Science.gov

Sample records for bimodal membrane behaviour

  1. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration.

    PubMed

    Liu, Bowen; Zhang, Shichao; Wang, Xueli; Yu, Jianyong; Ding, Bin

    2015-11-01

    Nanofibrous media that both possess high airborne particle interception efficiency and robust air permeability would have broad technological implications for areas ranging from individual protection and industrial security to environmental governance; however, creating such filtration media has proved extremely challenging. Here we report a strategy to construct the bio-based polyamide-56 nanofiber/nets (PA-56 NFN) membranes with bimodal structures for effective air filtration via one-step electrospinning/netting. The PA-56 membranes are composed of completely covered two-dimensional (2D) ultrathin (∼20 nm) nanonets which are optimized by facilely regulating the solution concentration, and the bonded scaffold fibers constructed cavity structures which are synchronously created by using the CH3COOH inspiration. With integrated properties of small aperture, high porosity, and bonded scaffold, the resulting PA-56 NFN membranes exhibit high filtration efficiency of 99.995%, low pressure drop of 111 Pa, combined with large dust holding capacity of 49 g/m(2) and dust-cleaning regeneration ability, for filtrating ultrafine airborne particles in the most safe manner involving sieving principle and surface filtration. The successful synthesis of PA-56 NFN medium would not only make it a promising candidate for air filtration, but also provide new insights into the design and development of nanonet-based bimodal structures for various applications. PMID:26188726

  2. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration.

    PubMed

    Liu, Bowen; Zhang, Shichao; Wang, Xueli; Yu, Jianyong; Ding, Bin

    2015-11-01

    Nanofibrous media that both possess high airborne particle interception efficiency and robust air permeability would have broad technological implications for areas ranging from individual protection and industrial security to environmental governance; however, creating such filtration media has proved extremely challenging. Here we report a strategy to construct the bio-based polyamide-56 nanofiber/nets (PA-56 NFN) membranes with bimodal structures for effective air filtration via one-step electrospinning/netting. The PA-56 membranes are composed of completely covered two-dimensional (2D) ultrathin (∼20 nm) nanonets which are optimized by facilely regulating the solution concentration, and the bonded scaffold fibers constructed cavity structures which are synchronously created by using the CH3COOH inspiration. With integrated properties of small aperture, high porosity, and bonded scaffold, the resulting PA-56 NFN membranes exhibit high filtration efficiency of 99.995%, low pressure drop of 111 Pa, combined with large dust holding capacity of 49 g/m(2) and dust-cleaning regeneration ability, for filtrating ultrafine airborne particles in the most safe manner involving sieving principle and surface filtration. The successful synthesis of PA-56 NFN medium would not only make it a promising candidate for air filtration, but also provide new insights into the design and development of nanonet-based bimodal structures for various applications.

  3. Sperm Membrane Behaviour during Cooling and Cryopreservation.

    PubMed

    Sieme, H; Oldenhof, H; Wolkers, W F

    2015-09-01

    Native sperm is only marginally stable after collection. Cryopreservation of semen facilitates transport and storage for later use in artificial reproduction technologies, but cryopreservation processing may result in cellular damage compromising sperm function. Membranes are thought to be the primary site of cryopreservation injury. Therefore, insights into the effects of cooling, ice formation and protective agents on sperm membranes may help to rationally design cryopreservation protocols. In this review, we describe membrane phase behaviour of sperm at supra- and subzero temperatures. In addition, factors affecting membrane phase transitions and stability, sperm osmotic tolerance limits and mode of action of cryoprotective agents are discussed. It is shown how cooling only results in minor thermotropic non-cooperative phase transitions, whereas freezing causes sharp lyotropic fluid-to-gel phase transitions. Membrane cholesterol content affects suprazero membrane phase behaviour and osmotic tolerance. The rate and extent of cellular dehydration coinciding with freezing-induced membrane phase transitions are affected by the cooling rate and ice nucleation temperature and can be modulated by cryoprotective agents. Permeating agents such as glycerol can move across cellular membranes, whereas non-permeating agents such as sucrose cannot. Both, permeating and non-permeating protectants preserve biomolecular and cellular structures by forming a protective glassy state during freezing. PMID:26382025

  4. Bimodal behaviour of charge carriers in graphene induced by electric double layer

    NASA Astrophysics Data System (ADS)

    Tsai, Sing-Jyun; Yang, Ruey-Jen

    2016-07-01

    A theoretical investigation is performed into the electronic properties of graphene in the presence of liquid as a function of the contact area ratio. It is shown that the electric double layer (EDL) formed at the interface of the graphene and the liquid causes an overlap of the conduction bands and valance bands and increases the density of state (DOS) at the Fermi energy (EF). In other words, a greater number of charge carriers are induced for transport and the graphene changes from a semiconductor to a semimetal. In addition, it is shown that the dependence of the DOS at EF on the contact area ratio has a bimodal distribution which responses to the experimental observation, a pinnacle curve. The maximum number of induced carriers is expected to occur at contact area ratios of 40% and 60%. In general, the present results indicate that modulating the EDL provides an effective means of tuning the electronic properties of graphene in the presence of liquid.

  5. Bimodal behaviour of charge carriers in graphene induced by electric double layer

    PubMed Central

    Tsai, Sing-Jyun; Yang, Ruey-Jen

    2016-01-01

    A theoretical investigation is performed into the electronic properties of graphene in the presence of liquid as a function of the contact area ratio. It is shown that the electric double layer (EDL) formed at the interface of the graphene and the liquid causes an overlap of the conduction bands and valance bands and increases the density of state (DOS) at the Fermi energy (EF). In other words, a greater number of charge carriers are induced for transport and the graphene changes from a semiconductor to a semimetal. In addition, it is shown that the dependence of the DOS at EF on the contact area ratio has a bimodal distribution which responses to the experimental observation, a pinnacle curve. The maximum number of induced carriers is expected to occur at contact area ratios of 40% and 60%. In general, the present results indicate that modulating the EDL provides an effective means of tuning the electronic properties of graphene in the presence of liquid. PMID:27464986

  6. Behaviour of Steel Arch Stabilized by a Textile Membrane

    NASA Astrophysics Data System (ADS)

    Svoboda, O.; Machacek, J.

    2015-11-01

    Behaviour of the slender steel arch supporting textile membranes in a membrane structure with respect to in-plane and out-of plane stability is investigated in the paper. In the last decades the textile membranes have been widely used to cover both common and exclusive structures due to progress in new membrane materials with eminent properties. Nevertheless, complex analysis of such membranes in interaction with steel structure (carbon/stainless steel perimeter or supporting elements) is rather demanding, even with specialized software. Laboratory model of a large membrane structure simulating a shelter roof of a concert stage was tested and the resulting stress/deflection values are presented. The model of a reasonable size was provided with prestressed membrane of PVC coated polyester fabric Ferrari® Précontraint 702S and tested under various loadings. The supporting steel structure consisted of two steel arch tubes from S355 grade steel and perimeter prestressed cables. The stability behaviour of the inner tube was the primary interest of the investigation. The SOFiSTiK software was used to analyse the structural behaviour in 3D. Numerical non-linear analysis of deflections and internal forces of the structure under symmetrical and asymmetrical loadings covers various membrane prestressing and specific boundary conditions. The numerical results are validated using test results. Finally, the preliminary recommendations for appropriate numerical modelling and stability design of the supporting structure are presented.

  7. Effect of bimodal harmonic structure design on the deformation behaviour and mechanical properties of Co-Cr-Mo alloy.

    PubMed

    Vajpai, Sanjay Kumar; Sawangrat, Choncharoen; Yamaguchi, Osamu; Ciuca, Octav Paul; Ameyama, Kei

    2016-01-01

    In the present work, Co-Cr-Mo alloy compacts with a unique bimodal microstructural design, harmonic structure design, were successfully prepared via a powder metallurgy route consisting of controlled mechanical milling of pre-alloyed powders followed by spark plasma sintering. The harmonic structured Co-Cr-Mo alloy with bimodal grain size distribution exhibited relatively higher strength together with higher ductility as compared to the coarse-grained specimens. The harmonic Co-Cr-Mo alloy exhibited a very complex deformation behavior wherein it was found that the higher strength and the high retained ductility are derived from fine-grained shell and coarse-grained core regions, respectively. Finally, it was observed that the peculiar spatial/topological arrangement of stronger fine-grained and ductile coarse-grained regions in the harmonic structure promotes uniformity of strain distribution, leading to improved mechanical properties by suppressing the localized plastic deformation during straining. PMID:26478398

  8. Glycans pattern the phase behaviour of lipid membranes

    NASA Astrophysics Data System (ADS)

    Subramaniam, Anand Bala; Guidotti, Guido; Manoharan, Vinothan N.; Stone, Howard A.

    2013-02-01

    Hydrated networks of glycans (polysaccharides)—in the form of cell walls, periplasms or gel-like matrices—are ubiquitously present adjacent to cellular plasma membranes. Yet, despite their abundance, the function of glycans in the extracellular milieu is largely unknown. Here we show that the spatial configuration of glycans controls the phase behaviour of multiphase model lipid membranes: inhomogeneous glycan networks stabilize large lipid domains at the characteristic length scale of the network, whereas homogeneous networks suppress macroscopic lipid phase separation. We also find that glycan-patterned phase separation is thermally reversible—thus indicating that the effect is thermodynamic rather than kinetic—and that phase patterning probably results from a preferential interaction of glycans with ordered lipid phases. These findings have implications for membrane-mediated transport processes, potentially rationalize long-standing observations that differentiate the behaviour of native and model membranes and may indicate an intimate coupling between cellular lipidomes and glycomes.

  9. Measurement of dynamic patterns of an elastic membrane at bi-modal vibration using high speed electronic speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Preciado, Jorge Sanchez; Lopez, Carlos Perez; Santoyo, Fernando Mendoza

    2014-05-01

    Implementing a hybrid arrangement of Laser Doppler Vibrometry (LDV) and high speed Electronic Speckle Pattern Interferometry (ESPI) we were able to measure the dynamic patterns of a flat rectangular elastic membrane clamped at its edges stimulated with the sum of two resonance frequencies. ESPI is a versatile technique to analyze in real-time the deformation of a membrane since its low computational cost and easy implementation of the optical setup. Elastic membranes present nonlinear behaviors when stimulated with low amplitude signals. The elastic membrane under test, with several non rational related vibrating modals below the 200 Hz, was stimulated with two consecutives resonant frequencies. The ESPI patterns, acquired at high speed rates, shown a similar behavior for the dual frequency stimulation as in the case of patterns formed with the entrainment frequency. We think this may be related to the effects observed in the application of dual frequency stimulation in ultrasound.

  10. Measurement of dynamic patterns of an elastic membrane at bi-modal vibration using high speed electronic speckle pattern interferometry

    SciTech Connect

    Preciado, Jorge Sanchez; Lopez, Carlos Perez; Santoyo, Fernando Mendoza

    2014-05-27

    Implementing a hybrid arrangement of Laser Doppler Vibrometry (LDV) and high speed Electronic Speckle Pattern Interferometry (ESPI) we were able to measure the dynamic patterns of a flat rectangular elastic membrane clamped at its edges stimulated with the sum of two resonance frequencies. ESPI is a versatile technique to analyze in real-time the deformation of a membrane since its low computational cost and easy implementation of the optical setup. Elastic membranes present nonlinear behaviors when stimulated with low amplitude signals. The elastic membrane under test, with several non rational related vibrating modals below the 200 Hz, was stimulated with two consecutives resonant frequencies. The ESPI patterns, acquired at high speed rates, shown a similar behavior for the dual frequency stimulation as in the case of patterns formed with the entrainment frequency. We think this may be related to the effects observed in the application of dual frequency stimulation in ultrasound.

  11. Bimodal fission

    SciTech Connect

    Hulet, E.K.

    1989-04-19

    In recent years, we have measured the mass and kinetic-energy distributions from the spontaneous fission of /sup 258/Fm, /sup 259/Md, /sup 260/Md, /sup 258/No, /sup 262/No, and /sup 260/(104). All are observed to fission with a symmetrical division of mass, whereas the total-kinetic-energy (TKE) distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the TKE distributions are resolved into two Gaussians the constituent peaks lie near 200 and near 233 MeV. We conclude two modes or bimodal fission is occurring in five of the six nuclides studied. Both modes are possible in the same nuclides, but one generally predominates. We also conclude the low-energy but mass-symmetrical mode is likely to extend to far heavier nuclei; while the high-energy mode will be restricted to a smaller region, a region of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in /sup 132/Sn. 16 refs., 7 figs., 1 tab.

  12. Investigation of hydrodynamic behaviour of membranes using radiotracer techniques

    NASA Astrophysics Data System (ADS)

    Miskiewicz, A.; Zakrzewska-Trznadel, G.

    2013-05-01

    The aim of the work was to study membrane devices using short-lived radioisotopes like Ba-137m and Ga-68 as tracers. These radioisotopes were obtained from radionuclide generators: Cs-137/Ba-137m and Ge-68/Ga-68. The first radionuclide, namely Ba-137m with a half-life of 2.55 minutes was applied as a liquid phase tracer for studying hydrodynamic conditions inside the membrane apparatus. The membrane module with ceramic membranes was tested by using Ba-137m. The experiments showed that this radionuclide with a short half-life is a perfect tracer for liquid phase, whereas Ga-68 with longer half-life equal to 68 minutes was considered as a solid phase (bentonite) tracer. Ga-68 was used to gain more knowledge about the phenomena occurring in the membrane boundary layer. After kinetic studies of isotope adsorption into the carrier material, the growth rate of the deposit layer as well as deposit's thickness on the flat-sheet membrane were studied. The influence of such process parameters like pressure, linear velocity of liquid and feed concentration on formation of the bentonite layer on the membrane surface was studied.

  13. Influence of membrane galactolipids and surface pressure on plastoquinone behaviour.

    PubMed

    Hoyo, Javier; Guaus, Ester; Torrent-Burgués, Juan

    2016-10-01

    In this work biomimetic monolayers of a MGDG, monogalactosyldiacylglycerol, and DGDG, digalactosyldiacylglycerol mixture (MD), in a ratio close to that of the thylakoid membranes of oxygenic photosynthetic organisms, have been prepared. The lipid mixture incorporates plastoquinone-9 (PQ), that is the electron and proton shuttle of the photosynthetic reaction centres. The MD:PQ mixtures have been firstly studied using surface pressure-area isotherms. Langmuir-Blodgett (LB) films of those mixtures have been transferred onto a substrate forming a monolayer that mimics one of the bilayer sides of the thylakoid membranes. These monolayers have been characterized topographically and electrochemically. The results show the influence of PQ in the MD matrix and its partial expulsion when increasing the surface pressure, obtaining two main PQ positions in the MD matrix. The calculated apparent electron transfer rate constants indicate a different kinetic control for the reduction and the oxidation of the PQ/PQH2 couple, being kRapp(I)=0.7·10(-6)s(-1), kRapp(II)=2.2·10(-9)s(-1), kOapp(I)=7.4·10(-4)s(-1) and kOapp(II)=5.2·10(-5)s(-1), respectively. The comparison of the different galactolipid:PQ systems that our group has studied is also presented, concluding that the PQ position in the galactolipid matrix can be tuned according to several controlled variables. PMID:27317998

  14. Rejection of pharmaceuticals by nanofiltration (NF) membranes: Effect of fouling on rejection behaviour

    NASA Astrophysics Data System (ADS)

    Mahlangu, T. O.; Msagati, T. A. M.; Hoek, E. M. V.; Verliefde, A. R. D.; Mamba, B. B.

    The aim of this study was to investigate the effects of membrane fouling by sodium alginate, latex and a combination of alginate + latex on the rejection behaviour of salts and organics. Sodium chloride and caffeine were selected to represent salts and organics, respectively. The effects of the presence of calcium chloride on the fouling behaviour and rejection of solutes were investigated. The results revealed that the salt rejection by virgin membranes was 47% while that of caffeine was 85%. Fouling by alginate, latex and combined alginate-latex resulted in flux decline of 25%, 37% and 17%, respectively. The addition of Ca2+ aggravated fouling and resulted in further flux decline to 37%. Fouling decreased salt rejection, an observation that was further aggravated by the addition on Ca2+. However, it was also observed that fouling with alginate and calcium and with latex and calcium minimised salt rejection by 30% and 31%, respectively. This reduction in salt rejection was attributed to the decrease in permeate flux (since rejection is a function of flux). There was a slight increase in caffeine rejection when the membrane was fouled with latex particles. Moreover, the presence of foulants on the membrane resulted in a decrease in the surface charge of the membrane. The results of this study have shown that the NF 270 membrane can be used to treat water samples contaminated with caffeine and other organic compounds that have physicochemical properties similar to those of caffeine.

  15. Behaviour of fouling-related components in an enhanced membrane bioreactor using marine activated sludge.

    PubMed

    Tan, Songwen; Li, Weiguo

    2016-11-01

    This paper presents an experimental study on behaviour of fouling-related components during saline wastewater treatments in an enhanced mesoporous membrane bioreactor (MBR) system integrated with a biological contact oxidation reactor (BCOR). By monitoring the transmembrane pressure, the MBR system without BCOR assistance was observed to get membrane fouling easier during saline wastewater treatments. Typically, the concentration of total EPS gradually increased in the MBR system over the operation time, while no significant change in its concentration was observed in the BCOR-MBR system. The concentration of total SMP in the MBR system reached high levels earlier than the BCOR-MBR system, causing a significant membrane fouling. Besides, unlike a simple MBR system, the BCOR-MBR system produced more soluble microbial by-product-like components (simple) instead of fulvic acid-like or humic acid-like components (complex) during the saline wastewater treatments, resulting in higher resistance to a membrane fouling. PMID:27598568

  16. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point.

    PubMed

    Schlegel, Peter; Binet, Monique T; Havenhand, Jonathan N; Doyle, Christopher J; Williamson, Jane E

    2015-04-01

    Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in ΔpH -0.3 (35% reduction) and ΔpH -0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification.

  17. A wrinkle in flight: the role of elastin fibres in the mechanical behaviour of bat wing membranes

    PubMed Central

    Cheney, Jorn A.; Konow, Nicolai; Bearnot, Andrew; Swartz, Sharon M.

    2015-01-01

    Bats fly using a thin wing membrane composed of compliant, anisotropic skin. Wing membrane skin deforms dramatically as bats fly, and its three-dimensional configurations depend, in large part, on the mechanical behaviour of the tissue. Large, macroscopic elastin fibres are an unusual mechanical element found in the skin of bat wings. We characterize the fibre orientation and demonstrate that elastin fibres are responsible for the distinctive wrinkles in the surrounding membrane matrix. Uniaxial mechanical testing of the wing membrane, both parallel and perpendicular to elastin fibres, is used to distinguish the contribution of elastin and the surrounding matrix to the overall membrane mechanical behaviour. We find that the matrix is isotropic within the plane of the membrane and responsible for bearing load at high stress; elastin fibres are responsible for membrane anisotropy and only contribute substantially to load bearing at very low stress. The architecture of elastin fibres provides the extreme extensibility and self-folding/self-packing of the wing membrane skin. We relate these findings to flight with membrane wings and discuss the aeromechanical significance of elastin fibre pre-stress, membrane excess length, and how these parameters may aid bats in resisting gusts and preventing membrane flutter. PMID:25833238

  18. The behaviour of the plasma membrane during plasmolysis: a study by UV microscopy.

    PubMed

    Lang-Pauluzzi, I

    2000-06-01

    A high resolution ultraviolet (UV) bright-field microscope was used to analyse the formation of Hechtian strands and the Hechtian reticulation that remain attached to the cell wall after plasmolysis and deplasmolysis of onion inner epidermal cells. In real time video images, UV microscopy allowed a detailed investigation of the dynamic behaviour of the plasma membrane during the processes of osmotic water loss and uptake. Furthermore, the role of cytoskeletal elements as possible linkers of the plasma membrane to the cell wall was probed by application of cytoskeletal drugs during plasmolysis. Microtubules were depolymerized in oryzalin, and latrunculin B was used to destabilize actin microfilaments. The results showed no visible changes in the formation of the Hechtian reticulation or strands. Plasmolysis forms appeared to be normal, indicating stong membrane-to-wall attachments independent of cytoskeletal elements. During re-expansion of the protoplast in deplasmolysis, the plasma membrane incorporated Hechtian strands and subprotoplasts, fused with the Hechtian reticulation and finally realigned at the cell wall.

  19. Open channel current noise analysis of S6 peptides from KvAP channel on bilayer lipid membrane shows bimodal power law scaling

    NASA Astrophysics Data System (ADS)

    Shrivastava, Rajan; Malik, Chetan; Ghosh, Subhendu

    2016-06-01

    Open channel current noise in synthetic peptide S6 of KvAP channel was investigated in a voltage clamp experiment on bilayer lipid membrane (BLM). It was observed that the power spectral density (PSD) of the component frequencies follows power law with different slopes in different frequency ranges. In order to know the origin of the slopes PSD analysis was done with signal filtering. It was found that the first slope in the noise profile follows 1 / f pattern which exists at lower frequencies and has high amplitude current noise, while the second slope corresponds to 1 /f 2 - 3 pattern which exists at higher frequencies with low amplitude current noise. In addition, white noise was observed at very large frequencies. It was concluded that the plausible reason for the multiple power-law scaling is the existence of different modes of non-equilibrium ion transport through the S6 channel.

  20. Aggressive Bimodal Communication in Domestic Dogs, Canis familiaris

    PubMed Central

    Déaux, Éloïse C.; Clarke, Jennifer A.; Charrier, Isabelle

    2015-01-01

    Evidence of animal multimodal signalling is widespread and compelling. Dogs’ aggressive vocalisations (growls and barks) have been extensively studied, but without any consideration of the simultaneously produced visual displays. In this study we aimed to categorize dogs’ bimodal aggressive signals according to the redundant/non-redundant classification framework. We presented dogs with unimodal (audio or visual) or bimodal (audio-visual) stimuli and measured their gazing and motor behaviours. Responses did not qualitatively differ between the bimodal and two unimodal contexts, indicating that acoustic and visual signals provide redundant information. We could not further classify the signal as ‘equivalent’ or ‘enhancing’ as we found evidence for both subcategories. We discuss our findings in relation to the complex signal framework, and propose several hypotheses for this signal’s function. PMID:26571266

  1. Aggressive Bimodal Communication in Domestic Dogs, Canis familiaris.

    PubMed

    Déaux, Éloïse C; Clarke, Jennifer A; Charrier, Isabelle

    2015-01-01

    Evidence of animal multimodal signalling is widespread and compelling. Dogs' aggressive vocalisations (growls and barks) have been extensively studied, but without any consideration of the simultaneously produced visual displays. In this study we aimed to categorize dogs' bimodal aggressive signals according to the redundant/non-redundant classification framework. We presented dogs with unimodal (audio or visual) or bimodal (audio-visual) stimuli and measured their gazing and motor behaviours. Responses did not qualitatively differ between the bimodal and two unimodal contexts, indicating that acoustic and visual signals provide redundant information. We could not further classify the signal as 'equivalent' or 'enhancing' as we found evidence for both subcategories. We discuss our findings in relation to the complex signal framework, and propose several hypotheses for this signal's function. PMID:26571266

  2. Oculomotor interference of bimodal distractors.

    PubMed

    Heeman, Jessica; Nijboer, Tanja C W; Van der Stoep, Nathan; Theeuwes, Jan; Van der Stigchel, Stefan

    2016-06-01

    When executing an eye movement to a target location, the presence of an irrelevant distracting stimulus can influence the saccade metrics and latency. The present study investigated the influence of distractors of different sensory modalities (i.e. auditory, visual and audiovisual) which were presented at various distances (i.e. close or remote) from a visual target. The interfering effects of a bimodal distractor were more pronounced in the spatial domain than in the temporal domain. The results indicate that the direction of interference depended on the spatial layout of the visual scene. The close bimodal distractor caused the saccade endpoint and saccade trajectory to deviate towards the distractor whereas the remote bimodal distractor caused a deviation away from the distractor. Furthermore, saccade averaging and trajectory deviation evoked by a bimodal distractor was larger compared to the effects evoked by a unimodal distractor. This indicates that a bimodal distractor evoked stronger spatial oculomotor competition compared to a unimodal distractor and that the direction of the interference depended on the distance between the target and the distractor. Together, these findings suggest that the oculomotor vector to irrelevant bimodal input is enhanced and that the interference by multisensory input is stronger compared to unisensory input. PMID:27164053

  3. Modelling the mechanical behaviour of pit membranes in bordered pits with respect to cavitation resistance in angiosperms

    PubMed Central

    Tixier, Aude; Herbette, Stephane; Jansen, Steven; Capron, Marie; Tordjeman, Philippe; Cochard, Hervé; Badel, Eric

    2014-01-01

    Background and Aims Various correlations have been identified between anatomical features of bordered pits in angiosperm xylem and vulnerability to cavitation, suggesting that the mechanical behaviour of the pits may play a role. Theoretical modelling of the membrane behaviour has been undertaken, but it requires input of parameters at the nanoscale level. However, to date, no experimental data have indicated clearly that pit membranes experience strain at high levels during cavitation events. Methods Transmission electron microscopy (TEM) was used in order to quantify the pit micromorphology of four tree species that show contrasting differences in vulnerability to cavitation, namely Sorbus aria, Carpinus betulus, Fagus sylvatica and Populus tremula. This allowed anatomical characters to be included in a mechanical model that was based on the Kirchhoff–Love thin plate theory. A mechanistic model was developed that included the geometric features of the pits that could be measured, with the purpose of evaluating the pit membrane strain that results from a pressure difference being applied across the membrane. This approach allowed an assessment to be made of the impact of the geometry of a pit on its mechanical behaviour, and provided an estimate of the impact on air-seeding resistance. Key Results The TEM observations showed evidence of residual strains on the pit membranes, thus demonstrating that this membrane may experience a large degree of strain during cavitation. The mechanical modelling revealed the interspecific variability of the strains experienced by the pit membrane, which varied according to the pit geometry and the pressure experienced. The modelling output combined with the TEM observations suggests that cavitation occurs after the pit membrane has been deflected against the pit border. Interspecific variability of the strains experienced was correlated with vulnerability to cavitation. Assuming that air-seeding occurs at a given pit membrane

  4. The Face of Bimodal Bilingualism

    PubMed Central

    Pyers, Jennie E.; Emmorey, Karen

    2009-01-01

    Bimodal bilinguals, fluent in a signed and a spoken language, provide unique insight into the nature of syntactic integration and language control. We investigated whether bimodal bilinguals who are conversing with English monolinguals produce American Sign Language (ASL) grammatical facial expressions to accompany parallel syntactic structures in spoken English. In ASL, raised eyebrows mark conditionals, and furrowed eyebrows mark wh-questions; the grammatical brow movement is synchronized with the manual onset of the clause. Bimodal bilinguals produced more ASL-appropriate facial expressions than did nonsigners and synchronized their expressions with the onset of the corresponding English clauses. This result provides evidence for a dual-language architecture in which grammatical information can be integrated up to the level of phonological implementation. Overall, participants produced more raised brows than furrowed brows, which can convey negative affect. Bimodal bilinguals suppressed but did not completely inhibit ASL facial grammar when it conflicted with conventional facial gestures. We conclude that morphosyntactic elements from two languages can be articulated simultaneously and that complete inhibition of the nonselected language is difficult. PMID:18578841

  5. Measuring oxygen uptake in fishes with bimodal respiration.

    PubMed

    Lefevre, S; Bayley, M; McKenzie, D J

    2016-01-01

    Respirometry is a robust method for measurement of oxygen uptake as a proxy for metabolic rate in fishes, and how species with bimodal respiration might meet their demands from water v. air has interested researchers for over a century. The challenges of measuring oxygen uptake from both water and air, preferably simultaneously, have been addressed in a variety of ways, which are briefly reviewed. These methods are not well-suited for the long-term measurements necessary to be certain of obtaining undisturbed patterns of respiratory partitioning, for example, to estimate traits such as standard metabolic rate. Such measurements require automated intermittent-closed respirometry that, for bimodal fishes, has only recently been developed. This paper describes two approaches in enough detail to be replicated by the interested researcher. These methods are for static respirometry. Measuring oxygen uptake by bimodal fishes during exercise poses specific challenges, which are described to aid the reader in designing experiments. The respiratory physiology and behaviour of air-breathing fishes is very complex and can easily be influenced by experimental conditions, and some general considerations are listed to facilitate the design of experiments. Air breathing is believed to have evolved in response to aquatic hypoxia and, probably, associated hypercapnia. The review ends by considering what realistic hypercapnia is, how hypercapnic tropical waters can become and how this might influence bimodal animals' gas exchange.

  6. Measuring oxygen uptake in fishes with bimodal respiration.

    PubMed

    Lefevre, S; Bayley, M; McKenzie, D J

    2016-01-01

    Respirometry is a robust method for measurement of oxygen uptake as a proxy for metabolic rate in fishes, and how species with bimodal respiration might meet their demands from water v. air has interested researchers for over a century. The challenges of measuring oxygen uptake from both water and air, preferably simultaneously, have been addressed in a variety of ways, which are briefly reviewed. These methods are not well-suited for the long-term measurements necessary to be certain of obtaining undisturbed patterns of respiratory partitioning, for example, to estimate traits such as standard metabolic rate. Such measurements require automated intermittent-closed respirometry that, for bimodal fishes, has only recently been developed. This paper describes two approaches in enough detail to be replicated by the interested researcher. These methods are for static respirometry. Measuring oxygen uptake by bimodal fishes during exercise poses specific challenges, which are described to aid the reader in designing experiments. The respiratory physiology and behaviour of air-breathing fishes is very complex and can easily be influenced by experimental conditions, and some general considerations are listed to facilitate the design of experiments. Air breathing is believed to have evolved in response to aquatic hypoxia and, probably, associated hypercapnia. The review ends by considering what realistic hypercapnia is, how hypercapnic tropical waters can become and how this might influence bimodal animals' gas exchange. PMID:26358224

  7. A bimodal biometric identification system

    NASA Astrophysics Data System (ADS)

    Laghari, Mohammad S.; Khuwaja, Gulzar A.

    2013-03-01

    Biometrics consists of methods for uniquely recognizing humans based upon one or more intrinsic physical or behavioral traits. Physicals are related to the shape of the body. Behavioral are related to the behavior of a person. However, biometric authentication systems suffer from imprecision and difficulty in person recognition due to a number of reasons and no single biometrics is expected to effectively satisfy the requirements of all verification and/or identification applications. Bimodal biometric systems are expected to be more reliable due to the presence of two pieces of evidence and also be able to meet the severe performance requirements imposed by various applications. This paper presents a neural network based bimodal biometric identification system by using human face and handwritten signature features.

  8. Aqueous solution behaviour and membrane disruptive activity of pH-responsive PEGylated pseudo-peptides and their intracellular distribution.

    PubMed

    Chen, Rongjun; Yue, Zhilian; Eccleston, Mark E; Slater, Nigel K H

    2008-11-01

    The effect of PEGylation on the aqueous solution properties and cell membrane disruptive activity of a pH-responsive pseudo-peptide, poly(l-lysine iso-phthalamide), has been investigated by dynamic light scattering, haemolysis and lactate dehydrogenase (LDH) assays. Intracellular trafficking of the polymers has been examined using confocal and fluorescence microscopy. With increasing degree of PEGylation, the modified polymers can form stabilised compact structures with reduced mean hydrodynamic diameters. Poly(l-lysine iso-phthalamide) with a low degree of PEGylation (17.4 wt%) retained pH-dependent solution behaviour and showed enhanced kinetic membrane disruptive activity compared to the parent polymer. It facilitated trafficking of endocytosed materials into the cytoplasm of HeLa cells. At levels of PEGylation in excess of 25.6 wt%, the modified polymers displayed a single particle size distribution unresponsive to pH, as well as a decrease in cell membrane lytic ability. The mechanism involved in membrane destabilisation was also investigated, and the potential applications of these modified polymers in drug delivery were discussed. PMID:18708250

  9. Analysis of the Permeability and Behaviour of Dissociable Species in Ion-Selective Membranes

    NASA Astrophysics Data System (ADS)

    Verpoorte, Elisabeth M. J.

    1990-08-01

    The main objective of the research presented in this work was to obtain a better understanding of the response properties of a liquid K^+-selective membrane which has found wide application in both ion-selective electrodes (ISE) and ion-sensitive field-effect transistors (ISFET). Of particular interest were the interference phenomena observed at ISE's and ISFET's in the presence of lipophilic anionic species and, in the latter case, neutral acidic species. To facilitate studies of ISFET response, a membrane -coated silicon electrode was proposed as a model for the ISFET gate. Characterization of the impedance response of this electrode was made possible through an equivalent circuit model consisting of simple circuit elements. This allowed utilization of the AC impedance technique to gain information about the response properties of both the membrane itself and the silicon/insulator/membrane structure. In studies examining the interference of benzoic acid at K^+-selective ISFET's, capacitance -voltage and UV spectroscopic measurements verified the hypothesis that this neutral acid was capable of permeating the membrane and undergoing acid-base chemistry at the insulator interface, causing a change in the interfacial charge state. Passivation of the insulator surface was accomplished through interposition of a Ag/AgCl layer between the membrane and the insulator, resulting in elimination of this neutral species interference on electrode potential response. The effect of permeation by benzoic acid and benzoate on the membrane itself was considered, and it was shown that ingress of both these species leads to decreased membrane resistivity being observed, though neither species interferes with ISE response. Studies of the temperature dependence of membrane conductivity indicated that the acid contributed to membrane charge carrier concentration through acid dissociation. A detailed analysis of membrane conductance as a function of concentration enabled the

  10. Membrane homeostasis: thermotropic behaviour of microsomal membrane lipids isolated from livers of rats fed cholesterol-supplemented diets.

    PubMed

    Garg, M L; McMurchie, E J; Sabine, J R

    1985-11-01

    Differential scanning colorimetry (DSC) has been applied to study the phase transition properties of isolated lipids from liver microsomal membranes of rats fed high cholesterol diets with or without high levels of either saturated (coconut oil) or unsaturated (sunflower seed oil) fat. DSC of aqueous buffer dispersions of liver microsomal lipids exhibited two independent, reversible phase transitions. The dietary cholesterol treatments had their major effect on the temperature at which the lower phase transition (T1) occurred. This transition occurred at a lower temperature when cholesterol was added to the diet, irrespective of the nature of the fatty acid supplement. However the magnitude of decrease was more when cholesterol was fed with sunflower seed oil. Inclusion of cholesterol into the rat diets also lowered the enthalpy values for the lower phase transition (T1). No appreciable effect on the temperature of the higher phase transition (T2) was observed, however the enthalpy values were slightly decreased by cholesterol feeding. These results suggest that certain domains of microsomal lipids, probably containing some relatively higher melting-point lipids, independently undergo solidus or gel formation and this transition (T2) is not greatly affected by dietary cholesterol. On the other hand, domains representing the bulk of the microsomal lipids undergo a phase change (T1) at temperatures which are dependent on cholesterol content and fatty acid profiles of the membrane, which are in turn, modified by dietary cholesterol intake.

  11. Bimodal porous gold opals for molecular sensing

    NASA Astrophysics Data System (ADS)

    Chae, Weon-Sik; Yu, Hyunung; Ham, Sung-Kyoung; Lee, Myung-Jin; Jung, Jin-Seung; Robinson, David B.

    2013-11-01

    We have fabricated bimodal porous gold skeletons by double-templating routes using poly(styrene) colloidal opals as templates. The fabricated gold skeletons show a bimodal pore-size distribution, with small pores within spheres and large pores between spheres. The templated bimodal porous gold skeletons were applied in Raman scattering experiments to study sensing efficiency for probe molecules. We found that the bimodal porous gold skeletons showed obvious enhancement of Raman scattering signals versus that of the unimodal porous gold which only has interstitial pores of several hundred nanometers.

  12. The effect of dietary lipids on the thermotropic behaviour of rat liver and heart mitochondrial membrane lipids.

    PubMed

    McMurchie, E J; Abeywardena, M Y; Charnock, J S; Gibson, R A

    1983-09-21

    Diets supplemented with relatively high levels of either saturated fatty acids derived from sheep kidney fat (sheep kidney fat diet) or unsaturated fatty acids derived from sunflower seed oil (sunflower seed oil diet) were fed to rats for a period of 16 weeks and changes in the thermotropic behaviour of liver and heart mitochondrial lipids were determined by differential scanning calorimetry (DSC). The diets induced similar changes in the fatty acid composition in both liver and heart mitochondrial lipids, the major change being the omega 6 to omega 3 unsaturated fatty acid ratio, which was elevated in mitochondria from animals on the sunflower seed oil diet and lowered with the mitochondria from the sheep kidney fat dietary animals. When examined by DSC, aqueous buffer dispersions of liver and heart mitochondrial lipids exhibited two independent, reversible phase transitions and in some instances a third highly unstable transition. The dietary lipid treatments had their major effect of the temperature at which the lower phase transition occurred, there being an inverse relationship between the transition temperature and the omega 6 to omega 3 unsaturated fatty acid ratio. No significant effect was observed for the temperature of the higher phase transition. These results indicate that certain domains of mitochondrial lipids, probably containing some relatively higher melting-point lipids, independently undergo formation of the solidus or gel phase and this phenomenon is not greatly influenced by the lipid composition of the mitochondrial membranes. Conversely, other domains, representing the bulk of the membrane lipids and which probably contain the relatively lower melting point lipids, undergo solidus phase formation at temperatures which reflect changes in the membrane lipid composition which are in turn, a reflection of the nature of the dietary lipid intake. These lipid phase transitions do not appear to correlate directly with those events considered

  13. Behaviour of RO98pHt polyamide membrane in reverse osmosis and low reverse osmosis conditions for phenol removal.

    PubMed

    Hidalgo, A M; León, G; Gómez, M; Murcia, M D; Gómez, E; Gómez, J L

    2011-10-01

    Phenolic compounds and their derivatives are very common pollutants in wastewaters. Among the methods described for their removal, pressure-driven membrane processes are considered as a reliable alternative. Our research group has previously studied phenol removal in reverse osmosis (RO) conditions and obtained very low rejection percentages. Subsequently, when low reverse osmosis (LRO) conditions were studied, the organic rejection percentages improved. To further our knowledge in this respect, the main objective of this work was to study the behaviour of the polyamide thin-film composite membrane RO98pHt used for phenol removal in RO and LRO conditions. The influence of different operating pressures, phenol feed concentrations and pH on permeate flux and phenol rejection was studied. Low reverse osmosis conditions led to higher phenol rejection percentages in all the assayed conditions, suggesting that other factors related to the molecular characteristics of the organic molecules, such as solubility, acidity and hydrogen bonding capacity, play an important role in the rejection percentage attained. As expected, permeate flux was greater in RO conditions. PMID:22329140

  14. Behaviour of RO98pHt polyamide membrane in reverse osmosis and low reverse osmosis conditions for phenol removal.

    PubMed

    Hidalgo, A M; León, G; Gómez, M; Murcia, M D; Gómez, E; Gómez, J L

    2011-10-01

    Phenolic compounds and their derivatives are very common pollutants in wastewaters. Among the methods described for their removal, pressure-driven membrane processes are considered as a reliable alternative. Our research group has previously studied phenol removal in reverse osmosis (RO) conditions and obtained very low rejection percentages. Subsequently, when low reverse osmosis (LRO) conditions were studied, the organic rejection percentages improved. To further our knowledge in this respect, the main objective of this work was to study the behaviour of the polyamide thin-film composite membrane RO98pHt used for phenol removal in RO and LRO conditions. The influence of different operating pressures, phenol feed concentrations and pH on permeate flux and phenol rejection was studied. Low reverse osmosis conditions led to higher phenol rejection percentages in all the assayed conditions, suggesting that other factors related to the molecular characteristics of the organic molecules, such as solubility, acidity and hydrogen bonding capacity, play an important role in the rejection percentage attained. As expected, permeate flux was greater in RO conditions.

  15. Nuclear bimodal new vision solar system missions

    SciTech Connect

    Mondt, J.F.; Zubrin, R.M.

    1996-03-01

    This paper presents an analysis of the potential mission capability using space reactor bimodal systems for planetary missions. Missions of interest include the Main belt asteroids, Jupiter, Saturn, Neptune, and Pluto. The space reactor bimodal system, defined by an Air Force study for Earth orbital missions, provides 10 kWe power, 1000 N thrust, 850 s Isp, with a 1500 kg system mass. Trajectories to the planetary destinations were examined and optimal direct and gravity assisted trajectories were selected. A conceptual design for a spacecraft using the space reactor bimodal system for propulsion and power, that is capable of performing the missions of interest, is defined. End-to-end mission conceptual designs for bimodal orbiter missions to Jupiter and Saturn are described. All missions considered use the Delta 3 class or Atlas 2AS launch vehicles. The space reactor bimodal power and propulsion system offers both; new vision {open_quote}{open_quote}constellation{close_quote}{close_quote} type missions in which the space reactor bimodal spacecraft acts as a carrier and communication spacecraft for a fleet of microspacecraft deployed at different scientific targets and; conventional missions with only a space reactor bimodal spacecraft and its science payload. {copyright} {ital 1996 American Institute of Physics.}

  16. Enhanced detection with bimodal sonar displays.

    PubMed

    Doll, T J; Hanna, T E

    1989-10-01

    Signal-to-noise ratios (SNRs) required to detect narrow-band signals in white noise were compared for bimodal and single-modality sonar displays at two levels of signal uncertainty and two degrees of spatial compatibility between the auditory and visual displays. In bimodal test conditions the auditory and visual signals were equated in detectability for each subject. An adaptive, two-alternative, forced-choice procedure was used to maintain a constant percentage of correct responses. The decrement in performance with increased signal uncertainty was significantly greater for visual than for auditory displays, suggesting that auditory displays offer advantages for real-world sonar operations. Bimodal displays produced a reliable advantage in SNR required for detection over single-modality displays. Increased compatibility between the visual and auditory displays did not increase the advantage of bimodal presentation, nor did increased signal uncertainty. It was concluded that bimodal displays enhance operators' perceptual sensitivity. The magnitude of the enhancement was consistent with optimal integration of information in the two modalities.

  17. Bimodal Nuclear Thermal Rocket Analysis Developments

    NASA Technical Reports Server (NTRS)

    Belair, Michael; Lavelle, Thomas; Saimento, Charles; Juhasz, Albert; Stewart, Mark

    2014-01-01

    Nuclear thermal propulsion has long been considered an enabling technology for human missions to Mars and beyond. One concept of operations for these missions utilizes the nuclear reactor to generate electrical power during coast phases, known as bimodal operation. This presentation focuses on the systems modeling and analysis efforts for a NERVA derived concept. The NERVA bimodal operation derives the thermal energy from the core tie tube elements. Recent analysis has shown potential temperature distributions in the tie tube elements that may limit the thermodynamic efficiency of the closed Brayton cycle used to generate electricity with the current design. The results of this analysis are discussed as well as the potential implications to a bimodal NERVA type reactor.

  18. Periodicity in bimodal atomic force microscopy

    SciTech Connect

    Lai, Chia-Yun; Santos, Sergio Chiesa, Matteo; Barcons, Victor

    2015-07-28

    Periodicity is fundamental for quantification and the application of conservation principles of many important systems. Here, we discuss periodicity in the context of bimodal atomic force microscopy (AFM). The relationship between the excited frequencies is shown to affect and control both experimental observables and the main expressions quantified via these observables, i.e., virial and energy transfer expressions, which form the basis of the bimodal AFM theory. The presence of a fundamental frequency further simplifies the theory and leads to close form solutions. Predictions are verified via numerical integration of the equation of motion and experimentally on a mica surface.

  19. Bimodal mesoporous silica with bottleneck pores.

    PubMed

    Reber, M J; Brühwiler, D

    2015-11-01

    Bimodal mesoporous silica consisting of two sets of well-defined mesopores is synthesized by a partial pseudomorphic transformation of an ordered mesoporous starting material (SBA-15 type). The introduction of a second set of smaller mesopores (MCM-41 type) establishes a pore system with bottlenecks that restricts the access to the core of the bimodal mesoporous silica particles. The particle size and shape of the starting material are retained, but micropores present in the starting material disappear during the transformation, leading to a true bimodal mesoporous product. A varying degree of transformation allows the adjustment of the pore volume contribution of the two mesopore domains. Information on the accessibility of the mesopores is obtained by the adsorption of fluorescence-labeled poly(amidoamine) dendrimers and imaging by confocal laser scanning microscopy. This information is correlated with nitrogen sorption data to provide insights regarding the spatial distribution of the two mesopore domains. The bimodal mesoporous materials are excellent model systems for the investigation of cavitation effects in nitrogen desorption isotherms. PMID:26399172

  20. Infants' Bimodal Recognition of Human Stimulus Configurations.

    ERIC Educational Resources Information Center

    Francis, Patricia L.; McCroy, George

    The major purpose of this study was to examine bimodal coordination of featural stimuli in infancy. Specifically of interest was infant sensitivity to the auditory and visual combinations that characterize male and female stimulus configurations. A total of 27 male and 27 female subjects of 3, 6, and 9 months of age participated in the study.…

  1. Deaf Children's Bimodal Bilingualism and Education

    ERIC Educational Resources Information Center

    Swanwick, Ruth

    2016-01-01

    This paper provides an overview of the research into deaf children's bilingualism and bilingual education through a synthesis of studies published over the last 15 years. This review brings together the linguistic and pedagogical work on bimodal bilingualism to inform educational practice. The first section of the review provides a synthesis of…

  2. The bimodal theory of plasticity: A form-invariant generalisation

    NASA Astrophysics Data System (ADS)

    Soldatos, Kostas P.

    2011-08-01

    independent yield stress parameters that the bimodal theory needs to take into consideration. Moreover, an analytical expression is provided of a relatively simple mathematical surface that possesses all known features of the FDM yield surface; currently captured with the aid of both experimental and computational means. The present study is guided by the existing relevant experimental evidence which, however, is principally associated with the plastic behaviour of solids reinforced by strong fibres. Nevertheless, several of the outlined developments are expected to be applicable to composite materials containing a single family of more compliant or even weak fibres.

  3. Generalized Hertz model for bimodal nanomechanical mapping

    PubMed Central

    Kocuń, Marta; Meinhold, Waiman; Walters, Deron; Proksch, Roger

    2016-01-01

    Summary Bimodal atomic force microscopy uses a cantilever that is simultaneously driven at two of its eigenmodes (resonant modes). Parameters associated with both resonances can be measured and used to extract quantitative nanomechanical information about the sample surface. Driving the first eigenmode at a large amplitude and a higher eigenmode at a small amplitude simultaneously provides four independent observables that are sensitive to the tip–sample nanomechanical interaction parameters. To demonstrate this, a generalized theoretical framework for extracting nanomechanical sample properties from bimodal experiments is presented based on Hertzian contact mechanics. Three modes of operation for measuring cantilever parameters are considered: amplitude, phase, and frequency modulation. The experimental equivalence of all three modes is demonstrated on measurements of the second eigenmode parameters. The contact mechanics theory is then extended to power-law tip shape geometries, which is applied to analyze the experimental data and extract a shape and size of the tip interacting with a polystyrene surface. PMID:27547614

  4. Generalized Hertz model for bimodal nanomechanical mapping.

    PubMed

    Labuda, Aleksander; Kocuń, Marta; Meinhold, Waiman; Walters, Deron; Proksch, Roger

    2016-01-01

    Bimodal atomic force microscopy uses a cantilever that is simultaneously driven at two of its eigenmodes (resonant modes). Parameters associated with both resonances can be measured and used to extract quantitative nanomechanical information about the sample surface. Driving the first eigenmode at a large amplitude and a higher eigenmode at a small amplitude simultaneously provides four independent observables that are sensitive to the tip-sample nanomechanical interaction parameters. To demonstrate this, a generalized theoretical framework for extracting nanomechanical sample properties from bimodal experiments is presented based on Hertzian contact mechanics. Three modes of operation for measuring cantilever parameters are considered: amplitude, phase, and frequency modulation. The experimental equivalence of all three modes is demonstrated on measurements of the second eigenmode parameters. The contact mechanics theory is then extended to power-law tip shape geometries, which is applied to analyze the experimental data and extract a shape and size of the tip interacting with a polystyrene surface. PMID:27547614

  5. Origins of the Caribbean Rainfall Bimodal Behavior

    NASA Astrophysics Data System (ADS)

    Angeles, MoiséS. E.; GonzáLez, Jorge E.; RamíRez-BeltráN, Nazario D.; Tepley, Craig A.; Comarazamy, Daniel E.

    2010-06-01

    The annual precipitation pattern in the Caribbean basin shows a distinct bimodal behavior, where the first mode is called the Early Rainfall Season (April-July), and the second mode the Late Rainfall Season (August-November). The brief, relatively dry, period in July is usually referred to as the midsummer drought (MSD). It has been hypothesized that the migration through the Caribbean basin of the Intertropical Convergence Zone (ITCZ) and increases in aerosols due to the passing of Saharan Dust across the Caribbean in the summer months may result in the observed precipitation pattern. This paper focuses on determining the origins of the Caribbean MSD. Multiple regression analysis was carried-out to determine if the ITCZ, the North Atlantic Oscillation (NAO) index, the Vertical Wind Shear (VWS), and different atmospheric particle (AP) concentrations transported from northern Africa correlate with the Caribbean MSD. It is shown that the ITCZ and NAO are weakly correlated with the Caribbean precipitation variability; however, the VWS and aerosol particles revealed an important contribution to rainfall during the summer months. Numerical experiments were then performed to quantify the influence of different VWS scenarios and different AP concentrations on the Caribbean precipitation bimodal behavior. The numerical approach uses the Regional Atmospheric Modeling System coupled with a new cloud microphysics module that allows discrimination between small and giant particles, as well as Cloud Concentration Nuclei (CCN) and Giant CCN activation. These numerical experiments support the statistical result that the VWS and the AP influence the rainfall production and pattern during the MSD. Results indicate that cloud microphysics play an important role in producing the observed climatological bimodal pattern, while variations in large-scale atmospheric dynamics (like the VWS) help explain variations in the strength and pattern of the bimodal events and behavior.

  6. Discrete Bimodal Probes for Thrombus Imaging

    PubMed Central

    Uppal, Ritika; Ciesienski, Kate L.; Chonde, Daniel B.; Loving, Galen S.; Caravan, Peter

    2012-01-01

    Here we report a generalizable solid/solution phase strategy for the synthesis of discrete bimodal fibrin-targeted imaging probes. A fibrin-specific peptide was conjugated with two distinct imaging reporters at the C- and N-terminus. In vitro studies demonstrated retention of fibrin affinity and specificity. Imaging studies showed that these probes could detect fibrin over a wide range of probe concentrations by optical, magnetic resonance, and positron emission tomography imaging. PMID:22698259

  7. Biomimetic synthesized bimodal nanoporous silica: Bimodal mesostructure formation and application for ibuprofen delivery.

    PubMed

    Li, Jing; Xu, Lu; Zheng, Nan; Wang, Hongyu; Lu, Fangzheng; Li, Sanming

    2016-01-01

    The present paper innovatively reports bimodal nanoporous silica synthesized using biomimetic method (B-BNS) with synthesized polymer (C16-L-serine) as template. Formation mechanism of B-BNS was deeply studied and exploration of its application as carrier of poorly water-soluble drug ibuprofen (IBU) was conducted. The bimodal nanopores and curved mesoscopic channels of B-BNS were achieved due to the dynamic self-assembly of C16-L-serine induced by silane coupling agent (3-aminopropyltriethoxysilane, APTES) and silica source (tetraethoxysilane, TEOS). Characterization results confirmed the successful synthesis of B-BNS, and particularly, nitrogen adsorption/desorption measurement demonstrated that B-BNS was meso-meso porous silica material. In application, B-BNS loaded IBU with high drug loading content due to its enlarged nanopores. After being loaded, IBU presented amorphous phase because nanoporous space and curved mesoscopic channels of B-BNS prevented the crystallization of IBU. In vitro release result revealed that B-BNS controlled IBU release with two release phases based on bimodal nanopores and improved dissolution in simulated gastric fluid due to crystalline conversion of IBU. It is convincible that biomimetic method provides novel theory and insight for synthesizing bimodal nanoporous silica, and unique functionalities of B-BNS as drug carrier can undoubtedly promote the application of bimodal nanoporous silica and development of pharmaceutical science.

  8. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO2/polyethylene glycol mixture

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Wang, Zhiwei; Zhang, Xingran; Zheng, Xiang; Wu, Zhichao

    2015-08-01

    Titanium dioxide (TiO2) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO2 nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO2 was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane.

  9. Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour

    NASA Astrophysics Data System (ADS)

    Fusco, Giuliana; de Simone, Alfonso; Gopinath, Tata; Vostrikov, Vitaly; Vendruscolo, Michele; Dobson, Christopher M.; Veglia, Gianluigi

    2014-05-01

    α-synuclein (αS) is a protein involved in neurotransmitter release in presynaptic terminals, and whose aberrant aggregation is associated with Parkinson’s disease. In dopaminergic neurons, αS exists in a tightly regulated equilibrium between water-soluble and membrane-associated forms. Here we use a combination of solid-state and solution NMR spectroscopy to characterize the conformations of αS bound to lipid membranes mimicking the composition and physical properties of synaptic vesicles. The study shows three αS regions possessing distinct structural and dynamical properties, including an N-terminal helical segment having a role of membrane anchor, an unstructured C-terminal region that is weakly associated with the membrane and a central region acting as a sensor of the lipid properties and determining the affinity of αS membrane binding. Taken together, our data define the nature of the interactions of αS with biological membranes and provide insights into their roles in the function of this protein and in the molecular processes leading to its aggregation.

  10. LDV measurement of small nonlinearities in flat and curved membranes. A model for eardrum nonlinear acoustic behaviour

    NASA Astrophysics Data System (ADS)

    Kilian, Gladiné; Pieter, Muyshondt; Joris, Dirckx

    2016-06-01

    Laser Doppler Vibrometry is an intrinsic highly linear measurement technique which makes it a great tool to measure extremely small nonlinearities in the vibration response of a system. Although the measurement technique is highly linear, other components in the experimental setup may introduce nonlinearities. An important source of artificially introduced nonlinearities is the speaker, which generates the stimulus. In this work, two correction methods to remove the effects of stimulus nonlinearity are investigated. Both correction methods were found to give similar results but have different pros and cons. The aim of this work is to investigate the importance of the conical shape of the eardrum as a source of nonlinearity in hearing. We present measurements on flat and indented membranes. The data shows that the curved membrane exhibit slightly higher levels of nonlinearity compared to the flat membrane.

  11. Bedload transport of a bimodal sediment bed

    NASA Astrophysics Data System (ADS)

    Houssais, M.; Lajeunesse, E.

    2012-12-01

    Despite several decades of investigations, accounting for the effect of the wide range of grain sizes composing the bed of rivers on bedload transport remains a challenging problem. We investigate this problem by studying experimentally the influence of grain size distribution on bedload transport in the simple configuration of a bimodal sediment bed composed of a mixture of 2 populations of quartz grains of sizes D1 = 0.7 ± 0.1 mm and D2 = 2.2 ± 0.4 mm, respectively. The experiments are carried out in a tilted rectangular flume inside which the sediment bed is sheared by a steady and spatially uniform turbulent flow. Using a high-speed video imaging system, we focus on the measurement of the average particle velocity and the surface density of moving particles, defined as the number of moving particles per unit surface of the bed. These two quantities are measured separately for each population of grains as a function of the dimensionless shear stress (or Shields number) and the fraction of the bed surface covered with small grains. We show that the average velocity and the surface density of moving particles obey the same equations as those reported by Lajeunesse et al. (2010) for a bed of homogeneous grain size. Once in motion, the grains follow therefore similar laws whether the bed is made of uniform sediment or of a bimodal mixture. This suggests that the erosion-deposition model established by Lajeunesse et al. (2010) for a bed of uniform sediment can be generalized to the case of a bimodal one. The only difference evidenced by our experiments concerns the critical Shields number for incipient sediment motion. Above a uniform sediment bed, the latter depends on the particle Reynolds number through the Shields curve. In the case of a bimodal bed, our experiments show that the critical Shields numbers of both populations of grains decrease linearly with the fraction of the bed surface covered with small grains. We propose a simple model to account for this

  12. Bimodal fibrous structures for tissue engineering: Fabrication, characterization and in vitro biocompatibility.

    PubMed

    Tiwari, Arjun Prasad; Joshi, Mahesh Kumar; Kim, Jeong In; Unnithan, Afeesh Rajan; Lee, Joshua; Park, Chan Hee; Kim, Cheol Sang

    2016-08-15

    We report for the first time a polycaprolactone-human serum albumin (PCL-HSA) membrane with bimodal structures comprised of spider-web-like nano-nets and conventional fibers via facile electro-spinning/netting (ESN) technique. Such unique controllable morphology was developed by electrospinning the blend solution of PCL (8wt% in HFIP 1,1,1,3,3,3,-Hexafluoro-2-propanol) and HSA (10wt% deionized water). The phase separation during electrospinning caused the formation of bimodal structure. Various processing factors such as applied voltage, feeding rate, and distance between nozzle tip and collector were found responsible for the formation and distribution of the nano-nets throughout the nanofibrous mesh. Field emission electron microscopy (FE-SEM) confirmed that the nano-nets were composed of interlinked nanowires with an ultrathin diameter (10-30nm). When compared with a pure PCL membrane, the membrane containing nano-nets was shown to have better support for cellular activities as determined by cell viability and attachment assays. These results revealed that the blending of albumin, a hydrophilic biomolecule, with PCL, a hydrophobic polymer, proves to be an outstanding approach to developing membranes with controlled spider-web-like nano-nets for tissue engineering. PMID:27179176

  13. The Bimodality Index: A Criterion for Discovering and Ranking Bimodal Signatures from Cancer Gene Expression Profiling Data

    PubMed Central

    Wang, Jing; Wen, Sijin; Symmans, W. Fraser; Pusztai, Lajos; Coombes, Kevin R.

    2009-01-01

    Motivation Identifying genes with bimodal expression patterns from large-scale expression profiling data is an important analytical task. Model-based clustering is popular for this purpose. That technique commonly uses the Bayesian information criterion (BIC) for model selection. In practice, however, BIC appears to be overly sensitive and may lead to the identification of bimodally expressed genes that are unreliable or not clinically useful. We propose using a novel criterion, the bimodality index, not only to identify but also to rank meaningful and reliable bimodal patterns. The bimodality index can be computed using either a mixture model-based algorithm or Markov chain Monte Carlo techniques. Results We carried out simulation studies and applied the method to real data from a cancer gene expression profiling study. Our findings suggest that BIC behaves like a lax cutoff based on the bimodality index, and that the bimodality index provides an objective measure to identify and rank meaningful and reliable bimodal patterns from large-scale gene expression datasets. R code to compute the bimodality index is included in the ClassDiscovery package of the Object-Oriented Microarray and Proteomic Analysis (OOMPA) suite available at the web site http;//bioinformatics.mdanderson.org/Software/OOMPA. PMID:19718451

  14. Transfer learning for bimodal biometrics recognition

    NASA Astrophysics Data System (ADS)

    Dan, Zhiping; Sun, Shuifa; Chen, Yanfei; Gan, Haitao

    2013-10-01

    Biometrics recognition aims to identify and predict new personal identities based on their existing knowledge. As the use of multiple biometric traits of the individual may enables more information to be used for recognition, it has been proved that multi-biometrics can produce higher accuracy than single biometrics. However, a common problem with traditional machine learning is that the training and test data should be in the same feature space, and have the same underlying distribution. If the distributions and features are different between training and future data, the model performance often drops. In this paper, we propose a transfer learning method for face recognition on bimodal biometrics. The training and test samples of bimodal biometric images are composed of the visible light face images and the infrared face images. Our algorithm transfers the knowledge across feature spaces, relaxing the assumption of same feature space as well as same underlying distribution by automatically learning a mapping between two different but somewhat similar face images. According to the experiments in the face images, the results show that the accuracy of face recognition has been greatly improved by the proposed method compared with the other previous methods. It demonstrates the effectiveness and robustness of our method.

  15. Bimodal schwa: Evidence from acoustic measurements

    NASA Astrophysics Data System (ADS)

    Yamane-Tanaka, Noriko; Gick, Bryan; Bird, Sonya

    2001-05-01

    The question of whether schwa is targeted or targetless has been the subject of much debate (Browman et al., 1992; Browman and Goldstein, 1995; Gick, 1999, 2002). Gick (2002) found that there is a pharyngeal constriction during schwa relative to rest position, and concluded that schwa is not targetless. This experiment further showed a ``bimodal'' pattern in schwa in a nonrhotic speaker, indicating that the subject has distinct schwas in lexical words and function words. The present study examines the existence of the ``bimodal'' pattern in schwas in nonrhotic dialects through an acoustic experiment. It is predicted that there is a significant difference in formant values between lexical schwas and function schwas. Results to date indicate a significant difference in them between schwas in lexical versus function words, both between historical schwas and those derived from final /r/ reduction. Data from several additional nonrhotic subjects will be presented. Implications for intrusive r as well as for the phonological treatment of function words will be discussed. [Work funded by NSERC and SSHRC.

  16. On the Bimodality of ENSO Cycle Extremes

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1999-01-01

    On the basis of sea surface temperature in the Nino 3.4 region (5 deg N-5 deg S, 120 deg- 170 deg W) during the interval of 1950-1997, Kevin Trenberth previously has identified some 16 El Nino and 10 La Nina, these 26 events representing the extremes of the quasi-periodic El Nino-Southern Oscillation (ENSO) cycle. Runs testing shows that the duration and recurrence period associated with these extremes vary randomly, as does the sequencing of the extremes. Hence, the frequency of occurrence of these events during the 1990s, especially, for El Nino should not be construed as being significantly different from that of previous epochs. Additionally, the distribution of duration for both El Nino and La Nina looks bimodal, consisting of two preferred modes - about 8 and 16 months in length for El Nino and about 9 and 18 months in length for La Nina. Likewise, the distribution of recurrence period, especially, for El Nino looks bimodal, consisting of two preferred modes - about 21 and 50 months in length. Scatter plots of the recurrence period versus duration for El Nino strongly suggest preferential associations between them, linking shorter (longer) duration with shorter (longer) recurrence period. Because the last known onset of El Nino occurred in April 1997 and the event was of longer than average duration, one infers that the onset of the next expected El Nino will not occur until February 2000 or later.

  17. Origins of the Caribbean Bimodal Rainfall Pattern

    NASA Astrophysics Data System (ADS)

    Gonzalez, J. E.; Angeles, M.; Comarazamy, D.; Ramirez, N.; Tepley, C.

    2007-05-01

    The Caribbean region is geographically located along a relative land-free tropical band, where the Tropical Atlantic and Pacific equatorial regions influence the inter-annual variability of its rainy season. Its position in a middle tropical warm pool and the ageostrophic dynamic circulation also plays an important role in that variability. Past studies have ascertained that the Caribbean rainfall season has a bimodal nature, where the initial peak of this season, called the early rainfall season (ERS), begins in May and extends until June, with a brief dry period in July. The second half of the overall rainy season, or late rainfall season (LRS), spans from August to November. During the rainy season, the easterly waves and tropical storms begin to be frequent and the rainfall begins to increase. Intuitively, the rainfall should continue increasing, especially from the beginning of the rainy season until the end of this season. The actual data, however, shows an unexpected rainfall decrease in the month of July. The low rainfall peak during the rainy season defines the Caribbean bimodal behavior. The Caribbean rainfall bimodal structure has been reported in different studies over the Caribbean region. However, very little is known about this summer drought, its origins, and factors influencing it. It has been hypothesized that increases in giant aerosols concentration due to the Saharan Dust across the Caribbean in the summer months may result in precipitation suppression. AIn this paper, a multivariable analysis was carried to determine which climatological variables may correlate with the Caribbean summer drought that included Intertropical Convergence Zone (ITCZ), the North Atlantic Oscillation (NAO) index, the Vertical Wind Shear (VWS) and the aerosol particles (AP) coming from northern Africa. The analysis shows that the ITCZ and the SST are weakly correlated with the Caribbean bimodal precipitation; however, the VWS and aerosol particles revealed an

  18. The Bimodal Bilingual Brain: Effects of Sign Language Experience

    ERIC Educational Resources Information Center

    Emmorey, Karen; McCullough, Stephen

    2009-01-01

    Bimodal bilinguals are hearing individuals who know both a signed and a spoken language. Effects of bimodal bilingualism on behavior and brain organization are reviewed, and an fMRI investigation of the recognition of facial expressions by ASL-English bilinguals is reported. The fMRI results reveal separate effects of sign language and spoken…

  19. Generalized Oddity Performance in Preschool Children: A Bimodal Training Procedure.

    ERIC Educational Resources Information Center

    Soraci, S. A., Jr.; And Others

    1991-01-01

    In a study of oddity performance, subjects were required to choose one distinct bimodal stimulus from a display that included other stimuli that did not differ from each other. Oddity performance was evaluated with both reversal assessments and assessments with new stimuli. The usefulness of bimodal training in oddity learning was demonstrated.…

  20. Optimization of phase contrast in bimodal amplitude modulation AFM.

    PubMed

    Damircheli, Mehrnoosh; Payam, Amir F; Garcia, Ricardo

    2015-01-01

    Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes.

  1. Optimization of phase contrast in bimodal amplitude modulation AFM

    PubMed Central

    Damircheli, Mehrnoosh; Payam, Amir F

    2015-01-01

    Summary Bimodal force microscopy has expanded the capabilities of atomic force microscopy (AFM) by providing high spatial resolution images, compositional contrast and quantitative mapping of material properties without compromising the data acquisition speed. In the first bimodal AFM configuration, an amplitude feedback loop keeps constant the amplitude of the first mode while the observables of the second mode have not feedback restrictions (bimodal AM). Here we study the conditions to enhance the compositional contrast in bimodal AM while imaging heterogeneous materials. The contrast has a maximum by decreasing the amplitude of the second mode. We demonstrate that the roles of the excited modes are asymmetric. The operational range of bimodal AM is maximized when the second mode is free to follow changes in the force. We also study the contrast in trimodal AFM by analyzing the kinetic energy ratios. The phase contrast improves by decreasing the energy of second mode relative to those of the first and third modes. PMID:26114079

  2. Bimodal solar system based on a ultra-high-temperature TEC

    NASA Astrophysics Data System (ADS)

    Ogloblin, B. G.; Kirillov, E. Ya.; Klimov, A. V.; Shalaev, A. I.; Shumov, D. P.; Ender, A. Ya.; Kuznetsov, V. I.; Sitnov, V. I.

    1996-03-01

    The paper considers an ecological, solar, bimodal system with ultra-high temperature thermionic energy converter (TEC). The solar bimodal Space Electric Propulsion System (SEPS) characteristics are presented.

  3. Bimodal distribution of neon nanobubbles in aluminum

    SciTech Connect

    Dhaka, R. S.; Barman, S. R.

    2009-03-15

    Ne 1s core-level photoelectron spectra from Ne nanobubbles implanted in aluminum exhibit two peaks whose binding energies and relative intensities change with implantation energy, isochronal annealing, and sputtering. These changes in the core-level spectra are manifestations of the nanometer size of the bubbles since the screening of the photohole by the Al conduction electrons depends on the bubble size. Existence of a bimodal depth and size distribution of Ne nanobubbles is demonstrated in this work: smaller bubbles of about 4 A in radius are formed close to the Al(111) surface while the larger sized bubbles of 20 A in radius exist deeper below in the beneath subsurface region. A general relation between the radius of the rare-gas bubbles and their core-level binding energies is established.

  4. Sex identification in female crayfish is bimodal

    NASA Astrophysics Data System (ADS)

    Aquiloni, Laura; Massolo, Alessandro; Gherardi, Francesca

    2009-01-01

    Sex identification has been studied in several species of crustacean decapods but only seldom was the role of multimodality investigated in a systematic fashion. Here, we analyse the effect of single/combined chemical and visual stimuli on the ability of the crayfish Procambarus clarkii to identify the sex of a conspecific during mating interactions. Our results show that crayfish respond to the offered stimuli depending on their sex. While males rely on olfaction alone for sex identification, females require the combination of olfaction and vision to do so. In the latter, chemical and visual stimuli act as non-redundant signal components that possibly enhance the female ability to discriminate potential mates in the crowded social context experienced during mating period. This is one of the few clear examples in invertebrates of non-redundancy in a bimodal communication system.

