of maltose binding protein (MBP). The results indicate that the surface functionalization is achieved both on flat and nanoparticles gold substrates thus showing the potential of the developed system as biodetection platform. Moreover, the method presented here has been found to be a sound and valid approach to characterize the surface chemistry of nanoparticles functionalized with large molecules. Both techniques were proved to be very useful tools for monitoring all the functionalization steps, including the investigation of the biological behavior of the glucose-modified particles in the presence of the maltose binding protein. PMID:26973830

  13. NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

  14. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Macková, Hana; Horák, Daniel; Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich; Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich; Kuzmenko, Oleksandr Ivanovich

    2015-04-01

    Maghemite (γ-Fe2O3) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe2O3 nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe2O3 nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe2O4 particles and the conventional antitumor agent cisplatin.

  15. Molecular hyperpolarizabilities of new bimetallic ferrocenyl derivatives

    NASA Astrophysics Data System (ADS)

    Loucif-Saïbi, R.; Delaire, J. A.; Bonazzola, L.; Doisneau, G.; Balavoine, G.; Fillebeen-Khan, T.; Ledoux, I.; Puccetti, G.

    1992-11-01

    We have investigated the influence of complexation of ferrocenyl derivatives on the second-order hyperpolarizabilities β. This was performed using dc electric field induced second harmonic generation (EFISHG) technique at 1.34 and 1.9 μm. For these new bimetallic ferrocenyl derivatives, significantly increased β values were observed. Our best β value (123.5 × 10 -30 esu at 1.34 μm) is comparable to the highest reported values for organometallic complexes. The nature of the second metal ion has a weak influence on the β values, in consequence to the change of geometry of the associated complex. The validity of the two-level model has been examined in detail: we found that it applies fairly well for the monometallic complexes if one takes into account only the low energy MLCT transition but the contribution of upper levels cannot be ruled out for bimetallic complexes.

  16. Impacts of bridging complexation on the transport of surface-modified nanoparticles in saturated sand

    USDA-ARS?s Scientific Manuscript database

    The transport of polyacrylic acid capped cadmium telluride (CdTe) quantum dots (QDs) and carboxylate-modified latex (CML) nanoparticles (NPs) was studied in packed columns at various electrolyte concentrations and cation types. The breakthrough curves (BTCs) of QDs and CML NPs in acid-treated Accus...

  17. Enhanced Gene and siRNA Delivery by Polycation-Modified Mesoporous Silica Nanoparticles Loaded with Chloroquine

    PubMed Central

    Bhattarai, Shanta Raj; Muthuswamy, Elayaraja; Wani, Amit; Brichacek, Michal; Castañeda, Antonio L.; Brock, Stephanie L.

    2014-01-01

    Purpose To prepare mesoporous silica-based delivery systems capable of simultaneous delivery of drugs and nucleic acids. Methods The surface of mesoporous silica nanoparticles (MSN) was modified with poly(ethylene glycol) (PEG) and poly(2-(dimethylamino)ethylmethacrylate) (PDMAEMA) or poly (2-(diethylamino)ethylmethacrylate) (PDEAEMA). The particles were then loaded with a lysosomotropic agent chloroquine (CQ) and complexed with plasmid DNA or siRNA. The ability of the synthesized particles to deliver combinations of CQ and nucleic acids was evaluated using luciferase plasmid DNA and siRNA targeting luciferase and GAPDH. Results The results show a slow partial MSN dissolution to form hollow silica nanoparticles in aqueous solution. The biological studies show that polycation-modified MSN are able to simultaneously deliver CQ with DNA and siRNA. The co-delivery of CQ and the nucleic acids leads to a significantly increased transfection and silencing activity of the complexes compared with MSN not loaded with CQ. Conclusion PEGylated MSN modified with polycations are promising delivery vectors for combination drug/nucleic acid therapies. PMID:20730557

  18. Immobilization of Magnetic Nanoparticles onto Amine-Modified Nano-Silica Gel for Copper Ions Remediation

    PubMed Central

    Elkady, Marwa; Hassan, Hassan Shokry; Hashim, Aly

    2016-01-01

    A novel nano-hybrid was synthesized through immobilization of amine-functionalized silica gel nanoparticles with nanomagnetite via a co-precipitation technique. The parameters, such as reagent concentrations, reaction temperature and time, were optimized to accomplish the nano-silica gel chelating matrix. The most proper amine-modified silica gel nanoparticles were immobilized with magnetic nanoparticles. The synthesized magnetic amine nano-silica gel (MANSG) was established and characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and vibrating sample magnetometry (VSM). The feasibility of MANSG for copper ions’ remediation from wastewater was examined. MANSG achieves a 98% copper decontamination from polluted water within 90 min. Equilibrium sorption of copper ions onto MANSG nanoparticles obeyed the Langmuir equation compared to the Freundlich, Temkin, Elovich and Dubinin-Radushkevich (D-R) equilibrium isotherm models. The pseudo-second-order rate kinetics is appropriate to describe the copper sorption process onto the fabricated MANSG. PMID:28773583

  19. Dechlorination of disinfection by-product monochloroacetic acid in drinking water by nanoscale palladized iron bimetallic particle.

    PubMed

    Chen, Chao; Wang, Xiangyu; Chang, Ying; Liu, Huiling

    2008-01-01

    Nanoscale palladized iron (Pd/Fe) bimetallic particles were prepared by reductive deposition method. The particles were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), transmission electron microscope (TEM), and Brunauer-Emmett-Teller-nitrogen (BET-N2) method. Data obtained from those methods indicated that nanoscale Pd/Fe bimetallic particles contained alpha-Fe0. Detected Pd to Fe ratio by weight (Pd/Fe ratio) was close to theoretical value. Spherical granules with diameter of 47 +/- 11.5 nm connected with one another to form chains and the chains composed nanoscale Pd/Fe bimetallic particles. Specific surface area of particles was 51 m2/g. The factors, such as species of reductants, Pd/Fe ratio, dose of nanoscale Pd/Fe bimetallic particles added into solutions, solution initial pH, and a variety of solvents were studied. Dechlorination effect of monochloroacetic acid by different reductants followed the trend: nanoscale Pd/Fe bimetallic particles of 0.182% Pd/Fe > nanoscale Fe > reductive Fe. When the Pd/Fe ratio was lower than 0.083%, increasing Pd/Fe ratio would increase dechlorination efficiency (DE) of MCAA. When the Pd/Fe ratio was higher than 0.083%, increasing Pd/Fe ratio caused a decrease in DE. Adding more nanoscale Pd/Fe bimetallic particles to solution would enhance DE. The DE of MCAA decreased as initial pH of solution increased.

  20. Deposition of gold nano-particles and nano-layers on polyethylene modified by plasma discharge and chemical treatment

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Chaloupka, A.; Záruba, K.; Král, V.; Bláhová, O.; Macková, A.; Hnatowicz, V.

    2009-08-01

    Polyethylene (PE) was treated in Ar plasma discharge and then grafted from methanol solution of 1,2-ethanedithiol to enhance adhesion of gold nano-particles or sputtered gold layers. The modified PE samples were either immersed into freshly prepared colloid solution of Au nano-particles or covered by sputtered, 50 nm thick gold nano-layer. Properties of the plasma modified, dithiol grafted and gold coated PE were studied using XPS, UV-VIS, AFM, EPR, RBS methods and nanoindentation. It was shown that the plasma treatment results in degradation of polymer chain, creation of excessive free radicals and conjugated double bonds. After grafting with 1,2-ethanedithiol the concentration of free radicals declined but the concentration of double bonds remained unchanged. Plasma treatment changes PE surface morphology and increases surface roughness too. Another significant change in the surface morphology and roughness was observed after deposition of Au nano-particles. The presence of Au on the sample surface after the coating with Au nano-particles was proved by XPS and RBS methods. Nanoindentation measurements shown that the grafting of plasma activated PE surface with dithiol increases significantly adhesion of sputtered Au nano-layer.

  1. Preparation of transition metal nanoparticles and surfaces modified with (CO)polymers synthesized by RAFT

    DOEpatents

    McCormick, III., Charles L.; Lowe, Andrew B.; Sumerlin, Brent S.

    2006-11-21

    A new, facile, general one-phase method of generating thio-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the stops of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  2. Preparation of transition metal nanoparticles and surfaces modified with (co)polymers synthesized by RAFT

    DOEpatents

    McCormick, III, Charles L.; Lowe, Andrew B [Hattiesburg, MS; Sumerlin, Brent S [Pittsburgh, PA

    2011-12-27

    A new, facile, general one-phase method of generating thiol-functionalized transition metal nanoparticles and surfaces modified by (co)polymers synthesized by the RAFT method is described. The method includes the steps of forming a (co)polymer in aqueous solution using the RAFT methodology, forming a colloidal transition metal precursor solution from an appropriate transition metal; adding the metal precursor solution or surface to the (co)polymer solution, adding a reducing agent into the solution to reduce the metal colloid in situ to produce the stabilized nanoparticles or surface, and isolating the stabilized nanoparticles or surface in a manner such that aggregation is minimized. The functionalized surfaces generated using these methods can further undergo planar surface modifications, such as functionalization with a variety of different chemical groups, expanding their utility and application.

  3. Multifunctional organically modified silica nanoparticles for chemotherapy, adjuvant hyperthermia and near infrared imaging.

    PubMed

    Nagesetti, Abhignyan; McGoron, Anthony J

    2016-11-01

    We report a novel system of organically modified silica nanoparticles (Ormosil) capable of near infrared fluorescence and chemotherapy with adjuvant hyperthermia for image guided cancer therapy. Ormosil nanoparticles were loaded with a chemotherapeutic, Doxorubicin (DOX) and cyanine dye, IR820. Ormosil particles had a mean diameter of 51.2±2.4 nanometers and surface charge of -40.5±0.8mV. DOX was loaded onto Ormosil particles via physical adsorption (FDSIR820) or covalent linkage (CDSIR820) to the silanol groups on the Ormosil surface. Both formulations retained DOX and IR820 over a period of 2 days in aqueous buffer, though CDSIR820 retained more DOX (93.2%) compared to FDSIR820 (77.0%) nanoparticles. Exposure to near infrared laser triggered DOX release from CDSIR820. Uptake of nanoparticles was determined by deconvolution microscopy in ovarian carcinoma cells (Skov-3). CDSIR820 localized in the cell lysosomes whereas cells incubated with FDSIR820 showed DOX fluorescence from the nucleus indicating leakage of DOX from the nanoparticle matrix. FDSIR820 nanoparticles showed severe toxicity in Skov-3 cells whereas CDSIR820 particles had the same cytotoxicity profile as bare (No DOX and IR820) Ormosil particles. Furthermore, exposure of CDSIR820 nanoparticles to Near Infrared laser at 808 nanometers resulted in generation of heat (to 43°C from 37°C) and resulted in enhanced cell killing compared to Free DOX treatment. Bio-distribution studies showed that CDSIR820 nanoparticles were primarily present in the organs of Reticuloendothelial (RES) system. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Investigation of Industrial Polyurethane Foams Modified with Antimicrobial Copper Nanoparticles

    PubMed Central

    Sportelli, Maria Chiara; Picca, Rosaria Anna; Ronco, Roberto; Bonerba, Elisabetta; Tantillo, Giuseppina; Pollini, Mauro; Sannino, Alessandro; Valentini, Antonio; Cataldi, Tommaso R.I.; Cioffi, Nicola

    2016-01-01

    Antimicrobial copper nanoparticles (CuNPs) were electrosynthetized and applied to the controlled impregnation of industrial polyurethane foams used as padding in the textile production or as filters for air conditioning systems. CuNP-modified materials were investigated and characterized morphologically and spectroscopically, by means of Transmission Electron Microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS). The release of copper ions in solution was studied by Electro-Thermal Atomic Absorption Spectroscopy (ETAAS). Finally, the antimicrobial activity of freshly prepared, as well as aged samples—stored for two months—was demonstrated towards different target microorganisms. PMID:28773665

  5. Isolation and characterisation of nanoparticles from tef and maize starch modified with stearic acid.

    PubMed

    Cuthbert, Wokadala O; Ray, Suprakas S; Emmambux, Naushad M

    2017-07-15

    Nanoparticles were isolated from tef and maize starch modified with added stearic acid after pasting at 90°C for 130min. This was followed by thermo-stable alpha-amylase hydrolysis of the paste. The resultant residues were then characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), dynamic laser scattering particle size distribution (DLPSD), atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM). XRD and DSC showed that the isolated residues consisted of amylose-lipid complexes. These complexes were type II with melting temperature above 104°C. DLPSD, AFM and HRTEM showed that the isolated tef and maize starch residues consisted of nanoparticles which became more distinct with increased hydrolysis time. The isolated tef and maize nanoparticles had distinct particles of about 3-10nm and 2.4-6.7nm, respectively and the yield was about 24-30%. The results demonstrated that distinct (physically separate) nanoparticles of less than 10nm can be isolated after formation during pasting of tef and maize starch with stearic acid. The production and isolation of the nanoparticles uses green chemistry principles and these nanoparticles can be used in food and non-food systems as nanofillers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Nanoparticles Affect PCR Primarily via Surface Interactions with PCR Components: Using Amino-Modified Silica-Coated Magnetic Nanoparticles as a Main Model.

    PubMed

    Bai, Yalong; Cui, Yan; Paoli, George C; Shi, Chunlei; Wang, Dapeng; Shi, Xianming

    2015-06-24

    Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic nanoparticles (ASMNPs, which can be collected very easily using an external magnetic field) as a model and compared them with gold nanoparticles (AuNPs, which have been studied extensively) to reveal the mechanisms by which nanoparticles affect PCR. We found that nanoparticles affect PCR primarily by binding to PCR components: (1) inhibition, (2) specifity, and (3) efficiency and yield of PCR are impacted. (1) Excess nanomaterials inhibit PCR by adsorbing to DNA polymerase, Mg(2+), oligonucleotide primers, or DNA templates. Nanoparticle surface-active groups are particularly important to this effect. (2, a) Nanomaterials do not inhibit nonspecific amplification products caused by false priming as previously surmised. It was shown that relatively low concentrations of nanoparticles inhibited the amplification of long amplicons, and increasing the amount of nanoparticles inhibited the amplification of short amplicons. This concentration phenomenon appears to be the result of the formation of "joints" upon the adsorption of ASMNPs to DNA templates. (b) Nanomaterials are able to inhibit nonspecific amplification products due to incomplete amplification by preferably adsorbing single-stranded incomplete amplification products. (3) Some types of nanomaterials, such as AuNPs, enhance the efficiency and yield of PCR because these types of nanoparticles can adsorb to single-stranded DNA more strongly than to double-stranded DNA. This behavior assists in the rapid and thorough denaturation of double-stranded DNA templates. Therefore, the interaction between the surface of nanoparticles and PCR components is sufficient to explain most of the effects of nanoparticles on PCR.

  7. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Repo, Eveliina; Heikkilä, Mikko; Leskelä, Markku; Sillanpää, Mika

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), ξ-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH2OH·HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H2PtCl6 to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  8. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template.

    PubMed

    Liu, Wei; Repo, Eveliina; Heikkilä, Mikko; Leskelä, Markku; Sillanpää, Mika

    2010-10-01

    Novel hollow and solid paramecium-like hierarchical Au/Pt bimetallic nanostructures were constructed using goethite as template via a seed-mediated growth method. Transmission electron microscopy (TEM), xi-potential measurement, UV-vis spectroscopy, energy dispersive x-ray spectroscopy (EDS), ICP-AES measurement, x-ray powder diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) were utilized to systematically characterize the bimetallic nanostructures. It is found that the core structure of the paramecium-like bimetallic nanomaterial is closely related to reducing agent. When ascorbic acid is used as reducing agent, goethite serves as in situ sacrificed template and hollow paramecium-like bimetallic structure is obtained. When NH(2)OH.HCl is used, solid nanostructure with preserved goethite core is produced. Heating the reaction solution is necessary to obtain the paramecium-like morphology with rough interconnected Pt cilia shell. The thickness of Pt cilia layer can be controlled by adjusting the molar ratio of H(2)PtCl(6) to Au nanoseeds. The overgrowth of the rough Pt cilia is proposed to be via an autocatalytic and three-dimensional heterogeneous nucleation process first through flower-like morphology. Both the hollow and solid hierarchical paramecium-like Au/Pt bimetallic nanostructures show good catalytic activities.

  9. The effect of the surface composition of Ru-Pt bimetallic catalysts for methanol oxidation

    DOE PAGES

    Garrick, Taylor R.; Diao, Weijian; Tengco, John M.; ...

    2016-02-23

    Here, a series of Ru-Pt bimetallic catalysts prepared by the electroless deposition of controlled and variable amounts of Ru on the Pt surface of a commercially-available 20 wt% Pt/C catalyst has been characterized and evaluated for the oxidation of methanol. The activity of each Ru-Pt catalyst was determined as a function of surface composition via cyclic voltammetry. For the Ru-Pt bimetallic catalysts, activity passed through a maximum at approximately 50% monodisperse Ru surface coverage. However, due to the monolayer coverage of Ru on Pt, the amount of metal in the catalyst is minimized compared to a bulk 1:1 atomic ratiomore » of Ru:Pt seen in commercial bimetallic catalysts. Chemisorption and temperature programmed reduction experiments confirmed that the surface had characteristics of a true bimetallic catalyst. On a mass of Pt basis, the activity of this composition for methanol oxidation was 7 times higher than pure Pt and 3.5 times higher than a commercial catalyst with a 1:1 Pt:Ru bulk atomic ratio.« less

  10. Surface plasmon resonance sensing of a biomarker of Alzheimer disease in an intensity measurement mode with a bimetallic chip

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Jin; Sohn, Young-Soo; Kim, Chang-duk; Jang, Dae-ho

    2016-09-01

    A surface plasmon resonance (SPR) sensor system with a bimetallic chip has been utilized to sense the very low concentration of amyloid-beta (A β)(1-42) by measurement of the reflectance variation. The bimetallic chip was comprised of Au (10 nm) and Ag (40 nm) on Cr (2 nm)-coated BK-7 glass substrate. Protein A was used to efficiently immobilize the antibody of A β(1-42) on the surface of the bimetallic chip. The reflectance curve of the bimetallic chip represented a narrower linewidth compared to that of the conventional gold (Au) chip. The SPR sensor using the bimetallic chip in the intensity interrogation mode acquired the response of A β(1-42) at concentrations of 250, 500, 750 and 1,000 pg/ml. The calibration plot showed a linear relationship between the mean reflectance variation and the A β(1-42) concentration. The results proved that the SPR sensor system with the bimetallic chip in the intensity interrogation mode can successfully detect various concentrations of A β(1-42), including critical concentration, to help diagnose Alzheimer's disease.

  11. PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION

    EPA Science Inventory

    A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

  12. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    NASA Astrophysics Data System (ADS)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  13. Nanosegregated bimetallic oxide anode catalyst for proton exchange membrane electrolyzer

    DOEpatents

    Danilovic, Nemanja; Kang, Yijin; Markovic, Nenad; Stamenkovic, Vojislav; Myers, Deborah J.; Subbaraman, Ram

    2016-08-23

    A surface segregated bimetallic composition of the formula Ru.sub.1-xIr.sub.x wherein 0.1.ltoreq.x.ltoreq.0.75, wherein a surface of the material has an Ir concentration that is greater than an Ir concentration of the material as a whole is provided. The surface segregated material may be produced by a method including heating a bimetallic composition of the formula Ru.sub.1-xIr.sub.x, wherein 0.1.ltoreq.x.ltoreq.0.75, at a first temperature in a reducing environment, and heating the composition at a second temperature in an oxidizing environment. The surface segregated material may be utilized in electrochemical devices.

  14. Local Charge Injection and Extraction on Surface-Modified Al2O3 Nanoparticles in LDPE.

    PubMed

    Borgani, Riccardo; Pallon, Love K H; Hedenqvist, Mikael S; Gedde, Ulf W; Haviland, David B

    2016-09-14

    We use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties.

  15. Silver-nanoparticles-modified biomaterial surface resistant to staphylococcus: new insight into the antimicrobial action of silver

    PubMed Central

    Wang, Jiaxing; Li, Jinhua; Guo, Geyong; Wang, Qiaojie; Tang, Jin; Zhao, Yaochao; Qin, Hui; Wahafu, Tuerhongjiang; Shen, Hao; Liu, Xuanyong; Zhang, Xianlong

    2016-01-01

    Titanium implants are widely used clinically, but postoperative implant infection remains a potential severe complication. The purpose of this study was to investigate the antibacterial activity of nano-silver(Ag)-functionalized Ti surfaces against epidemic Staphylococcus from the perspective of the regulation of biofilm-related genes and based on a bacteria-cell co-culture study. To achieve this goal, two representative epidemic Staphylococcus strains, Staphylococcus epidermidis (S. epidermidis, RP62A) and Staphylococcus aureus (S. aureus, USA 300), were used, and it was found that an Ag-nanoparticle-modified Ti surface could regulate the expression levels of biofilm-related genes (icaA and icaR for S. epidermidis; fnbA and fnbB for S. aureus) to inhibit bacterial adhesion and biofilm formation. Moreover, a novel bacteria-fibroblast co-culture study revealed that the incorporation of Ag nanoparticles on such a surface can help mammalian cells to survive, adhere and spread more successfully than Staphylococcus. Therefore, the modified surface was demonstrated to possess a good anti-infective capability against both sessile bacteria and planktonic bacteria through synergy between the effects of Ag nanoparticles and ion release. This work provides new insight into the antimicrobial action and mechanism of Ag-nanoparticle-functionalized Ti surfaces with bacteria-killing and cell-assisting capabilities and paves the way towards better satisfying the clinical needs. PMID:27599568

  16. Enhanced removal of As (V) from aqueous solution using modified hydrous ferric oxide nanoparticles

    PubMed Central

    Huo, Lijuan; Zeng, Xibai; Su, Shiming; Bai, Lingyu; Wang, Yanan

    2017-01-01

    Hydrous ferric oxide (HFO) is most effective with high treatment capacity on arsenate [As(V)] sorption although its transformation and aggregation nature need further improvement. Here, HFO nanoparticles with carboxymethyl cellulose (CMC) or starch as modifier was synthesized for the purpose of stability improvement and As(V) removal from water. Comparatively, CMC might be the optimum stabilizer for HFO nanoparticles because of more effective physical and chemical stability. The large-pore structure, high surface specific area, and the non-aggregated nature of CMC-HFO lead to increased adsorption sites, and thus high adsorption capacities of As(V) without pre-treatment (355 mg·g−1), which is much greater than those reported in previous studies. Second-order equation and dual-mode isotherm model could be successfully used to interpret the sorption kinetics and isotherms of As(V), respectively. FTIR, XPS and XRD analyses suggested that precipitation and surface complexation were primary mechanisms for As(V) removal by CMC modified HFO nanoparticles. A surface complexation model (SCM) was used to simulate As adsorption over pH 2.5–10.4. The predominant adsorbed arsenate species were modeled as bidentate binuclear surface complexes at low pH and as monodentate complexes at high pH. The immobilized arsenic remained stable when aging for 270 d at room temperature. PMID:28098196

  17. Enhanced removal of As (V) from aqueous solution using modified hydrous ferric oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Huo, Lijuan; Zeng, Xibai; Su, Shiming; Bai, Lingyu; Wang, Yanan

    2017-01-01

    Hydrous ferric oxide (HFO) is most effective with high treatment capacity on arsenate [As(V)] sorption although its transformation and aggregation nature need further improvement. Here, HFO nanoparticles with carboxymethyl cellulose (CMC) or starch as modifier was synthesized for the purpose of stability improvement and As(V) removal from water. Comparatively, CMC might be the optimum stabilizer for HFO nanoparticles because of more effective physical and chemical stability. The large-pore structure, high surface specific area, and the non-aggregated nature of CMC-HFO lead to increased adsorption sites, and thus high adsorption capacities of As(V) without pre-treatment (355 mg·g-1), which is much greater than those reported in previous studies. Second-order equation and dual-mode isotherm model could be successfully used to interpret the sorption kinetics and isotherms of As(V), respectively. FTIR, XPS and XRD analyses suggested that precipitation and surface complexation were primary mechanisms for As(V) removal by CMC modified HFO nanoparticles. A surface complexation model (SCM) was used to simulate As adsorption over pH 2.5-10.4. The predominant adsorbed arsenate species were modeled as bidentate binuclear surface complexes at low pH and as monodentate complexes at high pH. The immobilized arsenic remained stable when aging for 270 d at room temperature.

  18. Lithium-tellurium bimetallic cell has increased voltage

    NASA Technical Reports Server (NTRS)

    Cairns, E. J.; Rogers, G. L.; Shimotake, H.

    1968-01-01

    Lithium-tellurium secondary cell with a fused lithium halide electrolyte, tested in the temperature range 467 degrees to 500 degrees C, showed improvement over the sodium bismuth cell. The voltage of this bimetallic cell was increased by using the more electropositive anode material, lithium, and the more electronegative cathode material, tellurium.

  19. Selective hydrogenation of 2-methyl-3-butyn-2-ol catalyzed by embedded polymer-protected PdZn nanoparticles

    NASA Astrophysics Data System (ADS)

    Okhlopkova, Lyudmila B.; Matus, Ekaterina V.; Prosvirin, Igor P.; Kerzhentsev, Michail A.; Ismagilov, Zinfer R.

    2015-12-01

    PdZn/TiO2 catalysts were synthesized by sol-gel method using a template Pluronic F127. PdZn nanoparticles with the size ranging from 1.7 to 2 nm were prepared by ethylene glycol reduction of ZnCl2 and Pd(CH3COO)2 in the presence of stabilizer and introduced into the matrix by addition into TiO2 sol, followed by different activation procedures. The structure, particles size, and chemical composition of nanoparticles and catalysts were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray fluorescence spectroscopy, and energy dispersive spectroscopy. The prepared catalysts have been tested in the selective hydrogenation of 2-methyl-3-butyn-2-ol, and the results have been compared with catalysts prepared by conventional impregnation. The results indicate that bimetallic PdZn nanoparticles-based catalysts show higher selectivity than corresponding monometallic Pd/TiO2. Embedded on titania, bimetallic nanoparticles stabilized with polyvinylpyrrolidone exhibit good activity (1.1-1.8 mol MBY/mol Pd/s-1) and high selectivity to 2-methyl-3-buten-2-ol (81.5-88.9 % at 95 % conversion). The influence of the nature of the stabilizer, the stabilizer/metal molar ratio, and activation conditions on the catalytic behavior of the samples was analyzed. It is shown that the particle size does not significantly affect the catalytic properties in the range of 4.4-6.5 nm. The nature and amount of stabilizer seem to be crucial to prepare efficient catalyst.

  20. Metal and alloy nanoparticles by amine-borane reduction of metal salts by solid-phase synthesis: atom economy and green process.

    PubMed

    Sanyal, Udishnu; Jagirdar, Balaji R

    2012-12-03

    A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNH(x) polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

  1. Mono- and bimetallic nanoparticles decorated KTaO3 photocatalysts with improved Vis and UV-Vis light activity

    NASA Astrophysics Data System (ADS)

    Krukowska, Anna; Trykowski, Grzegorz; Winiarski, Michal Jerzy; Klimczuk, Tomasz; Lisowski, Wojciech; Mikolajczyk, Alicja; Pinto, Henry P.; Zaleska-Medynska, Adriana

    2018-05-01

    Novel mono- and bimetallic nanoparticles (MNPs and BNPs) decorated surface of perovskite-type KTaO3 photocatalysts were successfully synthesized by hydrothermal reaction of KTaO3 followed by photodeposition of MNPs/BNPs. The effect of noble metal type (MNPs = Au, Ag, Pt, Pd, Rh, Ru or BNPs = Au/Pt, Ag/Pd, Rh/Ru), amount of metal precursor (0.5, 1.0, 1.5 or 2.0 wt%) as well as photoreduction method (simultaneous (both) or subsequent (seq) deposition of two metals) on the physicochemical and photocatalytic properties of MNPs- and BNPs-KTaO3 have been investigated. All as-prepared photocatalysts were subsequently characterized by UV-Vis diffuse reflectance spectroscopy (DRS), Brunauer-Emmett-Teller (BET) specific surface area and pore size distribution measurement, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (PXRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) emission spectroscopy. The crystal structure was performed using visualization for electronic and structural analysis (VESTA). The photocatalytic activity under Vis light irradiation was estimated in phenol degradation in aqueous phase and toluene removal in gas phase, while under UV-Vis light irradiation was measured amount of H2 generation from formic acid solution. The absorption properties of O2 and H2O molecules on KTaO3(1 0 0) surface supported by Au or Au/Pt NPs was also investigated using density-functional theory (DFT). The experimental results show that, both MNPs-KTaO3 and BNPs-KTaO3 exhibit greatly enhanced pollutant decomposition efficiency under Vis light irradiation and highly improved H2 production under UV-Vis light irradiation compared with pristine KTaO3. MNPs deposition on KTaO3 surface effects by disperse metal particle size ranging from 11 nm (Ru NPs) to 112 nm (Au NPs). Simultaneous addition of Au/Pt precursors results in formation of agglomerated

  2. In vitro evaluation of the L-peptide modified magnetic lipid nanoparticles as targeted magnetic resonance imaging contrast agent for the nasopharyngeal cancer.