  5. Bimodal and multimodal plant biomass particle mixtures

    DOEpatents

    Dooley, James H.

    2013-07-09

    An industrial feedstock of plant biomass particles having fibers aligned in a grain, wherein the particles are individually characterized by a length dimension (L) aligned substantially parallel to the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L, wherein the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces, and wherein the particles in the feedstock are collectively characterized by having a bimodal or multimodal size distribution.

  6. A simple theory of bimodal star formation

    NASA Technical Reports Server (NTRS)

    Wyse, Rosemary F. G.; Silk, J.

    1987-01-01

    A model of bimodal star formation is presented, wherein massive stars form in giant molecular clouds (GNC), at a rate regulated by supernovae energy feedback through the interstellar medium, the heat input also ensuring that the initial mass function (IMF) remains skewed towards massive stars. The low mass stars form at a constant rate. The formation of the GMC is governed by the dynamics of the host galaxy through the rotation curve and potential perturbations such as a spiral density wave. The characteristic masses, relative normalizations, and rates of formation of the massive and low mass modes of star formation may be tightly constrained by the requirements of the chemical evolution in the Solar Neighborhood. Good fits were obtained for the age metallicity relation and the metallicity structure of thin disk and spheroid stars only for a narrow range of these parameters.

  7. Transient bimodality in interacting particle systems

    SciTech Connect

    Calderoni, P.; Pellegrinotti, A.; Presutti, E.; Vares, M.E. )

    1989-05-01

    The authors consider a system of spins which have values {plus minus} 1 and evolve according to a jump Markov process whose generator is the sum of two generators, one describing a spin-flip Glauber process, the other a Kawasaki (stirring) evolution. It was proven elsewhere that if the Kawasaki dynamics is speeded up by a factor {var epsilon}{sup {minus}2}, then, in the limit {var epsilon} {yields} 0 (continuum limit), propagation of chaos holds and the local magnetization solves a reaction-diffusion equation. They choose the parameters of the Glauber interaction so that the potential of the reaction term in the reaction-diffusion equation is a double-well potential with quartic maximum at the origin. They assume further that for each {var epsilon} the system is in a finite interval of Z with {var epsilon}{sup {minus}1} sites and periodic boundary conditions. They specify the initial measure as the product measure with 0 spin average, thus obtaining, in the continuum limit, a constant magnetic profile equal to 0, which is a stationary unstable solution to the reaction-diffusion equation. They prove that at times of the order {var epsilon}{sup {minus}1/2} propagation of chaos does not hold any more and, in the limit as {var epsilon} {yields} 0, the state becomes a nontrivial superposition of Bernoulli measures with parameters corresponding to the minima of the reaction potential. The coefficients of such a superposition depend on time (on the scale {var epsilon}{sup {minus}1/2}) and at large times (on this scale) the coefficient of the term corresponding to the initial magnetization vanishes (transient bimodality). This differs from what was observed by De Masi, Presutti, and Vares, who considered a reaction potential with quadratic maximum and no bimodal effect was seen, as predicted by Broggi, Lugiato, and Colombo.

  8. Comparison of the behaviour of selected micropollutants in a membrane bioreactor and a conventional wastewater treatment plant.

    PubMed

    Clara, M; Strenn, B; Ausserleitner, M; Kreuzinger, N

    2004-01-01

    Micropollutants as pharmaceutical active compounds (PhACs), residuals of personal care products or endocrine disrupting chemicals are of increasing interest in water pollution control. In this context the removal efficiencies of sewage treatment plants (STPs) are of importance, as their effluents are important point sources for the release of those substances into the aquatic environment. Activated sludge based wastewater treatment is the worldwide prevalently used treatment technique. In conventional plants the separation of treated wastewater and sludge occurs via sedimentation. A new development is the application of membrane technology for this separation step. The studies focus on the influence of the solids retention time (SRT) on the removal efficiency, as the SRT is the most important parameter in the design of STPs. A conventional activated sludge plant (CASP) and a membrane bioreactor (MBR) were operated at different SRTs. The substances selected are the antiepileptic carbamazepine, the analgesics diclofenac and ibuprofen, the lipid regulator bezafibrate, the polycyclic musks tonalide and galaxolide and the contraceptive 17alpha-ethinylestradiole. No significant differences in the removal efficiency were detected. Due to the absence of suspended solids in the MBR effluent, substances with high adsorption potential could be retained to slightly higher amounts.

  9. Comparison of the behaviour of selected micropollutants in a membrane bioreactor and a conventional wastewater treatment plant.

    PubMed

    Clara, M; Strenn, B; Ausserleitner, M; Kreuzinger, N

    2004-01-01

    Micropollutants as pharmaceutical active compounds (PhACs), residuals of personal care products or endocrine disrupting chemicals are of increasing interest in water pollution control. In this context the removal efficiencies of sewage treatment plants (STPs) are of importance, as their effluents are important point sources for the release of those substances into the aquatic environment. Activated sludge based wastewater treatment is the worldwide prevalently used treatment technique. In conventional plants the separation of treated wastewater and sludge occurs via sedimentation. A new development is the application of membrane technology for this separation step. The studies focus on the influence of the solids retention time (SRT) on the removal efficiency, as the SRT is the most important parameter in the design of STPs. A conventional activated sludge plant (CASP) and a membrane bioreactor (MBR) were operated at different SRTs. The substances selected are the antiepileptic carbamazepine, the analgesics diclofenac and ibuprofen, the lipid regulator bezafibrate, the polycyclic musks tonalide and galaxolide and the contraceptive 17alpha-ethinylestradiole. No significant differences in the removal efficiency were detected. Due to the absence of suspended solids in the MBR effluent, substances with high adsorption potential could be retained to slightly higher amounts. PMID:15497826

  10. Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description

    NASA Astrophysics Data System (ADS)

    Ceraolo, M.; Miulli, C.; Pozio, A.

    A simplified dynamical model of a fuel cell of the proton exchange membrane (PEM) type, based on physical-chemical knowledge of the phenomena occurring inside the cell has been developed by the authors. The model has been implemented in the MATLAB/SIMULINK environment. Lab tests have been carried out at ENEA's laboratories; and a good agreement has been found between tests and simulations, both in static and dynamic conditions. In a previous study [M. Ceraolo, R. Giglioli, C. Miulli, A. Pozio, in: Proceedings of the 18th International Electric Fuel Cell and Hybrid Vehicle Symposium (EVS18), Berlin, 20-24 October 2001, p. 306] the basic ideas of the model, as well as its experimental validation have been published. In the present paper, the full implementation of the model is reported in detail. Moreover, a procedure for evaluating all the needed numerical parameters is presented.

  11. Self-assembly behaviours of primitive and modern lipid membrane solutions: a coarse-grained molecular simulation study.

    PubMed

    Arai, Noriyoshi; Yoshimoto, Yuki; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2016-07-28

    Researchers have studied the origin of life and the process of evolution on early Earth for decades. However, we lack a comprehensive understanding of biogenesis, because there are many stages in the formation and growth of the first cell. We investigate the self-replication processes of coacervate protocells using computer simulations of single-chain lipid and phospholipid aqueous mixtures. Based on a morphological phase diagram, we develop a model of prebiotic self-replication driven by only environmental factors (i.e. temperature and lipid concentrations) without any external force. Moreover, we investigate high concentration structures during the process of self-replication. These structures have an advantage in fusion and repair of cell membranes. Therefore, lipid hot spots may have existed in primordial soup. PMID:27378100

  12. Roles of factorial noise in inducing bimodal gene expression

    NASA Astrophysics Data System (ADS)

    Liu, Peijiang; Yuan, Zhanjiang; Huang, Lifang; Zhou, Tianshou

    2015-06-01

    Some gene regulatory systems can exhibit bimodal distributions of mRNA or protein although the deterministic counterparts are monostable. This noise-induced bimodality is an interesting phenomenon and has important biological implications, but it is unclear how different sources of expression noise (each source creates so-called factorial noise that is defined as a component of the total noise) contribute separately to this stochastic bimodality. Here we consider a minimal model of gene regulation, which is monostable in the deterministic case. Although simple, this system contains factorial noise of two main kinds: promoter noise due to switching between gene states and transcriptional (or translational) noise due to synthesis and degradation of mRNA (or protein). To better trace the roles of factorial noise in inducing bimodality, we also analyze two limit models, continuous and adiabatic approximations, apart from the exact model. We show that in the case of slow gene switching, the continuous model where only promoter noise is considered can exhibit bimodality; in the case of fast switching, the adiabatic model where only transcriptional or translational noise is considered can also exhibit bimodality but the exact model cannot; and in other cases, both promoter noise and transcriptional or translational noise can cooperatively induce bimodality. Since slow gene switching and large protein copy numbers are characteristics of eukaryotic cells, whereas fast gene switching and small protein copy numbers are characteristics of prokaryotic cells, we infer that eukaryotic stochastic bimodality is induced mainly by promoter noise, whereas prokaryotic stochastic bimodality is induced primarily by transcriptional or translational noise.

  13. Darcian preferential water flow and solute transport through bimodal porous systems: experiments and modelling.

    PubMed

    Coppola, Antonio; Comegna, Vincenzo; Basile, Angelo; Lamaddalena, Nicola; Severino, Gerardo

    2009-02-16

    Soils often exhibit a variety of small-scale heterogeneities such as inter-aggregate pores and voids which partition flow into separate regions. In this paper a methodological approach is discussed for characterizing the hydrological behaviour of a heterogeneous clayey-sandy soil in the presence of structural inter-aggregate pores. For the clay soil examined, it was demonstrated that, coupling the transfer function approach for analyzing BTCs and water retention data obtained with different methods from laboratory studies captures the bimodal geometry of the porous system along with the related existence of fast and slow flow paths. To be effectively and reliably applied this approach requires that the predominant effects of the soil hydrological behaviour near saturation be supported by accurate experimental data of both breakthrough curves (BTCs) and hydraulic functions for high water content values. This would allow the separation of flow phases and hence accurate identification of the processes and related parameters. PMID:19042056

  14. Bimodal magmatism produced by progressively inhibited crustal assimilation.

    PubMed

    Meade, F C; Troll, V R; Ellam, R M; Freda, C; Font, L; Donaldson, C H; Klonowska, I

    2014-01-01

    The origin of bimodal (mafic-felsic) rock suites is a fundamental question in volcanology. Here we use major and trace elements, high-resolution Sr, Nd and Pb isotope analyses, experimental petrology and thermodynamic modelling to investigate bimodal magmatism at the iconic Carlingford Igneous Centre, Ireland. We show that early microgranites are the result of extensive assimilation of trace element-enriched partial melts of local metasiltstones into mafic parent magmas. Melting experiments reveal the crust is very fusible, but thermodynamic modelling indicates repeated heating events rapidly lower its melt-production capacity. Granite generation ceased once enriched partial melts could no longer form and subsequent magmatism incorporated less fertile restite compositions only, producing mafic intrusions and a pronounced compositional gap. Considering the frequency of bimodal magma suites in the North Atlantic Igneous Province, and the ubiquity of suitable crustal compositions, we propose 'progressively inhibited crustal assimilation' (PICA) as a major cause of bimodality in continental volcanism. PMID:24947142

  15. Bimodal magmatism produced by progressively inhibited crustal assimilation.

    PubMed

    Meade, F C; Troll, V R; Ellam, R M; Freda, C; Font, L; Donaldson, C H; Klonowska, I

    2014-01-01

    The origin of bimodal (mafic-felsic) rock suites is a fundamental question in volcanology. Here we use major and trace elements, high-resolution Sr, Nd and Pb isotope analyses, experimental petrology and thermodynamic modelling to investigate bimodal magmatism at the iconic Carlingford Igneous Centre, Ireland. We show that early microgranites are the result of extensive assimilation of trace element-enriched partial melts of local metasiltstones into mafic parent magmas. Melting experiments reveal the crust is very fusible, but thermodynamic modelling indicates repeated heating events rapidly lower its melt-production capacity. Granite generation ceased once enriched partial melts could no longer form and subsequent magmatism incorporated less fertile restite compositions only, producing mafic intrusions and a pronounced compositional gap. Considering the frequency of bimodal magma suites in the North Atlantic Igneous Province, and the ubiquity of suitable crustal compositions, we propose 'progressively inhibited crustal assimilation' (PICA) as a major cause of bimodality in continental volcanism.

  16. Bimodal magmatism produced by progressively inhibited crustal assimilation

    NASA Astrophysics Data System (ADS)

    Meade, F. C.; Troll, V. R.; Ellam, R. M.; Freda, C.; Font, L.; Donaldson, C. H.; Klonowska, I.

    2014-06-01

    The origin of bimodal (mafic-felsic) rock suites is a fundamental question in volcanology. Here we use major and trace elements, high-resolution Sr, Nd and Pb isotope analyses, experimental petrology and thermodynamic modelling to investigate bimodal magmatism at the iconic Carlingford Igneous Centre, Ireland. We show that early microgranites are the result of extensive assimilation of trace element-enriched partial melts of local metasiltstones into mafic parent magmas. Melting experiments reveal the crust is very fusible, but thermodynamic modelling indicates repeated heating events rapidly lower its melt-production capacity. Granite generation ceased once enriched partial melts could no longer form and subsequent magmatism incorporated less fertile restite compositions only, producing mafic intrusions and a pronounced compositional gap. Considering the frequency of bimodal magma suites in the North Atlantic Igneous Province, and the ubiquity of suitable crustal compositions, we propose ‘progressively inhibited crustal assimilation’ (PICA) as a major cause of bimodality in continental volcanism.

  17. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    NASA Astrophysics Data System (ADS)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  18. On the Bimodality of ENSO Cycle Extremes

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2000-01-01

    On the basis of sea surface temperature in the El Nino 3.4 region (5 deg. N.,-5 deg. S., 120-170 deg. W.) during the interval of 1950-1997, Kevin Trenberth previously has identified some 16 El Nino and 10 La Nina, these 26 events representing the extremes of the quasi-periodic El Nino-Southern Oscillation (ENSO) cycle. Runs testing shows that the duration, recurrence period, and sequencing of these extremes vary randomly. Hence, the decade of the 1990's, especially for El Nino, is not significantly different from that of previous decadal epochs, at least, on the basis of the frequency of onsets of ENSO extremes. Additionally, the distribution of duration for both El Nino and La Nina looks strikingly bimodal, each consisting of two preferred modes, about 8- and 16-mo long for El Nino and about 9- and 18-mo long for La Nina, as does the distribution of the recurrence period for El Nino, consisting of two preferred modes about 21- and 50-mo long. Scatterplots of the recurrence period versus duration for El Nino are found to be statistically important, displaying preferential associations that link shorter (longer) duration with shorter (longer) recurrence periods. Because the last onset of El Nino occurred in April 1997 and the event was of longer than average duration, onset of the next anticipated El Nino is not expected until February 2000 or later.

  19. Intelligent agents: adaptation of autonomous bimodal microsystems

    NASA Astrophysics Data System (ADS)

    Smith, Patrice; Terry, Theodore B.

    2014-03-01

    Autonomous bimodal microsystems exhibiting survivability behaviors and characteristics are able to adapt dynamically in any given environment. Equipped with a background blending exoskeleton it will have the capability to stealthily detect and observe a self-chosen viewing area while exercising some measurable form of selfpreservation by either flying or crawling away from a potential adversary. The robotic agent in this capacity activates a walk-fly algorithm, which uses a built in multi-sensor processing and navigation subsystem or algorithm for visual guidance and best walk-fly path trajectory to evade capture or annihilation. The research detailed in this paper describes the theoretical walk-fly algorithm, which broadens the scope of spatial and temporal learning, locomotion, and navigational performances based on optical flow signals necessary for flight dynamics and walking stabilities. By observing a fly's travel and avoidance behaviors; and, understanding the reverse bioengineering research efforts of others, we were able to conceptualize an algorithm, which works in conjunction with decisionmaking functions, sensory processing, and sensorimotor integration. Our findings suggest that this highly complex decentralized algorithm promotes inflight or terrain travel mobile stability which is highly suitable for nonaggressive micro platforms supporting search and rescue (SAR), and chemical and explosive detection (CED) purposes; a necessity in turbulent, non-violent structured or unstructured environments.

  20. Galaxy bimodality versus stellar mass and environment

    NASA Astrophysics Data System (ADS)

    Baldry, I. K.; Balogh, M. L.; Bower, R. G.; Glazebrook, K.; Nichol, R. C.; Bamford, S. P.; Budavari, T.

    2006-12-01

    We analyse a z < 0.1 galaxy sample from the Sloan Digital Sky Survey focusing on the variation in the galaxy colour bimodality with stellar mass and projected neighbour density Σ, and on measurements of the galaxy stellar mass functions. The characteristic mass increases with environmental density from about 1010.6 to (Kroupa initial mass function, H0 = 70) for Σ in the range 0.1-10Mpc-2. The galaxy population naturally divides into a red and blue sequence with the locus of the sequences in colour-mass and colour-concentration indices not varying strongly with environment. The fraction of galaxies on the red sequence is determined in bins of 0.2 in logΣ and bins). The red fraction fr generally increases continuously in both Σ and such that there is a unified relation: . Two simple functions are proposed which provide good fits to the data. These data are compared with analogous quantities in semi-analytical models based on the Millennium N-body simulation: the Bower et al. and Croton et al. models that incorporate active galactic nucleus feedback. Both models predict a strong dependence of the red fraction on stellar mass and environment that is qualitatively similar to the observations. However, a quantitative comparison shows that the Bower et al. model is a significantly better match; this appears to be due to the different treatment of feedback in central galaxies.

  1. On The Bimodality of ENSO Cycle Extremes

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2000-01-01

    On the basis of sea surface temperature in the El Nino 3.4 region (5N.-5S., 120-170W.) during the interval of 1950-1997, Kevin Trenberth previously has identified some 16 El Nino and 10 La Nina, these 26 events representing the extremes of the quasi-periodic El Nino-Southern Oscillation (ENSO) cycle. Runs testing shows that the duration, recurrence period, and sequencing of these extremes vary randomly. Hence, the decade of the 1990's, especially for El Nino, is not significantly different from that of previous decadal epochs, at least, on the basis of the frequency of onsets of ENSO extremes. Additionally, the distribution of duration for both El Nino and La Nina looks strikingly bimodal, each consisting of two preferred modes, about 8- and 16-months long for El Nino and about 9- and 18-months long for La Nina, as does the distribution of the recurrence period for El Nino, consisting of two preferred modes about 21- and 50- mo long. Scatterplots of the recurrence period versus duration for El Nino are found to be statistically important, displaying preferential associations that link shorter (longer) duration with shorter (longer) recurrence periods. Because the last onset of El Nino occurred in April 1997 and the event was of longer than average duration, onset of the next anticipated El Nino is not expected until February 2000 or later.

  2. Bimodal BCI using simultaneously NIRS and EEG.

    PubMed

    Tomita, Yohei; Vialatte, François-Benoît; Dreyfus, Gérard; Mitsukura, Yasue; Bakardjian, Hovagim; Cichocki, Andrzej

    2014-04-01

    Although noninvasive brain-computer interfaces (BCI) based on electroencephalographic (EEG) signals have been studied increasingly over the recent decades, their performance is still limited in two important aspects. First, the difficulty of performing a reliable detection of BCI commands increases when EEG epoch length decreases, which makes high information transfer rates difficult to achieve. Second, the BCI system often misclassifies the EEG signals as commands, although the subject is not performing any task. In order to circumvent these limitations, the hemodynamic fluctuations in the brain during stimulation with steady-state visual evoked potentials (SSVEP) were measured using near-infrared spectroscopy (NIRS) simultaneously with EEG. BCI commands were estimated based on responses to a flickering checkerboard (ON-period). Furthermore, an "idle" command was generated from the signal recorded by the NIRS system when the checkerboard was not flickering (OFF-period). The joint use of EEG and NIRS was shown to improve the SSVEP classification. For 13 subjects, the relative improvement in error rates obtained by using the NIRS signal, for nine classes including the "idle" mode, ranged from 85% to 53 %, when the epoch length increase from 3 to 12 s. These results were obtained from only one EEG and one NIRS channel. The proposed bimodal NIRS-EEG approach, including detection of the idle mode, may make current BCI systems faster and more reliable.

  3. Earth storable bimodal engine, phase 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An in-depth study of an Earth Storable Bimodal (ESB) Engine using earth storable propellants N2O/N2H4 and operating in either a monopropellant or bipropellant mode was conducted. Detailed studies were completed for both a hot-gas, regeneratively cooled thrust chamber and a ducted hot-gas, film cooled thrust chamber. Hydrazine decomposition products were used for cooling in either configuration. The various arrangements and configurations of hydrazine reactors, secondary injectors, chambers and gimbal methods were considered. The two basic materials selected for the major components were columbium alloys and L-605. The secondary injector types considered were previously demonstrated by JPL and consisted of a liquid-on-gas triplet, a liquid-on-gas doublet, and a liquid-on-gas coaxial injector. Various design tradeoffs were made with different reactor types located at: the secondary injector station, the thrust chamber throat, and the nozzle/extension interface. Associated thermal, structural, and mass analyses were completed.

  4. Thermostatistics of a damped bimodal particle

    NASA Astrophysics Data System (ADS)

    Medeiros, João R.; Duarte Queirós, Sílvio M.

    2015-12-01

    We study the thermostatistics of a damped bimodal particle, i.e., a particle of mass m subject to a work reservoir that is analytically represented by the telegraph noise. Because of the colored nature of the noise, it does not fit the Lévy-Itô class of stochastic processes, making this system an instance of a nonequilibrium system in contact with a non-Gaussian external reservoir. We obtain the statistical description of the position and velocity, namely in the stationary state, as well as the (time-dependent) statistics of the energy fluxes in the system considering no constraints on the telegraph noise features. With that result we are able to give an account of the statistical properties of the large deviations of the injected and dissipated power that can change from sub-Gaussianity to super-Gaussianity depending on the color of the noise. By properly defining an effective temperature for this system, T , we are capable of obtaining an equivalent entropy production-exchange rate equal to the ratio between the dissipation of the medium, γ , and the mass of the particle, m , a relation that concurs with the case of a standard thermal reservoir at temperature, T =T .

  5. A bimodal search strategy for SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.; Olsen, E. T.; Tarter, J.

    1980-01-01

    A SETI plan has been developed jointly by the NASA Ames Research Center and the Jet Propulsion Laboratory with the objective of both observing all potential sites to some limiting equivalent isotropic radiated power and surveying with greater sensitivity a set of especially promising sites. The bimodal search strategy assumes that existing radio telescopes with state-of-the-art receivers and data processing devices will have the sensitivity to explore the vicinity of nearby stars for similar transmitters and the entire galaxy for more powerful signals. The discrete source observational mode is designed to observe 773 F, G and K-type stars within 25 pc of the sun at frequencies from 1.2 to 3 GHz and spot bands between 3 and 25 GHz with sensitivities from 10 to the -25th to 10 to the -27th W/sq m. The sky survey is intended to search the entire celestial sphere between 1.2 and 10 GHz and spot bands between 10 and 25 GHz at a sensitivity limit of approximately 10 to the -23rd times the square root of the frequency. Instrumentation for the surveys includes a large multichannel spectrum analyzer. Immediate goals of the program are the investigation of the RF background at high resolution and the development of signal detection algorithms, with operation to begin in 1984.

  6. Thermostatistics of a damped bimodal particle.

    PubMed

    Medeiros, João R; Duarte Queirós, Sílvio M

    2015-12-01

    We study the thermostatistics of a damped bimodal particle, i.e., a particle of mass m subject to a work reservoir that is analytically represented by the telegraph noise. Because of the colored nature of the noise, it does not fit the Lévy-Itô class of stochastic processes, making this system an instance of a nonequilibrium system in contact with a non-Gaussian external reservoir. We obtain the statistical description of the position and velocity, namely in the stationary state, as well as the (time-dependent) statistics of the energy fluxes in the system considering no constraints on the telegraph noise features. With that result we are able to give an account of the statistical properties of the large deviations of the injected and dissipated power that can change from sub-Gaussianity to super-Gaussianity depending on the color of the noise. By properly defining an effective temperature for this system, T, we are capable of obtaining an equivalent entropy production-exchange rate equal to the ratio between the dissipation of the medium, γ, and the mass of the particle, m, a relation that concurs with the case of a standard thermal reservoir at temperature, T=T. PMID:26764670

  7. Coupling granular activated carbon adsorption with membrane bioreactor treatment for trace organic contaminant removal: breakthrough behaviour of persistent and hydrophilic compounds.

    PubMed

    Nguyen, Luong N; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D

    2013-04-15

    This study investigated the removal of trace organic contaminants by a combined membrane bioreactor - granular activated carbon (MBR-GAC) system over a period of 196 days. Of the 22 compounds investigated here, all six hydrophilic compounds with electron-withdrawing functional groups (i.e., metronidazole, carbamazepine, ketoprofen, naproxen, fenoprop and diclofenac) exhibited very low removal efficiency by MBR-only treatment. GAC post-treatment initially complemented MBR treatment very well; however, a compound-specific gradual deterioration of the removal of the above-mentioned problematic compounds was noted. While a 20% breakthrough of all four negatively charged compounds namely ketoprofen, naproxen, fenoprop and diclofenac occurred within 1000-3000 bed volumes (BV), the same level of breakthrough of the two neutral compounds metronidazole and carbamazepine did not occur until 11,000 BV. Single-solute isotherm parameters did not demonstrate any discernible correlation individually with any of the parameters that may govern adsorption onto GAC, such as log D, number of hydrogen-bond donor/acceptor groups, dipole moment or aromaticity ratio of the compounds. The isotherm data, however, could differentiate the breakthrough behaviour between negatively charged and neutral trace organic contaminants.

  8. THE BIMODAL STRUCTURE OF THE SOLAR CYCLE

    SciTech Connect

    Du, Z. L.

    2015-05-01

    Some properties of the 11 yr solar cycle can be explained by the current solar dynamo models. However, some other features remain not well understood such as the asymmetry of the cycle, the double-peaked structure, and the “Waldmeier effect” that a stronger cycle tends to have less rise time and a shorter cycle length. We speculate that the solar cycle is governed by a bi-dynamo model forming two stochastic processes depicted by a bimodal Gaussian function with a time gap of about 2 yr, from which the above features can be reasonably explained. The first one describes the main properties of the cycle dominated by the current solar dynamo models, and the second one occurs either in the rising phase as a short weak explosive perturbation or in the declining phase as a long stochastic perturbation. The above function is the best one selected from several in terms of the Akaike information criterion. Through analyzing different distributions, one might speculate about the dominant physical process inside the convection zone. The secondary (main) process is found to be closely associated with complicated (simple) active ranges. In effect, the bi-dynamo model is a reduced form of a multi-dynamo model, which could occur from the base of the convection zone through its envelope and from low to high heliographic latitude, reflecting the active belts in the convection zone. These results are insensitive to the hemispheric asymmetry, smoothing filters, and distribution functions selected and are expected to be helpful in understanding the formation of solar and stellar cycles.

  9. Localization ability with bimodal hearing aids and bilateral cochlear implants

    NASA Astrophysics Data System (ADS)

    Seeber, Bernhard U.; Baumann, Uwe; Fastl, Hugo

    2004-09-01

    After successful cochlear implantation in one ear, some patients continue to use a hearing aid at the contralateral ear. They report an improved reception of speech, especially in noise, as well as a better perception of music when the hearing aid and cochlear implant are used in this bimodal combination. Some individuals in this bimodal patient group also report the impression of an improved localization ability. Similar experiences are reported by the group of bilateral cochlear implantees. In this study, a survey of 11 bimodally and 4 bilaterally equipped cochlear implant users was carried out to assess localization ability. Individuals in the bimodal implant group were all provided with the same type of hearing aid in the opposite ear, and subjects in the bilateral implant group used cochlear implants of the same manufacturer on each ear. Subjects adjusted the spot of a computer-controlled laser-pointer to the perceived direction of sound incidence in the frontal horizontal plane by rotating a trackball. Two subjects of the bimodal group who had substantial residual hearing showed localization ability in the bimodal configuration, whereas using each single device only the subject with better residual hearing was able to discriminate the side of sound origin. Five other subjects with more pronounced hearing loss displayed an ability for side discrimination through the use of bimodal aids, while four of them were already able to discriminate the side with a single device. Of the bilateral cochlear implant group one subject showed localization accuracy close to that of normal hearing subjects. This subject was also able to discriminate the side of sound origin using the first implanted device alone. The other three bilaterally equipped subjects showed limited localization ability using both devices. Among them one subject demonstrated a side-discrimination ability using only the first implanted device.

  10. Merging history of three bimodal clusters

    NASA Astrophysics Data System (ADS)

    Maurogordato, S.; Sauvageot, J. L.; Bourdin, H.; Cappi, A.; Benoist, C.; Ferrari, C.; Mars, G.; Houairi, K.

    2011-01-01

    We present a combined X-ray and optical analysis of three bimodal galaxy clusters selected as merging candidates at z ~ 0.1. These targets are part of MUSIC (MUlti-Wavelength Sample of Interacting Clusters), which is a general project designed to study the physics of merging clusters by means of multi-wavelength observations. Observations include spectro-imaging with XMM-Newton EPIC camera, multi-object spectroscopy (260 new redshifts), and wide-field imaging at the ESO 3.6 m and 2.2 m telescopes. We build a global picture of these clusters using X-ray luminosity and temperature maps together with galaxy density and velocity distributions. Idealized numerical simulations were used to constrain the merging scenario for each system. We show that A2933 is very likely an equal-mass advanced pre-merger ~200 Myr before the core collapse, while A2440 and A2384 are post-merger systems (~450 Myr and ~1.5 Gyr after core collapse, respectively). In the case of A2384, we detect a spectacular filament of galaxies and gas spreading over more than 1 h-1 Mpc, which we infer to have been stripped during the previous collision. The analysis of the MUSIC sample allows us to outline some general properties of merging clusters: a strong luminosity segregation of galaxies in recent post-mergers; the existence of preferential axes - corresponding to the merging directions - along which the BCGs and structures on various scales are aligned; the concomitance, in most major merger cases, of secondary merging or accretion events, with groups infalling onto the main cluster, and in some cases the evidence of previous merging episodes in one of the main components. These results are in good agreement with the hierarchical scenario of structure formation, in which clusters are expected to form by successive merging events, and matter is accreted along large-scale filaments. Based on data obtained with the European Southern Observatory, Chile (programs 072.A-0595, 075.A-0264, and 079.A-0425

  11. Comparison of unimodal versus bimodal pore catalysts in residues hydrotreating

    SciTech Connect

    Absi-Halabi, M.; Stanislaus, A.; Al-Zaid, H.

    1994-12-31

    Catalyst pore structure is a critical factor influencing the performance of residues hydroprocessing catalysts. The effect is reflected in both hydrodesulfurization activity of the catalyst and its rate of deactivation. In this paper, the pore size distributions of two categories of catalysts, unimodal and bimodal, were systematically varied. Performance evaluation tests in a fixed bed reactor using vacuum residues under conditions comparable to typical refinery operations were conducted. Two series of unimodal and bimodal catalyst extrudates were prepared starting from boehmite gel, whereby the pore structure was systematically varied using hydrothermal treatment and organic additives. For the unimodal catalysts, the pore maxima ranged between 50 and 500 {angstrom} with 70--80% of the pore volume in the desired pore diameter range. The bimodal catalysts had narrow pores with pore diameters less than 100 {angstrom} and wide pres with pore diameter around 5,000 {angstrom}. For bimodal catalyst, an increase in the average wide pore diameter, while maintaining the narrow pore constant, had no significant effect on the catalyst performance. For monomodal catalyst, the activity of the catalyst was noted to have an optimum between 150--350 {angstrom} diameter. Furthermore, the performance of the catalyst concerning its desulfurization activity and deactivation was superior to that of the bimodal catalysts.

  12. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    SciTech Connect

    Gao Lin; Sun Jihong; Li Yuzhen

    2011-08-15

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N{sub 2} adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f{sub t}=kt{sup n} was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: > Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. > Loading and release profiles of aspirin in modified BMMs and MCM-41. > Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.

  13. The bimodal bilingual brain: effects of sign language experience.

    PubMed

    Emmorey, Karen; McCullough, Stephen

    2009-01-01

    Bimodal bilinguals are hearing individuals who know both a signed and a spoken language. Effects of bimodal bilingualism on behavior and brain organization are reviewed, and an fMRI investigation of the recognition of facial expressions by ASL-English bilinguals is reported. The fMRI results reveal separate effects of sign language and spoken language experience on activation patterns within the superior temporal sulcus. In addition, the strong left-lateralized activation for facial expression recognition previously observed for deaf signers was not observed for hearing signers. We conclude that both sign language experience and deafness can affect the neural organization for recognizing facial expressions, and we argue that bimodal bilinguals provide a unique window into the neurocognitive changes that occur with the acquisition of two languages.

  14. Structural plasticity of the left caudate in bimodal bilinguals.

    PubMed

    Zou, Lijuan; Ding, Guosheng; Abutalebi, Jubin; Shu, Hua; Peng, Danling

    2012-10-01

    Bilinguals need an effective neural mechanism to select and control their languages for successful communication. Recent evidence indicates that the left caudate nucleus (LCN) is a critical part of this mechanism. Here we show that bimodal bilinguals, who use spoken and sign languages, have greater grey matter volume (GMV) in the head of the LCN as compared to monolinguals. We also found higher functional activation of this region in bimodal bilinguals when they switched between sign language and spoken language compared to when they did not switch languages. Furthermore, GMV was positively correlated with the magnitude of the switching effect in the head of the LCN. These findings indicate that for bimodal bilinguals, the LCN is shaped by bilingualism both anatomically and functionally.

  15. Bimodal Behavior of the Heaviest Fragment Distribution in Projectile Fragmentation

    SciTech Connect

    Bonnet, E.; Borderie, B.; Rivet, M. F.; Dayras, R.; Gagnon-Moisan, F.; Guinet, D.; Lautesse, P.; Parlog, M.; Rosato, E.; Vigilante, M.

    2009-08-14

    The charge distribution of the heaviest fragment detected in the decay of quasiprojectiles produced in intermediate energy heavy-ion collisions has been observed to be bimodal. This feature is expected as a generic signal of phase transition in nonextensive systems. In this Letter, we present new analyses of experimental data from Au on Au collisions at 60, 80, and 100 MeV/nucleon showing that bimodality is largely independent of the data selection procedure and of entrance channel effects. An estimate of the latent heat of the transition is extracted.

  16. A new electrical formation factor model for bimodal carbonates: numerical studies using dual-pore percolation network

    NASA Astrophysics Data System (ADS)

    Tang, Y. B.; Li, M.; Bernabé, Y.; Tang, H. M.; Li, X. F.; Bai, X. Y.; Tao, Z. W.

    2015-06-01

    In this paper, we modelled the electrical transport behaviour of bimodal carbonate rocks from a reservoir in China using dual-pore networks. One basic assumption, generally supported by experimental data and microstructure observations in the reservoir samples, was that the low porosity, monomodal rocks had the same properties and structure as the microporous matrix of the high porosity, bimodal samples. We assumed that the matrix was homogeneous and always interconnected but that the connectivity and the pore size distribution of macropore system was randomly variable. Both pore systems were supposed to act locally as `in parallel' electrical conductors, an approach previously used by Bauer et al. Hence, the effect of matrix properties, macropore size distribution and connectivity on electrical properties of bimodal rocks could be modelled and investigated. We simulated electrical current through 3-D, simple cubic and body-centred cubic networks with different coordination numbers, different pipe radius distributions of macropore system and different matrix properties. The main result was that the formation factor of dual-pore network obeyed a `universal' scaling relationship (i.e. independent of lattice type). Based on this result, we extended the power-law model derived by Bernabé et al. for monomodal porous media. We developed methods for evaluating the scale-invariant pore structure parameters in the model using conventional core analysis and satisfactorily tested the proposed model against experimental data from the Chinese reservoir as well as some other previously published data sets.

  17. Labeling and Selective Inactivation of Gram-Positive Bacteria Employing Bimodal Photoprobes with Dual Readouts.

    PubMed

    Galstyan, Anzhela; Block, Desiree; Niemann, Silke; Grüner, Malte C; Abbruzzetti, Stefania; Oneto, Michele; Daniliuc, Constantin G; Hermann, Sven; Viappiani, Cristiano; Schäfers, Michael; Löffler, Bettina; Strassert, Cristian A; Faust, Andreas

    2016-04-01

    Carbohydrate-conjugated silicon(IV) phthalocyanines with bimodal photoactivity were developed as probes with both fluorescent labeling and photosensitizing capabilities, and the concomitant fluorescent labeling and photoinduced inactivation of Gram-positive and Gram-negative models was explored. The maltohexaose-conjugated photoprobe provides a dual readout to distinguish between both groups of pathogens, as only the Gram-positive species was inactivated, even though both appeared labeled with near-infrared luminescence. Antibiotic resistance did not hinder the phototoxic effect, as even the methicillin-resistant pathogen Staphylococcus aureus (MRSA) was completely photoinactivated. Time-resolved confocal fluorescence microscopy analysis suggests that the photoprobe sticks onto the outer rim of the microorganisms, explaining the resistance of Gram-negative species on the basis of their membrane constitution. The mannose-conjugated photoprobe yields a different readout because it is able to label and to inactivate only the Gram-positive strain.

  18. Bimodal Hearing and Speech Perception with a Competing Talker

    ERIC Educational Resources Information Center

    Pyschny, Verena; Landwehr, Markus; Hahn, Moritz; Walger, Martin; von Wedel, Hasso; Meister, Hartmut

    2011-01-01

    Purpose: The objective of the study was to investigate the influence of bimodal stimulation upon hearing ability for speech recognition in the presence of a single competing talker. Method: Speech recognition was measured in 3 listening conditions: hearing aid (HA) alone, cochlear implant (CI) alone, and both devices together (CI + HA). To examine…

  19. Bimodal Bilingual Language Development of Hearing Children of Deaf Parents

    ERIC Educational Resources Information Center

    Hofmann, Kristin; Chilla, Solveig

    2015-01-01

    Adopting a bimodal bilingual language acquisition model, this qualitative case study is the first in Germany to investigate the spoken and sign language development of hearing children of deaf adults (codas). The spoken language competence of six codas within the age range of 3;10 to 6;4 is assessed by a series of standardised tests (SETK 3-5,…

  20. SEP BIMOD variable conductance heat pipes acceptance and characterization tests

    NASA Technical Reports Server (NTRS)

    Hemminger, J. A.

    1981-01-01

    A series of six heat pipes, similar in design to those flown on the Comunications Technology Satellite Hermes, for use in a prototype Solar Electric Propulsion BIMOD thrust module are evaluated. The results of acceptance and characterization tests performed on the heat pipe subassemble are reported. The performance of all the heat pipes met, or exceeded, design specifications.

  1. A Hypothesis for the Color Bimodality of Jupiter Trojans

    NASA Astrophysics Data System (ADS)

    Wong, Ian; Brown, Michael E.

    2016-10-01

    One of the most enigmatic and hitherto unexplained properties of Jupiter Trojans is their bimodal color distribution. This bimodality is indicative of two sub-populations within the Trojans, which have distinct size distributions. In this paper, we present a simple, plausible hypothesis for the origin and evolution of the two Trojan color sub-populations. In the framework of dynamical instability models of early solar system evolution, which suggest a common primordial progenitor population for both Trojans and Kuiper Belt objects, we use observational constraints to assert that the color bimodalities evident in both minor body populations developed within the primordial population prior to the onset of instability. We show that, beginning with an initial composition of rock and ices, location-dependent volatile loss through sublimation in this primordial population could have led to sharp changes in the surface composition with heliocentric distance. We propose that the depletion or retention of H2S ice on the surface of these objects was the key factor in creating an initial color bimodality. Objects that retained H2S on their surfaces developed characteristically redder colors upon irradiation than those that did not. After the bodies from the primordial population were scattered and emplaced into their current positions, they preserved this primordial color bimodality to the present day. We explore predictions of the volatile loss model—in particular, the effect of collisions within the Trojan population on the size distributions of the two sub-populations—and propose further experimental and observational tests of our hypothesis.

  2. Bimodal mesoporous carbon synthesized from large organic precursor and amphiphilic tri-block copolymer by self assembly

    SciTech Connect

    Saha, Dipendu; Contescu, Cristian I; Gallego, Nidia C

    2012-01-01

    Owing to several disadvantages of traditional hard template based synthesis, soft-template or self-assembly was adopted to synthesize mesoporous carbon. In this work, we have introduced hexaphenol as a new and large organic precursor for the synthesis of mesoporous carbon by self-assembly with pluronic P123 as structure dictating agent. The resultant mesoporous carbon is bimodal in nature with median pore widths of 29 and 45 and BET surface area of 312 m2/g. Unlike previously synthesized mesoporous carbon, this carbon possesses negligible micropore volume. This mesoporous carbon is very suitable candidate for several applications including membrane separation, chemical sensor or selective sorption of larger molecules.

  3. Experimental, analytical and computational investigation of bimodal elastomer networks

    NASA Astrophysics Data System (ADS)

    von Lockette, Paris Robert

    Advances in the synthesis of macromolecular materials have led to the creation of special classes of elastomers called bimodal because of their bimodal distributions of linear starting oligomers. Numerous studies on these materials have documented anomalous increases in ultimate strength and toughness at certain mixture combinations of the constituents but have not yet identified a cause for this behavior. In addition, the ability to predict optimal mixtures still eludes polymer chemists. Constitutive models for the behavior of bimodal materials are also unable to predict material behavior, but instead tend to capture results using complicated curve fitting and iterative schemes. This thesis uncovers topological and micromechanical sources of these enhanced properties using periodic, topological simulations of chain-level network formation and develops a constitutive model of the aggregate bimodal network. Using a topological framework, in conjunction with the eight-chain averaging scheme of Arruda and Boyce, this work develops optical and mechanical constitutive models for bimodal elastomers whose results compare favorably with data in the literature. The resulting bimodal network theory is able to predict material response for a range of bimodal compositions using only two sets of data, a direct improvement over previous models. The micromechanics of elastomeric deformation and chain orientation as described by the eight-chain model are further validated by comparing optical and mechanical data generated during large deformation shear tests on unimodal materials with finite element simulations. In addition, a newly developed optical anisotropy model for the Raman tensor of polymeric materials, generated using an eight-chain unit cell model, is shown to compare favorably with tensile data in the literature. Results generated using NETSIM, a computer program developed in this thesis, have revealed naturally occurring, self-reinforcing topological features

  4. Rapid intensification and the bimodal distribution of tropical cyclone intensity

    PubMed Central

    Lee, Chia-Ying; Tippett, Michael K.; Sobel, Adam H.; Camargo, Suzana J.

    2016-01-01

    The severity of a tropical cyclone (TC) is often summarized by its lifetime maximum intensity (LMI), and the climatological LMI distribution is a fundamental feature of the climate system. The distinctive bimodality of the LMI distribution means that major storms (LMI >96 kt) are not very rare compared with less intense storms. Rapid intensification (RI) is the dramatic strengthening of a TC in a short time, and is notoriously difficult to forecast or simulate. Here we show that the bimodality of the LMI distribution reflects two types of storms: those that undergo RI during their lifetime (RI storms) and those that do not (non-RI storms). The vast majority (79%) of major storms are RI storms. Few non-RI storms (6%) become major storms. While the importance of RI has been recognized in weather forecasting, our results demonstrate that RI also plays a crucial role in the TC climatology. PMID:26838056

  5. Depletion-induced structure and dynamics in bimodal colloidal suspensions.

    SciTech Connect

    Sikorski, M.; Sandy, A. R.; Narayanan, S.

    2011-05-03

    Combined small angle x-ray scattering and x-ray photon correlation spectroscopy studies of moderately concentrated bimodal hard-sphere colloidal suspensions in the fluid phase show that depletion-induced demixing introduces spatially heterogeneous dynamics with two distinct time scales. The adhesive nature, as well as the mobility, of the large particles is determined by the level of interaction within the monomodal domains. This interaction is driven by osmotic forces, which are governed by the relative concentration of the constituents.

  6. NERVA-Derived Concept for a Bimodal Nuclear Thermal Rocket

    SciTech Connect

    Fusselman, Steven P.; Frye, Patrick E.; Gunn, Stanley V.; Morrison, Calvin Q.; Borowski, Stanley K.

    2005-02-06

    The Nuclear Thermal Rocket is an enabling technology for human exploration missions. The 'bimodal' NTR (BNTR) provides a novel approach to meeting both propulsion and power requirements of future manned and robotic missions. The purpose of this study was to evaluate tie-tube cooling configurations, NTR performance, Brayton cycle performance, and LOX-Augmented NTR (LANTR) feasibility to arrive at a point of departure BNTR configuration for subsequent system definition.

  7. Fluoride-assisted synthesis of bimodal microporous SSZ-13 zeolite.

    PubMed

    Zhu, Xiaochun; Kosinov, Nikolay; Hofmann, Jan P; Mezari, Brahim; Qian, Qingyun; Rohling, Roderigh; Weckhuysen, Bert M; Ruiz-Martínez, Javier; Hensen, Emiel J M

    2016-02-21

    The presence of small amount of fluoride in alkaline hydrothermal synthesis of SSZ-13 zeolite yields bimodal microporous particles with substantially improved performance in the methanol-to-olefins (MTO) reaction. Hydrocarbon uptake measurements and fluorescence microspectroscopy of spent catalysts demonstrate enhanced diffusion through micropores at the grain boundaries of nanocrystals running through the zeolite particles. Fluoride-assisted SSZ-13 synthesis is a cheap and scalable approach to optimize the performance of MTO zeolite catalysts. PMID:26810114

  8. Does bimodal stimulus presentation increase ERP components usable in BCIs?

    NASA Astrophysics Data System (ADS)

    Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Blankertz, Benjamin; Werkhoven, Peter J.

    2012-08-01

    Event-related potential (ERP)-based brain-computer interfaces (BCIs) employ differences in brain responses to attended and ignored stimuli. Typically, visual stimuli are used. Tactile stimuli have recently been suggested as a gaze-independent alternative. Bimodal stimuli could evoke additional brain activity due to multisensory integration which may be of use in BCIs. We investigated the effect of visual-tactile stimulus presentation on the chain of ERP components, BCI performance (classification accuracies and bitrates) and participants’ task performance (counting of targets). Ten participants were instructed to navigate a visual display by attending (spatially) to targets in sequences of either visual, tactile or visual-tactile stimuli. We observe that attending to visual-tactile (compared to either visual or tactile) stimuli results in an enhanced early ERP component (N1). This bimodal N1 may enhance BCI performance, as suggested by a nonsignificant positive trend in offline classification accuracies. A late ERP component (P300) is reduced when attending to visual-tactile compared to visual stimuli, which is consistent with the nonsignificant negative trend of participants’ task performance. We discuss these findings in the light of affected spatial attention at high-level compared to low-level stimulus processing. Furthermore, we evaluate bimodal BCIs from a practical perspective and for future applications.

  9. Disruptive selection in a bimodal population of Darwin's finches.

    PubMed

    Hendry, Andrew P; Huber, Sarah K; De León, Luis F; Herrel, Anthony; Podos, Jeffrey

    2009-02-22

    A key part of the ecological theory of adaptive radiation is disruptive selection during periods of sympatry. Some insight into this process might be gained by studying populations that are bimodal for dual-context traits, i.e. those showing adaptive divergence and also contributing to reproductive isolation. A population meeting these criteria is the medium ground finch (Geospiza fortis) of El Garrapatero, Santa Cruz Island, Galápagos. We examined patterns of selection in this population by relating individual beak sizes to interannual recaptures during a prolonged drought. Supporting the theory, disruptive selection was strong between the two beak size modes. We also found some evidence of selection against individuals with the largest and smallest beak sizes, perhaps owing to competition with other species or to gaps in the underlying resource distribution. Selection may thus simultaneously maintain the current bimodality while also constraining further divergence. Spatial and temporal variation in G. fortis bimodality suggests a dynamic tug of war among factors such as selection and assortative mating, which may alternatively promote or constrain divergence during adaptive radiation.

  10. Nonlinear response speedup in bimodal visual-olfactory object identification

    PubMed Central

    Höchenberger, Richard; Busch, Niko A.; Ohla, Kathrin

    2015-01-01

    Multisensory processes are vital in the perception of our environment. In the evaluation of foodstuff, redundant sensory inputs not only assist the identification of edible and nutritious substances, but also help avoiding the ingestion of possibly hazardous substances. While it is known that the non-chemical senses interact already at early processing levels, it remains unclear whether the visual and olfactory senses exhibit comparable interaction effects. To address this question, we tested whether the perception of congruent bimodal visual-olfactory objects is facilitated compared to unimodal stimulation. We measured response times (RT) and accuracy during speeded object identification. The onset of the visual and olfactory constituents in bimodal trials was physically aligned in the first and perceptually aligned in the second experiment. We tested whether the data favored coactivation or parallel processing consistent with race models. A redundant-signals effect was observed for perceptually aligned redundant stimuli only, i.e., bimodal stimuli were identified faster than either of the unimodal components. Analysis of the RT distributions and accuracy data revealed that these observations could be explained by a race model. More specifically, visual and olfactory channels appeared to be operating in a parallel, positively dependent manner. While these results suggest the absence of early sensory interactions, future studies are needed to substantiate this interpretation. PMID:26483730

  11. Disruptive selection in a bimodal population of Darwin's finches

    PubMed Central

    Hendry, Andrew P.; Huber, Sarah K.; De León, Luis F.; Herrel, Anthony; Podos, Jeffrey

    2008-01-01

    A key part of the ecological theory of adaptive radiation is disruptive selection during periods of sympatry. Some insight into this process might be gained by studying populations that are bimodal for dual-context traits, i.e. those showing adaptive divergence and also contributing to reproductive isolation. A population meeting these criteria is the medium ground finch (Geospiza fortis) of El Garrapatero, Santa Cruz Island, Galápagos. We examined patterns of selection in this population by relating individual beak sizes to interannual recaptures during a prolonged drought. Supporting the theory, disruptive selection was strong between the two beak size modes. We also found some evidence of selection against individuals with the largest and smallest beak sizes, perhaps owing to competition with other species or to gaps in the underlying resource distribution. Selection may thus simultaneously maintain the current bimodality while also constraining further divergence. Spatial and temporal variation in G. fortis bimodality suggests a dynamic tug of war among factors such as selection and assortative mating, which may alternatively promote or constrain divergence during adaptive radiation. PMID:18986971

  12. Bimodal Bilinguals Co-activate Both Languages during Spoken Comprehension

    PubMed Central

    Shook, Anthony; Marian, Viorica

    2012-01-01

    Bilinguals have been shown to activate their two languages in parallel, and this process can often be attributed to overlap in input between the two languages. The present study examines whether two languages that do not overlap in input structure, and that have distinct phonological systems, such as American Sign Language (ASL) and English, are also activated in parallel. Hearing ASL-English bimodal bilinguals’ and English monolinguals’ eye-movements were recorded during a visual world paradigm, in which participants were instructed, in English, to select objects from a display. In critical trials, the target item appeared with a competing item that overlapped with the target in ASL phonology. Bimodal bilinguals looked more at competing items than at phonologically unrelated items, and looked more at competing items relative to monolinguals, indicating activation of the sign-language during spoken English comprehension. The findings suggest that language co-activation is not modality specific, and provide insight into the mechanisms that may underlie cross-modal language co-activation in bimodal bilinguals, including the role that top-down and lateral connections between levels of processing may play in language comprehension. PMID:22770677

  13. Bimodal and Gaussian Ising spin glasses in dimension two

    NASA Astrophysics Data System (ADS)

    Lundow, P. H.; Campbell, I. A.

    2016-02-01

    An analysis is given of numerical simulation data to size L =128 on the archetype square lattice Ising spin glasses (ISGs) with bimodal (±J ) and Gaussian interaction distributions. It is well established that the ordering temperature of both models is zero. The Gaussian model has a nondegenerate ground state and thus a critical exponent η ≡0 , and a continuous distribution of energy levels. For the bimodal model, above a size-dependent crossover temperature T*(L ) there is a regime of effectively continuous energy levels; below T*(L ) there is a distinct regime dominated by the highly degenerate ground state plus an energy gap to the excited states. T*(L ) tends to zero at very large L , leaving only the effectively continuous regime in the thermodynamic limit. The simulation data on both models are analyzed with the conventional scaling variable t =T and with a scaling variable τb=T2/(1 +T2) suitable for zero-temperature transition ISGs, together with appropriate scaling expressions. The data for the temperature dependence of the reduced susceptibility χ (τb,L ) and second moment correlation length ξ (τb,L ) in the thermodynamic limit regime are extrapolated to the τb=0 critical limit. The Gaussian critical exponent estimates from the simulations, η =0 and ν =3.55 (5 ) , are in full agreement with the well-established values in the literature. The bimodal critical exponents, estimated from the thermodynamic limit regime analyses using the same extrapolation protocols as for the Gaussian model, are η =0.20 (2 ) and ν =4.8 (3 ) , distinctly different from the Gaussian critical exponents.

  14. Bimodal and Gaussian Ising spin glasses in dimension two.

    PubMed

    Lundow, P H; Campbell, I A

    2016-02-01

    An analysis is given of numerical simulation data to size L=128 on the archetype square lattice Ising spin glasses (ISGs) with bimodal (±J) and Gaussian interaction distributions. It is well established that the ordering temperature of both models is zero. The Gaussian model has a nondegenerate ground state and thus a critical exponent η≡0, and a continuous distribution of energy levels. For the bimodal model, above a size-dependent crossover temperature T(*)(L) there is a regime of effectively continuous energy levels; below T(*)(L) there is a distinct regime dominated by the highly degenerate ground state plus an energy gap to the excited states. T(*)(L) tends to zero at very large L, leaving only the effectively continuous regime in the thermodynamic limit. The simulation data on both models are analyzed with the conventional scaling variable t=T and with a scaling variable τ(b)=T(2)/(1+T(2)) suitable for zero-temperature transition ISGs, together with appropriate scaling expressions. The data for the temperature dependence of the reduced susceptibility χ(τ(b),L) and second moment correlation length ξ(τ(b),L) in the thermodynamic limit regime are extrapolated to the τ(b)=0 critical limit. The Gaussian critical exponent estimates from the simulations, η=0 and ν=3.55(5), are in full agreement with the well-established values in the literature. The bimodal critical exponents, estimated from the thermodynamic limit regime analyses using the same extrapolation protocols as for the Gaussian model, are η=0.20(2) and ν=4.8(3), distinctly different from the Gaussian critical exponents. PMID:26986300

  15. Small Low Mass Advanced PBR's for Bi-Modal Operation

    NASA Astrophysics Data System (ADS)

    Ludewig, Hans; Todosow, Michael; Powell, James R.

    1994-07-01

    A preliminary assessment is made of a low mass bi-modal reactor for use as a propulsion unit and as a heat source for generating electricity. This reactor is based on the particle bed reactor (PBR) concept. It will be able to generate both thrust and electricity simultaneously. This assessment indicates that the reactor can generate approximately 6.8 (4) N of thrust using hydrogen as a coolant, and 100 KWe using a closed Brayton cycle (CBC) power conversion system. Two cooling paths pass through the reactor allowing simultaneous operation of both modes. The development of all the components for this reactor are within the experience base of the NTP project.

  16. Small low mass advanced PBR's for bi-modal operation

    NASA Astrophysics Data System (ADS)

    Ludewig, H.; Todosow, M.; Powell, J. R.

    1993-10-01

    A preliminary assessment is made of a low mass bimodal reactor for use as a propulsion unit and as a heat source for generating electricity. This reactor is based on the particle bed reactor (PBR) concept. It will be able to generate both thrust and electricity simultaneously. This assessment indicates that the reactor can generate approximately 6.8 (4) N of thrust using hydrogen as a coolant and 100 KWe using a closed Brayton cycle (CBC) power conversion system. Two cooling paths pass through the reactor allowing a simultaneous operation of both modes. The development of all the components for this reactor are within the experience base of the NTP project.

  17. Near field light intensity distribution analysis in bimodal polymer waveguide

    NASA Astrophysics Data System (ADS)

    Herzog, T.; Gut, K.

    2015-12-01

    The paper presents analysis of light intensity distribution and sensitivity in differential interferometer based on bimodal polymer waveguide. Key part is analysis of optimal waveguide layer thickness in structure SiO2/SU-8/H2O for maximum bulk refractive index sensitivity. The paper presents new approach to detecting phase difference between modes through registrations only part of energy propagating in the waveguide. Additionally in this paper the analysis of changes in light distribution when energy in modes is not equal were performed.

  18. Bimodal Fission in the Skyrme-Hartree-Fock Approach

    SciTech Connect

    Staszczak, A.; Dobaczewski, J.; Nazarewicz, Witold

    2007-01-01

    Spontaneous fission properties of 256Fm, 258Fm, and 260Fm isotopes are studied within the Skyrme-Hartree-Fock+BCS framework. In the particle-hole channel we take the Skyrme SkM* effective force, while in the particle-particle channel we employ the seniority pairing interaction. Three static fission paths for all investigated heavy fermium isotopes are found. The analysis of these fission modes allows to describe observed asymmetric fission of 256Fm, as well as bimodal fission of 258Fm and symmetric fission in 260Fm.

  19. Bimodal biometrics based on a representation and recognition approach

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Zhong, Aini; Yang, Jian; Zhang, David

    2011-03-01

    It has been demonstrated that multibiometrics can produce higher accuracy than single biometrics. This is mainly because the use of multiple biometric traits of the subject enables more information to be used for identification or verification. In this paper, we focus on bimodal biometrics and propose a novel representation and recognition approach to bimodal biometrics. This approach first denotes the biometric trait sample by a complex vector. Then, it represents the test sample through the training samples and classifies the test sample as follows: let the test sample be expressed as a linear combination of all the training samples each being a complex vector. The proposed approach obtains the solution by solving a linear system. After evaluating the effect, in representing the test sample of each class, the approach classifies the test sample into the class that makes the greatest effect. The approach proposed is not only novel but also simple and computationally efficient. A large number of experiments show that our method can obtain promising results.

  20. On bimodal flutter behavior of a flexible airfoil

    NASA Astrophysics Data System (ADS)

    Drazumeric, Radovan; Gjerek, Bojan; Kosel, Franc; Marzocca, Pier

    2014-02-01

    The dynamic aeroelastic behavior of an elastically supported airfoil is studied in order to investigate the possibilities of increasing critical flutter speed by exploiting its chord-wise flexibility. The flexible airfoil concept is implemented using a rigid airfoil-shaped leading edge, and a flexible thin laminated composite plate conformally attached to its trailing edge. The flutter behavior is studied in terms of the number of laminate plies used in the composite plate for a given aeroelastic system configuration. The flutter behavior is predicted by using an eigenfunction expansion approach which is also used to design a laminated plate in order to attain superior flutter characteristics. Such an airfoil is characterized by two types of flutter responses, the classical airfoil flutter and the plate flutter. Analysis shows that a significant increase in the critical flutter speed can be achieved with high plunge and low pitch stiffness in the region where the aeroelastic system exhibits a bimodal flutter behavior, e.g., where the airfoil flutter and the plate flutter occur simultaneously. The predicted flutter behavior of a flexible airfoil is experimentally verified by conducting a series of systematic aeroelastic system configurations wind tunnel flutter campaigns. The experimental investigations provide, for each type of flutter, a measured flutter response, including the one with indicated bimodal behavior.

  1. Viscosity minimum in bimodal concentrated suspensions under shear.

    PubMed

    Núñez, A; Darias, R; Pinto, R; Paredes V, R; Medina, E

    2002-11-01

    We study a model of concentrated suspensions under shear in two dimensions. Interactions between suspended particles are dominated by direct-contact viscoelastic forces and the particles are neutrally bouyant. The bimodal suspensions consist of a variable proportion between large and small droplets, with a fixed global suspended fraction. Going beyond the assumptions of the classical theory of Farris (R.J. Farris, Trans. Soc. Rheol. 12, 281 (1968)), we discuss a shear viscosity minimum, as a function of the small-to-large-particle ratio, in shear geometries imposed by external body forces and boundaries. Within a linear-response scheme, we find the dependence of the viscosity minimum on the imposed shear and the microscopic drop friction parameters. We also discuss the viscosity minimum under dynamically imposed shear applied by boundaries. We find a reduction of macroscopic viscosity with the increase of the microscopic friction parameters that is understood using a simple two-drop model. Our simulation results are qualitatively consistent with recent experiments in concentrated bimodal emulsions with a highly viscous or rigid suspended component.

  2. Tie Tube Heat Transfer Modeling for Bimodal Nuclear Thermal Rockets

    NASA Astrophysics Data System (ADS)

    Clough, Joshua A.; Starkey, Ryan P.; Lewis, Mark J.; Lavelle, Thomas M.

    2007-01-01

    Bimodal nuclear thermal rocket systems have been shown to reduce the weight and cost of space vehicles to Mars and beyond by utilizing the reactor for power generation in the relatively long duration between burns in an interplanetary trajectory. No information, however, is available regarding engine and reactor-level operation of such bimodal systems. The purpose of this project is to generate engine and reactor models with sufficient fidelity and flexibility to accurately study the component-level effects of operating a propulsion-designed reactor at power generation levels. Previous development of a 1-D reactor and tie tube model found that ignoring heat generation inside of the tie tube leads to under-prediction of the temperature change and over-prediction of pressure change across the tie tube. This paper will present the development and results of a tie tube model that has been extended to account for heat generation, specifically in the moderator layer. This model is based on a 1-D distribution of power in the fuel elements and tie tubes, as a precursor to an eventual neutron-driven reactor model.

  3. Tie Tube Heat Transfer Modeling for Bimodal Nuclear Thermal Rockets

    SciTech Connect

    Clough, Joshua A.; Starkey, Ryan P.; Lewis, Mark J.; Lavelle, Thomas M.

    2007-01-30

    Bimodal nuclear thermal rocket systems have been shown to reduce the weight and cost of space vehicles to Mars and beyond by utilizing the reactor for power generation in the relatively long duration between burns in an interplanetary trajectory. No information, however, is available regarding engine and reactor-level operation of such bimodal systems. The purpose of this project is to generate engine and reactor models with sufficient fidelity and flexibility to accurately study the component-level effects of operating a propulsion-designed reactor at power generation levels. Previous development of a 1-D reactor and tie tube model found that ignoring heat generation inside of the tie tube leads to under-prediction of the temperature change and over-prediction of pressure change across the tie tube. This paper will present the development and results of a tie tube model that has been extended to account for heat generation, specifically in the moderator layer. This model is based on a 1-D distribution of power in the fuel elements and tie tubes, as a precursor to an eventual neutron-driven reactor model.

  4. Bimodal Recurrence Pattern of Tsunami in South Central Chile

    NASA Astrophysics Data System (ADS)

    Kempf, P.; Moernaut, J.; Van Daele, M. E.; Vandoorne, W.; Messens, F.; Vandenberghe, D.; Pino, M.; Urrutia, R.; De Batist, M. A. O.

    2015-12-01

    Establishing the recurrence time of large-scale tsunami is one of the main objectives of paleotsunami research, as it is fundamental for any tsunami risk assessment. Typically, the result is given in form of the mean recurrence time and a standard deviation as a range of uncertainty, assuming a normally distributed recurrence. We present a 5.5 ka long coastal lake paleotsunami record from south central Chile, which contains 17 tsunami deposits, 9 of which were previously unknown. Our record matches all 3 of the historically known tsunami, as well as all of the 5 known paleotsunami in the region without over- or underrepresentation. We used Bayesian age-depth modelling to calculate an age-depth model and extracted recurrence intervals for 16 recurrence intervals. Our findings confirm the previously published mean tsunami recurrence time on the Valdivia seismic segment of ~300 years. However, our analyses show a strongly bimodal recurrence pattern with one mode at ~115 years and the other mode at ~490 years. The least likely recurrence time between the modes is at ~300 years and coincides with the mean recurrence time. The reasons for the bimodal distribution remain speculative. They can be attributed to either spatial variability, e.g. incomplete segment rupture, splay fault rupture, up- or down-dip rupture, or to temporal variability, e.g. megathrust earthquake clustering, earthquake supercycles. Our findings highlight the importance of recognising the variability in tsunami recurrence patterns before using mean recurrence time for tsunami risk assessment.

  5. Bimodal pollination system of the bromeliad Aechmea nudicaulis involving hummingbirds and bees.

    PubMed

    Schmid, S; Schmid, V S; Zillikens, A; Harter-Marques, B; Steiner, J

    2011-01-01

    In order to compare the effectiveness of birds and insects as pollinators, we studied the floral biology of the bromeliad Aechmea nudicaulis (L.) Grisebach in the biome of the Atlantic rain forest, southern Brazil. On Santa Catarina Island, flowering extends from mid-September to the end of December, with diurnal anthesis. The reproductive system is obligatory xenogamy, thus pollinator-dependent. Flowers secrete 31.84 μl of nectar per day, with a mean sugar concentration of 23.2%. Highest nectar volume and sugar concentration occur at the beginning of anthesis. Most floral traits are characteristic for ornithophily, and nectar production appears to be adapted to the energy demand of hummingbirds. Continued secretion of the sucrose-dominated nectar attracts and binds visitors to inflorescences, strengthening trapline foraging behaviour. Experiments assessing seed set after single flower visits were performed with the most frequent visitors, revealing the hummingbird Thalurania glaucopis as the most effective pollen vector. In addition, bees are also functional pollinators, as substantiated by their high visitation frequency. We conclude that this pollination system is bimodal. Thus, there is redundancy in the pollination service provided by birds and bees, granting a high probability of successful reproduction in Ae. nudicaulis.

  6. Trade-offs in sensitivity and sampling depth in bimodal atomic force microscopy and comparison to the trimodal case

    PubMed Central

    Eslami, Babak; Ebeling, Daniel

    2014-01-01

    Summary This paper presents experiments on Nafion® proton exchange membranes and numerical simulations illustrating the trade-offs between the optimization of compositional contrast and the modulation of tip indentation depth in bimodal atomic force microscopy (AFM). We focus on the original bimodal AFM method, which uses amplitude modulation to acquire the topography through the first cantilever eigenmode, and drives a higher eigenmode in open-loop to perform compositional mapping. This method is attractive due to its relative simplicity, robustness and commercial availability. We show that this technique offers the capability to modulate tip indentation depth, in addition to providing sample topography and material property contrast, although there are important competing effects between the optimization of sensitivity and the control of indentation depth, both of which strongly influence the contrast quality. Furthermore, we demonstrate that the two eigenmodes can be highly coupled in practice, especially when highly repulsive imaging conditions are used. Finally, we also offer a comparison with a previously reported trimodal AFM method, where the above competing effects are minimized. PMID:25161847

  7. Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli

    PubMed Central

    Thurlings, Marieke E.; Brouwer, Anne-Marie; Van Erp, Jan B. F.; Werkhoven, Peter

    2014-01-01

    Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components’ tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance. PMID:25249947

  8. Gaze-independent ERP-BCIs: augmenting performance through location-congruent bimodal stimuli.

    PubMed

    Thurlings, Marieke E; Brouwer, Anne-Marie; Van Erp, Jan B F; Werkhoven, Peter

    2014-01-01

    Gaze-independent event-related potential (ERP) based brain-computer interfaces (BCIs) yield relatively low BCI performance and traditionally employ unimodal stimuli. Bimodal ERP-BCIs may increase BCI performance due to multisensory integration or summation in the brain. An additional advantage of bimodal BCIs may be that the user can choose which modality or modalities to attend to. We studied bimodal, visual-tactile, gaze-independent BCIs and investigated whether or not ERP components' tAUCs and subsequent classification accuracies are increased for (1) bimodal vs. unimodal stimuli; (2) location-congruent vs. location-incongruent bimodal stimuli; and (3) attending to both modalities vs. to either one modality. We observed an enhanced bimodal (compared to unimodal) P300 tAUC, which appeared to be positively affected by location-congruency (p = 0.056) and resulted in higher classification accuracies. Attending either to one or to both modalities of the bimodal location-congruent stimuli resulted in differences between ERP components, but not in classification performance. We conclude that location-congruent bimodal stimuli improve ERP-BCIs, and offer the user the possibility to switch the attended modality without losing performance.