    PubMed

    Chen, Yung-Chu; Min, Chia-Na; Wu, Han-Chung; Lin, Chin-Tarng; Hsieh, Wen-Yuan

    2013-11-01

    The purpose of this study was to analyze the encapsulation of superparamagnetic iron oxide nanoparticles (SPION) by the lipid nanoparticle conjugated with the 12-mer peptides (RLLDTNRPLLPY, L-peptide), and the delivery of this complex into living cells. The lipid nanoparticles employed in this work were highly hydrophilic, stable, and contained poly(ethylene-glycol) for conjugation to the bioactive L-peptide. The particle sizes of two different magnetic lipid nanoparticles, L-peptide modified (LML) and non-L-peptide modified (ML), were both around 170 nm with a narrow range of size disparity. The transversal relaxivity, r2, for both LML and ML nanoparticles were found to be significantly higher than the longitudinal relaxivity r1 (r2/r1 > 20). The in vitro tumor cell targeting efficacy of the LML nanoparticles were evaluated and compared to the ML nanoparticles, upon observing cellular uptake of magnetic lipid nanoparticles by the nasopharyngeal carcinoma cells, which express cell surface specific protein for the L-peptide binding revealed. In the Prussian blue staining experiment, cells incubated with LML nanoparticles indicated much higher intracellular iron density than cells incubated with only the ML and SPION nanoparticles. In addition, the MTT assay showed the negligible cell cytotoxicity for LML, ML and SPION nanoparticles. The MR imaging studies demonstrate the better T2-weighted images for the LML-nanoparticle-loaded nasopharyngeal carcinoma cells than the ML- and SPION-loaded cells.

  3. Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A.

    2013-07-01

    Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur-Ag-SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV-visible diffuse reflectance spectra (UV-vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag-SnO2 and Cur-Ag-SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur-Ag-SnO2 shows better photocatalytic activity than that of Ag-SnO2 and SnO2. The superior photocatalytic activity of Cur-Ag-SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur-Ag-SnO2 were tested.

  4. A comparative study for adsorption of lysozyme from aqueous samples onto Fe3O4 magnetic nanoparticles using different ionic liquids as modifier.

    PubMed

    Kamran, Sedigheh; Absalan, Ghodratollah; Asadi, Mozaffar

    2015-12-01

    In this paper, nanoparticles of Fe3O4 as well as their modified forms with different ionic liquids (IL-Fe3O4) were prepared and used for adsorption of lysozyme. The mean size and the surface morphology of the nanoparticles were characterized by TEM, XRD and FTIR techniques. Adsorption studies of lysozyme were performed under different experimental conditions in batch system on different modified magnetic nanoparticles such as, lysozyme concentration, pH of the solution, and contact time. Experimental results were obtained under the optimum operational conditions of pH 9.0 and a contact time of 10 min when initial protein concentrations of 0.05-2.0 mg mL(-1) were used. The isotherm evaluations revealed that the Langmuir model attained better fits to the equilibrium data than the Freundlich model. The maximum obtained adsorption capacities were 370.4, 400.0 500.0 and 526.3 mg of lysozyme for adsorption onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br] per gram of adsorbent, respectively. The Langmuir adsorption constants were 0.004, 0.019, 0.024 and 0.012 L mg(-1) for adsorptions of lysozyme onto Fe3O4 and modified magnetic nanoparticles by [C4MIM][Br], [C6MIM][Br] and [C8MIM][Br], respectively. The adsorption capacity of lysozyme was found to be dependent on its chemical structure, pH of the solution, temperature and type of ionic liquid as modifier. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated. Furthermore, the thermodynamic parameters were calculated. Protein could desorb from IL-Fe3O4 nanoparticles by using NaCl solution at pH 9.5 and was reused.

  5. [In vitro early detection of amyloid plaques in Alzheimer's disease by Pittsburgh compound B-modified magnetic nanoparticles].

    PubMed

    Zeng, J Q; Wu, J Q; Li, M H; Wang, P J

    2017-11-07

    Objective: To construct magnetic nanoparticles targeting β-amyloid (Aβ) plaques, the pathological biomarker of Alzheimer's disease (AD) and to study their binding capability in vitro . Methods: Superparamagnetic nanoparticles Mn(0.6)Zn(0.4)Fe(2)O(4) (MZF) were coated with amphiphilic star-block copolymeric micelles and modified with Aβ-specific probe Pittsburgh compound B (PiB) to construct a novel magnetic nanoparticle MZF-PiB, which specifically targeted amyloid plaques. Transmission electron microscope was used to study the morphological features of MZF-PiB. Superparamagnetism of MZF-PiB was assessed by its r(2) relaxation rate by using 3.0 T MRI scanner. Cytotoxic test was applied to determine biosafety of MZF-PiB nanoparticles in differentiated human neuroblastoma cells (SH-SY5Y) and Madin-Darby canine kidney (MDCK). In vitro binding tests were conducted via immunohistochemistry on 6-month old AD mice brain sections. Differences of cell viability between groups were compared with one-way analysis of variance. Results: MZF-PiB nanoparticles were successfully constructed. Transmission electron microscope images showed that the nanoparticles were about 100 nm in size. The r(2) relaxation rate was 163.11 mMS(-1). No differences were found in cell viability of SH-SY5Y and MDCK incubated with MZF-PiB suspension for 24 h or 48 h when compared with those of untreated cells ( F =2.336, 2.539, 0.293, 1.493, all P >0.05). In vitro binding tests indicated that the MZF-PiB were specifically bound to amyloid plaques. The smallest size of detected plaques was 27 μm. Conclusion: PiB-modified nanoparticles targeting Aβ are biologically safe and highly superparamagnetic, possessing the capability to detect amyloid plaques early in vitro and the potential for early diagnosis of AD.

  6. Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water.

    PubMed

    Siuzdak, K; Sawczak, M; Klein, M; Nowaczyk, G; Jurga, S; Cenian, A

    2014-08-07

    We report on the preparation method of nanocrystalline titanium dioxide modified with platinum by using nanosecond laser ablation in liquid (LAL). Titania in the form of anatase crystals has been prepared in a two-stage process. Initially, irradiation by laser beam of a titanium metal plate fixed in a glass container filled with deionized water was conducted. After that, the ablation process was continued, with the use of a platinum target placed in a freshly obtained titania colloid. In this work, characterization of the obtained nanoparticles, based on spectroscopic techniques--Raman, X-ray photoelectron and UV-vis reflectance spectroscopy--is given. High resolution transmission electron microscopy was used to describe particle morphology. On the basis of photocatalytic studies we observed the rate of degradation process of methylene blue (MB) (a model organic pollution) in the presence of Pt modified titania in comparison to pure TiO2--as a reference case. Physical and chemical mechanisms of the formation of platinum modified titania are also discussed here. Stable colloidal suspensions containing Pt modified titanium dioxide crystalline anatase particles show an almost perfect spherical shape with diameters ranging from 5 to 30 nm. The TiO2 nanoparticles decorated with platinum exhibit much higher (up to 30%) photocatalytic activity towards the degradation of MB under UV illumination than pure titania.

  7. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electricmore » field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.« less

  8. Facile Fabrication of Composition-Tuned Ru-Ni Bimetallics in Ordered Mesoporous Carbon for Levulinic Acid Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Gao, Guang; Zhang, Xin

    Bimetallic catalysts are of great importance due to their unique catalytic properties. However, their conventional synthesis requires tedious multistep procedures and prolonged synthetic time, and the resulting bimetallics usually disperse unevenly and show poor stability. It is challenging to develop a facile and step-economic synthetic methodology for highly efficient bimetallic catalysts. In this study, we report an elegant metal complex-involved multicomponent assembly route to highly efficient Ru–Ni bimetallics in ordered mesoporous carbons (OMC). The fabrication of composition-tuned Ru–Ni bimetallics in OMC (Ru xNi 1–x–OMC, x = 0.5–0.9) was facilely realized via in situ construction of CTAB-directed cubic Ia3d chitosan-ruthenium–nickel–silica mesophasemore » before pyrolysis and silica removal. The resulting Ru xNi 1–x–OMC materials are in-depth characterized with X-ray diffraction, N 2 adsorption–desorption, transmission electron microscopy, infrared spectrum, and X-ray absorption fine structure. This facile fabrication method renders homogeneously dispersed Ru–Ni bimetallics embedded in the mesoporous carbonaceous framework and creates a highly active and stable Ru 0.9Ni 0.1–OMC catalyst for the hydrogenation of levulinic acid (LA) to prepare γ-valerolactone (GVL), a biomass-derived platform molecule with wide application in the preparation of renewable chemicals and liquid transportation fuels. A high TOF (>2000 h –1) was obtained, and the Ru 0.9Ni 0.1–OMC catalyst could be used at least 15 times without obvious loss of its catalytic performance.« less

  9. 3D-Printed Fluidic Devices for Nanoparticle Preparation and Flow-Injection Amperometry Using Integrated Prussian Blue Nanoparticle-Modified Electrodes

    PubMed Central

    Bishop, Gregory W.; Satterwhite, Jennifer E.; Bhakta, Snehasis; Kadimisetty, Karteek; Gillette, Kelsey M.; Chen, Eric; Rusling, James F.

    2015-01-01

    A consumer-grade fused filament fabrication (FFF) 3D printer was used to construct fluidic devices for nanoparticle preparation and electrochemical sensing. Devices were printed using poly(ethylene terephthalate) and featured threaded ports to connect polyetheretherketone (PEEK) tubing via printed fittings prepared from acrylonitrile butadiene styrene (ABS). These devices included channels designed to have 800 × 800 µm2 square cross sections and were semitransparent to allow visualization of the solution-filled channels. A 3D-printed device with a Y-shaped mixing channel was used to prepare Prussian blue nanoparticles (PBNPs) under flow rates of 100 to 2000 µL min−1. PBNPs were then attached to gold electrodes for hydrogen peroxide sensing. 3D-printed devices used for electrochemical measurements featured threaded access ports into which a fitting equipped with reference, counter, and PBNP-modified working electrodes could be inserted. PBNP-modified electrodes enabled amperometric detection of H2O2 in the 3D-printed channel by flow-injection analysis, exhibiting a detection limit of 100 nM and linear response up to 20 µM. These experiments show that a consumer-grade FFF printer can be used to fabricate low-cost fluidic devices for applications similar to those that have been reported with more expensive 3D-printing methods. PMID:25901660

  10. Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles

    NASA Astrophysics Data System (ADS)

    Eremenko, A. M.; Petrik, I. S.; Smirnova, N. P.; Rudenko, A. V.; Marikvas, Y. S.

    2016-01-01

    Effective method of obtaining of the bactericidal bandage materials by impregnation of cotton fabric by aqueous solutions of silver and copper salts followed by a certain regime of heat treatment is developed. The study of obtained materials by methods of optical spectroscopy, electron microscopy, and X-ray phase analysis showed the formation of crystalline silver nanoparticles (NPs) and bimetallic Ag/Cu composites with the corresponding surface plasmon resonance (SPR) bands in the absorption spectra. High antimicrobial and antimycotic properties of tissues with low concentrations of Ag and Ag/Cu nanoparticles (Ag/Cu NPs) (in the range 0.06-0.25 weight percent (wt%) for Ag and 0.015-0.13 wt% for Ag/Cu) is confirmed in experiments with a wide range of multidrug-resistant bacteria and fungi: Escherichia coli, Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, Candida albicans yeasts, and micromycetes . Textile materials with Ag NPs demonstrate high antibacterial activity, while fabrics doped with bimetallic composite Ag/Cu have pronounced antimycotic properties. Bactericidal and antifungal properties of the obtained materials do not change after a washing. Production of such materials is extremely fast, convenient, and cost-effective.

  11. Synthesis and characterization of electro-explosive magnetic nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Bakina, O. V.; Glazkova, E. A.; Svarovskaya, N. V.; Lerner, M. I.; Korovin, M. S.; Fomenko, A. N.

    2017-09-01

    Nowadays there are new magnetic nanostructures based on bioactive metals with low toxicity and high efficiency for a wide range of biomedical applications including drugs delivery, antimicrobial drugs design, cells' separation and contrasting. For such applications it is necessary to develop highly magnetic particles with less than 100 nm in size. In the present study magnetic nanoparticles Fe, Fe3O4 and bimetallic Cu/Fe with the average size of 60-90 nm have been synthesized by electrical explosion of wire in an oxygen or argon atmosphere. The produced nanoparticles have been characterized with transmission electron microscopy, X-ray phase analysis, and nitrogen thermal desorption. The synthesized particles have shown antibacterial activity to gram-positive (S. aureus, MRSA) and gramnegative (E. coli, P. aeruginosa) bacteria. According to the cytological data Fe, Fe3O4 and Cu/Fe nanoparticles have effectively inhibited viability of cancer cell lines Neuro-2a and J774. The obtained nanoparticles are promising for new antimicrobial drugs and antitumor agents' development.

  12. Modified kinetics of enzymes interacting with nanoparticles

    NASA Astrophysics Data System (ADS)

    Díaz, Sebastián. A.; Breger, Joyce C.; Malanoski, Anthony; Claussen, Jonathan C.; Walper, Scott A.; Ancona, Mario G.; Brown, Carl W.; Stewart, Michael H.; Oh, Eunkeu; Susumu, Kimihiro; Medintz, Igor L.

    2015-08-01

    Enzymes are important players in multiple applications, be it bioremediation, biosynthesis, or as reporters. The business of catalysis and inhibition of enzymes is a multibillion dollar industry and understanding the kinetics of commercial enzymes can have a large impact on how these systems are optimized. Recent advances in nanotechnology have opened up the field of nanoparticle (NP) and enzyme conjugates and two principal architectures for NP conjugate systems have been developed. In the first example the enzyme is bound to the NP in a persistent manner, here we find that key factors such as directed enzyme conjugation allow for enhanced kinetics. Through controlled comparative experiments we begin to tease out specific mechanisms that may account for the enhancement. The second system is based on dynamic interactions of the enzymes with the NP. The enzyme substrate is bound to the NP and the enzyme is free in solution. Here again we find that there are many variables , such as substrate positioning and NP selection, that modify the kinetics.

  13. Enantiomeric separations of chiral pharmaceuticals using chirally modified tetrahexahedral Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Shukla, N.; Yang, D.; Gellman, A. J.

    2016-06-01

    Tetrahexahedral (THH, 24-sided) Au nanoparticles modified with D- or L-cysteine (Cys) have been used as enantioselective separators of the chiral pharmaceutical propranolol (PLL) in solution phase. Polarimetry has been used to measure the rotation of linearly polarized light by solutions containing mixtures of PLL and Cys/THH-Au NPs with varying enantiomeric excesses of each. Polarimetry yields clear evidence of enantiospecific adsorption of PLL onto the Cys/THH-Au NPs. This extends prior work using propylene oxide as a test chiral probe, by using the crystalline THH Au NPs with well-defined facets to separate a real pharmaceutical. This work suggests that chiral nanoparticles, coupled with a density separation method such as centrifugation, could be used for enantiomeric purification of real pharmaceuticals. A simple robust model developed earlier has also been used to extract the enantiospecific equilibrium constants for R- and S-PLL adsorption onto the D- and L-Cys/THH-Au NPs.

  14. Microemulsion synthesis and magnetic properties of FexNi(1-x) alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Beygi, H.; Babakhani, A.

    2017-01-01

    This paper investigates synthesis of FexNi(1-x) bimetallic nanoparticles by microemulsion method. Through studying the mechanism of nanoparticles formation, it is indicated that synthesis of nanoparticles took placed by simultaneous reduction of metal ions and so nanoparticles structure is homogeneous alloy. FexNi(1-x) nanoparticles with different sizes, morphologies and compositions were synthesized by changing the microemulsion parameters such as water/surfactant/oil ratio, presence of co-surfactant and NiCl2·6H2O to FeCl2·4H2O molar ratio. Synthesized nanoparticles were characterized by transmission electron microscopy, particle size analysis, X-ray diffraction, atomic absorption and thermogravimetric analyses. The results indicated that, presence of butanol as co-surfactant led to chain-like arrangement of nanoparticles. Also, finer nanoparticles were synthesized by decreasing the amount of oil and water and increasing the amount of CTAB. The results of vibrating sample magnetometer suggested that magnetic properties of FexNi(1-x) alloy nanoparticles were affected by composition, size and morphology of the particles. Spherical and chain-like FexNi(1-x) alloy nanoparticles were superparamagnetic and ferromagnetic, respectively. Furthermore, higher iron in the composition of nanoparticles increases the magnetic properties.

  15. Doxorubicin-loaded glycyrrhetinic acid modified recombinant human serum albumin nanoparticles for targeting liver tumor chemotherapy.

    PubMed

    Qi, Wen-Wen; Yu, Hai-Yan; Guo, Hui; Lou, Jun; Wang, Zhi-Ming; Liu, Peng; Sapin-Minet, Anne; Maincent, Philippe; Hong, Xue-Chuan; Hu, Xian-Ming; Xiao, Yu-Ling

    2015-03-02

    Due to overexpression of glycyrrhetinic acid (GA) receptor in liver cancer cells, glycyrrhetinic acid modified recombinant human serum albumin (rHSA) nanoparticles for targeting liver tumor cells may result in increased therapeutic efficacy and decreased adverse effects of cancer therapy. In this study, doxorubicin (DOX) loaded and glycyrrhetinic acid modified recombinant human serum albumin nanoparticles (DOX/GA-rHSA NPs) were prepared for targeting therapy for liver cancer. GA was covalently coupled to recombinant human serum albumin nanoparticles, which could efficiently deliver DOX into liver cancer cells. The resultant GA-rHSA NPs exhibited uniform spherical shape and high stability in plasma with fixed negative charge (∼-25 mV) and a size about 170 nm. DOX was loaded into GA-rHSA NPs with a maximal encapsulation efficiency of 75.8%. Moreover, the targeted NPs (DOX/GA-rHSA NPs) showed increased cytotoxic activity in liver tumor cells compared to the nontargeted NPs (DOX/rHSA NPs, DOX loaded recombinant human serum albumin nanoparticles without GA conjugating). The targeted NPs exhibited higher cellular uptake in a GA receptor-positive liver cancer cell line than nontargeted NPs as measured by both flow cytometry and confocal laser scanning microscopy. Biodistribution experiments showed that DOX/GA-rHSA NPs exhibited a much higher level of tumor accumulation than nontargeted NPs at 1 h after injection in hepatoma-bearing Balb/c mice. Therefore, the DOX/GA-rHSA NPs could be considered as an efficient nanoplatform for targeting drug delivery system for liver cancer.

  16. Enhanced permeability of blood-brain barrier and targeting function of brain via borneol-modified chemically solid lipid nanoparticle.

    PubMed

    Song, Hui; Wei, Man; Zhang, Nan; Li, He; Tan, Xiaochuan; Zhang, Yujia; Zheng, Wensheng

    2018-01-01

    The incidence of central nervous system disease has increased in recent years. However, the transportation of drug is restricted by the blood-brain barrier, contributing to the poor therapeutic effect in the brain. Therefore, the development of a new brain-targeting drug delivery system has become the hotspot of pharmacy. Borneol, a simple bicyclic monoterpene extracted from Dryobalanops aromatica , can direct drugs to the upper body parts according to the theory of traditional Chinese medicine. Dioleoyl phosphoethanolamine (DOPE) was chemically modified by borneol as one of the lipid materials of solid lipid nanoparticle (SLN) in the present study. The borneol-modified chemically solid lipid nanoparticle (BO-SLN/CM), borneol-modified physically solid lipid nanoparticle (BO-SLN/PM), and SLN have similar diameter (of about 87 nm) and morphological characteristics. However, BO-SLN/CM has a lower cytotoxicity, higher cell uptake, and better blood-brain barrier permeability compared with BO-SLN/PM and SLN. BO-SLN/CM has a remarkable targeting function to the brain, while BO-SLN/ PM and SLNs are concentrated at the lung. The present study provides an excellent drug delivery carrier, BO-SLN/CM, having the application potential of targeting to the brain and permeating to the blood-brain barrier.

  17. Density and Shape Effects in the Acoustic Propulsion of Bimetallic Nanorod Motors.

    PubMed

    Ahmed, Suzanne; Wang, Wei; Bai, Lanjun; Gentekos, Dillon T; Hoyos, Mauricio; Mallouk, Thomas E

    2016-04-26

    Bimetallic nanorods are propelled without chemical fuels in megahertz (MHz) acoustic fields, and exhibit similar behaviors to single-metal rods, including autonomous axial propulsion and organization into spinning chains. Shape asymmetry determines the direction of axial movement of bimetallic rods when there is a small difference in density between the two metals. Movement toward the concave end of these rods is inconsistent with a scattering mechanism that we proposed earlier for acoustic propulsion, but is consistent with an acoustic streaming model developed more recently by Nadal and Lauga ( Phys. Fluids 2014 , 26 , 082001 ). Longer rods were slower at constant power, and their speed was proportional to the square of the power density, in agreement with the acoustic streaming model. The streaming model was further supported by a correlation between the disassembly of spinning chains of rods and a sharp decrease in the axial speed of autonomously moving motors within the levitation plane of the cylindrical acoustic cell. However, with bimetallic rods containing metals of different densities, a consistent polarity of motion was observed with the lighter metal end leading. Speed comparisons between single-metal rods of different densities showed that those of lower density are propelled faster. So far, these density effects are not explained in the streaming model. The directionality of bimetallic rods in acoustic fields is intriguing and offers some new possibilities for designing motors in which shape, material, and chemical asymmetry might be combined for enhanced functionality.

  18. Dewetting of polymer thin films on modified curved surfaces: preparation of polymer nanoparticles with asymmetric shapes by anodic aluminum oxide templates.

    PubMed

    Liu, Chih-Ting; Tsai, Chia-Chan; Chu, Chien-Wei; Chi, Mu-Huan; Chung, Pei-Yun; Chen, Jiun-Tai

    2018-04-18

    We study the dewetting behaviors of poly(methyl methacrylate) (PMMA) thin films coated in the cylindrical nanopores of anodic aluminum oxide (AAO) templates by thermal annealing. Self-assembled monolayers (SAMs) of n-octadecyltrichlorosilane (ODTS) are introduced to modify the pore surfaces of the AAO templates to induce the dewetting process. By using scanning electron microscopy (SEM), the dewetting-induced morphology transformation from the PMMA thin films to PMMA nanoparticles with asymmetric shapes can be observed. The sizes of the PMMA nanoparticles can be controlled by the original PMMA solution concentrations. The dewetting phenomena on the modified nanopores are explained by taking into account the excess intermolecular interaction free energy (ΔG). This work opens a new possibility for creating polymer nanoparticles with asymmetric shapes in confined geometries.

  19. Metastability and structural polymorphism in noble metals: the role of composition and metal atom coordination in mono- and bimetallic nanoclusters.

    PubMed

    Sanchez, Sergio I; Small, Matthew W; Bozin, Emil S; Wen, Jian-Guo; Zuo, Jian-Min; Nuzzo, Ralph G

    2013-02-26

    This study examines structural variations found in the atomic ordering of different transition metal nanoparticles synthesized via a common, kinetically controlled protocol: reduction of an aqueous solution of metal precursor salt(s) with NaBH₄ at 273 K in the presence of a capping polymer ligand. These noble metal nanoparticles were characterized at the atomic scale using spherical aberration-corrected scanning transmission electron microscopy (C(s)-STEM). It was found for monometallic samples that the third row, face-centered-cubic (fcc), transition metal [(3M)-Ir, Pt, and Au] particles exhibited more coherently ordered geometries than their second row, fcc, transition metal [(2M)-Rh, Pd, and Ag] analogues. The former exhibit growth habits favoring crystalline phases with specific facet structures while the latter samples are dominated by more disordered atomic arrangements that include complex systems of facets and twinning. Atomic pair distribution function (PDF) measurements further confirmed these observations, establishing that the 3M clusters exhibit longer ranged ordering than their 2M counterparts. The assembly of intracolumn bimetallic nanoparticles (Au-Ag, Pt-Pd, and Ir-Rh) using the same experimental conditions showed a strong tendency for the 3M atoms to template long-ranged, crystalline growth of 2M metal atoms extending up to over 8 nm beyond the 3M core.

  20. Scaling-Relation-Based Analysis of Bifunctional Catalysis: The Case for Homogeneous Bimetallic Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Mie; Medford, Andrew J.; Norskov, Jens K.

    Here, we present a generic analysis of the implications of energetic scaling relations on the possibilities for bifunctional gains at homogeneous bimetallic alloy catalysts. Such catalysts exhibit a large number of interface sites, where second-order reaction steps can involve intermediates adsorbed at different active sites. Using different types of model reaction schemes, we show that such site-coupling reaction steps can provide bifunctional gains that allow for a bimetallic catalyst composed of two individually poor catalyst materials to approach the activity of the optimal monomaterial catalyst. However, bifunctional gains cannot result in activities higher than the activity peak of the monomaterialmore » volcano curve as long as both sites obey similar scaling relations, as is generally the case for bimetallic catalysts. These scaling-relation-imposed limitations could be overcome by combining different classes of materials such as metals and oxides.« less

  1. Scaling-Relation-Based Analysis of Bifunctional Catalysis: The Case for Homogeneous Bimetallic Alloys

    DOE PAGES

    Andersen, Mie; Medford, Andrew J.; Norskov, Jens K.; ...

    2017-04-14

    Here, we present a generic analysis of the implications of energetic scaling relations on the possibilities for bifunctional gains at homogeneous bimetallic alloy catalysts. Such catalysts exhibit a large number of interface sites, where second-order reaction steps can involve intermediates adsorbed at different active sites. Using different types of model reaction schemes, we show that such site-coupling reaction steps can provide bifunctional gains that allow for a bimetallic catalyst composed of two individually poor catalyst materials to approach the activity of the optimal monomaterial catalyst. However, bifunctional gains cannot result in activities higher than the activity peak of the monomaterialmore » volcano curve as long as both sites obey similar scaling relations, as is generally the case for bimetallic catalysts. These scaling-relation-imposed limitations could be overcome by combining different classes of materials such as metals and oxides.« less

  2. Tannic acid-modified silver nanoparticles for wound healing: the importance of size

    PubMed Central

    Orlowski, Piotr; Zmigrodzka, Magdalena; Tomaszewska, Emilia; Ranoszek-Soliwoda, Katarzyna; Czupryn, Monika; Antos-Bielska, Malgorzata; Szemraj, Janusz; Celichowski, Grzegorz; Grobelny, Jaroslaw

    2018-01-01

    Introduction Silver nanoparticles (AgNPs) have been shown to promote wound healing and to exhibit antimicrobial properties against a broad range of bacteria. In our previous study, we prepared tannic acid (TA)-modified AgNPs showing a good toxicological profile and immunomodulatory properties useful for potential dermal applications. Methods In this study, in vitro scratch assay, antimicrobial tests, modified lymph node assay as well as a mouse splint wound model were used to access the wound healing potential of TA-modified and unmodified AgNPs. Results TA-modified but not unmodified AgNPs exhibited effective antibacterial activity against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli and stimulated migration of keratinocytes in vitro. The tests using the mouse splint wound model showed that TA-modified 33 and 46 nm AgNPs promoted better wound closure, epithelialization, angiogenesis and formation of the granulation tissue. Additionally, AgNPs elicited expression of VEGF-α, PDGF-β and TGF-β1 cytokines involved in wound healing more efficiently in comparison to control and TA-treated wounds. However, both the lymph node assay and the wound model showed that TA-modified AgNPs sized 13 nm can elicit strong inflammatory response not only during wound healing but also when applied to the damaged skin. Conclusion TA-modified AgNPs sized >26 nm promote wound healing better than TA-modified or unmodified AgNPs. These findings suggest that TA-modified AgNPs sized >26 nm may have a promising application in wound management. PMID:29497293

  3. Comparison of magnetic carboxymethyl chitosan nanoparticles and cation exchange resin for the efficient purification of lysine-tagged small ubiquitin-like modifier protease.