  9. Sex-specific hemispheric differences in cortical activation to a bimodal odor.

    PubMed

    Lundström, Johan N; Hummel, Thomas

    2006-01-30

    Most odorants we experience in every day life are bimodal in that they activate both the main olfactory and the intranasal trigeminal system. Few studies have investigated whether true bimodal odorants are processed differently than unimodal odorants. The aim of the study was to address sex-dependent hemispheric differences in olfactory event-related potentials. Event-related potentials (ERP) of the bimodal stimulant peppermint oil were recorded in 34 healthy subjects (17 women). No sex-related differences in olfactory sensitivity, trigeminal sensitivity or hedonic ratings of the stimuli were found. Although perceived similarly by men and women, results indicated a sex-differentiated hemispheric response to bimodal odors. Women generally expressed larger amplitudes and longer latencies over their left hemisphere, whereas men demonstrated a similar pattern over their right hemisphere. This effect was most evident for the early sensory derived ERP components indicating a sex-dependent difference in the sensory processing of bimodal odors. PMID:16183142

  10. Novel bimodal effects of the G-protein tissue transglutaminase on adrenoreceptor signalling.

    PubMed

    Zhang, J; Tucholski, J; Lesort, M; Jope, R S; Johnson, G V

    1999-11-01

    Tissue transglutaminase (tTG) is a novel G-protein that previous studies showed can couple ligand-bound activated alpha(1B) adrenoreceptors to phospholipase C-delta, resulting in phosphoinositide (PI) hydrolysis. In human neuroblastoma SH-SY5Y cells we found that although endogenous tTG can facilitate alpha(1B) adrenoreceptor-stimulated PI hydrolysis, its contribution is minor compared with the classical heterotrimeric G-protein G(q/11). Further, we show that the alpha(1B) adrenoreceptor recruits tTG to the membrane and that this recruitment is enhanced by agonist occupancy of the receptor. In addition, the effects of tTG on signalling are bimodal. At low expression levels, tTG enhanced alpha(1B) adrenoreceptor-stimulated PI hydrolysis, whereas at higher expression levels tTG attenuated significantly this response. These findings are the first to demonstrate that a protein can both facilitate and attenuate receptor-stimulated PI hydrolysis. PMID:10527931

  11. Bimodal targeting of microsomal cytochrome P450s to mitochondria: implications in drug metabolism and toxicity

    PubMed Central

    Sangar, Michelle C; Bansal, Seema

    2010-01-01

    Importance of the field Microsomal cytochrome P450s are critical for drug metabolism and toxicity. Recent studies show that these CYPs are also present in the mitochondrial compartment of human and rodent tissues. Mitochondrial CYP1A1 and 2E1 show both overlapping and distinct metabolic activities compared to microsomal forms. Mitochondrial CYP2E1 also induces oxidative stress. The mechanisms of mitochondria targeting of CYPs and their role in drug metabolism and toxicity are important factors to consider while determining the drug dose and in drug development. Areas covered in this review This review highlights the mechanisms of bimodal targeting of CYP1A1, 2B1, 2E1 and 2D6 to mitochondria and microsomes. The review also discusses differences in structure and function of mitochondrial CYPs. What the readers will gain A comprehensive review of the literature on drug metabolism in the mitochondrial compartment, and their potential for inducing mitochondrial dysfunction. Take home message Studies on the biochemistry, pharmacology and pharmacogenetic analysis of CYPs are mostly focused on the molecular forms associated with the microsomal membrane. However, the mitochondrial CYPs in some individuals can represent a substantial part of the tissue pool and contribute in a significant way to drug metabolism, clearance and toxicity. PMID:20629582

  12. Microparticles with bimodal nanoporosity derived by microemulsion templating.

    PubMed

    Carroll, Nick J; Pylypenko, Svitlana; Atanassov, Plamen B; Petsev, Dimiter N

    2009-12-01

    Oil, water, and surfactant liquid mixtures exhibit very complex phase behavior. Depending on the conditions, such mixtures give rise to highly organized structures. A proper selection of the type and concentration of surfactants determines the structuring at the nanoscale level. In this Article, we show that hierarchically bimodal porous structures can be obtained by templating silica microparticles with a specially designed surfactant micelle/microemulsion mixture. Tuning the phase state by adjusting the surfactant composition and concentration allows for the controlled design of a system where microemulsion droplets coexist with smaller surfactant micellar structures. The microemulsion droplet and micellar dimensions determine the two types of pore sizes. We also demonstrate the fabrication of carbon and carbon/platinum replicas of the silica microspheres using a "lost-wax" approach. Such particles have great potential for the design of electrocatalysts for fuel cells, chromatography separations, and other applications. PMID:19928946

  13. Microparticles with bimodal nanoporosity derived by microemulsion templating.

    PubMed

    Carroll, Nick J; Pylypenko, Svitlana; Atanassov, Plamen B; Petsev, Dimiter N

    2009-12-01

    Oil, water, and surfactant liquid mixtures exhibit very complex phase behavior. Depending on the conditions, such mixtures give rise to highly organized structures. A proper selection of the type and concentration of surfactants determines the structuring at the nanoscale level. In this Article, we show that hierarchically bimodal porous structures can be obtained by templating silica microparticles with a specially designed surfactant micelle/microemulsion mixture. Tuning the phase state by adjusting the surfactant composition and concentration allows for the controlled design of a system where microemulsion droplets coexist with smaller surfactant micellar structures. The microemulsion droplet and micellar dimensions determine the two types of pore sizes. We also demonstrate the fabrication of carbon and carbon/platinum replicas of the silica microspheres using a "lost-wax" approach. Such particles have great potential for the design of electrocatalysts for fuel cells, chromatography separations, and other applications.

  14. Knowledge Engineering Aspects of Affective Bi-Modal Educational Applications

    NASA Astrophysics Data System (ADS)

    Alepis, Efthymios; Virvou, Maria; Kabassi, Katerina

    This paper analyses the knowledge and software engineering aspects of educational applications that provide affective bi-modal human-computer interaction. For this purpose, a system that provides affective interaction based on evidence from two different modes has been developed. More specifically, the system's inferences about students' emotions are based on user input evidence from the keyboard and the microphone. Evidence from these two modes is combined by a user modelling component that incorporates user stereotypes as well as a multi criteria decision making theory. The mechanism that integrates the inferences from the two modes has been based on the results of two empirical studies that were conducted in the context of knowledge engineering of the system. The evaluation of the developed system showed significant improvements in the recognition of the emotional states of users.

  15. Bimodal star formation - Constraints from the solar neighborhood

    NASA Technical Reports Server (NTRS)

    Wyse, Rosemary F. G.; Silk, J.

    1987-01-01

    The chemical evolution resulting from a simple model of bimodal star formulation is investigated, using constraints from the solar neighborhood to set the parameters of the initial mass function and star formation rate. The two modes are an exclusively massive star mode, which forms stars at an exponentially declining rate, and a mode which contains stars of all masses and has a constant star formation rate. Satisfactory agreement with the age-metallicity relation for the thin disk and with the metallicity structure of the thin-disk and spheroid stars is possible only for a small range of parameter values. The preferred model offers a resolution to several of the long-standing problems of galactic chemical evolution, including explanations of the age-metallicity relation, the gas consumption time scale, and the stellar cumulative metallicity distributions.

  16. Bimodality of Latitudinal Gradients in Marine Species Richness.

    PubMed

    Chaudhary, Chhaya; Saeedi, Hanieh; Costello, Mark J

    2016-09-01

    The paradigm for the latitudinal gradient in species richness is that it is unimodal with a tropical peak. For 27 published studies, and global datasets of 65 000 recent and 50 000 fossil marine species, we found that almost all datasets were significantly bimodal with a dip in species richness near the equator. The locations of mid-latitude peaks varied between taxa and were higher in the northern hemisphere where the continental shelf is greatest. Our findings support hypotheses of tropical species evolving in response to temperature variation near the edges of the tropics and available high-productivity habitat. They suggest that the equator may already be too hot for some species and that the modes may move further apart due to climate warming.

  17. Bimodality of Latitudinal Gradients in Marine Species Richness.

    PubMed

    Chaudhary, Chhaya; Saeedi, Hanieh; Costello, Mark J

    2016-09-01

    The paradigm for the latitudinal gradient in species richness is that it is unimodal with a tropical peak. For 27 published studies, and global datasets of 65 000 recent and 50 000 fossil marine species, we found that almost all datasets were significantly bimodal with a dip in species richness near the equator. The locations of mid-latitude peaks varied between taxa and were higher in the northern hemisphere where the continental shelf is greatest. Our findings support hypotheses of tropical species evolving in response to temperature variation near the edges of the tropics and available high-productivity habitat. They suggest that the equator may already be too hot for some species and that the modes may move further apart due to climate warming. PMID:27372733

  18. More stable yet bimodal geodynamo during the Cretaceous superchron?

    NASA Astrophysics Data System (ADS)

    Lhuillier, Florian; Gilder, Stuart A.; Wack, Michael; He, Kuang; Petersen, Nikolai; Singer, Brad S.; Jicha, Brian R.; Schaen, Allen J.; Colon, Dylan

    2016-06-01

    We report palaeomagnetic and 40Ar/39Ar dating results from two sequences of basaltic lava flows deposited at the same locality in western China, yet separated in time by ~50 Myr: one set lies within the Cretaceous normal superchron at 112-115 Ma and a second at 59-70 Ma spanning the Cretaceous-Palaeogene boundary. We find that magnetic field directions during the superchron exhibit bimodal populations: one with inclinations representative of a dipolar field and another with shallow inclinations that could reflect a more complex, multipolar field. However, the time-dependent variability in field directions was 50% lower during the superchron than after, which implies greater field stability during the superchron. Our results suggest that episodes of less dipolar field behavior occurred within the Cretaceous superchron and raise the question whether a second, more multipolar, field state is more persistent than previously thought.

  19. Bimodal star formation - constraints from the solar neighborhood

    SciTech Connect

    Wyse, R.F.G.; Silk, J.

    1987-02-01

    The chemical evolution resulting from a simple model of bimodal star formulation is investigated, using constraints from the solar neighborhood to set the parameters of the initial mass function and star formation rate. The two modes are an exclusively massive star mode, which forms stars at an exponentially declining rate, and a mode which contains stars of all masses and has a constant star formation rate. Satisfactory agreement with the age-metallicity relation for the thin disk and with the metallicity structure of the thin-disk and spheroid stars is possible only for a small range of parameter values. The preferred model offers a resolution to several of the long-standing problems of galactic chemical evolution, including explanations of the age-metallicity relation, the gas consumption time scale, and the stellar cumulative metallicity distributions. 27 references.

  20. Diverse Kir expression contributes to distinct bimodal distribution of resting potentials and vasotone responses of arterioles.

    PubMed

    Yang, Yuqin; Chen, Fangyi; Karasawa, Takatoshi; Ma, Ke-Tao; Guan, Bing-Cai; Shi, Xiao-Rui; Li, Hongzhe; Steyger, Peter S; Nuttall, Alfred L; Jiang, Zhi-Gen

    2015-01-01

    The resting membrane potential (RP) of vascular smooth muscle cells (VSMCs) is a major determinant of cytosolic calcium concentration and vascular tone. The heterogeneity of RPs and its underlying mechanism among different vascular beds remain poorly understood. We compared the RPs and vasomotion properties between the guinea pig spiral modiolar artery (SMA), brain arterioles (BA) and mesenteric arteries (MA). We found: 1) RPs showed a robust bimodal distribution peaked at -76 and -40 mV evenly in the SMA, unevenly at -77 and -51 mV in the BA and ~-71 and -52 mV in the MA. Ba(2+) 0.1 mM eliminated their high RP peaks ~-75 mV. 2) Cells with low RP (~-45 mV) hyperpolarized in response to 10 mM extracellular K(+), while cells with a high RP depolarized, and cells with intermediate RP (~-58 mV) displayed an initial hyperpolarization followed by prolonged depolarization. Moderate high K(+) typically induced dilation, constriction and a dilation followed by constriction in the SMA, MA and BA, respectively. 3) Boltzmann-fit analysis of the Ba(2+)-sensitive inward rectifier K(+) (Kir) whole-cell current showed that the maximum Kir conductance density significantly differed among the vessels, and the half-activation voltage was significantly more negative in the MA. 4) Corresponding to the whole-cell data, computational modeling simulated the three RP distribution patterns and the dynamics of RP changes obtained experimentally, including the regenerative swift shifts between the two RP levels after reaching a threshold. 5) Molecular works revealed strong Kir2.1 and Kir2.2 transcripts and Kir2.1 immunolabeling in all 3 vessels, while Kir2.3 and Kir2.4 transcript levels varied. We conclude that a dense expression of functional Kir2.X channels underlies the more negative RPs in endothelial cells and a subset of VSMC in these arterioles, and the heterogeneous Kir function is primarily responsible for the distinct bimodal RPs among these arterioles. The fast Kir

  1. Effect of condensate of food waste (CFW) on nutrient removal and behaviours of intercellular materials in a vertical submerged membrane bioreactor (VSMBR).

    PubMed

    Chae, S R; Shin, H S

    2007-01-01

    The main objective of this study was to investigate the effect of condensate of food waste (CFW) on nutrient removal in a pilot-scale vertical submerged membrane bioreactor (VSMBR) treating municipal wastewater having total-chemical oxygen demand to total-nitrogen ratio (T-COD/T-N) of 5.5. In this reactor, the average removal efficiencies of T-COD, T-N, and T-P (total-phosphorus) were 96%, 74%, and 78%, respectively at 8-h hydraulic retention time (HRT), 60-day sludge retention time (SRT), and internal recycle rate of 400%. As the CFW was supplemented with 0.86% of the influent flow rate, the T-N and T-P removal efficiencies increased to 81% and 91%, respectively. Accordingly, in batch tests, it was concluded that the supply of CFW improved enhanced biological phosphorus removal (EBPR) activity of microorganisms resulting in improvement of nutrient removal efficiency. Under this condition, several kinds of poly-hydroxyalkanoates (PHAs) were detected inside the cells.

  2. Monaural Beamforming in Bimodal Cochlear Implant Users: Effect of (A)symmetric Directivity and Noise Type

    PubMed Central

    Janssen, A. Miranda L.; Chalupper, Josef; Stokroos, Robert J.; George, Erwin L. J.

    2016-01-01

    Objective To evaluate monaural beamforming in bimodally aided cochlear implant (CI) users. Design The study enrolled twelve adult bimodal listeners with at least six months of CI-experience and using a contralateral hearing aid (HA) most of the daytime. Participants were uniformly fitted with the same CI speech processor and HA, giving access to an identical monaural beamformer in both ears. A within-subject repeated measures design evaluated three directional configurations [omnidirectional, asymmetric directivity (in CI alone) and symmetric directivity (in both CI and HA)] in two noise types [stationary and fluctuating]. Bimodal speech reception thresholds (SRT) as well as listening effort ratings were assessed in a diffuse noise field. Results Symmetric monaural beamforming provided a significant SRT improvement of 2.6 dB SNR, compared to 1.6 dB SNR for asymmetric monaural beamforming. Directional benefits were similarly observed in stationary and fluctuating noise. Directivity did not contribute to less listening effort in addition to improvement in speech intelligibility. Bimodal performance was about 7 dB SNR worse in fluctuating than in stationary noise. Conclusions Monaural beamforming provided substantial benefit for speech intelligibility in noise for bimodal listeners. The greatest benefit occurred when monaural beamforming was activated symmetrically in both CI and HA. Monaural beamforming does not bridge the gap between bimodal and normal hearing performance, especially in fluctuating noise. Results advocate further bimodal co-operation. Trial Registration This trial was registered in www.trialregister.nl under number NTR4901. PMID:27537075

  3. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids.

    PubMed

    Martínez, N F; Lozano, J R; Herruzo, E T; Garcia, F; Richter, C; Sulzbach, T; Garcia, R

    2008-09-24

    We have developed a dynamic atomic force microscopy (AFM) method based on the simultaneous excitation of the first two flexural modes of the cantilever. The instrument, called a bimodal atomic force microscope, allows us to resolve the structural components of antibodies in both monomer and pentameric forms. The instrument operates in both high and low quality factor environments, i.e., air and liquids. We show that under the same experimental conditions, bimodal AFM is more sensitive to compositional changes than amplitude modulation AFM. By using theoretical and numerical methods, we study the material contrast sensitivity as well as the forces applied on the sample during bimodal AFM operation.

  4. Elastic membranes in confinement.

    PubMed

    Bostwick, J B; Miksis, M J; Davis, S H

    2016-07-01

    An elastic membrane stretched between two walls takes a shape defined by its length and the volume of fluid it encloses. Many biological structures, such as cells, mitochondria and coiled DNA, have fine internal structure in which a membrane (or elastic member) is geometrically 'confined' by another object. Here, the two-dimensional shape of an elastic membrane in a 'confining' box is studied by introducing a repulsive confinement pressure that prevents the membrane from intersecting the wall. The stage is set by contrasting confined and unconfined solutions. Continuation methods are then used to compute response diagrams, from which we identify the particular membrane mechanics that generate mitochondria-like shapes. Large confinement pressures yield complex response diagrams with secondary bifurcations and multiple turning points where modal identities may change. Regions in parameter space where such behaviour occurs are then mapped. PMID:27440257

  5. A bimodal optoelectronic flow-through detector for phosphate determination.

    PubMed

    Fiedoruk, Marta; Mieczkowska, Elżbieta; Koncki, Robert; Tymecki, Lukasz

    2014-10-01

    A miniature flow-through detector useful for bimodal, photometric and fluorimetric, determination of phosphates has been developed. This optoelectronic device made of four light emitting diodes (LEDs) integrated in the form of 85 µL optical cell is easily applied in flow analysis manifolds. These LEDs play the roles of light source for photometric measurements, fluorescence inductors and detector of absorbance and fluorescence. For photometric mode of determinations a phosphomolybdenum blue method has been applied. The fluorimetric method of phosphate determination is based on quenching of rhodamine fluorescence by the heteropolyacid. The developed detector used in a simple three-channel flow injection analysis (FIA) system allows photometric or fluorimetric determination of phosphate in the wide range of concentration. The detection limits found for photometric and fluorimetric modes of FIA measurements are 5.5 mg L(-1) and 10.4 µg L(-1), respectively. The potential utility of the flow-through detector for the needs of food and clinical analysis has been demonstrated. PMID:25059150

  6. Development of Iron Doped Silicon Nanoparticles as Bimodal Imaging Agents

    PubMed Central

    Singh, Mani P.; Atkins, Tonya M.; Muthuswamy, Elayaraja; Kamali, Saeed; Tu, Chuqiao; Louie, Angelique Y.; Kauzlarich, Susan M.

    2012-01-01

    We demonstrate the synthesis of water-soluble allylamine terminated Fe doped Si (SixFe) nanoparticles as bimodal agents for optical and magnetic imaging. The preparation involves the synthesis of a single source iron containing precursor, Na4Si4 with x% Fe (x = 1, 5, 10), and its subsequent reaction with NH4Br to produce hydrogen terminated SixFe nanoparticles. The hydrogen-capped nanoparticles are further terminated with allylamine via thermal hydrosilylation. Transmission electron microscopy (TEM) indicates that the average particle diameter is ~3.0±1.0 nm. The Si5Fe nanoparticles show strong photoluminescence quantum yield in water (~ 10 %) with significant T2 contrast (r2/r1value of 4.31). Electron paramagnetic resonance (EPR) and Mössbauer spectroscopies indicate that iron in the nanoparticles is in the +3 oxidation state. Analysis of cytotoxicity using the resazurin assay on HepG2 liver cells indicates that the particles have minimal toxicity. PMID:22616623

  7. On the bimodal distribution of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Mao, Shude; Narayan, Ramesh; Piran, Tsvi

    1994-01-01

    Kouveliotou et al. recently confirmed that gamma-ray bursts are bimodal in duration. In this paper we compute the statistical properties of the short (less than or = 2 s) and long (greater than 2 s) bursts using a method of analysis that makes no assumption regarding the location of the bursts, whether in the Galaxy or at a cosmological distance. We find the 64 ms channel on Burst and Transient Source Experiment (BATSE) to be more sensitive to short bursts and the 1024 ms channel to be more sensitive to long bursts. We show that all the currently available data are consistent with the simple hypothesis that both short and long bursts have the same spatial distribution and that within each population the sources are standard candles. The rate of short bursts per unit volume is about 40% of the rate of long bursts. Although the durations of short and long gamma-ray bursts span several orders of magnitude and the total energy of a typical short burst is smaller than that of a typical long burst by a factor of about 20, surprisingly the peak luminosities of the two kinds of bursts are equal to within a factor of about 2.

  8. The bimodal initial mass function in the Orion nebula cloud

    NASA Astrophysics Data System (ADS)

    Drass, H.; Haas, M.; Chini, R.; Bayo, A.; Hackstein, M.; Hoffmeister, V.; Godoy, N.; Vogt, N.

    2016-09-01

    Due to its youth, proximity and richness, the Orion nebula cloud (ONC) is an ideal testbed to obtain a comprehensive view on the initial mass function (IMF) down to the planetary mass regime. Using the HAWK-I camera at the VLT, we have obtained an unprecedented deep and wide near-infrared JHK mosaic of the ONC (90 per cent completeness at K ˜ 19.0 mag, 22 × 28 arcmin2). Applying the most recent isochrones and accounting for the contamination of background stars and galaxies, we find that ONC's IMF is bimodal with distinct peaks at about 0.25 and 0.025 M⊙ separated by a pronounced dip at the hydrogen burning limit (0.08 M⊙), with a depth of about a factor of 2-3 below the log-normal distribution. Apart from ˜920 low-mass stars (M < 1.4 M⊙) the IMF contains ˜760 brown dwarf candidates and ˜160 isolated planetary mass object candidates with M > 0.005 M⊙, hence about 10 times more substellar candidates than known before. The substellar IMF peak at 0.025 M⊙ could be caused by brown dwarfs and isolated planetary mass objects which have been ejected from multiple systems during the early star formation process or from circumstellar discs.

  9. Spontaneous fission properties of the heavy elements: Bimodal fission

    SciTech Connect

    Hulet, E.K.

    1988-11-11

    We have measured the mass and kinetic-energy distributions from the spontaneous fission of SVYFm, SVYNo, SVZMd, SWMd, SW(104), and SWSNo. All are observed to fission with a symmetrical division of mass, whereas the total-kinetic-energy (TKE) distributions strongly deviated from the Gaussian shape characteristically found in the fission of all other actinides. When the TKE distributions are resolved into two Gaussian's, the constituent peaks lie near 200 and near 233 MeV. We conclude two modes or bimodal fission is occurring in five of the six nuclides studied. Both modes are possible in the same nuclide, but one generally predominates. We also conclude the low-energy but mass-symmetrical mode is likely to extend to far heavier nuclei; while the high-energy mode will be restricted to a smaller region, a region of nuclei defined by the proximity of the fragments to the strong neutron and proton shells in TSSn. 21 refs., 7 figs., 1 tab.

  10. Bimodal Gastroretentive Drug Delivery Systems of Lamotrigine: Formulation and Evaluation

    PubMed Central

    Poonuru, R. R.; Gonugunta, C. S. R

    2014-01-01

    Gastroretentive bimodal drug delivery systems of lamotrigine were developed using immediate release and extended release segments incorporated in a hydroxypropyl methylcellulose capsule and in vitro and in vivo evaluations were conducted. In vivo radiographic studies were carried out for the optimized formulation in healthy human volunteers with replacement of drug polymer complex by barium sulphate and the floating time was noted. Here the immediate release segment worked as loading dose and extended release segment as maintenance dose. The results of release studies of formulations with hydrophillic matrix to formulations with dual matrix hydroxypropyl methylcellulose acetate succinate shown that as the percentage of polymer increased, the release decreased. Selected formulation F2 having F-Melt has successfully released the drug within one hour and hydrophillic matrix composing polyethylene oxide with 5% hydroxypropyl methylcellulose acetate succinate showed a lag time of one hour and then extended its release up to 12th hour with 99.59% drug release following zero order kinetics with R2 value of 0.989. The Korsmeyer-Peppas equation showed the R2 value to be 0.941 and n value was 1.606 following non-Fickian diffusion pattern with supercase II relaxation mechanism. Here from extended release tablet the drug released slowly from the matrix while floating. PMID:25593380

  11. Utterance independent bimodal emotion recognition in spontaneous communication

    NASA Astrophysics Data System (ADS)

    Tao, Jianhua; Pan, Shifeng; Yang, Minghao; Li, Ya; Mu, Kaihui; Che, Jianfeng

    2011-12-01

    Emotion expressions sometimes are mixed with the utterance expression in spontaneous face-to-face communication, which makes difficulties for emotion recognition. This article introduces the methods of reducing the utterance influences in visual parameters for the audio-visual-based emotion recognition. The audio and visual channels are first combined under a Multistream Hidden Markov Model (MHMM). Then, the utterance reduction is finished by finding the residual between the real visual parameters and the outputs of the utterance related visual parameters. This article introduces the Fused Hidden Markov Model Inversion method which is trained in the neutral expressed audio-visual corpus to solve the problem. To reduce the computing complexity the inversion model is further simplified to a Gaussian Mixture Model (GMM) mapping. Compared with traditional bimodal emotion recognition methods (e.g., SVM, CART, Boosting), the utterance reduction method can give better results of emotion recognition. The experiments also show the effectiveness of our emotion recognition system when it was used in a live environment.

  12. Effect of short range hydrodynamic on bimodal colloidal gel systems

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Jamali, Safa; Maia, Joao

    2015-03-01

    Colloidal Gels and disordered arrested systems has been studied extensively during the past decades. Although, they have found their place in multiple industries such as cosmetic, food and so on, their physical principals are still far beyond being understood. The interplay between different types of interactions from quantum scale, Van der Waals interaction, to short range interactions, depletion interaction, and long range interactions such as electrostatic double layer makes this systems challenging from simulation point of view. Many authors have implemented different simulation techniques such as molecular dynamics (MD) and Brownian dynamics (BD) to capture better picture during phase separation of colloidal system with short range attractive force. However, BD is not capable to include multi-body hydrodynamic interaction and MD is limited by the computational resources and is limited to short time and length scales. In this presentation we used Core-modified dissipative particle dynamics (CM-DPD) with modified depletion potential, as a coarse-grain model, to address the gel formation process in short ranged-attractive colloidal suspensions. Due to the possibility to include and separate short and long ranged-hydrodynamic forces in this method we studied the effect of each of those forces on the final morphology and report one of the controversial question in this field on the effect of hydrodynamics on the cluster formation process on bimodal, soft-hard colloidal mixtures.

  13. Hydrogen-resistant heat pipes for bimodal reactors

    NASA Astrophysics Data System (ADS)

    North, Mark T.; Anderson, William G.

    1997-01-01

    A sodium heat pipe that is tolerant of hydrogen permeation was developed for bimodal space power applications. Hydrogen permeation out of the heat pipe is enhanced by using a condenser design with a re-entrant annular gas cavity and an array of small diameter, thin-walled tubes to increase the permeation area. An experimental heat pipe with a nickel envelope was fabricated and tested. The heat pipe operated between 993K and 1073K, using sodium as the working fluid. During steady-state operation, hydrogen gas was injected into the heat pipe. The response of the heat pipe was monitored while the hydrogen permeated out of the heat pipe in the condenser section. For each of the tests run, the hydrogen gas was removed from the heat pipe in approximately 5 to 10 minutes. A model of the experimental heat pipe was developed to predict the enhancement in the hydrogen permeation rate out of the heat pipe. A significant improvement in the rate at which hydrogen permeates out of a heat pipe was predicted for the use of the special condenser geometry developed here. Agreement between the model and the experimental results was qualitatively good. Inclusion of the additional effects of fluid flow in the heat pipe are recommended for future work.

  14. The case against bimodal star formation in elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Gibson, B. K.

    1996-02-01

    We consider the present-day photometric and chemical properties of elliptical galaxies, adopting the bimodal star formation scenario of Elbaz, Arnaud & Vangioni-Flam. These models utilize an initial mass function (IMF) biased heavily toward massive stars during the early phases of galactic evolution, leading to early Type II supernovae-driven galactic winds. A subsequent lengthy, milder star formation phase with a normal IMF ensues, supposedly responsible for the stellar population observed today. Based upon chemical evolution arguments alone, this scenario has been invoked to explain the observed metal mass, and their abundance ratios, in the intracluster medium of galaxy clusters. Building upon the recent compilations of metallicity-dependent isochrones for simple stellar populations, we have constructed a coupled photometric and chemical evolution package for composite stellar populations in order to quantify the effects of such a model upon the photochemical properties of the resultant elliptical galaxies. We demonstrate that these predicted properties are incompatible with those observed at the current epoch.

  15. Bimodality and the formation of Saturn's ring particles

    SciTech Connect

    Gehrels, T.

    1980-11-01

    The F ring appears to have an outer and an inner rim, with only the latter observed by the imaging photopolarimeter (IPP) on the Pioneer Saturn spacecraft. The inside of the G ring, near 2.49 R/sub S/, may also be seen in the optical data. 1979S1 is red as well as dark. The light scattered through the B ring is noticeably red. The A ring has a dense outer rim. The Cassini Division and the French Division (Dollfus Division) have a dark gap near their centers. The C ring becomes weaker toward the center such that outer, middle, and inner C rings can be recognized. The Pioneer and earth-based observations are explained with a model for the B and A rings to some extent of a bimodal size distributions of particles; the larger ones may be original accretions, while small debris diffuses inward through the Cassini Division and the C ring. During the formation of the ring system, differential gravitation allowed only silicaceous grains of higher density (rho> or approx. =3 g cm/sup -3/) to coagulate. These serve as interstitial cores for snowy carbonaceous grains, between the times of accretion from interplanetary cometary grains and liberation by collision followed by diffusion inward to Saturn and final evaporation.

  16. Bimodal frequency-modulated atomic force microscopy with small cantilevers.

    PubMed

    Dietz, Christian; Schulze, Marcus; Voss, Agnieszka; Riesch, Christian; Stark, Robert W

    2015-02-01

    Small cantilevers with ultra-high resonant frequencies (1-3 MHz) have paved the way for high-speed atomic force microscopy. However, their potential for multi-frequency atomic force microscopy is unexplored. Because small cantilevers have small spring constants but large resonant frequencies, they are well-suited for the characterisation of delicate specimens with high imaging rates. We demonstrate their imaging capabilities in a bimodal frequency modulation mode in constant excitation on semi-crystalline polypropylene. The first two flexural modes of the cantilever were simultaneously excited. The detected frequency shift of the first eigenmode was held constant for topographical feedback, whereas the second eigenmode frequency shift was used to map the local properties of the specimen. High-resolution images were acquired depicting crystalline lamellae of approximately 12 nm in width. Additionally, dynamic force curves revealed that the contrast originated from different interaction forces between the tip and the distinct polymer regions. The technique uses gentle forces during scanning and quantified the elastic moduli Eam = 300 MPa and Ecr = 600 MPa on amorphous and crystalline regions, respectively. Thus, multimode measurements with small cantilevers allow one to map material properties on the nanoscale at high resolutions and increase the force sensitivity compared with standard cantilevers.

  17. Integration of visual and infrared information in bimodal neurons in the rattlesnake optic tectum

    SciTech Connect

    Newman, E.A.; Hartline, P.H.

    1981-08-14

    Bimodal neurons in the rattlesnake tectum, which receive sensory input from the retina and from the infrared-sensing pit organ, exhibit novel, highly nonlinear cross-modality interactions. Some units respond only to simultaneous bimodal stimulation. Others respond to only one of the two modalities, but show greatly enhanced or depressed responses when stimulated simultaneously in the second modality. These cross-modality interactions may play an important role in recognizing and orienting toward biologically important objects.

  18. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ≫1 and |m-1|≪1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  19. THE SLUGGS SURVEY: NGC 3115, A CRITICAL TEST CASE FOR METALLICITY BIMODALITY IN GLOBULAR CLUSTER SYSTEMS

    SciTech Connect

    Brodie, Jean P.; Conroy, Charlie; Arnold, Jacob A.; Romanowsky, Aaron J.; Usher, Christopher; Forbes, Duncan A.; Strader, Jay

    2012-11-10

    Due to its proximity (9 Mpc) and the strongly bimodal color distribution of its spectroscopically well-sampled globular cluster (GC) system, the early-type galaxy NGC 3115 provides one of the best available tests of whether the color bimodality widely observed in GC systems generally reflects a true metallicity bimodality. Color bimodality has alternatively been attributed to a strongly nonlinear color-metallicity relation reflecting the influence of hot horizontal-branch stars. Here, we couple Subaru Suprime-Cam gi photometry with Keck/DEIMOS spectroscopy to accurately measure GC colors and a CaT index that measures the Ca II triplet. We find the NGC 3115 GC system to be unambiguously bimodal in both color and the CaT index. Using simple stellar population models, we show that the CaT index is essentially unaffected by variations in horizontal-branch morphology over the range of metallicities relevant to GC systems (and is thus a robust indicator of metallicity) and confirm bimodality in the metallicity distribution. We assess the existing evidence for and against multiple metallicity subpopulations in early- and late-type galaxies and conclude that metallicity bi/multimodality is common. We briefly discuss how this fundamental characteristic links directly to the star formation and assembly histories of galaxies.

  20. Robustness analysis of bimodal networks in the whole range of degree correlation

    NASA Astrophysics Data System (ADS)

    Mizutaka, Shogo; Tanizawa, Toshihiro

    2016-08-01

    We present an exact analysis of the physical properties of bimodal networks specified by the two peak degree distribution fully incorporating the degree-degree correlation between node connections. The structure of the correlated bimodal network is uniquely determined by the Pearson coefficient of the degree correlation, keeping its degree distribution fixed. The percolation threshold and the giant component fraction of the correlated bimodal network are analytically calculated in the whole range of the Pearson coefficient from -1 to 1 against two major types of node removal, which are the random failure and the degree-based targeted attack. The Pearson coefficient for next-nearest-neighbor pairs is also calculated, which always takes a positive value even when the correlation between nearest-neighbor pairs is negative. From the results, it is confirmed that the percolation threshold is a monotonically decreasing function of the Pearson coefficient for the degrees of nearest-neighbor pairs increasing from -1 and 1 regardless of the types of node removal. In contrast, the node fraction of the giant component for bimodal networks with positive degree correlation rapidly decreases in the early stage of random failure, while that for bimodal networks with negative degree correlation remains relatively large until the removed node fraction reaches the threshold. In this sense, bimodal networks with negative degree correlation are more robust against random failure than those with positive degree correlation.

  1. Robustness analysis of bimodal networks in the whole range of degree correlation.

    PubMed

    Mizutaka, Shogo; Tanizawa, Toshihiro

    2016-08-01

    We present an exact analysis of the physical properties of bimodal networks specified by the two peak degree distribution fully incorporating the degree-degree correlation between node connections. The structure of the correlated bimodal network is uniquely determined by the Pearson coefficient of the degree correlation, keeping its degree distribution fixed. The percolation threshold and the giant component fraction of the correlated bimodal network are analytically calculated in the whole range of the Pearson coefficient from -1 to 1 against two major types of node removal, which are the random failure and the degree-based targeted attack. The Pearson coefficient for next-nearest-neighbor pairs is also calculated, which always takes a positive value even when the correlation between nearest-neighbor pairs is negative. From the results, it is confirmed that the percolation threshold is a monotonically decreasing function of the Pearson coefficient for the degrees of nearest-neighbor pairs increasing from -1 and 1 regardless of the types of node removal. In contrast, the node fraction of the giant component for bimodal networks with positive degree correlation rapidly decreases in the early stage of random failure, while that for bimodal networks with negative degree correlation remains relatively large until the removed node fraction reaches the threshold. In this sense, bimodal networks with negative degree correlation are more robust against random failure than those with positive degree correlation. PMID:27627318

  2. Visual adaptation dominates bimodal visual-motor action adaptation

    PubMed Central

    de la Rosa, Stephan; Ferstl, Ylva; Bülthoff, Heinrich H.

    2016-01-01

    A long standing debate revolves around the question whether visual action recognition primarily relies on visual or motor action information. Previous studies mainly examined the contribution of either visual or motor information to action recognition. Yet, the interaction of visual and motor action information is particularly important for understanding action recognition in social interactions, where humans often observe and execute actions at the same time. Here, we behaviourally examined the interaction of visual and motor action recognition processes when participants simultaneously observe and execute actions. We took advantage of behavioural action adaptation effects to investigate behavioural correlates of neural action recognition mechanisms. In line with previous results, we find that prolonged visual exposure (visual adaptation) and prolonged execution of the same action with closed eyes (non-visual motor adaptation) influence action recognition. However, when participants simultaneously adapted visually and motorically – akin to simultaneous execution and observation of actions in social interactions - adaptation effects were only modulated by visual but not motor adaptation. Action recognition, therefore, relies primarily on vision-based action recognition mechanisms in situations that require simultaneous action observation and execution, such as social interactions. The results suggest caution when associating social behaviour in social interactions with motor based information. PMID:27029781

  3. The Angstrom Exponent and Bimodal Aerosol Size Distributions

    NASA Technical Reports Server (NTRS)

    Schuster, Gregory L.; Dubovik, Oleg; Holben, Brent H.

    2005-01-01

    Powerlaws have long been used to describe the spectral dependence of aerosol extinction, and the wavelength exponent of the aerosol extinction powerlaw is commonly referred to as the Angstrom exponent. The Angstrom exponent is often used as a qualitative indicator of aerosol particle size, with values greater than two indicating small particles associated with combustion byproducts, and values less than one indicating large particles like sea salt and dust. In this study, we investigate the relationship between the Angstrom exponent and the mode parameters of bimodal aerosol size distributions using Mie theory calculations and Aerosol Robotic Network (AERONET) retrievals. We find that Angstrom exponents based upon seven wavelengths (0.34, 0.38, 0.44, 0.5, 0.67, 0.87, and 1.02 micrometers) are sensitive to the volume fraction of aerosols with radii less then 0.6 micrometers, but not to the fine mode effective radius. The Angstrom exponent is also known to vary with wavelength, which is commonly referred to as curvature; we show how the spectral curvature can provide additional information about aerosol size distributions for intermediate values of the Angstrom exponent. Curvature also has a significant effect on the conclusions that can be drawn about two-wavelength Angstrom exponents; long wavelengths (0.67, 0.87 micrometers) are sensitive to fine mode volume fraction of aerosols but not fine mode effective radius, while short wavelengths (0.38, 0.44 micrometers) are sensitive to the fine mode effective radius but not the fine mode volume fraction.

  4. Bimodality of Pure Compaction Bands, Buckskin Gulch, Utah

    NASA Astrophysics Data System (ADS)

    Klimczak, C.; Byrne, P. K.

    2015-12-01

    The exposures of the aeolian Navajo Sandstone at Buckskin Gulch, Utah, have received much attention for their spectacular displays of compaction bands. These bands are described as tabular zones of reduced porosity, and are generally categorized into shear-enhanced compaction bands (SECBs), which accommodate equal amounts of compaction and shear strain, and pure compaction bands (PCBs) that have experienced no shearing. PCBs display a wavy or crooked geometry with vertically dipping bands ~1 mm thick. Conversely, SECBs include planar bands up to 1 cm thick with moderate dips defining conjugate geometries. The Buckskin Gulch field site was surveyed, and compaction bands systematically mapped in a sub-area representative of the heaviest deformation. Geologic and structural map units include dune boundaries within the Navajo Sandstone, areas of soft-sediment deformation, and PCBs and SECBs. Mapping shows that SECBs have outcrop characteristics consistent with those reported in previous studies, and are found with varying degrees of deformation in almost all dune units. However, the mapping and compass measurements also reveal a previously unrecognized bimodal pattern of PBC orientation with bands occurring in strands of up to four individual PCBs. One set of orientations only includes single-strand PCBs, whereas the other set is composed of multi-strand PCBs. Both sets of PCBs have nearly vertical dips but their strikes clearly differ from another by up to 25°. Further, PCBs and SECBs show distinct patterns in areas of soft-sediment deformation. Although individual PCB orientations are consistent with the overall trend of PCBs in the area, SECB orientations are chaotic, their growth was clearly affected by the soft-sediment deformation. These field observations are inconsistent with the current understanding of pure compaction band mechanics and so indicate that their growth is more complex than previously thought.

  5. Changing epidemiology of trauma deaths leads to a bimodal distribution

    PubMed Central

    Gunst, Mark; Ghaemmaghami, Vafa; Gruszecki, Amy; Urban, Jill; Frankel, Heidi

    2010-01-01

    Injury mortality was classically described with a trimodal distribution, with immediate deaths at the scene, early deaths due to hemorrhage, and late deaths from organ failure. We hypothesized that the development of trauma systems has improved prehospital care, early resuscitation, and critical care and altered this pattern. This population-based study of all trauma deaths in an urban county with a mature trauma system reviewed data for 678 patients (median age, 33 years; 81% male; 43% gunshot, 20% motor vehicle crashes). Deaths were classified as immediate (scene), early (in hospital, ≤4 hours from injury), or late (>4 hours after injury). Multinomial regression was used to identify independent predictors of immediate and early versus late deaths, adjusted for age, gender, race, intention, mechanism, toxicology, and cause of death. Results showed 416 (61%) immediate, 199 (29%) early, and 63 (10%) late deaths. Compared with the classical description, the percentage of immediate deaths remained unchanged, and early deaths occurred much earlier (median 52 vs 120 minutes). However, unlike the classic trimodal distribution, the late peak was greatly diminished. Intentional injuries, alcohol intoxication, asphyxia, and injuries to the head and chest were independent predictors of immediate death. Alcohol intoxication and injuries to the chest were predictors of early death, while pelvic fractures and blunt assaults were associated with late deaths. In conclusion, trauma deaths now have a predominantly bimodal distribution. Near elimination of the late peak likely represents advancements in resuscitation and critical care that have reduced organ failure. Further reductions in mortality will likely come from prevention of intentional injuries and injuries associated with alcohol intoxication. PMID:20944754

  6. Bimodal tholeiitic-dacitic magmatism and the Early Precambrian crust

    USGS Publications Warehouse

    Barker, F.; Peterman, Z.E.

    1974-01-01

    Interlayered plagioclase-quartz gneisses and amphibolites from 2.7 to more than 3.6 b.y. old form much of the basement underlying Precambrian greenstone belts of the world; they are especially well-developed and preserved in the Transvaal and Rhodesian cratons. We postulate that these basement rocks are largely a metamorphosed, volcanic, bimodal suite of tholeiite and high-silica low-potash dacite-compositionally similar to the 1.8-b.y.-old Twilight Gneiss - and partly intrusive equivalents injected into the lower parts of such volcanic piles. We speculate that magmatism in the Early Precambrian involved higher heat flow and more hydrous conditions than in the Phanerozoic. Specifically, we suggest that the early degassing of the Earth produced a basaltic crust and pyrolitic upper mantle that contained much amphibole, serpentine, and other hydrous minerals. Dehydration of the lower parts of a downgoing slab of such hydrous crust and upper mantle would release sufficient water to prohibit formation of andesitic liquid in the upper part of the slab. Instead, a dacitic liquid and a residuum of amphibole and other silica-poor phases would form, according to Green and Ringwood's experimental results. Higher temperatures farther down the slab would cause total melting of basalt and generation of the tholeiitic member of the suite. This type of magma generation and volcanism persisted until the early hydrous lithosphere was consumed. An implication of this hypothesis is that about half the present volume of the oceans formed before about 2.6 b.y. ago. ?? 1974.

  7. Evaluation of Hearing Aid Frequency Response Fittings in Pediatric and Young Adult Bimodal Recipients

    PubMed Central

    Davidson, Lisa S.; Firszt, Jill B.; Brenner, Chris; Cadieux, Jamie H.

    2015-01-01

    Background A coordinated fitting of a cochlear implant (CI) and contralateral hearing aid (HA) for bimodal device use should emphasize balanced audibility and loudness across devices. However, guidelines for allocating frequency information to the CI and HA are not well established for the growing population of bimodal recipients. Purpose The study aim was to compare the effects of three different HA frequency responses, when fitting a CI and an HA for bimodal use, on speech recognition and localization in children/young adults. Specifically, the three frequency responses were wideband, restricted high frequency, and nonlinear frequency compression (NLFC), which were compared with measures of word recognition in quiet, sentence recognition in noise, talker discrimination, and sound localization. Research Design The HA frequency responses were evaluated using an A B1 A B2 test design: wideband frequency response (baseline-A), restricted high-frequency response (experimental-B1), and NLFC-activated (experimental-B2). All participants were allowed 3–4 weeks between each test session for acclimatization to each new HA setting. Bimodal benefit was determined by comparing the bimodal score to the CI-alone score. Study Sample Participants were 14 children and young adults (ages 7–21 yr) who were experienced users of bimodal devices. All had been unilaterally implanted with a Nucleus CI24 internal system and used either a Freedom or CP810 speech processor. All received a Phonak Naida IX UP behind-the-ear HA at the beginning of the study. Data Collection and Analysis Group results for the three bimodal conditions (HA frequency response with wideband, restricted high frequency, and NLFC) on each outcome measure were analyzed using a repeated measures analysis of variance. Group results using the individual “best bimodal” score were analyzed and confirmed using a resampling procedure. Correlation analyses examined the effects of audibility (aided and unaided hearing

  8. Membrane stabilizer

    DOEpatents

    Mingenbach, William A.

    1988-01-01

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material.

  9. Integrated propulsion and power modeling for bimodal nuclear thermal rockets

    NASA Astrophysics Data System (ADS)

    Clough, Joshua

    Bimodal nuclear thermal rocket (BNTR) engines have been shown to reduce the weight of space vehicles to the Moon, Mars, and beyond by utilizing a common reactor for propulsion and power generation. These savings lead to reduced launch vehicle costs and/or increased mission safety and capability. Experimental work of the Rover/NERVA program demonstrated the feasibility of NTR systems for trajectories to Mars. Numerous recent studies have demonstrated the economic and performance benefits of BNTR operation. Relatively little, however, is known about the reactor-level operation of a BNTR engine. The objective of this dissertation is to develop a numerical BNTR engine model in order to study the feasibility and component-level impact of utilizing a NERVA-derived reactor as a heat source for both propulsion and power. The primary contribution is to provide the first-of-its-kind model and analysis of a NERVA-derived BNTR engine. Numerical component models have been modified and created for the NERVA reactor fuel elements and tie tubes, including 1-D coolant thermodynamics and radial thermal conduction with heat generation. A BNTR engine system model has been created in order to design and analyze an engine employing an expander-cycle nuclear rocket and Brayton cycle power generator using the same reactor. Design point results show that a 316 MWt reactor produces a thrust and specific impulse of 66.6 kN and 917 s, respectively. The same reactor can be run at 73.8 kWt to produce the necessary 16.7 kW electric power with a Brayton cycle generator. This demonstrates the feasibility of BNTR operation with a NERVA-derived reactor but also indicates that the reactor control system must be able to operate with precision across a wide power range, and that the transient analysis of reactor decay heat merits future investigation. Results also identify a significant reactor pressure-drop limitation during propulsion and power-generation operation that is caused by poor tie tube

  10. Bimodal Seismic Anisotropy at Cotopaxi volcano (Ecuador): Possible implications

    NASA Astrophysics Data System (ADS)

    Amin Douillet, Guilhem; Ruiz, Mario; Robin, Claude

    2010-05-01

    A shear wave splitting analysis was performed on Cotopaxi volcano, one of Ecuador most active and hazardous volcanoes, in order to investigate the stress state under this volcano. Cotopaxi volcano is located in a highly populated area including the capital Quito. It's eruptive cycle is approximately 120 ±70 years and apart from possible minor eruptions in 1942 and 1903-1904, the last volcanic activity dates from 1878-1885. Moreover, 15 years of increasing seismicity with some major crisis during the 1995-2010 periods, lead to the current very high seismic level. Finally two years of gas monitoring suggest that the Cotopaxi's emissions are currently intermittent and passive, but non negligible. We analyzed 102 regional tectonic events recorded between 2006 and 2009 at a network of five broad-band three-component seismic stations. These stations are located on all flanks of Cotopaxi. The events used were from several seismic sources located inside a radius of 200 kilometers from the volcano and illuminate all space directions. Seismic events were manually chosen based on their clear shear wave component in regards to the compression wave and to the noise. The data were computed using Matlab software. Polarization directions and delay times of split shear waves were found using a method based on the cross correlation of displacement waveforms of shear-waves at all possible rotation angles. Our results show a bimodal anisotropic behavior. One of the fast-directions axes follows the regional Ecuadorian tectonic general strain with a ESE direction. The other trend was found to be perpendicular to the regional strain. Other studies have shown that a 90° flip may take place either prior, during, or just after the main eruptive phase, or during hydraulic injections. This 90° flip is probably relied to micro cracks filling and pressuring, creating a local reverse strain field. There is not clear trend on temporal evolution of anisotropy distribution on our data. Only one

  11. Lateral Erosion Encourages Vertical Incision in a Bimodal Alluvial River

    NASA Astrophysics Data System (ADS)

    Gran, K. B.

    2015-12-01

    Sand can have a strong impact on gravel transport, increasing gravel transport rates by orders of magnitude as sand content increases. Recent experimental work by others indicates that adding sand to an armored bed can even cause armor to break-up and mobilize. These two elements together help explain observations from a bimodal sand and gravel-bedded river, where lateral migration into sand-rich alluvium breaks up the armor layer, encouraging further incision into the bed. Detailed bedload measurements were coupled with surface and subsurface grain size analyses and cross-sectional surveys in a seasonally-incised channel carved into the upper alluvial fan of the Pasig-Potrero River at Mount Pinatubo, Philippines. Pinatubo erupted in 1991, filling valleys draining the flanks of the volcano with primarily sand-sized pyroclastic flow debris. Twenty years after the eruption, sand-rich sediment inputs are strongly seasonal, with most sediment input to the channel during the rainy season. During the dry season, flow condenses from a wide braided planform to a single-thread channel in most of the upper basin, extending several km onto the alluvial fan. This change in planform creates similar unit discharge ranges in summer and winter. Lower sediment loads in the dry season drive vertical incision until the bed is sufficiently armored. Incision proceeds downstream in a wave, with increasing sediment transport rates and decreasing grain size with distance downstream, eventually reaching a gravel-sand transition and return to a braided planform. Incision depths in the gravel-bedded section exceeded 3 meters in parts of a 4 km-long study reach, a depth too great to be explained by predictions from simple winnowing during incision. Instead, lateral migration into sand-rich alluvium provides sufficient fine sediment to break up the armor surface, allowing incision to start anew and increasing the total depth of the seasonally-incised valley. Lateral migration is recorded in a

  12. The effects of bilateral electric and bimodal electric--acoustic stimulation on language development.

    PubMed

    Nittrouer, Susan; Chapman, Christopher

    2009-09-01

    There is no doubt that cochlear implants have improved the spoken language abilities of children with hearing loss, but delays persist. Consequently, it is imperative that new treatment options be explored. This study evaluated one aspect of treatment that might be modified, that having to do with bilateral implants and bimodal stimulation. A total of 58 children with at least one implant were tested at 42 months of age on four language measures spanning a continuum from basic to generative in nature. When children were grouped by the kind of stimulation they had at 42 months (one implant, bilateral implants, or bimodal stimulation), no differences across groups were observed. This was true even when groups were constrained to only children who had at least 12 months to acclimatize to their stimulation configuration. However, when children were grouped according to whether or not they had spent any time with bimodal stimulation (either consistently since their first implant or as an interlude to receiving a second) advantages were found for children who had some bimodal experience, but those advantages were restricted to language abilities that are generative in nature. Thus, previously reported benefits of simultaneous bilateral implantation early in a child's life may not extend to generative language. In fact, children may benefit from a period of bimodal stimulation early in childhood because low-frequency speech signals provide prosody and serve as an aid in learning how to perceptually organize the signal that is received through a cochlear implant. PMID:19713210

  13. Modulation enhancement in the electrical signal improves perception of interaural time differences with bimodal stimulation.

    PubMed

    Francart, Tom; Lenssen, Anneke; Wouters, Jan

    2014-08-01

    Interaural timing cues are important for sound source localization and for binaural unmasking of speech that is spatially separated from interfering sounds. Users of a cochlear implant (CI) with residual hearing in the non-implanted ear (bimodal listeners) can only make very limited use of interaural timing cues with their clinical devices. Previous studies showed that bimodal listeners can be sensitive to interaural time differences (ITDs) for simple single- and three-channel stimuli. The modulation enhancement strategy (MEnS) was developed to improve the ITD perception of bimodal listeners. It enhances temporal modulations on all stimulated electrodes, synchronously with modulations in the acoustic signal presented to the non-implanted ear, based on measurement of the amplitude peaks occurring at the rate of the fundamental frequency in voiced phonemes. In the first experiment, ITD detection thresholds were measured using the method of constant stimuli for five bimodal listeners for an artificial vowel, processed with either the advanced combination encoder (ACE) strategy or with MEnS. With MEnS, detection thresholds were significantly lower, and for four subjects well within the physically relevant range. In the second experiment, the extent of lateralization was measured in three subjects with both strategies, and ITD sensitivity was determined using an adaptive procedure. All subjects could lateralize sounds based on ITD and sensitivity was significantly better with MEnS than with ACE. The current results indicate that ITD cues can be provided to bimodal listeners with modified sound processing.

  14. Solar bi-modal system concept: Common development issues with nuclear systems

    NASA Astrophysics Data System (ADS)

    Laug, Kristi K.; Holmes, Michael; Westerman, Kurt O.; Spickard, Randall

    1995-01-01

    Solar thermal propulsion promises great advantages over current chemical upper stages (Meserole 1993). Solar thermal propulsion uses environmentally acceptable and free radiant energy to transfer payloads from LEO to GEO more efficiently than chemical propulsion and more rapidly than electric propulsion. Like nuclear thermal propulsion, solar thermal propulsion can be combined with a power conversion system to form a bi-modal system capable of providing a spacecraft with both power and propulsion from a single energy source. While the power source for a solar bi-modal system may be very different from that of a nuclear bi-modal system, they share a number of common development issues. Both systems must address issues such as: conversion of thermal to electrical energy, waste heat removal, power management and distribution, and the natural tendency to resist change within the spacecraft community. This paper will describe a solar thermal bi-modal concept and highlight the areas where development work can be performed in concert with existing nuclear bi-modal work to reduce the cost or shorten the development schedule of either system.

  15. The effects of bilateral electric and bimodal electric--acoustic stimulation on language development.

    PubMed

    Nittrouer, Susan; Chapman, Christopher

    2009-09-01

    There is no doubt that cochlear implants have improved the spoken language abilities of children with hearing loss, but delays persist. Consequently, it is imperative that new treatment options be explored. This study evaluated one aspect of treatment that might be modified, that having to do with bilateral implants and bimodal stimulation. A total of 58 children with at least one implant were tested at 42 months of age on four language measures spanning a continuum from basic to generative in nature. When children were grouped by the kind of stimulation they had at 42 months (one implant, bilateral implants, or bimodal stimulation), no differences across groups were observed. This was true even when groups were constrained to only children who had at least 12 months to acclimatize to their stimulation configuration. However, when children were grouped according to whether or not they had spent any time with bimodal stimulation (either consistently since their first implant or as an interlude to receiving a second) advantages were found for children who had some bimodal experience, but those advantages were restricted to language abilities that are generative in nature. Thus, previously reported benefits of simultaneous bilateral implantation early in a child's life may not extend to generative language. In fact, children may benefit from a period of bimodal stimulation early in childhood because low-frequency speech signals provide prosody and serve as an aid in learning how to perceptually organize the signal that is received through a cochlear implant.

  16. Effects of Removing Low-Frequency Electric Information on Speech Perception With Bimodal Hearing

    PubMed Central

    Eggleston, Jessica L.; Reavis, Kelly M.; McMillan, Garnett P.; Reiss, Lina A. J.

    2016-01-01

    Purpose The objective was to determine whether speech perception could be improved for bimodal listeners (those using a cochlear implant [CI] in one ear and hearing aid in the contralateral ear) by removing low-frequency information provided by the CI, thereby reducing acoustic–electric overlap. Method Subjects were adult CI subjects with at least 1 year of CI experience. Nine subjects were evaluated in the CI-only condition (control condition), and 26 subjects were evaluated in the bimodal condition. CIs were programmed with 4 experimental programs in which the low cutoff frequency (LCF) was progressively raised. Speech perception was evaluated using Consonant-Nucleus-Consonant words in quiet, AzBio sentences in background babble, and spondee words in background babble. Results The CI-only group showed decreased speech perception in both quiet and noise as the LCF was raised. Bimodal subjects with better hearing in the hearing aid ear (< 60 dB HL at 250 and 500 Hz) performed best for words in quiet as the LCF was raised. In contrast, bimodal subjects with worse hearing (> 60 dB HL at 250 and 500 Hz) performed similarly to the CI-only group. Conclusions These findings suggest that reducing low-frequency overlap of the CI and contralateral hearing aid may improve performance in quiet for some bimodal listeners with better hearing. PMID:26535803

  17. Transitioning from Bimodal to Bilateral Cochlear Implant Listening: Speech Recognition and Localization in Four Individuals

    PubMed Central

    Potts, Lisa G.; Litovsky, Ruth Y.

    2014-01-01

    Purpose The use of bilateral stimulation is becoming common for cochlear implant (CI) recipients, with either a CI in one ear and a hearing aid (HA) in the non-implanted ear (CI&HA - bimodal) or CIs in both ears (CI&CI - bilateral). The objective of this study was to evaluate performance of four individuals who transitioned from bimodal to bilateral stimulation. Methods Participants had completed a larger study of bimodal hearing and subsequently received a second CI. Test procedures from the bimodal study, including speech recognition, localization, and a questionnaire (SSQ) were repeated after 6-7 months of experience with bilateral CIs. Speech recognition and localization were measured using words that were presented from unpredictable locations in the room. Results Speech recognition and localization were not different between bimodal and unilateral CI. In contrast, performance was significantly better with CI&CI compared with unilateral CI. Speech recognition with CI&CI was significantly better than with CI&HA for 2/4 participants. Localization was significantly better for all participants with CI&CI compared to CI&HA. CI&CI performance was rated as significantly better on the SSQ compared to CI&HA performance for the four participants. Conclusions There was a strong subjective preference for CI&CI for all participants. The variability in speech recognition and localization, however, suggests that performance under these stimulus conditions is individualized. Differences in hearing and/or HA history may provide an explanation for performance differences. PMID:24018578

  18. Contributions of electric and acoustic hearing to bimodal speech and music perception.

    PubMed

    Crew, Joseph D; Galvin, John J; Landsberger, David M; Fu, Qian-Jie

    2015-01-01

    Cochlear implant (CI) users have difficulty understanding speech in noisy listening conditions and perceiving music. Aided residual acoustic hearing in the contralateral ear can mitigate these limitations. The present study examined contributions of electric and acoustic hearing to speech understanding in noise and melodic pitch perception. Data was collected with the CI only, the hearing aid (HA) only, and both devices together (CI+HA). Speech reception thresholds (SRTs) were adaptively measured for simple sentences in speech babble. Melodic contour identification (MCI) was measured with and without a masker instrument; the fundamental frequency of the masker was varied to be overlapping or non-overlapping with the target contour. Results showed that the CI contributes primarily to bimodal speech perception and that the HA contributes primarily to bimodal melodic pitch perception. In general, CI+HA performance was slightly improved relative to the better ear alone (CI-only) for SRTs but not for MCI, with some subjects experiencing a decrease in bimodal MCI performance relative to the better ear alone (HA-only). Individual performance was highly variable, and the contribution of either device to bimodal perception was both subject- and task-dependent. The results suggest that individualized mapping of CIs and HAs may further improve bimodal speech and music perception. PMID:25790349

  19. Application of a bi-modal PBR nuclear propulsion and power system to military missions

    NASA Astrophysics Data System (ADS)

    Venetoklis, Peter S.

    1995-01-01

    The rapid proliferation of arms technology and space access combined with current economic realities in the United States are creating ever greater demands for more capable space-based military assets. The paper illustrates that bi-modal nuclear propulsion and power based on the Particle Bed Reactor (PBR) is a high-leverage tehcnology that can maximize utility while minimizing cost. Mission benefits offered by the bi-modal PBR, including enhanced maneuverability, lifetime, survivability, payload power, and operational flexibility, are discussed. The ability to deliver desired payloads on smaller boosters is also illustrated. System descriptions and parameters for 10 kWe and 100 kWe power output levels are summarized. It is demonstrated via design exercise that bi-modal PBR dramtically enhances performance of a military satellite in geosynchronous orbit, increasing payload mass, payload power, and maneuverability.

  20. Nucleation of cracks near the free surface in deformed metallic nanomaterials with a bimodal structure

    NASA Astrophysics Data System (ADS)

    Ovid'ko, I. A.; Sheinerman, A. G.

    2016-06-01

    A theoretical model that effectively describes the nucleation of cracks in stress fields of dislocation pile-ups near the free surface in metallic nanomaterials with a bimodal structure has been developed. The dependences of the critical shear stress τ c (for the formation of a crack with an equilibrium length of 10 nm on a dislocation pile-up near the surface) on the size d of a grain containing the dislocation pile-up have been calculated for copper with a bimodal structure. Theoretically, it has been found that the critical shear stress τ c for the nucleation of a crack near the free surface in a nanomaterial with a bimodal structure is approximately 30% higher than that for the crack nucleation within the nanomaterial at a distance from the free surface.

  1. Post-treatment and characterization of novel luminescent hybrid bimodal mesoporous silicas

    NASA Astrophysics Data System (ADS)

    Li, Yuzhen; Sun, Jihong; Wu, Xia; Lin, Li; Gao, Lin

    2010-08-01

    A novel luminescent hybrid bimodal mesoporous silicas (LHBMS) were synthesized via grafting 1,8-Naphthalic anhydride into the pore channels of bimodal mesoporous silicas (BMMs) for the first time. The resulting samples were characterized by powder X-ray diffraction (XRD), N 2 adsorption/desorption measurement, Fourier transform infrared spectroscopy (FT-IR), Transmission electron microscopy (TEM), UV-vis absorption spectroscopy, and Photoluminescence spectroscopy (PL). The results show that 1,8-Naphthalic anhydride organic groups have been successfully introduced into the mesopores of the BMMs and the hybrid silicas are of bimodal mesoporous structure with the ordered small mesopores of around 3 nm and the large mesopores of uniform intra-nanoparticle. The excellent photoluminescent performance of LHBMS has a blue shift compared to that of 2-[3-(triethoxysilyl) propyl-1 H-Benz [de]isoquinoline-1, 3(2 H)-dione, suggesting the existence of the quantum confinement effectiveness.

  2. Tree cover bimodality in savannas and forests emerging from the switching between two fire dynamics.

    PubMed

    De Michele, Carlo; Accatino, Francesco

    2014-01-01

    Moist savannas and tropical forests share the same climatic conditions and occur side by side. Experimental evidences show that the tree cover of these ecosystems exhibits a bimodal frequency distribution. This is considered as a proof of savanna-forest bistability, predicted by dynamic vegetation models based on non-linear differential equations. Here, we propose a change of perspective about the bimodality of tree cover distribution. We show, using a simple matrix model of tree dynamics, how the bimodality of tree cover can emerge from the switching between two linear dynamics of trees, one in presence and one in absence of fire, with a feedback between fire and trees. As consequence, we find that the transitions between moist savannas and tropical forests, if sharp, are not necessarily catastrophic.

  3. A bimodal power and propulsion system based on cermet fuel and heat pipe energy transport

    SciTech Connect

    Polansky, G.F.; Gunther, N.A.; Rochow, R.F.; Bixler, C.H.

    1995-05-01

    Bimodal space reactor systems provide both thermal propulsion for the spacecraft orbital transfer and electrical power to the spacecraft bus once it is on station. These systems have the potential to increase both the available payload in high energy orbits and the available power to that payload. These increased mass and power capabilities can be used to either reduce mission cost by permitting the use of smaller launch vehicles or to provide increased mission performance from the current launch vehicle. A major barrier to the deployment of these bimodal systems has been the cost associated with their development. This paper describes a bimodal reactor system with performance potential to permit more than 70% of the instrumented payload of the Titan IV/Centaur to be launched from the Atlas IIAS. The development cost is minimized by basing the design on existing component technologies.

  4. Bimodal biophotonic imaging of the structure-function relationship in cardiac tissue

    PubMed Central

    Hucker, William J.; Ripplinger, Crystal M.; Fleming, Christine P.; Fedorov, Vadim V.; Rollins, Andrew M.; Efimov, Igor R.

    2009-01-01

    The development of systems physiology is hampered by the limited ability to relate tissue structure and function in intact organs in vivo or in vitro. Here, we show the application of a bimodal biophotonic imaging approach that employs optical coherence tomography and fluorescent imaging to investigate the structure-function relationship at the tissue level in the heart. Reconstruction of cardiac excitation and structure was limited by the depth penetration of bimodal imaging to ∼2 mm in atrial tissue, and ∼1 mm in ventricular myocardium. The subcellular resolution of optical coherence tomography clearly demonstrated that microscopic fiber orientation governs the pattern of wave propagation in functionally characterized rabbit sinoatrial and atrioventricular nodal preparations and revealed structural heterogeneities contributing to ventricular arrhythmias. The combination of this bimodal biophotonic imaging approach with histology and/or immunohistochemistry can span multiple scales of resolution for the investigation of the molecular and structural determinants of intact tissue physiology. PMID:19021392

  5. A DSC and FTIR spectroscopic study of the effects of the epimeric coprostan-3-ols and coprostan-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogues.

    PubMed

    Benesch, Matthew G K; Lewis, Ruthven N A H; Mannock, David A; McElhaney, Ronald N

    2015-05-01

    We present the results of a comparative differential calorimetric and Fourier transform infrared spectroscopic study of the effect of cholesterol and five analogues on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes. These sterols/steroids differ in both the nature and stereochemistry of the polar head group at C3 (β-OH, α-OH or CO) and in the presence or absence of a double bond in ring B and in the orientation of rings A and B. The Δ(5) sterols/steroid have a trans rather than a cis ring A/B junction, and the concentration of these compounds required to abolish the DPPC pretransition, inversely related to their relative ability to disorder gel state DPPC bilayers, decreases in the order β-OH > α-OH > CO. However, in the saturated ring junction-inverted (cis) series, these concentrations are much more similar, regardless of polar head group chemical structure. Similarly, the residual enthalpy of the DPPC main phase transition at 50 mol% sterol/steroid, which is inversely related to the miscibility of these compounds in fluid DPPC bilayers, also increases in the order β-OH > α-OH > CO, but this effect is attenuated in the saturated series with an inverted ring A/B orientation. Moreover, replacement of the double bond at C5-C6 with a saturated linkage and inversion of the ring A/B junction reduces both sterol/steroid solubility and the ability to order the hydrocarbon chains of fluid DPPC molecules all cases. Thus, the characteristic effects of sterols/steroids on fluid lipid bilayers are generally optimal when an OH group rather than CO group is present at C3, and when this OH group is in the equatorial (β) orientation, and when the orientation of the ring A/B fusion is trans rather than cis. Overall, these results demonstrate that variations in the saturation and stereochemistry of the steroid ring system influence the effect of variations in the nature and stereochemistry of the polar headgroup at C3

  6. A Novel Feedback Loop That Controls Bimodal Expression of Genetic Competence

    PubMed Central

    Gamba, Pamela; Jonker, Martijs J.; Hamoen, Leendert W.