    PubMed

    Li, Junhua; Zhang, Yang; Shen, Fei; Yang, Yanjun

    2012-10-15

    A fusion tag that can be purified by the cheap ion-exchanger based on the ionic binding force may provide a cost-effective scheme over other affinity fusion tags. Small ubiquitin-like modifier (SUMO) protease derived from Saccharomyces cerevisiae was fused with a poly lysine tag containing 10 lysine residues at its C-terminus and then expressed in Escherichia coli. The ionic binding force provided by the ploy lysine tag allowed the selective recovery of the small ubiquitin-like modifier protease from recombinant E. coli cell extracts. A preliminary comparative study of the adsorption and elution of poly lysine tagged SUMO protease on Amberlite Cobalamion and magnetite carboxymethyl chitosan nanoparticles was performed. Amberlite Cobalamion and magnetite nanoparticles had the similar elution profile due to the common functional groups - carboxyl groups. The maximum dynamic adsorption capacity of Amberlite Cobalamion and magnetite nanoparticles reached 36.8 and 211.4 mg/g, respectively. The lysine-tagged protease can be simply purified by magnetite nanoparticles from cell extracts with higher purity than that by Amberlite Cobalamion. The superparamagnetic nanoparticles possess the advantages of highly specific, fast and excellent binding of a larger amount of lysine tagged SUMO modifier protease, and it is also easier to separate from the crude biological process liquors compared with the conventional separation techniques of polycationic amino acids fusion proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Three dimensional graphene foam supported platinum-ruthenium bimetallic nanocatalysts for direct methanol and direct ethanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Kung, Chih-Chien; Lin, Po-Yuan; Xue, Yuhua; Akolkar, Rohan; Dai, Liming; Yu, Xiong; Liu, Chung-Chiun

    2014-06-01

    A novel composite material of hierarchically structured platinum-ruthenium (PtRu) nanoparticles grown on large surface area three dimensional graphene foam (3D GF) is reported. 3D GF was incorporated with PtRu bimetallic nanoparticles as an electrochemical nanocatalyst for methanol and ethanol oxidation. PtRu/3D GF nanocatalyst showed a higher tolerance to poisoning by CO and exhibited improved catalytic activity for both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Cyclic voltammetry (CV) results and long-term cycling stability tests demonstrated that GF provided a promising platform for the development of electrochemical nanocatalysts. Specifically, PtRu/3D GF nanocatalyst showed excellent catalytic activity toward MOR and EOR compared with PtRu/Graphene (Commercial graphene), PtRu/C (Vulcan XC-72R carbon), and PtRu alone. The crystal size of PtRu on 3D GF was reduced to 3.5 nm and its active surface area was enhanced to 186.2 m2 g-1. Consequently, the MOR and EOR rates were nearly doubled on PtRu/3D GF compared to those on PtRu/Graphene.

  5. Fabrication and surface-enhanced Raman scattering (SERS) of Ag/Au bimetallic films on Si substrates

    NASA Astrophysics Data System (ADS)

    Wang, Chaonan; Fang, Jinghuai; Jin, Yonglong; Cheng, Mingfei

    2011-11-01

    Ag films on Si substrates were fabricated by immersion plating and served as sacrificial materials for preparation of Ag/Au bimetallic films by galvanic replacement reaction. The formation procedure of films on the surface of Si was studied by scanning electron microscopy (SEM), which revealed Ag films with island and dendritic morphologies experienced novel structural evolution process during galvanic replacement reaction, and nanostructures with holes were produced within the resultant Ag/Au bimetallic films. SERS activity both of sacrificial Ag films and resultant Ag/Au bimetallic films was investigated by using crystal violet as an analyte. It has been shown that SERS signals increased with the process of galvanic substitution and reached intensity significantly stronger than that obtained from pure Ag films.

  6. Structural characterization of multimetallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mukundan, Vineetha

    Bimetallic and trimetallic alloy nanoparticles have enhanced catalytic activities due to their unique structural properties. Using in situ time-resolved synchrotron based x-ray diffraction, we investigated the structural properties of nanoscale catalysts undergoing various heat treatments. Thermal treatment brings about changes in particle size, morphology, dispersion of metals on support, alloying, surface electronic properties, etc. First, the mechanisms of coalescence and grain growth in PtNiCo nanoparticles supported on planar silica on silicon were examined in detail in the temperature range 400-900°C. The sintering process in PtNiCo nanoparticles was found to be accompanied by lattice contraction and L10 chemical ordering. The mass transport involved in sintering is attributed to grain boundary diffusion and its corresponding activation energy is estimated from the data analysis. Nanoscale alloying and phase transformations in physical mixtures of Pd and Cu ultrafine nanoparticles were also investigated in real time with in situ synchrotron based x-ray diffraction complemented by ex situ high-resolution transmission electron microscopy. PdCu nanoparticles are interesting because they are found to be more efficient as catalysts in ethanol oxidation reaction (EOR) than monometallic Pd catalysts. The combination of metal support interaction and reactive/non-reactive environment was found to determine the thermal evolution and ultimate structure of this binary system. The composition of the as prepared Pd:Cu mixture in this study was 34% Pd and 66% Cu. At 300°C, the nanoparticles supported on silica and carbon black intermix to form a chemically ordered CsCl-type (B2) alloy phase. The B2 phase transforms into a disordered fcc alloy at higher temperature (>450°C). The alloy nanoparticles supported on silica and carbon black are homogeneous in volume, but evidence was found of Pd surface enrichment. In sharp contrast, when supported on alumina, the two metals

  7. Bimetallic catalysis for C–C and C–X coupling reactions

    PubMed Central

    Pye, Dominic R.

    2017-01-01

    Bimetallic catalysis represents an alternative paradigm for coupling chemistry that complements the more traditional single-site catalysis approach. In this perspective, recent advances in bimetallic systems for catalytic C–C and C–X coupling reactions are reviewed. Behavior which complements that of established single-site catalysts is highlighted. Two major reaction classes are covered. First, generation of catalytic amounts of organometallic species of e.g. Cu, Au, or Ni capable of transmetallation to a Pd co-catalyst (or other traditional cross-coupling catalyst) has allowed important new C–C coupling technologies to emerge. Second, catalytic transformations involving binuclear bond-breaking and/or bond-forming steps, in some cases involving metal–metal bonds, represent a frontier area for C–C and C–X coupling processes.

  8. An Electrochemical DNA Sensing System Using Modified Nanoparticle Probes for Detecting Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Sakamoto, Hiroaki; Amano, Yoshihisa; Satomura, Takenori; Suye, Shin-Ichiro

    2017-01-01

    We have developed a novel, highly sensitive, biosensing system for detecting methicillin-resistant Staphylococcus aureus (MRSA). The system employs gold nanoparticles (AuNPs), magnetic nanoparticles (mNPs), and an electrochemical detection method. We have designed and synthesized ferrocene- and single-stranded DNA-conjugated nanoparticles that hybridize to MRSA DNA. Hybridized complexes are easily separated by taking advantage of mNPs. A current response could be obtained through the oxidation of ferrocene on the AuNP surface when a constant potential of +250 mV vs. Ag/AgCl is applied. The enzymatic reaction of L-proline dehydrogenase provides high signal amplification. This sensing system, using a nanoparticle-modified probe, has the ability to detect 10 pM of genomic DNA from MRSA without amplification by the polymerase chain reaction. Current responses are linearly related to the amount of genomic DNA in the range of 10-166 pM. Selectivity is confirmed by demonstrating that this sensing system could distinguish MRSA from Staphylococcus aureus (SA) DNA.

  9. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides.

    PubMed

    Kulesza, Pawel J; Pieta, Izabela S; Rutkowska, Iwona A; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A

    2013-11-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO 3 , MoO 3 , TiO 2 , ZrO 2 , V 2 O 5 , and CeO 2 ) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems.

  10. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides

    PubMed Central

    Kulesza, Pawel J.; Pieta, Izabela S.; Rutkowska, Iwona A.; Wadas, Anna; Marks, Diana; Klak, Karolina; Stobinski, Leszek; Cox, James A.

    2013-01-01

    Different approaches to enhancement of electrocatalytic activity of noble metal nanoparticles during oxidation of small organic molecules (namely potential fuels for low-temperature fuel cells such as methanol, ethanol and formic acid) are described. A physical approach to the increase of activity of catalytic nanoparticles (e.g. platinum or palladium) involves nanostructuring to obtain highly dispersed systems of high surface area. Recently, the feasibility of enhancing activity of noble metal systems through the formation of bimetallic (e.g. PtRu, PtSn, and PdAu) or even more complex (e.g. PtRuW, PtRuSn) alloys has been demonstrated. In addition to possible changes in the electronic properties of alloys, specific interactions between metals as well as chemical reactivity of the added components have been postulated. We address and emphasize here the possibility of utilization of noble metal and alloyed nanoparticles supported on robust but reactive high surface area metal oxides (e.g. WO3, MoO3, TiO2, ZrO2, V2O5, and CeO2) in oxidative electrocatalysis. This paper concerns the way in which certain inorganic oxides and oxo species can act effectively as supports for noble metal nanoparticles or their alloys during electrocatalytic oxidation of hydrogen and representative organic fuels. Among important issues are possible changes in the morphology and dispersion, as well as specific interactions leading to the improved chemisorptive and catalytic properties in addition to the feasibility of long time operation of the discussed systems. PMID:24443590

  11. Surface-modified solid lipid nanoparticles for oral delivery of docetaxel: enhanced intestinal absorption and lymphatic uptake

    PubMed Central

    Cho, Hyun-Jong; Park, Jin Woo; Yoon, In-Soo; Kim, Dae-Duk

    2014-01-01

    Docetaxel is a potent anticancer drug, but development of an oral formulation has been hindered mainly due to its poor oral bioavailability. In this study, solid lipid nanoparticles (SLNs) surface-modified by Tween 80 or D-alpha-tocopheryl poly(ethylene glycol 1000) succinate (TPGS 1000) were prepared and evaluated in terms of their feasibility as oral delivery systems for docetaxel. Tween 80-emulsified and TPGS 1000-emulsified tristearin-based lipidic nanoparticles were prepared by a solvent-diffusion method, and their particle size distribution, zeta potential, drug loading, and particle morphology were characterized. An in vitro release study showed a sustained-release profile of docetaxel from the SLNs compared with an intravenous docetaxel formulation (Taxotere®). Tween 80-emulsified SLNs showed enhanced intestinal absorption, lymphatic uptake, and relative oral bioavailability of docetaxel compared with Taxotere in rats. These results may be attributable to the absorption-enhancing effects of the tristearin nanoparticle. Moreover, compared with Tween 80-emulsified SLNs, the intestinal absorption and relative oral bioavailability of docetaxel in rats were further improved in TPGS 1000-emulsified SLNs, probably due to better inhibition of drug efflux by TPGS 1000, along with intestinal lymphatic uptake. Taken together, it is worth noting that these surface-modified SLNs may serve as efficient oral delivery systems for docetaxel. PMID:24531717

  12. The feasibility of using magnetic nanoparticles modified as gene vector.

    PubMed

    Chen, D; Tang, Q; Xue, W; Wang, X

    2010-06-01

    To evaluate the feasibility of using magnetic nanoparticles (MNPs) as gene vector and the effect of magnetic field on efficiency of transfection. Magnetic nanoparticles were prepared by controlling some chemical reaction parameters through a partially reduction precipitation method with ferric chloride aqueous solution as precursor material. The surface of particles was modified by polyethyleneimine (PEI) agents. The appearance, the size distribution, structure and phase constitute of MNPs were characterized by Transmission electron microscope (TEM), X-ray diffraction (XRD); the potential of absorbing DNA of MNPs was analysed by electrophoresis. Transfection was determined by delivering reporter gene, PGL2-control encoding luciferase, to different cell lines using MNPs-PLL as vector. The effect of magnetic field on the efficiency of transfection was determined using Nd-Fe-B permanent magnet. Foreign gene could be delivered to various cell lines by MNPs-PLL and expressed with high efficiency but the transfection efficiency and time course varied in the different cell lines studied. Magnetic field could enhance the efficiency of transfection by 5-10 fold. MNPs- PLL can be used as a novel non-viral gene vector in vitro, which offers a basis for gene delivery in vivo.

  13. Uptake of Retinoic Acid-Modified PMMA Nanoparticles in LX-2 and Liver Tissue by Raman Imaging and Intravital Microscopy.

    PubMed

    Yildirim, Turgay; Matthäus, Christian; Press, Adrian T; Schubert, Stephanie; Bauer, Michael; Popp, Jürgen; Schubert, Ulrich S

    2017-10-01

    A primary amino-functionalized methyl methacrylate-based statistical copolymer is covalently coupled with retinoic acid (RA) and a fluorescent dye (DY590) in order to investigate the feasibility of the RA containing polymeric nanoparticles for Raman imaging studies and to study the possible selectivity of RA for hepatic stellate cells via intravital microscopy. Cationic nanoparticles are prepared by utilizing the nanoprecipitation method using modified polymers. Raman studies show that RA functional nanoparticles can be detectable in all tested cells without any need of additional label. Moreover, intravital microscopy indicates that DY590 is eliminated through the hepatobiliary route but not if used as covalently attached tracing molecule for nanoparticles. However, it is a suitable probe for sensitive detection of polymeric nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Carbon nanotube supported PdAg nanoparticles for electrocatalytic oxidation of glycerol in anion exchange membrane fuel cells

    DOE PAGES

    Benipal, Neeva; Qi, Ji; Dalian Univ. of Technology, Dalian; ...

    2017-03-10

    Electro-oxidation of alcohol is the key reaction occurring at the anode of a direct alcohol fuel cell (DAFC), in which both reaction kinetics (rate) and selectivity (to deep oxidation products) need improvement to obtain higher power density and fuel utilization for a more efficient DAFC. We recently found that a PdAg bimetallic nanoparticle catalyst is more efficient than Pd for alcohol oxidation: Pd can facilitate deprotonation of alcohol in a base electrolyte, while Ag can promote intermediate aldehyde oxidation and cleavage of C-single bondC bond of C 3 species to C 2 species. Furthermore, a combination of the two activemore » sites (Pd and Ag) with two different functions, can simultaneously improve the reaction rates and deeper oxidation products of alcohols. In this continuing work, Pd, Ag mono, and bimetallic nanoparticles supported on carbon nanotubes (Ag/CNT, Pd/CNT, Pd 1Ag 1/CNT, and Pd 1Ag 3/CNT) were prepared using an aqueous-phase reduction method; they served as working catalysts for studying electrocatalytic oxidation of glycerol in an anion-exchange membrane-based direct glycerol fuel cell. Combined XRD, TEM, and HAADF-STEM analyses performed to fully characterize as-prepared catalysts suggested that they have small particle sizes: 2.0 nm for Pd/CNT, 2.3 nm for PdAg/CNT, 2.4 nm for PdAg 3/CNT, and 13.9 nm for Ag/CNT. XPS further shows that alloying with Ag results in more metal state Pd presented on the surface, and this may be related to their higher direct glycerol fuel cell (DGFC) performances. Single DGFC performance and product analysis results show that PdAg bimetallic nanoparticles can not only improve the glycerol reaction rate so that higher power output can be achieved, but also facilitate deep oxidation of glycerol so that a higher faradaic efficiency and fuel utilization can be achieved along with optimal reaction conditions (increased base-to-fuel ratio). Half-cell electrocatalytic activity measurement and single fuel cell product

  15. Design of an inhalable dry powder formulation of DOTAP-modified PLGA nanoparticles loaded with siRNA.

    PubMed

    Jensen, Ditte Krohn; Jensen, Linda Boye; Koocheki, Saeid; Bengtson, Lasse; Cun, Dongmei; Nielsen, Hanne Mørck; Foged, Camilla

    2012-01-10

    Matrix systems based on biocompatible and biodegradable polymers like the United States Food and Drug Administration (FDA)-approved polymer poly(DL-lactide-co-glycolide acid) (PLGA) are promising for the delivery of small interfering RNA (siRNA) due to favorable safety profiles, sustained release properties and improved colloidal stability, as compared to polyplexes. The purpose of this study was to design a dry powder formulation based on cationic lipid-modified PLGA nanoparticles intended for treatment of severe lung diseases by pulmonary delivery of siRNA. The cationic lipid dioleoyltrimethylammoniumpropane (DOTAP) was incorporated into the PLGA matrix to potentiate the gene silencing efficiency. The gene knock-down level in vitro was positively correlated to the weight ratio of DOTAP in the particles, and 73% silencing was achieved in the presence of 10% (v/v) serum at 25% (w/w) DOTAP. Optimal properties were found for nanoparticles modified with 15% (w/w) DOTAP, which reduced the gene expression with 54%. This formulation was spray-dried with mannitol into nanocomposite microparticles of an aerodynamic size appropriate for lung deposition. The spray-drying process did not affect the physicochemical properties of the readily re-dispersible nanoparticles, and most importantly, the in vitro gene silencing activity was preserved during spray-drying. The siRNA content in the powder was similar to the theoretical loading and the siRNA was intact, suggesting that the siRNA is preserved during the spray-drying process. Finally, X-ray powder diffraction analysis demonstrated that mannitol remained in a crystalline state upon spray-drying with PLGA nanoparticles suggesting that the sugar excipient might exert its stabilizing effect by sterical inhibition of the interactions between adjacent nanoparticles. This study demonstrates that spray-drying is an excellent technique for engineering dry powder formulations of siRNA nanoparticles, which might enable the local

  16. Sulfur-containing bimetallic metal organic frameworks with multi-fold helix as anode of lithium ion batteries.

    PubMed

    Li, Meng-Ting; Kong, Ning; Lan, Ya-Qian; Su, Zhong-Min

    2018-04-03

    We utilise the dual synthesis strategy in terms of bimetallic inorganic building blocks and sulfur containing organic ligand. A novel sulfur-containing bimetallic metal organic framework (Fe2Co-TPDC) with two types of 4-fold meso-helical structures has been successfully synthesized. Benefitting from the uniform distribution of active sulfur sites and the structural stability of the mixed-metallic method, Fe2Co-TPDC can efficiently prevent a shuttle behavior of sulfur and endow a commendable specific capacity. As far as we know, this is the first time that a sulfur-containing bimetallic crystalline MOF with helical structure and prominent specific capacity and remarkable cycling stability has served as an electrode material for LIBs.

  17. Voltammetric sensor for buzepide methiodide determination based on TiO2 nanoparticle-modified carbon paste electrode.

    PubMed

    Kalanur, Shankara S; Seetharamappa, Jaldappagari; Prashanth, S N

    2010-07-01

    In this work, we have prepared nano-material modified carbon paste electrode (CPE) for the sensing of an antidepressant, buzepide methiodide (BZP) by incorporating TiO2 nanoparticles in carbon paste matrix. Electrochemical studies indicated that the TiO2 nanoparticles efficiently increased the electron transfer kinetics between drug and the electrode. Compared with the nonmodified CPE, the TiO2-modified CPE greatly enhances the oxidation signal of BZP with negative shift in peak potential. Based on this, we have proposed a sensitive, rapid and convenient electrochemical method for the determination of BZP. Under the optimized conditions, the oxidation peak current of BZP is found to be proportional to its concentration in the range of 5 x 10(-8) to 5 x 10(-5)M with a detection limit of 8.2 x 10(-9)M. Finally, this sensing method was successfully applied for the determination of BZP in human blood serum and urine samples with good recoveries. 2010 Elsevier B.V. All rights reserved.

  18. An electrochemical genosensor for Salmonella typhi on gold nanoparticles-mercaptosilane modified screen printed electrode.

    PubMed

    Das, Ritu; Sharma, Mukesh K; Rao, Vepa K; Bhattacharya, B K; Garg, Iti; Venkatesh, V; Upadhyay, Sanjay

    2014-10-20

    In this work, we fabricated a system of integrated self-assembled layer of organosilane 3-mercaptopropyltrimethoxy silane (MPTS) on the screen printed electrode (SPE) and electrochemically deposited gold nanoparticle for Salmonella typhi detection employing Vi gene as a molecular marker. Thiolated DNA probe was immobilized on a gold nanoparticle (AuNP) modified SPE for DNA hybridization assay using methylene blue as redox (electroactive) hybridization indicator, and signal was monitored by differential pulse voltammetry (DPV) method. The modified SPE was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) method. The DNA biosensor showed excellent performances with high sensitivity and good selectivity. The current response was linear with the target sequence concentrations ranging from 1.0 × 10(-11) to 0.5 × 10(-8)M and the detection limit was found to be 50 (± 2.1)pM. The DNA biosensor showed good discrimination ability to the one-base, two-base and three-base mismatched sequences. The fabricated genosensor could also be regenerated easily and reused for three to four times for further hybridization studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Graphite felt modified with bismuth nanoparticles as negative electrode in a vanadium redox flow battery.

    PubMed

    Suárez, David J; González, Zoraida; Blanco, Clara; Granda, Marcos; Menéndez, Rosa; Santamaría, Ricardo

    2014-03-01

    A graphite felt decorated with bismuth nanoparticles was studied as negative electrode in a vanadium redox flow battery (VRFB). The results confirm the excellent electrochemical performance of the bismuth modified electrode in terms of the reversibility of the V(3+) /V(2+) redox reactions and its long-term cycling performance. Moreover a mechanism that explains the role that Bi nanoparticles play in the redox reactions in this negative half-cell is proposed. Bi nanoparticles favor the formation of BiHx , an intermediate that reduces V(3+) to V(2+) and, therefore, inhibits the competitive irreversible reaction of hydrogen formation (responsible for the commonly observed loss of Coulombic efficiency of VRFBs). Thus, the total charge consumed during the cathodic sweep in this electrode is used to reduce V(3+) to V(2+) , resulting in a highly reversible and efficient process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ion irradiation synthesis of Ag-Au bimetallic nanospheroids in SiO2 glass substrate with tunable surface plasmon resonance frequency

    NASA Astrophysics Data System (ADS)

    Meng, Xuan; Shibayama, Tamaki; Yu, Ruixuan; Takayanagi, Shinya; Watanabe, Seiichi

    2013-08-01

    Ag-Au bimetallic nanospheroids with tunable localized surface plasmon resonance (LSPR) were synthesized by 100 keV Ar-ion irradiation of 30 nm Ag-Au bimetallic films deposited on SiO2 glass substrates. A shift of the LSPR peaks toward shorter wavelengths was observed up to an irradiation fluence of 1.0 × 1017 cm-2, and then shifted toward the longer wavelength because of the increase of fragment volume under ion irradiation. Further control of LSPR frequency over a wider range was realized by modifying the chemical components. The resulting LSPR frequencies lie between that of the pure components, and an approximate linear shift of the LSPR toward the longer wavelength with the Au concentration was achieved, which is in good agreement with the theoretical calculations based on Gans theory. In addition, the surface morphology and compositions were examined with a scanning electron microscope equipped with an energy dispersive spectrometer, and microstructural characterizations were performed using a transmission electron microscope. The formation of isolated photosensitive Ag-Au nanospheroids with a FCC structure partially embedded in the SiO2 substrate was confirmed, which has a potential application in solid-state devices.

  1. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy.

    PubMed

    Min, Kyung Hyun; Park, Kyeongsoon; Kim, Yoo-Shin; Bae, Sang Mun; Lee, Seulki; Jo, Hyung Gon; Park, Rang-Woon; Kim, In-San; Jeong, Seo Young; Kim, Kwangmeyung; Kwon, Ick Chan

    2008-05-08

    To prepare a water-insoluble camptothecin (CPT) delivery carrier, hydrophobically modified glycol chitosan (HGC) nanoparticles were constructed by chemical conjugation of hydrophobic 5beta-cholanic acid moieties to the hydrophilic glycol chitosan backbone. Insoluble anticancer drug, CPT, was easily encapsulated into HGC nanoparticles by a dialysis method and the drug loading efficiency was above 80%. CPT-encapsulated HGC (CPT-HGC) nanoparticles formed nano-sized self-aggregates in aqueous media (280-330 nm in diameter) and showed sustained release of CPT for 1 week. Also, HGC nanoparticles effectively protected the active lactone ring of CPT from the hydrolysis under physiological condition, due to the encapsulation of CPT into the hydrophobic cores in the HGC nanoparticles. The CPT-HGC nanoparticles exhibited significant antitumor effects and high tumor targeting ability towards MDA-MB231 human breast cancer xenografts subcutaneously implanted in nude mice. Tumor growth was significantly inhibited after i.v. injection of CPT-HGC nanoparticles at doses of 10 mg/kg and 30 mg/kg, compared to free CPT at dose of 30 mg/kg. The significant antitumor efficacy of CPT-HGC nanoparticles was attributed to the ability of the nanoparticles to show both prolonged blood circulation and high accumulation in tumors, as confirmed by near infrared (NIR) fluorescence imaging systems. Thus, the delivery of CPT to tumor tissues at a high concentration, with the assistance of HGC nanoparticles, exerted a potent therapeutic effect. These results reveal the promising potential of HGC nanoparticles-encapsulated CPT as a stable and effective drug delivery system in cancer therapy.

  2. A Genetically Modified Tobacco Mosaic Virus that can Produce Gold Nanoparticles from a Metal Salt Precursor

    PubMed Central

    Love, Andrew J.; Makarov, Valentine V.; Sinitsyna, Olga V.; Shaw, Jane; Yaminsky, Igor V.; Kalinina, Natalia O.; Taliansky, Michael E.

    2015-01-01

    We genetically modified tobacco mosaic virus (TMV) to surface display a characterized peptide with potent metal ion binding and reducing capacity (MBP TMV), and demonstrate that unlike wild type TMV, this construct can lead to the formation of discrete 10–40 nm gold nanoparticles when mixed with 3 mM potassium tetrachloroaurate. Using a variety of analytical physicochemical approaches it was found that these nanoparticles were crystalline in nature and stable. Given that the MBP TMV can produce metal nanomaterials in the absence of chemical reductants, it may have utility in the green production of metal nanomaterials. PMID:26617624

  3. Fe3O4 nanoparticles modified by CD-containing star polymer for MRI and drug delivery.

    PubMed

    Cha, Ruitao; Li, Juanjuan; Liu, Yang; Zhang, Yifan; Xie, Qian; Zhang, Mingming

    2017-10-01

    Fe 3 O 4 nanoparticles with ultrasmall sizes show good T 1 or T 1 +T 2 contrast abilities, and have attracted considerable interest in the field of magnetic resonance imaging (MRI) contrast agents. For effective biomedical applications, the colloidal stability and biocompatibility of the Fe 3 O 4 nanoparticles need to be improved without reducing MRI relaxivity. In this paper, star polymers were used as coating materials to modify Fe 3 O 4 nanoparticles in view of their dense molecular architecture with moderate flexibility. The star polymer was composed of a β-cyclodextrin (β-CD) core and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) arms. Meanwhile, reduced glutathione (GSH), as a model drug, was also associated with the star polymer. Thus, a new platform for simultaneous diagnosis and treatment was achieved. Compared to the Fe 3 O 4 nanoparticles coated with linear polymers, the Fe 3 O 4 nanoparticles coated with star polymers (Fe 3 O 4 @GCP) possessed higher GSH association capacity and better stability in serum-containing solution. GSH could be released from Fe 3 O 4 @GCP nanoparticles in response to pH value of the solution. Since the sulfhydryl group on GSH is able to combine free radicals, Fe 3 O 4 @GCP nanoparticles exhibited less cytotoxicity compared to the Fe 3 O 4 nanoparticles without including GSH. Furthermore, the nanoparticles could also serve as good T 1 MRI contrast agent, and the MRI relaxivity of Fe 3 O 4 @GCP nanoparticles did not decrease after coated with the star polymer. These results indicate that the precisely designed Fe 3 O 4 @GCP nanoparticles could be used as a versatile promising theranostic nano-platform. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Mesoporous Silica Nanoparticle Delivery of Chemically Modified siRNA Against TWIST1 Leads to Reduced Tumor Burden

    PubMed Central

    Finlay, James; Roberts, Cai M.; Dong, Juyao; Zink, Jeffrey I.; Tamanoi, Fuyuhiko; Glackin, Carlotta A.