    2015-01-01

    Gene expression can be highly heterogeneous in isogenic cell populations. An extreme type of heterogeneity is the so-called bistable or bimodal expression, whereby a cell can differentiate into two alternative expression states. Stochastic fluctuations of protein levels, also referred to as noise, provide the necessary source of heterogeneity that must be amplified by specific genetic circuits in order to obtain a bimodal response. A classical model of bimodal differentiation is the activation of genetic competence in Bacillus subtilis. The competence transcription factor ComK activates transcription of its own gene, and an intricate regulatory network controls the switch to competence and ensures its reversibility. However, it is noise in ComK expression that determines which cells activate the ComK autostimulatory loop and become competent for genetic transformation. Despite its important role in bimodal gene expression, noise remains difficult to investigate due to its inherent stochastic nature. We adapted an artificial autostimulatory loop that bypasses all known ComK regulators to screen for possible factors that affect noise. This led to the identification of a novel protein Kre (YkyB) that controls the bimodal regulation of ComK. Interestingly, Kre appears to modulate the induction of ComK by affecting the stability of comK mRNA. The protein influences the expression of many genes, however, Kre is only found in bacteria that contain a ComK homologue and, importantly, kre expression itself is downregulated by ComK. The evolutionary significance of this new feedback loop for the reduction of transcriptional noise in comK expression is discussed. Our findings show the importance of mRNA stability in bimodal regulation, a factor that requires more attention when studying and modelling this non-deterministic developmental mechanism. PMID:26110430

  7. Effect of water depth and water velocity upon the surfacing frequency of the bimodally respiring freshwater turtle, Rheodytes leukops.

    PubMed

    Gordos, Matthew A; Franklin, Craig E; Limpus, Colin J

    2004-08-01

    This study examines the effect of increasing water depth and water velocity upon the surfacing behaviour of the bimodally respiring turtle, Rheodytes leukops. Surfacing frequency was recorded for R. leukops at varying water depths (50, 100, 150 cm) and water velocities (5, 15, 30 cm s(-1)) during independent trials to provide an indirect cost-benefit analysis of aquatic versus pulmonary respiration. With increasing water velocity, R. leukops decreased its surfacing frequency twentyfold, thus suggesting a heightened reliance upon aquatic gas exchange. An elevated reliance upon aquatic respiration, which presumably translates into a decreased air-breathing frequency, may be metabolically more efficient for R. leukops compared to the expenditure (i.e. time and energy) associated with air-breathing within fast-flowing riffle zones. Additionally, R. leukops at higher water velocities preferentially selected low-velocity microhabitats, presumably to avoid the metabolic expenditure associated with high water flow. Alternatively, increasing water depth had no effect upon the surfacing frequency of R. leukops, suggesting little to no change in the respiratory partitioning of the species across treatment settings. Routinely long dives (>90 min) recorded for R. leukops indicate a high reliance upon aquatic O2 uptake regardless of water depth. Moreover, metabolic and temporal costs attributed to pulmonary gas exchange within a pool-like environment were likely minimal for R. leukops, irrespective of water depth. PMID:15277564

  8. Tension Control of a Bimodal Coiler System by Final-State Control

    NASA Astrophysics Data System (ADS)

    Hirata, Mitsuo; Eda, Akihiro

    A bimodal coiler system is a system for winding the materials rolled in a tandem mill in a rolling plant. In the bimodal coiler system, the tension changes greatly when the tail end of materials being rolled emerge out of the final stand, and as a result, the winding process might be disturbed. In this study, we attempt to suppress the fluctuation in the tension by employing a feedforward method based on final-state control. The effectiveness of the proposed method is verified by performing simulations.

  9. Dual Phase Separation for Synthesis of Bimodal Meso/Macroporous Carbon Monoliths

    SciTech Connect

    Liang, Chengdu; Dai, Sheng

    2009-01-01

    Polymerization-induced spinodal decomposition was conducted in glycolic solutions of phloroglucinol/formaldehyde (PF) copolymer and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) to synthesize bicontinuous macroporous morphologies with micro-domains from 0.5 to 6 microns. The polymeric materials were further carbonized at elevated temperature to yield bimodal meso/macroporous carbon monoliths after the thermal decomposition of the PEO-PPO-PEO template. The bimodal porous nature of the resultant carbon monoliths resulted from the dual phase separation, in which spinodal decomposition and microphase separation occurred simultaneously. We demonstrated the tunability of macropores without alteration of mesopore sizes.

  10. Membrane stabilizer

    DOEpatents

    Mingenbach, W.A.

    1988-02-09

    A device is provided for stabilizing a flexible membrane secured within a frame, wherein a plurality of elongated arms are disposed radially from a central hub which penetrates the membrane, said arms imposing alternately against opposite sides of the membrane, thus warping and tensioning the membrane into a condition of improved stability. The membrane may be an opaque or translucent sheet or other material. 10 figs.

  11. Topographic basis of bimodal ventilation-perfusion distributions during bronchoconstriction in sheep.

    PubMed

    Melo, Marcos F Vidal; Harris, R Scott; Layfield, J Dominick H; Venegas, Jose G

    2005-04-01

    The distribution of ventilation-perfusion (VA/Q) ratios during bronchoconstriction measured with the multiple inert gases elimination technique is frequently bimodal. However, the topographic basis and the cause of that bimodality remain unknown. In this article, regional VA/Q is quantified by three-dimensional positron emission tomography (PET) imaging of methacholine-induced bronchoconstriction in sheep. Regional VA/Q ratios were calculated from the imaged kinetics of intravenously injected 13NN-saline bolus, assembled into global VA/Q distributions, and used to estimate gas exchange. During bronchoconstriction, large regions with impaired tracer washout were observed adjacent to regions of normal ventilation. PET-derived VA/Q distributions during bronchoconstriction were consistently bimodal, with areas of low VA/Q receiving a large fraction of Q. The standard deviation of the VA/Q distribution was 38% lower if small-scale (subresolution) heterogeneity (< 2.2 cm3) was ignored. Arterial blood gases predicted from PET data correlated well with measured values for Pa(O2) (r2= 0.91, p < 0.01) and Pa(CO2) (r2= 0.90, p < 0.01). We conclude that the bimodality of VA/Q distributions in bronchoconstriction reflects the involvement of large contiguous regions of hypoventilation with substantial subresolution intraregional VA/Q heterogeneity. Assessment of the subresolution VA/Q heterogeneity is therefore essential to accurately quantify global gas exchange impairment during bronchoconstriction.

  12. Documenting Syntactically and Semantically Incomplete Bimodal Input to Hearing-Impaired Subjects.

    ERIC Educational Resources Information Center

    Luetke-Stahlman, Barbara

    1988-01-01

    The study evaluated characteristics of instructional bimodal communication in classrooms for the hearing impaired using Signing Exact English or Signed English. Findings indicated some teachers accurately and proficiently encoded semantic information in their instruction. A requirement of 80% or better voice-to-sign ratio ability is suggested for…

  13. Near-Infrared Squaraine Dye Encapsulated Micelles for in Vivo Fluorescence and Photoacoustic Bimodal Imaging.

    PubMed

    Sreejith, Sivaramapanicker; Joseph, James; Lin, Manjing; Menon, Nishanth Venugopal; Borah, Parijat; Ng, Hao Jun; Loong, Yun Xian; Kang, Yuejun; Yu, Sidney Wing-Kwong; Zhao, Yanli

    2015-06-23

    Combined near-infrared (NIR) fluorescence and photoacoustic imaging techniques present promising capabilities for noninvasive visualization of biological structures. Development of bimodal noninvasive optical imaging approaches by combining NIR fluorescence and photoacoustic tomography demands suitable NIR-active exogenous contrast agents. If the aggregation and photobleaching are prevented, squaraine dyes are ideal candidates for fluorescence and photoacoustic imaging. Herein, we report rational selection, preparation, and micelle encapsulation of an NIR-absorbing squaraine dye (D1) for in vivo fluorescence and photoacoustic bimodal imaging. D1 was encapsulated inside micelles constructed from a biocompatible nonionic surfactant (Pluoronic F-127) to obtain D1-encapsulated micelles (D1(micelle)) in aqueous conditions. The micelle encapsulation retains both the photophysical features and chemical stability of D1. D1(micelle) exhibits high photostability and low cytotoxicity in biological conditions. Unique properties of D1(micelle) in the NIR window of 800-900 nm enable the development of a squaraine-based exogenous contrast agent for fluorescence and photoacoustic bimodal imaging above 820 nm. In vivo imaging using D1(micelle), as demonstrated by fluorescence and photoacoustic tomography experiments in live mice, shows contrast-enhanced deep tissue imaging capability. The usage of D1(micelle) proven by preclinical experiments in rodents reveals its excellent applicability for NIR fluorescence and photoacoustic bimodal imaging.

  14. Resonant tunneling and the bimodal symmetric fission of sup 258 Fm

    SciTech Connect

    Bhandari, B.S. )

    1991-02-25

    The concept of resonant tunneling is invoked to explain the sharp drop in the measured spontaneous-fission half-life when going from {sup 256}Fm to {sup 258}Fm. Various consequences of such a suggestion on the other observed characteristics of the bimodal symmetric fission of {sup 258}Fm are briefly discussed.

  15. Post-treatment and characterization of novel luminescent hybrid bimodal mesoporous silicas

    SciTech Connect

    Li Yuzhen; Sun Jihong; Wu Xia; Lin Li; Gao Lin

    2010-08-15

    A novel luminescent hybrid bimodal mesoporous silicas (LHBMS) were synthesized via grafting 1,8-Naphthalic anhydride into the pore channels of bimodal mesoporous silicas (BMMs) for the first time. The resulting samples were characterized by powder X-ray diffraction (XRD), N{sub 2} adsorption/desorption measurement, Fourier transform infrared spectroscopy (FT-IR), Transmission electron microscopy (TEM), UV-vis absorption spectroscopy, and Photoluminescence spectroscopy (PL). The results show that 1,8-Naphthalic anhydride organic groups have been successfully introduced into the mesopores of the BMMs and the hybrid silicas are of bimodal mesoporous structure with the ordered small mesopores of around 3 nm and the large mesopores of uniform intra-nanoparticle. The excellent photoluminescent performance of LHBMS has a blue shift compared to that of 2-[3-(triethoxysilyl) propyl-1 H-Benz [de]isoquinoline-1, 3(2 H)-dione, suggesting the existence of the quantum confinement effectiveness. - Graphical abstract: A novel luminescent hybrid bimodal mesoporous silicas was synthesized via modification and then grafting with 1, 8-Naphthalic anhydride, which would be strong potential application in the photoluminescent fields.

  16. Possible human impacts on adaptive radiation: beak size bimodality in Darwin's finches.

    PubMed

    Hendry, Andrew P; Grant, Peter R; Rosemary Grant, B; Ford, Hugh A; Brewer, Mark J; Podos, Jeffrey

    2006-08-01

    Adaptive radiation is facilitated by a rugged adaptive landscape, where fitness peaks correspond to trait values that enhance the use of distinct resources. Different species are thought to occupy the different peaks, with hybrids falling into low-fitness valleys between them. We hypothesize that human activities can smooth adaptive landscapes, increase hybrid fitness and hamper evolutionary diversification. We investigated this possibility by analysing beak size data for 1755 Geospiza fortis measured between 1964 and 2005 on the island of Santa Cruz, Galápagos. Some populations of this species can display a resource-based bimodality in beak size, which mirrors the greater beak size differences among species. We first show that an historically bimodal population at one site, Academy Bay, has lost this property in concert with a marked increase in local human population density. We next show that a nearby site with lower human impacts, El Garrapatero, currently manifests strong bimodality. This comparison suggests that bimodality can persist when human densities are low (Academy Bay in the past, El Garrapatero in the present), but not when they are high (Academy Bay in the present). Human activities may negatively impact diversification in 'young' adaptive radiations, perhaps by altering adaptive landscapes.

  17. Bimodal Emotion Congruency Is Critical to Preverbal Infants' Abstract Rule Learning

    ERIC Educational Resources Information Center

    Tsui, Angeline Sin Mei; Ma, Yuen Ki; Ho, Anna; Chow, Hiu Mei; Tseng, Chia-huei

    2016-01-01

    Extracting general rules from specific examples is important, as we must face the same challenge displayed in various formats. Previous studies have found that bimodal presentation of grammar-like rules (e.g. ABA) enhanced 5-month-olds' capacity to acquire a rule that infants failed to learn when the rule was presented with visual presentation of…

  18. Design and validation of a bimodal MRI-optics endoluminal probe for colorectal cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Ramgolam, A.; Sablong, R.; Saint-Jalmes, H.; Beuf, O.

    2009-07-01

    In the light of the bimodal technical innovations put forward in the diagnosis of early stage colorectal cancer, we present a preliminary study based on a first prototype of a high Resolution MRI-Optics probe along with the first tests carried out and the results obtained.

  19. Computational Aeroelastic Analysis of Ares Crew Launch Vehicle Bi-Modal Loading

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Chwalowski, Pawel

    2010-01-01

    A Reynolds averaged Navier-Stokes analysis, with and without dynamic aeroelastic effects, is presented for the Ares I-X launch vehicle at transonic Mach numbers and flight Reynolds numbers for two grid resolutions and two angles of attack. The purpose of the study is to quantify the force and moment increment imparted by the sudden transition from fully separated flow around the crew module - service module junction to that of the bi-modal flow state in which only part of the flow reattaches. The bi-modal flow phenomenon is of interest to the guidance, navigation and control community because it causes a discontinuous jump in forces and moments. Computations with a rigid structure at zero zero angle of attack indicate significant increases in normal force and pitching moment. Dynamic aeroelastic computations indicate the bi-modal flow state is insensitive to vehicle flexibility due to the resulting deflections imparting only very small changes in local angle of attack. At an angle of attack of 2.5deg, the magnitude of the pitching moment increment resulting from the bi-modal state nearly triples, while occurring at a slightly lower Mach number. Significant grid induced variations between the solutions indicate that further grid refinement is warranted.

  20. Perception of Consonants in Reverberation and Noise by Adults Fitted with Bimodal Devices

    ERIC Educational Resources Information Center

    Mason, Michelle; Kokkinakis, Kostas

    2014-01-01

    Purpose: The purpose of this study was to evaluate the contribution of a contralateral hearing aid to the perception of consonants, in terms of voicing, manner, and place-of-articulation cues in reverberation and noise by adult cochlear implantees aided by bimodal fittings. Method: Eight postlingually deafened adult cochlear implant (CI) listeners…

  1. Effects of Removing Low-Frequency Electric Information on Speech Perception with Bimodal Hearing

    ERIC Educational Resources Information Center

    Fowler, Jennifer R.; Eggleston, Jessica L.; Reavis, Kelly M.; McMillan, Garnett P.; Reiss, Lina A. J.

    2016-01-01

    Purpose: The objective was to determine whether speech perception could be improved for bimodal listeners (those using a cochlear implant [CI] in one ear and hearing aid in the contralateral ear) by removing low-frequency information provided by the CI, thereby reducing acoustic-electric overlap. Method: Subjects were adult CI subjects with at…

  2. Parallel Bimodal Bilingual Acquisition: A Hearing Child Mediated in a Deaf Family

    ERIC Educational Resources Information Center

    Cramér-Wolrath, Emelie

    2013-01-01

    The aim of this longitudinal case study was to describe bimodal and bilingual acquisition in a hearing child, Hugo, especially the role his Deaf family played in his linguistic education. Video observations of the family interactions were conducted from the time Hugo was 10 months of age until he was 40 months old. The family language was Swedish…

  3. Cross-Frequency Integration for Consonant and Vowel Identification in Bimodal Hearing

    ERIC Educational Resources Information Center

    Kong, Ying-Yee; Braida, Louis D.

    2011-01-01

    Purpose: Improved speech recognition in binaurally combined acoustic-electric stimulation (otherwise known as "bimodal hearing") could arise when listeners integrate speech cues from the acoustic and electric hearing. The aims of this study were (a) to identify speech cues extracted in electric hearing and residual acoustic hearing in the…

  4. An examination of bimodal nuclear power and propulsion benefits for outer solar system missions

    SciTech Connect

    Zubrin, R.; Mondt, J.

    1996-03-01

    This paper presents the results of an analysis of the capability of nuclear bimodal systems to perform outer solar system exploration missions. Missions of interest include orbiter missions to Jupiter, Saturn, Uranus, Neptune, and Pluto. An initial technology baseline consisting of the NEBA 10 kWe, 1000 N thrust, 850 s, 1500 kg bimodal system was selected, and its performance examined against a data base for trajectories to outer solar system planetary destinations to select optimal direct and gravity assisted trajectories for study. A conceptual design for a common bimodal spacecraft capable of performing missions to all the planetary destinations was developed and made the basis of end to end mission designs for orbiter missions to Jupiter, Saturn, and Neptune. All mission designs considered use the Atlas 2AS for launch. The radiological hazard associated with using Earth gravity assists on such missions was examined and shown to be small compared to that currently accepted on Earth fly-by missions involving RTGs. It is shown that the bimodal nuclear power and propulsion system offers many attractive options for planetary missions, including both conventional planetary missions in which all instruments are carried by a single primary orbiting spacecraft, and unconventional missions in which the primary spacecraft acts as a carrier, relay, and mother ship for a fleet of micro spacecraft deployed at the planetary destination. {copyright} {ital 1996 American Institute of Physics.}

  5. Deaf Parents of Cochlear-Implanted Children: Beliefs on Bimodal Bilingualism

    ERIC Educational Resources Information Center

    Mitchiner, Julie Cantrell

    2015-01-01

    This study investigated 17 Deaf families in North America with cochlear-implanted children about their attitudes, beliefs, and practices on bimodal bilingualism (defined as using both a visual/manual language and an aural/oral language) in American Sign Language (ASL) and English. A survey and follow-up interviews with 8 families were conducted.…

  6. Teleporting a state inside a single bimodal high-Q cavity

    SciTech Connect

    Pires, Geisa; Baseia, B.; Avelar, A.T.; Almeida, N.G. de

    2005-06-15

    We discuss a simplified scheme to teleport a state from one mode to another of the same bimodal cavity, with these two modes having distinct frequencies and orthogonal polarizations. The scheme employs two two-level (Rydberg) atoms plus classical fields (Ramsey zones) and selective atomic state detectors. The result has potential use for the manipulation of quantum information processing.

  7. The Bi-Modal Organization: Balancing Autopoiesis and Fluid Social Networks for Sustainability

    ERIC Educational Resources Information Center

    Smith, Peter A. C.; Sharicz, Carol Ann

    2013-01-01

    Purpose: The purpose of this paper is to assist an organization to restructure as a bi-modal organization in order to achieve sustainability in today's highly complex business world. Design/methodology/approach: The paper is conceptual and is based on relevant literature and the authors' research and practice. Findings: Although fluid…

  8. Nature and use of bimodalism in spectral images of the Geysers steam field, California

    SciTech Connect

    Gabelman, J.W.

    1996-08-01

    Bimodalism in remotely sensed images is expressed as a brightness gradient perpendicular to flight path, rendering overbright and overdark halves. It results from Mie scattering by molecular-size and larger atmospheric particles of aerosols, moisture, and dust. It becomes significant at low ratios of sensor height to sweep angle (essentially confined to the atmosphere). Airborne Daedalus Thematic Mapper Simulator images of The Geysers field are bimodal in all bands except 8. Atmospheric scattering normally is insignificant at infragreen (Band 3) wavelengths. Its strength in higher (numbered) bands at The Geysers suggests unusually large and abundant particles, most likely water vapor. Relative intensities of bimodalism, determined by rationing adjacent bands, show broadly Gaussian curves on either side of Band 8. Over the steam field the bright-dark boundary at midgradient is bowed into general conformation with the field center and axis. In bands 1-7 the boundary remains generally parallel to flight path, but in 9-12 is it perpendicular to structural grain and steam field axis. The gradient also is segmented into brightness steps, the boundaries of which coincide with major fractures across the field axis. Bimodalism is further distorted by overwhelming reflectance from intensely argillized portions of the field cap.

  9. Song Recognition by Young Children with Cochlear Implants: Comparison between Unilateral, Bilateral, and Bimodal Users

    ERIC Educational Resources Information Center

    Bartov, Tamar; Most, Tova

    2014-01-01

    Purpose: To examine song identification by preschoolers with normal hearing (NH) versus preschoolers with cochlear implants (CIs). Method: Participants included 45 children ages 3;8-7;3 (years;months): 12 with NH and 33 with CIs, including 10 with unilateral CI, 14 with bilateral CIs, and 9 bimodal users (CI-HA) with unilateral CI and…

  10. Bimodal emotion congruency is critical to preverbal infants' abstract rule learning.

    PubMed

    Tsui, Angeline Sin Mei; Ma, Yuen Ki; Ho, Anna; Chow, Hiu Mei; Tseng, Chia-huei

    2016-05-01

    Extracting general rules from specific examples is important, as we must face the same challenge displayed in various formats. Previous studies have found that bimodal presentation of grammar-like rules (e.g. ABA) enhanced 5-month-olds' capacity to acquire a rule that infants failed to learn when the rule was presented with visual presentation of the shapes alone (circle-triangle-circle) or auditory presentation of the syllables (la-ba-la) alone. However, the mechanisms and constraints for this bimodal learning facilitation are still unknown. In this study, we used audio-visual relation congruency between bimodal stimulation to disentangle possible facilitation sources. We exposed 8- to 10-month-old infants to an AAB sequence consisting of visual faces with affective expressions and/or auditory voices conveying emotions. Our results showed that infants were able to distinguish the learned AAB rule from other novel rules under bimodal stimulation when the affects in audio and visual stimuli were congruently paired (Experiments 1A and 2A). Infants failed to acquire the same rule when audio-visual stimuli were incongruently matched (Experiment 2B) and when only the visual (Experiment 1B) or the audio (Experiment 1C) stimuli were presented. Our results highlight that bimodal facilitation in infant rule learning is not only dependent on better statistical probability and redundant sensory information, but also the relational congruency of audio-visual information. A video abstract of this article can be viewed at https://m.youtube.com/watch?v=KYTyjH1k9RQ. PMID:26280911

  11. Membrane tension and membrane fusion.

    PubMed

    Kozlov, Michael M; Chernomordik, Leonid V

    2015-08-01

    Diverse cell biological processes that involve shaping and remodeling of cell membranes are regulated by membrane lateral tension. Here we focus on the role of tension in driving membrane fusion. We discuss the physics of membrane tension, forces that can generate the tension in plasma membrane of a cell, and the hypothesis that tension powers expansion of membrane fusion pores in late stages of cell-to-cell and exocytotic fusion. We propose that fusion pore expansion can require unusually large membrane tensions or, alternatively, low line tensions of the pore resulting from accumulation in the pore rim of membrane-bending proteins. Increase of the inter-membrane distance facilitates the reaction. PMID:26282924

  12. Lipid Gymnastics: Tethers and Fingers in membrane

    NASA Astrophysics Data System (ADS)

    Tayebi, Lobat; Miller, Gregory; Parikh, Atul

    2009-03-01

    A significant body of evidence now links local mesoscopic structure (e.g., shape and composition) of the cell membrane with its function; the mechanisms by which cellular membranes adopt the specific shapes remain poorly understood. Among all the different structures adopted by cellular membranes, the tubular shape is one of the most surprising one. While their formation is typically attributed to the reorganization of membrane cytoskeleton, many exceptions exist. We report the instantaneous formation of tubular membrane mesophases following the hydration under specific thermal conditions. The shapes emerge in a bimodal way where we have two distinct diameter ranges for tubes, ˜20μm and ˜1μm, namely fat fingers and narrow tethers. We study the roughening of hydrated drops of 3 lipids in 3 different spontaneous curvatures at various temp. and ionic strength to figure out the dominant effect in selection of tethers and fingers. Dynamics of the tubes are of particular interest where we observe four distinct steps of birth, coiling, uncoiling and retraction with different lifetime on different thermal condition. These dynamics appear to reflect interplay between membrane elasticity, surface adhesion, and thermal or hydrodynamic gradient.

  13. Design of nanoporous metals with bimodal pore size distributions for enhanced biosensing

    NASA Astrophysics Data System (ADS)

    Qiu, Huajun; Dong, Xiaochen; Huang, Xirong

    2012-07-01

    Nanoporous gold (np-Au) has shown great potential in catalysis, plasmonics, sensing, etc. In this work, by two-step dealloying a well-designed AuAgAl ternary precursor alloy, np-Au with bimodal ligament/pore size distributions is successfully fabricated. The first dealloying in HCl solution removes Al and generates a nanoporous AuAg alloy which would be mildly annealed at 200 °C for 30 min to homogenize the alloy ligament and enlarge the ligament/pore size. Next, the nanoporous AuAg alloy is further dealloyed in a HNO3 solution to etch Ag and fabricate np-Au with a hierarchical microstructure. This novel bimodal np-Au is demonstrated to exhibit enhanced electrocatalytic activity towards H2O2 reduction and be a better support for the fabrication of an oxidase-based biosensor compared with normal np-Au, with a uniform pore/ligament size of 30-40 nm. In a proof-of-concept study, a sensitive glucose biosensor with a linear range up to 21 mM is fabricated by immobilization of glucose oxidase on the bimodal np-Au.Nanoporous gold (np-Au) has shown great potential in catalysis, plasmonics, sensing, etc. In this work, by two-step dealloying a well-designed AuAgAl ternary precursor alloy, np-Au with bimodal ligament/pore size distributions is successfully fabricated. The first dealloying in HCl solution removes Al and generates a nanoporous AuAg alloy which would be mildly annealed at 200 °C for 30 min to homogenize the alloy ligament and enlarge the ligament/pore size. Next, the nanoporous AuAg alloy is further dealloyed in a HNO3 solution to etch Ag and fabricate np-Au with a hierarchical microstructure. This novel bimodal np-Au is demonstrated to exhibit enhanced electrocatalytic activity towards H2O2 reduction and be a better support for the fabrication of an oxidase-based biosensor compared with normal np-Au, with a uniform pore/ligament size of 30-40 nm. In a proof-of-concept study, a sensitive glucose biosensor with a linear range up to 21 mM is fabricated by

  14. Membrane distillation

    NASA Astrophysics Data System (ADS)

    Bryk, Mikhail T.; Nigmatullin, R. R.

    1994-12-01

    Studies in the field of membrane distillation are analysed. A critical analysis of the theoretical and experimental investigations of membrane distillation is presented. Attention is concentrated on the mechanism of mass transfer and the influence of various external factors on the process characteristics. Questions concerning the creation of modules and apparatus for membrane distillation and aspects of the practical employment of such distillation in order to obtain pure water, for the purification of waste water, and for the concentration of technological solutions in various branches of industry are considered quite fully. The advantages and disadvantages of membrane distillation compared with other membrane methods are analysed. The bibliography includes 97 references.

  15. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    NASA Astrophysics Data System (ADS)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  16. Bimodal score distributions and the Myers-Briggs Type Indicator: fact or artifact?

    PubMed

    Bess, Tammy L; Harvey, Robert J

    2002-02-01

    We examined Myers-Briggs Type Indicator (MBTI) score distributions computed using item response theory (IRT) to assess the generalizability of earlier bimodality reports that have been cited in support of the "type" versus "trait" view of personality. Using the BILOG IRT program to score a sample of approximately 12,000 individuals who participated in leadership development programs, theta score distributions for the 4 dimensions of the MBTI computed using 10 (the BILOG default) versus 50 quadrature points were compared. Results indicated that past reports of bimodality were artifacts caused by BILOG's default use of a small number of quadrature points; when larger numbers of points were used, score distributions became strongly center-weighted. Although our findings are not supportive of the "type"-based hypothesis, the extremely high correlations between theta scores (rs > .996) suggest that no practical differences would be expected as a function of the number-of-quadrature-points decision. PMID:11936208

  17. Synthesis and Characterization of Bimodal Nanoporous Cu Foams: Working Towards Inertial Fusion Energy

    SciTech Connect

    Cervantes, O; Hayes, J R; Hamza, A

    2007-09-28

    For the National Ignition Facility, at the Lawrence Livermore National Laboratory, nanoporous structures play a crucial role in the development of targets for high energy density experiments. Here we present a new bottom-up synthesis technique termed filter-casting for the creation of bimodal macro/nanoporous Cu structures. Homogeneous nanoporous monoliths can be synthesized using Cu nanoparticles and bimodal porosities can be achieved using sacrificial polystyrene spheres as a template. Control over the structure and composition is critical for target manufacturing. The measured densities of the Cu foam range between 1070-3390 mg/cm{sup 3}. Filter-casting is a powerful new method for directly synthesizing large nanoporous monoliths with predetermined composition, pore size, and pore structure.

  18. Formation of bimodal porous silica-titania monoliths by sol-gel route

    NASA Astrophysics Data System (ADS)

    Ruzimuradov, O. N.

    2011-10-01

    Silica-titania monoliths with micrometer-scale macroporous and nanometer-scale mesoporous structure and high titania contents are prepared by sol-gel process and phase separation. Titanium alkoxide precursor was not effective in the preparation of high titania content composites because of strong decrease in phase separation tendency. Bimodal porous gels with high titania content were obtained by using inorganic salt precursors such as titanium sulfate and titanium chloride. Various characterization techniques, including SEM, XRD, Hg porosimetry and N2 adsorption have been carried out to investigate the formation process and physical-chemical properties of silica-titania monoliths. The characterization results show that the silica-titania monoliths possess a bimodal porous structure with well-dispersed titania inside silica network. The addition of titania in silica improves the thermal stability of both macroporous and mesoporous structures.

  19. COMPLEXITY ON DWARF GALAXY SCALES: A BIMODAL DISTRIBUTION FUNCTION IN SCULPTOR

    SciTech Connect

    Breddels, Maarten A.; Helmi, Amina

    2014-08-10

    In our previous work, we presented Schwarzschild models of the Sculptor dwarf spheroidal galaxy demonstrating that this system could be embedded in dark matter halos that are either cusped or cored. Here, we show that the non-parametric distribution function recovered through Schwarzschild's method is bimodal in energy and angular momentum space for all of the best-fitting mass models explored. We demonstrate that this bimodality is directly related to the two components known to be present in Sculptor through stellar population analysis, although our method is purely dynamical in nature and does not use this prior information. It therefore constitutes independent confirmation of the existence of two physically distinct dynamical components in Sculptor and suggests a rather complex assembly history for this dwarf galaxy.

  20. Improving image contrast and material discrimination with nonlinear response in bimodal atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Forchheimer, Daniel; Forchheimer, Robert; Haviland, David B.

    2015-02-01

    Atomic force microscopy has recently been extented to bimodal operation, where increased image contrast is achieved through excitation and measurement of two cantilever eigenmodes. This enhanced material contrast is advantageous in analysis of complex heterogeneous materials with phase separation on the micro or nanometre scale. Here we show that much greater image contrast results from analysis of nonlinear response to the bimodal drive, at harmonics and mixing frequencies. The amplitude and phase of up to 17 frequencies are simultaneously measured in a single scan. Using a machine-learning algorithm we demonstrate almost threefold improvement in the ability to separate material components of a polymer blend when including this nonlinear response. Beyond the statistical analysis performed here, analysis of nonlinear response could be used to obtain quantitative material properties at high speeds and with enhanced resolution.

  1. Analysis of the bi-modal nature of solar wind-magnetosphere coupling

    SciTech Connect

    Smith, J.P.; Horton, W.

    1997-05-01

    It has been shown that the optimal linear prediction filter relating the solar wind electric field and the geomagnetic activity, as measured by the AL index, is both bi-modal and dependent on the level of activity in the magnetosphere. Further studies truncated the prediction filter to a five parameter model containing two low-pass filtered delta functions of arbitrary amplitude and delay time. The present study elaborates on the nature of the bi-modal response by using the five parameter model to quantify the effects of the level of geomagnetic activity on each of the modes of the filter individually. The authors find that at all levels of activity, the second mode, occurring at approximately one hour, is relatively unchanged. The first mode, however, has a one parameter dependence on the level of activity in the magnetosphere. The amplitude of the first mode is shown to have a significant increase with respect to activity.

  2. Melt fracture, wall slip, and flow-induced fractionation of bimodal polyethylenes

    NASA Astrophysics Data System (ADS)

    Inn, Yong Woo

    2015-04-01

    The melt fracture and wall slip behaviors of bimodal polyethylene (PE) resins are compared with those of unimodal PE resins. The apparent wall slip is estimated by comparing the flow curves obtained by capillary rheology measurements with the linear viscoelastic data. It is confirmed that the higher content of small chains could cause more wall slip. The unimodal resin with broader molecular weight distribution (MWD) and the bimodal resin with higher content of low molecular weight (MW) component have matte surface roughness on the extrudates at lower stress. It is proposed that the flow-induced fractionation leading to the small chains being more concentrated on the die wall interface could cause the wall slip and unusual melt fracture behaviors in the capillary extrusion.

  3. Deaf parents of cochlear-implanted children: beliefs on bimodal bilingualism.

    PubMed

    Mitchiner, Julie Cantrell

    2015-01-01

    This study investigated 17 Deaf (1) families in North America with cochlear-implanted children about their attitudes, beliefs, and practices on bimodal bilingualism (defined as using both a visual/manual language and an aural/oral language) in American Sign Language (ASL) and English. A survey and follow-up interviews with 8 families were conducted. The majority of the Deaf families exhibited positive beliefs toward bimodal bilingualism, where they set high expectations for their children to become equally fluent in both languages. However, their perspectives about the purpose for each language differed; they viewed English as a "survival language" and ASL as a "cultural language" but supported the use of both languages at home as part of their children's lives.

  4. Correction: Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Sub; Kim, Jiyoung; Lee, Joo Young; Matsuda, Shofu; Hideshima, Sho; Mori, Yasurou; Osaka, Tetsuya; Na, Kun

    2016-06-01

    Correction for `Stimuli-responsive magnetic nanoparticles for tumor-targeted bimodal imaging and photodynamic/hyperthermia combination therapy' by Kyoung Sub Kim, et al., Nanoscale, 2016, DOI: 10.1039/c6nr02273a.

  5. Multiphase flow modeling of a crude-oil spill site with a bimodal permeability distribution

    USGS Publications Warehouse

    Dillard, L.A.; Essaid, H.I.; Herkelrath, W.N.

    1997-01-01

    Fluid saturation, particle-size distribution, and porosity measurements were obtained from 269 core samples collected from six boreholes along a 90-m transect at a subregion of a crude-oil spill site, the north pool, near Bemidji, Minnesota. The oil saturation data, collected 11 years after the spill, showed an irregularly shaped oil body that appeared to be affected by sediment spatial variability. The particle-size distribution data were used to estimate the permeability (k) and retention curves for each sample. An additional 344 k estimates were obtained from samples previously collected at the north pool. The 613 k estimates were distributed bimodal log normally with the two population distributions corresponding to the two predominant lithologies: a coarse glacial outwash deposit and fine-grained interbedded lenses. A two-step geostatistical approach was used to generate a conditioned realization of k representing the bimodal heterogeneity. A cross-sectional multiphase flow model was used to simulate the flow of oil and water in the presence of air along the north pool transect for an 11-year period. The inclusion of a representation of the bimodal aquifer heterogeneity was crucial for reproduction of general features of the observed oil body. If the bimodal heterogeneity was characterized, hysteresis did not have to be incorporated into the model because a hysteretic effect was produced by the sediment spatial variability. By revising the relative permeability functional relation, an improved reproduction of the observed oil saturation distribution was achieved. The inclusion of water table fluctuations in the model did not significantly affect the simulated oil saturation distribution.

  6. Methodological Considerations about the Use of Bimodal Oddball P300 in Psychiatry: Topography and Reference Effect

    PubMed Central

    Schröder, Elisa; Kajosch, Hendrik; Verbanck, Paul; Kornreich, Charles; Campanella, Salvatore

    2016-01-01

    Event-related potentials (ERPs) bimodal oddball task has disclosed increased sensitivity to show P300 modulations to subclinical symptoms. Even if the utility of such a procedure has still to be confirmed at a clinical level, gathering normative values of this new oddball variant may be of the greatest interest. We specifically addressed the challenge of defining the best location for the recording of P3a and P3b components and selecting the best reference to use by investigating the effect of an offline re-reference procedure on recorded bimodal P3a and P3b. Forty young and healthy subjects were submitted to a bimodal (synchronized and always congruent visual and auditory stimuli) three-stimulus oddball task in which 140 frequent bimodal stimuli, 30 deviant “target” stimuli and 30 distractors were presented. Task consisted in clicking as soon as possible on the targets, and not paying attention to frequent stimuli and distractors. This procedure allowed us to record, for each individual, the P3a component, referring to the novelty process related to distractors processing, and the P3b component, linked to the processing of the target stimuli. Results showed that both P3a and P3b showed maximal amplitude in Pz. However, P3a displayed a more central distribution. Nose reference was also shown to give maximal amplitudes compared with average and linked mastoids references. These data were discussed in light of the necessity to develop multi-site recording guidelines to furnish sets of ERPs data comparable across laboratories. PMID:27708597

  7. Flatfoot Diagnosis by a Unique Bimodal Distribution of Footprint Index in Children

    PubMed Central

    Chang, Chia-Hsieh; Chen, Yu-Chen; Yang, Wen-Tien; Ho, Pei-Chi; Hwang, Ai-Wen; Chen, Chien-Hung; Chang, Jia-Hao; Chang, Liang-Wey

    2014-01-01

    Background More than 1000 scientific papers have been devoted to flatfoot issue. However, a bimodal distribution of flatfoot indices in school-aged children has never been discovered. The purposes of this study were to establish a new classification of flatfoot by characteristic in frequency distribution of footprint index and to endue the classification with discrepancy in physical fitness. Methods/Principal Findings In a longitudinal survey of physical fitness and body structure, weight bearing footprints and 3 physical fitness related tests were measured in 1228 school-aged children. Frequency distribution of initial data was tested by Kolmogorov-Smirnov test for normality and a unique bimodal distribution of footprint index was identified. The frequency distribution of footprint index manifests two distinct modes, flatfoot and non-flatfoot, by deconvolution and bootstrapping procedures. A constant intersection value of 1.0 in Staheli's arch index and 0.6 in Chippaux-Smirak index could distinguish the two modes of children, and the value was constant in different age, sex, and weight status. The performance of the one leg balance was inferior in flatfoot girls (median, 4.0 seconds in flatfoot girls vs. 4.3 seconds in non-flatfoot girls, p = 0.04, 95% CI 0.404–0.484). Discussion The natural bimodality lends itself to a flatfoot classification. Bimodality suggests development of the child's foot arch would be a leap from one state to another, rather than a continuous growth as body height and weight. The underlying dynamics of the human foot arch and motor development will trigger research prospects. PMID:25551228

  8. The climatic imprint of bimodal distributions in vegetation cover for western Africa

    NASA Astrophysics Data System (ADS)

    Yin, Zun; Dekker, Stefan C.; van den Hurk, Bart J. J. M.; Dijkstra, Henk A.

    2016-06-01

    Observed bimodal distributions of woody cover in western Africa provide evidence that alternative ecosystem states may exist under the same precipitation regimes. In this study, we show that bimodality can also be observed in mean annual shortwave radiation and above-ground biomass, which might closely relate to woody cover due to vegetation-climate interactions. Thus we expect that use of radiation and above-ground biomass enables us to distinguish the two modes of woody cover. However, through conditional histogram analysis, we find that the bimodality of woody cover still can exist under conditions of low mean annual shortwave radiation and low above-ground biomass. It suggests that this specific condition might play a key role in critical transitions between the two modes, while under other conditions no bimodality was found. Based on a land cover map in which anthropogenic land use was removed, six climatic indicators that represent water, energy, climate seasonality and water-radiation coupling are analysed to investigate the coexistence of these indicators with specific land cover types. From this analysis we find that the mean annual precipitation is not sufficient to predict potential land cover change. Indicators of climate seasonality are strongly related to the observed land cover type. However, these indicators cannot predict a stable forest state under the observed climatic conditions, in contrast to observed forest states. A new indicator (the normalized difference of precipitation) successfully expresses the stability of the precipitation regime and can improve the prediction accuracy of forest states. Next we evaluate land cover predictions based on different combinations of climatic indicators. Regions with high potential of land cover transitions are revealed. The results suggest that the tropical forest in the Congo basin may be unstable and shows the possibility of decreasing significantly. An increase in the area covered by savanna and grass

  9. TRACING OUTFLOWS AND ACCRETION: A BIMODAL AZIMUTHAL DEPENDENCE OF Mg II ABSORPTION

    SciTech Connect

    Kacprzak, Glenn G.; Churchill, Christopher W.; Nielsen, Nikole M.

    2012-11-20

    We report a bimodality in the azimuthal angle distribution of gas around galaxies as traced by Mg II absorption: halo gas prefers to exist near the projected galaxy major and minor axes. The bimodality is demonstrated by computing the mean azimuthal angle probability distribution function using 88 spectroscopically confirmed Mg II-absorption-selected galaxies [W{sub r} (2796) {>=} 0.1 A] and 35 spectroscopically confirmed non-absorbing galaxies [W{sub r} (2796) < 0.1 A] imaged with Hubble Space Telescope and Sloan Digital Sky Survey. The azimuthal angle distribution for non-absorbers is flat, indicating no azimuthal preference for gas characterized by W{sub r} (2796) < 0.1 A. We find that blue star-forming galaxies clearly drive the bimodality while red passive galaxies may exhibit an excess along their major axis. These results are consistent with galaxy evolution scenarios where star-forming galaxies accrete new gas, forming new stars and producing winds, while red galaxies exist passively due to reduced gas reservoirs. We further compute an azimuthal angle dependent Mg II absorption covering fraction, which is enhanced by as much as 20%-30% along the major and minor axes. The W{sub r} (2796) distribution for gas along the major axis is likely skewed toward weaker Mg II absorption than for gas along the projected minor axis. These combined results are highly suggestive that the bimodality is driven by gas accreted along the galaxy major axis and outflowing along the galaxy minor axis. Adopting these assumptions, we find that the opening angle of outflows and inflows to be 100 Degree-Sign and 40 Degree-Sign , respectively. We find that the probability of detecting outflows is {approx}60%, implying that winds are more commonly observed.

  10. Second language experience modulates functional brain network for the native language production in bimodal bilinguals.

    PubMed

    Zou, Lijuan; Abutalebi, Jubin; Zinszer, Benjamin; Yan, Xin; Shu, Hua; Peng, Danling; Ding, Guosheng

    2012-09-01

    The functional brain network of a bilingual's first language (L1) plays a crucial role in shaping that of his or her second language (L2). However, it is less clear how L2 acquisition changes the functional network of L1 processing in bilinguals. In this study, we demonstrate that in bimodal (Chinese spoken-sign) bilinguals, the functional network supporting L1 production (spoken language) has been reorganized to accommodate the network underlying L2 production (sign language). Using functional magnetic resonance imaging (fMRI) and a picture naming task, we find greater recruitment of the right supramarginal gyrus (RSMG), the right temporal gyrus (RSTG), and the right superior occipital gyrus (RSOG) for bilingual speakers versus monolingual speakers during L1 production. In addition, our second experiment reveals that these regions reflect either automatic activation of L2 (RSOG) or extra cognitive coordination (RSMG and RSTG) between both languages during L1 production. The functional connectivity between these regions, as well as between other regions that are L1- or L2-specific, is enhanced during L1 production in bimodal bilinguals as compared to their monolingual peers. These findings suggest that L1 production in bimodal bilinguals involves an interaction between L1 and L2, supporting the claim that learning a second language does, in fact, change the functional brain network of the first language. PMID:22658973

  11. Bimodal Density Distribution of Cryptodome Dacite from the 1980 Eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Hoblitt, R.P.; Harmon, R.S.

    1993-01-01

    The explosion of a cryptodome at Mount St. Helens in 1980 produced two juvenile rock types that are derived from the same source magma. Their differences-color, texture and density-are due only to vesicularity differences. The vesicular gray dacite comprises bout 72% of the juvenile material; the black dacite comprises the other 28%. The density of juvenile dacite is bimodally distributed, with peaks at 1.6 g cm-3 (gray dacite) and 2.3 g cm-3 (black dacite). Water contents, deuterium abundances, and the relationship of petrographic structures to vapor-phase crystals indicate both rock types underwent pre-explosion subsurface vesiculation and degassing. The gray dacite underwent a second vesiculation event, probably during the 18 May explosion. In the subsurface, gases probably escaped through interconnected vesicles into the permeable volcanic edifice. We suggest that nonuniform degassing of an initially homogeneous magma produced volatile gradients in the cryptodome and that these gradients were responsible for the density bimodality. That is, water contents less than about 0.2-0.4 wt% produced vesicle growth rates that were slow in comparison to the pyroclast cooling rates; greater water contents produced vesicle growth rates that were fast in comparison to cooling rates. In this scheme, the dacite densities are bimodally distributed simply because, following decompression on 18 May 1980, one clast population vesiculated while the other did not. For clasts that did vesiculate, vesicle growth continued until it was arrested by fragmentation. ?? 1993 Springer-Verlag.

  12. RSMASS-D nuclear thermal propulsion and bimodal system mass models

    NASA Astrophysics Data System (ADS)

    King, Donald B.; Marshall, Albert C.

    1997-01-01

    Two relatively simple models have been developed to estimate reactor, radiation shield, and balance of system masses for a particle bed reactor (PBR) nuclear thermal propulsion concept and a cermet-core power and propulsion (bimodal) concept. The approach was based on the methodology developed for the RSMASS-D models. The RSMASS-D approach for the reactor and shield sub-systems uses a combination of simple equations derived from reactor physics and other fundamental considerations along with tabulations of data from more detailed neutron and gamma transport theory computations. Relatively simple models are used to estimate the masses of other subsystem components of the nuclear propulsion and bimodal systems. Other subsystem components include instrumentation and control (I&C), boom, safety systems, radiator, thermoelectrics, heat pipes, and nozzle. The user of these models can vary basic design parameters within an allowed range to achieve a parameter choice which yields a minimum mass for the operational conditions of interest. Estimated system masses are presented for a range of reactor power levels for propulsion for the PBR propulsion concept and for both electrical power and propulsion for the cermet-core bimodal concept. The estimated reactor system masses agree with mass predictions from detailed calculations with xx percent for both models.

  13. Pluto/Charon exploration utilizing a bi-modal PBR nuclear propulsion/power system

    NASA Astrophysics Data System (ADS)

    Venetoklis, Peter S.

    1995-01-01

    The paper describes a Pluto/Charon orbiter utilizing a bi-modal nuclear propulsion and power system based on the Particle Bed Reactor. The orbiter is sized for launch to Nuclear-Safe orbit atop a Titan IV or equivalent launch veicle. The bi-modal system provides thermal propulsion for Earth orbital departure and Pluto orbital capture, and 10 kWe of electric power for payload functions and for in-system maneuvering with ion thrusters. Ion thrusters are used to perform inclination changes about Pluto, a transfer from low Pluto orbit to low Charon orbit, and inclination changes about charon. A nominal payload can be deliverd in as little as 15 years, 1000 kg in 17 years, and close to 2000 kg in 20 years. Scientific return is enormously aided by the availability of up to 10 kWe, due to greater data transfer rates and more/better instruments. The bi-modal system can provide power at Pluto/Charon for 10 or more years, enabling an extremely robust, scientifically rewarding, and cost-effective exploration mission.

  14. Rarefaction effects in dilute granular Poiseuille flow: Knudsen minimum and temperature bimodality

    NASA Astrophysics Data System (ADS)

    Mahajan, Achal; Alam, Meheboob

    2015-11-01

    The gravity-driven flow of smooth inelastic hard-disks through a channel, analog of granular Poiseuille flow, is analysed using event-driven simulations. We find that the variation of the mass-flow rate (Q) with Knudsen number (Kn) can be non-monotonic in the elastic limit (i.e. the restitution coefficient en --> 1) in channels with very smooth walls. The Knudsen minimum effect (i.e. the minimum flow rate occurring at Kn ~ O (1) for the Poiseuille flow of a molecular gas) is found to be absent in a granular gas with en <= 0 . 99 , irrespective of wall roughness. Another rarefaction phenomenon, the bimodality of the temperature profile, with a local minimum at the channel centerline and two symmetric maxima (Tmax) away from the centerline, is studied. We show that the inelastic dissipation is responsible for the onset of temperature bimodality [i.e. the excess temperature, ▵ T = (Tmax /Tmin - 1) ≠ 0 ] near the continuum limit (Kn ~ 0), but the rarefaction being its origin (as in molecular gas) holds beyond Kn ~ O (0 . 1) . The competition between dissipation and rarefaction seems to be responsible for the observed dependence of both mass-flow rate and temperature bimodality on Kn and en . [Alam etal. 2015, JFM (revised)].

  15. On the joint bimodality of temperature and moisture near stratocumulus cloud tops

    NASA Technical Reports Server (NTRS)

    Randall, D. A.

    1983-01-01

    The observed distributions of the thermodynamic variables near stratocumulus top are highly bimodal. Two simple models of sub-grid fractional cloudiness motivated by this observed bimodality are examined. In both models, certain low order moments of two independent, moist-conservative thermodynamic variables are assumed to be known. The first model is based on the assumption of two discrete populations of parcels: a warm-day population and a cool-moist population. If only the first and second moments are assumed to be known, the number of unknowns exceeds the number of independent equations. If the third moments are assumed to be known as well, the number of independent equations exceeds the number of unknowns. The second model is based on the assumption of a continuous joint bimodal distribution of parcels, obtained as the weighted sum of two binormal distributions. For this model, the third moments are used to obtain 9 independent nonlinear algebraic equations in 11 unknowns. Two additional equations are needed to determine the covariance within the two subpopulations. In case these two internal covariance vanish, the system of equations can be solved analytically.

  16. A New Explanation of Globular Cluster Color Bimodality: 6-year Results and Implications

    NASA Astrophysics Data System (ADS)

    Yoon, Suk-Jin

    2012-05-01

    The colors of globular clusters (GCs) in most large early-type galaxies are bimodal. This is generally taken as evidence for the presence of two GC subpopulations with different geneses, and thus forms a critical backbone of various galaxy formation theories. However, Yoon et al. (2006, Science 311, 1129) showed that the metallicity-color relations are highly inflected due to two complementary effects: (i) the integrated color of main-sequence and giant-branch is a mild nonlinear function of metallicity, and (ii) the rapid change in color due to the onset of the hot horizontal-branch further strengthens the non-linearity. Such nonlinear nature creates ''bimodal'' color distributions of old GCs from a broad underlying metallicity spread, even if it is unimodal. In this contribution, we summarize the 6-year results of theoretical and observational studies on the ''nonlinear color-metallicity relation'' scenario for the GC color bimodality and its implications on galaxy formation theories. We show that the hypothesis gives remarkably simple and cohesive explanations for all the key observations, including the close link of the GC color distributions to the host galaxy properties and the curious discrepancy in metallicity distribution functions between GC systems and their host galaxies’ constituent stars.

  17. Rheological and solid-liquid separation properties of bimodal suspensions of colloidal gibbsite and boehmite

    SciTech Connect

    Bruinsma, P.J.; Wang, Y.; Li, X.S.; Liu, J.; Smith, P.A.; Bunker, B.C.

    1997-08-01

    Bimodal suspensions of nanometer-sized boehmite particles and micron-sized gibbsite particles in 0.10 M NaNO{sub 3} are used as models to gain insight into the physical properties of agglomerating colloidal suspensions containing bimodal distributions of primary particles. Results on the gibbsite--boehmite mixtures show that the presence of small particles in a suspension can have a dramatic impact on the rheological, sedimentation, and filtration characteristics of suspensions of larger particles. Transmission electron micrographs show that boehmite forms a coating on the larger gibbsite particles. The coating provides steric repulsion and reduces the attractive interactions between the larger particles, leading to viscosity decreases and greater densification of sediments and filter cakes. A model has been developed to rationalize observed property changes based on the range of agglomerate structures that can form in mixtures of large and small particles. Results are discussed in the content of the processing of nuclear waste sludges, but are applicable to a wide range of bimodal suspensions.

  18. Second language experience modulates functional brain network for the native language production in bimodal bilinguals.

    PubMed

    Zou, Lijuan; Abutalebi, Jubin; Zinszer, Benjamin; Yan, Xin; Shu, Hua; Peng, Danling; Ding, Guosheng

    2012-09-01

    The functional brain network of a bilingual's first language (L1) plays a crucial role in shaping that of his or her second language (L2). However, it is less clear how L2 acquisition changes the functional network of L1 processing in bilinguals. In this study, we demonstrate that in bimodal (Chinese spoken-sign) bilinguals, the functional network supporting L1 production (spoken language) has been reorganized to accommodate the network underlying L2 production (sign language). Using functional magnetic resonance imaging (fMRI) and a picture naming task, we find greater recruitment of the right supramarginal gyrus (RSMG), the right temporal gyrus (RSTG), and the right superior occipital gyrus (RSOG) for bilingual speakers versus monolingual speakers during L1 production. In addition, our second experiment reveals that these regions reflect either automatic activation of L2 (RSOG) or extra cognitive coordination (RSMG and RSTG) between both languages during L1 production. The functional connectivity between these regions, as well as between other regions that are L1- or L2-specific, is enhanced during L1 production in bimodal bilinguals as compared to their monolingual peers. These findings suggest that L1 production in bimodal bilinguals involves an interaction between L1 and L2, supporting the claim that learning a second language does, in fact, change the functional brain network of the first language.

  19. Membrane Processes.

    PubMed

    Pellegrin, Marie-Laure; Sadler, Mary E; Greiner, Anthony D; Aguinaldo, Jorge; Min, Kyungnan; Zhang, Kai; Arabi, Sara; Burbano, Marie S; Kent, Fraser; Shoaf, Robert

    2015-10-01

    This review, for literature published in 2014, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, fixed film and anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants. PMID:26420079

  20. Membrane Processes.

    PubMed

    Pellegrin, Marie-Laure; Burbano, Marie S; Sadler, Mary E; Diamond, Jason; Baker, Simon; Greiner, Anthony D; Arabi, Sara; Wong, Joseph; Doody, Alexandra; Padhye, Lokesh P; Sears, Keith; Kistenmacher, Peter; Kent, Fraser; Tootchi, Leila; Aguinaldo, Jorge; Saddredini, Sara; Schilling, Bill; Min, Kyungnan; McCandless, Robert; Danker, Bryce; Gamage, Neranga P; Wang, Sunny; Aerts, Peter

    2016-10-01

    This review, for literature published in 2015, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants. PMID:27620084

  1. Multicomponent membranes

    DOEpatents

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  2. Charged membranes.

    PubMed

    Thatcher, Jack D

    2013-04-16

    This Teaching Resource provides three animated lessons that describe the storage and utilization of energy across plasma membranes. The "Na,K ATPase" animation explains how these pumps establish the electrochemical gradient that stores energy across plasma membranes. The "ATP synthesizing complexes" animation shows how these complexes transfer energy from the inner mitochondrial membrane to adenosine triphosphate (ATP). The "action potential" lesson explains how charged membranes are used to propagate signals along the axons of neurons. These animations serve as valuable resources for any collegiate-level course that describes these important factors. Courses that might employ them include introductory biology, biochemistry, biophysics, cell biology, pharmacology, and physiology.

  3. Bimodal fluxes of near-relativistic electrons during the onset of solar particle events

    NASA Astrophysics Data System (ADS)

    Kartavykh, Y. Y.; Dröge, W.; Klecker, B.

    2013-07-01

    We report for several solar energetic particle events (SEPs) intensity and anisotropy measurements of energetic electrons in the energy range ˜27 to ˜500 keV as observed with the Wind and ACE spacecraft in June 2000. The observations onboard Wind show bimodal pitch angle distributions (PADs), whereas ACE shows PADs with one peak, as usually observed for impulsive injection of electrons at the Sun. During the time of observation Wind was located upstream of the Earth's bow shock, in the dawn-noon sector, at distances of ˜40 to ˜70REfrom the Earth, and magnetically well connected to the quasi-parallel bow shock, whereas ACE, located at the libration point L1, was not connected to the bow shock. The electron intensity-time profiles and energy spectra show that the backstreaming electrons observed at Wind are not of magnetospheric origin. The observations rather suggest that the bimodal electron PADs are due to reflection or scattering at an obstacle located at a distance of less than ˜150RE in the antisunward direction, compatible with the bow shock or magnetosheath of the magnetosphere of the Earth. For a modeling of the observations, we have performed transport simulations which include the effects of pitch angle diffusion, adiabatic focusing, and reflection at a boundary close to the point of observation. The results of the simulations demonstrate that the bimodal PADs are compatible with the reflection of electrons at a nearby boundary, at distances of ˜70RE. This finding is supported by the orbital configuration and the magnetic field direction: Whereas ACE is not connected, Wind is well connected to the magnetosphere of the Earth.

  4. IS THE OBSERVED HIGH-FREQUENCY RADIO LUMINOSITY DISTRIBUTION OF QSOs BIMODAL?

    SciTech Connect

    Mahony, Elizabeth K.; Sadler, Elaine M.; Croom, Scott M.; Murphy, Tara; Ekers, Ronald D.; Feain, Ilana J.

    2012-07-20

    The distribution of QSO radio luminosities has long been debated in the literature. Some argue that it is a bimodal distribution, implying that there are two separate QSO populations (normally referred to as 'radio-loud' and 'radio-quiet'), while others claim it forms a more continuous distribution characteristic of a single population. We use deep observations at 20 GHz to investigate whether the distribution is bimodal at high radio frequencies. Carrying out this study at high radio frequencies has an advantage over previous studies as the radio emission comes predominantly from the core of the active galactic nucleus, and hence probes the most recent activity. Studies carried out at lower frequencies are dominated by the large-scale lobes where the emission is built up over longer timescales (10{sup 7}-10{sup 8} yr), thereby confusing the sample. Our sample comprises 874 X-ray-selected QSOs that were observed as part of the 6dF Galaxy Survey. Of these, 40% were detected down to a 3{sigma} detection limit of 0.2-0.5 mJy. No evidence of bimodality is seen in either the 20 GHz luminosity distribution or in the distribution of the R{sub 20} parameter: the ratio of the radio to optical luminosities traditionally used to classify objects as being either radio-loud or radio-quiet. Previous results have claimed that at low radio luminosities, star formation processes can dominate the radio emission observed in QSOs. We attempt to investigate these claims by stacking the undetected sources at 20 GHz and discuss the limitations in carrying out this analysis. However, if the radio emission was solely due to star formation processes, we calculate that this corresponds to star formation rates ranging from {approx}10 M{sub Sun} yr{sup -1} to {approx}2300 M{sub Sun} yr{sup -1}.

  5. ``Bimodal'' NTR and LANTR propulsion for human missions to Mars/Phobos

    NASA Astrophysics Data System (ADS)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    1999-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars due to its high specific impulse (Isp ~850-1000 s) and attractive engine thrust-to-weight ratio (~3-10). Because only a miniscule amount of enriched uranium-235 fuel is consumed in a NTR during the primary propulsion maneuvers of a typical Mars mission, engines configured for both propulsive thrust and modest power generation (referred to as ``bimodal'' operation) provide the basis for a robust, ``power-rich'' stage enabling propulsive Mars capture and reuse capability. A family of modular ``bimodal'' NTR (BNTR) vehicles are described which utilize a common ``core'' stage powered by three 66.7 kN (~15 klbf) BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration/reliquification system for long term, ``zero-boiloff'' liquid hydrogen (LH2) storage, and high data rate communications. Compared to other propulsion options, a Mars mission architecture using BNTR transfer vehicles requires fewer transportation system elements which reduces mission mass, cost and risk because of simplified space operations. For difficult Mars options, such as a Phobos rendezvous and sample return mission, volume (not mass) constraints limit the performance of the ``all LH2'' BNTR stage. The use of ``LOX-augmented'' NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen (O/H) mixture ratio (MR) of 0.5, helps to increase ``bulk'' propellant density and total thrust during the trans-Mars injection (TMI) burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two ~80 t ``Magnum'' heavy lift launch vehicles (HLLVs).

  6. The geochemistry and petrogenesis of the Paleoproterozoic Green Mountain arc: A composite(?), bimodal, oceanic, fringing arc

    USGS Publications Warehouse

    Jones, D.S.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.

    2011-01-01

    The inferred subduction affinity of the ~1780-Ma Green Mountain arc, a dominantly bimodal igneous terrane (together with immature marine and volcaniclastic sedimentary rocks) accreted to the southern margin of the Wyoming province, is integral to arc-accretion models of the Paleoproterozoic growth of southern Laurentia. Conversely, the dominantly bimodal nature of many putative arc-related igneous suites throughout southern Laurentia, including the Green Mountain arc, has also been used to support models of growth by extension of pre-existing crust. We report new geochemical and isotopic data from ~1780-Ma gabbroic and granodioritic to tonalitic rocks of the Big Creek Gneiss, interpreted as consanguineous with previously studied metavolcanic rocks of the Green Mountain Formation.The ~1780-Ma Big Creek Gneiss mafic rocks show clear geochemical signatures of a subduction origin and provide no supporting evidence for extensional tectonism. The ~1780-Ma Big Creek Gneiss felsic rocks are attributed to partial melting of mafic and/or mixed lower-crustal material. The bimodal nature of the suite results from the combination of arc basalts and felsic crustal melts. The lack of andesite is consistent with the observed tholeiitic differentiation trend of the mafic magmas. The lower e{open}Nd(1780Ma) values for the felsic rocks vs. the mafic rocks suggest that the unexposed lower crust of the arc may be older than the arc and that Trans-Hudson- or Penokean-aged rocks possibly form the substratum of the arc. Our results reinforce previous interpretations that arc-related magmatism played a key role in the Paleoproterozoic crustal growth of southern Laurentia, but also support the possibility of unexposed older crust as basement to the arcs. ?? 2011 Elsevier B.V.

  7. Composite electrode composed of bimodal porous carbon and polypyrrole for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Woo, Sang-Wook; Dokko, Kaoru; Kanamura, Kiyoshi

    Three-dimensionally ordered macroporous (3DOM) carbons having walls composed of mesosized spherical pores were prepared by a colloidal crystal templating method. A composite electrode consisting of bimodal porous carbon and polypyrrole (PPy) was prepared by electropolymerization of pyrrole within the macropores of the bimodal porous carbon. The porous structure of the composite electrode was analyzed using a scanning electron microscope and by nitrogen adsorption-desorption measurement. It was found that the deposition of PPy decreased the porosity and specific surface area of the electrode. The electrochemical properties of the composite electrode were characterized in a mixed solution of ethylene carbonate and diethyl carbonate containing 1 mol dm -3 LiPF 6. The discharge capacity of the carbon-PPy composite electrode was 78 mAh g carbon-PPy -1 in the potential range of 2.0-4.0 V vs. Li/Li +, which corresponded to a volumetric discharge capacity of 53 mAh cm -3. Both the double-layer capacity (31 mAh g -1) and the redox capacity of PPy (47 mAh g -1) contributed to the discharge capacity of the composite electrode. This indicates that the incorporation of PPy into the macropores of bimodal porous carbon is effective in increasing the volumetric discharge capacity of the composite electrode. The composite of carbon and PPy showed good rate capability, and its discharge capacity at a high current density of 4.0 A g -1 was as high as 49 mAh g -1.

  8. Improved Statistical Analysis of Low Abundance Phenomena in Bimodal Bacterial Populations

    PubMed Central

    Reinhard, Friedrich; van der Meer, Jan Roelof

    2013-01-01

    Accurate detection of subpopulation size determinations in bimodal populations remains problematic yet it represents a powerful way by which cellular heterogeneity under different environmental conditions can be compared. So far, most studies have relied on qualitative descriptions of population distribution patterns, on population-independent descriptors, or on arbitrary placement of thresholds distinguishing biological ON from OFF states. We found that all these methods fall short of accurately describing small population sizes in bimodal populations. Here we propose a simple, statistics-based method for the analysis of small subpopulation sizes for use in the free software environment R and test this method on real as well as simulated data. Four so-called population splitting methods were designed with different algorithms that can estimate subpopulation sizes from bimodal populations. All four methods proved more precise than previously used methods when analyzing subpopulation sizes of transfer competent cells arising in populations of the bacterium Pseudomonas knackmussii B13. The methods’ resolving powers were further explored by bootstrapping and simulations. Two of the methods were not severely limited by the proportions of subpopulations they could estimate correctly, but the two others only allowed accurate subpopulation quantification when this amounted to less than 25% of the total population. In contrast, only one method was still sufficiently accurate with subpopulations smaller than 1% of the total population. This study proposes a number of rational approximations to quantifying small subpopulations and offers an easy-to-use protocol for their implementation in the open source statistical software environment R. PMID:24205184

  9. Acid-base and ion balance in fishes with bimodal respiration.

    PubMed

    Shartau, R B; Brauner, C J

    2014-03-01

    The evolution of air breathing during the Devonian provided early fishes with bimodal respiration with a stable O2 supply from air. This was, however, probably associated with challenges and trade-offs in terms of acid-base balance and ionoregulation due to reduced gill:water interaction and changes in gill morphology associated with air breathing. While many aspects of acid-base and ionoregulation in air-breathing fishes are similar to water breathers, the specific cellular and molecular mechanisms involved remain largely unstudied. In general, reduced ionic permeability appears to be an important adaptation in the few bimodal fishes investigated but it is not known if this is a general characteristic. The kidney appears to play an important role in minimizing ion loss to the freshwater environment in the few species investigated, and while ion uptake across the gut is probably important, it has been largely unexplored. In general, air breathing in facultative air-breathing fishes is associated with an acid-base disturbance, resulting in an increased partial pressure of arterial CO2 and a reduction in extracellular pH (pHE ); however, several fishes appear to be capable of tightly regulating tissue intracellular pH (pHI ), despite a large sustained reduction in pHE , a trait termed preferential pHI regulation. Further studies are needed to determine whether preferential pHI regulation is a general trait among bimodal fishes and if this confers reduced sensitivity to acid-base disturbances, including those induced by hypercarbia, exhaustive exercise and hypoxia or anoxia. Additionally, elucidating the cellular and molecular mechanisms may yield insight into whether preferential pHI regulation is a trait ultimately associated with the early evolution of air breathing in vertebrates.

  10. 'Bimodal' NTR and LANTR propulsion for human missions to Mars/Phobos

    SciTech Connect

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    1999-01-22

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars due to its high specific impulse (Isp {approx}850-1000 s) and attractive engine thrust-to-weight ratio ({approx}3-10). Because only a miniscule amount of enriched uranium-235 fuel is consumed in a NTR during the primary propulsion maneuvers of a typical Mars mission, engines configured for both propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, 'power-rich' stage enabling propulsive Mars capture and reuse capability. A family of modular 'bimodal' NTR (BNTR) vehicles are described which utilize a common 'core' stage powered by three 66.7 kN ({approx}15 klbf) BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration/reliquification system for long term, 'zero-boiloff' liquid hydrogen (LH{sub 2}) storage, and high data rate communications. Compared to other propulsion options, a Mars mission architecture using BNTR transfer vehicles requires fewer transportation system elements which reduces mission mass, cost and risk because of simplified space operations. For difficult Mars options, such as a Phobos rendezvous and sample return mission, volume (not mass) constraints limit the performance of the 'all LH{sub 2}' BNTR stage. The use of 'LOX-augmented' NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen (O/H) mixture ratio (MR) of 0.5, helps to increase 'bulk' propellant density and total thrust during the trans-Mars injection (TMI) burn. On all subsequent burns, the bimodal LANTR engines operate on LH{sub 2} only (MR=0) to maximize vehicle performance while staying within the mass limits of two {approx}80 t 'Magnum' heavy lift launch vehicles (HLLVs)

  11. Atom-mediated effective interactions between modes of a bimodal cavity

    SciTech Connect

    Prado, F. O.; Luiz, F. S.; Villas-Boas, J. M.; Alcalde, A. M.; Duzzioni, E. I.; Sanz, L.

    2011-11-15

    We show a procedure for engineering effective interactions between two modes in a bimodal cavity. Our system consists of one or more two-level atoms, excited by a classical field, interacting with both modes. The two effective Hamiltonians have forms similar to beam-splitter and quadratic beam-splitter interactions. We also demonstrate that the nonlinear Hamiltonian can be used to prepare an entangled coherent state, also known as a multidimensional entangled coherent state, which has been pointed out as an important entanglement resource. We show that the nonlinear interaction parameter can be enhanced considering N independent atoms trapped inside a high-finesse optical cavity.

  12. Bimodal velocity distribution of atoms released from nanosecond ultraviolet laser ablation

    SciTech Connect

    Maul, J.; Karpuk, S.; Huber, G.

    2005-01-15

    We have investigated the velocity distributions of atoms released from a metallic gadolinium surface by UV laser ablation. The fluences of the nanosecond laser pulses were chosen for a pure release of neutrals and at a higher fluence level for the release of both neutrals and ions. In both cases a thermal Maxwell-Boltzmann slope has been observed for the low velocities, whereas for high velocities strong deviations from a thermal distribution have been seen. The observed velocity distribution has been explained by a bimodal structure including a thermal phase and a shockwave driven 'blow-off' phase.