    2015-01-01

    Growth and progression of solid tumors depends on the integration of multiple pro-growth and survival signals, including the induction of angiogenesis. TWIST1 is a transcription factor whose reactivation in tumors leads to epithelial to mesenchymal transition (EMT), including increased cancer cell stemness, survival, and invasiveness. Additionally, TWIST1 drives angiogenesis via activation of IL-8 and CCL2, independent of VEGF signaling. In this work, results suggest that chemically modified siRNA against TWIST1 reverses EMT both in vitro and in vivo. siRNA delivery with a polyethyleneimine-coated mesoporous silica nanoparticle (MSN) led to reduction of TWIST1 target genes and migratory potential in vitro. In mice bearing xenograft tumors, weekly intravenous injections of the siRNA-nanoparticle complexes resulted in decreased tumor burden together with a loss of CCL2 suggesting a possible anti-angiogenic response. Therapeutic use of TWIST1 siRNA delivered via MSNs has the potential to inhibit tumor growth and progression in many solid tumor types. Chemically modified siRNA against TWIST1 was complexed to cation-coated mesoporous silica nanoparticles and tested in vitro and in vivo. In cell culture experiments, siRNA reduced expression of TWIST1 and its target genes, and reduced cell migration. In mice, injections of the siRNA-nanoparticle complex led to reduced tumor weight. Data suggest that diminished tumor burden was the result of reduced CCL2 expression and angiogenesis following TWIST1 knockdown. PMID:26115637

  5. Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition.

    PubMed

    Hutchings, Graham J; Kiely, Christopher J

    2013-08-20

    The discovery that supported gold nanoparticles are exceptionally effective catalysts for redox reactions has led to an explosion of interest in gold nanoparticles. In addition, incorporating a second metal as an alloy with gold can enhance the catalyst performance even more. The addition of small amounts of gold to palladium, in particular, and vice versa significantly enhances the activity of supported gold-palladium nanoparticles as redox catalysts through what researchers believe is an electronic effect. In this Account, we describe and discuss methodologies for the synthesis of supported gold-palladium nanoparticles and their use as heterogeneous catalysts. In general, three key challenges need to be addressed in the synthesis of bimetallic nanoparticles: (i) control of the particle morphology, (ii) control of the particle size distribution, and (iii) control of the nanoparticle composition. We describe three methodologies to address these challenges. First, we discuss the relatively simple method of coimpregnation. Impregnation allows control of particle morphology during alloy formation but does not control the particle compositions or the particle size distribution. Even so, we contend that this method is the best preparation method in the catalyst discovery phase of any project, since it permits the investigation of many different catalyst structures in one experiment, which may aid the identification of new catalysts. A second approach, sol-immobilization, allows enhanced control of the particle size distribution and the particle morphology, but control of the composition of individual nanoparticles is not possible. Finally, a modified impregnation method can allow the control of all three of these crucial parameters. We discuss the effect of the different methodologies on three redox reactions: benzyl alcohol oxidation, toluene oxidation, and the direct synthesis of hydrogen peroxide. We show that the coimpregnation method provides the best reaction

  6. Modified bamboo rayon-copper nanoparticle composites as antibacterial textiles.

    PubMed

    Teli, M D; Sheikh, Javed

    2013-10-01

    In the current study the bamboo rayon fabric grafted with acrylamide was utilized as a backbone to immobilize copper nanoprticles. The grafted bamboo rayon was first treated with CuSO4 followed by chemical reduction. The modified product was characterized using FTIR, TGA and SEM. The characteristic color developed after reduction was measured spectrophotometrically. The grafted bamboo rayon with Cu nanoparticles was then evaluated for antibacterial activity against both gram positive and gram negative bacteria and the durability of their antibacterial activity after washing. The product showed antibacterial activity against both types of bacterias which was found to be durable till 50 washes. The material can be claimed as suitable candidate for medical textile applications to prevent cross-infections. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Self-assembly of bimetallic AuxPd1-x alloy nanoparticles via dewetting of bilayers through the systematic control of temperature, thickness, composition and stacking sequence

    NASA Astrophysics Data System (ADS)

    Kunwar, Sundar; Pandey, Puran; Sui, Mao; Bastola, Sushil; Lee, Jihoon

    2018-03-01

    Bimetallic alloy nanoparticles (NPs) are attractive materials for various applications with their morphology and elemental composition dependent optical, electronic, magnetic and catalytic properties. This work demonstrates the evolution of AuxPd1-x alloy nanostructures by the solid-state dewetting of sequentially deposited bilayers of Au and Pd on sapphire (0001). Various shape, size and configuration of AuxPd1‑x alloy NPs are fabricated by the systematic control of annealing temperature, deposition thickness, composition as well as stacking sequence. The evolution of alloy nanostructures is attributed to the surface diffusion, interface diffusion between bilayers, surface and interface energy minimization, Volmer-Weber growth model and equilibrium configuration. Depending upon the temperature, the surface morphologies evolve with the formation of pits, grains and voids and gradually develop into isolated semi-spherical alloy NPs by the expansion of voids and agglomeration of Au and Pd adatoms. On the other hand, small isolated to enlarged elongated and over-grown layer-like alloy nanostructures are fabricated due to the coalescence, partial diffusion and inter-diffusion with the increased bilayer thickness. In addition, the composition and stacking sequence of bilayers remarkably affect the final geometry of AuxPd1‑x nanostructures due to the variation in the dewetting process. The optical analysis based on the UV–vis-NIR reflectance spectra reveals the surface morphology dependent plasmonic resonance, scattering, reflection and absorption properties of AuxPd1‑x alloy nanostructures.

  8. Physicochemical properties of protein-modified silver nanoparticles in seawater

    NASA Astrophysics Data System (ADS)

    Zhong, Hangyue

    2013-10-01

    This study investigated the physicochemical properties of silver nanoparticles stabilized with casein protein in seawater. UV?vis spectrometry, dynamic light scattering (DLS), and transmission electron microscopy (TEM) were applied to measure the stability of silver nanoparticles in seawater samples. The obtained results show an increased aggregation tendency of silver nanoparticles in seawater, which could be attributed its relatively high cation concentration that could neutralize the negatively charges adsorbed on the surface of silver nanoparticles and reduce the electrostatic repulsion forces between nanoparticles. Similarly, due to the surface charge screening process, the zeta potential of silver nanoparticles in seawater decreased. This observation further supported the aggregation behavior of silver nanoparticles. This study also investigated the dissolution of silver nanoparticles in seawater. Result shows that the silver nanoparticle dissolution in DI water is lower than in seawater, which is attributed to the high Cl? concentration present in seawater. As Cl? can react with silver and form soluble AgCl complex, dissolution of silver nanoparticles was enhanced. Finally, this study demonstrated that silver nanoparticles are destabilized in seawater condition. These results may be helpful in understanding the environmental risk of discharged silver nanoparticles in seawater conditions.

  9. Development of Modified Titanium Nitride Nanoparticles as Potential Contrast Material for Photoacoustic Imaging

    DTIC Science & Technology

    2014-05-10

    based on modified fullerenes , carbon nanotubes and gold nanoparticles (including nanocages and nanorods) were very recently reported.4 Nevertheless, this...ratios of 1:1.6 and 1:16, in order to form an onion- like core-shell structure, containing TiN core and shells of TPP (inner shell) and chitosan (outer...These results nicely correlate with the cells viability results and the formation of the ROS is most likely the cause of the cells death (Figure 24

  10. Efficient low-temperature soot combustion by bimetallic Ag-Cu/SBA-15 catalysts.

    PubMed

    Wen, Zhaojun; Duan, Xinping; Hu, Menglin; Cao, Yanning; Ye, Linmin; Jiang, Lilong; Yuan, Youzhu

    2018-02-01

    In this study, the effects of copper (Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag-Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5Ag 1 -Cu 0.1 /SBA-15 catalyst, on which the soot combustion starts at T ig =225°C with a T 50 =285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C (Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag-Cu nanolloy particles, downsizing the mean particle size from 3.7nm in monometallic catalyst to 2.6nm in bimetallic Ag-Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance. Copyright © 2017. Published by Elsevier B.V.

  11. Novel one-pot facile technique for preparing nanoparticles modified with hydrophilic polymers on the surface via block polymer-assisted emulsification/evaporation process.

    PubMed

    Kanakubo, Yurie; Ito, Fuminori; Murakami, Yoshihiko

    2010-06-15

    In this paper, we describe the novel facile technique for preparing surface-modified nanoparticles via newly developed amphiphilic block polymer-assisted emulsification/evaporation process. The effects of both organic solvents (the dispersed phase) and stabilizer in the external continuous phase on the stability of o/w emulsion was firstly investigated to clarify the optimal conditions for stable emulsification/evaporation processes. We found that the organic solvent mixture having a density adjusted to be 1.00 g/cm(3) gave the highly stable o/w emulsion. Under the optimal conditions, the relatively monodisperse poly(ethylene glycol) (PEG)-modified poly(lactide-co-glycolide) (PLGA) nanoparticle was obtained and characterized. The introduction of PEG to the particle surface was suggested by the fact that the diameter and zeta potential of the particle increased as the amount of added block polymer increased. The facile method presented in this paper can be a universal tool for modifying the surface of nanoparticles, even though reactive groups are not present on the surface. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Neutral bimetallic transition metal phenoxyiminato catalysts and related polymerization methods

    DOEpatents

    Marks, Tobin J [Evanston, IL; Rodriguez, Brandon A [Evanston, IL; Delferro, Massimiliano [Chicago, IL

    2012-08-07

    A catalyst composition comprising a neutral bimetallic diphenoxydiiminate complex of group 10 metals or Ni, Pd or Pt is disclosed. The compositions can be used for the preparation of homo- and co-polymers of olefinic monomer compounds.

  13. Removal of Crystal Violet by Using Reduced-Graphene-Oxide-Supported Bimetallic Fe/Ni Nanoparticles (rGO/Fe/Ni): Application of Artificial Intelligence Modeling for the Optimization Process

    PubMed Central

    Ruan, Wenqian; Qi, Jimei; Hou, Yu; Cao, Rensheng; Wei, Xionghui

    2018-01-01

    Reduced-graphene-oxide-supported bimetallic Fe/Ni nanoparticles were synthesized in this study for the removal of crystal violet (CV) dye from aqueous solutions. This material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), Raman spectroscopy, N2-sorption, and X-ray photoelectron spectroscopy (XPS). The influence of independent parameters (namely, initial dye concentration, initial pH, contact time, and temperature) on the removal efficiency were investigated via Box–Behnken design (BBD). Artificial intelligence (i.e., artificial neural network, genetic algorithm, and particle swarm optimization) was used to optimize and predict the optimum conditions and obtain the maximum removal efficiency. The zero point of charge (pHZPC) of rGO/Fe/Ni composites was determined by using the salt addition method. The experimental equilibrium data were fitted well to the Freundlich model for the evaluation of the actual behavior of CV adsorption, and the maximum adsorption capacity was estimated as 2000.00 mg/g. The kinetic study discloses that the adsorption processes can be satisfactorily described by the pseudo-second-order model. The values of Gibbs free energy change (ΔG0), entropy change (ΔS0), and enthalpy change (ΔH0) demonstrate the spontaneous and endothermic nature of the adsorption of CV onto rGO/Fe/Ni composites. PMID:29789483

  14. Removal of Crystal Violet by Using Reduced-Graphene-Oxide-Supported Bimetallic Fe/Ni Nanoparticles (rGO/Fe/Ni): Application of Artificial Intelligence Modeling for the Optimization Process.

    PubMed

    Ruan, Wenqian; Hu, Jiwei; Qi, Jimei; Hou, Yu; Cao, Rensheng; Wei, Xionghui

    2018-05-22

    Reduced-graphene-oxide-supported bimetallic Fe/Ni nanoparticles were synthesized in this study for the removal of crystal violet (CV) dye from aqueous solutions. This material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), Raman spectroscopy, N₂-sorption, and X-ray photoelectron spectroscopy (XPS). The influence of independent parameters (namely, initial dye concentration, initial pH, contact time, and temperature) on the removal efficiency were investigated via Box⁻Behnken design (BBD). Artificial intelligence (i.e., artificial neural network, genetic algorithm, and particle swarm optimization) was used to optimize and predict the optimum conditions and obtain the maximum removal efficiency. The zero point of charge (pH ZPC ) of rGO/Fe/Ni composites was determined by using the salt addition method. The experimental equilibrium data were fitted well to the Freundlich model for the evaluation of the actual behavior of CV adsorption, and the maximum adsorption capacity was estimated as 2000.00 mg/g. The kinetic study discloses that the adsorption processes can be satisfactorily described by the pseudo-second-order model. The values of Gibbs free energy change (Δ G ⁰), entropy change (Δ S ⁰), and enthalpy change (Δ H ⁰) demonstrate the spontaneous and endothermic nature of the adsorption of CV onto rGO/Fe/Ni composites.

  15. Separation of pharmacologically active nitrogen-containing compounds on silica gels modified with 6,10-ionene, dextran sulfate, and gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ioutsi, A. N.; Shapovalova, E. N.; Ioutsi, V. A.; Mazhuga, A. G.; Shpigun, O. A.

    2017-12-01

    New stationary phases for HPLC are obtained via layer-by-layer deposition of polyelectrolytes and studied: (1) silica gel modified layer-by-layer with 6,10-ionene and dextran sulfate (Sorbent 1); (2) silica gel twice subjected to the above modification (Sorbent 2); and (3) silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate (Sorbent 3). The effect the content of the organic solvent in the mobile phase and the concentration and pH of the buffer solution have on the chromatographic behavior of several pharmacologically active nitrogen-containing compounds is studied. The sorbents are stable during the process and allow the effective separation of beta-blockers, calcium channel blockers, alpha-agonists, and antihistamines. A mixture of caffeine, nadolol, tetrahydrozoline, pindolol, orphenadrine, doxylamine, carbinoxamine, and chlorphenamine is separated in 6.5 min on the silica gel modified with 6,10-ionene, gold nanoparticles, and dextran sulfate.

  16. Diiridium Bimetallic Complexes Function as a Redox Switch To Directly Split Carbonate into Carbon Monoxide and Oxygen.

    PubMed

    Chen, Tsun-Ren; Wu, Fang-Siou; Lee, Hsiu-Pen; Chen, Kelvin H-C

    2016-03-23

    A pair of diiridium bimetallic complexes exhibit a special type of oxidation-reduction reaction that could directly split carbonate into carbon monoxide and molecular oxygen via a low-energy pathway needing no sacrificial reagent. One of the bimetallic complexes, Ir(III)(μ-Cl)2Ir(III), can catch carbonato group from carbonate and reduce it to CO. The second complex, the rare bimetallic complex Ir(IV)(μ-oxo)2Ir(IV), can react with chlorine to release O2 by the oxidation of oxygen ions with synergistic oxidative effect of iridium ions and chlorine atoms. The activation energy needed for the key reaction is quite low (∼20 kJ/mol), which is far less than the dissociation energy of the C═O bond in CO2 (∼750 kJ/mol). These diiridium bimetallic complexes could be applied as a redox switch to split carbonate or combined with well-known processes in the chemical industry to build up a catalytic system to directly split CO2 into CO and O2.

  17. Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces

    DOEpatents

    Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.

    2016-01-26

    Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.

  18. Electro-oxidation of methanol in alkaline conditions using Pd-Ni nanoparticles prepared from organometallic precursors and supported on carbon vulcan

    NASA Astrophysics Data System (ADS)

    Manzo-Robledo, A.; Costa, Natália J. S.; Philippot, K.; Rossi, Liane M.; Ramírez-Meneses, E.; Guerrero-Ortega, L. P. A.; Ezquerra-Quiroga, S.

    2015-12-01

    Oxidation of low-molecular weight alcohols as energy sources using metal nanoparticles has attracted considerable interest for use as a power source in portable electronic devices. In this work, a series of mono- and bimetallic nanoparticles based on palladium and nickel (Pd, Pd90Ni10, Pd50Ni50, Pd10Ni90, and Ni) have been synthesized from organometallic precursors, namely tris(dibenzylideneacetone) dipalladium(0), Pd2(dba)3, and bis(1,5-cyclooctadiene)nickel(0), Ni(cod)2. Well-defined metal particles in the nanometric scale from 4.2 to 6.3 nm were observed by transmission electron microscopy. The as-prepared nanoparticles were mixed with a carbon Vulcan matrix (10 % wt. of the catalyst in turn) for investigation as electrocatalysts in methanol oxidation reaction (MOR) in alkaline conditions. The i- E profiles from cyclic voltammetry for the monometallic systems indicated a redox process attributed only to palladium or nickel, as expected. With the bimetallic nanomaterials, the redox process and the i- E characteristics are functions of the amount of nickel associated to palladium. From a fundamental point of view, it has been established that the OH ions' interfacial interaction and the MOR kinetics are affected by the presence of nickel (decreasing the faradic current) as supported by the current versus potential profiles obtained as a function of methanol concentration and with temperature variation.

  19. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts

    DOE PAGES

    Hunt, Sean T.; Milina, Maria; Alba-Rubio, Ana C.; ...

    2016-05-20

    Here, we demonstrated the self-assembly of transition metal carbide nanoparticles coated with atomically thin noble metal monolayers by carburizing mixtures of noble metal salts and transition metal oxides encapsulated in removable silica templates. This approach allows for control of the final core-shell architecture, including particle size, monolayer coverage, and heterometallic composition. Carbon-supported Ti 0.1W 0.9C nanoparticles coated with Pt or bimetallic PtRu monolayers exhibited enhanced resistance to sintering and CO poisoning, achieving an order of magnitude increase in specific activity over commercial catalysts for methanol electrooxidation after 10,000 cycles. These core-shell materials provide a new direction to reduce the loading,more » enhance the activity, and increase the stability of noble metal catalysts.« less

  20. Optimized synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and their characteristics

    PubMed Central

    Cheng, Mingrong; Chen, Houxiang; Wang, Yong; Xu, Hongzhi; He, Bing; Han, Jiang; Zhang, Zhiping

    2014-01-01

    The nanoparticle drug delivery system, which uses natural or synthetic polymeric material as a carrier to deliver drugs to targeted tissues, has a broad prospect for clinical application for its targeting, slow-release, and biodegradable properties. Here, we used chitosan (CTS) and hepatoma cell-specific binding molecule glycyrrhetinic acid to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by infrared (IR) spectra and hydrogen-1 nuclear magnetic resonance. The GA-CTS/5-fluorouracil (5-FU) nanoparticles were synthesized by combining GA-CTS and 5-FU and conjugating 5-FU onto the GA-CTS nanomaterial. The central composite design was performed to optimize the preparation process as CTS:tripolyphosphate sodium (TPP) weight ratio =5:1, 5-FU:CTS weight ratio =1:1, TPP concentration =0.05% (w/v), and cross-link time =50 minutes. GA-CTS/5-FU nanoparticles had a mean particle size of 193.7 nm, a polydispersity index of 0.003, a zeta potential of +27.4 mV, and a drug loading of 1.56%. The GA-CTS/5-FU nanoparticle had a protective effect on the drug against plasma degrading enzyme, and provided a sustained release system comprising three distinct phases of quick, steady, and slow release. Our study showed that the peak time, half-life time, mean residence time and area under the curve of GA-CTS/5-FU were longer or more than those of the 5-FU group, but the maximum concentration (Cmax) was lower. We demonstrated that the nanoparticles accumulated in the liver and have significantly inhibited tumor growth in an orthotropic liver cancer mouse model. PMID:24493926

  1. Development of antibody-modified chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier as a strategy for inhibiting HIV replication in astrocytes.

    PubMed

    Gu, Jijin; Al-Bayati, Karam; Ho, Emmanuel A

    2017-08-01

    RNA interference (RNAi)-mediated gene silencing offers a novel treatment and prevention strategy for human immunodeficiency virus (HIV) infection. HIV was found to infect and replicate in human brain cells and can cause neuroinfections and neurological deterioration. We designed dual-antibody-modified chitosan/small interfering RNA (siRNA) nanoparticles to deliver siRNA across the blood-brain barrier (BBB) targeting HIV-infected brain astrocytes as a strategy for inhibiting HIV replication. We hypothesized that transferrin antibody and bradykinin B2 antibody could specifically bind to the transferrin receptor (TfR) and bradykinin B2 receptor (B2R), respectively, and deliver siRNA across the BBB into astrocytes as potential targeting ligands. In this study, chitosan nanoparticles (CS-NPs) were prepared by a complex coacervation method in the presence of siRNA, and antibody was chemically conjugated to the nanoparticles. The antibody-modified chitosan nanoparticles (Ab-CS-NPs) were spherical in shape, with an average particle size of 235.7 ± 10.2 nm and a zeta potential of 22.88 ± 1.78 mV. The therapeutic potential of the nanoparticles was evaluated based on their cellular uptake and gene silencing efficiency. Cellular accumulation and gene silencing efficiency of Ab-CS-NPs in astrocytes were significantly improved compared to non-modified CS-NPs and single-antibody-modified CS-NPs. These results suggest that the combination of anti-Tf antibody and anti-B2 antibody significantly increased the knockdown effect of siRNA-loaded nanoparticles. Thus, antibody-mediated dual-targeting nanoparticles are an efficient and promising delivery strategy for inhibiting HIV replication in astrocytes. Graphical abstract Graphic representation of dual-antibody-conjugated chitosan nanoparticles for the targeted delivery of siRNA across the blood-brain barrier (BBB) for inhibiting HIV replication in astrocytes. a Nanoparticle delivery to the BBB and penetration. b Tf

  2. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles.

    PubMed

    Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela

    2017-08-01

    Continuous flow experiments (450 mL min -1 ) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10 5  UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.

  3. Influence of Poly(vinylpyrrolidone) concentration on properties of silver nanoparticles manufactured by modified thermal treatment method

    PubMed Central

    Saion, Elias; Gharibshahi, Elham; Shaari, Abdul Halim; Matori, Khamirul Amin

    2017-01-01

    Very narrow and pure silver nanoparticles were synthesized by modified thermal treatment method via oxygen and nitrogen flow in succession. The structural and optical properties of the calcined silver nanoparticles at 600°C with diverse Poly(vinylpyrrolidone) concentrations varied from 2% to 4% were studied by means of different techniques. Fourier transform infrared spectroscopy was used to monitor the production of pure Ag nanoparticles at a given Poly(vinylpyrrolidone) concentration. The X-ray powder diffraction spectra are evidence for the transformation of the amorphous sample at 30°C to the cubic crystalline nanostructures at the calcination temperatures for all Poly(vinylpyrrolidone) concentrations. The transmission electron microscopy images showed the creation of spherical silver nanoparticles with the average particle size decreased by increasing Poly(vinylpyrrolidone) concentrations from 4.61 nm at 2% to 2.49 nm at 4% Poly(vinylpyrrolidone). The optical properties were investigated by means of UV–vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing Poly(vinylpyrrolidone) concentrations from 2.83 eV at 2% Poly(vinylpyrrolidone) to 2.94 eV at 4% Poly(vinylpyrrolidone) due to decreasing particle size. This was due to less attraction between conduction electrons and metal ions for smaller particle size corresponding to fewer atoms that made up the metal nanoparticles. PMID:29045414

  4. Carbon nanostructured films modified by metal nanoparticles supported on filtering membranes for electroanalysis.

    PubMed

    Paramo, Erica; Palmero, Susana; Heras, Aranzazu; Colina, Alvaro

    2018-02-01

    A novel methodology to prepare sensors based on carbon nanostructures electrodes modified by metal nanoparticles is proposed. As a proof of concept, a novel bismuth nanoparticle/carbon nanofiber (Bi-NPs/CNF) electrode and a carbon nanotube (CNT)/gold nanoparticle (Au-NPs) have been developed. Bi-NPs/CNF films were prepared by 1) filtering a dispersion of CNFs on a polytetrafluorethylene (PTFE) filter, and 2) filtering a dispersion of Bi-NPs chemically synthesized through this CNF/PTFE film. Next the electrode is prepared by sticking the Bi-NPs/CNF/PTFE film on a PET substrate. In this work, Bi-NPs/CNF ratio was optimized using a Cd 2+ solution as a probe sample. The Cd anodic stripping peak intensity, registered by differential pulse anodic stripping voltammetry (DPASV), is selected as target signal. The voltammograms registered for Cd stripping with this Bi-NPs/CNF/PTFE electrode showed well-defined and highly reproducible electrochemical. The optimized Bi-NPs/CNF electrode exhibits a Cd 2+ detection limit of 53.57 ppb. To demonstrate the utility and versatility of this methodology, single walled carbon nanotubes (SWCNTs) and gold nanoparticles (Au-NPs) were selected to prepare a completely different electrode. Thus, the new Au-NPs/SWCNT/PTFE electrode was tested with a multiresponse technique. In this case, UV/Vis absorption spectroelectrochemistry experiments were carried out for studying dopamine, demonstrating the good performance of the Au-NPs/SWCNT electrode developed. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Modifying mesoporous silica nanoparticles to avoid the metabolic deactivation of 6-mercaptopurine and methotrexate in combinatorial chemotherapy

    NASA Astrophysics Data System (ADS)

    Wang, Wenjing; Fang, Chenjie; Wang, Xiaozhu; Chen, Yuxi; Wang, Yaonan; Feng, Wei; Yan, Chunhua; Zhao, Ming; Peng, Shiqi

    2013-06-01

    Mesoporous silica nanoparticles with amino and thiol groups (MSNSN) were prepared and covalently modified with methotrexate and 6-mercaptopurine to form 6-MP-MSNSN-MTX. In the presence of DTT, 6-MP-MSNSN-MTX gradually releases 6-MP. In rat plasma, 6-MP-MSNSN-MTX effectively inhibits the metabolic deactivation of 6-MP and MTX. 6-MP-MSNSN-MTX could be an agent for long-acting chemotherapy.Mesoporous silica nanoparticles with amino and thiol groups (MSNSN) were prepared and covalently modified with methotrexate and 6-mercaptopurine to form 6-MP-MSNSN-MTX. In the presence of DTT, 6-MP-MSNSN-MTX gradually releases 6-MP. In rat plasma, 6-MP-MSNSN-MTX effectively inhibits the metabolic deactivation of 6-MP and MTX. 6-MP-MSNSN-MTX could be an agent for long-acting chemotherapy. Electronic supplementary information (ESI) available: Experimental details of the synthesis and in vitro and in vivo assays. See DOI: 10.1039/c3nr00227f

  6. A single-step aerosol process for in-situ surface modification of nanoparticles: Preparation of stable aqueous nanoparticle suspensions.

    PubMed

    Sapra, Mahak; Pawar, Amol Ashok; Venkataraman, Chandra

    2016-02-15

    Surface modification of nanoparticles during aerosol or gas-phase synthesis, followed by direct transfer into liquid media can be used to produce stable water-dispersed nanoparticle suspensions. This work investigates a single-step, aerosol process for in-situ surface-modification of nanoparticles. Previous studies have used a two-step sublimation-condensation mechanism following droplet drying, for surface modification, while the present process uses a liquid precursor containing two solutes, a matrix lipid and a surface modifying agent. A precursor solution in chloroform, of stearic acid lipid, with 4 %w/w of surface-active, physiological molecules [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)-sodium salt (DPPG) or 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol) 2000]-ammonium salt (DPPE-PEG)] was processed in an aerosol reactor at a low gas temperatures. The surface modified nanoparticles were characterized for morphology, surface composition and suspension properties. Spherical, surface-modified lipid nanoparticles with median mobility diameters in the range of 105-150nm and unimodal size distributions were obtained. Fourier transform infra-red spectroscopy (FTIR) measurements confirmed the presence of surface-active molecules on external surfaces of modified lipid nanoparticles. Surface modified nanoparticles exhibited improved suspension stability, compared to that of pure lipid nanoparticles for a period of 30days. Lowest aggregation was observed in DPPE-PEG modified nanoparticles from combined electrostatic and steric effects. The study provides a single-step aerosol method for in-situ surface modification of nanoparticles, using minimal amounts of surface active agents, to make stable, aqueous nanoparticle suspensions. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. D-Glucose as a modifying agent in gelatin/collagen matrix and reservoir nanoparticles for Calendula officinalis delivery.