  13. Bimodal regulation of an Elk subfamily K+ channel by phosphatidylinositol 4,5-bisphosphate

    PubMed Central

    Li, Xiaofan; Anishkin, Andriy; Liu, Hansi; van Rossum, Damian B.; Chintapalli, Sree V.; Sassic, Jessica K.; Gallegos, David; Pivaroff-Ward, Kendra

    2015-01-01

    Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates Shaker K+ channels and voltage-gated Ca2+ channels in a bimodal fashion by inhibiting voltage activation while stabilizing open channels. Bimodal regulation is conserved in hyperpolarization-activated cyclic nucleotide–gated (HCN) channels, but voltage activation is enhanced while the open channel state is destabilized. The proposed sites of PIP2 regulation in these channels include the voltage-sensor domain (VSD) and conserved regions of the proximal cytoplasmic C terminus. Relatively little is known about PIP2 regulation of Ether-á-go-go (EAG) channels, a metazoan-specific family of K+ channels that includes three gene subfamilies, Eag (Kv10), Erg (Kv11), and Elk (Kv12). We examined PIP2 regulation of the Elk subfamily potassium channel human Elk1 to determine whether bimodal regulation is conserved within the EAG K+ channel family. Open-state stabilization by PIP2 has been observed in human Erg1, but the proposed site of regulation in the distal C terminus is not conserved among EAG family channels. We show that PIP2 strongly inhibits voltage activation of Elk1 but also stabilizes the open state. This stabilization produces slow deactivation and a mode shift in voltage gating after activation. However, removal of PIP2 has the net effect of enhancing Elk1 activation. R347 in the linker between the VSD and pore (S4–S5 linker) and R479 near the S6 activation gate are required for PIP2 to inhibit voltage activation. The ability of PIP2 to stabilize the open state also requires these residues, suggesting an overlap in sites central to the opposing effects of PIP2 on channel gating. Open-state stabilization in Elk1 requires the N-terminal eag domain (PAS domain + Cap), and PIP2-dependent stabilization is enhanced by a conserved basic residue (K5) in the Cap. Our data shows that PIP2 can bimodally regulate voltage gating in EAG family channels, as has been proposed for Shaker and HCN channels. PIP2 regulation

  14. Nuclear and thermal analysis of the heatpipe power and bimodal systems

    SciTech Connect

    Poston, D.I.; Houts, M.G.

    1995-12-01

    This paper discusses the nuclear and thermal analysis of two fission-powered concepts: (1)the Heatpipe Power System(HBS), which provides which provides power only, and (2) the Heatpipe Bimodal System (HBS), which provides both power and thermal propulsion. The HPS and HBS systems can provide substantial levels of power and propulsion at low mass with a high degree of safety and reliability. The systems have been designed to utilize existing technology and facilities, which will make the development cost relatively low.

  15. Time shift in slope failure prediction between unimodal and bimodal modeling approaches

    NASA Astrophysics Data System (ADS)

    Ciervo, Fabio; Casini, Francesca; Nicolina Papa, Maria; Medina, Vicente

    2016-04-01

    Together with the need to use more appropriate mathematical expressions for describing hydro-mechanical soil processes, a challenge issue relates to the need of considering the effects induced by terrain heterogeneities on the physical mechanisms, taking into account the implications of the heterogeneities in affecting time-dependent hydro-mechanical variables, would improve the prediction capacities of models, such as the ones used in early warning systems. The presence of the heterogeneities in partially-saturated slopes results in irregular propagation of the moisture and suction front. To mathematically represent the "dual-implication" generally induced by the heterogeneities in describing the hydraulic terrain behavior, several bimodal hydraulic models have been presented in literature and replaced the conventional sigmoidal/unimodal functions; this presupposes that the scale of the macrostructure is comparable with the local scale (Darcy scale), thus the Richards' model can be assumed adequate to mathematically reproduce the processes. The purpose of this work is to focus on the differences in simulating flow infiltration processes and slope stability conditions originated from preliminary choices of hydraulic models and contextually between different approaches to evaluate the factor of safety (FoS). In particular, the results of two approaches are compared. The first one includes the conventional expression of the FoS under saturated conditions and the widespread used hydraulic model of van Genuchten-Mualem. The second approach includes a generalized FoS equation for infinite-slope model under variably saturated soil conditions (Lu and Godt, 2008) and the bimodal Romano et al.'s (2011) functions to describe the hydraulic response. The extension of the above mentioned approach to the bimodal context is based on an analytical method to assess the effects of the hydraulic properties on soil shear developed integrating a bimodal lognormal hydraulic function

  16. Bimodal regulation of an Elk subfamily K+ channel by phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Li, Xiaofan; Anishkin, Andriy; Liu, Hansi; van Rossum, Damian B; Chintapalli, Sree V; Sassic, Jessica K; Gallegos, David; Pivaroff-Ward, Kendra; Jegla, Timothy

    2015-11-01

    Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates Shaker K+ channels and voltage-gated Ca2+ channels in a bimodal fashion by inhibiting voltage activation while stabilizing open channels. Bimodal regulation is conserved in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, but voltage activation is enhanced while the open channel state is destabilized. The proposed sites of PIP2 regulation in these channels include the voltage-sensor domain (VSD) and conserved regions of the proximal cytoplasmic C terminus. Relatively little is known about PIP2 regulation of Ether-á-go-go (EAG) channels, a metazoan-specific family of K+ channels that includes three gene subfamilies, Eag (Kv10), Erg (Kv11), and Elk (Kv12). We examined PIP2 regulation of the Elk subfamily potassium channel human Elk1 to determine whether bimodal regulation is conserved within the EAG K+ channel family. Open-state stabilization by PIP2 has been observed in human Erg1, but the proposed site of regulation in the distal C terminus is not conserved among EAG family channels. We show that PIP2 strongly inhibits voltage activation of Elk1 but also stabilizes the open state. This stabilization produces slow deactivation and a mode shift in voltage gating after activation. However, removal of PIP2 has the net effect of enhancing Elk1 activation. R347 in the linker between the VSD and pore (S4-S5 linker) and R479 near the S6 activation gate are required for PIP2 to inhibit voltage activation. The ability of PIP2 to stabilize the open state also requires these residues, suggesting an overlap in sites central to the opposing effects of PIP2 on channel gating. Open-state stabilization in Elk1 requires the N-terminal eag domain (PAS domain + Cap), and PIP2-dependent stabilization is enhanced by a conserved basic residue (K5) in the Cap. Our data shows that PIP2 can bimodally regulate voltage gating in EAG family channels, as has been proposed for Shaker and HCN channels. PIP2 regulation

  17. Accuracy of a teleported trapped field state inside a single bimodal cavity

    SciTech Connect

    Queiros, Iara P. de; Cardoso, W. B.; Souza, Simone; Almeida, N. G. de

    2007-09-15

    We propose a simplified scheme to teleport a superposition of coherent states from one mode to another of the same bimodal lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity that can be achieved, demonstrating accurate teleportation if the mean photon number of each mode is at most 1.5. Our scheme applies as well for teleportation of coherent states from one mode of a cavity to another mode of a second cavity, when both cavities are embedded in a common reservoir.

  18. Beat frequency is bimodally distributed in spermatozoa from T/t12 mice.

    PubMed

    Katz, D F; Erickson, R P; Nathanson, M

    1979-12-01

    Flagellar beat frequencies of spermatozoa from mice of varying genotype were studied using highspeed cinemicrography. Beat frequency was variable but unimodal in two inbred lines, their F1, and an outbred line. In contrast, beat frequency in spermatozoa from T-complex, balanced lethal stocks (T/t6 and T/t12) tended not to vary between individual males of each genotype up to four hours after collection. The two-hour distribution of beat frequency for T/t12 was, moreover, bimodal, suggesting the possible existence of two subpopulations of spermatozoa.

  19. Crystalline Membranes

    NASA Technical Reports Server (NTRS)

    Tsapatsis, Michael (Inventor); Lai, Zhiping (Inventor)

    2008-01-01

    In certain aspects, the invention features methods for forming crystalline membranes (e.g., a membrane of a framework material, such as a zeolite) by inducing secondary growth in a layer of oriented seed crystals. The rate of growth of the seed crystals in the plane of the substrate is controlled to be comparable to the rate of growth out of the plane. As a result, a crystalline membrane can form a substantially continuous layer including grains of uniform crystallographic orientation that extend through the depth of the layer.

  20. Agoraphobia, compulsive behaviours and behaviour completion mechanisms.

    PubMed

    McConaghy, N

    1983-06-01

    Anxiety is identified with a state of high arousal. Agoraphobia is differentiated from specific phobias which are inherent responses to situations which threatened primitive man. In agoraphobia, attacks of high arousal are produced by situations which delay ongoing activity. It is hypothesised that such delays produce arousal by activating behaviour completion mechanisms. Evidence is reviewed which indicates desensitization has a lasting effect in agoraphobia but not in specific phobias. It is suggested that desensitization reduces the arousal produced by behaviour completion mechanisms. Aversive therapy in homosexuality reduces the subjects' drive to carry out compulsive sexual behaviours but does not alter sexual orientation. It is suggested that compulsive sexual behaviours are not activated by primary sexual drives but by behaviour completion mechanisms which are also responsible for other compulsive behaviours. Aversive therapy acts by reducing the arousal produced by the behaviour completion mechanisms. As both aversive therapy and desensitization reduce such arousal, desensitization should be able to replace aversive therapy in the treatment of compulsive behaviours.

  1. Biological membranes

    PubMed Central

    Watson, Helen

    2015-01-01

    Biological membranes allow life as we know it to exist. They form cells and enable separation between the inside and outside of an organism, controlling by means of their selective permeability which substances enter and leave. By allowing gradients of ions to be created across them, membranes also enable living organisms to generate energy. In addition, they control the flow of messages between cells by sending, receiving and processing information in the form of chemical and electrical signals. This essay summarizes the structure and function of membranes and the proteins within them, and describes their role in trafficking and transport, and their involvement in health and disease. Techniques for studying membranes are also discussed. PMID:26504250

  2. Membrane Nanotubes

    NASA Astrophysics Data System (ADS)

    Derényi, I.; Koster, G.; van Duijn, M. M.; Czövek, A.; Dogterom, M.; Prost, J.

    There is a growing pool of evidence showing the biological importance of membrane nanotubes (with diameter of a few tens of nanometers and length upto tens of microns) in various intra- and intercellular transport processes. These ubiquitous structures are often formed from flat membranes by highly localized forces generated by either the pulling of motor proteins or the pushing of polymerizing cytoskeletal filaments. In this chapter we give an overview of the theory of membrane nanotubes, their biological relevance, and the most recent experiments designed for the study of their formation and dynamics. We also discuss the effect of membrane proteins or lipid composition on the shape of the tubes, and the effect of antagonistic motor proteins on tube formation.

  3. Representation of the Bi-modal Distribution of Free Tropospheric Ozone Over the Tropical Western Pacific in CAM-CHEM

    NASA Astrophysics Data System (ADS)

    Honomichl, S.; Kinnison, D. E.; Lamarque, J. F.; Saiz-Lopez, A.; Randel, W. J.; Pan, L.

    2015-12-01

    During the CONTRAST field study, in situ aircraft observations revealed a distinct bi-modal distribution of ozone mixing ratios formed by persistent layers of enhanced of ozone relative to background concentrations in the Western Tropical Pacific middle troposphere during the Northern Hemispheric winter. These enhancements may have a measureable impact on the troposphere's oxidizing capacity in the tropics, which has a direct effect on the regional climate of the western tropical Pacific Ocean and beyond. In this work, we examine the representation of the bi-modal ozone characteristics in the NCAR chemistry-climate model (CAM-CHEM). We also investigate the controlling mechanisms of the bi-modal ozone distribution combining the model and aircraft observations.

  4. Crystallization of a bimodally distributed copolymer system and a blend containing propylene-ethylene moieties

    NASA Astrophysics Data System (ADS)

    Wamuo, Onyenkachi; Wu, Ying; Hsu, Shaw; Paul, Charles(Chuck); Eodice, Andrea

    2015-03-01

    The competitive crystallization behavior of a multicomponent system is fundamentally interesting and has significant practical implications. The relative molecular weight and molecular architecture of the polymers involved needs to be considered carefully in the characterization of the entire crystallization process; nucleation and the crystal growth phase. We have considered two types of propylene-ethylene copolymers with virtually the same chemical composition but different block sequences. A comparison is being made between a bimodally distributed copolymer and a random copolymer. The unique feature of the bimodal system is the presence of a two-step crystallization process, where the longer sequences nucleated first and additional shorter segments are transported onto the crystal growth front. This system is compared to a copolymer of virtually identical random copolymer that is nucleated differently. Calorimetric, diffraction and spectroscopic measurements have been employed in order to understand the dynamics and mechanism of crystallization and the size and perfection of the crystals formed. The relative efficiency of crystallization by controlling the polymer configuration can then be compared to the traditional approach using a nucleation agent to affect the crystallization behavior. This new approach not only provides extremely fast crystallization but also overcomes practical considerations such as dispersion of the nucleation agents.

  5. Separation of bimodal high density polyethylene using multidimensional high temperature liquid chromatography.

    PubMed

    Prabhu, K N; Brüll, R; Macko, T; Remerie, K; Tacx, J; Garg, P; Ginzburg, A

    2015-11-01

    High-temperature two-dimensional liquid chromatography (HT 2D-LC) using HT-HPLC as first dimension and HT-SEC as second dimension holds enormous potential to investigate the distribution according to molar mass and chemical composition of bimodal high density polyethylene (BiHDPE), as it avoids drawbacks of crystallization-based techniques. In this study, we have stepwise optimized the chromatographic parameters of 1D, comprising gradient slope and temperature, using model homo- and copolymers of ethylene with the aim to minimize the impact of molar mass on the compositional separation. Then the HT-HPLC was hyphenated to HT-SEC and optimum conditions for the volume of the sample transfer loop were probed with regard to the resolution of BiHDPE into the individual constituents HDPE and LLDPE. A particular important aspect was the use of infrared (IR) detection, and the demands it puts on the chromatographic aspects: We have shown that IR detection can be successfully applied in HT 2D-LC of BiHDPE, which is broadly distributed with regard to short chain branching and molar mass, only when the separation in 2D is optimized with regard to chromatographic resolution. As final result a bimodality is evident in the contour and the 3D surface plots as well as in both HPLC and SEC projections generated from HT 2D-LC. PMID:26435312

  6. Study of the magnetorheology of aqueous suspensions of extremely bimodal magnetite particles

    NASA Astrophysics Data System (ADS)

    Viota, J. L.; Durán, J. D. G.; Delgado, A. V.

    2009-05-01

    In this paper we describe the magnetorheological behavior of aqueous suspensions consisting of magnetite particles of two size populations, in the micrometer and nanometer scale, respectively. Previous works on the magnetorheology of oil-based fluids demonstrated that the addition of nanoparticles has a very significant effect on the intensity of the magnetorheological effect. The present contribution confirms such results in the case of aqueous fluids, based on the dependence of the yield stress and the viscosity of the bimodal suspensions on both the composition of the mixtures and the magnetic field strength. It is demonstrated that for a given concentration of micrometer particles, increasing the amount of nanometer magnetite provokes a clear enhancement in the yield stress for all the magnetic fields applied. This is proposed to be due to the formation of heterogeneous aggregates that improve the stability of the suspensions and ease the building of well-arranged field-induced structures. The behavior of both the yield stress and the post-yield viscosity agrees better with the predictions of standard chain models when the relative proportion of both types of particles confers optimum stability to the bimodal dispersions.

  7. Modeling and experiments for sheet flow transport with bimodal size distributions

    NASA Astrophysics Data System (ADS)

    Thaxton, C.; Holway, K.; Calantoni, J.

    2012-12-01

    The state-of-the-art models for coastal morphodynamics have moved beyond predicting bed elevation changes and begun to estimate the amount of sediment transport by size. The conventional method for predicting these fractional sediment transport rates typically involves dividing the bed into a user-defined number of size classes where traditional bedload transport formulae are computed using a median grain size for each class. Consequently, the conventional method does not resolve the effect of vertical sorting that occurs in the active sediment layer during transport. The challenge lies in quantifying the rate of exchange of sediment from one location to another even when there is zero net sediment transport. Numerical simulations and experimental observations demonstrate that significant vertical sorting of grains by size does occur under oscillatory forcing conditions at or near sheet flow, even when gradients in net transport rates are zero. We have developed a cellular automaton model that combines formulae for net sediment transport rates with a simple power law to also predict the transport rates of the individual size fractions in a bimodal mixture. The power law was previously developed using a simulation technique that explicitly captures the effect of vertical sorting of grains by size within the active layer. We performed laboratory experiments for sheet flow transport with bimodal distributions of sediments and used video observations to quantify the evolution of sediments by size on the surface of the bed. Results from our cellular automaton model compare favorably with the laboratory experiments.

  8. Chitosan oligosaccharide based Gd-DTPA complex as a potential bimodal magnetic resonance imaging contrast agent.

    PubMed

    Huang, Yan; Cao, Juan; Zhang, Qi; Lu, Zheng-rong; Hua, Ming-qing; Zhang, Xiao-yan; Gao, Hu

    2016-01-01

    A new gadolinium diethylenetriamine pentaacetic acid (DTPA) complex (Gd-DTPA-DMABA-CS11) as a potential bimodal magnetic resonance imaging (MRI) contrast agent with fluorescence was synthesized. It was synthesized by the incorporation of 4-dimethylaminobenzaldehyde (DMABA) and chitosan oligosaccharide (CSn; n=11) with low polydispersity index to DTPA anhydride and then chelated with gadolinium chloride. The structure was characterized by Fourier transform infrared (FTIR), (1)H NMR, elemental analysis and size exclusion chromatography (SEC). MRI measurements in vitro were evaluated. The results indicated that Gd-DTPA-DMABA-CS11 provided higher molar longitudinal relaxivity (r1) (12.95mM(-1)·s(-1)) than that of commercial Gd-DTPA (3.63mM(-1)·s(-1)) at 0.5T. Gd-DTPA-DMABA-CS11 also emitted fluorescence, and the intensity was much stronger than that of Gd-DTPA. Therefore, it can be meanwhile used in fluorescent imaging for improving the sensitivity in clinic diagnosis. Gd-DTPA-DMABA-CS11 as a potential contrast agent is preliminarily stable in vitro. The results of thermodynamic action between Gd-DTPA-DMABA-CS11 and bovine serum albumin (BSA) illustrated that the binding process was exothermic and spontaneous, and the main force was van der Waals' interaction and hydrogen bond. The preliminary study suggested that Gd-DTPA-DMABA-CS11 could be used in both magnetic resonance and fluorescent imaging as a promising bimodal contrast agent.

  9. Separation of bimodal high density polyethylene using multidimensional high temperature liquid chromatography.

    PubMed

    Prabhu, K N; Brüll, R; Macko, T; Remerie, K; Tacx, J; Garg, P; Ginzburg, A

    2015-11-01

    High-temperature two-dimensional liquid chromatography (HT 2D-LC) using HT-HPLC as first dimension and HT-SEC as second dimension holds enormous potential to investigate the distribution according to molar mass and chemical composition of bimodal high density polyethylene (BiHDPE), as it avoids drawbacks of crystallization-based techniques. In this study, we have stepwise optimized the chromatographic parameters of 1D, comprising gradient slope and temperature, using model homo- and copolymers of ethylene with the aim to minimize the impact of molar mass on the compositional separation. Then the HT-HPLC was hyphenated to HT-SEC and optimum conditions for the volume of the sample transfer loop were probed with regard to the resolution of BiHDPE into the individual constituents HDPE and LLDPE. A particular important aspect was the use of infrared (IR) detection, and the demands it puts on the chromatographic aspects: We have shown that IR detection can be successfully applied in HT 2D-LC of BiHDPE, which is broadly distributed with regard to short chain branching and molar mass, only when the separation in 2D is optimized with regard to chromatographic resolution. As final result a bimodality is evident in the contour and the 3D surface plots as well as in both HPLC and SEC projections generated from HT 2D-LC.

  10. Timing of seed dispersal generates a bimodal seed bank depth distribution

    USGS Publications Warehouse

    Espinar, J.L.; Thompson, K.; Garcia, L.V.

    2005-01-01

    The density of soil seed banks is normally highest at the soil surface and declines monotonically with depth. Sometimes, for a variety of reasons, peak density occurs below the surface but, except in severely disturbed soils, it is generally true that deeper seeds are older. In seasonally dry habitats that develop deep soil cracks during the dry season, it is possible that some seeds fall down cracks and rapidly become deeply buried. We investigated this possibility for three dominant clonal perennials (Scirpus maritimus, S. litoralis, and Juncus subulatus) in the Don??ana salt marsh, a nontidal marsh with a Mediterranean climate located in southwest Spain. Two species, which shed most of their seed during the dry season and have seeds with low buoyancy, had bimodal viable seed depth distributions, with peak densities at the surface and at 16-20 cm. A third species, which shed most seeds after soil cracks had closed and had seeds with high buoyancy, had viable seeds only in surface soil. Bimodal seed bank depth distributions may be relatively common in seasonally dry habitats with fine-textured soils, but their ecological significance has not been investigated.

  11. Development of Bimodal Ferrite-Grain Structures in Low-Carbon Steel Using Rapid Intercritical Annealing

    NASA Astrophysics Data System (ADS)

    Karmakar, A.; Karani, A.; Patra, S.; Chakrabarti, Debalay

    2013-05-01

    Mixed ferrite grain structures, which have fine- and coarse-grain regions and showing "bimodal" grain size distributions, have been produced by rapid intercritical annealing of warm-rolled (or cold-rolled) samples. Microstructural changes have been analyzed using dilatometric studies, size prediction of transformed and recrystallized grains, and microtexture measurements. Fine austenite grains (<5 μm) developed during rapid annealing and transformed into fine-ferrite grains (2 to 4 μm) after cooling. Coarse-ferrite grains (28 to 42 μm) resulted from the recrystallization and growth of deformed ferrite. The effect of heating rate on microstructural morphologies during intercritical annealing has also been studied. A slow rate of heating (30 K/s) developed a uniform distribution of fine-ferrite grains and austenitic islands, while rapid heating (300 K/s) generated coarse blocks of austenite, elongated along the prior-pearlitic regions, in the ferrite matrix. As expected, bimodal ferrite grain structures or fine-scale dual-phase structures showed superior combination of tensile strength and ductility, compared to the ultrafine-grained steels.

  12. Investigation of mixed fluorinated and triblock copolymer liquid crystals: imprint for mesostructured bimodal silica.

    PubMed

    Assaker, Karine; Naboulsi, Issam; Stébé, Marie-José; Emo, Mélanie; Blin, Jean-Luc

    2015-05-15

    Due to the difference in «mutual phobicity» between fluorocarbon and hydrocarbon chains, mixtures of fluorinated and hydrogenated surfactants are excellent candidates to design bimodal systems having two types of mesopores. In literature, only a few papers deal with these bimodal systems. Here hexagonal liquid crystal mixtures of the polyoxyethylene fluoroalkyl ether [R(F)8(EO)9] and the Pluronic [P123] have been used to template this kind of mesostructure through the liquid crystal mechanism, which is barely considered. After the detailed investigation of the R(F)8(EO)9/P123/water liquid crystal domain, materials have been synthesized and characterized by small angle X-ray scattering, transmission electron microscopy and nitrogen adsorption-desorption analysis. Our results show that this system provides two separate pore sizes in the materials over the mesoporous range. The ratio between the small mesopores and the large ones depends on the proportion between the porogens in the mixture. Nonetheless, we also outline that a minimum quantity of silica is required to recover the two hexagonal networks.

  13. Cantilever energy effects on bimodal AFM: phase and amplitude contrast of multicomponent samples

    NASA Astrophysics Data System (ADS)

    Chakraborty, Ishita; Yablon, Dalia G.

    2013-11-01

    Bimodal atomic force microscopy (AFM) is a recently developed technique of dynamic AFM where a higher eigenmode of the cantilever is simultaneously excited along with the fundamental eigenmode. The effects of different operating parameters while imaging an impact copolymer blend of polypropylene (PP) and ethylene-propylene (E-P) rubber in bimodal mode are explored through experiments and numerical simulations. The higher mode amplitude and phase contrasts between the two components of the sample reverse at different points as the free amplitude of the higher eigenmode is increased. Three different regimes are identified experimentally depending on the relative contrast between the PP and the E-P rubber. It is observed that the kinetic energy and free air drive input energy of the two cantilever eigenmodes play a role in determining the regimes of operation. Numerical simulations conducted with appropriate tip-sample interaction forces support the experimental results. An understanding of these regimes and the associated cantilever dynamics will guide a rational approach towards selecting appropriate operating parameters.

  14. Pollination, mating and reproductive fitness in a plant population with bimodal floral-tube length.

    PubMed

    Anderson, B; Pauw, A; Cole, W W; Barrett, S C H

    2016-08-01

    Mating patterns and natural selection play important roles in determining whether genetic polymorphisms are maintained or lost. Here, we document an atypical population of Lapeirousia anceps (Iridaceae) with a bimodal distribution of floral-tube length and investigate the reproductive mechanisms associated with this pattern of variation. Flowers were visited exclusively by the long-proboscid fly Moegistorhynchus longirostris (Nemestrinidae), which exhibited a unimodal distribution of proboscis length and displayed a preference for long-tubed phenotypes. Despite being visited by a single pollinator species, allozyme markers revealed significant genetic differentiation between open-pollinated progeny of long- and short-tubed phenotypes suggesting mating barriers between them. We obtained direct evidence for mating barriers between the floral-tube phenotypes through observations of pollinator foraging, controlled hand pollinations and measurements of pollen competition and seed set. Intermediate tube-length phenotypes produced fewer seeds in the field than either long- or short-tubed phenotypes. Although floral-tube length bimodality may not be a stable state over long timescales, reproductive barriers to mating and low 'hybrid' fitness have the potential to contribute to the maintenance of this state in the short term. PMID:27206242

  15. Rotational multispectral fluorescence lifetime imaging and intravascular ultrasound: bimodal system for intravascular applications

    PubMed Central

    Ma, Dinglong; Bec, Julien; Yankelevich, Diego R.; Gorpas, Dimitris; Fatakdawala, Hussain; Marcu, Laura

    2014-01-01

    Abstract. We report the development and validation of a hybrid intravascular diagnostic system combining multispectral fluorescence lifetime imaging (FLIm) and intravascular ultrasound (IVUS) for cardiovascular imaging applications. A prototype FLIm system based on fluorescence pulse sampling technique providing information on artery biochemical composition was integrated with a commercial IVUS system providing information on artery morphology. A customized 3-Fr bimodal catheter combining a rotational side-view fiberoptic and a 40-MHz IVUS transducer was constructed for sequential helical scanning (rotation and pullback) of tubular structures. Validation of this bimodal approach was conducted in pig heart coronary arteries. Spatial resolution, fluorescence detection efficiency, pulse broadening effect, and lifetime measurement variability of the FLIm system were systematically evaluated. Current results show that this system is capable of temporarily resolving the fluorescence emission simultaneously in multiple spectral channels in a single pullback sequence. Accurate measurements of fluorescence decay characteristics from arterial segments can be obtained rapidly (e.g., 20 mm in 5 s), and accurate co-registration of fluorescence and ultrasound features can be achieved. The current finding demonstrates the compatibility of FLIm instrumentation with in vivo clinical investigations and its potential to complement conventional IVUS during catheterization procedures. PMID:24898604

  16. Trans-species learning of cellular signaling systems with bimodal deep belief networks

    PubMed Central

    Chen, Lujia; Cai, Chunhui; Chen, Vicky; Lu, Xinghua

    2015-01-01

    Motivation: Model organisms play critical roles in biomedical research of human diseases and drug development. An imperative task is to translate information/knowledge acquired from model organisms to humans. In this study, we address a trans-species learning problem: predicting human cell responses to diverse stimuli, based on the responses of rat cells treated with the same stimuli. Results: We hypothesized that rat and human cells share a common signal-encoding mechanism but employ different proteins to transmit signals, and we developed a bimodal deep belief network and a semi-restricted bimodal deep belief network to represent the common encoding mechanism and perform trans-species learning. These ‘deep learning’ models include hierarchically organized latent variables capable of capturing the statistical structures in the observed proteomic data in a distributed fashion. The results show that the models significantly outperform two current state-of-the-art classification algorithms. Our study demonstrated the potential of using deep hierarchical models to simulate cellular signaling systems. Availability and implementation: The software is available at the following URL: http://pubreview.dbmi.pitt.edu/TransSpeciesDeepLearning/. The data are available through SBV IMPROVER website, https://www.sbvimprover.com/challenge-2/overview, upon publication of the report by the organizers. Contact: xinghua@pitt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25995230

  17. High-temperature hydrothermal alteration of tje Boehls Butte anorthosite: Origin of a bimodal plagioclase assemblage

    SciTech Connect

    Mora, Claudia I; Riciputi, Lee R; Cole, David; Walker, Karen

    2008-01-01

    The Boehls Butte anorthosite consists predominantly of an unusual bimodal assemblage of andesine and bytownite anorthite. Oxygen isotope compositions of the anorthosite were profoundly altered by high temperature, retrograde interaction with meteorichydrothermal fluids that varied in composition from isotopically evolved to nearly pristine meteoric water. Oxygen isotope ratios of bulk plagioclase separates are in the range ?7.0 to -6.2% V-SMOW, however, secondary ion mass spectrometry indicates spot-sized isotope values as low as -16%. Typical inter- and intra-plagioclase grain variability is 3 6%, and extreme heterogeneity of up to 20%is noted in a few samples. High-temperature hydrothermal alteration of intermediate plagioclase is proposed to explain the origin of bytownite anorthite in the anorthosite and creation of its unusual bimodal plagioclase assemblage. The anorthite-forming reaction created retrograde reaction-enhanced permeability which, together with rapid decompression, extension, and unroofing of the anorthosite complex, helped to accommodated influx of significant volumes of meteoric-hydrothermal fluids into the anorthosite.

  18. Bilingualism alters brain functional connectivity between "control" regions and "language" regions: Evidence from bimodal bilinguals.

    PubMed

    Li, Le; Abutalebi, Jubin; Zou, Lijuan; Yan, Xin; Liu, Lanfang; Feng, Xiaoxia; Wang, Ruiming; Guo, Taomei; Ding, Guosheng

    2015-05-01

    Previous neuroimaging studies have revealed that bilingualism induces both structural and functional neuroplasticity in the dorsal anterior cingulate cortex (dACC) and the left caudate nucleus (LCN), both of which are associated with cognitive control. Since these "control" regions should work together with other language regions during language processing, we hypothesized that bilingualism may also alter the functional interaction between the dACC/LCN and language regions. Here we tested this hypothesis by exploring the functional connectivity (FC) in bimodal bilinguals and monolinguals using functional MRI when they either performed a picture naming task with spoken language or were in resting state. We found that for bimodal bilinguals who use spoken and sign languages, the FC of the dACC with regions involved in spoken language (e.g. the left superior temporal gyrus) was stronger in performing the task, but weaker in the resting state as compared to monolinguals. For the LCN, its intrinsic FC with sign language regions including the left inferior temporo-occipital part and right inferior and superior parietal lobules was increased in the bilinguals. These results demonstrate that bilingual experience may alter the brain functional interaction between "control" regions and "language" regions. For different control regions, the FC alters in different ways. The findings also deepen our understanding of the functional roles of the dACC and LCN in language processing. PMID:25858600

  19. Fragmentation as a new hypothesis on the origin of granulometric bimodality of debris flow deposits

    NASA Astrophysics Data System (ADS)

    Soto, E.; Caballero, L.; Sarocchi, D.; Borselli, L.

    2013-12-01

    Debris flows are mixtures of water with high concentrations of sediments. Their dynamic behavior is governed by mechanisms that involve clast interaction and fluid matrix characteristics among others. Both mechanisms are studied by means of analogical experiments using a rotating drum named Los Angeles abrasion machine. Four mixtures with compositions resembling cohesive and noncohesive debris flows were prepared. A detailed textural analysis of the mixtures based on granulometry, clast morphology and rheologic properties of the fluid matrix were performed. The results show that the fragmentation process occurs inside debris flows and is reflected in the final textural characteristics of the mixtures. The mode of particle breakage is related to particle size. Clast collisions between particles produce comminution of the coarsest fractions while finer particles fracture along their entire surface. Both modes produce fine sand and silt that continuously feed the fluid matrix during transport, producing bimodal distributions of the mixtures. Granulometric bimodality is a common characteristic in debris flows deposits and has often been explained by bulking or debulking processes related to external flow conditions. In this study, the experimental evidence suggests that this characteristic could also be explained only by internal processes. Fragmentation has a major influence on debris flow dynamics. It modifies rheologic behavior increasing yield stress and viscosity over time. The results show good agreement between real debris flow characteristics and analogic experiments. The proposed hypothesis has important implications to understand the rheological behavior of debris flows and could constitute a basis for new approaches to modeling these phenomena.

  20. Human Exploration Mission Capabilities to the Moon, Mars, and Near Earth Asteroids Using ''Bimodal'' NTR Propulsion

    SciTech Connect

    Stanley K. Borowski; Leonard A. Dudzinski; Melissa L. McGuire

    2000-06-04

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human exploration missions because of its high specific impulse (Isp {approx} 850 to 1000 s) and attractive engine thrust-to-weight ratio ({approx} 3 to 10). Because only a minuscule amount of enriched {sup 235}U fuel is consumed in an NRT during the primary propulsion maneuvers of a typical Mars mission, engines configured both for propulsive thrust and modest power generation (referred to as 'bimodal' operation) provide the basis for a robust, power-rich stage with efficient propulsive capture capability at the moon and near-earth asteroids (NEAs), where aerobraking cannot be utilized. A family of modular bimodal NTR (BNTR) space transfer vehicles utilize a common core stage powered by three {approx}15-klb{sub f} engines that produce 50 kW(electric) of total electrical power for crew life support, high data rate communications with Earth, and an active refrigeration system for long-term, zero-boiloff liquid hydrogen (LH{sub 2}) storage. This paper describes details of BNTR engines and designs of vehicles using them for various missions.

  1. Performance evaluation of bimodal thermite composites : nano- vs miron-scale particles

    SciTech Connect

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies of metastable interstitial composites (MIC) have shown vast combustion improvements over traditional thermite materials. The main difference between these two materials is the size of the fuel particles in the mixture. Decreasing the fuel size from the micron to nanometer range significantly increases the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the traditional thermite. Ignition sensitivity experiments were performed using Al/MoO{sub 3} pellets at a theoretical maximum density of 50% (2 g/cm{sup 3}). The Al fuel particles were prepared as bi-modal size distributions with micron (i.e., 4 and 20 {micro}m diameter) and nano-scale Al particles. The micron-scale Al was replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bi-modal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50-W CO{sub 2} laser. High speed imaging diagnostics were used to measure ignition delay times, and micro-thermocouples were used to measure ignition temperatures. Combustion wave speeds were also examined.

  2. Bilingualism alters brain functional connectivity between "control" regions and "language" regions: Evidence from bimodal bilinguals.

    PubMed

    Li, Le; Abutalebi, Jubin; Zou, Lijuan; Yan, Xin; Liu, Lanfang; Feng, Xiaoxia; Wang, Ruiming; Guo, Taomei; Ding, Guosheng

    2015-05-01

    Previous neuroimaging studies have revealed that bilingualism induces both structural and functional neuroplasticity in the dorsal anterior cingulate cortex (dACC) and the left caudate nucleus (LCN), both of which are associated with cognitive control. Since these "control" regions should work together with other language regions during language processing, we hypothesized that bilingualism may also alter the functional interaction between the dACC/LCN and language regions. Here we tested this hypothesis by exploring the functional connectivity (FC) in bimodal bilinguals and monolinguals using functional MRI when they either performed a picture naming task with spoken language or were in resting state. We found that for bimodal bilinguals who use spoken and sign languages, the FC of the dACC with regions involved in spoken language (e.g. the left superior temporal gyrus) was stronger in performing the task, but weaker in the resting state as compared to monolinguals. For the LCN, its intrinsic FC with sign language regions including the left inferior temporo-occipital part and right inferior and superior parietal lobules was increased in the bilinguals. These results demonstrate that bilingual experience may alter the brain functional interaction between "control" regions and "language" regions. For different control regions, the FC alters in different ways. The findings also deepen our understanding of the functional roles of the dACC and LCN in language processing.

  3. Oxygen-limited thermal tolerance is seen in a plastron-breathing insect and can be induced in a bimodal gas exchanger

    PubMed Central

    Verberk, Wilco C. E. P.; Bilton, David T.

    2015-01-01

    ABSTRACT Thermal tolerance has been hypothesized to result from a mismatch between oxygen supply and demand. However, the generality of this hypothesis has been challenged by studies on various animal groups, including air-breathing adult insects. Recently, comparisons across taxa have suggested that differences in gas exchange mechanisms could reconcile the discrepancies found in previous studies. Here, we test this suggestion by comparing the behaviour of related insect taxa with different gas exchange mechanisms, with and without access to air. We demonstrate oxygen-limited thermal tolerance in air-breathing adults of the plastron-exchanging water bug Aphelocheirus aestivalis. Ilyocoris cimicoides, a related, bimodal gas exchanger, did not exhibit such oxygen-limited thermal tolerance and relied increasingly on aerial gas exchange with warming. Intriguingly, however, when denied access to air, oxygen-limited thermal tolerance could also be induced in this species. Patterns in oxygen-limited thermal tolerance were found to be consistent across life-history stages in these insects, with nymphs employing the same gas exchange mechanisms as adults. These results advance our understanding of oxygen limitation at high temperatures; differences in the degree of respiratory control appear to modulate the importance of oxygen in setting tolerance limits. PMID:25964420

  4. Measuring Thermoforming Behaviour

    NASA Astrophysics Data System (ADS)

    Michaeli, W.; Hopmann, C.; Ederleh, L.; Begemann, M.

    2011-05-01

    Thermoforming is the process of choice for manufacturing thin-gauge or large-area parts for packaging or technical applications. The process allows low-weight parts to be produced rapidly and economically from thermoplastic semi-finished products. A technical and consequently economical problem is the choice of the right material in combination with the thermoformability of the product. The prediction of thermoformability includes the aspired product features and geometry and defined wall thickness distributions, depending on the specific stretchability of the semifinished product. In practice, thermoformability is estimated by empirical tests with the particular semi-finished product using e.g. staged pyramidal moulds or model cars. With this method, it still cannot be ensured that the product can be thermoformed with the intended properties. A promising alternative is the forming simulation using finite element analysis (FEA). For the simulation, it is necessary to describe the material behaviour using defined material models and the appropriate parameters. Therefore, the stress-/strain-behaviour of the semi-finished product under defined conditions is required. There are several, entirely different measurement techniques used in industry and at research facilities. This paper compares a choice of different measurement techniques to provide an objective basis for future work and research. The semi-finished products are examined with the Membrane-Inflation-Rheometer (MIR), an equibiaxial strain rheometer. A flat sample is heated to the desired temperature in silicone oil. During the measurement, a servohydraulic linear drive advances a piston, thus displacing the hot silicone oil and inflating the specimen to form a sphere. Further measurements are carried out with the Karo IV Laboratory Stretching Machine at Brückner Maschinenbau GmbH & Co. KG, Siegsdorf, Germany. The samples are heated using hot air. During the biaxial stretching, the resulting forces at the

  5. Effect of the bimodality of a QD array on the optical properties and threshold characteristics of QD lasers

    SciTech Connect

    Nadtochiy, A. M.; Mintairov, S. A.; Kalyuzhnyy, N. A.; Rouvimov, S. S.; Shernyakov, Yu. M.; Payusov, A. S.; Maximov, M. V.; Zhukov, A. E.

    2015-08-15

    Heterostructures with InGaAs quantum dots (QDs) are synthesized on vicinal GaAs (001) substrates. The photoluminescence (PL) spectra and threshold characteristics of edge-emitting QD lasers are studied in the temperature range 10-400 K. The structural properties of QDs are examined by transmission electron microscopy. Analysis of the PL spectra demonstrates the bimodality of the QD array, which leads to an unusual temperature behavior of the PL spectra and threshold current density. A model of the population of a bimodal QD array by carriers, describing the observed phenomena, is considered.

  6. Effect of Microstructure on the Electro-Mechanical Behaviour of Cu Films on Polyimide

    NASA Astrophysics Data System (ADS)

    Berger, J.; Glushko, O.; Marx, V. M.; Kirchlechner, C.; Cordill, M. J.

    2016-06-01

    Metal films on polymer substrates are commonly used in flexible electronic devices and may be exposed to large deformations during application. For flexible electronics, the main requirement is to remain conductive while stretching and compressing. Therefore, the electro-mechanical behaviour of 200-nm-thick Cu films on polyimide with two different microstructures (as-deposited and annealed) were studied by executing in situ fragmentation experiments with x-ray diffraction, under an atomic force microscope, and with 4-point probe resistance measurements in order to correlate the plastic deformation with the electrical behaviour. The three in situ techniques clearly demonstrate different behaviours controlled by the microstructure. Interestingly, the as-deposited film with a bi-modal microstructure is more suited for flexible electronic applications than an annealed film with homogenous 1- µm-sized grains. The as-deposited film reaches a higher yield stress, with unchanged electrical conductivity, and does not show extensive surface deformation during straining.

  7. Imitation as behaviour parsing.

    PubMed Central

    Byrne, R W

    2003-01-01

    Non-human great apes appear to be able to acquire elaborate skills partly by imitation, raising the possibility of the transfer of skill by imitation in animals that have only rudimentary mentalizing capacities: in contrast to the frequent assumption that imitation depends on prior understanding of others' intentions. Attempts to understand the apes' behaviour have led to the development of a purely mechanistic model of imitation, the 'behaviour parsing' model, in which the statistical regularities that are inevitable in planned behaviour are used to decipher the organization of another agent's behaviour, and thence to imitate parts of it. Behaviour can thereby be understood statistically in terms of its correlations (circumstances of use, effects on the environment) without understanding of intentions or the everyday physics of cause-and-effect. Thus, imitation of complex, novel behaviour may not require mentalizing, but conversely behaviour parsing may be a necessary preliminary to attributing intention and cause. PMID:12689378

  8. INFORMATION ON THE MILKY WAY FROM THE 2MASS ALL SKY STAR COUNT: BIMODAL COLOR DISTRIBUTIONS

    SciTech Connect

    Chang, Chan-Kao; Lai, Shao-Yu; Peng, Ting-Hung; Ko, Chung-Ming E-mail: cmko@astro.ncu.edu.tw

    2012-11-10

    The J - K{sub s} color distributions (CDs) with a bin size of 0.05 mag has been carried out for the entire Milky Way using the Two Micron All Sky Survey Point Source Catalog (2MASS PSC). The CDs are bimodal, with a red peak at 0.8 < J - K{sub s} < 0.85 and a blue peak at 0.3 < J - K{sub s} < 0.4. The colors of the red peak are more or less the same for the whole sky, but those of the blue peak depend on Galactic latitude (J - K{sub s} {approx} 0.35 at low Galactic latitudes and 0.35 < J - K{sub s} < 0.4 for other sky areas). The blue peak dominates the bimodal CDs at low Galactic latitudes and becomes comparable with the red peak in other sky regions. In order to explain the bimodal distribution and the global trend shown by the all-sky 2MASS CDs, we assemble an empirical Hertzsprung-Russell (H-R) diagram, which is composed of observational-based near-infrared H-R diagrams and color-magnitude diagrams, and incorporate a Milky Way model. In the empirical H-R diagram, the main-sequence turn-off for stars in the thin disk is relatively bluer, (J - K{sub s} ){sub 0} = 0.31, compared with that of the thick disk which is (J - K{sub s} ){sub 0} = 0.39. The age of the thin/thick disk is roughly estimated to be around 4-5/8-9 Gyr according to the color-age relation of the main-sequence turn-off. In general, the 2MASS CDs can be treated as a tool to measure the age of the stellar population of the Milky Way in a statistical manner and to our knowledge it is the first attempt to do so.

  9. Membrane magic

    SciTech Connect

    Buecker, B.

    2005-09-01

    The Kansas Power and Light Co.'s La Cyne generating station has found success with membrane filtration water pretreatment technology. The article recounts the process followed in late 2004 to install a Pall Aria 4 microfilter in Unit 1 makeup water system at the plant to produce cleaner water for reverse osmosis feed. 2 figs., 2 photos.

  10. Head Shadow, Squelch, and Summation Effects with an Energetic or Informational Masker in Bilateral and Bimodal CI Users

    ERIC Educational Resources Information Center

    Pyschny, Verena; Landwehr, Markus; Hahn, Moritz; Lang-Roth, Ruth; Walger, Martin; Meister, Hartmut

    2014-01-01

    Purpose: The objective of the study was to investigate the influence of noise (energetic) and speech (energetic plus informational) maskers on the head shadow (HS), squelch (SQ), and binaural summation (SU) effect in bilateral and bimodal cochlear implant (CI) users. Method: Speech recognition was measured in the presence of either a competing…

  11. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    SciTech Connect

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-03-03

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  12. MAGNETIC COMPLEXITY AS AN EXPLANATION FOR BIMODAL ROTATION POPULATIONS AMONG YOUNG STARS

    SciTech Connect

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    2015-07-01

    Observations of young open clusters have revealed a bimodal distribution of fast and slower rotation rates that has proven difficult to explain with predictive models of spin down that depend on rotation rates alone. The Metastable Dynamo Model proposed recently by Brown, employing a stochastic transition probability from slow to more rapid spin down regimes, appears to be more successful but lacks a physical basis for such duality. Using detailed 3D MHD wind models computed for idealized multipole magnetic fields, we show that surface magnetic field complexity can provide this basis. Both mass and angular momentum losses decline sharply with increasing field complexity. Combined with observation evidence for complex field morphologies in magnetically active stars, our results support a picture in which young, rapid rotators lose angular momentum in an inefficient way because of field complexity. During this slow spin-down phase, magnetic complexity is eroded, precipitating a rapid transition from weak to strong wind coupling.

  13. Bimodal bilingualism as multisensory training?: Evidence for improved audiovisual speech perception after sign language exposure.

    PubMed

    Williams, Joshua T; Darcy, Isabelle; Newman, Sharlene D

    2016-02-15

    The aim of the present study was to characterize effects of learning a sign language on the processing of a spoken language. Specifically, audiovisual phoneme comprehension was assessed before and after 13 weeks of sign language exposure. L2 ASL learners performed this task in the fMRI scanner. Results indicated that L2 American Sign Language (ASL) learners' behavioral classification of the speech sounds improved with time compared to hearing nonsigners. Results indicated increased activation in the supramarginal gyrus (SMG) after sign language exposure, which suggests concomitant increased phonological processing of speech. A multiple regression analysis indicated that learner's rating on co-sign speech use and lipreading ability was correlated with SMG activation. This pattern of results indicates that the increased use of mouthing and possibly lipreading during sign language acquisition may concurrently improve audiovisual speech processing in budding hearing bimodal bilinguals. PMID:26740404

  14. Gd-containing conjugated polymer nanoparticles: bimodal nanoparticles for fluorescence and MRI imaging

    NASA Astrophysics Data System (ADS)

    Hashim, Zeina; Green, Mark; Chung, Pei Hua; Suhling, Klaus; Protti, Andrea; Phinikaridou, Alkystis; Botnar, Rene; Khanbeigi, Raha Ahmad; Thanou, Maya; Dailey, Lea Ann; Nicola J., Commander; Rowland, Caroline; Scott, Jo; Jenner, Dominic

    2014-06-01

    Aqueous bifunctional semiconductor polymer nanoparticles (SPNs), approximately 30 nm in diameter (as measured from electron microscopy), were synthesised using hydrophobic conjugated polymers, amphiphilic phospholipids and a gadolinium-containing lipid. Their fluorescence quantum yields and extinction coefficients were determined, and their MRI T1-weighted relaxation times in water were measured. The bimodal nanoparticles were readily taken up by HeLa and murine macrophage-like J774 cells as demonstrated by confocal laser scanning microscopy, and were found to be MRI-active, generating a linear relationship between T1-weighted relaxation rates and gadolinium concentrations The synthesis is relatively simple, and can easily result in milligrams of materials, although we fully expect scale-up to the gram level to be easily realised.

  15. O(+) and He(+) restricted and extended (bi-modal) ion conic distributions

    NASA Technical Reports Server (NTRS)

    Peterson, W. K.; Collin, H. L.; Doherty, M. F.; Bjorklund, C. M.

    1992-01-01

    An automated procedure using standard image processing techniques has been developed that finds and characterizes energetic ion conic events in the data acquired by the Energetic Ion Composition Spectrometer on DE-1 in the altitude range 8000 to 24000 km. The algorithm discriminates between the two types of ion conic distribution, those restricted to a narrow angular range and those extended in angle. Extended (bimodal) ion conic distributions also have a significant flux of field-aligned energetic ions. Extended ion conics constitute more than one third of the ion conics found. The two types of ion conic distribution have different altitude dependences. The average properties of energetic conic distributions suggest that conic formation by localized, explosive, transverse energization is not the dominant mechanism responsible for producing energetic conic distributions above 8000 km.

  16. Synthesis and tuning of bimodal mesoporous silica by combined hydrocarbon/fluorocarbon surfactant templating.

    PubMed

    Xing, Rong; Lehmler, Hans-Joachim; Knutson, Barbara L; Rankin, Stephen E

    2009-06-01

    Hydrocarbon and fluorocarbon surfactants show highly nonideal mixing that under some conditions results in demixing of the two types of surfactants into distinct populations of fluorocarbon-rich and hydrocarbon-rich aggregates. This also occurs in materials prepared by cooperative assembly of hydrolyzed tetraethoxysilane with mixtures of cetyltrimethylammonium chloride (CTAC) and 1,1,2,2-tetrahydro-perfluorodecylpyridinium chloride (HFDePC). Here, we report conditions under which demixed micelles lead to bimodal mesoporous materials (including specific concentrations of ammonia and salt in the synthesis solution) and show that the sizes of the hydrocarbon-templated and fluorocarbon-templated pores can be finely and independently controlled by adding lipophilic or fluorophilic oils, respectively. Nitrogen sorption isotherms and transmission electron microscopy provide clear evidence for a single phase of demixed but disordered wormhole-like pores.

  17. Amplitude dependence of image quality in atomically-resolved bimodal atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ooe, Hiroaki; Kirpal, Dominik; Wastl, Daniel S.; Weymouth, Alfred J.; Arai, Toyoko; Giessibl, Franz J.

    2016-10-01

    In bimodal frequency modulation atomic force microscopy (FM-AFM), two flexural modes are excited simultaneously. We show atomically resolved images of KBr(100) in ambient conditions in both modes that display a strong correlation between the image quality and amplitude. We define the sum amplitude as the sum of the amplitudes of both modes. When the sum amplitude becomes larger than about 100 pm, the signal-to-noise ratio (SNR) drastically decreases. We propose that this is caused by the temporary presence of one or more water layers in the tip-sample gap. These water layers screen the short range interaction and must be displaced with each oscillation cycle. Decreasing the amplitude of either mode, however, increases the noise. Therefore, the highest SNR in ambient conditions is achieved when twice the sum amplitude is slightly less than the thickness of the primary hydration layer.

  18. Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus.

    PubMed

    Herruzo, Elena T; Garcia, Ricardo

    2012-01-01

    Bimodal atomic force microscopy is a force-microscopy method that requires the simultaneous excitation of two eigenmodes of the cantilever. This method enables the simultaneous recording of several material properties and, at the same time, it also increases the sensitivity of the microscope. Here we apply fractional calculus to express the frequency shift of the second eigenmode in terms of the fractional derivative of the interaction force. We show that this approximation is valid for situations in which the amplitude of the first mode is larger than the length of scale of the force, corresponding to the most common experimental case. We also show that this approximation is valid for very different types of tip-surface forces such as the Lennard-Jones and Derjaguin-Muller-Toporov forces. PMID:22496992

  19. Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway

    PubMed Central

    Kelley, Elizabeth G.; Murphy, Ryan P.; Seppala, Jonathan E.; Smart, Thomas P.; Hann, Sarah D.

    2014-01-01

    The solution self-assembly of macromolecular amphiphiles offers an efficient, bottom-up strategy for producing well--defined nanocarriers, with applications ranging from drug delivery to nanoreactors. Typically, the generation of uniform nanocarrier architecturesis controlled by processing methods that rely upon cosolvent mixtures. These preparation strategies hinge on the assumption that macromolecular solution nanostructures are kinetically stable following transfer from an organic/aqueous cosolvent into aqueous solution. Herein we demonstrate that unequivocal step-change shifts in micelle populations occur over several weeks following transfer into a highly selective solvent. The unexpected micelle growth evolves through a distinct bimodal distribution separated by multiple fusion events and critically depends on solution agitation. Notably, these results underscore fundamental similarities between assembly processes in amphiphilic polymer, small molecule, and protein systems. Moreover, the non-equilibrium micelle size increase can have a major impact on the assumed stability of solution assemblies, for which performance is dictated by nanocarrier size and structure. PMID:24710204

  20. Bimodal immunoglobulin A gammopathy in a cat with feline myeloma-related disorders

    PubMed Central

    IGASE, Masaya; SHIMOKAWA MIYAMA, Takako; KAMBAYASHI, Satoshi; SHIMOYAMA, Yumiko; HIRAOKA, Hiroko; HIRATA, Yumi; IWATA, Miki; BABA, Kenji; MIZUNO, Takuya; OKUDA, Masaru

    2015-01-01

    A 10-year-old female spayed mixed breed cat with a subcutaneous mass on the right hind limb was revealed with bimodal monoclonal gammopathy composed of IgA by immunoelectrophoresis and immunofixation. Approximately 1 month after referral, the cat died due to renal failure. Postmortem immunohistopathologic evaluation of the subcutaneous mass revealed neoplastic cell proliferation of plasma cells and giant myeloma cells. Neoplastic cells were also present in the liver and spleen. These results led to the diagnosis of a rare case of feline myeloma-related disorders with extramedullary plasmacytoma infiltrating in multiple locations. This report emphasizes the necessity to accumulate cases with similar clinicopathologic findings in the future. PMID:26638898

  1. Bases for the synthesis of nanoparticulated silicas with bimodal hierarchical porosity

    NASA Astrophysics Data System (ADS)

    Huerta, Lenin; Guillem, Carmen; Latorre, Julio; Beltrán, Aurelio; Martínez-Máñez, Ramón; Marcos, M. Dolores; Beltrán, Daniel; Amorós, Pedro

    2006-08-01

    Porous silicas with pore sizes at two length scales (meso and large meso/macroporous) have been prepared through a one-pot surfactant assisted procedure by using a simple template agent and starting from silicon atrane complexes as hydrolytic inorganic precursors. The special organization of these bimodal porous silicas can be related to the nanometric character of their constituent mesoporous particles. Whereas the small intra-particle mesopore system is generated by the templating effect of the surfactant, the large pore system is defined by inter-particle voids. We have studied the effect of different procedural parameters on the small pore system and also on the nucleation and growth of the nanoparticles. The formation of these hierarchical materials is explained on the basis of kinetic (hydrolysis and condensation reaction rates) and thermodynamic (silica solubility) concepts.

  2. Heatpipe power system and heatpipe bimodal system design and development options

    SciTech Connect

    Houts, M.G.; Poston, D.I.; Emrich, W.J. Jr.

    1997-02-01

    The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components operate within the existing databases. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module is being fabricated, and testing is scheduled to begin in November 1996. A successful test will provide high confidence that the HPS can achieve its predicted performance.

  3. Particle filtering with path sampling and an application to a bimodal ocean current model

    SciTech Connect

    Weare, Jonathan

    2009-07-01

    This paper introduces a recursive particle filtering algorithm designed to filter high dimensional systems with complicated non-linear and non-Gaussian effects. The method incorporates a parallel marginalization (PMMC) step in conjunction with the hybrid Monte Carlo (HMC) scheme to improve samples generated by standard particle filters. Parallel marginalization is an efficient Markov chain Monte Carlo (MCMC) strategy that uses lower dimensional approximate marginal distributions of the target distribution to accelerate equilibration. As a validation the algorithm is tested on a 2516 dimensional, bimodal, stochastic model motivated by the Kuroshio current that runs along the Japanese coast. The results of this test indicate that the method is an attractive alternative for problems that require the generality of a particle filter but have been inaccessible due to the limitations of standard particle filtering strategies.

  4. Caulobacter crescentus intrinsic dimorphism provides a prompt bimodal response to copper stress.

    PubMed

    Lawarée, Emeline; Gillet, Sébastien; Louis, Gwennaëlle; Tilquin, Françoise; Le Blastier, Sophie; Cambier, Pierre; Matroule, Jean-Yves

    2016-01-01

    Stress response to fluctuating environments often implies a time-consuming reprogramming of gene expression. In bacteria, the so-called bet hedging strategy, which promotes phenotypic stochasticity within a cell population, is the only fast stress response described so far(1). Here, we show that Caulobacter crescentus asymmetrical cell division allows an immediate bimodal response to a toxic metals-rich environment by allocating specific defence strategies to morphologically and functionally distinct siblings. In this context, a motile swarmer cell favours negative chemotaxis to flee from a copper source, whereas a sessile stalked sibling engages a ready-to-use PcoAB copper homeostasis system, providing evidence of a prompt stress response through intrinsic bacterial dimorphism. PMID:27562256

  5. Origin of bimodal fluorescence enhancement factors of Chlorobaculum tepidum reaction centers on silver island films.

    PubMed

    Maćkowski, Sebastian; Czechowski, Nikodem; Ashraf, Khuram U; Szalkowski, Marcin; Lokstein, Heiko; Cogdell, Richard J; Kowalska, Dorota

    2016-08-01

    We focus on the spectral dependence of plasmon-induced enhancement of fluorescence of Chlorobaculum tepidum reaction centers. When deposited on silver island film, they exhibit up to a 60-fold increase in fluorescence. The dependence of enhancement factors on the excitation wavelength is not correlated with the absorption spectrum of the plasmonic structure. In particular, the presence of one (or multiple) trimers of the Fenna-Matthews-Olson (FMO) protein reveals itself in bimodal distribution of enhancement factors for the excitation at 589 nm, the wavelength corresponding to bacteriochlorophyll absorption of FMO and the core of the RC. We conclude that the structure of multichromophoric complexes can substantially affect the impact of plasmonic excitations, which is important in the context of assembling functional biohybrid systems.

  6. Bimodal spatial distribution of macular pigment: evidence of a gender relationship

    NASA Astrophysics Data System (ADS)

    Delori, François C.; Goger, Douglas G.; Keilhauer, Claudia; Salvetti, Paola; Staurenghi, Giovanni

    2006-03-01

    The spatial distribution of the optical density of the human macular pigment measured by two-wavelength autofluorescence imaging exhibits in over half of the subjects an annulus of higher density superimposed on a central exponential-like distribution. This annulus is located at about 0.7° from the fovea. Women have broader distributions than men, and they are more likely to exhibit this bimodal distribution. Maxwell's spot reported by subjects matches the measured distribution of their pigment. Evidence that the shape of the foveal depression may be gender related leads us to hypothesize that differences in macular pigment distribution are related to anatomical differences in the shape of the foveal depression.

  7. Comparing Raman and fluorescence lifetime spectroscopy from human atherosclerotic lesions using a bimodal probe.

    PubMed

    Dochow, Sebastian; Fatakdawala, Hussain; Phipps, Jennifer E; Ma, Dinglong; Bocklitz, Thomas; Schmitt, Michael; Bishop, John W; Margulies, Kenneth B; Marcu, Laura; Popp, Jürgen

    2016-09-01

    Fluorescence lifetime imaging (FLIm) and Raman spectroscopy are two promising methods to support morphological intravascular imaging techniques with chemical contrast. Both approaches are complementary and may also be used in combination with OCT/IVUS to add chemical specificity to these morphologic intravascular imaging modalities. In this contribution, both modalities were simultaneously acquired from two human coronary specimens using a bimodal probe. A previously trained SVM model was used to interpret the fluorescence lifetime data; integrated band intensities displayed in RGB false color images were used to interpret the Raman data. Both modalities demonstrate unique strengths and weaknesses and these will be discussed in comparison to histologic analyses from the two coronary arteries imaged. PMID:27003796

  8. (Gd,Yb,Tb)PO4 up-conversion nanocrystals for bimodal luminescence-MR imaging

    NASA Astrophysics Data System (ADS)

    Debasu, Mengistie L.; Ananias, Duarte; Pinho, Sonia L. C.; Geraldes, Carlos F. G. C.; Carlos, Luís D.; Rocha, João

    2012-07-01

    Up-conversion (Gd,Yb,Tb)PO4 materials and their potential for bimodal imaging have received little attention in the literature. Herein, we report the first study on the up-conversion emission of (Gd,Yb,Tb)PO4 nanocrystals synthesized via a hydrothermal method at 150 °C. These materials exhibit ultraviolet, blue and green up-conversion emissions upon excitation with a 980 nm continuous wave laser diode. The intensity of the blue-emission band at 479 nm, ascribed to the cooperative up-conversion emission of a pair of excited Yb3+ ions, depends on the Yb3+/Tb3+ concentration ratio, calcination temperature and particle size. Strong green up-conversion emission of Tb3+ is observed at 543 nm for the 5D4 --> 7F5 transition. Relaxometry measurements reveal that the nanocrystals are efficient T2-weighted (negative) contrast agents which, combined with visible-light emission generated by infrared excitation, affords them considerable potential for being used in bimodal, photoluminescence-magnetic resonance, imaging.Up-conversion (Gd,Yb,Tb)PO4 materials and their potential for bimodal imaging have received little attention in the literature. Herein, we report the first study on the up-conversion emission of (Gd,Yb,Tb)PO4 nanocrystals synthesized via a hydrothermal method at 150 °C. These materials exhibit ultraviolet, blue and green up-conversion emissions upon excitation with a 980 nm continuous wave laser diode. The intensity of the blue-emission band at 479 nm, ascribed to the cooperative up-conversion emission of a pair of excited Yb3+ ions, depends on the Yb3+/Tb3+ concentration ratio, calcination temperature and particle size. Strong green up-conversion emission of Tb3+ is observed at 543 nm for the 5D4 --> 7F5 transition. Relaxometry measurements reveal that the nanocrystals are efficient T2-weighted (negative) contrast agents which, combined with visible-light emission generated by infrared excitation, affords them considerable potential for being used in bimodal

  9. Origin of bimodal fluorescence enhancement factors of Chlorobaculum tepidum reaction centers on silver island films.

    PubMed

    Maćkowski, Sebastian; Czechowski, Nikodem; Ashraf, Khuram U; Szalkowski, Marcin; Lokstein, Heiko; Cogdell, Richard J; Kowalska, Dorota

    2016-08-01

    We focus on the spectral dependence of plasmon-induced enhancement of fluorescence of Chlorobaculum tepidum reaction centers. When deposited on silver island film, they exhibit up to a 60-fold increase in fluorescence. The dependence of enhancement factors on the excitation wavelength is not correlated with the absorption spectrum of the plasmonic structure. In particular, the presence of one (or multiple) trimers of the Fenna-Matthews-Olson (FMO) protein reveals itself in bimodal distribution of enhancement factors for the excitation at 589 nm, the wavelength corresponding to bacteriochlorophyll absorption of FMO and the core of the RC. We conclude that the structure of multichromophoric complexes can substantially affect the impact of plasmonic excitations, which is important in the context of assembling functional biohybrid systems. PMID:27406896

  10. Colorimetric and Fluorescent Bimodal Ratiometric Probes for pH Sensing of Living Cells.

    PubMed

    Liu, Yuan-Yuan; Wu, Ming; Zhu, Li-Na; Feng, Xi-Zeng; Kong, De-Ming

    2015-06-01

    pH measurement is widely used in many fields. Ratiometric pH sensing is an important way to improve the detection accuracy. Herein, five water-soluble cationic porphyrin derivatives were synthesized and their optical property changes with pH value were investigated. Their pH-dependent assembly/disassembly behaviors caused significant changes in both absorption and fluorescence spectra, thus making them promising bimodal ratiometric probes for both colorimetric and fluorescent pH sensing. Different substituent identity and position confer these probes with different sensitive pH-sensing ranges, and the substituent position gives a larger effect. By selecting different porphyrins, different signal intensity ratios and different fluorescence excitation wavelengths, sensitive pH sensing can be achieved in the range of 2.1-8.0. Having demonstrated the excellent reversibility, good accuracy and low cytotoxicity of the probes, they were successfully applied in pH sensing inside living cells.

  11. Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus.

    PubMed

    Herruzo, Elena T; Garcia, Ricardo

    2012-01-01

    Bimodal atomic force microscopy is a force-microscopy method that requires the simultaneous excitation of two eigenmodes of the cantilever. This method enables the simultaneous recording of several material properties and, at the same time, it also increases the sensitivity of the microscope. Here we apply fractional calculus to express the frequency shift of the second eigenmode in terms of the fractional derivative of the interaction force. We show that this approximation is valid for situations in which the amplitude of the first mode is larger than the length of scale of the force, corresponding to the most common experimental case. We also show that this approximation is valid for very different types of tip-surface forces such as the Lennard-Jones and Derjaguin-Muller-Toporov forces.

  12. Bimodal distribution of free tropospheric ozone over the tropical western Pacific revealed by airborne observations

    NASA Astrophysics Data System (ADS)

    Pan, L. L.; Honomichl, S. B.; Randel, W. J.; Apel, E. C.; Atlas, E. L.; Beaton, S. P.; Bresch, J. F.; Hornbrook, R.; Kinnison, D. E.; Lamarque, J.-F.; Saiz-Lopez, A.; Salawitch, R. J.; Weinheimer, A. J.

    2015-09-01

    A recent airborne field campaign over the remote western Pacific obtained the first intensive in situ ozone sampling over the warm pool region from oceanic surface to 15 km altitude (near 360 K potential temperature level). The new data set quantifies ozone in the tropical tropopause layer under significant influence of convective outflow. The analysis further reveals a bimodal distribution of free tropospheric ozone mixing ratio. A primary mode, narrowly distributed around 20 ppbv, dominates the troposphere from the surface to 15 km. A secondary mode, broadly distributed with a 60 ppbv modal value, is prominent between 3 and 8 km (320 K to 340 K potential temperature levels). The latter mode occurs as persistent layers of ozone-rich drier air and is characterized by relative humidity under 45%. Possible controlling mechanisms are discussed. These findings provide new insight into the physical interpretation of the "S"-shaped mean ozone profiles in the tropics.

  13. Size evolution of highly amphiphilic macromolecular solution assemblies via a distinct bimodal pathway

    NASA Astrophysics Data System (ADS)

    Kelley, Elizabeth G.; Murphy, Ryan P.; Seppala, Jonathan E.; Smart, Thomas P.; Hann, Sarah D.; Sullivan, Millicent O.; Epps, Thomas H.

    2014-04-01

    The solution self-assembly of macromolecular amphiphiles offers an efficient, bottom-up strategy for producing well-defined nanocarriers, with applications ranging from drug delivery to nanoreactors. Typically, the generation of uniform nanocarrier architectures is controlled by processing methods that rely on cosolvent mixtures. These preparation strategies hinge on the assumption that macromolecular solution nanostructures are kinetically stable following transfer from an organic/aqueous cosolvent into aqueous solution. Herein we demonstrate that unequivocal step-change shifts in micelle populations occur over several weeks following transfer into a highly selective solvent. The unexpected micelle growth evolves through a distinct bimodal distribution separated by multiple fusion events and critically depends on solution agitation. Notably, these results underscore fundamental similarities between assembly processes in amphiphilic polymer, small molecule and protein systems. Moreover, the non-equilibrium micelle size increase can have a major impact on the assumed stability of solution assemblies, for which performance is dictated by nanocarrier size and structure.