    PubMed

    Lam, P-L; Kok, S H-L; Bian, Z-X; Lam, K-H; Tang, J C-O; Lee, K K-H; Gambari, R; Chui, C-H

    2014-05-01

    Gelatin/Collagen-based matrix and reservoir nanoparticles require crosslinkers to stabilize the formed nanosuspensions, considering that physical instability is the main challenge of nanoparticulate systems. The use of crosslinkers improves the physical integrity of nanoformulations under the-host environment. Aldehyde-based fixatives, such as formaldehyde and glutaraldehyde, have been widely applied to the crosslinking process of polymeric nanoparticles. However, their potential toxicity towards human beings has been demonstrated in many previous studies. In order to tackle this problem, D-glucose was used during nanoparticle formation to stabilize the gelatin/collagen-based matrix wall and reservoir wall for the deliveries of Calendula officinalis powder and oil, respectively. In addition, therapeutic selectivity between malignant and normal cells could be observed. The C. officinalis powder loaded nanoparticles significantly strengthened the anti-cancer effect towards human breast adenocarcinoma MCF7 cells and human hepatoma SKHep1 cells when compared with the free powder. On the contrary, the nanoparticles did not show significant cytotoxicity towards normal esophageal epithelial NE3 cells and human skin keratinocyte HaCaT cells. On the basis of these evidences, D-glucose modified gelatin/collagen matrix nanoparticles containing C. officinalis powder might be proposed as a safer alternative vehicle for anti-cancer treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. A Functional Iron Oxide Nanoparticles Modified with PLA-PEG-DG as Tumor-Targeted MRI Contrast Agent.

    PubMed

    Xiong, Fei; Hu, Ke; Yu, Haoli; Zhou, Lijun; Song, Lina; Zhang, Yu; Shan, Xiuhong; Liu, Jianping; Gu, Ning

    2017-08-01

    Tumor targeting could greatly promote the performance of magnetic nanomaterials as MRI (Magnetic Resonance Imaging) agent for tumor diagnosis. Herein, we reported a novel magnetic nanoparticle modified with PLA (poly lactic acid)-PEG (polyethylene glycol)-DG (D-glucosamine) as Tumor-targeted MRI Contrast Agent. In this work, we took use of the D-glucose passive targeting on tumor cells, combining it on PLA-PEG through amide reaction, and then wrapped the PLA-PEG-DG up to the Fe 3 O 4 @OA NPs. The stability and anti phagocytosis of Fe 3 O 4 @OA@PLA-PEG-DG was tested in vitro; the MRI efficiency and toxicity was also detected in vivo. These functional magnetic nanoparticles demonstrated good biocompatibility and stability both in vitro and in vivo. Cell experiments showed that Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles exist good anti phagocytosis and high targetability. In vivo MRI images showed that the contrast effect of Fe 3 O 4 @OA@PLA-PEG-DG nanoparticles prevailed over the commercial non tumor-targeting magnetic nanomaterials MRI agent at a relatively low dose. The DG can validly enhance the tumor-targetting effect of Fe 3 O 4 @OA@PLA-PEG nanoparticle. Maybe MRI agents with DG can hold promise as tumor-targetting development in the future.

  9. Determination of material distribution in heading process of small bimetallic bar

    NASA Astrophysics Data System (ADS)

    Presz, Wojciech; Cacko, Robert

    2018-05-01

    The electrical connectors mostly have silver contacts joined by riveting. In order to reduce costs, the core of the contact rivet can be replaced with cheaper material, e.g. copper. There is a wide range of commercially available bimetallic (silver-copper) rivets on the market for the production of contacts. Following that, new conditions in the riveting process are created because the bi-metal object is riveted. In the analyzed example, it is a small size object, which can be placed on the border of microforming. Based on the FEM modeling of the load process of bimetallic rivets with different material distributions, the desired distribution was chosen and the choice was justified. Possible material distributions were parameterized with two parameters referring to desirable distribution characteristics. The parameter: Coefficient of Mutual Interactions of Plastic Deformations and the method of its determination have been proposed. The parameter is determined based of two-parameter stress-strain curves and is a function of these parameters and the range of equivalent strains occurring in the analyzed process. The proposed method was used for the upsetting process of the bimetallic head of the electrical contact. A nomogram was established to predict the distribution of materials in the head of the rivet and the appropriate selection of a pair of materials to achieve the desired distribution.

  10. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium.

    PubMed

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2013-01-14

    We have demonstrated a rapid and general strategy to synthesize novel three-dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as-prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as-synthesized three-dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well-defined sponge-like network, large-scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen-gas sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry

    PubMed Central

    Deplanche, Kevin; Merroun, Mohamed L.; Casadesus, Merixtell; Tran, Dung T.; Mikheenko, Iryna P.; Bennett, James A.; Zhu, Ju; Jones, Ian P.; Attard, Gary A.; Wood, J.; Selenska-Pobell, Sonja; Macaskie, Lynne E.

    2012-01-01

    We report a novel biochemical method based on the sacrificial hydrogen strategy to synthesize bimetallic gold (Au)–palladium (Pd) nanoparticles (NPs) with a core/shell configuration. The ability of Escherichia coli cells supplied with H2 as electron donor to rapidly precipitate Pd(II) ions from solution is used to promote the reduction of soluble Au(III). Pre-coating cells with Pd(0) (bioPd) dramatically accelerated Au(III) reduction, with the Au(III) reduction rate being dependent upon the initial Pd loading by mass on the cells. Following Au(III) addition, the bioPd–Au(III) mixture rapidly turned purple, indicating the formation of colloidal gold. Mapping of bio-NPs by energy dispersive X-ray microanalysis suggested Au-dense core regions and peripheral Pd but only Au was detected by X-ray diffraction (XRD) analysis. However, surface analysis of cleaned NPs by cyclic voltammetry revealed large Pd surface sites, suggesting, since XRD shows no crystalline Pd component, that layers of Pd atoms surround Au NPs. Characterization of the bimetallic particles using X-ray absorption spectroscopy confirmed the existence of Au-rich core and Pd-rich shell type bimetallic biogenic NPs. These showed comparable catalytic activity to chemical counterparts with respect to the oxidation of benzyl alcohol, in air, and at a low temperature (90°C). PMID:22399790

  12. The chemical properties of bimetallic surfaces: Importance of ensemble and electronic effects in the adsorption of sulfur and SO 2

    NASA Astrophysics Data System (ADS)

    Rodriguez, José A.

    The understanding of the interaction of sulfur with bimetallic surfaces is a critical issue for preventing the deactivation of hydrocarbon reforming catalysts and for the design of better hydrodesulfurization catalysts. The alloying or combination of two metals can lead to materials with special chemical properties due to an interplay of “ensemble” and “electronic” effects. In recent years, several new interesting phenomena have been discovered when studying the interaction of sulfur with bimetallic surfaces using the modern techniques of surface science. Very small amounts of sulfur are able to induce dramatic changes in the morphology of bimetallic surfaces that combine noble metals (Cu, Ag, Au) and transition metals. This phenomenon can lead to big modifications in the activity and selectivity of bimetallic catalysts used for hydrocarbon reforming. In many cases, bimetallic bonding produces a significant redistribution of charge around the bonded metals. The electronic perturbations associated with the formation of a heteronuclear metal-metal bond can affect the reactivity of the bonded metals toward sulfur. This can be a very important issue to consider when trying to minimize the negative effects of sulfur poisoning (Sn/Pt versus Ag/Pt and Cu/Pt catalysts) or when trying to improve the performance of desulfurization catalysts (Co/Mo and Ni/Mo systems). Clearly much more work is necessary in this area, but new concepts are emerging that can be useful for designing more efficient bimetallic catalysts.

  13. Superparamagnetic Nanoparticles as High Efficiency Magnetic Resonance Imaging T2 Contrast Agent.

    PubMed

    Sousa, Fernanda; Sanavio, Barbara; Saccani, Alessandra; Tang, Yun; Zucca, Ileana; Carney, Tamara M; Mastropietro, Alfonso; Jacob Silva, Paulo H; Carney, Randy P; Schenk, Kurt; Omrani, Arash O; Huang, Ping; Yang, Lin; Rønnow, Henrik M; Stellacci, Francesco; Krol, Silke

    2017-01-18

    Nanoparticle-based magnetic resonance imaging T 2 negative agents are of great interest, and much effort is devoted to increasing cell-loading capability while maintaining low cytotoxicity. Herein, two classes of mixed-ligand protected magnetic-responsive, bimetallic gold/iron nanoparticles (Au/Fe NPs) synthesized by a two-step method are presented. Their structure, surface composition, and magnetic properties are characterized. The two classes of sulfonated Au/Fe NPs, with an average diameter of 4 nm, have an average atomic ratio of Au to Fe equal to 7 or 8, which enables the Au/Fe NPs to be superparamagnetic with a blocking temperature of 56 K and 96 K. Furthermore, preliminary cellular studies reveal that both Au/Fe NPs show very limited toxicity. MRI phantom experiments show that r 2 /r 1 ratio of Au/Fe NPs is as high as 670, leading to a 66% reduction in T 2 relaxation time. These nanoparticles provide great versatility and potential for nanoparticle-based diagnostics and therapeutic applications and as imaging contrast agents.

  14. Facile preparation of dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil for application as a SERS-substrate

    NASA Astrophysics Data System (ADS)

    Yi, Zao; Tan, Xiulan; Niu, Gao; Xu, Xibin; Li, Xibo; Ye, Xin; Luo, Jiangshan; Luo, Binchi; Wu, Weidong; Tang, Yongjian; Yi, Yougen

    2012-05-01

    Dendritic Ag-Pd bimetallic nanostructures have been synthesized on the surface of Cu foil via a multi-stage galvanic replacement reaction (MGRR) of Ag dendrites in a Na2PdCl4 solution. After five stages of replacement reaction, one obtained structures with protruding Ag-Pd flakes; these will mature into many porous structures with a few Ag atoms that are left over dendrites. The dendritic Ag-Pd bimetallic nanostructures were characterized by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), selected area electron diffraction (SAED) and X-ray photoelectron spectroscopy (XPS). The morphology of the products strongly depended on the stage of galvanic replacement reaction and reaction temperature. The morphology and composition-dependent surface-enhanced Raman scattering (SERS) of the as-synthesized Ag-Pd bimetallic nanostructures were investigated. The effectiveness of these dendritic Ag-Pd bimetallic nanostructures on the surface of Cu foil as substrates toward SERS detection was evaluated by using rhodamine 6G (R6G) as a probe molecule. The results indicate that as-synthesized dendritic Ag-Pd bimetallic nanostructures are good candidates for SERS spectroscopy.

  15. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria.

    PubMed

    Wang, Chongwen; Gu, Bing; Liu, Qiqi; Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe 3 O 4 @Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe 3 O 4 @Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe 3 O 4 @Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0-11.0), a short assay time (<30 min), and a low detection limit (5×10 2 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli , Gram-positive bacterium Staphylococcus aureus , and methicillin-resistant S. aureus . This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis.

  16. Glycyrrhetinic acid-modified chitosan nanoparticles enhanced the effect of 5-fluorouracil in murine liver cancer model via regulatory T-cells

    PubMed Central

    Cheng, Mingrong; Xu, Hongzhi; Wang, Yong; Chen, Houxiang; He, Bing; Gao, Xiaoyan; Li, Yingchun; Han, Jiang; Zhang, Zhiping

    2013-01-01

    Modified chitosan nanoparticles are a promising platform for drug, such as 5-fluorouracil (5-FU), gene, and vaccine delivery. Here, we used chitosan and hepatoma cell-specific binding molecule glycyrrhetinic acid (GA) to synthesize glycyrrhetinic acid-modified chitosan (GA-CTS). The synthetic product was confirmed by infrared spectroscopy and hydrogen nuclear magnetic resonance. By combining GA-CTS and 5-FU, we obtained a GA-CTS/5-FU nanoparticle, with a particle size of 193.7 nm, drug loading of 1.56%, and a polydispersity index of 0.003. The GA-CTS/5-FU nanoparticle provided a sustained-release system comprising three distinct phases of quick, steady, and slow release. In vitro data indicated that it had a dose- and time-dependent anticancer effect. The effective drug exposure time against hepatic cancer cells was increased in comparison with that observed with 5-FU. In vivo studies on an orthotropic liver cancer mouse model demonstrated that GA-CTS/5-FU significantly inhibited cancer cell proliferation, resulting in increased survival time. The antitumor mechanisms for GA-CTS/5-FU nanoparticle were possibly associated with an increased expression of regulatory T-cells, decreased expression of cytotoxic T-cell and natural killer cells, and reduced levels of interleukin-2 and interferon gamma. PMID:24187487

  17. Synthesis and characterisation of hetero-bimetallic organometallic phenylalanine and PNA monomer derivatives.

    PubMed

    Gasser, Gilles; Brosch, Oliver; Ewers, Alexandra; Weyhermüller, Thomas; Metzler-Nolte, Nils

    2009-06-14

    The rational, sequential synthesis of two hetero-bimetallic derivatives of the amino acid phenylalanine and one thymine (T) peptide nucleic acid (PNA) monomer is reported. Ferrocene carboxylic acid and (eta-ethene)bis(triphenylphosphine)platinum(0) were successfully reacted with propargylamide amino acid (1a and 1b) or a T PNA monomer derivative (6) to give the expected three bimetallic compounds 4a, 4b and 9 in good yield. An enzymatic route using cross-linked enzyme crystals (CLEC) of subtilopeptidase A in organic solvents gave the ferrocene carboxylate phenylalanine propargylamide precursor (Fc-CO-Phe-NH-CH(2)-CCH, 3a) in comparable yield and purity to the traditional deprotection-peptide coupling sequence. (31)P NMR spectra of these bioorganometallics showed two doublets with (195)Pt satellites corresponding to two chemically different (31)P atoms. Interestingly, in the case of the T PNA monomer derivative 9, these signals were also doubled in a 60 : 40 ratio as a consequence of the existence of two slowly interconverting isomers in solution. Furthermore, the single-crystal X-ray structures of 3a and the hetero-bimetallic phenylalanine derivative 4b were determined, showing the presence of the two organometallics moieties separated by ca. 8.5 A in 4b as well as illustrating the stability of such compounds.

  18. Controllably annealed CuO-nanoparticle modified ITO electrodes: Characterisation and electrochemical studies

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Su, Wen; Fu, Yingyi; Hu, Jingbo

    2016-12-01

    In this paper, we report a facile and controllable two-step approach to produce indium tin oxide electrodes modified by copper(II) oxide nanoparticles (CuO/ITO) through ion implantation and annealing methods. After annealing treatment, the surface morphology of the CuO/ITO substrate changed remarkably and exhibited highly electroactive sites and a high specific surface area. The effects of annealing treatment on the synthesis of CuO/ITO were discussed based on various instruments' characterisations, and the possible mechanism by which CuO nanoparticles were generated was also proposed in this work. Cyclic voltammetric results indicated that CuO/ITO electrodes exhibited effective catalytic responses toward glucose in alkaline solution. Under optimal experimental conditions, the proposed CuO/ITO electrode showed sensitivity of 450.2 μA cm-2 mM-1 with a linear range of up to ∼4.4 mM and a detection limit of 0.7 μM (S/N = 3). Moreover, CuO/ITO exhibited good poison resistance, reproducibility, and stability properties.

  19. Shape and structural motifs control of MgTi bimetallic nanoparticles using hydrogen and methane as trace impurities.

    PubMed

    Krishnan, Gopi; de Graaf, Sytze; Ten Brink, Gert H; Verheijen, Marcel A; Kooi, Bart J; Palasantzas, George

    2018-01-18

    In this work we report the influence of methane/hydrogen on the nucleation and formation of MgTi bimetallic nanoparticles (NPs) prepared by gas phase synthesis. We show that a diverse variety of structural motifs can be obtained from MgTi alloy, TiC x /Mg/MgO, TiC x /MgO and TiH x /MgO core/shell NPs via synthesis using CH 4 /H 2 as a trace gas, and with good control of the final NP morphology and size distribution. Moreover, depending on the concentration of Ti and type of employed trace gas, the as prepared MgTi NPs can be tuned from truncated hexagonal pyramid to triangular and hexagonal platelet shapes. The shape of MgTi NPs is identified using detailed analysis from selected area electron diffraction (SAED) patterns and tomography (3D reconstruction based on a tilt series of Bright-Field transmission electron microscopy (TEM) micrographs). We observe the truncated hexagonal pyramid as a shape of MgTi alloy NPs in contrast to Mg NPs that show a hexagonal prismatic shape. Moreover, based on our experimental observations and generic geometrical model analysis, we also prove that the formation of the various structural motifs is based on a sequential growth mechanism instead of phase separation. One of the prime reasons for such mechanism is based on the inadequacy of Mg to nucleate without template in the synthesis condition. In addition, the shape of the TiC x /TiH x core, and the concentration of Mg have strong influence on the shape evolution of TiC x /MgO and TiH x /MgO NPs compared to TiC x /Mg/MgO NPs, where the thermodynamics and growth rates of the Mg crystal planes dominate the final shape. Finally, it is demonstrated that the core shape of TiC x and TiH x is affected by the Mg/Ti target ratio (affecting the composition in the plasma), and the type of the trace gas employed. In the case of CH 4 the TiC x core forms a triangular platelet, while in the case of H 2 the TiH x core transforms into a hexagonal platelet. We elucidate the reason for the TiC x

  20. Dry Reforming of Ethane and Butane with CO 2 over PtNi/CeO 2 Bimetallic Catalysts

    DOE PAGES

    Yan, Binhang; Yang, Xiaofang; Yao, Siyu; ...

    2016-09-21

    Dry reforming is a potential process to convert CO 2 and light alkanes into syngas (H 2 and CO), which can be subsequently transformed to chemicals and fuels. Here in this work, PtNi bimetallic catalysts have been investigated for dry reforming of ethane and butane using both model surfaces and supported powder catalysts. The PtNi bimetallic catalyst shows an improvement in both activity and stability as compared to the corresponding monometallic catalysts. The formation of PtNi alloy and the partial reduction of Ce 4+ to Ce 3+ under reaction conditions are demonstrated by in-situ Ambient Pressure X-ray Photoemission Spectroscopy (AP-XPS),more » X-ray Diffraction (XRD) and X-ray Absorption Fine Structure (XAFS) measurements. A Pt-rich bimetallic surface is revealed by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) following CO adsorption. Combined in-situ experimental results and Density Functional Theory (DFT) calculations suggest that the Pt-rich PtNi bimetallic surface structure would weaken the binding of surface oxygenates/carbon species and reduce the activation energy for C-C bond scission, leading to an enhanced dry reforming activity.« less

  1. Dry Reforming of Ethane and Butane with CO 2 over PtNi/CeO 2 Bimetallic Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Binhang; Yang, Xiaofang; Yao, Siyu

    Dry reforming is a potential process to convert CO 2 and light alkanes into syngas (H 2 and CO), which can be subsequently transformed to chemicals and fuels. Here in this work, PtNi bimetallic catalysts have been investigated for dry reforming of ethane and butane using both model surfaces and supported powder catalysts. The PtNi bimetallic catalyst shows an improvement in both activity and stability as compared to the corresponding monometallic catalysts. The formation of PtNi alloy and the partial reduction of Ce 4+ to Ce 3+ under reaction conditions are demonstrated by in-situ Ambient Pressure X-ray Photoemission Spectroscopy (AP-XPS),more » X-ray Diffraction (XRD) and X-ray Absorption Fine Structure (XAFS) measurements. A Pt-rich bimetallic surface is revealed by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) following CO adsorption. Combined in-situ experimental results and Density Functional Theory (DFT) calculations suggest that the Pt-rich PtNi bimetallic surface structure would weaken the binding of surface oxygenates/carbon species and reduce the activation energy for C-C bond scission, leading to an enhanced dry reforming activity.« less

  2. Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs)

    PubMed Central

    Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario

    2018-01-01

    In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modeled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modeled demonstrated a nice fitting of modeling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability, and discrimination ability of the array was achieved. PMID:29713626

  3. Peptide Modified ZnO Nanoparticles as Gas Sensors Array for Volatile Organic Compounds (VOCs).

    PubMed

    Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario

    2018-01-01

    In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modeled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modeled demonstrated a nice fitting of modeling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability, and discrimination ability of the array was achieved.

  4. Peptide modified ZnO nanoparticles as gas sensors array for volatile organic compounds (VOCs)

    NASA Astrophysics Data System (ADS)

    Mascini, Marcello; Gaggiotti, Sara; Della Pelle, Flavio; Di Natale, Corrado; Qakala, Sinazo; Iwuoha, Emmanuel; Pittia, Paola; Compagnone, Dario

    2018-04-01

    In this work a peptide based gas sensor array based of ZnO nanoparticles (ZnONPs) has been realized. Four different pentapeptides molecularly modelled for alcohols and esters having cysteine as a common spacer have been immobilized onto ZnONPs. ZnONPs have been morphologically and spectroscopically characterized. Modified nanoparticles have been then deposited onto quartz crystal microbalances (QCMs) and used as gas sensors with nitrogen as carrier gas. Analysis of the pure compounds modelled demonstrated a nice fitting of modelling with real data. The peptide based ZnONPs had very low sensitivity to water, compared to previously studied AuNPs peptide based gas sensors allowing the use of the array on samples with high water content. Real samples of fruit juices have been assayed; stability of the signal, good repeatability and discrimination ability of the array was achieved.

  5. Effects of MgO modified β-TCP nanoparticles on the microstructure and properties of β-TCP/Mg-Zn-Zr composites.

    PubMed

    Zheng, H R; Li, Z; You, C; Liu, D B; Chen, M F

    2017-03-01

    The mechanical properties and corrosion resistance of magnesium alloy composites were improved by the addition of MgO surface modified tricalcium phosphate ceramic nanoparticles (m-β-TCP). Mg-3Zn-0.8Zr composites with unmodified (MZZT) and modified (MZZMT) nanoparticles were produced by high shear mixing technology. Effects of MgO m-β-TCP nanoparticles on the microstructure, mechanical properties, electrochemical corrosion properties and cytocompatibility of Mg-Zn-Zr/β-TCP composites were investigated. After hot extrusion deformation and dynamic recrystallization, the grain size of MZZMT was the half size of MZZT and the distribution of m-β-TCP particles in the matrix was more uniform than β-TCP particles. The yield tensile strength (YTS), ultimate tensile strength (UTS), and corrosion potential (Ecorr) of MZZMT were higher than MZZT; the corrosion current density (I corr ) of MZZMT was lower than MZZT. Cell proliferation of co-cultured MZZMT and MZZT composite samples were roughly the same and the cell number at each time point is higher for MZZMT than for MZZT samples.

  6. Block Copolymer as a Surface Modifier to Monodisperse Patchy Silica Nanoparticles for Superhydrophobic Surfaces.

    PubMed

    Lou, Shuo; Wang, Junzheng; Yin, Xiaohong; Qu, Wenxiu; Song, Yuexiao; Xin, Feng; Qaraah, Fahim Abdo Ali

    2018-06-18

    Monodisperse patchy silica nanoparticles (PSNPs) less than 100 nm are prepared based on the seed-regrowth method using a poly(ethylene oxide) (PEO)-poly(propylene oxide) (PPO)-PEO-type block copolymer as a surface modifier. Well-defined patches are controllably synthesized through area-selective deposition of silica onto the surface of seeds. After colloidal PSNPs are further modified with trimethylchlorosilane, the advancing and receding contact angles of water for PSNPs are 168 ± 2° and 167 ± 2°, respectively. The superhydrophobic and transparent coatings on the various types of substrates are obtained by a simple drop-casting procedure. Additionally, almost the same superhydrophobicity can be achieved by using colloidal PSNPs via redispersing the powder of superhydrophobic PSNPs in ethanol.

  7. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.

    PubMed

    Ahmad, Aftab; Wei, Yun; Syed, Fatima; Tahir, Kamran; Rehman, Aziz Ur; Khan, Arifullah; Ullah, Sadeeq; Yuan, Qipeng

    2017-01-01

    Neutralization of bacterial cell surface potential using nanoscale materials is an effective strategy to alter membrane permeability, cytoplasmic leakage, and ultimate cell death. In the present study, an attempt was made to prepare biogenic silver nanoparticles using biomolecules from the aqueous rhizome extract of Coptis Chinensis. The biosynthesized silver nanoparticles were surface modified with chitosan biopolymer. The prepared silver nanoparticles and chitosan modified silver nanoparticles were cubic crystalline structures (XRD) with an average particle size of 15 and 20 nm respectively (TEM, DLS). The biosynthesized silver nanoparticles were surface stabilized by polyphenolic compounds (FTIR). Coptis Chinensis mediated silver nanoparticles displayed significant activity against E. coli and Bacillus subtilus with a zone of inhibition 12 ± 1.2 (MIC = 25 μg/mL) and 18 ± 1.6 mm (MIC = 12.50 μg/mL) respectively. The bactericidal efficacy of these nanoparticles was considerably increased upon surface modification with chitosan biopolymer. The chitosan modified biogenic silver nanoparticles exhibited promising activity against E. coli (MIC = 6.25 μg/mL) and Bacillus subtilus (MIC = 12.50 μg/mL). Our results indicated that the chitosan modified silver nanoparticles were promising agents in damaging bacterial membrane potential and induction of high level of intracellular reactive oxygen species (ROS). In addition, these nanoparticles were observed to induce the release of the high level of cytoplasmic materials especially protein and nucleic acids into the media. All these findings suggest that the chitosan functionalized silver nanoparticles are efficient agents in disrupting bacterial membrane and induction of ROS leading to cytoplasmic leakage and cell death. These findings further conclude that the bacterial-nanoparticles surface potential modulation is an effective strategy in enhancing the antibacterial potency of silver nanoparticles

  8. Synthesis and characterization of immobilized Ni-Co bimetallic using Tapanuli clay for catalyst application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuryanti,; Juwono, Ariadne L., E-mail: ariadne@sci.ui.ac.id; Krisnandi, Yuni K.

    2016-04-19

    Heterogeneous catalysts hold various advantages, namely, easy to separate from their products, reusable and regarded as environmental friendly materials. The synthesis of immobilized Ni monometallic, Co monometallic and Ni-Co bimetallic by Tapanuli clay were carried out using intercalation method. Firstly, the synthesis of Na-Bentonite was conducted to provide sufficient area to immobilize bimetal in the clay interlayer. Secondly, Ni, Co and Ni-Co were immobilized in the Tapanuli clay interlayer. Several techniques, such as X-Ray Diffraction, Fourier Transform Infra Red and Energy Dispersive X-Ray Analysis were applied to characterize and compare the properties of the synthesized materials. The results showed thatmore » the insertion of Ni, Co and Ni-Co in the clay interlayer occurred through a cation exchange reaction. The Energy Dispersive X-Ray analysis for Ni-Co bimetallic showed that the immobilized Ni and Co in the clay is in the ratio of 1:1. Catalytic test with Gas Chromatography showed that Ni-Co bimetallic generates a higher yield percentage compared to Ni and Co monometallic.« less

  9. Highly active, bi-functional and metal-free B4C-nanoparticle-modified graphite felt electrodes for vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Jiang, H. R.; Shyy, W.; Wu, M. C.; Wei, L.; Zhao, T. S.

    2017-10-01

    The potential of B4C as a metal-free catalyst for vanadium redox reactions is investigated by first-principles calculations. Results show that the central carbon atom of B4C can act as a highly active reaction site for redox reactions, due primarily to the abundant unpaired electrons around it. The catalytic effect is then verified experimentally by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests, both of which demonstrate that B4C nanoparticles can enhance the kinetics for both V2+/V3+ and VO2+/VO2+ redox reactions, indicating a bi-functional effect. The B4C-nanoparticle-modified graphite felt electrodes are finally prepared and tested in vanadium redox flow batteries (VRFBs). It is shown that the batteries with the prepared electrodes exhibit energy efficiencies of 88.9% and 80.0% at the current densities of 80 and 160 mA cm-2, which are 16.6% and 18.8% higher than those with the original graphite felt electrodes. With a further increase in current densities to 240 and 320 mA cm-2, the batteries can still maintain energy efficiencies of 72.0% and 63.8%, respectively. All these results show that the B4C-nanoparticle-modified graphite felt electrode outperforms existing metal-free catalyst modified electrodes, and thus can be promising electrodes for VRFBs.