  14. Decoupled polarization dynamics of incoherent waves and bimodal spectral incoherent solitons.

    PubMed

    Fusaro, A; Garnier, J; Michel, C; Xu, G; Fatome, J; Wright, L G; Wise, F W; Picozzi, A

    2016-09-01

    We consider the propagation of strongly incoherent waves in optical fibers in the framework of the vector nonlinear Schrödinger equation (VNLSE) accounting for the Raman effect. On the basis of the wave turbulence theory, we derive a kinetic equation that greatly simplifies the VNLSE and provides deep physical insight into incoherent wave dynamics. When applied to the study of polarization effects, the theory unexpectedly reveals that the linear polarization components of the incoherent wave evolve independently from each other, even in the presence of weak fiber birefringence. When applied to light propagation in bimodal fibers, the theory reveals that the incoherent modal components can be strongly coupled. After a complex transient, the modal components self-organize into a vector spectral incoherent soliton: The two solitons self-trap and propagate with a common velocity in frequency space. PMID:27607955

  15. Zero Boil-Off System Design and Thermal Analysis of the Bimodal Thermal Nuclear Rocket

    SciTech Connect

    Christie, Robert J.; Plachta, David W.

    2006-01-20

    Mars exploration studies at NASA are evaluating vehicles that incorporate Bimodal Nuclear Thermal Rocket (BNTR) propulsion which use a high temperature nuclear fission reactor and hydrogen to produce thermal propulsion. The hydrogen propellant is to be stored in liquid state for periods up to 18 months. To prevent boil-off of the liquid hydrogen, a system of passive and active components are needed to prevent heat from entering the tanks and to remove any heat that does. This report describes the design of the system components used for the BNTR Crew Transfer Vehicle and the thermal analysis performed. The results show that Zero Boil-Off (ZBO) can be achieved with the electrical power allocated for the ZBO system.

  16. Group superballistic diffusion: Bimodal velocity inducing coexistence of two states in a corrugated plane

    NASA Astrophysics Data System (ADS)

    Bao, Jing-Dong; Liu, Jian

    2013-08-01

    We consider anomalous diffusion of a particle moving in a tilted periodic potential in the presence of Lévy noise and nonlinear friction. Using Monte Carlo simulations, we have found some interesting characteristics of diffusion in such a nonlinear system: when the noise intensity is weak and the external force is close to the critical value at which local minima of the potential just vanish, the nonmonotonic behavior of the effective diffusion index and the superballistic diffusion are observed. This is due to the bimodal nature of the velocity distribution, and thus the test particles exist in either a running state or a long-tailed behind state in the spatial coordinate; the latter is disintegrated into small pieces of the probability peaks. We provide a relation between the group diffusion coefficient and the phase diffusion coefficient. It is shown that the distance between the above two-state centers increasing with time plays the definitive role in the superballistic group diffusion.

  17. Pitch Adaptation Patterns in Bimodal Cochlear Implant Users: Over Time and After Experience

    PubMed Central

    Reiss, Lina A.J.; Ito, Rindy A.; Eggleston, Jessica L.; Liao, Selena; Becker, Jillian J.; Lakin, Carrie E.; Warren, Frank M.; McMenomey, Sean O.

    2014-01-01

    Background Pitch plasticity has been observed in Hybrid cochlear implant (CI) users. Does pitch plasticity also occur in bimodal CI users with traditional long-electrode CIs, and is pitch adaptation pattern associated with electrode discrimination or speech recognition performance? Objective Characterize pitch adaptation patterns in long-electrode CI users, correlate these patterns with electrode discrimination and speech perception outcomes, and analyze which subject factors are associated with the different patterns. Methods Electric-to-acoustic pitch matches were obtained in 19 subjects over time from CI activation to at least 12 months after activation, and in a separate group of 18 subjects in a single visit after at least 24 months of CI experience. Audiometric thresholds, electrode discrimination performance, and speech perception scores were also measured. Results Subjects measured over time had pitch adaptation patterns that fit one of the following categories: 1) “Pitch-adapting”, i.e. the mismatch between perceived electrode pitch and the corresponding frequency-to-electrode allocations decreased; 2) “Pitch-dropping”, i.e. the pitches of multiple electrodes dropped and converged to a similar low pitch; 3) “Pitch-unchanging”, i.e. electrode pitches did not change. Subjects measured after CI experience had a parallel set of adaptation patterns: 1) “Matched-pitch”, i.e. the electrode pitch was matched to the frequency allocation; 2) “Low-pitch”, i.e. the pitches of multiple electrodes were all around the lowest frequency allocation; 3) “Nonmatched-pitch”, i.e. the pitch patterns were compressed relative to the frequency allocations and did not fit either the matched-pitch or low-pitch categories. Unlike Hybrid CI users which were mostly in the pitch-adapting/matched-pitch category, the majority of bimodal CI users were in the latter two categories, pitch-dropping/low-pitch or pitch-unchanging/nonmatched-pitch. Subjects with pitch

  18. Phenocryst-poor rhyolites of bimodal, tholeiitic provinces: the Rattlesnake Tuff and implications for mush extraction models

    NASA Astrophysics Data System (ADS)

    Streck, Martin J.; Grunder, Anita L.

    2008-01-01

    We consider the origin of rhyolites associated with tholeiitic basalt in bimodal provinces, as exemplified by the Rattlesnake Tuff of the High Lava Plains of eastern Oregon, in comparison to rhyolites associated with calcalkaline suites in light of recent models of extraction of rhyolite from crystal mush (Hildreth, J Volcanol Geotherm Res, 136:169 198, 2004; Bachmann and Bergantz, J Petrol, 45:1565 1582, 2004). The High Lava Plains encompass a strongly bimodal, tholeiite-rhyolite suite, spatially and compositionally related to the Snake River Plain and Yellowstone Plateau. In our assessment we draw the distinction between fractionation dominated processes to make rhyolites from rhyolites and processes required to make the parental rhyolite melt. New isotopic data and compositional zoning profiles in phenocrysts confirm that crystal fractionation dominated the generation of progressively more evolved, discrete rhyolites in the zoned Rattlesnake Tuff and are consistent with an origin of the least evolved high-silica rhyolites by partial melting of a mafic crust. While the most evolved rhyolites are compositionally virtually indistinguishable from those of calcalkaline suites, the parental rhyolites from bimodal suites are more Fe-rich than their calcalkaline counterparts. Oxygen isotope thermometry yields pre-eruptive temperatures of 860°C, in keeping with 800 880°C zircon saturation temperatures. High magmatic temperatures are common among rhyolites of bimodal suites, distinguishing them from cooler rhyolites of calcalkaline suites. Extraction of interstitial melt from a granodioritic mush cannot produce compositions of the Rattlesnake Tuff on the basis of major and trace element arguments (especially Fe, Ba, Sr, and Eu) and on the basis of temperature considerations. Chemically viable parental crystal mushes are syenite and alkali (A-type) granites for the production of all more evolved Rattlesnake Tuff rhyolites; ferro-dacitic mush is required for production of

  19. Dual Language Use in Sign-Speech Bimodal Bilinguals: fNIRS Brain-Imaging Evidence

    PubMed Central

    Kovelman, Ioulia; Shalinsky, Mark H.; White, Katherine S.; Schmitt, Shawn N.; Berens, Melody S.; Paymer, Nora; Petitto, Laura-Ann

    2009-01-01

    The brain basis of bilinguals’ ability to use two languages at the same time has been a hotly debated topic. On the one hand, behavioral research has suggested that bilingual dual language use involves complex and highly principled linguistic processes. On the other hand, brain-imaging research has revealed that bilingual language switching involves neural activations in brain areas dedicated to general executive functions not specific to language processing, such as general task maintenance. Here we address the involvement of language-specific versus cognitive-general brain mechanisms for bilingual language processing by studying a unique population and using an innovative brain-imaging technology: bimodal bilinguals proficient in signed and spoken languages and functional Near-Infrared Spectroscopy (fNIRS; Hitachi ETG-4000), which, like fMRI, measures hemodynamic change, but which is also advanced in permitting movement for unconstrained speech and sign production. Participant groups included (i) hearing ASL-English bilinguals, (ii) ASL monolinguals, and (iii) English monolinguals. Imaging tasks included picture naming in “Monolingual mode” (using one language at a time) and in “Bilingual mode” (using both languages either simultaneously or in rapid alternation). Behavioral results revealed that accuracy was similar among groups and conditions. By contrast, neuroimaging results revealed that bilinguals in Bilingual mode showed greater signal intensity within posterior temporal regions (“Wernicke’s area”) than in Monolingual mode. Significance: Bilinguals’ ability to use two languages effortlessly and without confusion involves the use of language-specific posterior temporal brain regions. This research with both fNIRS and bimodal bilinguals sheds new light on the extent and variability of brain tissue that underlies language processing, and addresses the tantalizing questions of how language modality, sign and speech, impact language

  20. Role of block copolymer adsorption versus bimodal grafting on nanoparticle self-assembly in polymer nanocomposites.

    PubMed

    Zhao, Dan; Di Nicola, Matteo; Khani, Mohammad M; Jestin, Jacques; Benicewicz, Brian C; Kumar, Sanat K

    2016-09-14

    We compare the self-assembly of silica nanoparticles (NPs) with physically adsorbed polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) copolymers (BCP) against NPs with grafted bimodal (BM) brushes comprised of long, sparsely grafted PS chains and a short dense carpet of P2VP chains. As with grafted NPs, the dispersion state of the BCP NPs can be facilely tuned in PS matrices by varying the PS coverage on the NP surface or by changes in the ratio of the PS graft to matrix chain lengths. Surprisingly, the BCP NPs are remarkably better dispersed than the NPs tethered with bimodal brushes at comparable PS grafting densities. We postulate that this difference arises because of two factors inherent in the synthesis of the NPs: In the case of the BCP NPs the adsorption process is analogous to the chains being "grafted to" the NP surface, while the BM case corresponds to "grafting from" the surface. We have shown that the "grafted from" protocol yields patchy NPs even if the graft points are uniformly placed on each particle. This phenomenon, which is caused by chain conformation fluctuations, is exacerbated by the distribution function associated with the (small) number of grafts per particle. In contrast, in the case of BCP adsorption, each NP is more uniformly coated by a P2VP monolayer driven by the strongly favorable P2VP-silica interactions. Since each P2VP block is connected to a PS chain we conjecture that these adsorbed systems are closer to the limit of spatially uniform sparse brush coverage than the chemically grafted case. We finally show that the better NP dispersion resulting from BCP adsorption leads to larger mechanical reinforcement than those achieved with BM particles. These results emphasize that physical adsorption of BCPs is a simple, effective and practically promising strategy to direct NP dispersion in a chemically unfavorable polymer matrix. PMID:27502154

  1. An investigation of bimodal jet trajectory in flow through scaled models of the human vocal tract

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Plesniak, Michael W.

    2006-05-01

    Pulsatile two-dimensional flow through static divergent models of the human vocal folds is investigated. Although the motivation for this study is speech production, the results are generally applicable to a variety of engineering flows involving pulsatile flow through diffusers. Model glottal divergence angles of 10, 20, and 40° represent various geometries encountered in one phonation cycle. Frequency and amplitude of the flow oscillations are scaled with physiological Reynolds and Strouhal numbers typical of human phonation. Glottal velocity trajectories are measured along the anterior-posterior midline by using phase-averaged particle image velocimetry to acquire 1,000 realizations at ten discrete instances in the phonation cycle. The angular deflection of the glottal jet from the streamwise direction (symmetric configuration) is quantified for each realization. A bimodal flow configuration is observed for divergence angles of 10 and 20°, with the flow eventually skewing and attaching to the vocal fold walls. The deflection of the flow toward the vocal fold walls occurs when the forcing function reaches maximum velocity and zero acceleration. For a divergence angle of 40°, the flow never attaches to the vocal fold walls; however, there is increased variability in the glottal jet after the forcing function reaches maximum velocity and zero acceleration. The variation in the jet trajectory as a function of divergence angle is explained by performance maps of diffuser flow regimes. The smaller angle cases are in the unstable transitory stall regime while the 40° divergent case is in the fully developed two-dimensional stall regime. Very small geometric variations in model size and surface finish significantly affect the flow behavior. The bimodal, or flip-flopping, glottal jet behavior is expected to influence the dipole contribution to sound production.

  2. Effect of meta-carborane on segmental dynamics in a bimodal Poly(dimethylsiloxane) network

    SciTech Connect

    Lewicki, J; Maxwell, R S; Patel, M; Herberg, J; Swain, A C; Liggat, J; Pethrick, R

    2008-06-11

    Bimodal networks of polydimethylsiloxane (PDMS) filled with varying amounts of icosahedral meta-carborane (m-CB) have been developed and characterized by broadband dielectric spectroscopy (BDS) and static {sup 1}H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR). Both BDS and MQ NMR showed evidence for a decrease in the polymer chain dynamics. BDS spectra quantified a normal-mode relaxation near 40 Hz at 40 C. The frequency maximum observed for filled samples decreased with increasing m-CB content until contents greater than 5 wt. %. The width of the relaxation spectrum increased with the addition of small quantities of filler and decreased with filler contents greater that 5 wt. %. Agglomeration effects were observed at loadings greater than 5 wt % as manifest by the onset of low frequency Maxwell-Wagner-Sillars (MWS) processes. The MQ NMR data allowed the characterization of distributions of the residual dipolar couplings, <{Omega}{sub d}> and thus in the dynamic order parameter, Sb, consistent with the bimodal network architecture expected from the synthesis protocol used. Upon addition of less than 10 wt.% m-CB filler, the mean <{Omega}{sub d}> for the longer chains increased by 46% and the width of the distribution increased by 33%. The mean <{Omega}{sub d}> for the shorter chains increased by much less, indicative of preferential dispersion of the filler particles in the long chain domains of the network structure. We conclude that the mechanism of reinforcement is likely a free volume space filling at low loadings transitioning to complex molecular filler and polymer chain interaction phenomena at higher loadings.

  3. Bimodal Distribution of Geyser Preplay Eruptions: Lone Star Geyser, Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Namiki, A.; Hurwitz, S.; Murphy, F.; Manga, M.

    2014-12-01

    Geyser eruption intervals are determined by rates of water and heat discharge into shallow subsurface reservoirs and the conduit. In some geysers, small amounts of water discharge prior to a main eruption ('Preplay') can affect eruption intervals. Water discharge during preplay reduces the hydrostatic pressure, which in turn, induces boiling of water that is at, or near the critical temperature. Ascending steam slugs from depth can also lead to shorter eruption intervals (Namiki et al., 2014). In April 2014, we carried a five day experiment at Lone Star Geyser, Yellowstone National Park. Eruptions and their preplays were recorded with an infrared sensor that measured temperature variations immediately above the geyser cone (3.4~m high), temperature loggers that measured water temperature at the base of the cone and in the outflow channels, and visual observations. At Lone Star Geyser, during the preplay phase of the eruption, mainly liquid water is erupted, whereas the main phase of the eruption begins with the liquid-water dominated eruption and turns into the steam discharge. The temperature rise in an outflow channel indicates the occurrence of preplays and initiation of the main eruption. The acquired data suggests that the preplay patterns of Lone Star Geyser are vigorous and complex, consistent with previous observations (Karlstrom et al., 2013). Our new observations reveal two typical styles: 1) vigorous preplays with few events (<5) and long intervals (>20~minutes) that last approximately 40~minutes, and 2) less vigorous preplays that include several events (>5) with short intervals (few minutes), and continue approximately for one hour. Probability distributions of preplay durations show two peaks indicating the bimodal activity. The bimodality of Lone Star preplays may be a result of subtle change of temperature distribution in a convecting reservoir which has been observed in laboratory experiments (Toramaru and Maeda, 2013).

  4. Ligand conjugation to bimodal poly(ethylene glycol) brush layers on microbubbles.

    PubMed

    Chen, Cherry C; Borden, Mark A

    2010-08-17

    Using microbubbles as model systems, we examined molecular diffusion and binding to colloidal surfaces in bimodal poly(ethylene glycol) (PEG) brush layers. A microbubble is a gaseous colloidal particle with a diameter of less than 10 mum, of which the surface comprises amphiphilic phospholipids self-assembled to form a lipid monolayer shell. Due to the compressible gas core, microbubbles provide a sensitive acoustic response and are currently used as ultrasound contrast agents. Similar to the design of long circulating liposomes, PEG chains are typically incorporated into the shell of microbubbles to form a steric barrier against coalescence and adsorption of macromolecules to the microbubble surface. We introduced a buried-ligand architecture (BLA) design where the microbubble surface was coated with a bimodal PEG brush. After microbubbles were generated, fluorescent ligands with different molecular weights were conjugated to the tethered functional groups on the shorter PEG chains, while the longer PEG chains served as a shield to protect these ligands from exposure to the surrounding environment. BLA microbubbles reduced the binding of macromolecules (>10 kDa) to the tethers due to the steric hindrance of the PEG overbrush while allowing the uninhibited attachment of small molecules (<1 kDa). Roughly 40% less fluorescein-conjugated streptavidin (SA-FITC) bound to BLA microbubbles compared to exposed-ligand architecture (ELA) microbubbles. The binding of SA-FITC to BLA microbubbles suggested a possible phase separation between the lipid species on the surface leading to populations of revealed and concealed ligands. Ligand conjugation kinetics was independent of microbubble size, regardless of ligand size or microbubble architecture. We observed, for the first time, streptavidin-induced surface structure formation for ELA microbubbles and proposed that this phenomenon may be correlated to flow cytometry scattering measurements. We therefore demonstrated the

  5. Superwetting nanowire membranes for selective absorption.

    PubMed

    Yuan, Jikang; Liu, Xiaogang; Akbulut, Ozge; Hu, Junqing; Suib, Steven L; Kong, Jing; Stellacci, Francesco

    2008-06-01

    The construction of nanoporous membranes is of great technological importance for various applications, including catalyst supports, filters for biomolecule purification, environmental remediation and seawater desalination. A major challenge is the scalable fabrication of membranes with the desirable combination of good thermal stability, high selectivity and excellent recyclability. Here we present a self-assembly method for constructing thermally stable, free-standing nanowire membranes that exhibit controlled wetting behaviour ranging from superhydrophilic to superhydrophobic. These membranes can selectively absorb oils up to 20 times the material's weight in preference to water, through a combination of superhydrophobicity and capillary action. Moreover, the nanowires that form the membrane structure can be re-suspended in solutions and subsequently re-form the original paper-like morphology over many cycles. Our results suggest an innovative material that should find practical applications in the removal of organics, particularly in the field of oil spill cleanup.

  6. A hemi-fission intermediate links two mechanistically distinct stages of membrane fission

    PubMed Central

    Sundborger, Anna C.; Hortelano, Eva Rodriguez; Fuhrmans, Marc; Neumann, Sylvia; Müller, Marcus; Hinshaw, Jenny E.; Schmid, Sandra L.; Frolov, Vadim A.

    2015-01-01

    Fusion and fission drive all vesicular transport. Although topologically opposite, these reactions pass through the same hemi-fusion/fission intermediate1,2, characterized by a ‘stalk’ in which only the inner monolayers of the two compartments have merged to form a localized non-bilayer connection1-3. Formation of the hemi-fission intermediate requires energy input from proteins catalyzing membrane remodeling; however the relationship between protein conformational rearrangements and hemi-fusion/fission remains obscure. Here we analyzed how the GTPase cycle of dynamin, the prototypical membrane fission catalyst4-6, is directly coupled to membrane remodeling. We used intra-molecular chemical cross-linking to stabilize dynamin in its GDP•AlF4--bound transition-state. In the absence of GTP this conformer produced stable hemi-fission, but failed to progress to complete fission, even in the presence of GTP. Further analysis revealed that the pleckstrin homology domain (PHD) locked in its membrane-inserted state facilitated hemi-fission. A second mode of dynamin activity, fueled by GTP hydrolysis, couples dynamin disassembly with cooperative diminishing of the PHD wedging, thus destabilizing the hemi-fission intermediate to complete fission. Molecular simulations corroborate the bimodal character of dynamin action and indicate radial and axial forces as dominant, although not independent drivers of hemi-fission and fission transformations, respectively. Mirrored in the fusion reaction7-8, the force bimodality might constitute a general paradigm for leakage-free membrane remodeling. PMID:26123023

  7. Towards high water permeability in triazine-framework-based microporous membranes for dehydration of ethanol.

    PubMed

    Tang, Yu Pan; Wang, Huan; Chung, Tai Shung

    2015-01-01

    The microstructural evolution of a series of triazine framework-based microporous (TFM) membranes under different conditions has been explored in this work. The pristine TFM membrane is in situ fabricated in the course of polymer synthesis via a facile Brønsted-acid-catalyzed cyclotrimerizaiton reaction. The as-synthesized polymer exhibits a microporous network with high thermal stability. The free volume size of the TFM membranes gradually evolved from a unimodal distribution to a bimodal distribution under annealing, as analyzed by positron annihilation lifetime spectroscopy (PALS). The emergence of the bimodal distribution is probably ascribed to the synergetic effect of quenching and thermal cyclization reaction. In addition, the fractional free volume (FFV) of the membranes presents a concave trend with increasing annealing temperature. Vapor sorption tests reveal that the mass transport properties are closely associated with the free volume evolution, which provides an optimal condition for dehydration of biofuels. A promising separation performance with extremely high water permeability has been attained for dehydration of an 85 wt % ethanol aqueous solution at 45 °C. The study on the free volume evolution of the TFM membranes may provide useful insights about the microstructure and mass transport behavior of the microporous polymeric materials.

  8. Bimodal stimulus timing-dependent plasticity in primary auditory cortex is altered after noise exposure with and without tinnitus.

    PubMed

    Basura, Gregory J; Koehler, Seth D; Shore, Susan E

    2015-12-01

    Central auditory circuits are influenced by the somatosensory system, a relationship that may underlie tinnitus generation. In the guinea pig dorsal cochlear nucleus (DCN), pairing spinal trigeminal nucleus (Sp5) stimulation with tones at specific intervals and orders facilitated or suppressed subsequent tone-evoked neural responses, reflecting spike timing-dependent plasticity (STDP). Furthermore, after noise-induced tinnitus, bimodal responses in DCN were shifted from Hebbian to anti-Hebbian timing rules with less discrete temporal windows, suggesting a role for bimodal plasticity in tinnitus. Here, we aimed to determine if multisensory STDP principles like those in DCN also exist in primary auditory cortex (A1), and whether they change following noise-induced tinnitus. Tone-evoked and spontaneous neural responses were recorded before and 15 min after bimodal stimulation in which the intervals and orders of auditory-somatosensory stimuli were randomized. Tone-evoked and spontaneous firing rates were influenced by the interval and order of the bimodal stimuli, and in sham-controls Hebbian-like timing rules predominated as was seen in DCN. In noise-exposed animals with and without tinnitus, timing rules shifted away from those found in sham-controls to more anti-Hebbian rules. Only those animals with evidence of tinnitus showed increased spontaneous firing rates, a purported neurophysiological correlate of tinnitus in A1. Together, these findings suggest that bimodal plasticity is also evident in A1 following noise damage and may have implications for tinnitus generation and therapeutic intervention across the central auditory circuit.

  9. Membrane thickness is an important variable in membrane scaffolds: Influence of chitosan membrane structure on the behavior of cells

    PubMed Central

    Uygun, Basak E.; Bou-Akl, Therese; Albanna, Mohammad

    2009-01-01

    Cell and tissue responses to polymeric materials are orchestrated in part by the conformations of adsorbed plasma proteins. Thus, the chemical properties of a polymer membrane that govern protein adsorption behaviour can play an important role in determining the biological properties of tissue engineered scaffolds derived from that polymer. In this study, we explored the role of membrane thickness as a factor influencing cell adhesion and proliferation on chitosan membranes with and without covalently-attached glycosaminoglycans. Rat mesenchymal stem cells cultured on chitosan membranes of various thicknesses demonstrated significantly improved cell adhesion, spreading and proliferation as membrane thickness was increased. Hepatocytes displayed increased spreading on the substrate with increasing membrane thickness similar to MSCs. Increased thickness reduced the overall crystallinity of the membrane, and the data indicate that the improved cellular responses were likely due to enhanced adsorption of serum vitronectin, presumably due to reduced membrane crystallinity. These results demonstrate that membrane thickness is an important design variable that can be manipulated in chitosan-based scaffolds to achieve enhanced cell spreading, proliferation and function. PMID:19925888

  10. Unintentional behaviour change.

    PubMed

    Aunger, Robert; Curtis, Valerie

    2014-08-01

    We argue that the authors ignore a broad range of possible means of changing behaviour: unintentional change. Most of the behaviours that people seek to change - either in themselves or that are the subject of public health campaigns-are habitual, and hence not necessarily responsive to intentions. An evolutionary approach should take into account all kinds of evolved behavioural responses. PMID:25162861

  11. [Membranous nephropathy].

    PubMed

    Mercadal, Lucile

    2013-12-01

    Membranous nephropathy is characterized by immune complex deposits on the outer side of the glomerular basement membrane. Activation of complement and of oxidation lead to basement membrane lesions. The most frequent form is idiopathic. At 5 and 10 years, renal survival is around 90 and 65% respectively. A prognostic model based on proteinuria, level and duration, progression of renal failure in a few months can refine prognosis. The urinary excretion of C5b-9, β2 and α1 microglobuline and IgG are strong predictors of outcome. Symptomatic treatment is based on anticoagulation in case of nephrotic syndrome, angiotensin conversion enzyme inhibitors, angiotensin II receptor blockers and statins. Immunosuppressive therapy should be discussed for patients having a high risk of progression. Corticoids alone has no indication. Treatment should include a simultaneous association or more often alternating corticoids and alkylant agent for a minimum of 6 months. Adrenocorticoid stimulating hormone and steroids plus mycophenolate mofetil may be equally effective. Steroids plus alkylant decrease the risk of end stage renal failure. Cyclosporine and tacrolimus decrease proteinuria but are associated with a high risk of recurrence at time of withdrawal and are nephrotoxic. Rituximab evaluated on open studies needs further evaluations to define its use.

  12. Genetics of impulsive behaviour

    PubMed Central

    Bevilacqua, Laura; Goldman, David

    2013-01-01

    Impulsivity, defined as the tendency to act without foresight, comprises a multitude of constructs and is associated with a variety of psychiatric disorders. Dissecting different aspects of impulsive behaviour and relating these to specific neurobiological circuits would improve our understanding of the etiology of complex behaviours for which impulsivity is key, and advance genetic studies in this behavioural domain. In this review, we will discuss the heritability of some impulsivity constructs and their possible use as endophenotypes (heritable, disease-associated intermediate phenotypes). Several functional genetic variants associated with impulsive behaviour have been identified by the candidate gene approach and re-sequencing, and whole genome strategies can be implemented for discovery of novel rare and common alleles influencing impulsivity. Via deep sequencing an uncommon HTR2B stop codon, common in one population, was discovered, with implications for understanding impulsive behaviour in both humans and rodents and for future gene discovery. PMID:23440466

  13. Behavioural aspects of terrorism.

    PubMed

    Leistedt, Samuel J

    2013-05-10

    Behavioural and social sciences are useful in collecting and analysing intelligence data, understanding terrorism, and developing strategies to combat terrorism. This article aims to examine the psychopathological concepts of terrorism and discusses the developing roles for behavioural scientists. A systematic review was conducted of studies investigating behavioural aspects of terrorism. These studies were identified by a systematic search of databases, textbooks, and a supplementary manual search of references. Several fundamental concepts were identified that continue to influence the motives and the majority of the behaviours of those who support or engage in this kind of specific violence. Regardless of the psychological aspects and new roles for psychiatrists, the behavioural sciences will continue to be called upon to assist in developing better methods to gather and analyse intelligence, to understand terrorism, and perhaps to stem the radicalisation process.

  14. Escherichia coli as host for membrane protein structure determination: a global analysis

    PubMed Central

    Hattab, Georges; Warschawski, Dror E.; Moncoq, Karine; Miroux, Bruno

    2015-01-01

    The structural biology of membrane proteins (MP) is hampered by the difficulty in producing and purifying them. A comprehensive analysis of protein databases revealed that 213 unique membrane protein structures have been obtained after production of the target protein in E. coli. The primary expression system used was the one based on the T7 RNA polymerase, followed by the arabinose and T5 promoter based expression systems. The C41λ(DE3) and C43λ(DE3) bacterial mutant hosts have contributed to 28% of non E. coli membrane protein structures. A large scale analysis of expression protocols demonstrated a preference for a combination of bacterial host-vector together with a bimodal distribution of induction temperature and of inducer concentration. Altogether our analysis provides a set of rules for the optimal use of bacterial expression systems in membrane protein production. PMID:26160693

  15. Omniphobic Membrane for Robust Membrane Distillation

    SciTech Connect

    Lin, SH; Nejati, S; Boo, C; Hu, YX; Osuji, CO; Ehmelech, M

    2014-11-01

    In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.

  16. Finite-thrust optimization of interplanetary transfers of space vehicle with bimodal nuclear thermal propulsion

    NASA Astrophysics Data System (ADS)

    Kharytonov, Oleksii M.; Kiforenko, Boris M.

    2011-08-01

    The nuclear thermal rocket (NTR) propulsion is one of the leading promising technologies for primary space propulsion for manned exploration of the solar system due to its high specific impulse capability and sufficiently high thrust-to-weight ratio. Another benefit of NTR is its possible bimodal design, when nuclear reactor is used for generation of a jet thrust in a high-thrust mode and (with an appropriate power conversion system) as a source of electric power to supply the payload and the electric engines in a low-thrust mode. The model of the NTR thrust control was developed considering high-thrust NTR as a propulsion system of limited power and exhaust velocity. For the proposed model the control of the thrust value is accomplished by the regulation of reactor thermal power and propellant mass flow rate. The problem of joint optimization of the combination of high- and low-thrust arcs and the parameters of bimodal NTR (BNTR) propulsion system is considered for the interplanetary transfers. The interplanetary trajectory of the space vehicle is formed by the high-thrust NTR burns, which define planet-centric maneuvers and by the low-thrust heliocentric arcs where the nuclear electric propulsion (NEP) is used. The high-thrust arcs are analyzed using finite-thrust approach. The motion of the corresponding dynamical system is realized in three phase spaces concerning the departure planet-centric maneuver by means of high-thrust NTR propulsion, the low-thrust NEP heliocentric maneuver and the approach high-thrust NTR planet-centric maneuver. The phase coordinates are related at the time instants of the change of the phase spaces due to the relations between the space vehicle masses. The optimal control analysis is performed using Pontryagin's maximum principle. The numerical results are analyzed for Earth-Mars "sprint" transfer. The optimal values of the parameters that define the masses of NTR and NEP subsystems have been evaluated. It is shown that the low

  17. Design and Development of the MITEE-B Bi-Modal Nuclear Propulsion Engine

    NASA Astrophysics Data System (ADS)

    Paniagua, John C.; Powell, James R.; Maise, George

    2003-01-01

    Previous studies of compact, ultra-lightweight high performance nuclear thermal propulsion engines have concentrated on systems that only deliver high thrust. However, many potential missions also require substantial amounts of electric power. Studies of a new, very compact and lightweight bi-modal nuclear engine that provides both high propulsive thrust and high electric power for planetary science missions are described. The design is a modification of the MITEE nuclear thermal engine concept that provided only high propulsive thrust. In the new design, MITEE-B, separate closed cooling circuits are incorporated into the reactor, which transfers useful amounts of thermal energy to a small power conversion system that generates continuous electric power over the full life of the mission, even when the engine is not delivering propulsive thrust. Two versions of the MITEE-B design are described and analyzed. Version 1 generates 1 kW(e) of continuous power for control of the spacecraft, sensors, data transmission, etc. This power level eliminates the need for RTG's on missions to the outer planets, and allowing considerably greater operational capability for the spacecraft. This, plus its high thrust and high specific impulse propulsive capabilities, makes MITEE-B very attractive for such missions. In Version 2, of MITEE-B, a total of 20 kW(e) is generated, enabling the use of electric propulsion. The combination of high open cycle propulsion thrust (20,000 Newtons) with a specific impulse of ~1000 seconds for short impulse burns, and long term (months to years), electric propulsion greatly increases MITEE's ΔV capability. Version 2 of MITEE-B also enables the production and replenishment of H2 propellant using in-situ resources, such as electrolysis of water from the ice sheet on Europa and other Jovian moons. This capability would greatly increase the ΔV available for certain planetary science missions. The modifications to the MITEE multiple pressure tube

  18. Can Sulfur Explain the Bimodal Color Distribution Observed in the Jupiter Trojans?

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Mahjoub, Ahmed; Poston, Michael; Brown, Michael E.; Eiler, John; Ehlmann, Bethany; Hodyss, Robert; Hand, Kevin P.; Carlson, Robert W.; Wong, Ian

    2016-10-01

    We present a series of experiments aimed at exploring the hypothesis that the presence or absence of H2S ice on the surface of primitive icy bodies in the early solar system is responsible for the bimodal color distribution of the Jupiter Trojans.Central to our proposed hypothesis is a location-dependent sublimation of ices in the primordial trans-neptunian disk which would have divided objects according to whether they retained H2S on their surfaces for sufficient time to incorporate their constituents into irradiated organic crusts. The irradiated crusts of objects with and without H2S would have different chemistry and therefore different optical properties. Dynamical instability models of the early solar system (e.g. Morbidelli et al., 2005, Nesvorny et al., 2013) predict that Trojans, formed from this primordial population, were later emplaced inward to co-orbit with Jupiter during large-scale rearrangement events. According to our hypothesis, the Trojans today would show evidence of their primordial location with respect to the H2S sublimation line in the form of a bimodal distribution in surface chemistry, and thus color.We present laboratory spectroscopy experiments in support of this hypothesis. Numerous thin ice films composed of H2O, CH3OH, NH3, were produced both with and without H2S. Subsequent processing of these icy bodies was simulated using electron irradiation and heating. Visible reflectance spectra show significant reddening when H2S is present. Mid-infrared spectra confirm the formation of non-volatile sulfur-containing molecules in the products of H2S-containing ices. The infrared spectral properties of the organic residues remaining at room temperature show that sulfur significantly changes the chemistry of these irradiation-produced organics. These experiments suggest that the presence of specific sulfur-bearing chemical species may play an important role in the colors of both the KBOs and Trojans today. This testable hypothesis could feed

  19. Solar Bimodal System with Hydrogen Post-Burning. The Porblems of Combustion Chamber Heat Shield

    NASA Astrophysics Data System (ADS)

    Chvanov, Vladimir K.; Finogenov, Sergey L.; Kudrin, Oleg I.; Martynov, Mikhail V.

    2002-01-01

    The space solar bimodal system (SBS) with the high-temperature heating of hydrogen in the concentrator-absorber system and the heated hydrogen post-burning with oxygen in the combustion chamber is considered. The SBS can provide the interorbital transfers at operation in the propulsion mode, and the power supply at operation in the energy mode. The SBS operation in the propulsion mode permits to increase the delivered (from LEO to GEO) payload mass in 1.5-2 times in comparison with the prospective LH2-LOX liquid rocket engines, or to use the carrier-rocket of more light class with less cost of launch. The SBS operation in the onboard equipment power supply mode can provide the high specific power - 5 kWe per ton or more. The reliability of such SBS prolonged operation is rather high due to usage of the high-effective multi-stage concentrator- absorber system which prevents the SBS optical efficiency decreasing occurring because of the concentrator accuracy reduction at space operation conditions (periodical temperature changing, UV-radiation influence, etc.) One of the principle problems of creation of SBS, as a system of low thrust, is the complexity of cooling of the combustion chamber where the heated hydrogen is post-burned. In the carried-out investigation the possible solution of this problem is considered. The usage of heat shield system including coolant loop with the liquid metal and the tank with thermal accumulating substance is suggested. The results of corresponding investigations concerning the performances of the SBS cooling and specific impulse change are presented. It is shown that specific impulse of the presented SBS can slightly reduce or even increase in some important cases in comparison with the existing solar bimodal systems. In the energy mode the concentrator-absorber assembly provides the high- temperature elements heating in the electric power supply system. The combination of the number of propulsion system thrust and working process

  20. Bimodal distribution of sulfuric acid aerosols in the upper haze of Venus

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Zhang, Xi; Crisp, David; Bardeen, Charles G.; Yung, Yuk L.

    2014-03-01

    Observations by the SPICAV/SOIR instruments aboard Venus Express have revealed that the upper haze (UH) of Venus, between 70 and 90 km, is variable on the order of days and that it is populated by two particle modes. We use a one-dimensional microphysics and vertical transport model based on the Community Aerosol and Radiation Model for Atmospheres to evaluate whether interaction of upwelled cloud particles and sulfuric acid particles nucleated in situ on meteoric dust are able to generate the two observed modes, and whether their observed variability are due in part to the action of vertical transient winds at the cloud tops. Nucleation of photochemically produced sulfuric acid onto polysulfur condensation nuclei generates mode 1 cloud droplets, which then diffuse upwards into the UH. Droplets generated in the UH from nucleation of sulfuric acid onto meteoric dust coagulate with the upwelled cloud particles and therefore cannot reproduce the observed bimodal size distribution. By comparison, the mass transport enabled by transient winds at the cloud tops, possibly caused by sustained subsolar cloud top convection, are able to generate a bimodal size distribution in a time scale consistent with Venus Express observations. Below the altitude where the cloud particles are generated, sedimentation and vigorous convection causes the formation of large mode 2 and mode 3 particles in the middle and lower clouds. Evaporation of the particles below the clouds causes a local sulfuric acid vapor maximum that results in upwelling of sulfuric acid back into the clouds. In the case where the polysulfur condensation nuclei are small and their production rate is high, coagulation of small droplets onto larger droplets in the middle cloud may set up an oscillation in the size modes of the particles such that precipitation of sulfuric acid “rain” may be possible immediately below the clouds once every few Earth months. Reduction of the polysulfur condensation nuclei production

  1. Applying One Health to behaviour.

    PubMed

    Bower, Caroline

    2014-11-01

    The British Veterinary Behaviour Association and the Association of Pet Behaviour Counsellors held a meeting last month to highlight the One Health principle with regard to the behaviour of people and animals, particularly pets. Caroline Bower reports. PMID:25377201

  2. Geometry of membrane fission.

    PubMed

    Frolov, Vadim A; Escalada, Artur; Akimov, Sergey A; Shnyrova, Anna V

    2015-01-01

    Cellular membranes define the functional geometry of intracellular space. Formation of new membrane compartments and maintenance of complex organelles require division and disconnection of cellular membranes, a process termed membrane fission. Peripheral membrane proteins generally control membrane remodeling during fission. Local membrane stresses, reflecting molecular geometry of membrane-interacting parts of these proteins, sum up to produce the key membrane geometries of fission: the saddle-shaped neck and hour-glass hemifission intermediate. Here, we review the fundamental principles behind the translation of molecular geometry into membrane shape and topology during fission. We emphasize the central role the membrane insertion of specialized protein domains plays in orchestrating fission in vitro and in cells. We further compare individual to synergistic action of the membrane insertion during fission mediated by individual protein species, proteins complexes or membrane domains. Finally, we describe how local geometry of fission intermediates defines the functional design of the protein complexes catalyzing fission of cellular membranes. PMID:25062896

  3. Behavioural genetics: An introduction.

    PubMed

    Sluyter, F; Ellenbroek, B A

    1999-06-01

    Behavioural genetics is the study of the hereditary influence on behaviour, and can therefore be regarded as the intersection between behavioural sciences and genetics. As with most other fields of research it is difficult to exactly pinpoint when behavioural genetics started. In fact, one might say that the notion behavioural traits can be inherited may have appeared in human thought as early at 8000 BC, when the domestication of the dog began. The scientific era of behavioural genetics is generally considered to start with Charles Darwin. In his famous book On the Origin of Species by Means of natural Selection, or the Preservation of favoured Races in the Struggle for Life, published in 1859 (and sold out the first day), he devoted an entire chapter on instinctive behavioural patterns. Some years later, in his book The Descent of Man and Selection in Relation to Sex, he clearly stated that the difference between the mind of a human being and the mind of an animal 'is certainly one of degree and not of kind'. Moreover he gave considerable thought that mental powers (and insanity) are heritable aspects.

  4. Texture Evaluation of a Bi-Modal Structure During Static Recrystallization of Hot-Deformed Mg-Al-Sn Alloy

    NASA Astrophysics Data System (ADS)

    Kabir, Abu Syed Humaun; Su, Jing; Yue, Stephen

    2016-02-01

    In this study, Mg-Al-Sn alloy was hot compressed at 523 K (250 °C) and annealed at 623 K (350 °C) for various times. The initial as-deformed microstructure was partially dynamic recrystallized with strain-induced precipitates on the recrystallized grain boundaries. After annealing at 623 K (350 °C), static recrystallization (SRX) of the bimodal microstructure took place where, at this temperature, no static precipitates formed. The goal of this work was to study the effect of dynamic precipitation on the texture evolution during the SRX process. Progressive texture evolution was studied during annealing by electron backscattered diffraction technique through a microstructure-tracking process. It was found that the grain-coarsening mechanism during the early stage of annealing is not totally controlled by the basal-oriented grains. Also, it was found that the dynamic precipitates may have significant influence in the early texture weakening during annealing of a bimodal structure.

  5. Suicide and suicidal behaviour.

    PubMed

    Turecki, Gustavo; Brent, David A

    2016-03-19

    Suicide is a complex public health problem of global importance. Suicidal behaviour differs between sexes, age groups, geographic regions, and sociopolitical settings, and variably associates with different risk factors, suggesting aetiological heterogeneity. Although there is no effective algorithm to predict suicide in clinical practice, improved recognition and understanding of clinical, psychological, sociological, and biological factors might help the detection of high-risk individuals and assist in treatment selection. Psychotherapeutic, pharmacological, or neuromodulatory treatments of mental disorders can often prevent suicidal behaviour; additionally, regular follow-up of people who attempt suicide by mental health services is key to prevent future suicidal behaviour.

  6. Critical behaviors of transverse crystal field and bimodal magnetic field mixed spin Ising model with bond dilution or bond percolation threshold

    NASA Astrophysics Data System (ADS)

    Xu, C. Q.; Yan, S. L.

    2016-10-01

    Within the effective field theory, we investigate critical behaviors of transverse crystal field and bimodal magnetic field mixed spin-1/2 and spin-1 Ising model with bond dilution or percolation threshold on a simple cubic lattice. A-type double tricritical points and zigzag reentrant phenomenon can be found at pure bond and large bimodal magnetic field status. The ordered phase is impaired sharply due to bond dilution. The positive transverse crystal field can induce ordered phase at ordinary bond percolation threshold. The bimodal magnetic field can suppress the induced ordered phase and form a series of closed ordered regions. An extraordinary bond percolation threshold is determined, at which the induced ordered phase vanishes completely. The different effects of bimodal magnetic field and bond percolation threshold on induced ordered phase are discussed.

  7. Bimodal space nuclear power system with fast reactor and Topaz II-type single-cell TFE

    SciTech Connect

    Ponomarev-Stepnoi, N.N.; Usov, V.A.; Ogloblin, B.G.; Shalaev, A.I.; Klimov, A.V.; Kirillov, E.Y.; Shumov, D.P.; Radchenko, I.S.; Nicolaev, Y.V.

    1996-03-01

    The paper deals with characteristics and conceptual studies of a bimodal space thermionic system with a fast reactor and single-cell TFEs which is designed to operate in two modes: rated power mode providing power supply to space vehicle-mounted systems with energy consumption level of 10{endash}80 kW(e) and forced thermal propulsion mode with thrust of 2200 N. {copyright} {ital 1996 American Institute of Physics.}

  8. Habitat Association and Seasonality in a Mosaic and Bimodal Hybrid Zone between Chorthippus brunneus and C. jacobsi (Orthoptera: Acrididae)

    PubMed Central

    Tatsuta, Haruki; Butlin, Roger K.

    2012-01-01

    Understanding why some hybrid zones are bimodal and others unimodal can aid in identifying barriers to gene exchange following secondary contact. The hybrid zone between the grasshoppers Chorthippus brunneus and C. jacobsi contains a mix of allopatric parental populations and inter-mingled bimodal and unimodal sympatric populations, and provides an ideal system to examine the roles of local selection and gene flow between populations in maintaining bimodality. However, it is first necessary to confirm, over a larger spatial scale, previously identified associations between population composition and season and habitat. Here we use cline-fitting of one morphological and one song trait along two valley transects, and intervening mountains, to confirm previously identified habitat associations (mountain versus valley) and seasonal changes in population composition. As expected from previous findings of studies on a smaller spatial scale, C. jacobsi dominated mountain habitats and mixed populations dominated valleys, and C. brunneus became more prevalent in August. Controlling for habitat and incorporating into the analysis seasonal changes in cline parameters and the standard errors of parental trait values revealed wider clines than previous studies (best estimates of 6.4 to 24.5 km in our study versus 2.8 to 4.7 km in previous studies) and increased percentage of trait variance explained (52.7% and 61.5% for transects 1 and 2 respectively, versus 17.6%). Revealing such strong and consistent patterns within a complex hybrid zone will allow more focused examination of the causes of variation in bimodality in mixed populations, in particular the roles of local selection versus habitat heterogeneity and gene flow between differentiated populations. PMID:22675485

  9. Role of bimodal stimulation for auditory-perceptual skills development in children with a unilateral cochlear implant.

    PubMed

    Marsella, P; Giannantonio, S; Scorpecci, A; Pianesi, F; Micardi, M; Resca, A

    2015-12-01

    This is a prospective randomised study that evaluated the differences arising from a bimodal stimulation compared to a monaural electrical stimulation in deaf children, particularly in terms of auditory-perceptual skills development. We enrolled 39 children aged 12 to 36 months, suffering from severe-to-profound bilateral sensorineural hearing loss with residual hearing on at least one side. All were unilaterally implanted: 21 wore only the cochlear implant (CI) (unilateral CI group), while the other 18 used the CI and a contralateral hearing aid at the same time (bimodal group). They were assessed with a test battery designed to appraise preverbal and verbal auditory-perceptual skills immediately before and 6 and 12 months after implantation. No statistically significant differences were observed between groups at time 0, while at 6 and 12 months children in the bimodal group had better scores in each test than peers in the unilateral CI group. Therefore, although unilateral deafness/hearing does not undermine hearing acuity in normal listening, the simultaneous use of a CI and a contralateral hearing aid (binaural hearing through a bimodal stimulation) provides an advantage in terms of acquisition of auditory-perceptual skills, allowing children to achieve the basic milestones of auditory perception faster and in greater number than children with only one CI. Thus, "keeping awake" the contralateral auditory pathway, albeit not crucial in determining auditory acuity, guarantees benefits compared with the use of the implant alone. These findings provide initial evidence to establish shared guidelines for better rehabilitation of patients undergoing unilateral cochlear implantation, and add more evidence regarding the correct indications for bilateral cochlear implantation.

  10. Role of water states on water uptake and proton transport in Nafion using molecular simulations and bimodal network

    SciTech Connect

    Hwang, Gi Suk; Kaviany, Massoud; Gostick, Jeffrey T.; Kientiz, Brian; Weber, Adam Z.; Kim, Moo Hwan

    2011-04-07

    In this paper, using molecular simulations and a bimodal-domain network, the role of water state on Nafion water uptake and water and proton transport is investigated. Although the smaller domains provide moderate transport pathways, their effectiveness remains low due to strong, resistive water molecules/domain surface interactions. Finally, the water occupancy of the larger domains yields bulk-like water, and causes the observed transition in the water uptake and significant increases in transport properties.

  11. Towards a bimodal proximity sensor for in situ neurovascular bundle detection during dental implant surgery

    PubMed Central

    Weber, Jessie R.; Baribeau, François; Grenier, Paul; Émond, Frédéric; Dubois, Sylvain; Duchesne, François; Girard, Marc; Pope, Timothy; Gallant, Pascal; Mermut, Ozzy; Moghadam, Hassan Ghaderi

    2013-01-01

    Proof of concept results are presented towards an in situ bimodal proximity sensor for neurovascular bundle detection during dental implant surgery using combined near infrared absorption (NIR) and optical coherence tomography (OCT) techniques. These modalities are shown to have different sensitivity to the proximity of optical contrast from neurovascular bundles. NIR AC and DC signals from the pulsing of an artery enable qualitative ranging of the bundle in the millimeter range, with best sensitivity around 0.5-3mm distance in a custom phantom setup. OCT provides structural mapping of the neurovascular bundle at sub-millimeter distances in an ex vivo human jaw bone. Combining the two techniques suggests a novel ranging system for the surgeon that could be implemented in a “smart drill.” The proximity to the neurovascular bundle can be tracked in real time in the range of a few millimeters with NIR signals, after which higher resolution imaging OCT to provide finer ranging in the sub-millimeter distances. PMID:24466473

  12. Bimodal Control of Heat Transport at Graphene–Metal Interfaces Using Disorder in Graphene

    PubMed Central

    Kim, Jaehyeon; Khan, Muhammad Ejaz; Ko, Jae-Hyeon; Kim, Jong Hun; Lee, Eui-Sup; Suh, Joonki; Wu, Junqiao; Kim, Yong-Hyun; Park, Jeong Young; Lyeo, Ho-Ki

    2016-01-01

    Thermal energy transport across the interfaces of physically and chemically modified graphene with two metals, Al and Cu, was investigated by measuring thermal conductance using the time-domain thermoreflectance method. Graphene was processed using a He2+ ion-beam with a Gaussian distribution or by exposure to ultraviolet/O3, which generates structural or chemical disorder, respectively. Hereby, we could monitor changes in the thermal conductance in response to varying degrees of disorder. We find that the measured conductance increases as the density of the physical disorder increases, but undergoes an abrupt modulation with increasing degrees of chemical modification, which decreases at first and then increases considerably. Moreover, we find that the conductance varies inverse proportionally to the average distance between the structural defects in the graphene, implying a strong in-plane influence of phonon kinetics on interfacial heat flow. We attribute the bimodal results to an interplay between the distinct effects on graphene’s vibrational modes exerted by graphene modification and by the scattering of modes. PMID:27698372

  13. Optimal photon antibunching in a quantum-dot-bimodal-cavity system

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Yu, Zhongyuan; Liu, Yumin; Peng, Yiwei

    2014-04-01

    We theoretically investigate the photon statistics in a cavity quantum electrodynamics system of a single quantum dot coupled to a bimodal nanocavity. It is shown in a recent work [A. Majumdar, M. Bajcsy, A. Rundquist, and J. Vučković, Phys. Rev. Lett. 108, 183601 (2012), 10.1103/PhysRevLett.108.183601] that the system can generate strongly sub-Poissonian light when one of the cavity modes is driven coherently and resonantly. We study the two-mode coherent driving regime of the coupled system. The effect of additional cavity mode driving on statistical characteristics of photon emission is presented by evaluating the zero-delay second-order correlation function g2(0). The antibunching character can be optimized by regulating the ratio between driving strengths of two cavity modes to achieve optimal combination of superbunched and coherent light. As a result g2(0) can be reduced up to several orders of magnitude [g2(0)˜10-7] with proper system parameters, compared with the one-mode driving system [g2(0)˜0.1].

  14. Ultra-strongly sub-Poissonian light generation in a quantum dot-bimodal cavity system

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Yu, Zhongyuan; Liu, Yumin; Peng, Yiwei

    2014-03-01

    We theoretically investigate the sub-Poissonian light generation in a cavity quantum electrodynamics system of a single quantum dot coupled a bimodal nanocavity. It is shown in a recent work [Arka Majumdar et.al, Phys. Rev. Lett. 108, 183601 (2012)] that the system can generate strongly sub-Poissonian light when one of the cavity modes is driven coherently and resonantly. We study the two-mode coherent driving regime of the coupled system. The effect of additional cavity mode driving on the statistic characteristics of photon emission is presented by evaluating the zero-delay second-order correlation function g2(0). We interpret the optimization of sub-Poissonian feature by regulating the ratio between driving strengths of two cavity modes and observe that g2(0) can be reduced up to several orders of magnitude (g2(0))<10-4), comparing with one-mode driving system (g2(0)~0.1), indicating ultra-strongly sub-Poissonian light generation.

  15. Represent and fuse bimodal biometric images at the feature level: complex-matrix-based fusion scheme

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Zhang, David

    2010-03-01

    Multibiometrics can obtain a higher accuracy than the single biometrics by simultaneously using multiple biometric traits of the subject. We note that biometric traits are usually in the form of images. Thus, how to properly fuse the information of multiple biometric images of the subject for authentication is crucial for multibiometrics. We propose a novel image-based linear discriminant analysis (IBLDA) approach to fuse two biometric traits (i.e., bimodal biometric images) of the same subject in the form of matrix at the feature level. IBLDA first integrates two biometric traits of one subject into a complex matrix and then directly extracts low-dimensional features for the integrated biometric traits. IBLDA also enables more information to be exploited than the matching score level fusion and the decision level fusion. Compared to linear discriminant analysis (LDA), IBLDA has the following advantages: First, it can overcome the small sample size problem that conventional LDA usually suffers from. Second, IBLDA solves the eigenequation at a low computational cost. Third, when storing the scatter matrices IBLDA will not bring as heavy a memory burden as conventional LDA. We also clearly show the theoretical foundation of the proposed method. The experiment result shows that the proposed method can obtain a high classification accuracy.

  16. Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

    PubMed Central

    Walia, Shanka

    2015-01-01

    Summary Nano-theranostics offer remarkable potential for future biomedical technology with simultaneous applications for diagnosis and therapy of disease sites. Through smart and careful chemical modifications of the nanoparticle surface, these can be converted to multifunctional tiny objects which in turn can be used as vehicle for delivering multimodal imaging agents and therapeutic material to specific target sites in vivo. In this sense, bimodal imaging probes that simultaneously enable magnetic resonance imaging and fluorescence imaging have gained tremendous attention because disease sites can be characterized quick and precisely through synergistic multimodal imaging. But such hybrid nanocomposite materials have limitations such as low chemical stability (magnetic component) and harsh cytotoxic effects (fluorescent component) and, hence, require a biocompatible protecting agent. Silica micro/nanospheres have shown promise as protecting agent due to the high stability and low toxicity. This review will cover a full description of MRI-active and fluorescent multifunctional silica micro/nanospheres including the design of the probe, different characterization methods and their application in imaging and treatment in cancer. PMID:25821696

  17. Modeling stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yao, Zhiyuan; Lv, Qibao; Liu, Zhen

    2016-11-01

    Ultrasonic motor (USM) is an electromechanical coupling system with ultrasonic vibration, which is driven by the frictional contact force between the stator (vibrating body) and the rotor/slider (driven body). Stick-slip motion can occur at the contact interface when USM is operating, which may affect the performance of the motor. This paper develops a physically-based model to investigate the complex stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor. The model includes both friction nonlinearity and intermittent separation nonlinearity of the system. Utilizing Hamilton's principle and assumed mode method, the dynamic equations of the stator are deduced. Based on the dynamics of the stator and the slider, sticking force during the stick phase is derived, which is used to examine the stick-to-slip transition. Furthermore, the stick-slip-separation kinematics is analyzed by establishing analytical criteria that predict the transition between stick, slip and separation of the interface. Stick-slip-separation motion is observed in the resulting model, and numerical simulations are performed to study the influence of parameters on the range of possible motions. Results show that stick-slip motion can occur with greater preload and smaller voltage amplitude. Furthermore, a dimensionless parameter is proposed to predict the occurrence of stick-slip versus slip-separation motions, and its role in designing ultrasonic motors is discussed. It is shown that slip-separation motion is favorable for the slider velocity.

  18. Elastic and viscoelastic characterization of inhomogeneous polymers by bimodal atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung K.; Ito, Makiko; Nakajima, Ken

    2016-08-01

    The elastic and viscoelastic responses of inhomogeneous polymers upon interacting with an atomic force microscopy (AFM) probe are simultaneously characterized by a bimodal AFM approach namely the amplitude- and frequency-modulation (AM-FM) method. In this approach, the AFM probe is operated in the AM mode at the first flexural frequency and in the FM mode at a higher flexural frequency. The AM mode provides information about the viscoelasticity of polymers in terms of the mechanical loss tangent, whereas the modulus of polymers is obtained as a function of the frequency shift of flexural frequencies in both modes. For a glassy polymer blend, the AM-FM method provides a consistent result in both the elastic modulus and loss tangent in comparison with those obtained by other methods. Moreover, a significant improvement of the contrast and lateral resolution in the AM-FM modulus image can be observed. However, the current approach shows a substantial increase in the modulus of rubbery polymers.

  19. Haloing in bimodal magnetic colloids: the role of field-induced phase separation.

    PubMed

    Magnet, C; Kuzhir, P; Bossis, G; Meunier, A; Suloeva, L; Zubarev, A

    2012-07-01

    If a suspension of magnetic micrometer-sized and nanosized particles is subjected to a homogeneous magnetic field, the nanoparticles are attracted to the microparticles and form thick anisotropic halos (clouds) around them. Such clouds can hinder the approach of microparticles and result in effective repulsion between them [M. T. López-López, A. Yu. Zubarev, and G. Bossis, Soft Matter 6, 4346 (2010)]. In this paper, we present detailed experimental and theoretical studies of nanoparticle concentration profiles and of the equilibrium shapes of nanoparticle clouds around a single magnetized microsphere, taking into account interactions between nanoparticles. We show that at a strong enough magnetic field, the ensemble of nanoparticles experiences a gas-liquid phase transition such that a dense liquid phase is condensed around the magnetic poles of a microsphere while a dilute gas phase occupies the rest of the suspension volume. Nanoparticle accumulation around a microsphere is governed by two dimensionless parameters--the initial nanoparticle concentration (φ(0)) and the magnetic-to-thermal energy ratio (α)--and the three accumulation regimes are mapped onto a α-φ(0) phase diagram. Our local thermodynamic equilibrium approach gives a semiquantitative agreement with the experiments on the equilibrium shapes of nanoparticle clouds. The results of this work could be useful for the development of the bimodal magnetorheological fluids and of the magnetic separation technologies used in bioanalysis and water purification systems.

  20. Bimodality and regime behavior in atmosphere-ocean interactions during the recent climate change

    NASA Astrophysics Data System (ADS)

    Fallah, Bijan; Sodoudi, Sahar

    2015-06-01

    Maximum covariance analysis (MCA) and isometric feature mapping (Isomap) are applied to investigate the spatio-temporal atmosphere-ocean interactions otherwise hidden in observational data for the period of 1979-2010. Despite an established long-term surface warming trend for the whole northern hemisphere, sea surface temperatures (SST) in the East Pacific have remained relatively constant for the period of 2001-2010. Our analysis reveals that SST anomaly probability density function of the leading two Isomap components is bimodal. We conclude that Isomap shows the existence of two distinct regimes in surface ocean temperature, resembling the break and active phases of rainfall over equatorial land areas. These regimes occurred within two separated time windows during the past three decades. Strengthening of trade winds over Pacific was coincident with the cold phase of east equatorial Pacific. This pattern was reversed during the warm phase of east equatorial Pacific. The El Niño event of 1997/1998 happened within the transition mode between these two regimes and may be a trigger for the SST changes in the Pacific. Furthermore, we suggest that Isomap, compared with MCA, provides more information about the behavior and predictability of the inter-seasonal atmosphere-ocean interactions.

  1. Unimodular bimode gravity and the coherent scalar-graviton field as galaxy dark matter

    NASA Astrophysics Data System (ADS)

    Pirogov, Yu. F.

    2012-06-01

    An explicit violation of the general gauge invariance/relativity is adopted as the origin of dark matter and dark energy in the context of gravitation. The violation of the local scale invariance alone, with the residual unimodular one, is considered. Besides the four-volume preserving deformation mode—the transverse-tensor graviton—the metric comprises a compression mode—the scalar graviton, or the systolon. A unimodular invariant and general covariant metric theory of the bimode/scalar-tensor gravity is consistently worked out. To reduce the primordial ambiguity of the theory a dynamical global symmetry is imposed, with its subsequent spontaneous breaking revealed. The static spherically symmetric case in empty space, except possibly for the origin, is studied. A three-parameter solution describing a new static space structure—the dark lacuna—is constructed. It enjoys the property of gravitational confinement, with the logarithmic potential of gravitational attraction at the periphery, and results in asymptotically flat rotation curves. Comprising a super-massive dark fracture (a scalar-modified black hole) at the origin surrounded by a cored dark halo, the dark lacunas are proposed as a prototype model of galaxies, implying an ultimate account for the distributed non-gravitational matter and putative asphericity or rotation.

  2. Haloing in bimodal magnetic colloids: The role of field-induced phase separation

    NASA Astrophysics Data System (ADS)

    Magnet, C.; Kuzhir, P.; Bossis, G.; Meunier, A.; Suloeva, L.; Zubarev, A.

    2012-07-01

    If a suspension of magnetic micrometer-sized and nanosized particles is subjected to a homogeneous magnetic field, the nanoparticles are attracted to the microparticles and form thick anisotropic halos (clouds) around them. Such clouds can hinder the approach of microparticles and result in effective repulsion between them [M. T. López-López, A. Yu. Zubarev, and G. Bossis, Soft Matter10.1039/c0sm00261e 6, 4346 (2010)]. In this paper, we present detailed experimental and theoretical studies of nanoparticle concentration profiles and of the equilibrium shapes of nanoparticle clouds around a single magnetized microsphere, taking into account interactions between nanoparticles. We show that at a strong enough magnetic field, the ensemble of nanoparticles experiences a gas-liquid phase transition such that a dense liquid phase is condensed around the magnetic poles of a microsphere while a dilute gas phase occupies the rest of the suspension volume. Nanoparticle accumulation around a microsphere is governed by two dimensionless parameters—the initial nanoparticle concentration (φ0) and the magnetic-to-thermal energy ratio (α)—and the three accumulation regimes are mapped onto a α-φ0 phase diagram. Our local thermodynamic equilibrium approach gives a semiquantitative agreement with the experiments on the equilibrium shapes of nanoparticle clouds. The results of this work could be useful for the development of the bimodal magnetorheological fluids and of the magnetic separation technologies used in bioanalysis and water purification systems.

  3. Bimodal high-affinity association of Brd4 with murine leukemia virus integrase and mononucleosomes

    PubMed Central

    Larue, Ross C.; Plumb, Matthew R.; Crowe, Brandon L.; Shkriabai, Nikoloz; Sharma, Amit; DiFiore, Julia; Malani, Nirav; Aiyer, Sriram S.; Roth, Monica J.; Bushman, Frederic D.; Foster, Mark P.; Kvaratskhelia, Mamuka

    2014-01-01

    The importance of understanding the molecular mechanisms of murine leukemia virus (MLV) integration into host chromatin is highlighted by the development of MLV-based vectors for human gene-therapy. We have recently identified BET proteins (Brd2, 3 and 4) as the main cellular binding partners of MLV integrase (IN) and demonstrated their significance for effective MLV integration at transcription start sites. Here we show that recombinant Brd4, a representative of the three BET proteins, establishes complementary high-affinity interactions with MLV IN and mononucleosomes (MNs). Brd4(1–720) but not its N- or C-terminal fragments effectively stimulate MLV IN strand transfer activities in vitro. Mass spectrometry- and NMR-based approaches have enabled us to map key interacting interfaces between the C-terminal domain of BRD4 and the C-terminal tail of MLV IN. Additionally, the N-terminal fragment of Brd4 binds to both DNA and acetylated histone peptides, allowing it to bind tightly to MNs. Comparative analyses of the distributions of various histone marks along chromatin revealed significant positive correlations between H3- and H4-acetylated histones, BET protein-binding sites and MLV-integration sites. Our findings reveal a bimodal mechanism for BET protein-mediated MLV integration into select chromatin locations. PMID:24520112

  4. Bimodal high-affinity association of Brd4 with murine leukemia virus integrase and mononucleosomes.

    PubMed

    Larue, Ross C; Plumb, Matthew R; Crowe, Brandon L; Shkriabai, Nikoloz; Sharma, Amit; DiFiore, Julia; Malani, Nirav; Aiyer, Sriram S; Roth, Monica J; Bushman, Frederic D; Foster, Mark P; Kvaratskhelia, Mamuka

    2014-04-01

    The importance of understanding the molecular mechanisms of murine leukemia virus (MLV) integration into host chromatin is highlighted by the development of MLV-based vectors for human gene-therapy. We have recently identified BET proteins (Brd2, 3 and 4) as the main cellular binding partners of MLV integrase (IN) and demonstrated their significance for effective MLV integration at transcription start sites. Here we show that recombinant Brd4, a representative of the three BET proteins, establishes complementary high-affinity interactions with MLV IN and mononucleosomes (MNs). Brd4(1-720) but not its N- or C-terminal fragments effectively stimulate MLV IN strand transfer activities in vitro. Mass spectrometry- and NMR-based approaches have enabled us to map key interacting interfaces between the C-terminal domain of BRD4 and the C-terminal tail of MLV IN. Additionally, the N-terminal fragment of Brd4 binds to both DNA and acetylated histone peptides, allowing it to bind tightly to MNs. Comparative analyses of the distributions of various histone marks along chromatin revealed significant positive correlations between H3- and H4-acetylated histones, BET protein-binding sites and MLV-integration sites. Our findings reveal a bimodal mechanism for BET protein-mediated MLV integration into select chromatin locations. PMID:24520112

  5. A Bridging Interaction Allows Calmodulin to Activate NO Synthase through a Bi-modal Mechanism*

    PubMed Central

    Tejero, Jesús; Haque, Mohammad Mahfuzul; Durra, Deborah; Stuehr, Dennis J.

    2010-01-01

    Calmodulin (CaM) activates the nitric-oxide synthases (NOS) by a mechanism that is not completely understood. A recent crystal structure showed that bound CaM engages in a bridging interaction with the NOS FMN subdomain. We investigated its importance in neuronal NOS (nNOS) by mutating the two residues that primarily create the bridging interaction (Arg752 in the FMN subdomain and Glu47 in CaM). Mutations designed to completely destroy the bridging interaction prevented bound CaM from increasing electron flux through the FMN subdomain and diminished the FMN-to-heme electron transfer by 90%, whereas mutations that partly preserve the interaction had intermediate effects. The bridging interaction appeared to control FMN subdomain interactions with both its electron donor (NADPH-FAD subdomain) and electron acceptor (heme domain) partner subdomains in nNOS. We conclude that the Arg752–Glu47 bridging interaction is the main feature that enables CaM to activate nNOS. The mechanism is bi-modal and links a single structural aspect of CaM binding to specific changes in nNOS protein conformational and electron transfer properties that are essential for catalysis. PMID:20529840

  6. A bridging interaction allows calmodulin to activate NO synthase through a bi-modal mechanism.

    PubMed

    Tejero, Jesús; Haque, Mohammad Mahfuzul; Durra, Deborah; Stuehr, Dennis J

    2010-08-20

    Calmodulin (CaM) activates the nitric-oxide synthases (NOS) by a mechanism that is not completely understood. A recent crystal structure showed that bound CaM engages in a bridging interaction with the NOS FMN subdomain. We investigated its importance in neuronal NOS (nNOS) by mutating the two residues that primarily create the bridging interaction (Arg(752) in the FMN subdomain and Glu(47) in CaM). Mutations designed to completely destroy the bridging interaction prevented bound CaM from increasing electron flux through the FMN subdomain and diminished the FMN-to-heme electron transfer by 90%, whereas mutations that partly preserve the interaction had intermediate effects. The bridging interaction appeared to control FMN subdomain interactions with both its electron donor (NADPH-FAD subdomain) and electron acceptor (heme domain) partner subdomains in nNOS. We conclude that the Arg(752)-Glu(47) bridging interaction is the main feature that enables CaM to activate nNOS. The mechanism is bi-modal and links a single structural aspect of CaM binding to specific changes in nNOS protein conformational and electron transfer properties that are essential for catalysis. PMID:20529840

  7. Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers.