  10. New bimetallic EMF cell shows promise in direct energy conversion

    NASA Technical Reports Server (NTRS)

    Hesson, J. C.; Shimotake, H.

    1968-01-01

    Concentration cell, based upon a thermally regenerative cell principle, produces electrical energy from any large heat source. This experimental bimetallic EMF cell uses a sodium-bismuth alloy cathode and a pure liquid sodium anode. The cell exhibits reliability, corrosion resistance, and high current density performance.

  11. Determination of morphological characteristics of metallic nanoparticles based on modified Maxwell-Garnett fitting of optical responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battie, Y., E-mail: yann.battie@univ-lorraine.fr; Resano-Garcia, A.; En Naciri, A.

    2015-10-05

    A modified effective medium theory (MEMT) is introduced to determine morphological characteristics and the volume fraction of colloidal metallic nanoparticles. By analyzing the optical absorption spectra of gold nanoparticles (NPs), this model is used to determine the distribution of prolate and oblate NPs and to demonstrate the presence of spherical NPs. In addition to interband transition, the model takes into account the longitudinal and transversal surface plasmon resonances. The results predicted by the MEMT theory were found to be in very good agreement with the shape distributions obtained by transmission electron microscopy. We found that fitting optical absorption spectra usingmore » MEMT provides a robust tool for measuring the shape and concentration of metallic NPs.« less

  12. Resonance light-scattering spectrometric study of interaction between enzyme and MPA-modified CdTe nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Juan; Li, Minjie; Tang, Jieli; Li, Xiaozhou; Zhang, Hanqi; Zhang, Yihua

    2008-08-01

    This paper described a novel assay of enzyme based on the measurement of enhanced resonance light-scattering (RLS) signals resulting from the electrostatic and coordination interaction of functionalized CdTe nanoparticles with enzyme. The CdTe nanoparticles which were modified with 3-mercaptocarboxylic acid (MPA) have abundant carboxylic groups ( sbnd COOH). So the nanoparticles are water-soluble, stable and biocompatible. At pH 8.3 phosphate buffered saline (PBS), the RLS signals of functionalized nano-CdTe are greatly enhanced by bromelain and papain in the region of 220-800 nm characterized by the peak around 318-314 nm, respectively. The optimization conditions of the reaction were also examined and selected. Under the selected conditions, the enhanced RLS intensity is linearly proportional to the concentration of bromelain and papain. The liner range is (0.09-0.9) × 10 -6 mol/L for bromelain and (0.048-0.702) × 10 -6 mol/L for papain. The influences of some foreign substances were also examined. This method can be applied to the determination of enzyme.

  13. The Enhanced Photo-Electrochemical Detection of Uric Acid on Au Nanoparticles Modified Glassy Carbon Electrode

    NASA Astrophysics Data System (ADS)

    Shi, Yuting; Wang, Jin; Li, Shumin; Yan, Bo; Xu, Hui; Zhang, Ke; Du, Yukou

    2017-07-01

    In this work, a sensitive and novel method for determining uric acid (UA) has been developed, in which the glassy carbon electrode (GCE) was modified with electrodeposition Au nanoparticles and used to monitor the concentration of UA with the assistant of visible light illumination. The morphology of the Au nanoparticles deposited on GCE surface were characterized by scanning electron microscope (SEM) and the nanoparticles were found to be well-dispersed spheres with the average diameter approaching 26.1 nm. A series of cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements have revealed that the introduction of visible light can greatly enhance both the strength and stability of response current due to the surface plasmon resonance (SPR). Specifically, the DPV showed a linear relationship between peak current and UA concentration in the range of 2.8 to 57.5 μM with the equation of I pa (μA) = 0.0121 c UA (μM) + 0.3122 ( R 2 = 0.9987). Herein, the visible light illuminated Au/GCE possesses a potential to be a sensitive electrochemical sensor in the future.

  14. Amperometric sensing of hydrogen peroxide using glassy carbon electrode modified with copper nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sophia, J.; Muralidharan, G., E-mail: muraligru@gmail.com

    2015-10-15

    In this paper, fabrication of glassy carbon electrode (GCE) modified with nano copper particles is discussed. The modified electrode has been tested for the non-enzymatic electrochemical detection of hydrogen peroxide (H{sub 2}O{sub 2}). The copper nanoparticles (Cu NPs) were prepared employing a simple chemical reduction method. The presence of Cu NPs was confirmed through UV–visible (UV–vis) absorption spectroscopy and X-ray diffraction (XRD) analysis. The size and morphology of the particles were investigated using transmission electron microscopy (TEM). The electrochemical properties of the fabricated sensor were studied via cyclic voltammetry (CV), chronoamperometry and electrochemical impedance spectroscopy (EIS). The electrochemical sensor displayedmore » excellent performance features towards H{sub 2}O{sub 2} detection exhibiting wide linear range, low detection limit, swift response time, good reproducibility and stability.« less

  15. Multifunctional PEG modified DOX loaded mesoporous silica nanoparticle@CuS nanohybrids as photo-thermal agent and thermal-triggered drug release vehicle for hepatocellular carcinoma treatment

    NASA Astrophysics Data System (ADS)

    Wu, Lingjie; Wu, Ming; Zeng, Yongyi; Zhang, Da; Zheng, Aixian; Liu, Xiaolong; Liu, Jingfeng

    2015-01-01

    The combination of a multi-therapeutic mode with a controlled fashion is a key improvement in nanomedicine. Here, we synthesized polyethylene glycol (PEG)-modified doxorubicin (DOX)-loaded mesoporous silica nanoparticle (MSN) @CuS nanohybrids as efficient drug delivery carriers, combined with photothermal therapy and chemotherapy to enhance the therapeutic efficacy on hepatocellular carcinoma (HCC). The physical properties of the nanohybrids were characterized by transmission electron microscopy (TEM), N2 adsorption and desorption experiments and by the Vis-NIR absorption spectra. The results showed that the doxorubicin could be stored in the inner pores of mesoporous silica nanoparticles; the CuS nanoparticles, which are coated on the surface of a mesoporous silica nanoparticle, could serve as efficient photothermal therapy (PTT) agents; the loaded drug release could be easily triggered by NIR irradiation. The combination of the PTT treatment with controlled chemotherapy could further enhance the cancer ablation ability compared to any of the single approaches alone. Hence, the reported PEG-modified DOX-loaded mesoporous silica nanoparticle@CuS nanohybrids might be very promising therapeutic agents for HCC treatment.

  16. Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode.

    PubMed

    Gopalan, Anantha Iyengar; Lee, Kwang-Pill; Manesh, Kalayil Manian; Santhosh, Padmanabhan; Kim, Jun Heon; Kang, Jae Soo

    2007-03-15

    A modified electrode is fabricated by embedding gold nanoparticles into a layer of electroactive polymer, poly(4-aminothiophenol) (PAT) on the surface of glassy carbon (GC) electrode. Cyclic voltammetry (CV) is performed to deposit PAT and concomitantly deposit Au nanoparticles. Field emission transmission electron microscopic image of the modified electrode, PAT-Au(nano)-ME, indicates the presence of uniformly distributed Au nanoparticles having the sizes of 8-10nm. Electrochemical behavior of the PAT-Au(nano)-ME towards detection of ascorbic acid (AA) and dopamine (DA) is studied using CV. Electrocatalytic determination of DA in the presence of fixed concentration of AA and vice versa, are studied using differential pulse voltammetry (DPV). PAT-Au(nano)-ME exhibits two well defined anodic peaks at the potential of 75 and 400mV for the oxidation of AA and DA, respectively with a potential difference of 325mV. Further, the simultaneous determination of AA and DA is studied by varying the concentration of AA and DA. PAT-Au(nano)-ME exhibits selectivity and sensitivity for the simultaneous determination of AA and DA without fouling by the oxidation products of AA or DA. PAT and Au nanoparticles provide synergic influence on the accurate electrochemical determination of AA or DA from a mixture having any one of the component (AA or DA) in excess. The practical analytical utilities of the PAT-Au(nano)-ME are demonstrated by the determination of DA and AA in dopamine hydrochloride injection and human blood serum samples.

  17. Catalytic Gas-Phase Glycerol Processing over SiO2-, Cu-, Ni- and Fe- Supported Au Nanoparticles

    PubMed Central

    Kapkowski, Maciej; Siudyga, Tomasz; Sitko, Rafal; Lelątko, Józef; Szade, Jacek; Balin, Katarzyna; Klimontko, Joanna; Bartczak, Piotr; Polanski, Jaroslaw

    2015-01-01

    In this study, we investigated different metal pairings of Au nanoparticles (NPs) as potential catalysts for glycerol dehydration for the first time. All of the systems preferred the formation of hydroxyacetone (HYNE). Although the bimetallics that were tested, i.e., Au NPs supported on Ni, Fe and Cu appeared to be more active than the Au/SiO2 system, only Cu supported Au NPs gave high conversion (ca. 63%) and selectivity (ca. 70%) to HYNE. PMID:26580400

  18. Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skubal, L. R.; Meshkov, N. K.; Rajh, T.

    2002-05-31

    This study investigated the use of titanium dioxide (TiO{sub 2}) nanoparticles to remove aqueous cadmium from simulated wastewaters. Nanosized (45 A) colloids of anatase TiO{sub 2} were synthesized through the controlled hydrolysis of TiCl4 and their surfaces modified with the bidental chelating agent thiolactic acid (TLA). Colloids were introduced into 65 ppm cadmium-laden waters, and the suspensions were purged aerobically, anoxically with an inert gas, or by a sequential aerobic/anoxic purge. Suspensions were illuminated with 253.7 nm light. In each experiment, samples were taken from the reactor, filtered, and the filtrates analyzed by atomic absorption spectroscopy for residual cadmium. Resultsmore » from the aerobic experiments exhibited minimal (approximately 10%) removal of the cadmium from solution and no reduction of the metal on either the modified or the unmodified colloid. Anoxic results were more promising, showing no cadmium reduction on the unmodified colloid but a 40% adsorption and reduction (from a +2 valence state to elemental cadmium as determined by methyl viologen tests) of cadmium on TLA-modified colloid in the presence of light. Results from the mixed atmospheric conditions fared the best and demonstrated that in the absence of light, approximately 20% of aqueous cadmium was sorbed to the modified colloid via a Freundlich adsorption isotherm. Upon illumination, greater than 90% of cadmium was removed by both adsorption and reduction processes onto the TLA-modified TiO{sub 2}. These removal and reduction processes were catalytic in nature. Results from this study are significant because to date, no other research in the literature has been able to accomplish cadmium removal and reduction using TiO{sub 2}.« less

  19. Plectranthus amboinicus-mediated silver, gold, and silver-gold nanoparticles: phyto-synthetic, catalytic, and antibacterial studies

    NASA Astrophysics Data System (ADS)

    Purusottam Reddy, B.; Mallikarjuna, K.; Narasimha, G.; Park, Si-Hyun

    2017-08-01

    Bio-based green nanotechnology aims to characterize compounds from natural sources and establish efficient routes for the preparation of nontoxic materials that have applicability in biodegradable and biocompatible devices. The present study has investigated the use of Plectranthus amboinicus leaf extracts as reducing and capping materials for the green fabrication of silver, gold, and silver-gold (Ag, Au, and Ag/Au) metal and bimetallic nanoparticles. The catalytic behavior of these phyto-inspired nanoparticles was then assessed in terms of the reduction of 4-nitrophenol. Transmission electron microscopy was used to investigate the shape, morphology, distribution, and diameter of the phytomolecules capped with Ag, Au, and Ag/Au metal nanoparticles. The nature of the crystallinity of the nanoparticles was studied by small area electron diffraction (SAED) and x-ray diffraction analysis (XRD), and Fourier transform infrared (FTIR) spectroscopy was used to study the reduction and stabilizing involvement of the phyto-organic moieties in aqueous medium. The phyto-inspired Ag and Ag/Au nanoparticles demonstrated good antibacterial properties toward Gram-negative Escherichia coli and Pseudomonas spp. and Gram-positive Bacillus spp. and Staphylococcus spp. microorganisms using the well diffusion method. Notably, the Ag nanoparticles were shown to possess effective antibacterial properties.

  20. Combined use of vancomycin-modified Ag-coated magnetic nanoparticles and secondary enhanced nanoparticles for rapid surface-enhanced Raman scattering detection of bacteria

    PubMed Central

    Pang, Yuanfeng; Xiao, Rui; Wang, Shengqi

    2018-01-01

    Background Pathogenic bacteria have always been a significant threat to human health. The detection of pathogens needs to be rapid, accurate, and convenient. Methods We present a sensitive surface-enhanced Raman scattering (SERS) biosensor based on the combination of vancomycin-modified Ag-coated magnetic nanoparticles (Fe3O4@Ag-Van MNPs) and Au@Ag nanoparticles (NPs) that can effectively capture and discriminate bacterial pathogens from solution. The high-performance Fe3O4@Ag MNPs were modified with vancomycin and used as bacteria capturer for magnetic separation and enrichment. The modified MNPS were found to exhibit strong affinity with a broad range of Gram-positive and Gram-negative bacteria. After separating and rinsing bacteria, Fe3O4@Ag-Van MNPs and Au@Ag NPs were synergistically used to construct a very large number of hot spots on bacteria cells, leading to ultrasensitive SERS detection. Results The dominant merits of our dual enhanced strategy included high bacterial-capture efficiency (>65%) within a wide pH range (pH 3.0–11.0), a short assay time (<30 min), and a low detection limit (5×102 cells/mL). Moreover, the spiked tests show that this method is still valid in milk and blood samples. Owing to these capabilities, the combined system enabled the sensitive and specific discrimination of different pathogens in complex solution, as verified by its detection of Gram-positive bacterium Escherichia coli, Gram-positive bacterium Staphylococcus aureus, and methicillin-resistant S. aureus. Conclusion This method has great potential for field applications in food safety, environmental monitoring, and infectious disease diagnosis. PMID:29520142

  1. Solid solutions of platinum(II) and palladium(II) oxalato-complex salt as precursors of nanoalloys

    NASA Astrophysics Data System (ADS)

    Zadesenets, A. V.; Asanova, T. I.; Vikulova, E. S.; Filatov, E. Yu.; Plyusnin, P. E.; Baidina, I. A.; Asanov, I. P.; Korenev, S. V.

    2013-03-01

    A solid solution of platinum (II) and palladium (II) oxalato-complex salt, (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O, has been synthesized and studied as a precursor for preparing bimetallic PtPd nanoparticles through its thermal decomposition. The smallest homogenous bimetallic PtPd nanoparticles were found to form in hydrogen and helium atmospheres. The annealing temperature and time have low effect on the bimetallic particles size. Comparative analysis of structural and thermal properties of the solid solution and individual Pt, Pd oxalato-complex salts was performed to investigate a mechanism of thermal decomposition of (NH4)2[Pt0.5Pd0.5(C2O4)2]·2H2O. Based on in situ X-ray photoemission spectroscopy investigation it was proposed a mechanism of formation of bimetallic PtPd nanoparticles from the solid-solution oxalato-complex salt during thermal decomposition.

  2. Adsorption, oxidation, and reduction behavior of arsenic in the removal of aqueous As(III) by mesoporous Fe/Al bimetallic particles.

    PubMed

    Cheng, Zihang; Fu, Fenglian; Dionysiou, Dionysios D; Tang, Bing

    2016-06-01

    In this study, mesoporous iron/aluminum (Fe/Al) bimetallic particles were synthesized and employed for the removal of aqueous As(III). Scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET) analysis method, Vibrating-sample magnetometry (VSM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the Fe/Al bimetals before and after reaction with As(III). The physical properties, compositions, and structures of Fe/Al bimetallic particles as well as the As(III) removal mechanism were investigated. The characterization of the bimetallic particles after the reaction has revealed the removal of As(III) is a complex process including surface adsorption and oxidation, and intraparticle reduction. The good As(III) removal capability and stability of the Fe/Al bimetallic particles exhibited its great potential as an effective and environmental friendly agent for As(III) removal from water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Photo-cured PMMA/PEI core/shell nanoparticles surface-modified with Gd-DTPA for T1 MR imaging.

    PubMed

    Ratanajanchai, Montri; Lee, Don Haeng; Sunintaboon, Panya; Yang, Su-Geun

    2014-02-01

    Herein, we introduced amine-functionalized core-shell nanoparticles (Polymethyl methacrylate/Polyethyleneimine; PMMA/PEI) with surface primary amines (3.15×10(5) groups/particle) and uniform size distribution (150-200nm) that were prepared by one-step photo-induced emulsion polymerization. Further PEI-surface was modified with diethylenetriamine pentaacetic acid (DTPA) and introduced with Gd(III). The modified particles possessing DTPA can entrap a high content of Gd(III) ions of over 5.5×10(4)Gd/particle with stable chelation (no release of free Gd) at least 7h. The Gd-DTPA-conjugated core-shell nanoparticles (PMMA/PEI-DTPA-Gd NPs) enhanced the MRI intensity more than Primovist (a commercial hepatic contrast agent). Moreover, the PMMA/PEI-DTPA-Gd NPs showed non-cytotoxicity up to 250μM in normal liver cells. Thus, in vitro data suggested the PMMA/PEI-DTPA-Gd NPs is promising delivery system as a superior MRI contrast agent, especially for hepatic lesion targeted MR imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Dechlorination of Polychlorinated Biphenyls by Pd/Mg Bimetallic Corrosion Nano-Cells

    EPA Science Inventory

    Polychlorinated biphenyls (PCBs), manufactured until mid-1970's for use as electrical insulators, were banned in 1979 due to their toxicity and persistence in the environment (1). Dechlorination of PCBs using bimetallic systems is a promising technology wherein enhanced corrosio...

  5. PD/MG BIMETALLIC CORROSION SYSTEMS FOR DECHLORINATION OF PCB CONTAMINATED MATRICES

    EPA Science Inventory

    Polychlorinated biphenyls (PCBs), a family of 209 compounds manufactured till mid70's, are toxic pollutants that persist in the environment. Enhanced corrosion of an active metal combined with catalytic hydrogenation properties of Pd in bimetallic cells can effectively reduce PCB...

  6. ENHANCED CORRISION-BASED PD/MG BIMETALLIC SYSTEMS FOR DECHLORINATION OF PCBS

    EPA Science Inventory

    Polychlorinated biphenyls (PCBs) are toxic pollutants notorious for their aquatic and sedimentary prevalence and recalcitrant nature. Bimetallic systems like Pd/Fe have been widely studied for degrading them. Mg, with oxidation potential higher than Fe, has been reported to dechl...

  7. Ion irradiation synthesis of Ag–Au bimetallic nanospheroids in SiO{sub 2} glass substrate with tunable surface plasmon resonance frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xuan; Yu, Ruixuan; Takayanagi, Shinya

    2013-08-07

    Ag–Au bimetallic nanospheroids with tunable localized surface plasmon resonance (LSPR) were synthesized by 100 keV Ar–ion irradiation of 30 nm Ag–Au bimetallic films deposited on SiO{sub 2} glass substrates. A shift of the LSPR peaks toward shorter wavelengths was observed up to an irradiation fluence of 1.0 × 10{sup 17} cm{sup −2}, and then shifted toward the longer wavelength because of the increase of fragment volume under ion irradiation. Further control of LSPR frequency over a wider range was realized by modifying the chemical components. The resulting LSPR frequencies lie between that of the pure components, and an approximate linearmore » shift of the LSPR toward the longer wavelength with the Au concentration was achieved, which is in good agreement with the theoretical calculations based on Gans theory. In addition, the surface morphology and compositions were examined with a scanning electron microscope equipped with an energy dispersive spectrometer, and microstructural characterizations were performed using a transmission electron microscope. The formation of isolated photosensitive Ag–Au nanospheroids with a FCC structure partially embedded in the SiO{sub 2} substrate was confirmed, which has a potential application in solid-state devices.« less

  8. Ionic liquid-functionalized carbon nanoparticles-modified cathode for efficiency enhancement in polymer solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohong; Yang, Jiaxiang; Lu, Jiong; Manga, Kiran Kumar; Loh, Kian Ping; Zhu, Furong

    2009-09-01

    The power conversion efficiency (PCE) of regioregular poly(3-hexylthiophene) (P3HT) and {6,6}-phenyl C61-butyric acid methylester (PCBM)-based polymer solar cells was increased using an ionic liquid-functionalized carbon nanoparticles (ILCNs) thin film-modified cathode. The PCE of P3HT:PCBM based-polymer solar cells with a conventional aluminum (Al)-only cathode was increased by 20%-30% when the identical devices were made with an ILCNs-modified Al cathode, but its PCE was 10% lower than that of devices with LiF/Al cathode, measured under AM1.5G illumination of 100 mW/cm2. The ILCN interlayer approach, however, offers practical advantages to LiF in terms of its solution-processability, which is compatible with low cost, large area, and flexible solar cell fabrication.

  9. Bimetallic-catalyst-mediated syntheses of nanomaterials (nanowires, nanotubes, nanofibers, nanodots, etc) by the VQS (vapor-quasiliquid-solid, vapor- quasisolid-solid) growth mechanism

    NASA Astrophysics Data System (ADS)

    Mohammad, S. N.

    2016-12-01

    The enhanced synergistic, catalytic effect of bimetallic nanoparticles (BNPs), as compared to monometallic nanoparticles (NPs), on the nanomaterials (nanowires, nanotubes, nanodots, nanofibers, etc) synthesed by chemical vapor deposition has been investigated. A theoretical model for this catalytic effect and hence for nanomaterial growth, has been developed. The key element of the model is the diffusion of the nanomaterial source species through the nanopores of quasiliquid (quasisolid) BNP, rather than through the liquid or solid BNP, for nanomaterial growth. The role of growth parameters such as temperature, pressure and of the BNP material characteristics such as element mole fraction of BNP, has been studied. The cause of enhanced catalytic activity of BNPs as compared to NPs as a function of temperature has been explored. The dependence of growth rate on the nanomaterial diameter has also been examined. The calculated results have been extensively compared with available experiments. Experimental supports for the growth mechanism have been presented as well. Close correspondence between the calculated and experimental results attests to the validity of the proposed model. The wide applicability of the proposed model to nanowires, nanotubes, nanofibers, nanodots, etc suggests that it is general and has broad appeal.

  10. Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles.

    PubMed

    Ye, Fan; Miao, Ming; Jiang, Bo; Campanella, Osvaldo H; Jin, Zhengyu; Zhang, Tao

    2017-08-15

    The aim of present study was to study the medium-chain triacylglycerol-in-water (O/W) Pickering emulsion stabilized using different modified starch-based nanoparticles (octenylsuccinylation treated soluble starch nanoparticle, OSA-SSNP, and insoluble starch nanoparticle, ISNP). The major factors for affecting the system stability, rheological behaviour and microstructure of the emulsions were also investigated. The parameters of the O/W emulsions stabilized by OSA-SSNP or ISNP were selected as follows: 3.0% of starch nanoparticles concentration, 50% of MCT fraction and 7.0 of system pH. The rheological properties indicated that both emulsions displayed shear-thinning behaviour as a non-Newtonian fluid. For OSA-SSNP, the viscosities of the emulsion were higher than those of ISNP throughout shear rate range for the same condition. The plot of droplet size distribution for emulsion stabilized OSA-SSNP appeared as a single narrow peak, whereas a broader droplet size distribution with bimodal pattern was observed for emulsion stabilized ISNP. The microscopy results showed that both OSA-SSNP and ISNP were adsorbed at oil-water interface to form a barrier film and retard the phase separation. When emulsion was stored for 30d, no phase separation was detected for O/W emulsion, revealing high stability of emulsion stabilized by both OSA-SSNP and ISNP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Surface-modified multifunctional MIP nanoparticles

    NASA Astrophysics Data System (ADS)

    Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; Perez de Vargas Sansalvador, Isabel; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J.; Piletsky, Sergey

    2013-04-01

    The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinylferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors.The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity

  12. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics.

    PubMed

    Ahmed, Osama A A; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A

    2015-01-01

    The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid-liquid phase separation method, according to the Box-Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance.

  13. Optimization of caseinate-coated simvastatin-zein nanoparticles: improved bioavailability and modified release characteristics

    PubMed Central

    Ahmed, Osama AA; Hosny, Khaled M; Al-Sawahli, Majid M; Fahmy, Usama A

    2015-01-01

    The current study focuses on utilization of the natural biocompatible polymer zein to formulate simvastatin (SMV) nanoparticles coated with caseinate, to improve solubility and hence bioavailability, and in addition, to modify SMV-release characteristics. This formulation can be utilized for oral or possible depot parenteral applications. Fifteen formulations were prepared by liquid–liquid phase separation method, according to the Box–Behnken design, to optimize formulation variables. Sodium caseinate was used as an electrosteric stabilizer. The factors studied were: percentage of SMV in the SMV-zein mixture (X1), ethanol concentration (X2), and caseinate concentration (X3). The selected dependent variables were mean particle size (Y1), SMV encapsulation efficiency (Y2), and cumulative percentage of drug permeated after 1 hour (Y3). The diffusion of SMV from the prepared nanoparticles specified by the design was carried out using an automated Franz diffusion cell apparatus. The optimized SMV-zein formula was investigated for in vivo pharmacokinetic parameters compared with an oral SMV suspension. The optimized nanosized SMV-zein formula showed a 131 nm mean particle size and 89% encapsulation efficiency. In vitro permeation studies displayed delayed permeation characteristics, with about 42% and 85% of SMV cumulative amount released after 12 and 48 hours, respectively. Bioavailability estimation in rats revealed an augmentation in SMV bioavailability from the optimized SMV-zein formulation, by fourfold relative to SMV suspension. Formulation of caseinate-coated SMV-zein nanoparticles improves the pharmacokinetic profile and bioavailability of SMV. Accordingly, improved hypolipidemic activities for longer duration could be achieved. In addition, the reduced dosage rate of SMV-zein nanoparticles improves patient tolerability and compliance. PMID:25670883

  14. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers.

    PubMed

    Tolaymat, Thabet M; El Badawy, Amro M; Genaidy, Ash; Scheckel, Kirk G; Luxton, Todd P; Suidan, Makram

    2010-02-01

    Most recently, renewed interest has arisen in manufactured silver nanomaterials because of their unusually enhanced physicochemical properties and biological activities compared to the bulk parent materials. A wide range of applications has emerged in consumer products ranging from disinfecting medical devices and home appliances to water treatment. Because the hypothesized mechanisms that govern the fate and transport of bulk materials may not directly apply to materials at the nanoscale, there are great concerns in the regulatory and research communities about potential environmental impacts associated with the use of silver nanoparticles. In particular, the unlimited combinations of properties emerging from the syntheses and applications of silver nanoparticles are presenting an urgent need to document the predominant salt precursors, reducing agents and stabilizing agents utilized in the synthesis processes of silver nanoparticles to guide the massive efforts required for environmental risk assessment and management. The primary objective of this study is to present an evidence-based environmental perspective of silver nanoparticle properties in syntheses and applications. The following specific aims are designed to achieve the study objective: Aim 1--to document the salt precursors and agents utilized in synthesizing silver nanoparticles; Aim 2--to determine the characteristics of silver nanoparticles currently in use in the scientific literature when integrated in polymer matrices to form nanocomposites and combined with other metal nanoparticles to form bimetallic nanoparticles; Aim 3--to provide a summary of the morphology of silver nanoparticles; and (4) Aim 4--to provide an environmental perspective of the evidence presented in Aims 1 to 3. A comprehensive electronic search of scientific databases was conducted in support of the study objectives. Specific inclusion criteria were applied to gather the most pertinent research articles. Data and information

  15. Lightweight magnesium nanocomposites: electrical conductivity of liquid magnesium doped by CoPd nanoparticles

    NASA Astrophysics Data System (ADS)

    Yakymovych, Andriy; Slabon, Adam; Plevachuk, Yuriy; Sklyarchuk, Vasyl; Sokoliuk, Bohdan

    2018-04-01

    The effect of monodisperse bimetallic CoPd NP admixtures on the electrical conductivity of liquid magnesium was studied. Temperature dependence of the electrical conductivity of liquid Mg98(CoPd)2, Mg96(CoPd)4, and Mg92(CoPd)8 alloys was measured in a wide temperature range above the melting point by a four-point method. It was shown that the addition of even small amount of CoPd nanoparticles to liquid Mg has a significant effect on the electrical properties of the melts obtained.