    PubMed

    Duval, Daphné; González-Guerrero, Ana Belén; Dante, Stefania; Osmond, Johann; Monge, Rosa; Fernández, Luis J; Zinoviev, Kirill E; Domínguez, Carlos; Lechuga, Laura M

    2012-05-01

    One of the main limitations for achieving truly lab-on-a-chip (LOC) devices for point-of-care diagnosis is the incorporation of the "on-chip" detection. Indeed, most of the state-of-the-art LOC devices usually require complex read-out instrumentation, losing the main advantages of portability and simplicity. In this context, we present our last advances towards the achievement of a portable and label-free LOC platform with highly sensitive "on-chip" detection by using nanophotonic biosensors. Bimodal waveguide interferometers fabricated by standard silicon processes have been integrated with sub-micronic grating couplers for efficient light in-coupling, showing a phase resolution of 6.6 × 10(-4)× 2π rad and a limit of detection of 3.3 × 10(-7) refractive index unit (RIU) in bulk. A 3D network of SU-8 polymer microfluidics monolithically assembled at the wafer-level was included, ensuring perfect sealing and compact packaging. To overcome some of the drawbacks inherent to interferometric read-outs, a novel all-optical wavelength modulation system has been implemented, providing a linear response and a direct read-out of the phase variation. Sensitivity, specificity and reproducibility of the wavelength modulated BiMW sensor has been demonstrated through the label-free immunodetection of the human hormone hTSH at picomolar level using a reliable biofunctionalization process.

  8. Bimodal Control of Heat Transport at Graphene–Metal Interfaces Using Disorder in Graphene

    NASA Astrophysics Data System (ADS)

    Kim, Jaehyeon; Khan, Muhammad Ejaz; Ko, Jae-Hyeon; Kim, Jong Hun; Lee, Eui-Sup; Suh, Joonki; Wu, Junqiao; Kim, Yong-Hyun; Park, Jeong Young; Lyeo, Ho-Ki

    2016-10-01

    Thermal energy transport across the interfaces of physically and chemically modified graphene with two metals, Al and Cu, was investigated by measuring thermal conductance using the time-domain thermoreflectance method. Graphene was processed using a He2+ ion-beam with a Gaussian distribution or by exposure to ultraviolet/O3, which generates structural or chemical disorder, respectively. Hereby, we could monitor changes in the thermal conductance in response to varying degrees of disorder. We find that the measured conductance increases as the density of the physical disorder increases, but undergoes an abrupt modulation with increasing degrees of chemical modification, which decreases at first and then increases considerably. Moreover, we find that the conductance varies inverse proportionally to the average distance between the structural defects in the graphene, implying a strong in-plane influence of phonon kinetics on interfacial heat flow. We attribute the bimodal results to an interplay between the distinct effects on graphene’s vibrational modes exerted by graphene modification and by the scattering of modes.

  9. Bimodal Nuclear Thermal Rocket Sizing and Trade Matrix for Lunar, Near Earth Asteroid and Mars Missions

    NASA Astrophysics Data System (ADS)

    McCurdy, David R.; Krivanek, Thomas M.; Roche, Joseph M.; Zinolabedini, Reza

    2006-01-01

    The concept of a human rated transport vehicle for various near earth missions is evaluated using a liquid hydrogen fueled Bimodal Nuclear Thermal Propulsion (BNTP) approach. In an effort to determine the preliminary sizing and optimal propulsion system configuration, as well as the key operating design points, an initial investigation into the main system level parameters was conducted. This assessment considered not only the performance variables but also the more subjective reliability, operability, and maintainability attributes. The SIZER preliminary sizing tool was used to facilitate rapid modeling of the trade studies, which included tank materials, propulsive versus an aero-capture trajectory, use of artificial gravity, reactor chamber operating pressure and temperature, fuel element scaling, engine thrust rating, engine thrust augmentation by adding oxygen to the flow in the nozzle for supersonic combustion, and the baseline turbopump configuration to address mission redundancy and safety requirements. A high level system perspective was maintained to avoid focusing solely on individual component optimization at the expense of system level performance, operability, and development cost.

  10. Evidence for a bimodal distribution of hybrid indices in a hybrid zone with high admixture.

    PubMed

    McKenzie, Jessica L; Dhillon, Rashpal S; Schulte, Patricia M

    2015-12-01

    The genetic structure of a hybrid zone can provide insights into the relative roles of the various factors that maintain the zone. Here, we use a multilocus approach to characterize a hybrid zone between two subspecies of killifish (Fundulus heteroclitus, Walbaum 1792) found along the Atlantic coast of North America. We first analysed clinal variation along the Atlantic coast using a single-nucleotide polymorphism in the mitochondrial DNA (mtDNA) displacement loop (D-loop) and a panel of nine nuclear microsatellite markers. A model constraining all clines to the same width and centre was not significantly different from a model in which the clines were allowed to vary independently. Locus-by-locus analysis indicated that the majority of nuclear clines shared the same centre as the mtDNA cline, and the widths of these clines were also narrower than that predicted by a neutral model, suggesting that selection is operating to maintain the hybrid zone. However, two of the nuclear clines had widths greater than the neutral prediction and had centres that were displaced relative to the mtDNA cline centre. We also found that a marsh located near the centre of the mtDNA cline demonstrated a bimodal distribution of nuclear hybrid index values, suggesting a deficit of first-generation hybrids and backcrossed genotypes. Thus, selection against hybrid genotypes may be playing a role in maintaining this hybrid zone and the associated steep nuclear and mtDNA clines. PMID:27019720

  11. Discrete Step Sizes of Molecular Motors Lead to Bimodal Non-Gaussian Velocity Distributions under Force

    NASA Astrophysics Data System (ADS)

    Vu, Huong T.; Chakrabarti, Shaon; Hinczewski, Michael; Thirumalai, D.

    2016-08-01

    Fluctuations in the physical properties of biological machines are inextricably linked to their functions. Distributions of run lengths and velocities of processive molecular motors, like kinesin-1, are accessible through single-molecule techniques, but rigorous theoretical models for these probabilities are lacking. Here, we derive exact analytic results for a kinetic model to predict the resistive force (F )-dependent velocity [P (v )] and run length [P (n )] distribution functions of generic finitely processive molecular motors. Our theory quantitatively explains the zero force kinesin-1 data for both P (n ) and P (v ) using the detachment rate as the only parameter. In addition, we predict the F dependence of these quantities. At nonzero F , P (v ) is non-Gaussian and is bimodal with peaks at positive and negative values of v , which is due to the discrete step size of kinesin-1. Although the predictions are based on analyses of kinesin-1 data, our results are general and should hold for any processive motor, which walks on a track by taking discrete steps.

  12. Bimodal expressivity in dominant retinitis pigmentosa genetically linked to chromosome 19q.

    PubMed Central

    Evans, K; al-Maghtheh, M; Fitzke, F W; Moore, A T; Jay, M; Inglehearn, C F; Arden, G B; Bird, A C

    1995-01-01

    A clinical, psychophysical, and electrophysiologic study was undertaken of two autosomal dominant retinitis pigmentosa pedigrees with a genetic mutation assigned to chromosome 19q by linkage analysis. Members with the abnormal haplotype were either symptomatic with adolescent onset nyctalopia, restricted visual fields, and non-detectable electroretinographic responses by 30 years of age, or asymptomatic with normal fundus appearance and minimal or no psychophysical or electroretinographic abnormalities. There was no correlation in the severity in parents and their offspring. Pedigree analysis suggested that although the offspring of parents with the genetic mutation were at 50% risk of having the genetic defect, the risk of being symptomatic during a working lifetime was only 31%. Such bimodal phenotypic expressivity in these particular pedigrees may be explained by a second, allelic genetic influence and may be a phenomenon unique to this genetic locus. Genetic counselling in families expressing this phenotype can only be based on haplotype analysis since clinical investigations, even in the most elderly, would not preclude the presence of the mutant gene. PMID:7488604

  13. Evidence for a bimodal distribution of hybrid indices in a hybrid zone with high admixture

    PubMed Central

    McKenzie, Jessica L.; Dhillon, Rashpal S.; Schulte, Patricia M.

    2015-01-01

    The genetic structure of a hybrid zone can provide insights into the relative roles of the various factors that maintain the zone. Here, we use a multilocus approach to characterize a hybrid zone between two subspecies of killifish (Fundulus heteroclitus, Walbaum 1792) found along the Atlantic coast of North America. We first analysed clinal variation along the Atlantic coast using a single-nucleotide polymorphism in the mitochondrial DNA (mtDNA) displacement loop (D-loop) and a panel of nine nuclear microsatellite markers. A model constraining all clines to the same width and centre was not significantly different from a model in which the clines were allowed to vary independently. Locus-by-locus analysis indicated that the majority of nuclear clines shared the same centre as the mtDNA cline, and the widths of these clines were also narrower than that predicted by a neutral model, suggesting that selection is operating to maintain the hybrid zone. However, two of the nuclear clines had widths greater than the neutral prediction and had centres that were displaced relative to the mtDNA cline centre. We also found that a marsh located near the centre of the mtDNA cline demonstrated a bimodal distribution of nuclear hybrid index values, suggesting a deficit of first-generation hybrids and backcrossed genotypes. Thus, selection against hybrid genotypes may be playing a role in maintaining this hybrid zone and the associated steep nuclear and mtDNA clines. PMID:27019720

  14. Orexin administration to mice that underwent chronic stress produces bimodal effects on emotion-related behaviors.

    PubMed

    Chung, Hye-Seung; Kim, Jae-Gon; Kim, Jae-Won; Kim, Hyung-Wook; Yoon, Bong-June

    2014-11-01

    Orexin plays diverse roles in regulating behaviors, such as sleep and wake, reward processing, arousal, and stress and anxiety. The orexin system may accomplish these multiple tasks through its complex innervations throughout the brain. The emerging evidence indicates a role of orexin in emotional behaviors; however, most of the previous studies have investigated the function of orexin in naïve animals. Here, we examined a functional role of orexin in mice that had been exposed to repeated stress. Chronic social defeat stress produced differential social interaction behaviors in mice (susceptible versus resilient) and these two groups of mice displayed different levels of prepro-orexin in the hypothalamus. Exogenously added orexin A to the brain induced an antidepressant-like effect in only the susceptible mice but not in the resilient mice. In contrast, orexin A and orexin B infused together produced an anxiogenic effect in only the resilient mice and not in the susceptible mice. Furthermore, we found that the antidepressant-like effect of orexin A is mediated by the bed nucleus of the stria terminalis (BNST) after exposure to chronic restraint stress. These findings reveal a bimodal effect of the orexin system in regulating emotional behavior that depends on stress susceptibility.

  15. The origin of bimodal grain-size distribution for aeolian deposits

    NASA Astrophysics Data System (ADS)

    Lin, Yongchong; Mu, Guijin; Xu, Lishuai; Zhao, Xue

    2016-03-01

    Atmospheric dust deposition is a common phenomenon in arid and semi-arid regions. Bimodal grain size distribution (BGSD) (including the fine component and coarse component) of aeolian deposits has been widely reported. But the origin of this pattern is still debated. Here, we focused on the sedimentary process of modern dust deposition, and analyzed the grain size distribution of modern dust deposition, foliar dust, and aggregation of the aeolian dust collected in Cele Oasis, southern margin of Tarim Basin. The results show that BGSD also appear in a dust deposition. The content of fine components (<20 μm size fraction) change with temporal and spatial variation. Fine component from dust storm is significant less than that from subsequent floating dust. Fine component also varies with altitude. These indicate that modern dust deposition have experienced changing aerodynamic environment and be reworked during transportation and deposition, which is likely the main cause for BGSD. The dusts from different sources once being well-mixed in airflow are hard to form multiple peaks respectively corresponding with different sources. In addition, the dust deposition would appear BGSD whether aggregation or not. Modern dust deposition is the continuation of ancient dust deposition. They both may have the same cause of formation. Therefore, the origin of BGSD should provide a theoretical thinking for reconstructing the palaeo-environmental changes with the indicator of grain size.

  16. Fighting Hepatitis B in North Korea: Feasibility of a Bi-modal Prevention Strategy

    PubMed Central

    Stich, August

    2015-01-01

    In North Korea, the prevalence of hepatitis B is high due to natural factors, gaps in vaccination, and the lack of antiviral treatment. Aid projects are urgently needed, however impeded by North Korea's political and economical situation and isolation. The feasibility of a joint North Korean and German humanitarian hepatitis B prevention program was assessed. Part 1: Hepatitis B vaccination catch-up campaign. Part 2: Implementation of endoscopic ligation of esophageal varices (EVL) by trainings in Germany and North Korea. By vaccinating 7 million children between 2010 and 2012, the hepatitis B vaccination gap was closed. Coverage of 99.23% was reached. A total of 11 hepatitis B-induced liver cirrhosis patients (mean age 41.1 yr) with severe esophageal varices and previous bleedings were successfully treated by EVL without major complications. A clinical standard operating procedure, a feedback system and a follow-up plan were developed. The bi-modal preventive strategy was implemented successfully. Parts of the project can serve as an example for other low-income countries, however its general transferability is limited due to the special circumstances in North Korea. PMID:26539001

  17. Thermal stability of bimodal microstructure in magnesium alloy AZ91 processed by ECAP

    SciTech Connect

    Pantělejev, Libor

    2015-09-15

    The changes in microstructure of equal channel angular pressing (ECAP) processed magnesium alloy AZ91 during thermal exposure were studied in this paper. The microstructure stability was investigated by means of electron backscatter diffraction (EBSD), which allowed to measure the changes in grain size, mutual ratio of low-angle boundaries (LABs) to high-angle ones (HABs) and local lattice distortion evaluated by the kernel average misorientation (KAM) parameter. It was found experimentally that the threshold temperature at which significant grain coarsening takes place is 350 °C. No modification to mean grain diameter occurs below this temperature, nonetheless, some changes in LAB and HAB fraction, as well as in local lattice distortion, can be observed. - Highlights: • Thermal stability of bimodal UFG AZ91 alloy was assessed by means of EBSD. • Threshold temperature for pronounced grain coarsening was found at 350 °C. • Below 350 °C increase in LAB fraction and local lattice distortion takes place. • Local lattice distortion (LLD) can be well described using KAM approach. • LLD is influenced by coarsening and precipitation of Mg{sub 17}Al{sub 12} particles.

  18. Strong bimodality in the host halo mass of central galaxies from galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Mandelbaum, Rachel; Wang, Wenting; Zu, Ying; White, Simon; Henriques, Bruno; More, Surhud

    2016-04-01

    We use galaxy-galaxy lensing to study the dark matter haloes surrounding a sample of locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey. We measure mean halo mass as a function of the stellar mass and colour of the central galaxy. Mock catalogues constructed from semi-analytic galaxy formation simulations demonstrate that most LBGs are the central objects of their haloes, greatly reducing interpretation uncertainties due to satellite contributions to the lensing signal. Over the full stellar mass range, 10.3 < log [M*/M⊙] < 11.6, we find that passive central galaxies have haloes that are at least twice as massive as those of star-forming objects of the same stellar mass. The significance of this effect exceeds 3σ for log [M*/M⊙] > 10.7. Tests using the mock catalogues and on the data themselves clarify the effects of LBG selection and show that it cannot artificially induce a systematic dependence of halo mass on LBG colour. The bimodality in halo mass at fixed stellar mass is reproduced by the astrophysical model underlying our mock catalogue, but the sign of the effect is inconsistent with recent, nearly parameter-free age-matching models. The sign and magnitude of the effect can, however, be reproduced by halo occupation distribution models with a simple (few-parameter) prescription for type dependence.

  19. Fighting Hepatitis B in North Korea: Feasibility of a Bi-modal Prevention Strategy.

    PubMed

    Unnewehr, Markus; Stich, August

    2015-11-01

    In North Korea, the prevalence of hepatitis B is high due to natural factors, gaps in vaccination, and the lack of antiviral treatment. Aid projects are urgently needed, however impeded by North Korea's political and economical situation and isolation. The feasibility of a joint North Korean and German humanitarian hepatitis B prevention program was assessed. Part 1: Hepatitis B vaccination catch-up campaign. Part 2: Implementation of endoscopic ligation of esophageal varices (EVL) by trainings in Germany and North Korea. By vaccinating 7 million children between 2010 and 2012, the hepatitis B vaccination gap was closed. Coverage of 99.23% was reached. A total of 11 hepatitis B-induced liver cirrhosis patients (mean age 41.1 yr) with severe esophageal varices and previous bleedings were successfully treated by EVL without major complications. A clinical standard operating procedure, a feedback system and a follow-up plan were developed. The bi-modal preventive strategy was implemented successfully. Parts of the project can serve as an example for other low-income countries, however its general transferability is limited due to the special circumstances in North Korea.

  20. Elastic and viscoelastic characterization of inhomogeneous polymers by bimodal atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung K.; Ito, Makiko; Nakajima, Ken

    2016-08-01

    The elastic and viscoelastic responses of inhomogeneous polymers upon interacting with an atomic force microscopy (AFM) probe are simultaneously characterized by a bimodal AFM approach namely the amplitude- and frequency-modulation (AM–FM) method. In this approach, the AFM probe is operated in the AM mode at the first flexural frequency and in the FM mode at a higher flexural frequency. The AM mode provides information about the viscoelasticity of polymers in terms of the mechanical loss tangent, whereas the modulus of polymers is obtained as a function of the frequency shift of flexural frequencies in both modes. For a glassy polymer blend, the AM–FM method provides a consistent result in both the elastic modulus and loss tangent in comparison with those obtained by other methods. Moreover, a significant improvement of the contrast and lateral resolution in the AM–FM modulus image can be observed. However, the current approach shows a substantial increase in the modulus of rubbery polymers.

  1. Self-similar growth of an alluvial fan fed with bimodal sediment

    NASA Astrophysics Data System (ADS)

    Delorme, Pauline; Voller, Vaughan; Paola, Chris; Devauchelle, Olivier; Lajeunesse, Eric; Barrier, Laurie; Métivier, François

    2016-04-01

    At the outlet of mountain ranges, rivers flow onto flatter lowlands. The associated change of slope causes sediment deposition. As the river is free to move laterally, it builds conical sedimentary structures called alluvial fans. Their location at the interface between erosional and depositional areas makes them valuable sedimentary archives. To decipher these sedimentary records, we need to understand the dynamics of their growth. We carried out a series of experiments to investigate the growth of alluvial fans fed with mixed sediments. The density difference between silica and coal sediments mimics a bimodal grain-size distribution in nature. The sediment and water discharges are constant during an experiment. During the run, we track the evolution of the surface pattern by digital imaging. At the end of each run, we acquire the fan topography using a scanning laser. Finally, we cut a radial cross section to visualize the sedimentary deposit. We observe there is a distinct slope break at the transition that dominates the overall curvature of the fan surface. Based on mass conservation and observations, we propose that this alluvial fan grows in a self-similar way, thus causing the transition between silica and coal deposits to be a straight line. The shape of the experimental transition accords with this prediction.

  2. High-bandwidth multimode self-sensing in bimodal atomic force microscopy

    PubMed Central

    Moheimani, S O Reza

    2016-01-01

    Summary Using standard microelectromechanical system (MEMS) processes to coat a microcantilever with a piezoelectric layer results in a versatile transducer with inherent self-sensing capabilities. For applications in multifrequency atomic force microscopy (MF-AFM), we illustrate that a single piezoelectric layer can be simultaneously used for multimode excitation and detection of the cantilever deflection. This is achieved by a charge sensor with a bandwidth of 10 MHz and dual feedthrough cancellation to recover the resonant modes that are heavily buried in feedthrough originating from the piezoelectric capacitance. The setup enables the omission of the commonly used piezoelectric stack actuator and optical beam deflection sensor, alleviating limitations due to distorted frequency responses and instrumentation cost, respectively. The proposed method benefits from a more than two orders of magnitude increase in deflection to strain sensitivity on the fifth eigenmode leading to a remarkable signal-to-noise ratio. Experimental results using bimodal AFM imaging on a two component polymer sample validate that the self-sensing scheme can therefore be used to provide both the feedback signal, for topography imaging on the fundamental mode, and phase imaging on the higher eigenmode. PMID:26977385

  3. Flexural strength of infrared-transmitting window materials: bimodal Weibull statistical analysis

    NASA Astrophysics Data System (ADS)

    Klein, Claude A.

    2011-02-01

    The results of flexural strength testing performed on brittle materials are usually interpreted in light of a ``Weibull plot,'' i.e., by fitting the estimated cumulative failure probability (CFP) to a linearized semiempirical Weibull distribution. This procedure ignores the impact of the testing method on the measured stresses at fracture--specifically, the stressed area and the stress profile--thus resulting in inadequate characterization of the material under investigation. In a previous publication, the author reformulated Weibull's statistical theory of fracture in a manner that emphasizes how the stressed area and the stress profile control the failure probability distribution, which led to the concept of a characteristic strength, that is, the effective strength of a 1-cm2 uniformly stressed area. Fitting the CFP of IR-transmitting materials (AlON, fusion-cast CaF2, oxyfluoride glass, fused SiO2, CVD-ZnSe, and CVD-ZnS) was performed by means of nonlinear regressions but produced evidence of slight, systematic deviations. The purpose of this contribution is to demonstrate that upon extending the previously elaborated model to distributions involving two distinct types of defects--bimodal distributions--the fit agrees with estimated CFPs. Furthermore, the availability of two sets of statistical parameters (characteristic strength and shape parameter) can be taken advantage of to evaluate the failure-probability density, thus providing means of assessing the nature, the critical size, and the size distribution of surface/subsurface flaws.

  4. Discrete Step Sizes of Molecular Motors Lead to Bimodal Non-Gaussian Velocity Distributions under Force.

    PubMed

    Vu, Huong T; Chakrabarti, Shaon; Hinczewski, Michael; Thirumalai, D

    2016-08-12

    Fluctuations in the physical properties of biological machines are inextricably linked to their functions. Distributions of run lengths and velocities of processive molecular motors, like kinesin-1, are accessible through single-molecule techniques, but rigorous theoretical models for these probabilities are lacking. Here, we derive exact analytic results for a kinetic model to predict the resistive force (F)-dependent velocity [P(v)] and run length [P(n)] distribution functions of generic finitely processive molecular motors. Our theory quantitatively explains the zero force kinesin-1 data for both P(n) and P(v) using the detachment rate as the only parameter. In addition, we predict the F dependence of these quantities. At nonzero F, P(v) is non-Gaussian and is bimodal with peaks at positive and negative values of v, which is due to the discrete step size of kinesin-1. Although the predictions are based on analyses of kinesin-1 data, our results are general and should hold for any processive motor, which walks on a track by taking discrete steps. PMID:27564000

  5. Bimodal modulation by nicotine of anxiety in the social interaction test: role of the dorsal hippocampus.

    PubMed

    File, S E; Kenny, P J; Ouagazzal, A M

    1998-12-01

    In conditions generating moderate levels of anxiety in the social interaction test (low light, unfamiliar arena or high light, familiar arena), parenteral administration of nicotine had bimodal actions, low doses (0.01 and 0.1 mg/kg i.p.) had anxiolytic effects and high doses (0.5 and 1.0 mg/kg i.p.) had anxiogenic effects. In test conditions where anxiety was lowest (low light, familiar arena) and highest (high light, unfamiliar arena), nicotine was without effect after intraperitoneal or hippocampal administration. Thus, nicotine plays a modulatory role in which the activity of other neurotransmitters is crucial to its expression. After bilateral administration to the dorsal hippocampus, nicotine (0.1-8.0 microg) had anxiogenic effects in conditions of moderate anxiety; mecamylamine (30 ng) was silent in these conditions, indicating no intrinsic tone. Our results show that the dorsal hippocampus is one area that can mediate anxiogenic effects in the social interaction test, but the brain region mediating anxiolytic effects remains to be identified.

  6. Imprintable membranes from incomplete chiral coalescence

    NASA Astrophysics Data System (ADS)

    Zakhary, Mark J.; Gibaud, Thomas; Nadir Kaplan, C.; Barry, Edward; Oldenbourg, Rudolf; Meyer, Robert B.; Dogic, Zvonimir

    2014-01-01

    Coalescence is an essential phenomenon that governs the equilibrium behaviour in a variety of systems from intercellular transport to planetary formation. In this report, we study coalescence pathways of circularly shaped two-dimensional colloidal membranes, which are one rod-length-thick liquid-like monolayers of aligned rods. The chirality of the constituent rods leads to three atypical coalescence pathways that are not found in other simple or complex fluids. In particular, we characterize two pathways that do not proceed to completion but instead produce partially joined membranes connected by line defects—π-wall defects or alternating arrays of twisted bridges and pores. We elucidate the structure and energetics of these defects and ascribe their stability to a geometrical frustration inherently present in chiral colloidal membranes. Furthermore, we induce the coalescence process with optical forces, leading to a robust on-demand method for imprinting networks of channels and pores into colloidal membranes.

  7. Superdiffusive motion of membrane-targeting C2 domains

    PubMed Central

    Campagnola, Grace; Nepal, Kanti; Schroder, Bryce W.; Peersen, Olve B.; Krapf, Diego

    2015-01-01

    Membrane-targeting domains play crucial roles in the recruitment of signalling molecules to the plasma membrane. For most peripheral proteins, the protein-to-membrane interaction is transient. After proteins dissociate from the membrane they have been observed to rebind following brief excursions in the bulk solution. Such membrane hops can have broad implications for the efficiency of reactions on membranes. We study the diffusion of membrane-targeting C2 domains using single-molecule tracking in supported lipid bilayers. The ensemble-averaged mean square displacement (MSD) exhibits superdiffusive behaviour. However, traditional time-averaged MSD analysis of individual trajectories remains linear and does not reveal superdiffusion. Our observations are explained in terms of bulk excursions that introduce jumps with a heavy-tail distribution. These hopping events allow proteins to explore large areas in a short time. The experimental results are shown to be consistent with analytical models of bulk-mediated diffusion and numerical simulations. PMID:26639944

  8. Superdiffusive motion of membrane-targeting C2 domains

    NASA Astrophysics Data System (ADS)

    Campagnola, Grace; Nepal, Kanti; Schroder, Bryce W.; Peersen, Olve B.; Krapf, Diego

    2015-12-01

    Membrane-targeting domains play crucial roles in the recruitment of signalling molecules to the plasma membrane. For most peripheral proteins, the protein-to-membrane interaction is transient. After proteins dissociate from the membrane they have been observed to rebind following brief excursions in the bulk solution. Such membrane hops can have broad implications for the efficiency of reactions on membranes. We study the diffusion of membrane-targeting C2 domains using single-molecule tracking in supported lipid bilayers. The ensemble-averaged mean square displacement (MSD) exhibits superdiffusive behaviour. However, traditional time-averaged MSD analysis of individual trajectories remains linear and does not reveal superdiffusion. Our observations are explained in terms of bulk excursions that introduce jumps with a heavy-tail distribution. These hopping events allow proteins to explore large areas in a short time. The experimental results are shown to be consistent with analytical models of bulk-mediated diffusion and numerical simulations.

  9. Advantage of bimodal fitting in prosody perception for children using a cochlear implant and a hearing aid.

    PubMed

    Straatman, L V; Rietveld, A C M; Beijen, J; Mylanus, E A M; Mens, L H M

    2010-10-01

    Cochlear implants are largely unable to encode voice pitch information, which hampers the perception of some prosodic cues, such as intonation. This study investigated whether children with a cochlear implant in one ear were better able to detect differences in intonation when a hearing aid was added in the other ear ("bimodal fitting"). Fourteen children with normal hearing and 19 children with bimodal fitting participated in two experiments. The first experiment assessed the just noticeable difference in F0, by presenting listeners with a naturally produced bisyllabic utterance with an artificially manipulated pitch accent. The second experiment assessed the ability to distinguish between questions and affirmations in Dutch words, again by using artificial manipulation of F0. For the implanted group, performance significantly improved in each experiment when the hearing aid was added. However, even with a hearing aid, the implanted group required exaggerated F0 excursions to perceive a pitch accent and to identify a question. These exaggerated excursions are close to the maximum excursions typically used by Dutch speakers. Nevertheless, the results of this study showed that compared to the implant only condition, bimodal fitting improved the perception of intonation.

  10. Investigation of deformation micro-mechanisms in nickel consolidated from a bimodal powder by spark plasma sintering

    SciTech Connect

    Tingaud, D.; Jenei, P.; Krawczynska, A.; Mompiou, F.; Gubicza, J.; Dirras, G.

    2015-01-15

    Bulk polycrystalline nickel compact was processed by spark plasma sintering from heterogeneous powder consisting of a mixture of nanometer and micrometer sized particles. The consolidated samples inherited the bimodal structure of the starting powder and was composed of ~ 55 vol.% coarse-grained (with the grain size larger than 1 μm) and ~ 45 vol.% ultrafine-grained (with an average grain size of ~ 550 nm) components. The deformation mechanisms were established by EBSD, X-ray line profile analysis and in-situ TEM observations. In the ultrafine-grained volume, the deformation occurred mainly through the activation of dislocation sources emitting full or partial dislocation either from grain interior or grain boundaries. Besides dislocation activity, rolling and sliding of nanograins were also observed during deformation by in-situ transmission electron microscopy, which have a considerable contribution to the observed high strain rate sensitivity of the bimodal microstructure. The cracks formed during deformation easily propagated in the nanograin regions due to the weaker particle bonding caused by the relatively high fraction of native oxide layer on the surface of the initial nanoparticles. - Highlights: • Bulk bimodal polycrystalline Ni was processed by SPS from a heterogeneous powder. • High SRS of the flow stress was observed which enhanced ductility and strength. • In-situ TEM revealed dislocation sources inside and at the boundaries of UFGs. • Twinning, partial dislocation and NG rolling were observed at crack tip vicinity. • The high SRS pertained to both dislocation activity in CG and NG rolling.

  11. Early ant trajectories: spatial behaviour before behaviourism.

    PubMed

    Wehner, Rüdiger

    2016-04-01

    In the beginning of the twentieth century, when Jacques Loeb's and John Watson's mechanistic view of life started to dominate animal physiology and behavioural biology, several scientists with different academic backgrounds got engaged in studying the wayfinding behaviour of ants. Largely unaffected by the scientific spirit of the time, they worked independently of each other in different countries: in Algeria, Tunisia, Spain, Switzerland and the United States of America. In the current literature on spatial cognition these early ant researchers--Victor Cornetz, Felix Santschi, Charles Turner and Rudolf Brun--are barely mentioned. Moreover, it is virtually unknown that the great neuroanatomist Santiago Ramón y Cajal had also worked on spatial orientation in ants. This general neglect is certainly due to the fact that nearly all these ant researchers were scientific loners, who did their idiosyncratic investigations outside the realm of comparative physiology, neurobiology and the behavioural sciences of the time, and published their results in French, German, and Spanish at rather inaccessible places. Even though one might argue that much of their work resulted in mainly anecdotal evidence, the conceptual approaches of these early ant researchers preempt much of the present-day discussions on spatial representation in animals. PMID:26898725

  12. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1980-01-01

    The efforts on the synthesis of polymer anion redox membranes were mainly concentrated in two areas, membrane development and membrane fabrication. Membrane development covered the preparation and evaluation of experimental membranes systems with improved resistance stability and/or lower permeability. Membrane fabrication covered the laboratory scale production of prime candidate membranes in quantities of up to two hundred and sizes up to 18 inches x 18 inches (46 cm x 46 cm). These small (10 in x 11 in) and medium sized membranes were mainly for assembly into multicell units. Improvements in processing procedures and techniques for preparing such membrane sets lifted yields to over 90 percent.

  13. Coping behaviour after shipwreck.

    PubMed

    Henderson, S; Bostock, T

    1977-07-01

    A description is given of the coping behaviour of seven men who survived a shipwreck and were not rescued until 13 days later. The principal behaviours shown by the men were attachment ideation, drive to survive, modelling, prayer and hope. Particular attention is paid to the first of these, and consideration given to its likely origins in behavioural evolution. It is proposed as a hitherto inadequately recognized coping behaviour. A follow-up examination 12 to 24 months later showed that five of the seven men available had developed substantial psychiatric disorder, while by contrast one was not only well but claimed to have been enriched by the experience. Exposure to extreme adversity or disaster may have long-term effects on mental health. Further longitudinal studies of disaster victims are necessary for the design of informed after-care.

  14. Psychology: Inducing green behaviour

    NASA Astrophysics Data System (ADS)

    Thøgersen, John

    2013-02-01

    Economic arguments, such as saving money, are often used to promote pro-environmental actions -- for example, reducing energy use. However, research shows that people's environmental motives are sometimes better drivers of behavioural change.

  15. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. V. NONLINEAR ABSORPTION-LINE INDEX VERSUS METALLICITY RELATIONS AND BIMODAL INDEX DISTRIBUTIONS OF M31 GLOBULAR CLUSTERS

    SciTech Connect

    Kim, Sooyoung; Yoon, Suk-Jin; Chung, Chul; Lee, Young-Wook; Caldwell, Nelson; Schiavon, Ricardo P.; Kang, Yongbeom; Rey, Soo-Chang

    2013-05-10

    Recent spectroscopy on the globular cluster (GC) system of M31 with unprecedented precision witnessed a clear bimodality in absorption-line index distributions of old GCs. Such division of extragalactic GCs, so far asserted mainly by photometric color bimodality, has been viewed as the presence of merely two distinct metallicity subgroups within individual galaxies and forms a critical backbone of various galaxy formation theories. Given that spectroscopy is a more detailed probe into stellar population than photometry, the discovery of index bimodality may point to the very existence of dual GC populations. However, here we show that the observed spectroscopic dichotomy of M31 GCs emerges due to the nonlinear nature of metallicity-to-index conversion and thus one does not necessarily have to invoke two separate GC subsystems. We take this as a close analogy to the recent view that metallicity-color nonlinearity is primarily responsible for observed GC color bimodality. We also demonstrate that the metallicity-sensitive magnesium line displays non-negligible metallicity-index nonlinearity and Balmer lines show rather strong nonlinearity. This gives rise to bimodal index distributions, which are routinely interpreted as bimodal metallicity distributions, not considering metallicity-index nonlinearity. Our findings give a new insight into the constitution of M31's GC system, which could change much of the current thought on the formation of GC systems and their host galaxies.

  16. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  17. Selecting a Roof Membrane.

    ERIC Educational Resources Information Center

    Waldron, Larry W.

    1990-01-01

    Offers a brief synopsis of the unique characteristics of the following roof membranes: (1) built-up roofing; (2) elastoplastic membranes; (3) modified bitumen membranes; (4) liquid applied membranes; and (5) metal roofing. A chart compares the characteristics of the raw membranes only. (MLF)

  18. Velocity dependant splash behaviour

    NASA Astrophysics Data System (ADS)

    Hamlett, C. A. E.; Shirtcliffe, N. J.; McHale, G.; Ahn, S.; Doerr, S. H.; Bryant, R.; Newton, M. I.

    2012-04-01

    Extreme soil water repellency can occur in nature via condensation of volatile organic compounds released during wildfires and can lead to increased erosion rate. Such extreme water repellent soil can be classified as superhydrophobic and shares similar chemical and topographical features to specifically designed superhydrophobic surfaces. Previous studies using high speed videography to investigate single droplet impact behaviour on artificial superhydrophobic have revealed three distinct modes of splash behaviour (rebound, pinned and fragmentation) which are dependent on the impact velocity of the droplet. In our studies, using high-speed videography, we show that such splash behaviour can be replicated on fixed 'model' water repellent soils (hydrophobic glass beads/particles). We show that the type of splash behaviour is dependent on both the size and chemical nature of the fixed particles. The particle shape also influences the splash behaviour as shown by drop impact experiments on fixed sand samples. We have also studied soil samples, as collected from the field, which shows that the type of droplet splash behaviour can lead to enhanced soil particle transport.

  19. Membrane Systems in Cyanobacteria

    SciTech Connect

    Liberton, Michelle L.; Pakrasi, Himadri B.

    2008-01-01

    Cyanobacteria are photosynthetic prokaryotes with highly differentiated membrane systems. In addition to a Gram-negative-type cell envelope with plasma membrane and outer membrane separated by a periplasmic space, cyanobacteria have an internal system of thylakoid membranes where the fully functional electron transfer chains of photosynthesis and respiration reside. The presence of different membrane systems lends these cells a unique complexity among bacteria. Cyanobacteria must be able to reorganize the membranes, synthesize new membrane lipids, and properly target proteins to the correct membrane system. The outer membrane, plasma membrane, and thylakoid membranes each have specialized roles in the cyanobacterial cell. Understanding the organization, functionality, protein composition and dynamics of the membrane systems remains a great challenge in cyanobacterial cell biology.

  20. Nonlinear vibration of axially moving membrane by finite element method

    NASA Astrophysics Data System (ADS)

    Koivurova, H.; Pramila, A.

    A theoretical and numerical formulation for nonlinear axially moving membrane is presented. The model is based on a Lagrangian description of the continuum problem in the context of dynamics of initially stressed solids. Membrane elasticity is included via a finite strain model and the membrane transport speed is included by using conservation of the membrane mass. Hamilton's principle provides nonlinear equations, which describe the three-dimensional motion of the membrane. The incremental equations of Hamilton's principle are discretized by the finite element method. The formulation includes geometrically nonlinear effects: large displacements, variation of membrane tension and variations in axial velocity due to deformation. Implementation of this novel numerical model was done by adding an axially moving membrane element into a FEM program, which contains acoustic fluid elements and contact algorithms. Hence, analysis of problems containing interaction with the surrounding air field and contact between supporting structures was possible. The model was tested by comparing previous linear and present nonlinear dynamic behaviour of an axially moving web. The effects of contact between finite rolls and the membrane and interaction between the surrounding air and the membrane were included in the model. The results show, that nonlinearities and coupling phenomena have a considerable effect on the dynamic behaviour of the system.

  1. Bimodal Silurian and Lower Devonian volcanic rock assemblages in the Machias-Eastport area, Maine

    USGS Publications Warehouse

    Gates, Olcott; Moench, R.H.

    1981-01-01

    Exposed in the Machias-Eastport area of southeastern Maine is the thickest (at least 8,000 m), best exposed, best dated, and most nearly complete succession of Silurian and Lower Devonian volcanic strata in the coastal volcanic belt, remnants of which crop out along the coasts of southern New Brunswick, Canada, and southeastern New England in the United States. The volcanics were erupted through the 600-700-million-year-old Avalonian sialic basement. To test the possibility that this volcanic belt was a magmatic arc above a subduction zone prior to presumed Acadian continental collision, samples representing the entire section in the Machias-Eastport area of Maine were chemically analyzed. Three strongly bimodal assemblages of volcanic rocks and associated intrusives are recognized, herein called the Silurian, older Devonian, and younger Devonian assemblages. The Silurian assemblage contains typically nonporphyritic high-alumina tholeiitic basalts, basaltic andesites, and diabase of continental characterand calc-alkalic rhyolites, silicic dacites, and one known dike of andesite. These rocks are associated with fossiliferous, predominantly marine strata of the Quoddy, Dennys, and Edmunds Formations, and the Leighton Formation of the Pembroke Group (the stratigraphic rank of both is revised herein for the Machias-Eastport area), all of Silurian age. The shallow marine Hersey Formation (stratigraphic rank also revised herein) of the Pembroke Group, of latest Silurian age (and possibly earliest Devonian, as suggested by an ostracode fauna), contains no known volcanics; and it evidently was deposited during a volcanic hiatus that immediately preceded emergence of the coastal volcanic belt and the eruption of the older Devonian assemblage. The older Devonian assemblage, in the lagoonal to subaerial Lower Devonian Eastport Formation, contains tholeiitic basalts and basaltic andesites, typically with abundant plagioclase phenocrysts and typically richer in iron and

  2. Further Evidence for Geochemical Diversity, and Possible Bimodality, Among Cumulate Eucrites

    NASA Astrophysics Data System (ADS)

    Warren, P. H.; Kallemeyn, G. W.

    1992-07-01

    monomict. The pyroxene is uniformly Mg-rich (opx mg = 68), yet diogenitic px is not present. No Ce anomaly was detected. If lunar standards can be applied to eucrites, our RNAA siderophile result for Au gives a marginal indication of "pristinity": [Au] = 2.5 X 10^-4 times CI; also [Re] = 4.3 X 10^-4 times CI, but [Ir] = 7.4 X 10^-4 times CI (possibly linked to the unusually mafic nature of this rock). Like Binda and the mildly accumulative Pomozdino, LEW87002 appears to be the product of a melt along the moderate-mg, high- ITE "Stannem Trend." Collectively, these samples suggest that cumulate eucrites formed from parent melts more diverse than the known noncumulate eucrites. The data also hint at a geochemical bimodality for the parent melts, reminiscent of the bimodality among ancient lunar cumulates, which show a paradoxical tendency for high-mg cumulates to be more ITE-rich than low-mg cumulates. The same basic mechanism might be responsible: later melts are more directly linked to the high-mg mantle, but tend to be contaminated by mixing with residual melts left over from the slightly older Nuevo Laredo Trend linked cumulates. References: Delaney J. S. (1988) Lunar and Planet. Sci. XX, 236-237. Mittlefehldt D. W. and Lindstrom M. M. (1991) Geochim. Cosmochim. Acta 55, 77-87. Takeda H., Tagai T., and Graham A. (1988) Thirteenth Symp. Ant. Mets. (Tokyo), pp. 142-144. Figure 1, which in the hard copy appears here, shows cumulate and cumulate-like eucrites and possible parent melt compositions.

  3. Synthesis and characterization of intrinsically radiolabeled quantum dots for bimodal detection

    PubMed Central

    Sun, Minghao; Hoffman, David; Sundaresan, Gobalakrishnan; Yang, Likun; Lamichhane, Narottam; Zweit, Jamal

    2012-01-01

    A novel approach was developed to synthesize radioactive quantum dots (r-QDs) thereby enabling both optical and radionuclide signals to be detected from the same intrinsic bimodal probe. This proof-of-concept is exemplified by the incorporation of the radionuclide 109Cadmium into the core/shell of the nanoparticle. Green and near infrared (NIR) emission intrinsic r-QDs were synthesized and characterized. Zwitterionic and Poly-polyethlene glycol (PEGylated) ligands were synthesized and used to coat r-QDs. Zwitterionic NIR r-QDs (quantum yield = 11%) and PEGylated NIR r-QDs (quantum yield = 14%) with an average size of 13.8 nm and 16.8 nm were obtained respectively. The biodistribution of NIR zwitterionic and PEGylated r-QDs in nude mice was investigated and zwitterionic r-QDs showed longer blood circulation (t1/2 = 21.4±1.1 hrs) than their PEGylated counterparts (t1/2 = 6.4±0.5 min). Both zwitterionic and PEGylated r-QDs exhibited progressive accumulation in the liver and spleen, but the magnitude of the accumulation (%ID/g) was about 3-6 fold higher with the PEGylated r-QDs at all the time points. The results demonstrated the feasibility of r-QDs synthesis in quantitative yield and retention of fluorescence following incorporation of radioactivity into the core/shell of the nanoparticle. The gamma signal from the same fluorescent elemental material enabled quantitative and robust pharmacokinetic measurements and how these changed depended on the type of coating ligands used. This strategy for intrinsically radio-labeling the QDs is currently being implemented in our laboratory for the incorporation of other radiometals. PMID:23133807

  4. Formulation and evaluation of bilayer tablet for bimodal release of venlafaxine hydrochloride.

    PubMed

    Momin, Munira M; Kane, Snehal; Abhang, Pooja

    2015-01-01

    The aim of the present research was to develop a bilayer tablet of venlafaxine hydrochloride for bimodal drug release. In the present investigation authors have tried to explore fenugreek mucilage (FNM) for bioadhesive sustained release layer. The attempt has been made to combine FNM with well studied bioadhesive polymers like hydroxy propyl methyl cellulose (HPMC), Carbopol, and Xanthan Gum. The formulations were evaluated for swelling Index, ex vivo bioadhesion, water uptake studies, in vitro drug release and dissolution kinetics was studied. Substantial bioadhesion force (2.4 ± 0.023 g) and tablet adhesion retention time (24 ± 2 h) was observed with FNM and HPMC combination at 80:20 ratio. The dissolution kinetics followed the Higuchi model (R (2) = 0.9913) via a non-Fickian diffusion controlled release mechanism after the initial burst. The 3(2) full factorial design was employed in the present study. The type of polymers used in combination with FNM (X1) and percent polymer replaced with FNM (X2) were taken as independent formulations variables. The selected responses, bioadhesion force (0.11-0.25 ± 0.023 g), amount of drug released in 10 h, Y10 (78.20-95.78 ± 1.24%) and bioadhesive strength, (19-24 ± 2 h) presented good correlation with the selected independent variables. Statistical analysis (ANOVA) of the optimized bilayer formulations showed no significant difference in the cumulative amount of drug release after 15 min, but significant difference (p < 0.05) in the amount of drug released after 1 hr till 12 h from optimized formulations was observed. The natural mucilage like FNM could be successfully incorporated into tablet with only 20% replacement with HPMC and it showed good bioadhesiveness and sustained drug release. PMID:26217229

  5. Label-free bimodal waveguide immunosensor for rapid diagnosis of bacterial infections in cirrhotic patients.

    PubMed

    Maldonado, Jesús; González-Guerrero, Ana Belén; Domínguez, Carlos; Lechuga, Laura M

    2016-11-15

    Spontaneous bacterial peritonitis is an acute bacterial infection of ascitic fluid; it has a high incidence in cirrhotic patients and it is associated with high mortality. In such a situation, early diagnosis and treatment is crucial for the survival of the patient. However, bacterial analysis in ascitic fluid is currently based on culture methods, which are time-consuming and laborious. We report here the application of a photonic interferometer biosensor based on a bimodal waveguide (BiMW) for the rapid and label-free detection of bacteria directly in ascitic fluid. The device consists of a straight waveguide in which two modes of the same polarization interfere while interacting with the external medium through their evanescent fields. A bimolecular event occurring on the sensor area of the device (e.g. capturing bacteria) will differently affect each light mode, inducing a variation in the phase of the light exiting at the output of the waveguide. In this work, we demonstrate the quantitative detection of Bacillus cereus in buffer medium and Escherichia coli in undiluted ascitic fluid from cirrhotic patients. In the case of Bacillus cereus detection, the device was able to specifically detect bacteria at relevant concentrations in 12.5min and in the case of Escherichia coli detection, the analysis time was 25min. Extrapolation of the data demonstrated that the detection limits of the biosensor could reach few bacteria per milliliter. Based on the results obtained, we consider that the BiMW biosensor is positioned as a promising new clinical tool for user-friendly, cost-effective and real-time microbiological analysis.

  6. Bimodal effect of oxidative stress in internal anal sphincter smooth muscle.

    PubMed

    Singh, Jagmohan; Kumar, Sumit; Rattan, Satish

    2015-09-01

    Changes in oxidative stress may affect basal tone and relaxation of the internal anal sphincter (IAS) smooth muscle in aging. We examined this issue by investigating the effects of the oxidative stress inducer 6-anilino-5,8-quinolinedione (LY-83583) in basal as well as U-46619-stimulated tone, and nonadrenergic, noncholinergic (NANC) relaxation in rat IAS. LY-83583, which works via generation of reactive oxygen species in living cells, produced a bimodal effect in IAS tone: lower concentrations (0.1 nM to 10 μM) produced a concentration-dependent increase, while higher concentrations (50-100 μM) produced a decrease in IAS tone. An increase in IAS tone by lower concentrations was associated with an increase in RhoA/Rho kinase (ROCK) activity. This was evident by the increase in RhoA/ROCK in the particulate fractions, in ROCK activity, and in the levels of phosphorylated (p) (Thr696)-myosin phosphatase target subunit 1 and p(Thr18/Ser19)-20-kDa myosin light chain. Conversely, higher concentrations of LY-83583 produced inhibitory effects on RhoA/ROCK. Interestingly, both the excitatory and inhibitory effects of LY-83583 in the IAS were reversed by superoxide dismutase. The excitatory effects of LY-83583 were found to resemble those with neuronal nitric oxide synthase (nNOS) inhibition by l-NNA, since it produced a significant increase in the IAS tone and attenuated NANC relaxation. These effects of LY-83583 and l-NNA were reversible by l-arginine. This suggests the role of nNOS inhibition and RhoA/ROCK activation in the increase in IAS tone by LY-83583. These data have important implications in the pathophysiology and therapeutic targeting of rectoanal disorders, especially associated with IAS dysfunction. PMID:26138467

  7. A Crewed Mission to Apophis Using a Hybrid Bimodal Nuclear Thermal Electric Propulsion (BNTEP) System

    NASA Technical Reports Server (NTRS)

    Mccurdy, David R.; Borowski, Stanley K.; Burke, Laura M.; Packard, Thomas W.

    2014-01-01

    A BNTEP system is a dual propellant, hybrid propulsion concept that utilizes Bimodal Nuclear Thermal Rocket (BNTR) propulsion during high thrust operations, providing 10's of kilo-Newtons of thrust per engine at a high specific impulse (Isp) of 900 s, and an Electric Propulsion (EP) system during low thrust operations at even higher Isp of around 3000 s. Electrical power for the EP system is provided by the BNTR engines in combination with a Brayton Power Conversion (BPC) closed loop system, which can provide electrical power on the order of 100's of kWe. High thrust BNTR operation uses liquid hydrogen (LH2) as reactor coolant propellant expelled out a nozzle, while low thrust EP uses high pressure xenon expelled by an electric grid. By utilizing an optimized combination of low and high thrust propulsion, significant mass savings over a conventional NTR vehicle can be realized. Low thrust mission events, such as midcourse corrections (MCC), tank settling burns, some reaction control system (RCS) burns, and even a small portion at the end of the departure burn can be performed with EP. Crewed and robotic deep space missions to a near Earth asteroid (NEA) are best suited for this hybrid propulsion approach. For these mission scenarios, the Earth return V is typically small enough that EP alone is sufficient. A crewed mission to the NEA Apophis in the year 2028 with an expendable BNTEP transfer vehicle is presented. Assembly operations, launch element masses, and other key characteristics of the vehicle are described. A comparison with a conventional NTR vehicle performing the same mission is also provided. Finally, reusability of the BNTEP transfer vehicle is explored.

  8. Contribution of bimodal hearing to lexical tone normalization in Mandarin-speaking cochlear implant users.

    PubMed

    Luo, Xin; Chang, Yi-Ping; Lin, Chun-Yi; Chang, Ronald Y

    2014-06-01

    Native Mandarin normal-hearing (NH) listeners can easily perceive lexical tones even under conditions of great voice pitch variations across speakers by using the pitch contrast between context and target stimuli. It is however unclear whether cochlear implant (CI) users with limited access to pitch cues can make similar use of context pitch cues for tone normalization. In this study, native Mandarin NH listeners and pre-lingually deafened unilaterally implanted CI users were asked to recognize a series of Mandarin tones varying from Tone 1 (high-flat) to Tone 2 (mid-rising) with or without a preceding sentence context. Most of the CI subjects used a hearing aid (HA) in the non-implanted ear (i.e., bimodal users) and were tested both with CI alone and CI + HA. In the test without context, typical S-shaped tone recognition functions were observed for most CI subjects and the function slopes and perceptual boundaries were similar with either CI alone or CI + HA. Compared to NH subjects, CI subjects were less sensitive to the pitch changes in target tones. In the test with context, NH subjects had more (resp. fewer) Tone-2 responses in a context with high (resp. low) fundamental frequencies, known as the contrastive context effect. For CI subjects, a similar contrastive context effect was found statistically significant for tone recognition with CI + HA but not with CI alone. The results suggest that the pitch cues from CIs may not be sufficient to consistently support the pitch contrast processing for tone normalization. The additional pitch cues from aided residual acoustic hearing can however provide CI users with a similar tone normalization capability as NH listeners.

  9. Innovation Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    SciTech Connect

    Hill, T.; Noble, C.; Martinell, J.; Borowski, S.

    2000-07-14

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  10. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    SciTech Connect

    Hill, Thomas Johnathan; Noble, Cheryl Ann; Noble, C.; Martinell, John Stephen; Borowski, S.

    2000-07-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonable assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  11. Formulation and evaluation of bilayer tablet for bimodal release of venlafaxine hydrochloride

    PubMed Central

    Momin, Munira M.; Kane, Snehal; Abhang, Pooja

    2015-01-01

    The aim of the present research was to develop a bilayer tablet of venlafaxine hydrochloride for bimodal drug release. In the present investigation authors have tried to explore fenugreek mucilage (FNM) for bioadhesive sustained release layer. The attempt has been made to combine FNM with well studied bioadhesive polymers like hydroxy propyl methyl cellulose (HPMC), Carbopol, and Xanthan Gum. The formulations were evaluated for swelling Index, ex vivo bioadhesion, water uptake studies, in vitro drug release and dissolution kinetics was studied. Substantial bioadhesion force (2.4 ± 0.023 g) and tablet adhesion retention time (24 ± 2 h) was observed with FNM and HPMC combination at 80:20 ratio. The dissolution kinetics followed the Higuchi model (R2 = 0.9913) via a non-Fickian diffusion controlled release mechanism after the initial burst. The 32 full factorial design was employed in the present study. The type of polymers used in combination with FNM (X1) and percent polymer replaced with FNM (X2) were taken as independent formulations variables. The selected responses, bioadhesion force (0.11–0.25 ± 0.023 g), amount of drug released in 10 h, Y10 (78.20–95.78 ± 1.24%) and bioadhesive strength, (19–24 ± 2 h) presented good correlation with the selected independent variables. Statistical analysis (ANOVA) of the optimized bilayer formulations showed no significant difference in the cumulative amount of drug release after 15 min, but significant difference (p < 0.05) in the amount of drug released after 1 hr till 12 h from optimized formulations was observed. The natural mucilage like FNM could be successfully incorporated into tablet with only 20% replacement with HPMC and it showed good bioadhesiveness and sustained drug release. PMID:26217229

  12. Contribution of Bimodal Hearing to Lexical Tone Normalization in Mandarin-speaking Cochlear Implant Users

    PubMed Central

    Luo, Xin; Chang, Yi-ping; Lin, Chun-yi; Chang, Ronald Y.

    2014-01-01

    Native Mandarin normal-hearing (NH) listeners can easily perceive lexical tones even under conditions of great voice pitch variations across speakers by using the pitch contrast between context and target stimuli. It is however unclear whether cochlear implant (CI) users with limited access to pitch cues can make similar use of context pitch cues for tone normalization. In this study, native Mandarin NH listeners and pre-lingually deafened unilaterally implanted CI users were asked to recognize a series of Mandarin tones varying from Tone 1 (high-flat) to Tone 2 (mid-rising) with or without a preceding sentence context. Most of the CI subjects used a hearing aid (HA) in the non-implanted ear (i.e., bimodal users) and were tested both with CI alone and CI+HA. In the test without context, typical S-shaped tone recognition functions were observed for most CI subjects and the function slopes and perceptual boundaries were similar with either CI alone or CI+HA. Compared to NH subjects, CI subjects were less sensitive to the pitch changes in target tones. In the test with context, NH subjects had more (resp. fewer) Tone-2 responses in a context with high (resp. low) fundamental frequencies, known as the contrastive context effect. For CI subjects, a similar contrastive context effect was found statistically significant for tone recognition with CI+HA but not with CI alone. The results suggest that the pitch cues from CIs may not be sufficient to consistently support the pitch contrast processing for tone normalization. The additional pitch cues from aided residual acoustic hearing can however provide CI users with a similar tone normalization capability as NH listeners. PMID:24576834

  13. Bimodal effect of oxidative stress in internal anal sphincter smooth muscle.

    PubMed

    Singh, Jagmohan; Kumar, Sumit; Rattan, Satish

    2015-09-01

    Changes in oxidative stress may affect basal tone and relaxation of the internal anal sphincter (IAS) smooth muscle in aging. We examined this issue by investigating the effects of the oxidative stress inducer 6-anilino-5,8-quinolinedione (LY-83583) in basal as well as U-46619-stimulated tone, and nonadrenergic, noncholinergic (NANC) relaxation in rat IAS. LY-83583, which works via generation of reactive oxygen species in living cells, produced a bimodal effect in IAS tone: lower concentrations (0.1 nM to 10 μM) produced a concentration-dependent increase, while higher concentrations (50-100 μM) produced a decrease in IAS tone. An increase in IAS tone by lower concentrations was associated with an increase in RhoA/Rho kinase (ROCK) activity. This was evident by the increase in RhoA/ROCK in the particulate fractions, in ROCK activity, and in the levels of phosphorylated (p) (Thr696)-myosin phosphatase target subunit 1 and p(Thr18/Ser19)-20-kDa myosin light chain. Conversely, higher concentrations of LY-83583 produced inhibitory effects on RhoA/ROCK. Interestingly, both the excitatory and inhibitory effects of LY-83583 in the IAS were reversed by superoxide dismutase. The excitatory effects of LY-83583 were found to resemble those with neuronal nitric oxide synthase (nNOS) inhibition by l-NNA, since it produced a significant increase in the IAS tone and attenuated NANC relaxation. These effects of LY-83583 and l-NNA were reversible by l-arginine. This suggests the role of nNOS inhibition and RhoA/ROCK activation in the increase in IAS tone by LY-83583. These data have important implications in the pathophysiology and therapeutic targeting of rectoanal disorders, especially associated with IAS dysfunction.

  14. Bimodal effect of oxidative stress in internal anal sphincter smooth muscle

    PubMed Central

    Singh, Jagmohan; Kumar, Sumit

    2015-01-01

    Changes in oxidative stress may affect basal tone and relaxation of the internal anal sphincter (IAS) smooth muscle in aging. We examined this issue by investigating the effects of the oxidative stress inducer 6-anilino-5,8-quinolinedione (LY-83583) in basal as well as U-46619-stimulated tone, and nonadrenergic, noncholinergic (NANC) relaxation in rat IAS. LY-83583, which works via generation of reactive oxygen species in living cells, produced a bimodal effect in IAS tone: lower concentrations (0.1 nM to 10 μM) produced a concentration-dependent increase, while higher concentrations (50–100 μM) produced a decrease in IAS tone. An increase in IAS tone by lower concentrations was associated with an increase in RhoA/Rho kinase (ROCK) activity. This was evident by the increase in RhoA/ROCK in the particulate fractions, in ROCK activity, and in the levels of phosphorylated (p) Thr696-myosin phosphatase target subunit 1 and pThr18/Ser19-20-kDa myosin light chain. Conversely, higher concentrations of LY-83583 produced inhibitory effects on RhoA/ROCK. Interestingly, both the excitatory and inhibitory effects of LY-83583 in the IAS were reversed by superoxide dismutase. The excitatory effects of LY-83583 were found to resemble those with neuronal nitric oxide synthase (nNOS) inhibition by l-NNA, since it produced a significant increase in the IAS tone and attenuated NANC relaxation. These effects of LY-83583 and l-NNA were reversible by l-arginine. This suggests the role of nNOS inhibition and RhoA/ROCK activation in the increase in IAS tone by LY-83583. These data have important implications in the pathophysiology and therapeutic targeting of rectoanal disorders, especially associated with IAS dysfunction. PMID:26138467

  15. Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images.

    PubMed

    Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong

    2015-01-01

    In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods. PMID:26703596

  16. Contribution of bimodal hearing to lexical tone normalization in Mandarin-speaking cochlear implant users.

    PubMed

    Luo, Xin; Chang, Yi-Ping; Lin, Chun-Yi; Chang, Ronald Y

    2014-06-01

    Native Mandarin normal-hearing (NH) listeners can easily perceive lexical tones even under conditions of great voice pitch variations across speakers by using the pitch contrast between context and target stimuli. It is however unclear whether cochlear implant (CI) users with limited access to pitch cues can make similar use of context pitch cues for tone normalization. In this study, native Mandarin NH listeners and pre-lingually deafened unilaterally implanted CI users were asked to recognize a series of Mandarin tones varying from Tone 1 (high-flat) to Tone 2 (mid-rising) with or without a preceding sentence context. Most of the CI subjects used a hearing aid (HA) in the non-implanted ear (i.e., bimodal users) and were tested both with CI alone and CI + HA. In the test without context, typical S-shaped tone recognition functions were observed for most CI subjects and the function slopes and perceptual boundaries were similar with either CI alone or CI + HA. Compared to NH subjects, CI subjects were less sensitive to the pitch changes in target tones. In the test with context, NH subjects had more (resp. fewer) Tone-2 responses in a context with high (resp. low) fundamental frequencies, known as the contrastive context effect. For CI subjects, a similar contrastive context effect was found statistically significant for tone recognition with CI + HA but not with CI alone. The results suggest that the pitch cues from CIs may not be sufficient to consistently support the pitch contrast processing for tone normalization. The additional pitch cues from aided residual acoustic hearing can however provide CI users with a similar tone normalization capability as NH listeners. PMID:24576834

  17. Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images.

    PubMed

    Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong

    2015-12-12

    In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods.

  18. Bimodal regulation of ICR1 levels generates self-organizing auxin distribution

    PubMed Central

    Hazak, Ora; Obolski, Uri; Prat, Tomáš; Friml, Jiří; Hadany, Lilach; Yalovsky, Shaul

    2014-01-01

    Auxin polar transport, local maxima, and gradients have become an important model system for studying self-organization. Auxin distribution is regulated by auxin-dependent positive feedback loops that are not well-understood at the molecular level. Previously, we showed the involvement of the RHO of Plants (ROP) effector INTERACTOR of CONSTITUTIVELY active ROP 1 (ICR1) in regulation of auxin transport and that ICR1 levels are posttranscriptionally repressed at the site of maximum auxin accumulation at the root tip. Here, we show that bimodal regulation of ICR1 levels by auxin is essential for regulating formation of auxin local maxima and gradients. ICR1 levels increase concomitant with increase in auxin response in lateral root primordia, cotyledon tips, and provascular tissues. However, in the embryo hypophysis and root meristem, when auxin exceeds critical levels, ICR1 is rapidly destabilized by an SCF(TIR1/AFB) [SKP, Cullin, F-box (transport inhibitor response 1/auxin signaling F-box protein)]-dependent auxin signaling mechanism. Furthermore, ectopic expression of ICR1 in the embryo hypophysis resulted in reduction of auxin accumulation and concomitant root growth arrest. ICR1 disappeared during root regeneration and lateral root initiation concomitantly with the formation of a local auxin maximum in response to external auxin treatments and transiently after gravitropic stimulation. Destabilization of ICR1 was impaired after inhibition of auxin transport and signaling, proteasome function, and protein synthesis. A mathematical model based on these findings shows that an in vivo-like auxin distribution, rootward auxin flux, and shootward reflux can be simulated without assuming preexisting tissue polarity. Our experimental results and mathematical modeling indicate that regulation of auxin distribution is tightly associated with auxin-dependent ICR1 levels. PMID:25468974

  19. Bimodal Biometric Verification Using the Fusion of Palmprint and Infrared Palm-Dorsum Vein Images

    PubMed Central

    Lin, Chih-Lung; Wang, Shih-Hung; Cheng, Hsu-Yung; Fan, Kuo-Chin; Hsu, Wei-Lieh; Lai, Chin-Rong

    2015-01-01

    In this paper, we present a reliable and robust biometric verification method based on bimodal physiological characteristics of palms, including the palmprint and palm-dorsum vein patterns. The proposed method consists of five steps: (1) automatically aligning and cropping the same region of interest from different palm or palm-dorsum images; (2) applying the digital wavelet transform and inverse wavelet transform to fuse palmprint and vein pattern images; (3) extracting the line-like features (LLFs) from the fused image; (4) obtaining multiresolution representations of the LLFs by using a multiresolution filter; and (5) using a support vector machine to verify the multiresolution representations of the LLFs. The proposed method possesses four advantages: first, both modal images are captured in peg-free scenarios to improve the user-friendliness of the verification device. Second, palmprint and vein pattern images are captured using a low-resolution digital scanner and infrared (IR) camera. The use of low-resolution images results in a smaller database. In addition, the vein pattern images are captured through the invisible IR spectrum, which improves antispoofing. Third, since the physiological characteristics of palmprint and vein pattern images are different, a hybrid fusing rule can be introduced to fuse the decomposition coefficients of different bands. The proposed method fuses decomposition coefficients at different decomposed levels, with different image sizes, captured from different sensor devices. Finally, the proposed method operates automatically and hence no parameters need to be set manually. Three thousand palmprint images and 3000 vein pattern images were collected from 100 volunteers to verify the validity of the proposed method. The results show a false rejection rate of 1.20% and a false acceptance rate of 1.56%. It demonstrates the validity and excellent performance of our proposed method comparing to other methods. PMID:26703596

  20. Bimodal albedo distributions in the ablation zone of the southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S. E.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J. R.

    2014-09-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus, meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates using in situ and remotely-sensed data. Observations include: (1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; (2) broadband albedo at two automatic weather stations; and (3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified surface ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 and 20-24 July 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  1. Bimodal Albedo Distributions in the Ablation Zone of the Southwestern Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Moustafa, S.; Rennermalm, A. K.; Smith, L. C.; Miller, M. A.; Mioduszewski, J.; Koenig, L.

    2014-12-01

    Surface albedo is a key variable controlling solar radiation absorbed at the Greenland Ice Sheet (GrIS) surface, and thus meltwater production. Recent decline in surface albedo over the GrIS has been linked to enhanced snow grain metamorphic rates and amplified ice-albedo feedback from atmospheric warming. However, the importance of distinct surface types on ablation zone albedo and meltwater production is still relatively unknown, and excluded in surface mass balance models. In this study, we analyze albedo and ablation rates (m d-1) using in situ and remotely-sensed data. Observations include: 1) a new high-quality in situ spectral albedo dataset collected with an Analytical Spectral Devices (ASD) spectroradiometer measuring at 325-1075 nm, along a 1.25 km transect during three days in June 2013; 2) broadband albedo at two automatic weather stations; and 3) daily MODerate Resolution Imaging Spectroradiometer (MODIS) albedo (MOD10A1) between 31 May and 30 August. We find that seasonal ablation zone albedos have a bimodal distribution, with two alternate states. This suggests that an abrupt switch from high to low albedo can be triggered by a modest melt event, resulting in amplified ablation rates. Our results show that such a shift corresponds to an observed melt rate percent difference increase of 51.6% during peak melt season (between 10-14 July and 20-24 July, 2013). Furthermore, our findings demonstrate that seasonal changes in GrIS ablation zone albedo are not exclusively a function of a darkening surface from ice crystal growth, but rather are controlled by changes in the fractional coverage of snow, bare ice, and impurity-rich surface types. As the climate continues to warm, regional climate models should consider the seasonal evolution of ice surface types in Greenland's ablation zone to improve projections of mass loss contributions to sea level rise.

  2. Geochemical investigation of Archaean Bimodal and Dwalile metamorphic suites, Ancient Gneiss Complex, Swaziland

    USGS Publications Warehouse

    Hunter, D.R.; Barker, F.; Millard, H.T.

    1984-01-01

    The bimodal suite (BMS) comprises leucotonalitic and trondhjemitic gneisses interlayered with amphibolites. Based on geochemical parameters three main groups of siliceous gneiss are recognized: (i) SiO2 14%, and fractionated light rare-earth element (REE) and flat heavy REE patterns; (ii) SiO2 and Al2O3 contents similar to (i) but with strongly fractionated REE patterns with steep heavy REE slopes; (iii) SiO2 > 73%, Al2O3 < 14%, Zr ??? 500 ppm and high contents of total REE having fractionated light REE and flat heavy REE patterns with large negative Eu anomalies. The interlayered amphibolites have major element abundances similar to those of basaltic komatiites, Mg-tholeiites and Fe-rich tholeiites. The former have gently sloping REE patterns, whereas the Mg-tholeiites have non-uniform REE patterns ranging from flat (??? 10 times chondrite) to strongly light REE-enriched. The Fe-rich amphibolites have flat REE patterns at 20-30 times chondrite. The Dwalile metamorphic suite, which is preserved in the keels of synforms within the BMS, includes peridotitic komatiites that have depleted light REE patterns similar to those of compositionally similar volcanics in the Onverwacht Group, Barberton, basaltic komatiites and tholeiites. The basaltic komatiites have REE patterns parallel to those of the BMS basaltic komatiites but with lower total REE contents. The Dwalile tholeiites have flat REE patterns. The basic and ultrabasic liquids were derived by partial melting of a mantle source which may have been heterogeneous or the heterogeneity may have resulted from sequential melting of the mantle source. The Fe-rich amphibolites were derived either from liquids generated at shallow levels or from liquids generated at depth which subsequently underwent extensive fractionation. ?? 1984.

  3. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location.