  16. The effect of intermolecular hydrogen bonding on the fluorescence of a bimetallic platinum complex.

    PubMed

    Zhao, Guang-Jiu; Northrop, Brian H; Han, Ke-Li; Stang, Peter J

    2010-09-02

    The bimetallic platinum complexes are known as unique building blocks and arewidely utilized in the coordination-driven self-assembly of functionalized supramolecular metallacycles. Hence, photophysical study of the bimetallic platinum complexes will be very helpful for the understanding on the optical properties and further applications of coordination-driven self-assembled supramolecular metallacycles. Herein, we report steady-state and time-resolved spectroscopic experiments as well as quantum chemistry calculations to investigate the significant intermolecular hydrogen bonding effects on the intramolecular charge transfer (ICT) fluorescence of a bimetallic platinum compound 4,4'-bis(trans-Pt(PEt(3))(2)OTf)benzophenone 3 in solution. We demonstrated that the fluorescent state of compound 3 can be assigned as a metal-to-ligand charge transfer (MLCT) state. Moreover, it was observed that the formation of intermolecular hydrogen bonds can effectively lengthen the fluorescence lifetime of 3 in alcoholic solvents compared with that in hexane solvent. At the same time, the electronically excited states of 3 in solution are definitely changed by intermolecular hydrogen bonding interactions. As a consequence, we propose a new fluorescence modulation mechanism by hydrogen bonding to explain different fluorescence emissions of 3 in hydrogen-bonding solvents and nonhydrogen-bonding solvents.

  17. Reflectometric measurement of n-hexane adsorption on ZnO2 nanohybrid film modified by hydrophobic gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Sebők, Dániel; Csapó, Edit; Ábrahám, Nóra; Dékány, Imre

    2015-04-01

    Zinc-peroxide/poly(styrenesulfonate) nanohybrid thin films (containing 20 bilayers: [ZnO2/PSS]20, d ∼ 500 nm) were prepared using layer-by-layer (LbL) method. The thin film surface was functionalized by different surface modifying agents (silanes, alkylthiols and hydrophobized nanoparticles). Based on the experimental results of quartz crystal microbalance (QCM) and contact angle measurements (as prequalifications) the octanethiol covered gold nanoparticles (OT-AuNPs) were selected for further vapour adsorption studies. Reflectometric interference spectroscopy (RIfS) was used to measure n-hexane vapour adsorption on the original and modified nanohybrid films in a gas flow platform. The thin film provides only the principle of the measurement (by interference phenomenon), the selectivity and hydrophobicity is controlled and enhanced by surface functionalization (by dispersion interaction between the alkyl chains). The interference pattern shift (Δλ) caused by the increase of the optical thickness of the thin film due to vapour adsorption was investigated. It was found that due to the surface functionalization by hydrophobic nanoparticles the effect of water vapour adsorption decreased significantly, while for n-hexane opposite tendency was observed (the effective refractive index and thus the interference pattern shift increased drastically). The correlation between QCM technique and optical method (RIfS) was specified: linear specific adsorbed amount vs. wavelength shift calibration curves were determined in the pr = 0-0.4 relative vapour pressure range. The thin film is suitable for sensorial application (e.g. volatile organic compound/VOC sensor).

  18. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd-Pt nanoparticles.

    PubMed

    Yan, Jun; Liu, Shi; Zhang, Zhenqin; He, Guangwu; Zhou, Ping; Liang, Haiying; Tian, Lulu; Zhou, Xuemin; Jiang, Huijun

    2013-11-01

    Pd-Pt bimetallic nanoparticles anchored on functionalized reduced graphene oxide (RGO) nanomaterials were synthesized via a one-step in situ reduction process, in which Pt and Pd ions were first attached to poly(diallyldimethylammonium chloride) (PDDA) functionalized graphene oxide (GO) sheets, and then the encased metal ions and GO were subjected to simultaneous reduction by ethylene glycol. The as-prepared Pd3Pt1/PDDA-RGO nanocomposites were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and electrochemical methods. In addition, an electrochemical sensor based on the graphene nanocomposites was fabricated for the simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA) in their ternary mixture. Three well-separated voltammetric peaks along with remarkable increasing electro-oxidation currents were obtained in differential pulse voltammetry (DPV) measurements. Under the optimized conditions, there were linear relationships between the peak currents and the concentrations in the range of 40-1200 μM for AA, 4-200 μM for DA and 4-400 μM for UA, with the limit of detection (LOD) (based on S/N=3) of 0.61, 0.04 and 0.10 μM for AA, DA and UA, respectively. This improved electrochemical performance can be attributed to the synergistic effect of metallic nanoparticles and RGO and the combination of the bimetallic nanoparticles. Furthermore, the practical electroanalytical utility of the sensor was demonstrated by the determination of AA, DA and together with UA in human urine and blood serum samples with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Efficient method for the conversion of agricultural waste into sugar alcohols over supported bimetallic catalysts.

    PubMed

    Tathod, Anup P; Dhepe, Paresh L

    2015-02-01

    Promoter effect of Sn in the PtSn/γ-Al2O3 (AL) and PtSn/C bimetallic catalysts is studied for the conversion of variety of substrates such as, C5 sugars (xylose, arabinose), C6 sugars (glucose, fructose, galactose), hemicelluloses (xylan, arabinogalactan), inulin and agricultural wastes (bagasse, rice husk, wheat straw) into sugar alcohols (sorbitol, mannitol, xylitol, arabitol, galactitol). In all the reactions, PtSn/AL showed enhanced yields of sugar alcohols by 1.5-3 times than Pt/AL. Compared to C, AL supported bimetallic catalysts showed prominent enhancement in the yields of sugar alcohols. Bimetallic catalysts characterized by X-ray diffraction study revealed the stability of catalyst and absence of alloy formation thereby indicating that Pt and Sn are present as individual particles in PtSn/AL. The TEM analysis also confirmed stability of the catalysts and XPS study disclosed formation of electron deficient Sn species which helps in polarizing carbonyl bond to achieve enhanced hydrogenation activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Biomedical Properties Study of Modified Chitosan Nanoparticles for Drug Delivery Systems

    NASA Astrophysics Data System (ADS)

    Saboktakin, Mohammad Reza

    2013-09-01

    The purpose of this review is to discuss and summarize some of the interesting findings and applications of modified chitosan (MCS) and their derivatives in different areas of drug delivery. This review highlights the important applications of MCS in the design of various novel delivery systems like liposomes, microspheres, microcapsules, and nanoparticles. In addition to their well-known effects on drug solubility and dissolution, bioavailability, safety, and stability, their uses as recipients in drug formulation are also discussed. This review also focuses on various factors influencing inclusion complex formation because an understanding of the same is necessary for proper handling of these versatile materials. Some important considerations in selecting MCS in drug formulation such as their commercial availability, regulatory status, and patent status are also summarized.

  1. A Tunable Bimetallic MOF-74 for Adsorption Chiller Applications: A Tunable Bimetallic MOF-74 for Adsorption Chiller Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jian; Zheng, Jian; Barpaga, Dushyant

    A mixed metal strategy, in which two different metal nodes coexist in one MOF framework, was examined using MOF-74. The Ni salt precursor for the MOF-74(Ni) analogue was partially replaced during synthesis with relatively inexpensive Zn salt. These bimetallic MOFs were developed and examined for water sorption for potential use in adsorption cooling/chiller applications. Varying concentration ratios of Ni:Zn in MOF-74 achieved using this mixed metal strategy were shown to provide unique impacts on H2O uptake while significantly mitigating the costs of synthesis

  2. Predicting Cell Association of Surface-Modified Nanoparticles Using Protein Corona Structure - Activity Relationships (PCSAR).

    PubMed

    Kamath, Padmaja; Fernandez, Alberto; Giralt, Francesc; Rallo, Robert

    2015-01-01

    Nanoparticles are likely to interact in real-case application scenarios with mixtures of proteins and biomolecules that will absorb onto their surface forming the so-called protein corona. Information related to the composition of the protein corona and net cell association was collected from literature for a library of surface-modified gold and silver nanoparticles. For each protein in the corona, sequence information was extracted and used to calculate physicochemical properties and statistical descriptors. Data cleaning and preprocessing techniques including statistical analysis and feature selection methods were applied to remove highly correlated, redundant and non-significant features. A weighting technique was applied to construct specific signatures that represent the corona composition for each nanoparticle. Using this basic set of protein descriptors, a new Protein Corona Structure-Activity Relationship (PCSAR) that relates net cell association with the physicochemical descriptors of the proteins that form the corona was developed and validated. The features that resulted from the feature selection were in line with already published literature, and the computational model constructed on these features had a good accuracy (R(2)LOO=0.76 and R(2)LMO(25%)=0.72) and stability, with the advantage that the fingerprints based on physicochemical descriptors were independent of the specific proteins that form the corona.

  3. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions.

    PubMed

    Treuel, Lennart; Brandholt, Stefan; Maffre, Pauline; Wiegele, Sarah; Shang, Li; Nienhaus, G Ulrich

    2014-01-28

    Recent studies have firmly established that cellular uptake of nanoparticles is strongly affected by the presence and the physicochemical properties of a protein adsorption layer around these nanoparticles. Here, we have modified human serum albumin (HSA), a serum protein often used in model studies of protein adsorption onto nanoparticles, to alter its surface charge distribution and investigated the consequences for protein corona formation around small (radius ∼5 nm), dihydrolipoic acid-coated quantum dots (DHLA-QDs) by using fluorescence correlation spectroscopy. HSA modified by succinic anhydride (HSAsuc) to generate additional carboxyl groups on the protein surface showed a 3-fold decreased binding affinity toward the nanoparticles. A 1000-fold enhanced affinity was observed for HSA modified by ethylenediamine (HSAam) to increase the number of amino functions on the protein surface. Remarkably, HSAsuc formed a much thicker protein adsorption layer (8.1 nm) than native HSA (3.3 nm), indicating that it binds in a distinctly different orientation on the nanoparticle, whereas the HSAam corona (4.6 nm) is only slightly thicker. Notably, protein binding to DHLA-QDs was found to be entirely reversible, independent of the modification. We have also measured the extent and kinetics of internalization of these nanoparticles without and with adsorbed native and modified HSA by HeLa cells. Pronounced variations were observed, indicating that even small physicochemical changes of the protein corona may affect biological responses.

  4. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    NASA Astrophysics Data System (ADS)

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more

  5. Antibody modified gold nanoparticles for fast and selective, colorimetric T7 bacteriophage detection.

    PubMed

    Lesniewski, Adam; Los, Marcin; Jonsson-Niedziółka, Martin; Krajewska, Anna; Szot, Katarzyna; Los, Joanna M; Niedziolka-Jonsson, Joanna

    2014-04-16

    Herein, we report a colorimetric immunosensor for T7 bacteriophage based on gold nanoparticles modified with covalently bonded anti-T7 antibodies. The new immunosensor allows for a fast, simple, and selective detection of T7 virus. T7 virions form immunological complexes with the antibody modified gold nanoparticles which causes them to aggregate. The aggregation can be observed with the naked eye as a color change from red to purple, as well as with a UV-vis spectrophotometer. The aggregate formation was confirmed with SEM imaging. Sensor selectivity against the M13 bacteriophage was demonstrated. The limit of detection (LOD) is 1.08 × 10(10) PFU/mL (18 pM) T7. The new method was compared with a traditional plaque test. In contrast to biological tests the colorimetric method allows for detection of all T7 phages, not only those biologically active. This includes phage ghosts and fragments of virions. T7 virus has been chosen as a model organism for adenoviruses. The described method has several advantages over the traditional ones. It is much faster than a standard plaque test. It is more robust since no bacteria-virus interactions are utilized in the detection process. Since antibodies are available for a large variety of pathogenic viruses, the described concept is very flexible and can be adapted to detect many different viruses, not only bacteriophages. Contrary to the classical immunoassays, it is a one-step detection method, and no additional amplification, e.g., enzymatic, is needed to read the result.

  6. Chitosan nanoparticles and their Tween 80 modified counterparts disrupt the developmental profile of zebrafish embryos.

    PubMed

    Yuan, Zhongyue; Li, Ying; Hu, Yulan; You, Jian; Higashisaka, Kazuma; Nagano, Kazuya; Tsutsumi, Yasuo; Gao, Jianqing

    2016-12-30

    Chitosan nanoparticles (CS-NPs) and their Tween 80 modified counterparts (TmCS-NPs) are among the most commonly used brain-targeted vehicles. However, their potential developmental toxicity is poorly understood. In this study, zebrafish embryos are introduced as an in vivo platform. Both NPs showed a dose-dependent increase in developmental toxicity (decreased hatching rate, increased mortality and incidences of malformation). Neurobehavioral changes included decreased spontaneous movement in TmCS-NP treated embryos and hyperactive effect in CS-NP treated larvae. Both NPs remarkably inhibited axonal development of primary and secondary motor neurons, and affected the muscle structure. Overall, this study demonstrated that CS-NPs and TmCS-NPs could affect embryonic development, disrupt neurobehavior of zebrafish larvae and affect muscle and neuron development, suggesting more attention on biodegradable chitosan nanoparticles. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Label-Free Electrochemical Detection of Vanillin through Low-Defect Graphene Electrodes Modified with Au Nanoparticles.

    PubMed

    Gao, Jingyao; Yuan, Qilong; Ye, Chen; Guo, Pei; Du, Shiyu; Lai, Guosong; Yu, Aimin; Jiang, Nan; Fu, Li; Lin, Cheng-Te; Chee, Kuan W A

    2018-03-25

    Graphene is an excellent modifier for the surface modification of electrochemical electrodes due to its exceptional physical properties and, for the development of graphene-based chemical and biosensors, is usually coated on glassy carbon electrodes (GCEs) via drop casting. However, the ease of aggregation and high defect content of reduced graphene oxides degrade the electrical properties. Here, we fabricated low-defect graphene electrodes by catalytically thermal treatment of HPHT diamond substrate, followed by the electrodeposition of Au nanoparticles (AuNPs) with an average size of ≈60 nm on the electrode surface using cyclic voltammetry. The Au nanoparticle-decorated graphene electrodes show a wide linear response range to vanillin from 0.2 to 40 µM with a low limit of detection of 10 nM. This work demonstrates the potential applications of graphene-based hybrid electrodes for highly sensitive chemical detection.

  8. Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore

    NASA Astrophysics Data System (ADS)

    Tan, Shengwei; Wang, Lei; Liu, Hang; Wu, Hongwen; Liu, Quanjun

    2016-02-01

    The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles when they were in the vicinity of the nanopore. And, nanoparticle translocation speed was slowed down to obtain a clear and deterministic signal. Compared with previous studied small nanoparticles, the electrophoretic translocation of negatively charged polystyrene (PS) nanoparticles (diameter ~100 nm) was investigated in solution using the Coulter counter principle in which the time-dependent nanopore current was recorded as the nanoparticles were driven across the nanopore. A linear dependence was found between current drop and biased voltage. An exponentially decaying function ( t d ~ e -v/v0 ) was found between the duration time and biased voltage. The interaction between the amine-functionalized nanopore wall and PS microspheres was discussed while translating PS microspheres. We explored also translocations of PS microspheres through amine-functionalized solid-state nanopores by varying the solution pH (5.4, 7.0, and 10.0) with 0.02 M potassium chloride (KCl). Surface functionalization showed to provide a useful step to fine-tune the surface property, which can selectively transport molecules or particles. This approach is likely to be applied to gene sequencing.

  9. Cell-Penetrating Peptide-Modified Gold Nanoparticles for the Delivery of Doxorubicin to Brain Metastatic Breast Cancer.

    PubMed

    Morshed, Ramin A; Muroski, Megan E; Dai, Qing; Wegscheid, Michelle L; Auffinger, Brenda; Yu, Dou; Han, Yu; Zhang, Lingjiao; Wu, Meijing; Cheng, Yu; Lesniak, Maciej S

    2016-06-06

    As therapies continue to increase the lifespan of patients with breast cancer, the incidence of brain metastases has steadily increased, affecting a significant number of patients with metastatic disease. However, a major barrier toward treating these lesions is the inability of therapeutics to penetrate into the central nervous system and accumulate within intracranial tumor sites. In this study, we designed a cell-penetrating gold nanoparticle platform to increase drug delivery to brain metastatic breast cancer cells. TAT peptide-modified gold nanoparticles carrying doxorubicin led to improved cytotoxicity toward two brain metastatic breast cancer cell lines with a decrease in the IC50 of at least 80% compared to free drug. Intravenous administration of these particles led to extensive accumulation of particles throughout diffuse intracranial metastatic microsatellites with cleaved caspase-3 activity corresponding to tumor foci. Furthermore, intratumoral administration of these particles improved survival in an intracranial MDA-MB-231-Br xenograft mouse model. Our results demonstrate the promising application of gold nanoparticles for improving drug delivery in the context of brain metastatic breast cancer.

  10. Surface-modified multifunctional MIP nanoparticles

    PubMed Central

    Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; de Vargas Sansalvador, Isabel Perez; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J.; Piletsky, Sergey

    2015-01-01

    The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly-sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinyl ferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors. PMID:23503559

  11. Surface-modified multifunctional MIP nanoparticles.

    PubMed

    Moczko, Ewa; Poma, Alessandro; Guerreiro, Antonio; Perez de Vargas Sansalvador, Isabel; Caygill, Sarah; Canfarotta, Francesco; Whitcombe, Michael J; Piletsky, Sergey

    2013-05-07

    The synthesis of core-shell molecularly imprinted polymer nanoparticles (MIP NPs) has been performed using a novel solid-phase approach on immobilised templates. The same solid phase also acts as a protective functionality for high affinity binding sites during subsequent derivatisation/shell formation. This procedure allows for the rapid synthesis, controlled separation and purification of high-affinity materials, with each production cycle taking just 2 hours. The aim of this approach is to synthesise uniformly sized imprinted materials at the nanoscale which can be readily grafted with various polymers without affecting their affinity and specificity. For demonstration purposes we grafted anti-melamine MIP NPs with coatings which introduce the following surface characteristics: high polarity (PEG methacrylate); electro-activity (vinylferrocene); fluorescence (eosin acrylate); thiol groups (pentaerythritol tetrakis(3-mercaptopropionate)). The method has broad applicability and can be used to produce multifunctional imprinted nanoparticles with potential for further application in the biosensors, diagnostics and biomedical fields and as an alternative to natural receptors.

  12. Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine

    PubMed Central

    Shin, Jae-Wook; Kim, Kyeong-Jun; Yoon, Jinho; Jo, Jinhee; El-Said, Waleed Ahmed; Choi, Jeong-Woo

    2017-01-01

    Several neurological disorders such as Alzheimer’s disease and Parkinson’s disease have become a serious impediment to aging people nowadays. One of the efficient methods used to monitor these neurological disorders is the detection of neurotransmitters such as dopamine. Metal materials, such as gold and platinum, are widely used in this electrochemical detection method; however, low sensitivity and linearity at low dopamine concentrations limit the use of these materials. To overcome these limitations, a silver nanoparticle (SNP) modified electrode covered by graphene oxide for the detection of dopamine was newly developed in this study. For the first time, the surface of an indium tin oxide (ITO) electrode was modified using SNPs and graphene oxide sequentially through the electrochemical deposition method. The developed biosensor provided electrochemical signal enhancement at low dopamine concentrations in comparison with previous biosensors. Therefore, our newly developed SNP modified electrode covered by graphene oxide can be used to monitor neurological diseases through electrochemical signal enhancement at low dopamine concentrations. PMID:29186040

  13. Silver Nanoparticle Modified Electrode Covered by Graphene Oxide for the Enhanced Electrochemical Detection of Dopamine.

    PubMed

    Shin, Jae-Wook; Kim, Kyeong-Jun; Yoon, Jinho; Jo, Jinhee; El-Said, Waleed Ahmed; Choi, Jeong-Woo

    2017-11-29

    Several neurological disorders such as Alzheimer's disease and Parkinson's disease have become a serious impediment to aging people nowadays. One of the efficient methods used to monitor these neurological disorders is the detection of neurotransmitters such as dopamine. Metal materials, such as gold and platinum, are widely used in this electrochemical detection method; however, low sensitivity and linearity at low dopamine concentrations limit the use of these materials. To overcome these limitations, a silver nanoparticle (SNP) modified electrode covered by graphene oxide for the detection of dopamine was newly developed in this study. For the first time, the surface of an indium tin oxide (ITO) electrode was modified using SNPs and graphene oxide sequentially through the electrochemical deposition method. The developed biosensor provided electrochemical signal enhancement at low dopamine concentrations in comparison with previous biosensors. Therefore, our newly developed SNP modified electrode covered by graphene oxide can be used to monitor neurological diseases through electrochemical signal enhancement at low dopamine concentrations.

  14. Dye-doped silica-based nanoparticles for bioapplications

    NASA Astrophysics Data System (ADS)

    Nhung Tran, Hong; Nghiem, Thi Ha Lien; Thuy Duong Vu, Thi; Tan Pham, Minh; Van Nguyen, Thi; Trang Tran, Thu; Chu, Viet Ha; Thuan Tong, Kim; Thuy Tran, Thanh; Le, Thi Thanh Xuan; Brochon, Jean-Claude; Quy Nguyen, Thi; Nhung Hoang, My; Nguyen Duong, Cao; Thuy Nguyen, Thi; Hoang, Anh Tuan; Hoa Nguyen, Phuong

    2013-12-01

    This paper presents our recent research results on synthesis and bioapplications of dye-doped silica-based nanoparticles. The dye-doped water soluble organically modified silicate (ORMOSIL) nanoparticles (NPs) with the size of 15-100 nm were synthesized by modified Stöber method from methyltriethoxysilane CH3Si(OCH3)3 precursor (MTEOS). Because thousands of fluorescent dye molecules are encapsulated in the silica-based matrix, the dye-doped nanoparticles are extremely bright and photostable. Their surfaces were modified with bovine serum albumin (BSA) and biocompatible chemical reagents. The highly intensive luminescent nanoparticles were combined with specific bacterial and breast cancer antigen antibodies. The antibody-conjugated nanoparticles can identify a variety of bacterium, such as Escherichia coli O157:H7, through antibody-antigen interaction and recognition. A highly sensitive breast cancer cell detection has been achieved with the anti-HER2 monoclonal antibody-nanoparticles complex. These results demonstrate the potential to apply these fluorescent nanoparticles in various biodetection systems.

  15. Delivery of phytochemical thymoquinone using molecular micelle modified poly(D, L lactide-co-glycolide) (PLGA) nanoparticles

    NASA Astrophysics Data System (ADS)

    Ganea, Gabriela M.; Fakayode, Sayo O.; Losso, Jack N.; van Nostrum, Cornelus F.; Sabliov, Cristina M.; Warner, Isiah M.

    2010-07-01

    Continuous efforts have been made in the development of potent benzoquinone-based anticancer drugs aiming for improved water solubility and reduced adverse reactions. Thymoquinone is a liposoluble benzoquinone-based phytochemical that has been shown to have remarkable antioxidant and anticancer activities. In the study reported here, thymoquinone-loaded PLGA nanoparticles were synthesized and evaluated for physico-chemical, antioxidant and anticancer properties. The nanoparticles were synthesized by an emulsion solvent evaporation method using anionic molecular micelles as emulsifiers. The system was optimized for maximum entrapment efficiency using a Box-Behnken experimental design. Optimum conditions were found for 100 mg PLGA, 15 mg TQ and 0.5% w/v poly(sodium N-undecylenyl-glycinate) (poly-SUG). In addition, other structurally related molecular micelles such as poly(sodium N-heptenyl-glycinate) (poly-SHG), poly(sodium N-undecylenyl-leucinate) (poly-SUL), and poly(sodium N-undecylenyl-valinate) (poly-SUV) were also examined as emulsifiers. All investigated molecular micelles provided excellent emulsifier properties, leading to maximum optimized TQ entrapment efficiency, and monodispersed particle sizes below 200 nm. The release of TQ from molecular micelle modified nanoparticles was investigated by dialysis and reached lower levels than the free drug. The antioxidant activity of TQ-loaded nanoparticles, indicated by IC50 (mg ml - 1 TQ for 50% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity), was highest for poly-SUV emulsified nanoparticles (0.030 ± 0.002 mg ml - 1) as compared to free TQ. In addition, it was observed that TQ-loaded nanoparticles emulsified with poly-SUV were more effective than free TQ against MDA-MB-231 cancer cell growth inhibition, presenting a cell viability of 16.0 ± 5.6% after 96 h.

  16. Interaction of PLGA and trimethyl chitosan modified PLGA nanoparticles with mixed anionic/zwitterionic phospholipid bilayers studied using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Novak, Brian; Astete, Carlos; Sabliov, Cristina; Moldovan, Dorel

    2012-02-01

    Poly(lactic-co-glycolic acid) (PLGA) is a biodegradable polymer. Nanoparticles of PLGA are commonly used for drug delivery applications. The interaction of the nanoparticles with the cell membrane may influence the rate of their uptake by cells. Both PLGA and cell membranes are negatively charged, so adding positively charged polymers such as trimethyl chitosan (TMC) which adheres to the PLGA particles improves their cellular uptake. The interaction of 3 nm PLGA and TMC-modified-PLGA nanoparticles with lipid bilayers composed of mixtures of phosphatidylcholine and phosphatidylserine lipids was studied using molecular dynamics simulations. The free energy profiles as function of nanoparticles position along the normal direction to the bilayers were calculated, the distribution of phosphatidylserine lipids as a function of distance of the particle from the bilayer was calculated, and the time scale for particle motion in the directions parallel to the bilayer surface was estimated.

  17. Density functional study of structural and electronic properties of bimetallic silver-gold clusters: Comparison with pure gold and silver clusters

    NASA Astrophysics Data System (ADS)

    Bonacic-Koutecky, Vlasta; Burda, Jaroslav; Mitric, Roland; Ge, Maofa; Zampella, Giuseppe; Fantucci, Piercarlo

    2002-08-01

    Bimetallic silver-gold clusters offer an excellent opportunity to study changes in metallic versus "ionic" properties involving charge transfer as a function of the size and the composition, particularly when compared to pure silver and gold clusters. We have determined structures, ionization potentials, and vertical detachment energies for neutral and charged bimetallic AgmAun 3[less-than-or-equal](m+n)[less-than-or-equal]5 clusters. Calculated VDE values compare well with available experimental data. In the stable structures of these clusters Au atoms assume positions which favor the charge transfer from Ag atoms. Heteronuclear bonding is usually preferred to homonuclear bonding in clusters with equal numbers of hetero atoms. In fact, stable structures of neutral Ag2Au2, Ag3Au3, and Ag4Au4 clusters are characterized by the maximum number of hetero bonds and peripheral positions of Au atoms. Bimetallic tetramer as well as hexamer are planar and have common structural properties with corresponding one-component systems, while Ag4Au4 and Ag8 have 3D forms in contrast to Au8 which assumes planar structure. At the density functional level of theory we have shown that this is due to participation of d electrons in bonding of pure Aun clusters while s electrons dominate bonding in pure Agm as well as in bimetallic clusters. In fact, Aun clusters remain planar for larger sizes than Agm and AgnAun clusters. Segregation between two components in bimetallic systems is not favorable, as shown in the example of Ag5Au5 cluster. We have found that the structures of bimetallic clusters with 20 atoms Ag10Au10 and Ag12Au8 are characterized by negatively charged Au subunits embedded in Ag environment. In the latter case, the shape of Au8 is related to a pentagonal bipyramid capped by one atom and contains three exposed negatively charged Au atoms. They might be suitable for activating reactions relevant to catalysis. According to our findings the charge transfer in bimetallic

  18. Electrochemical glucose biosensor based on nickel oxide nanoparticle-modified carbon paste electrode.

    PubMed

    Erdem, Ceren; Zeybek, Derya Koyuncu; Aydoğdu, Gözde; Zeybek, Bülent; Pekyardımcı, Sule; Kılıç, Esma

    2014-08-01

    In the present work, we designed an amperometric glucose biosensor based on nickel oxide nanoparticles (NiONPs)-modified carbon paste electrode. The biosensor was prepared by incorporation of glucose oxidase and NiONPs into a carbon paste matrix. It showed good analytical performances such as high sensitivity (367 μA mmolL(-1)) and a wide linear response from 1.9×10(-3) mmolL(-1) to 15.0 mmolL(-1) with a limit of detection (0.11 μmolL(-1)). The biosensor was used for the determination of glucose in human serum samples. The results illustrate that NiONPs have enormous potential in the construction of biosensor for determination of glucose.

  19. Human serum albumin nanoparticles modified with apolipoprotein A-I cross the blood-brain barrier and enter the rodent brain.

    PubMed

    Zensi, Anja; Begley, David; Pontikis, Charles; Legros, Celine; Mihoreanu, Larisa; Büchel, Claudia; Kreuter, Jörg

    2010-12-01

    Nanoparticles made of human serum albumin (HSA) and modified with apolipoproteins have previously been shown to transport drugs, which normally do not enter the brain, across the blood-brain barrier (BBB). However the precise mechanism by which nanoparticles with different apolipoproteins on their surface can target to the brain, as yet, has not been totally elucidated. In the present study, HSA nanoparticles with covalently bound apolipoprotein A-I (Apo A-I) as a targetor for brain capillary endothelial cells were injected intravenously into SV 129 mice and Wistar rats. The rodents were sacrificed after 15 or 30 min, and their brains were examined by transmission electron microscopy. Apo A-I nanoparticles could be found inside the endothelial cells of brain capillaries as well as within parenchymal brain tissue of both, mice and rats, whereas control particles without Apo A-I on their surface did not cross the BBB during our experiments. The maintenance of tight junction integrity and barrier function during treatment with nanoparticles was demonstrated by perfusion with a fixative containing lanthanum nitrate as an electron dense marker for the permeability of tight junctions.

  20. Extracellular biosynthesis of gadolinium oxide (Gd2O3) nanoparticles, their biodistribution and bioconjugation with the chemically modified anticancer drug taxol

    PubMed Central

    Khan, Shadab Ali; Gambhir, Sanjay

    2014-01-01

    Summary As a part of our programme to develop nanobioconjugates for the treatment of cancer, we first synthesized extracellular, protein-capped, highly stable and well-dispersed gadolinium oxide (Gd2O3) nanoparticles by using thermophilic fungus Humicola sp. The biodistribution of the nanoparticles in rats was checked by radiolabelling with Tc-99m. Finally, these nanoparticles were bioconjugated with the chemically modified anticancer drug taxol with the aim of characterizing the role of this bioconjugate in the treatment of cancer. The biosynthesized Gd2O3 nanoparticles were characterized by UV–vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoemission spectroscopy (XPS). The Gd2O3–taxol bioconjugate was confirmed by UV–vis spectroscopy and fluorescence microscopy and was purified by using high performance liquid chromatography (HPLC). PMID:24778946

  1. Deactivation of photocatalytically active ZnO nanoparticle and enhancement of its compatibility with organic compounds by surface-capping with organically modified silica

    NASA Astrophysics Data System (ADS)

    Cao, Zhi; Zhang, Zhijun

    2011-02-01

    Tetraethyl orthosilicate (TEOS) and dimethyldiethoxysilane (DEDMS) were used as co-precursors to prepare organically modified silica (ormosil) via sol-gel process. The resultant ormosil was adopted for surface-capping of ZnO nanoparticle, where methyl (organic functional group) and silica (inorganic component) were simultaneously introduced onto the surface of the nanoparticles for realizing dual surface-modification. The ormosil-capped ZnO nanoparticle showed strong hydrophobicity and good compatibility with organic phases, as well as effectively decreased photocatalytic activity and almost unchanged ultraviolet (UV)-shielding ability. More importantly, the comprehensive properties of ormosil-capped ZnO nanoparticle could be manipulated by adjusting the molar ratio of TEOS to DEDMS during sol-gel process. This should help to open a wider window to better utilizing the unique and highly attractive properties such as high UV-shielding ability and high-visible light transparency of ZnO nanoparticle in sunscreen cosmetics.

  2. Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode.

    PubMed

    Zhu, Wencai; Chen, Ting; Ma, Xuemei; Ma, Houyi; Chen, Shenhao

    2013-11-01

    Highly dispersed hollow gold-graphene (HAu-G) nanocomposites were synthesized by a two-step method. The immobilization of hollow gold nanoparticles (HAu NPs) onto the surface of graphene sheets was achieved by mixing an aqueous solution of HAu NPs with a poly(N-vinylpyrrolidone)-functionalized graphene dispersion at room temperature. A glassy carbon electrode (GCE) was modified with the nanocomposites, and the as-prepared modified electrode displayed high electrocatalytic activity and extraordinary electronic transport properties. Amperometric detection of dopamine (DA) performed with the HAu-G modified electrode exhibits a good linearity between 0.08 and 600 μM with a low detection limit of 0.05 μM (S/N=3) and also possesses good reproducibility and operational stability. The interference of ascorbic acid (AA) and uric acid (UA) can be excluded when using differential pulse voltammetric technique. In addition, this type of modified electrode can also be applied to the determination of DA content in dopamine hydrochloride injection. It is obvious that the HAu-G modified electrode provides a new way to detect dopamine sensitively and selectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Structurally ordered Pt–Zn/C series nanoparticles as efficient anode catalysts for formic acid electrooxidation

    DOE PAGES

    Zhu, Jing; Zheng, Xin; Wang, Jie; ...

    2015-09-15

    Controlling the size, composition, and structure of bimetallic nanoparticles is of particular interest in the field of electrocatalysts for fuel cells. In the present work, structurally ordered nanoparticles with intermetallic phases of Pt 3Zn and PtZn have been successfully synthesized via an impregnation reduction method, followed by post heat-treatment. The Pt 3Zn and PtZn ordered intermetallic nanoparticles are well dispersed on a carbon support with ultrasmall mean particle sizes of ~5 nm and ~3 nm in diameter, respectively, which are credited to the evaporation of the zinc element at high temperature. These catalysts are less susceptible to CO poisoning relativemore » to Pt/C and exhibited enhanced catalytic activity and stability toward formic acid electrooxidation. The mass activities of the as-prepared catalysts were approximately 2 to 3 times that of commercial Pt at 0.5 V (vs. RHE). As a result, this facile synthetic strategy is scalable for mass production of catalytic materials.« less

  4. A Palladium-Tin Modified Microband Electrode Array for Nitrate Determination

    PubMed Central

    Fu, Yexiang; Bian, Chao; Kuang, Jian; Wang, Jinfen; Tong, Jianhua; Xia, Shanhong

    2015-01-01

    A microband electrode array modified with palladium-tin bimetallic composite has been developed for nitrate determination. The microband electrode array was fabricated by Micro Electro-Mechanical System (MEMS) technique. Palladium and tin were electrodeposited successively on the electrode, forming a double-layer structure. The effect of the Pd-Sn composite was investigated and its enhancement of catalytic activity and lifetime was revealed. The Pd-Sn modified electrode showed good linearity (R2 = 0.998) from 1 mg/L to 20 mg/L for nitrate determination with a sensitivity of 398 μA/(mg∙L−1∙cm2). The electrode exhibited a satisfying analytical performance after 60 days of storage, indicating a long lifetime. Good repeatability was also displayed by the Pd-Sn modified electrodes. The results provided an option for nitrate determination in water. PMID:26389904

  5. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma

    2014-08-01

    In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  6. Polymeric nanoparticles of cholesterol-modified glycol chitosan for doxorubicin delivery: preparation and in-vitro and in-vivo characterization.

    PubMed

    Yu, Jing-Mou; Li, Yong-Jie; Qiu, Li-Yan; Jin, Yi

    2009-06-01

    Polymeric nanoparticles have been extensively studied as drug carriers. Chitosan and its derivatives have attracted significant attention in this regard but have limited application because of insolubility in biological solution. In this work, we attempted to utilize cholesterol-modified glycol chitosan (CHGC) self-aggregated nanoparticles to increase aqueous solubility, and to reduce side effects and enhance the antitumour efficacy of the anticancer drug doxorubicin. Methods CHGC nanoparticles were loaded with doxorubicin by a dialysis method, and their characteristics were determined by transmission electron microscopy examination, light-scattering study, in-vitro drug-release study, pharmacokinetic study in rats and in-vivo antitumour activity in mice. The resulting doxorubicin-loaded CHGC nanoparticles (DCNs) formed self-assembled aggregates in aqueous medium. From the observation by transmission electron microscopy, DCNs were almost spherical in shape. The mean diameters of these nanoparticles determined by dynamic light scattering were in the range of 237-336 nm as the doxorubicin-loading content increased from 1.73% to 9.36%. In-vitro data indicated that doxorubicin release from DCNs was much faster in phosphate-buffered saline at pH 5.5 than at pH 6.5 and 7.4, and the release rate was dependent on the loading content of doxorubicin in these nanoparticles. It was observed that DCN-16 (drug loaded content: 9.36%) exhibited prolonged circulation time in rat plasma and showed higher antitumour efficacy against S180-bearing mice than free doxorubicin. These results indicated that CHGC nanoparticles had potential as a carrier for insoluble anticancer drugs in cancer therapy.

  7. Fabrication of Highly Stable and Efficient PtCu Alloy Nanoparticles on Highly Porous Carbon for Direct Methanol Fuel Cells.

    PubMed

    Khan, Inayat Ali; Qian, Yuhong; Badshah, Amin; Zhao, Dan; Nadeem, Muhammad Arif

    2016-08-17

    Boosting the durability of Pt nanoparticles by controlling the composition and morphology is extremely important for fuel cells commercialization. We deposit the Pt-Cu alloy nanoparticles over high surface area carbon in different metallic molar ratios and optimize the conditions to achieve desired material. The novel bimetallic electro-catalyst {Pt-Cu/PC-950 (15:15%)} offers exceptional electrocatalytic activity when tested for both oxygen reduction reaction and methanol oxidation reactions. A high mass activity of 0.043 mA/μgPt (based on Pt mass) is recorded for ORR. An outstanding longevity of this electro-catalyst is noticed when compared to 20 wt % Pt loaded either on PC-950 or commercial carbon. The high surface area carbon support offers enhanced activity and prevents the nanoparticles from agglomeration, migration, and dissolution as evident by TEM analysis.

  8. Impedimetric detection of cocaine by using an aptamer attached to a screen printed electrode modified with a dendrimer/silver nanoparticle nanocomposite.

    PubMed

    Roushani, Mahmoud; Shahdost-Fard, Faezeh

    2018-03-12

    The authors describe a highly sensitive method for the aptamer (Apt) based impedimetric determination of cocaine. The surface of a screen-printed electrode (SPE) was modified with a nanocomposite of dendrimer and silver nanoparticles (AgNPs). The cocaine-binding Apt was attached to a dendrimer/AgNP/SPE surface, forming a sensitive layer for the determination of cocaine. The incubation with the analyte resulted in the formation of a cocaine/Apt complex on the electrode surface. As a consequence, folding and conformational change in the aptamer structure was induced, this resulting in a change in the impedimetric signal. The aptaassay exhibits highly efficient sensing characteristics with a good linearity of 1 fmol L -1 to 100 nmol L -1 (with two linear ranges) and a limit of detection (LOD) of 333 amol L -1 . Its excellent specificity and high sensitivity suggest that this kind of aptamer-based assay may be applied to detect other targets in this field. Graphical Abstract Designing of an aptaassay via immobilization of a functionalized aptamer with silver nanoparticle (AgNPs-Apt) on the modified screen-printed electrode (SPE) with dendrimer/silver nanoparticle nanocomposite (Den-AgNPs) for impedimetric detection of cocaine.

  9. Enhanced photocatalytic degradation of methylene blue by metal-modified silicon nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brahiti, N., E-mail: dihiabrahiti@yahoo.fr; Université Mouloud MAMMERI de TiziOuzou, Département de Physique, Bastos; Hadjersi, T., E-mail: hadjersi@gmx.com

    2015-02-15

    Highlights: • SiNWs modified with Pd, Au and Pt were used as photocatalysts to degrade MB. • Yield of photodegardation increases with UV irradiation time. • SiNWs modified with Pd nanoparticles show the best photocatalytic activity. • A degradation of 97% was obtained after 200 min of UV irradiation. - Abstract: Silicon nanowires (SiNWs) modified with Au, Pt and Pd nanoparticles were used as heterogeneous photocatalysts for the photodegradation of methylene blue in water under UV light irradiation. The modification of SiNWs was carried out by deposition of metal nanoparticles using the electroless metal deposition (EMD) technique. The effect ofmore » metal nanoparticles deposition time on the photocatalytic activity was studied. It was found that the photocatalytic activity of modified SiNWs was enhanced when the deposition time of metal nanoparticles was increased. In addition of modified SiNWs with Pt, Au and Pd nanoparticles, oxidized silicon substrate (Ox-Si), oxidized silicon nanowires (Ox-SiNWs) and hydrogen-terminated silicon nanowires (H-SiNWs) were also evaluated for the photodegradation of methylene blue.« less

  10. Modifying mesoporous silica nanoparticles to avoid the metabolic deactivation of 6-mercaptopurine and methotrexate in combinatorial chemotherapy.

    PubMed

    Wang, Wenjing; Fang, Chenjie; Wang, Xiaozhu; Chen, Yuxi; Wang, Yaonan; Feng, Wei; Yan, Chunhua; Zhao, Ming; Peng, Shiqi

    2013-07-21

    Mesoporous silica nanoparticles with amino and thiol groups (MSNSN) were prepared and covalently modified with methotrexate and 6-mercaptopurine to form 6-MP-MSNSN-MTX. In the presence of DTT, 6-MP-MSNSN-MTX gradually releases 6-MP. In rat plasma, 6-MP-MSNSN-MTX effectively inhibits the metabolic deactivation of 6-MP and MTX. 6-MP-MSNSN-MTX could be an agent for long-acting chemotherapy.

  11. Pd-Cu/poly(o-Anisidine) nanocomposite as an efficient catalyst for formaldehyde oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosseini, Sayed Reza, E-mail: r.hosseini@umz.ac.ir; Raoof, Jahan-Bakhsh; Ghasemi, Shahram

    Highlights: • o-Anisidine monomer was electro-polymerized at the pCPE surface in acid medium. • Palladium/copper NPs were prepared by galvanic replacement method at the POA/pCPE. • Pd-Cu NPs showed excellent electrocatalytic activity towards formaldehyde oxidation. • The bimetallic Pd-Cu NPs/POA nanocomposite showed satisfactory long-term stability. - Abstract: In this work, for the first time, the electrocatalytic oxidation of formaldehyde in 0.5 M sulfuric acid solution at spherical bimetallic palladium-copper nanoparticles (Pd-Cu NPs) deposited on the poly (o-Anisidine) film modified electrochemically pretreated carbon paste electrode (POA/pCPE) has been investigated. Highly porous POA film prepared by electropolymerization onto the pCPE was usedmore » as a potent support for deposition of the Pd-Cu NPs. The Pd-Cu NPs were prepared through spontaneous and irreversible reaction via galvanic replacement between Pd{sup II} ions and the Cu{sup 0} particles. The prepared Pd-Cu NPs were characterized by scanning electron microscopy, energy dispersive spectroscopy and electrochemical methods. The obtained results showed that the utilization of Cu nanoparticles and pretreatment technique enhances the electrocatalytic activity of the modified electrode towards formaldehyde oxidation. The influence of several parameters on formaldehyde oxidation as well as stability of the Pd-Cu/POA/pCPE has been investigated.« less

  12. Cadmium removal from simulated groundwater using alumina nanoparticles: behaviors and mechanisms.

    PubMed

    Koju, Neel Kamal; Song, Xin; Wang, Qing; Hu, Zhihao; Colombo, Claudio

    2018-05-07

    Cadmium (Cd), one of the most toxic contaminants in groundwater, can cause a severe threat to human health and ecological systems. In this study, alumina nanoparticles were synthesized and tested for high-efficiency Cd removal from simulated groundwater. Furthermore, the synthesized alumina nanoparticles were successfully modified using negatively charged glycerol, to alleviate the challenge of its low mobility in groundwater for the Cd removal. The maximum removal efficiency of both synthesized and glycerol-modified alumina nanoparticles were more than 99%. The sorption isotherm and kinetic data of both synthesized and glycerol-modified alumina nanoparticles were best fitted to the Freundlich model and the pseudo-second-order model, respectively, indicating that the sorption of Cd ions occurs on heterogeneous surfaces of both alumina nanoparticles via the chemisorption mechanism. X-ray photoelectron spectroscopy and energy dispersive X-ray analysis revealed the presence of Cd peak in both sorbents after contact with Cd. In addition, the FTIR analyses demonstrated that hydroxyl group participated in the sorption of Cd on both synthesized and glycerol-modified alumina nanoparticles, while other glycerol associated groups contributed to the removal of Cd ions by the glycerol-modified alumina nanoparticles. It was concluded that Cd removal by synthesized and glycerol-modified alumina nanoparticles were mainly due to ion exchange and electrostatic attraction, respectively. Desorption experiment suggested that both alumina nanoparticles are effective and practically significant sorbents to remediate Cd from contaminated groundwater. However, the stronger bond between Cd and glycerol-modified alumina, plus its potential of higher mobility due to the negative charge on the surface, warrant glycerol-modified alumina nanoparticles a better performance in remediating Cd contaminated groundwater than that of the synthesized alumina nanoparticles. Copyright © 2018 Elsevier

  13. Flow injection amperometric detection of insulin at cobalt hydroxide nanoparticles modified carbon ceramic electrode.

    PubMed

    Habibi, Esmaeil; Omidinia, Eskandar; Heidari, Hassan; Fazli, Maryam

    2016-02-15

    Cobalt hydroxide nanoparticles were prepared onto a carbon ceramic electrode (CHN|CCE) using the cyclic voltammetry (CV) technique. The modified electrode was characterized by X-ray diffraction and scanning electron microscopy. The results showed that CHN with a single-layer structure was uniformly electrodeposited on the surface of CCE. The electrocatalytic activity of the modified electrode toward the oxidation of insulin was studied by CV. CHN|CCE was also used in a homemade flow injection analysis system for insulin determination. The limit of detection (signal/noise [S/N] = 3) and sensitivity were found to be 0.11 nM and 11.8 nA/nM, respectively. Moreover, the sensor was used for detection of insulin in human serum samples. This sensor showed attractive properties such as high stability, reproducibility, and high selectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Photocatalytic removal of polychlorinated biphenyls (PCBs) using carbon-modified titanium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Shaban, Yasser A.; El Sayed, Mohamed A.; El Maradny, Amr A.; Al Farawati, Radwan Kh.; Al Zobidi, Mosa I.; Khan, Shahed U. M.

    2016-03-01

    In this work, the sonicated sol-gel method was used for synthesizing carbon-modified titanium oxide nanoparticles. Carbon incorporation was achieved by using titanium (IV) isopropoxide as a titanium and carbon-containing precursor. The photocatalytic efficiency of the synthesized photocatalyst was assessed by examining the photocatalytic removal of polychlorinated biphenyls (PCBs) from aqueous solution. For comparison, unmodified (regular) titanium dioxide (n-TiO2) was used as a reference catalyst. To confirm the carbon incorporation in CM-n-TiO2 nanoparticles, energy dispersive spectroscopy (EDS) analysis was used. Significantly, the bandgap energy was found to be reduced from 2.99 eV for n-TiO2 to 1.8 eV for CM-n-TiO2, which in turn improved the performance of CM-n-TiO2 toward the photocatalytic removal of PCBs. The effects of CM-n-TiO2 loading, PCBs concentration, and pH of the solution on the photodegradation rate of PCBs were investigated. The highest removal rate was found to be at pH 5 and CM-n-TiO2 loading of 0.5 g L-1. According to Langmuir-Hinshelwood model, the photodegradation of PCBs using CM-n-TiO2 followed a pseudo-first order reaction kinetics.

  15. Galactose Derivative-Modified Nanoparticles for Efficient siRNA Delivery to Hepatocellular Carcinoma.

    PubMed

    Huang, Kuan-Wei; Lai, Yu-Tsung; Chern, Guann-Jen; Huang, Shao-Feng; Tsai, Chia-Lung; Sung, Yun-Chieh; Chiang, Cheng-Chin; Hwang, Pi-Bei; Ho, Ting-Lun; Huang, Rui-Lin; Shiue, Ting-Yun; Chen, Yunching; Wang, Sheng-Kai

    2018-05-29

    Successful siRNA therapy requires suitable delivery systems with targeting moieties such as small molecules, peptides, antibodies, or aptamers. Galactose (Gal) residues recognized by the asialoglycoprotein receptor (ASGPR) can serve as potent targeting moieties for hepatocellular carcinoma (HCC) cells. However, efficient targeting to HCC via galactose moieties rather than normal liver tissues in HCC patients remains a challenge. To achieve more efficient siRNA delivery in HCC, we synthesized various galactoside derivatives and investigated the siRNA delivery capability of nanoparticles modified with those galactoside derivatives. In this study, we assembled lipid/calcium/phosphate nanoparticles (LCP NPs) conjugated with eight types of galactoside derivatives and demonstrated that phenyl β-d-galactoside-decorated LCP NPs (L4-LCP NPs) exhibited a superior siRNA delivery into HCC cells compared to normal hepatocytes. VEGF siRNAs delivered by L4-LCP NPs downregulated VEGF expression in HCC in vitro and in vivo and led to a potent antiangiogenic effect in the tumor microenvironment of a murine orthotopic HCC model. The efficient delivery of VEGF siRNA by L4-LCP NPs that resulted in significant tumor regression indicates that phenyl galactoside could be a promising HCC-targeting ligand for therapeutic siRNA delivery to treat liver cancer.

  16. Enhanced physicochemical properties of chitosan/whey protein isolate composite film by sodium laurate-modified TiO2 nanoparticles.

    PubMed

    Zhang, Wei; Chen, Jiwang; Chen, Yue; Xia, Wenshui; Xiong, Youling L; Wang, Hongxun

    2016-03-15

    Chitosan/whey protein isolate film incorporated with sodium laurate-modified TiO2 nanoparticles was developed. The nanocomposite film was characterized by scanning electron microscopy, X-ray diffraction and differential scanning calorimetry, and investigated in physicochemical properties as color, tensile strength, elongation at break, water vapor permeability and water adsorption isotherm. Our results showed that the nanoparticles improved the compatibility of whey protein isolate and chitosan. Addition of nanoparticles increased the whiteness of chitosan/whey protein isolate film, but decreased its transparency. Compared with binary film, the tensile strength and elongation at break of nanocomposite film were increased by 11.51% and 12.01%, respectively, and water vapor permeability was decreased by 7.60%. The equilibrium moisture of nanocomposite film was lower than binary film, and its water sorption isotherm of the nanocomposite film fitted well to Guggenheim-Anderson-deBoer model. The findings contributed to the development of novel food packaging materials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Mesquite Gum as a Novel Reducing and Stabilizing Agent for Modified Tollens Synthesis of Highly Concentrated Ag Nanoparticles

    PubMed Central

    Moreno-Trejo, Maira Berenice; Sánchez-Domínguez, Margarita

    2016-01-01

    The synthesis that is described in this study is for the preparation of silver nanoparticles of sizes ranging from 10 nm to 30 nm with a defined shape (globular), confirmed by UV-vis, SEM, STEM and DLS analysis. This simple and favorable one-step modified Tollens reaction does not require any special equipment or other stabilizing or reducing agent except for a solution of purified mesquite gum, and it produces aqueous colloidal dispersions of silver nanoparticles with a stability that exceeds three months, a relatively narrow size distribution, a low tendency to aggregate and a yield of at least 95% for all cases. Reaction times are between 15 min and 60 min to obtain silver nanoparticles in concentrations ranging from 0.1 g to 3 g of Ag per 100 g of reaction mixture. The proposed synthetic method presents a high potential for scale-up, since its production capacity is rather high and the methodology is simple. PMID:28773938

  18. A systems approach to designing next generation vaccines: combining α-galactose modified antigens with nanoparticle platforms

    NASA Astrophysics Data System (ADS)

    Phanse, Yashdeep; Carrillo-Conde, Brenda R.; Ramer-Tait, Amanda E.; Broderick, Scott; Kong, Chang Sun; Rajan, Krishna; Flick, Ramon; Mandell, Robert B.; Narasimhan, Balaji; Wannemuehler, Michael J.

    2014-01-01

    Innovative vaccine platforms are needed to develop effective countermeasures against emerging and re-emerging diseases. These platforms should direct antigen internalization by antigen presenting cells and promote immunogenic responses. This work describes an innovative systems approach combining two novel platforms, αGalactose (αGal)-modification of antigens and amphiphilic polyanhydride nanoparticles as vaccine delivery vehicles, to rationally design vaccine formulations. Regimens comprising soluble αGal-modified antigen and nanoparticle-encapsulated unmodified antigen induced a high titer, high avidity antibody response with broader epitope recognition of antigenic peptides than other regimen. Proliferation of antigen-specific CD4+ T cells was also enhanced compared to a traditional adjuvant. Combining the technology platforms and augmenting immune response studies with peptide arrays and informatics analysis provides a new paradigm for rational, systems-based design of next generation vaccine platforms against emerging and re-emerging pathogens.

  19. Determination of anionic surface active agents using silica coated magnetite nanoparticles modified with cationic surfactant aggregates.

    PubMed

    Pena-Pereira, Francisco; Duarte, Regina M B O; Trindade, Tito; Duarte, Armando C

    2013-07-19

    The development of a novel methodology for extraction and preconcentration of the most commonly used anionic surface active agents (SAAs), linear alkylbenzene sulfonates (LAS), is presented herein. The present method, based on the use of silica-magnetite nanoparticles modified with cationic surfactant aggregates, was developed for determination of C10-C13 LAS homologues. The proposed methodology allowed quantitative recoveries of C10-C13 LAS homologues by using a reduced amount of magnetic nanoparticles. Limits of detection were in the range 0.8-1.9μgL(-1) for C10-C13 LAS homologues, while the repeatability, expressed as relative standard deviation (RSD), ranged from 2.0 to 3.9% (N=6). Finally, the proposed method was successfully applied to the analysis of a variety of natural water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Designing supported palladium-on-gold bimetallic nano-catalysts for controlled hydrogenation of acetylene in large excess of ethylene

    NASA Astrophysics Data System (ADS)

    Malla, Pavani

    Ethylene is used as a starting point for many chemical intermediates in the petrochemical industry. It is predominantly produced through steam cracking of higher hydrocarbons (ethane, propane, butane, naphtha, and gas oil). During the cracking process, a small amount of acetylene is produced as a side product. However, acetylene must be removed since it acts as a poison for ethylene polymerization catalysts at even ppm concentrations (>5 ppm). Thus, the selective hydrogenation of acetylene to ethylene is an important process for the purification of ethylene. Conventional, low weight loading Pd catalysts are used for this selective reaction in high concentration ethylene streams. Gold was initially considered to be catalytically inactive for a long time. This changed when gold was seen in the context of the nanometric scale, which has indeed shown it to have excellent catalytic activity as a homogeneous or a heterogeneous catalyst. Gold is proved to have high selectivity to ethylene but poor at conversion. Bimetallic Au and Pd catalysts have exhibited superior activity as compared to Pd particles in semi-hydrogenation. Hydrogenation of acetylene was tested using this bimetallic combination. The Pd-on-Au bimetallic catalyst structure provides a new synthesis approach in improving the catalytic properties of monometallic Pd materials. TiO 2 as a support material and 0.05%Pd loading on 1%Au on titania support and used different treatment methods like washing plasma and reduction between the two metal loadings and was observed under 2:1 ratio. In my study there were two set of catalysts which were prepared by a modified incipient wetness impregnation technique. Out of all the reaction condition the catalyst which was reduced after impregnating gold and then impregnating palladium which was further treated in non-thermal hydrogen plasma and then pretreated in hydrogen till 250°C for 1 hour produced the best activity of 76% yield at 225°C. Stability tests were conducted