    PubMed

    Liao, Shu Y; Lee, Myungwoon; Wang, Tuo; Sergeyev, Ivan V; Hong, Mei

    2016-03-01

    Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~fourfold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105-160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes. PMID:26873390

  4. Formation of functional cell membrane domains: the interplay of lipid- and protein-mediated interactions.

    PubMed Central

    Harder, Thomas

    2003-01-01

    Numerous cell membrane associated processes, including signal transduction, membrane sorting, protein processing and virus trafficking take place in membrane subdomains. Protein-protein interactions provide the frameworks necessary to generate biologically functional membrane domains. For example, coat proteins define membrane areas destined for sorting processes, viral proteins self-assemble to generate a budding virus, and adapter molecules organize multimolecular signalling assemblies, which catalyse downstream reactions. The concept of raft lipid-based membrane domains provides a different principle for compartmentalization and segregation of membrane constituents. Accordingly, rafts are defined by the physical properties of the lipid bilayer and function by selective partitioning of membrane lipids and proteins into membrane domains of specific phase behaviour and lipid packing. Here, I will discuss the interplay of these independent principles of protein scaffolds and raft lipid microdomains leading to the generation of biologically functional membrane domains. PMID:12803918

  5. Communication and abnormal behaviour.

    PubMed

    Crown, S

    1979-01-01

    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential).

  6. Communication and abnormal behaviour.

    PubMed

    Crown, S

    1979-01-01

    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential). PMID:261653

  7. Preschoolers’ Physical Activity Behaviours

    PubMed Central

    Irwin, Jennifer D.; He, Meizi; Bouck, L. Michelle Sangster; Tucker, Patricia; Pollett, Graham L.

    2016-01-01

    Objectives To understand parents’ perspectives of their preschoolers’ physical activity behaviours. Methods A maximum variation sample of 71 parents explored their preschoolers’ physical activity behaviours through 10 semi-structured focus group discussions. Results Parents perceived Canada’s Physical Activity Guidelines for Children as inadequate; that their preschoolers get and need more than 30–90 minutes of activity daily; and that physical activity habits must be established during the preschool years. Nine barriers against and facilitators toward adequate physical activity were proposed: child’s age, weather, daycare, siblings, finances, time, society and safety, parents’ impact, and child’s activity preferences. Discussion The need for education and interventions that address current barriers are essential for establishing physical activity as a lifestyle behaviour during early childhood and, consequently, helping to prevent both childhood and adulthood obesity. PMID:16625802

  8. Lifestyle behaviours during pregnancy.

    PubMed

    Clissold, T L; Hopkins, W G; Seddon, R J

    1991-03-27

    Lifestyle behaviours of 183 women before and during pregnancy were investigated by retrospective questionnaire in the first few days postpartum. The threshold of cigarette smoking for a reduction in birth weight was exceeded at full term by 17% of the women, but only 1% exceeded a similar threshold for alcohol consumption. Consumption below the recommended minimum level for one or more major food groups was reported by 35% of the women during pregnancy. Only 36% of the women were vigorously active before pregnancy, and only 13% remained so throughout pregnancy. Level of education was a significant predictor of healthy lifestyle behaviours. Concern for their baby's and their own health were the main reasons given for change in behaviour during pregnancy, while doctor's advice and antenatal classes were cited infrequently. A new approach to lifestyle enhancement by health professionals might promote desirable changes in relation to smoking and possibly also food consumption and physical activity.

  9. Cephalopod consciousness: behavioural evidence.

    PubMed

    Mather, Jennifer A

    2008-03-01

    Behavioural evidence suggests that cephalopod molluscs may have a form of primary consciousness. First, the linkage of brain to behaviour seen in lateralization, sleep and through a developmental context is similar to that of mammals and birds. Second, cephalopods, especially octopuses, are heavily dependent on learning in response to both visual and tactile cues, and may have domain generality and form simple concepts. Third, these animals are aware of their position, both within themselves and in larger space, including having a working memory of foraging areas in the recent past. Thus if using a 'global workspace' which evaluates memory input and focuses attention is the criterion, cephalopods appear to have primary consciousness.

  10. Neurodevelopmental and behavioural paediatrics.

    PubMed

    McDowell, Michael

    2015-01-01

    One of the notable shifts in Paediatrics across the last 50 years has been towards disorders that are chronic and qualitative in nature. In addition to physical health, these impact on childhood development, behaviour and wellbeing. Understanding and management of these problems extends the traditional biological toolkit of paediatrics into the complexities of uncertainties of psychological and social context. In Australasia, the profession has responded with the development of Community Paediatrics as a recognised sub-specialty, of which Neurodevelopmental and Behavioural Paediatrics is an important component. These developments are reviewed along with consideration of future challenges for this field of health care.

  11. A magnetic/fluorometric bimodal sensor based on a carbon dots-MnO2 platform for glutathione detection

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Chen, Xi; Chai, Ran; Xing, Chengfen; Li, Huanrong; Yin, Xue-Bo

    2016-07-01

    A novel magnetic/fluorometric bimodal sensor was built from carbon dots (CDs) and MnO2. The resulting sensor was sensitive to glutathione (GSH), leading to apparent enhancement of magnetic resonance (MR) and fluorescence signals along with visual changes. The bimodal detection strategy is based on the decomposition of the CDs-MnO2 through a redox reaction between GSH and MnO2. This process causes the transformation from non-MR-active MnO2 to MR-active Mn2+, and is accompanied by fluorescence restoration of CDs. Compared with a range of other CDs, the polyethylenimine (PEI) passivated CDs (denoted as pCDs) were suitable for detection due to their positive surface potential. Cross-validation between MR and fluorescence provided detailed information regarding the MnO2 reduction process, and revealed the three distinct stages of the redox process. Thus, the design of a CD-based sensor for the magnetic/fluorometric bimodal detection of GSH was emphasized for the first time. This platform showed a detection limit of 0.6 μM with a linear range of 1-200 μM in the fluorescence mode, while the MR mode exhibited a linear range of 5-200 μM and a GSH detection limit of 2.8 μM with a visible change being observed rapidly at 1 μM in the MR images. Furthermore, the introduction of the MR mode allowed the biothiols to be easily identified. The integration of CD fluorescence with an MR response was demonstrated to be promising for providing detailed information and discriminating power, and therefore extend the application of CDs in sensing and imaging.A novel magnetic/fluorometric bimodal sensor was built from carbon dots (CDs) and MnO2. The resulting sensor was sensitive to glutathione (GSH), leading to apparent enhancement of magnetic resonance (MR) and fluorescence signals along with visual changes. The bimodal detection strategy is based on the decomposition of the CDs-MnO2 through a redox reaction between GSH and MnO2. This process causes the transformation from non

  12. Synthesis and characterization of microporous inorganic membranes for propylene/propane separation

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoli

    Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H 8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H 6/C3H8 separation properties of MFI zeolite membrane and CMS membrane. MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H 6/C3H8 mixture separation. CMS membranes were synthesized by coating/pyrolysis method on mesoporous gamma-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H 6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N 2 and C3H6 and C3H6/C 3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores. CMS membranes demonstrate excellent C3H6/C 3H8 separation

  13. Investigation on the physical-mechanical properties of dental resin composites reinforced with novel bimodal silica nanostructures.

    PubMed

    Wang, Ruili; Zhang, Maolin; Liu, Fengwei; Bao, Shuang; Wu, Tiantian; Jiang, Xiaoze; Zhang, Qinghong; Zhu, Meifang

    2015-05-01

    The aim of this study was to investigate the influence of bimodal silica nanostructures comprising of SiO2 nanoparticles (SiO2 NPs, ~70 nm) and SiO2 nanoclusters (SiO2 NCs, 0.07-2.70 μm) on physical-mechanical properties of resin-based composites (RBCs). SiO2 NPs and SiO2 NCs were prepared with the Stöber method and the coupling reaction, respectively, then silanized and employed as fillers to construct RBCs using a mixture of bisphenol A glycerolate dimethacrylate (Bis-GMA) and tri(ethylene glycol) dimethacrylate (TEGDMA) as the organic matrix. Results showed that the properties of RBCs were influenced by the filler ratios of bimodal silica nanostructures, and the appropriate amount of SiO2 NPs could effectively increase the activating light efficiency and filler packing density of RBCs. Among all experimental RBCs, RBC 50-20 (SiO2 NPs:SiO2 NCs=50:20, wt/wt) presented the highest degree of conversion (71.6±1.1%), the lowest polymerization shrinkage (2.6±0.1%), and the enhanced flexural strength (104.8±4.4 MPa), flexural modulus (6.2±0.3 GPa), and compressive strength (205.8±14.3 MPa), which were improved by 44%, 19%, 28%, 48%, and 42% in comparison with those of RBC 0-60 (SiO2 NPs:SiO2 NCs=0:60, wt/wt), respectively. Besides, in vitro cytotoxicity evaluation of RBC 50-20 indicated its acceptable cytotoxicity. Although the best performance was achieved by commercial Z350 XT, the introduction of bimodal silica nanostructures might provide the enhanced physical-mechanical properties of RBCs, compared with those of RBC 0-60 reinforced with unimodal SiO2 NCs. PMID:25746270

  14. A magnetic/fluorometric bimodal sensor based on a carbon dots-MnO2 platform for glutathione detection.

    PubMed

    Xu, Yang; Chen, Xi; Chai, Ran; Xing, Chengfen; Li, Huanrong; Yin, Xue-Bo

    2016-07-21

    A novel magnetic/fluorometric bimodal sensor was built from carbon dots (CDs) and MnO2. The resulting sensor was sensitive to glutathione (GSH), leading to apparent enhancement of magnetic resonance (MR) and fluorescence signals along with visual changes. The bimodal detection strategy is based on the decomposition of the CDs-MnO2 through a redox reaction between GSH and MnO2. This process causes the transformation from non-MR-active MnO2 to MR-active Mn(2+), and is accompanied by fluorescence restoration of CDs. Compared with a range of other CDs, the polyethylenimine (PEI) passivated CDs (denoted as pCDs) were suitable for detection due to their positive surface potential. Cross-validation between MR and fluorescence provided detailed information regarding the MnO2 reduction process, and revealed the three distinct stages of the redox process. Thus, the design of a CD-based sensor for the magnetic/fluorometric bimodal detection of GSH was emphasized for the first time. This platform showed a detection limit of 0.6 μM with a linear range of 1-200 μM in the fluorescence mode, while the MR mode exhibited a linear range of 5-200 μM and a GSH detection limit of 2.8 μM with a visible change being observed rapidly at 1 μM in the MR images. Furthermore, the introduction of the MR mode allowed the biothiols to be easily identified. The integration of CD fluorescence with an MR response was demonstrated to be promising for providing detailed information and discriminating power, and therefore extend the application of CDs in sensing and imaging. PMID:27346713

  15. Investigation on the physical-mechanical properties of dental resin composites reinforced with novel bimodal silica nanostructures.

    PubMed

    Wang, Ruili; Zhang, Maolin; Liu, Fengwei; Bao, Shuang; Wu, Tiantian; Jiang, Xiaoze; Zhang, Qinghong; Zhu, Meifang

    2015-05-01

    The aim of this study was to investigate the influence of bimodal silica nanostructures comprising of SiO2 nanoparticles (SiO2 NPs, ~70 nm) and SiO2 nanoclusters (SiO2 NCs, 0.07-2.70 μm) on physical-mechanical properties of resin-based composites (RBCs). SiO2 NPs and SiO2 NCs were prepared with the Stöber method and the coupling reaction, respectively, then silanized and employed as fillers to construct RBCs using a mixture of bisphenol A glycerolate dimethacrylate (Bis-GMA) and tri(ethylene glycol) dimethacrylate (TEGDMA) as the organic matrix. Results showed that the properties of RBCs were influenced by the filler ratios of bimodal silica nanostructures, and the appropriate amount of SiO2 NPs could effectively increase the activating light efficiency and filler packing density of RBCs. Among all experimental RBCs, RBC 50-20 (SiO2 NPs:SiO2 NCs=50:20, wt/wt) presented the highest degree of conversion (71.6±1.1%), the lowest polymerization shrinkage (2.6±0.1%), and the enhanced flexural strength (104.8±4.4 MPa), flexural modulus (6.2±0.3 GPa), and compressive strength (205.8±14.3 MPa), which were improved by 44%, 19%, 28%, 48%, and 42% in comparison with those of RBC 0-60 (SiO2 NPs:SiO2 NCs=0:60, wt/wt), respectively. Besides, in vitro cytotoxicity evaluation of RBC 50-20 indicated its acceptable cytotoxicity. Although the best performance was achieved by commercial Z350 XT, the introduction of bimodal silica nanostructures might provide the enhanced physical-mechanical properties of RBCs, compared with those of RBC 0-60 reinforced with unimodal SiO2 NCs.

  16. The influence of membrane bound proteins on phase separation and coarsening in cell membranes.

    PubMed

    Witkowski, Thomas; Backofen, Rainer; Voigt, Axel

    2012-11-14

    A theoretical explanation of the existence of lipid rafts in cell membranes remains a topic of lively debate. Large, micrometer sized rafts are readily observed in artificial membranes and can be explained using thermodynamic models for phase separation and coarsening. In live cells such domains are not observed and various models are proposed to describe why the systems do not coarsen. We review these attempts critically and show within a phase field approach that membrane bound proteins have the potential to explain the different behaviour observed in vitro and in vivo. Large scale simulations are performed to compute scaling laws and size distribution functions under the influence of membrane bound proteins and to observe a significant slow down of the domain coarsening at longer times and a breakdown of the self-similarity of the size-distribution function.

  17. Composite sensor membrane

    SciTech Connect

    Majumdar, Arun; Satyanarayana, Srinath; Yue, Min

    2008-03-18

    A sensor may include a membrane to deflect in response to a change in surface stress, where a layer on the membrane is to couple one or more probe molecules with the membrane. The membrane may deflect when a target molecule reacts with one or more probe molecules.

  18. Experimenting with Liquid Membranes.

    ERIC Educational Resources Information Center

    Lamb, J. D.; And Others

    1980-01-01

    Outlined are two experiments using liquid membranes that illustrate carrier-facilitated transport, where chemical species are ushered across the membrane by selective "carrier" molecules residing in the membrane. The use of liquid membranes as models for studying and describing biological transport mechanisms is explored. (CS)

  19. Cenozoic Bimodal Volcanic Rocks of the Northeast boundary of Tibetan Plateau: implication for the collision-induced mantle flow beneath the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Yu, X.; Mo, X.; Zhao, Z.

    2011-12-01

    Cenozoic bimodal volcanic rocks of the Northeastern boundary of Tibetan Plateau are found in the area of West Qinling in China, E104°30'-105°36' and N33°35'-34°40',which located tectonically to the western boundary of Ordos block and also the north section of the N-S trending Helan mountain-Liupan mountain-Yunnan tectonic belt. The geological setting of the bimodal volcanic rocks belongs to an assemblage of Cratonic blocks composed of many small blocks linked by oroginic belts(Deng et al., 1996). The bimodal volcanic rocks, similar to those in East African rift, are consisted of kamafugite, volcanic eruption carbonatite, shoshonite, rhyolite and/or trachyte. The age of the bimodal volcanic rocks is between 23Ma to 7.1Ma according to isotopic dating of K/Ar and 39Ar/40Ar. All of these volcaic rocks in the volcanic assemblage have the characteristics rich in LREE and LIL. Not only that, the HFS, especially Nb, Zr and P in the volcanic rocks are higher than other Cenozoic alkaline volcanic rocks in Tibetan Plateau. The 87Sr/86Sr=0.704031-0.70525, 206Pb/204Pb=18.408-19.062, 207Pb/204Pb=15.476-15.677, 208Pb/204Pb=38.061-39.414 and ɛ(Nd) =0.3-5.3 of the volcanic rocks, all of these are akin to the feature of Neo-Tethyan mantle geochemical end member as represented by Yaluzangbu ophiolites defined by Zhao and Mo et al (2009), and also akin to the volcanic rocks related to Ontong Java and FOZO mantle plum(Yu et al.,2009). Cenozoic bimodal volcanic rocks in Western Qinling, Northeastern boundary of Tibetan Plateau provide ideal lithoprobes for understanding of the mantle beneath Tibetan Plateau and showed that the Cenozoic bimodal volcanic rocks bear the geochemical feature of Indian ocean mantle domain, and its genesis may be related to mantle plum, the magmatic source of the bimodal volcanic rocks should be a depleted mantle. For this reason, we suggest the bimodal volcaic rock is a rifting magmatisim, and its origin and genesis of the bimodal volcaic rocks of

  20. Detergents in Membrane Protein Purification and Crystallisation.

    PubMed

    Anandan, Anandhi; Vrielink, Alice

    2016-01-01

    Detergents play a significant role in structural and functional characterisation of integral membrane proteins (IMPs). IMPs reside in the biological membranes and exhibit a great variation in their structural and physical properties. For in vitro biophysical studies, structural and functional analyses, IMPs need to be extracted from the membrane lipid bilayer environment in which they are found and purified to homogeneity while maintaining a folded and functionally active state. Detergents are capable of successfully solubilising and extracting the IMPs from the membrane bilayers. A number of detergents with varying structure and physicochemical properties are commercially available and can be applied for this purpose. Nevertheless, it is important to choose a detergent that is not only able to extract the membrane protein but also provide an optimal environment while retaining the correct structural and physical properties of the protein molecule. Choosing the best detergent for this task can be made possible by understanding the physical and chemical properties of the different detergents and their interaction with the IMPs. In addition, understanding the mechanism of membrane solubilisation and protein extraction along with crystallisation requirements, if crystallographic studies are going to be undertaken, can help in choosing the best detergent for the purpose. This chapter aims to present the fundamental properties of detergents and highlight information relevant to IMP crystallisation. The first section of the chapter reviews the physicochemical properties of detergents and parameters essential for predicting their behaviour in solution. The second section covers the interaction of detergents with the biologic membranes and proteins followed by their role in membrane protein crystallisation. The last section will briefly cover the types of detergent and their properties focusing on custom designed detergents for membrane protein studies.

  1. Detergents in Membrane Protein Purification and Crystallisation.

    PubMed

    Anandan, Anandhi; Vrielink, Alice

    2016-01-01

    Detergents play a significant role in structural and functional characterisation of integral membrane proteins (IMPs). IMPs reside in the biological membranes and exhibit a great variation in their structural and physical properties. For in vitro biophysical studies, structural and functional analyses, IMPs need to be extracted from the membrane lipid bilayer environment in which they are found and purified to homogeneity while maintaining a folded and functionally active state. Detergents are capable of successfully solubilising and extracting the IMPs from the membrane bilayers. A number of detergents with varying structure and physicochemical properties are commercially available and can be applied for this purpose. Nevertheless, it is important to choose a detergent that is not only able to extract the membrane protein but also provide an optimal environment while retaining the correct structural and physical properties of the protein molecule. Choosing the best detergent for this task can be made possible by understanding the physical and chemical properties of the different detergents and their interaction with the IMPs. In addition, understanding the mechanism of membrane solubilisation and protein extraction along with crystallisation requirements, if crystallographic studies are going to be undertaken, can help in choosing the best detergent for the purpose. This chapter aims to present the fundamental properties of detergents and highlight information relevant to IMP crystallisation. The first section of the chapter reviews the physicochemical properties of detergents and parameters essential for predicting their behaviour in solution. The second section covers the interaction of detergents with the biologic membranes and proteins followed by their role in membrane protein crystallisation. The last section will briefly cover the types of detergent and their properties focusing on custom designed detergents for membrane protein studies. PMID:27553232

  2. Measurement of the Fundamental Thermal Noise Limit in a Cryogenic Sapphire Frequency Standard Using Bimodal Maser Oscillations

    SciTech Connect

    Benmessai, Karim; Kersale, Yann; Giordano, Vincent; Creedon, Daniel Lloyd; Tobar, Michael Edmund; Bourgeois, Pierre-Yves

    2008-06-13

    We report observations of the Schawlow-Townes noise limit in a cryogenic sapphire secondary frequency standard. The effect causes a fundamental limit to the frequency stability, and was measured through the novel excitation of a bimodal maser oscillation of a Whispering Gallery doublet at 12.04 GHz. The beat frequency of 10 kHz between the oscillations enabled a sensitive probe for this measurement of fractional frequency instability of 10{sup -14}{tau}{sup -1/2} with only 0.5 pW of output power.

  3. Electrostatically shaped membranes

    NASA Technical Reports Server (NTRS)

    Silverberg, Larry M. (Inventor)

    1994-01-01

    Disclosed is a method and apparatus for electrostatically shaping a membrane suitable for use in antennas or the like, comprising an electrically conductive thin membrane where the periphery of said membrane is free to move in at least one direction, a first charge on the electrically conductive thin membrane to electrostatically stiffen the membrane, a second charge which shapes the electrostatically stiffened thin membrane and a restraint for limiting the movement of at least one point of the thin membrane relative to the second charge. Also disclosed is a method and apparatus for adaptively controlling the shape of the thin membrane by sensing the shape of the membrane and selectively controlling the first and second charge to achieve a desired performance characteristic of the membrane.

  4. Laboratory Experiments of Sand Ripples with Bimodal Size Distributions Under Asymmetric Oscillatory Flows

    NASA Astrophysics Data System (ADS)

    Calantoni, J.; Landry, B. J.

    2010-12-01

    The dynamics of sand ripples are vital to understanding numerous coastal processes such as sediment transport, wave attenuation, boundary layer development, and seafloor acoustic properties. Though significant laboratory research has been conducted to elucidate oscillatory flow morphodynamics under various constant and transient forcing conditions, the majority of the previous experiments were conducted only for beds with unimodal size distributions of sediment. Recent oscillatory flow experiments as well as past laboratory observations in uniform flows suggest that the presence of heterogeneous size sand compositions may significantly impact ripple morphology, resulting in a variety of observable effects (e.g., sediment sorting, bed armoring, and altered transport rates). Experimental work was conducted in a small oscillatory flow tunnel at the Sediment Dynamics Laboratory at the Naval Research Laboratory, Stennis Space Center. Three different monochromatic oscillatory forcings having velocity asymmetry were used to study sand ripple dynamics over five bimodal and two unimodal sediment beds. The seven different mixtures were composed using two unimodal sands of different colors (blue/white) and median grain diameters (d=0.31 mm / d=0.65 mm) combined into various mixtures by mass (i.e., 0/100; 10/90; 25/75; 50/50; 75/25; 90/10; and 100/0 which denotes mass percentage of blue/white sand, respectively, within each mixture). High-definition video of the sediment bed profile was acquired in conjunction with sediment trap measurements to resolve differences in ripple geometries, migration and evolution rates due to the different sediment mixtures and flow conditions. Observational findings clearly illustrate sediment stratification within ripple crests and the depth of the active mixing layer in addition to supporting sediment sorting in previous research on symmetric oscillatory flows in which the larger grains collect on top of ripple crests and smaller grains in the

  5. Bimodal Respiratory-Locomotor Neurons in the Neonatal Rat Spinal Cord.

    PubMed

    Le Gal, Jean-Patrick; Juvin, Laurent; Cardoit, Laura; Morin, Didier

    2016-01-20

    Neural networks that can generate rhythmic motor output in the absence of sensory feedback, commonly called central pattern generators (CPGs), are involved in many vital functions such as locomotion or respiration. In certain circumstances, these neural networks must interact to produce coordinated motor behavior adapted to environmental constraints and to satisfy the basic needs of an organism. In this context, we recently reported the existence of an ascending excitatory influence from lumbar locomotor CPG circuitry to the medullary respiratory networks that is able to depolarize neurons of the parafacial respiratory group during fictive locomotion and to subsequently induce an increased respiratory rhythmicity (Le Gal et al., 2014b). Here, using an isolated in vitro brainstem-spinal cord preparation from neonatal rat in which the respiratory and the locomotor networks remain intact, we show that during fictive locomotion induced either pharmacologically or by sacrocaudal afferent stimulation, the activity of both thoracolumbar expiratory motoneurons and interneurons is rhythmically modulated with the locomotor activity. Completely absent in spinal inspiratory cells, this rhythmic pattern is highly correlated with the hindlimb ipsilateral flexor activities. Furthermore, silencing brainstem neural circuits by pharmacological manipulation revealed that this locomotor-related drive to expiratory motoneurons is solely dependent on propriospinal pathways. Together these data provide the first evidence in the newborn rat spinal cord for the existence of bimodal respiratory-locomotor motoneurons and interneurons onto which both central efferent expiratory and locomotor drives converge, presumably facilitating the coordination between the rhythmogenic networks responsible for two different motor functions. Significance statement: In freely moving animals, distant regions of the brain and spinal cord controlling distinct motor acts must interact to produce the best

  6. Early miocene bimodal volcanism, Northern Wilson Creek Range, Lincoln County, Nevada

    USGS Publications Warehouse

    Willis, J.B.; Willis, G.C.

    1996-01-01

    Early Miocene volcanism in the northern Wilson Creek Range, Lincoln County, Nevada, produced an interfingered sequence of high-silica rhyolite (greater than 74% SiO2) ash-flow tuffs, lava flows and dikes, and mafic lava flows. Three new potassium-argon ages range from 23.9 ?? 1.0 Ma to 22.6 ?? 1.2 Ma. The rocks are similar in composition, stratigraphic character, and age to the Blawn Formation, which is found in ranges to the east and southeast in Utah, and, therefore, are herein established as a western extension of the Blawn Formation. Miocene volcanism in the northern Wilson Creek Range began with the eruption of two geochemically similar, weakly evolved ash-flow tuff cooling units. The lower unit consists of crystal-poor, loosely welded, lapilli ash-flow tuffs, herein called the tuff member of Atlanta Summit. The upper unit consists of homogeneous, crystal-rich, moderately to densely welded ash-flow tuffs, herein called the tuff member of Rosencrans Peak. This unit is as much as 300 m thick and has a minimum eruptive volume of 6.5 km3, which is unusually voluminous for tuffs in the Blawn Formation. Thick, conspicuously flow-layered rhyolite lava flows were erupted penecontemporaneously with the tuffs. The rhyolite lava flows have a range of incompatible trace element concentrations, and some of them show an unusual mixing of aphyric and porphyritic magma. Small volumes of alkaline, vesicular, mafic flows containing 50 weight percent SiO2 and 2.3 weight percent K2O were extruded near the end of the rhyolite volcanic activity. The Blawn Formation records a shift in eruptive style and magmatic composition in the northern Wilson Creek Range. The Blawn was preceded by voluminous Oligocene eruptions of dominantly calc-alkaline orogenic magmas. The Blawn and younger volcanic rocks in the area are low-volume, bimodal suites of high-silica rhyolite tuffs and lava flows and mafic lava flows.

  7. Gas flux measurements of episodic bimodal eruptive activity at Karymsky volcano (Kamchatka, Russia)

    NASA Astrophysics Data System (ADS)

    Arellano, S.; Galle, B.; Melnikov, D.

    2012-04-01

    Volcanoes of intermediate magmatic composition commonly exhibit episodes of intermittent gas and ash emission of variable duration. Due to the multiple conditions present at each system, different mechanisms have been proposed to account for the observed activity, and without key measurements at hand, a definite understanding of the situation might not be singled out. Karymsky, the most active volcano of Central Kamchatka, has presented a remarkably stable pattern of bimodal eruption since a few weeks after its violent reactivation in 1996. Periods of quasi-periodic explosive emissions with typical recurrence intervals of 3-10 min are alternated with episodes of semi-continuous discharge which intensity has a typical modulation at a frequency of 1 Hz. Geophysical studies at Karymsky have identified the main visual, seismic and acoustic features of these two eruption modalities. From these observations, the time scales of the processes have been defined and relevant models have been formulated, according to which the two modes are controlled by the rheological properties of an intruding gas-saturated magma batch and a shallow gas-depleted magma plug. Explosions are explained as the consequence of the formation of temporary sealing, overpressure buildup and vent clearance. Clearly, direct measurements of the gas emission rate are the key parameter to test such models. In this work, we report on the results of a field campaign for SO2 gas measurements carried out at Karymsky during 10-14 September 2011. We deployed 2 NOVAC-type, scanning DOAS systems as well as 1 rapid wide-Field of View mini-DOAS plume tracker. With this setup, we derived time-resolved SO2 flux, plume height, direction and speed, and detected pulses of increasing emission with high temporal resolution. We observed phases of explosive and quiescent degassing with variable amounts of ash emission and detected intensity changes of the associated acoustic signals. The repose time intervals between these

  8. Challenging Student Behaviour

    ERIC Educational Resources Information Center

    Jones, Glyn; Philp, Clare

    2011-01-01

    The issue of poor student behaviour within higher education institutions (HEIs) has been well documented in recent years. Although the number of reported cases constitutes a very small percentage of the overall student population in the UK, the impact of student misconduct on the rest of the student body and staff in HEIs can be substantial. For…

  9. Locomotion and postural behaviour

    NASA Astrophysics Data System (ADS)

    Schmidt, M.

    2010-05-01

    The purpose of this article is to provide a survey of the diversity of primate locomotor behaviour for people who are involved in research using laboratory primates. The main locomotor modes displayed by primates are introduced with reference to some general morphological adaptations. The relationships between locomotor behaviour and body size, habitat structure and behavioural context will be illustrated because these factors are important determinants of the evolutionary diversity of primate locomotor activities. They also induce the high individual plasticity of the locomotor behaviour for which primates are well known. The article also provides a short overview of the preferred locomotor activities in the various primate families. A more detailed description of locomotor preferences for some of the most common laboratory primates is included which also contains information about substrate preferences and daily locomotor activities which might useful for laboratory practice. Finally, practical implications for primate husbandry and cage design are provided emphasizing the positive impact of physical activity on health and psychological well-being of primates in captivity.

  10. Urban behavioural adaptation.

    PubMed

    Garroway, Colin J; Sheldon, Ben C

    2013-07-01

    A large and growing proportion of the world is impacted directly by human activities; among the most extreme of these is the spread of urban environments. Environmental change associated with urbanization represents a potentially potent source of selection. While urban environments generally have lowered biodiversity, some clades seem to thrive in urban settings. For example, many members of the bird family Turdidae, known as the ‘truethrushes’ and the blackbird Turdus merula (Fig. 1) in particular, are familiar urban species. Indeed, the colonization of urban environments by blackbirds has become a textbook case study for our understanding of the many ways a wild species can deal with urbanization. In this issue, Mueller et al. (Molecular Ecology, 00, 2013, 00) add to that story by beginning to address the genetic nature of behavioural adaptation of blackbirds colonizing urban areas. They do this by testing for divergence between paired urban and rural samples at a suite of candidate genes with hypothesized effects on behaviours thought to be important for the colonization of urban environments.They find evidence for consistent patterns of divergence at an exonic microsatellite associated with the SERT gene. SERT has a number of hypothesized behavioural effects, including harm avoidance, which may be associated with tolerating the hustle and bustle of urban environments. This is among the first evidence that behavioural differences between urban and rural environments have a genetic basis and this work suggests that urban environments can in some cases exert homogeneous selection pressures. PMID:23967452

  11. Changing client behaviour.

    PubMed

    Clark, Kathryn

    2013-12-14

    Persuading someone to change their behaviour, whether for their own benefit or for that of their pet, is not an easy task. A session at this year's BVA Congress considered strategies to encourage people to 'change the norm'. Kathryn Clark reports.

  12. Words in the bilingual brain: an fNIRS brain imaging investigation of lexical processing in sign-speech bimodal bilinguals

    PubMed Central

    Kovelman, Ioulia; Shalinsky, Mark H.; Berens, Melody S.; Petitto, Laura-Ann

    2014-01-01

    Early bilingual exposure, especially exposure to two languages in different modalities such as speech and sign, can profoundly affect an individual's language, culture, and cognition. Here we explore the hypothesis that bimodal dual language exposure can also affect the brain's organization for language. These changes occur across brain regions universally important for language and parietal regions especially critical for sign language (Newman et al., 2002). We investigated three groups of participants (N = 29) that completed a word repetition task in American Sign Language (ASL) during fNIRS brain imaging. Those groups were (1) hearing ASL-English bimodal bilinguals (n = 5), (2) deaf ASL signers (n = 7), and (3) English monolinguals naïve to sign language (n = 17). The key finding of the present study is that bimodal bilinguals showed reduced activation in left parietal regions relative to deaf ASL signers when asked to use only ASL. In contrast, this group of bimodal signers showed greater activation in left temporo-parietal regions relative to English monolinguals when asked to switch between their two languages (Kovelman et al., 2009). Converging evidence now suggest that bimodal bilingual experience changes the brain bases of language, including the left temporo-parietal regions known to be critical for sign language processing (Emmorey et al., 2007). The results provide insight into the resilience and constraints of neural plasticity for language and bilingualism. PMID:25191247

  13. Membrane position control

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor)

    2004-01-01

    A membrane structure includes at least one electroactive bending actuator fixed to a supporting base. Each electroactive bending actuator is operatively connected to the membrane for controlling membrane position. Any displacement of each electroactive bending actuator effects displacement of the membrane. More specifically, the operative connection is provided by a guiding wheel assembly and a track, wherein displacement of the bending actuator effects translation of the wheel assembly along the track, thereby imparting movement to the membrane.

  14. Electrostatically gated membrane permeability in inorganic protocells.

    PubMed

    Li, Mei; Harbron, Rachel L; Weaver, Jonathan V M; Binks, Bernard P; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization. PMID:23695636

  15. Electrostatically gated membrane permeability in inorganic protocells

    NASA Astrophysics Data System (ADS)

    Li, Mei; Harbron, Rachel L.; Weaver, Jonathan V. M.; Binks, Bernard P.; Mann, Stephen

    2013-06-01

    Although several strategies are now available to produce functional microcompartments analogous to primitive cell-like structures, little progress has been made in generating protocell constructs with self-controlled membrane permeability. Here we describe the preparation of water-dispersible colloidosomes based on silica nanoparticles and delineated by a continuous semipermeable inorganic membrane capable of self-activated, electrostatically gated permeability. We use crosslinking and covalent grafting of a pH-responsive copolymer to generate an ultrathin elastic membrane that exhibits selective release and uptake of small molecules. This behaviour, which depends on the charge of the copolymer coronal layer, serves to trigger enzymatic dephosphorylation reactions specifically within the protocell aqueous interior. This system represents a step towards the design and construction of alternative types of artificial chemical cells and protocell models based on spontaneous processes of inorganic self-organization.

  16. Sheet Membrane Spacesuit Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant; Trevino, Luis; Zapata, Felipe; Dillion, Paul; Castillo, Juan; Vonau, Walter; Wilkes, Robert; Vogel, Matthew; Frodge, Curtis

    2013-01-01

    A document describes a sheet membrane spacesuit water membrane evaporator (SWME), which allows for the use of one common water tank that can supply cooling water to the astronaut and to the evaporator. Test data showed that heat rejection performance dropped only 6 percent after being subjected to highly contaminated water. It also exhibited robustness with respect to freezing and Martian atmospheric simulation testing. Water was allowed to freeze in the water channels during testing that simulated a water loop failure and vapor backpressure valve failure. Upon closing the backpressure valve and energizing the pump, the ice eventually thawed and water began to flow with no apparent damage to the sheet membrane. The membrane evaporator also serves to de-gas the water loop from entrained gases, thereby eliminating the need for special degassing equipment such as is needed by the current spacesuit system. As water flows through the three annular water channels, water evaporates with the vapor flowing across the hydrophobic, porous sheet membrane to the vacuum side of the membrane. The rate at which water evaporates, and therefore, the rate at which the flowing water is cooled, is a function of the difference between the water saturation pressure on the water side of the membrane, and the pressure on the vacuum side of the membrane. The primary theory is that the hydrophobic sheet membrane retains water, but permits vapor pass-through when the vapor side pressure is less than the water saturation pressure. This results in evaporative cooling of the remaining water.

  17. New generalized poisson mixture model for bimodal count data with drug effect: An application to rodent brief‐access taste aversion experiments

    PubMed Central

    Soto, J; Orlu Gul, M; Cortina‐Borja, M; Tuleu, C; Standing, JF

    2016-01-01

    Pharmacodynamic (PD) count data can exhibit bimodality and nonequidispersion complicating the inclusion of drug effect. The purpose of this study was to explore four different mixture distribution models for bimodal count data by including both drug effect and distribution truncation. An example dataset, which exhibited bimodal pattern, was from rodent brief‐access taste aversion (BATA) experiments to assess the bitterness of ascending concentrations of an aversive tasting drug. The two generalized Poisson mixture models performed the best and was flexible to explain both under and overdispersion. A sigmoid maximum effect (Emax) model with logistic transformation was introduced to link the drug effect to the data partition within each distribution. Predicted density‐histogram plot is suggested as a model evaluation tool due to its capability to directly compare the model predicted density with the histogram from raw data. The modeling approach presented here could form a useful strategy for modeling similar count data types. PMID:27472892

  18. New generalized poisson mixture model for bimodal count data with drug effect: An application to rodent brief-access taste aversion experiments.

    PubMed

    Sheng, Y; Soto, J; Orlu Gul, M; Cortina-Borja, M; Tuleu, C; Standing, J F

    2016-08-01

    Pharmacodynamic (PD) count data can exhibit bimodality and nonequidispersion complicating the inclusion of drug effect. The purpose of this study was to explore four different mixture distribution models for bimodal count data by including both drug effect and distribution truncation. An example dataset, which exhibited bimodal pattern, was from rodent brief-access taste aversion (BATA) experiments to assess the bitterness of ascending concentrations of an aversive tasting drug. The two generalized Poisson mixture models performed the best and was flexible to explain both under and overdispersion. A sigmoid maximum effect (Emax ) model with logistic transformation was introduced to link the drug effect to the data partition within each distribution. Predicted density-histogram plot is suggested as a model evaluation tool due to its capability to directly compare the model predicted density with the histogram from raw data. The modeling approach presented here could form a useful strategy for modeling similar count data types. PMID:27472892

  19. Hierarchical control of porous silica by pH adjustment: Alkyl polyamines as surfactants for bimodal silica synthesis and its carbon replica

    NASA Astrophysics Data System (ADS)

    Abellán, G.; Carrillo, A. I.; Linares, N.; Serrano, E.; García-Martínez, J.

    2009-08-01

    Bimodal macro-mesoporous silica networks have been prepared in a simple one-pot synthesis using an inexpensive tetramine surfactant and tetraethoxysilane as a silica precursor. These novel materials show high pore volumes and templated mesopores (average pore size 3.0 nm) embedded in 20 nm thick walls forming interparticle large meso/macropores. The judicious control of the pH during the silica formation allows for the precise control of the interparticle condensation, likely due to the change in the interaction between the tetramine surfactant and the silica precursors. Finally, a highly porous carbon replica with bimodal porosity was prepared by using the bimodal silica as a hard sacrificial template. The microstructure of the silica template was accurately transferred to the carbon material obtaining high surface areas (up to 1300 m 2 g -1) and total pore volumes ≥2 cm 3 g -1.

  20. The evolution of behaviour therapy and cognitive behaviour therapy.

    PubMed

    Rachman, S

    2015-01-01

    The historical background of the development of behaviour therapy is described. It was based on the prevailing behaviourist psychology and constituted a fundamentally different approach to the causes and treatment of psychological disorders. It had a cold reception and the idea of treating the behaviour of neurotic and other patients was regarded as absurd. The opposition of the medical profession and psychoanalysts is explained. Parallel but different forms of behaviour therapy developed in the US and UK. The infusion of cognitive concepts and procedures generated a merger of behaviour therapy and cognitive therapy, cognitive behaviour therapy (CBT). The strengths and limitations of the early and current approaches are evaluated.

  1. Exploratory behaviour and novel predator recognition: behavioural correlations across contexts.

    PubMed

    Blake, C A; Gabor, C R

    2016-08-01

    It was hypothesized that the exploratory behaviour of an individual measured in a novel environment could predict its behaviour in response to a novel predator. This study examined novel predator recognition in the western mosquitofish Gambusia affinis, a species with individual differences in risk-taking, activity and exploration in novel environments. Prey responded with characteristic shoaling and avoidance in response to native predators, but did not show characteristic antipredator behaviour towards novel predators. Furthermore, G. affinis exhibited individual-level behavioural correlations across contexts but only when prey were tested with native predators. This could be the result of native predatory selection on behavioural correlations in the prey species. PMID:27220896

  2. Hydrogen permeation resistant heat pipe for bi-modal reactors. Final report, October 1, 1994--September 30, 1995

    SciTech Connect

    North, M.T.; Anderson, W.G.

    1995-12-31

    The principal objective of this program was to demonstrate technology that will make a sodium heat pipe tolerant of hydrogen permeation for a bimodal space reactor application. Special focus was placed on techniques which enhance the permeation of hydrogen out of the heat pipe. Specific objectives include: define the detailed requirements for the bimodal reactor application; design and fabricate a prototype heat pipe tolerant of hydrogen permeation; and test the prototype heat pipe and demonstrate that hydrogen which permeates into the heat pipe is removed or reduced to acceptable levels. The results of the program were fully successful. Analyses were performed on two different heat pipe designs and an experimental heat pipe was fabricated and tested. A model of the experimental heat pipe was developed to predict the enhancement in the hydrogen permeation rate out of the heat pipe. A significant improvement in the rate at which hydrogen permeates out of a heat pipe was predicted for the use of the special condenser geometry developed here. Agreement between the model and the experimental results was qualitatively good. Inclusion of the additional effects of fluid flow in the heat pipe are recommended for future work.

  3. The spatial reliability of task-irrelevant sounds modulates bimodal audiovisual integration: An event-related potential study.

    PubMed

    Li, Qi; Yu, Hongtao; Wu, Yan; Gao, Ning

    2016-08-26

    The integration of multiple sensory inputs is essential for perception of the external world. The spatial factor is a fundamental property of multisensory audiovisual integration. Previous studies of the spatial constraints on bimodal audiovisual integration have mainly focused on the spatial congruity of audiovisual information. However, the effect of spatial reliability within audiovisual information on bimodal audiovisual integration remains unclear. In this study, we used event-related potentials (ERPs) to examine the effect of spatial reliability of task-irrelevant sounds on audiovisual integration. Three relevant ERP components emerged: the first at 140-200ms over a wide central area, the second at 280-320ms over the fronto-central area, and a third at 380-440ms over the parieto-occipital area. Our results demonstrate that ERP amplitudes elicited by audiovisual stimuli with reliable spatial relationships are larger than those elicited by stimuli with inconsistent spatial relationships. In addition, we hypothesized that spatial reliability within an audiovisual stimulus enhances feedback projections to the primary visual cortex from multisensory integration regions. Overall, our findings suggest that the spatial linking of visual and auditory information depends on spatial reliability within an audiovisual stimulus and occurs at a relatively late stage of processing.

  4. The Near-Earth Distribution of Fe/O for Solar Energetic Particle Events: Is It Bimodal?

    NASA Technical Reports Server (NTRS)

    vonRosenvinge, Tycho; Cane, H. V.; Richardson, I. G.

    2009-01-01

    Pallavicini et al. (1977) suggested that there are two separate classes of solar soft X-ray events, impulsive and gradual. Cane et al. (1986) suggested that there might be two corresponding classes of Solar Energetic Particle (SEP) events. For both soft X-ray events and for SEP events, the fundamental question was whether there were two distinct classes of events or, alternatively, whether there was a continuum of event types with impulsive and gradual events at opposite ends of the distribution. Reames (1988) published results showing a bimodal distribution of Fe/O, which clearly suggested that there really are two distinct event types. Reames (2002) went further and suggested that impulsive events and gradual events were caused by two different types of solar events at the Sun corresponding to two different magnetic topologies. The energetic particles seen near earth from the two different event classes were considered to be accelerated in solar flares for impulsive events and by CME-driven shocks for gradual events. The Advanced Composition Explorer (ACE) spacecraft was launched in 1997 and has made observations of SEP events over the most recent solar activity cycle. We will examine data from the SIS and ULEIS instruments on ACE to see if the bimodal distribution of Fe/O is also evident in that data.

  5. Linkage disequilibrium in the insulin gene region: size variation at the 5' flanking polymorphism and bimodality among "class I" alleles.

    PubMed Central

    McGinnis, R. E.; Spielman, R. S.

    1994-01-01

    The 5' flanking polymorphism (5'FP), a hypervariable region at the 5' end of the insulin gene, has "class 1" alleles (650-900 bp long) that are in positive linkage disequilibrium with insulin-dependent diabetes mellitus (IDDM). We report that precise sizing of the 5'FP yields a bimodal frequency distribution of class 1 allele lengths. Class 1 alleles belonging to the lower component (650-750 bp) of the bimodal distribution were somewhat more highly associated with IDDM than were alleles from the upper component (760-900 bp), but the difference was not statistically significant. We also examined 5'FP length variation in relation to allelic variation at nearby polymorphisms. At biallelic RFLPs on both sides of the 5'FP, we found that one allele exhibits near-total association with the upper component of the 5'FP class 1 distribution. Such associations represent a little-known but potentially widespread form of linkage disequilibrium. In this type of disequilibrium, a flanking allele has near-complete association with a single mode of VNTR alleles whose lengths represent consecutive numbers of tandem repeats (CNTR). Such extreme disequilibrium between a CNTR mode and flanking alleles may originate and persist because length mutations at some VNTR loci usually add or delete only one or two repeat units. PMID:7915880

  6. Selection of higher eigenmode amplitude based on dissipated power and virial contrast in bimodal atomic force microscopy

    SciTech Connect

    Diaz, Alfredo J.; Eslami, Babak; López-Guerra, Enrique A.; Solares, Santiago D.

    2014-09-14

    This paper explores the effect of the amplitude ratio of the higher to the fundamental eigenmode in bimodal atomic force microscopy (AFM) on the phase contrast and the dissipated power contrast of the higher eigenmode. We explore the optimization of the amplitude ratio in order to maximize the type of contrast that is most relevant to the particular study. Specifically, we show that the trends in the contrast range behave differently for different quantities, especially the dissipated power and the phase, with the former being more meaningful than the latter (a similar analysis can be carried out using the virial, for which we also provide a brief example). Our work is based on numerical simulations using two different conservative-dissipative tip-sample models, including the standard linear solid and the combination of a dissipation coefficient with a conservative model, as well as experimental images of thin film Nafion{sup ®} proton exchange polymers. We focus on the original bimodal AFM method, where the higher eigenmode is driven with constant amplitude and frequency (i.e., in “open loop”).

  7. Preparation and characterization of bimodal porous poly(γ-benzyl-L-glutamate) scaffolds for bone tissue engineering.

    PubMed

    Qian, Junmin; Yong, Xueqing; Xu, Weijun; Jin, Xinxia

    2013-12-01

    An ideal scaffold in bone tissue-engineering strategy should provide biomimetic extracellular matrix-like architecture and biological properties. Poly(γ-benzyl-L-glutamate) (PBLG) has been a popular model polypeptide for various potential biomedical applications due to its good biocompatibility and biodegradability. This study developed novel bimodal porous PBLG polypeptide scaffolds via a combination of biotemplating method and in situ ring-opening polymerization of γ-benzyl-L-gIutamate N-carboxyanhydride (BLG-NCA). The PBLG scaffolds were characterized by proton nuclear magnetic resonance spectroscopy, X-ray diffraction, differential scanning calorimetry, scanning electron microscope (SEM) and mechanical test. The results showed that the semi-crystalline PBLG scaffolds exhibited an anisotropic porous structure composed of honeycomb-like channels (100-200 μm in diameter) and micropores (5-20 μm), with a very high porosity of 97.4±1.6%. The compressive modulus and glass transition temperature were 402.8±20.6 kPa and 20.2°C, respectively. The in vitro biocompatibility evaluation with MC3T3-E1 cells using SEM, fluorescent staining and MTT assay revealed that the PBLG scaffolds had good biocompatibility and favored cell attachment, spread and proliferation. Therefore, the bimodal porous polypeptide scaffolds are promising for bone tissue engineering. PMID:24094164

  8. Development and initial assessment of a new paradigm for assessing cognitive and motor inhibition: the bimodal virtual-reality Stroop.

    PubMed

    Henry, Mylène; Joyal, Christian C; Nolin, Pierre

    2012-09-30

    Assessing and predicting inhibition in adults is a common assignment for clinicians. However, there is no single measure of inhibition that is complete, sensitive and enjoyable. The main goal of this study was to develop a virtual reality neuropsychological task (the bimodal VR-Stroop) capable of measuring both cognitive (control of internal and external interference) and motor inhibition (a go no-go paradigm with reaction time variation, commission errors and omissions). Preliminary data obtained with 71 healthy adult participants confirmed that the VR-Stroop is capable of eliciting the Stroop effect with bimodal stimuli. Initial validation data also suggested that measures of the VR-Stroop significantly correlate with measures of the Elevator counting with distracters, the Continuous Performance Task (CPT-II), and the Stop-it task. Finally, regression analyses indicated that commission errors and variability of reaction times at the VR-Stroop were significantly predicted by scores of the Elevator task and the CPT-II. These preliminary results suggest that the VR-Stroop is an interesting measure of cognitive and motor inhibition for adults, although confirmatory investigations are warranted.

  9. The spatial reliability of task-irrelevant sounds modulates bimodal audiovisual integration: An event-related potential study.

    PubMed

    Li, Qi; Yu, Hongtao; Wu, Yan; Gao, Ning

    2016-08-26

    The integration of multiple sensory inputs is essential for perception of the external world. The spatial factor is a fundamental property of multisensory audiovisual integration. Previous studies of the spatial constraints on bimodal audiovisual integration have mainly focused on the spatial congruity of audiovisual information. However, the effect of spatial reliability within audiovisual information on bimodal audiovisual integration remains unclear. In this study, we used event-related potentials (ERPs) to examine the effect of spatial reliability of task-irrelevant sounds on audiovisual integration. Three relevant ERP components emerged: the first at 140-200ms over a wide central area, the second at 280-320ms over the fronto-central area, and a third at 380-440ms over the parieto-occipital area. Our results demonstrate that ERP amplitudes elicited by audiovisual stimuli with reliable spatial relationships are larger than those elicited by stimuli with inconsistent spatial relationships. In addition, we hypothesized that spatial reliability within an audiovisual stimulus enhances feedback projections to the primary visual cortex from multisensory integration regions. Overall, our findings suggest that the spatial linking of visual and auditory information depends on spatial reliability within an audiovisual stimulus and occurs at a relatively late stage of processing. PMID:27392755

  10. Comparing perceived auditory width to the visual image of a performing ensemble in contrasting bi-modal environmentsa)

    PubMed Central

    Valente, Daniel L.; Braasch, Jonas; Myrbeck, Shane A.

    2012-01-01

    Despite many studies investigating auditory spatial impressions in rooms, few have addressed the impact of simultaneous visual cues on localization and the perception of spaciousness. The current research presents an immersive audiovisual environment in which participants were instructed to make auditory width judgments in dynamic bi-modal settings. The results of these psychophysical tests suggest the importance of congruent audio visual presentation to the ecological interpretation of an auditory scene. Supporting data were accumulated in five rooms of ascending volumes and varying reverberation times. Participants were given an audiovisual matching test in which they were instructed to pan the auditory width of a performing ensemble to a varying set of audio and visual cues in rooms. Results show that both auditory and visual factors affect the collected responses and that the two sensory modalities coincide in distinct interactions. The greatest differences between the panned audio stimuli given a fixed visual width were found in the physical space with the largest volume and the greatest source distance. These results suggest, in this specific instance, a predominance of auditory cues in the spatial analysis of the bi-modal scene. PMID:22280585

  11. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.

    PubMed

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-12-01

    Anaerobic membrane bioreactors (AnMBRs) have been regarded as a potential solution to achieve energy neutrality in the future wastewater treatment plants. Coupling ceramic membranes into AnMBRs offers great potential as ceramic membranes are resistant to corrosive chemicals such as cleaning reagents and harsh environmental conditions such as high temperature. In this study, ceramic membranes with pore sizes of 80, 200 and 300 nm were individually mounted in three anaerobic ceramic membrane bioreactors (AnCMBRs) treating real domestic wastewater to examine the treatment efficiencies and to elucidate the effects of dissolved organic matters (DOMs) on fouling behaviours. The average overall chemical oxygen demands (COD) removal efficiencies could reach around 86-88%. Although CH4 productions were around 0.3 L/g CODutilised, about 67% of CH4 generated was dissolved in the liquid phase and lost in the permeate. When filtering mixed liquor of similar properties, smaller pore-sized membranes fouled slower in long-term operations due to lower occurrence of pore blockages. However, total organic removal efficiencies could not explain the fouling behaviours. Liquid chromatography-organic carbon detection, fluorescence spectrophotometer and high performance liquid chromatography coupled with fluorescence and ultra-violet detectors were used to analyse the DOMs in detail. The major foulants were identified to be biopolymers that were produced in microbial activities. One of the main components of biopolymers--proteins--led to different fouling behaviours. It is postulated that the proteins could pass through porous cake layers to create pore blockages in membranes. Hence, concentrations of the DOMs in the soluble fraction of mixed liquor (SML) could not predict membrane fouling because different components in the DOMs might have different interactions with membranes.

  12. Behaviour and welfare.

    PubMed

    Savory, C J; Hughes, B O

    2010-08-01

    1. We have chosen papers which we feel are representative of important subjects which have been covered by the Journal over a period of 50 years. We would not claim that these are objectively the best papers, for that is a matter of personal judgement, but we consider that they have made significant contributions to knowledge and understanding in poultry behaviour and welfare. 2. John Savory has selected 8 papers from Volumes 1-25 of British Poultry Science (1960-1984), which deal with 5 different aspects of behaviour and welfare: embryonic responses, feather pecking and cannibalism, cage floor preferences, lameness in broilers and myopathy in turkeys. 3. Barry Hughes has selected 11 papers from Volumes 26-50 (1985-2009) of British Poultry Science. Four topics been chosen: broken bones in layers, furnished cages, interaction of birds with machines, and stocking density and bird space.

  13. Membrane selectivity in pervaporation

    SciTech Connect

    Kujawski, W.

    1996-06-01

    A qualitative description is presented of pervaporation which discusses the initial preferential sorption into the membrane, diffusion of liquid, phase transition from liquid to vapor phase, followed by diffusion of vapors and fast desorption from the other side of the membrane. The overall separation of each pervaporation step was calculated in terms of separation factor {alpha}. The results show that in the case of hydrophilic membranes (i.e., dense polyamide-6 membrane and ion-exchange membrane PESS-1) and water-ethanol mixtures, the phase transition step decreases the overall separation. Also, diffusion through the membrane is unfavorable to water at a low concentration range.

  14. Conventional and Bimodal Nuclear Thermal Rocket (NTR) Artificial Gravity Mars Transfer Vehicle Concepts

    NASA Technical Reports Server (NTRS)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2014-01-01

    A variety of countermeasures have been developed to address the debilitating physiological effects of "zero-gravity" (0-g) experienced by cosmonauts and astronauts during their approximately 0.5-1.2 year long stays in LEO (Low Earth Orbit). Longer interplanetary flights, combined with possible prolonged stays in Mars orbit, could subject crewmembers to up to approximately 2.5 years of weightlessness. In view of known and recently diagnosed problems associated with 0-g, an artificial gravity spacecraft offers many advantages and may indeed be an enabling technology for human flights to Mars. A number of important human factors must be taken into account in selecting the rotation radius, rotation rate, and orientation of the habitation module or modules. These factors include the gravity gradient effect, radial and tangential Coriolis forces, along with cross-coupled acceleration effects. Artificial gravity (AG) Mars transfer vehicle (MTV) concepts are presented that utilize both conventional NTR, as well as, enhanced "bimodal" nuclear thermal rocket (BNTR) propulsion. The NTR is a proven technology that generates high thrust and has a specific impulse (I (sub sp)) capability of approximately 900 s - twice that of today's best chemical rockets. The AG/MTV concepts using conventional NTP carry twin cylindrical "ISS-type" habitation modules with their long axes oriented either perpendicular or parallel to the longitudinal spin axis of the MTV and utilize photovoltaic arrays (PVAs) for spacecraft power. The twin habitat modules are connected to a central operations hub located at the front of the MTV via two pressurized tunnels that provide the rotation radius for the habitat modules. For the BNTR AG/MTV option, each engine has its own "closed" secondary helium-xenon gas loop and Brayton rotating unit that can generate tens of kilowatts (kW (sub e)) of spacecraft electrical power during the mission coast phase eliminating the need for large PVAs. A single inflatable

  15. Petrogenesis of a Late Precambrian (575 600 Ma) bimodal suite in Northeast Africa

    NASA Astrophysics Data System (ADS)

    Stern, Robert J.; Gottfried, David

    1986-04-01

    Late Precambrian crustal evolution in the North Eastern Desert of Egypt occurred in a strongly extensional tectonic environment and was accompanied by abundant bimodal igneous activity. The extrusive and intrusive expressions of this magmatism, known as the Dokhan Volcanics and Pink Granites, respectively, were studied in detail from two areas. The Dokhan Volcanics and associated feeder dikes consist of a “mafic” suite dominated by andesites (˜60% SiO2) and smaller volumes of basalt and a “felsic” suite composed of rhyolite tuffs, ignimbrites and hypabyssal intrusions (˜72 78% SiO2). The rocks of the mafic suite display calc-alkaline trends on an AFM diagram but are enriched in incompatibles such as TiO2, P2O5, K2O, Rb, Sr, Ba, Zr, Y, Nb, and LREE. Rare earth element patterns are steep, with (Ce/Yb)n = 7.7 to 16.8. They contain moderate Ni (60 ppm) and Cr (95 ppm), indicating limited low-P fractionation. The melts of the mafic suite are interpreted to have formed either by ≤25% batch melting of eclogite or by ˜10% batch melting of LREE-enriched garnet lherzolite. The rocks of the felsic suite include Dokhan rhyolites and the epizonal Pink Granites. These contain 72 78% SiO2, are metaluminous and peraluminous, and have the high K2O/Na2O and FeO*/(FeO*+MgO) characteristic of post-tectonic, “A-type” granites. They are moderately enriched in incompatible elements, but their REE patterns overlap with those of the mafic suite, from which they can be distinguished by deep europium anomalies (Eu/Eu*=0.08 0.64) and flat HREE patterns=((Yb/Er)n=0.90 1.16). They share with the rocks of the mafic suite isotopic characteristics of depleted mantle, precluding anatexis of much older continental crust. The europium anomalies covary with Sr contents and indicate that plagioclase control was important, while the flat HREE patterns preclude residual garnet in the source. Hence the felsic melts could not have formed by anatexis of garnet-bearing mafic lower crust

  16. Predicting People's Environmental Behaviour: Theory of Planned Behaviour and Model of Responsible Environmental Behaviour

    ERIC Educational Resources Information Center

    Chao, Yu-Long

    2012-01-01

    Using different measures of self-reported and other-reported environmental behaviour (EB), two important theoretical models explaining EB--Hines, Hungerford and Tomera's model of responsible environmental behaviour (REB) and Ajzen's theory of planned behaviour (TPB)--were compared regarding the fit between model and data, predictive ability,…

  17. Mating behaviours of Daphnia pulicaria, a cyclic parthenogen: comparisons with copepods

    PubMed Central

    Brewer, M. C.

    1998-01-01

    The pre-and post-contact mating behaviours of Daphnia pulicaria are investigated by direct observations of vertical distributions, swimming behaviours and male-female interactions. Analysis of vertical distributions in a 1 m deep, thermally stratified migration chamber reveals that females were always located in the upper layer of the water column but males exhibited a bimodal depth distribution, in which an individual's depth was a function of body length and water temperature. The observed distributions of males may be the result of several interacting pressures; predation avoidance, life-history optimization, and avoidance of assortative mating. Male swimming behaviour was faster and orthogonal to that of females, which is in agreement with the predictions of encounter-rate maximization models. Video recordings of males and females interacting in a 1-litre vessel showed that males both pursued and contacted other males more often than females. Thus, there was no evidence that Daphnia are able to use water-borne chemical signals to locate and identify potential mates. However, the average duration of male-female contacts (13.8 s) was much longer than those between males (1.6 s), suggesting that males can determine the sex of contacted individuals.Daphnia mating behaviour is significantly more complex than previously acknowledged. In contrast to the conventional view of Daphnia males swimming more-or-less randomly and mating with any individual encountered, they exhibit behaviours which increase the potential of mating with females while reducing the risk of predation. Several male behaviours, such as 'scanning' and the performance of area-restricted spirals upon encounter, are similar to those reported for some copepods and may be common to zooplankton that lack sophisticated chemosensory abilities. The possibility that Daphnia may also be able to assess such important female attributes as species and reproductive status is discussed.

  18. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  19. Composite zeolite membranes

    DOEpatents

    Nenoff, Tina M.; Thoma, Steven G.; Ashley, Carol S.; Reed, Scott T.

    2002-01-01

    A new class of composite zeolite membranes and synthesis techniques therefor has been invented. These membranes are essentially defect-free, and exhibit large levels of transmembrane flux and of chemical and isotopic selectivity.

  20. Supported inorganic membranes

    DOEpatents

    Sehgal, Rakesh; Brinker, Charles Jeffrey

    1998-01-01

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  1. Tympanic membrane (image)

    MedlinePlus

    ... tympanic membrane they cause it to vibrate. The vibrations are then transferred to the tiny bones in the middle ear. The middle ear bones then transfer the vibrating signals to the inner ear. The tympanic membrane is ...

  2. Hybrid adsorptive membrane reactor

    DOEpatents

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  3. Cell Membranes Under Hydrostatic Pressure Subjected to Micro-Injection

    NASA Astrophysics Data System (ADS)

    Vassilev, Vassil M.; Kostadinov, Kostadin G.; Mladenov, Ivaïlo M.; Shulev, Assen A.; Stoilov, Georgi I.; Djondjorov, Peter A.

    2011-04-01

    The work is concerned with the determination of the mechanical behaviour of cell membranes under uniform hydrostatic pressure subject to micro-injections. For that purpose, assuming that the shape of the deformed cell membrane is axisymmetric a variational statement of the problem is developed on the ground of the so-called spontaneous curvature model. In this setting, the cell membrane is regarded as an axisymmetric surface in the three-dimensional Euclidean space providing a stationary value of the shape energy functional under the constraint of fixed total area and fixed enclosed volume. The corresponding Euler-Lagrange equations and natural boundary conditions are derived, analyzed and used to express the forces and moments in the membrane. Several examples of such surfaces representing possible shapes of cell membranes under pressure subjected to micro injection are determined numerically.

  4. Composite fuel cell membranes

    DOEpatents

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  5. Composite fuel cell membranes

    DOEpatents

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  6. Industrial membrane processes

    SciTech Connect

    White, R.E.; Pintauro, P.N.

    1986-01-01

    This book presents the papers given a symposium on the use of membranes in industrial plants. Topics considered include the effect of biofilm formation on salinity power plant output on a laboratory scale, an engineering analysis of membrane-aided distillation, the development and evaluation of sulfonated polysulfone membranes for the zinc/ferricyanide battery, and the degradation of ionic membranes in the zinc/ferricyanide battery.

  7. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1992-07-07

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  8. Cadmium sulfide membranes

    DOEpatents

    Spanhel, Lubomir; Anderson, Marc A.

    1991-10-22

    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  9. Meniscus Membranes For Separation

    DOEpatents

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2005-09-20

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  10. Meniscus membranes for separations

    DOEpatents

    Dye, Robert C.; Jorgensen, Betty; Pesiri, David R.

    2004-01-27

    Gas separation membranes, especially meniscus-shaped membranes for gas separations are disclosed together with the use of such meniscus-shaped membranes for applications such as thermal gas valves, pre-concentration of a gas stream, and selective pre-screening of a gas stream. In addition, a rapid screening system for simultaneously screening polymer materials for effectiveness in gas separation is provided.

  11. Water vapor diffusion membranes

    NASA Technical Reports Server (NTRS)

    Holland, F. F., Jr.; Smith, J. K.

    1974-01-01

    The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.

  12. Polyphosphazene semipermeable membranes

    DOEpatents

    Allen, Charles A.; McCaffrey, Robert R.; Cummings, Daniel G.; Grey, Alan E.; Jessup, Janine S.; McAtee, Richard E.

    1988-01-01

    A semipermeable, inorganic membrane is disclosed; the membrane is prepared from a phosphazene polymer and, by the selective substitution of the constituent groups bound to the phosphorous in the polymer structure, the selective passage of fluid from a feedstream can be controlled. Resistance to high temperatures and harsh chemical environments is observed in the use of the phosphazene polymers as semipermeable membranes.

  13. Effects of inorganic anions on cadmium sorption behaviours on titanate nanotube surfaces.

    PubMed

    Zhang, Lilin; Du, Alan J; Sun, Darren D; Leckie, James O

    2013-01-01

    This manuscript describes the characterization of as-synthesized titanate nanotube (TNT) and its sorption behaviours on cadmium with the interactions of inorganic anions. The X-ray diffraction and transmission electron microscopy found that the nanotube is in sodium titanate crystal phase (Na2Ti3O7) and the pores of TNT are bimodally distributed with nominal pore sizes of 3 and 15 nm. In the binary systems between TNT and anions, the binding affinity is fluoride > phosphate > sulphate with sulphate being the least preferred. The order is similar to that of their first acidity constants, pKa1. In the presence of cadmium ions, slight decreases in fluoride and sulphate uptakes were observed. Phosphate uptake was, however, synergistically improved when cadmium was introduced. In the same ternary systems, it was found that these anions decreased the cadmium uptakes by TNT with the effect of sulphate being the most prominent.

  14. Potamodromous migrations in the Magdalena River basin: bimodal reproductive patterns in neotropical rivers.

    PubMed

    López-Casas, S; Jiménez-Segura, L F; Agostinho, A A; Pérez, C M

    2016-07-01

    Magdalena River basin potamodromous fishes have two annual reproductive seasons: the subienda in the first half of the year and the mitaca in the second. Both upstream migrations are c. 30-45 days long; after that, with the onset of the rainy season, fishes spawn and remain in the river (resident individuals) or start a downstream movement (the bajanza) to return to the Magdalena floodplain lakes (nursery, shelter and feeding grounds). Due to their particular gonad development the bocachico Prochilodus magdalenae and probably the comelón Leporinus muyscorum are physiologically able to undertake two annual basin migrations. In the presence of dams or hydropower structures, fishes are able to find alternative migration routes. Some species should be re-classified in their migratory behaviour.

  15. Zebrafish respond to the geomagnetic field by bimodal and group-dependent orientation.

    PubMed

    Takebe, Akira; Furutani, Toshiki; Wada, Tatsunori; Koinuma, Masami; Kubo, Yoko; Okano, Keiko; Okano, Toshiyuki

    2012-01-01

    A variety of animals use Earth's magnetic field as a reference for their orientation behaviour. Although distinctive magnetoreception mechanisms have been postulated for many migrating or homing animals, the molecular mechanisms are still undefined. In this study, we found that zebrafish, a model organism suitable for genetic manipulation, responded to a magnetic field as weak as the geomagnetic field. Without any training, zebrafish were individually released into a circular arena that was placed in an artificial geomagnetic field, and their preferred magnetic directions were recorded. Individuals from five out of the seven zebrafish groups studied, groups mostly comprised of the offspring of predetermined pairs, showed bidirectional orientation with group-specific preferences regardless of close kinships. The preferred directions did not seem to depend on gender, age or surrounding environmental factors, implying that directional preference was genetically defined. The present findings may facilitate future study on the molecular mechanisms underlying magnetoreception.

  16. Potamodromous migrations in the Magdalena River basin: bimodal reproductive patterns in neotropical rivers.

    PubMed

    López-Casas, S; Jiménez-Segura, L F; Agostinho, A A; Pérez, C M

    2016-07-01

    Magdalena River basin potamodromous fishes have two annual reproductive seasons: the subienda in the first half of the year and the mitaca in the second. Both upstream migrations are c. 30-45 days long; after that, with the onset of the rainy season, fishes spawn and remain in the river (resident individuals) or start a downstream movement (the bajanza) to return to the Magdalena floodplain lakes (nursery, shelter and feeding grounds). Due to their particular gonad development the bocachico Prochilodus magdalenae and probably the comelón Leporinus muyscorum are physiologically able to undertake two annual basin migrations. In the presence of dams or hydropower structures, fishes are able to find alternative migration routes. Some species should be re-classified in their migratory behaviour. PMID:27073186

  17. Bimodal volcanism in a tectonic transfer zone: Evidence for tectonically controlled magmatism in the southern Central Andes, NW Argentina

    NASA Astrophysics Data System (ADS)

    Petrinovic, I. A.; Riller, U.; Brod, J. A.; Alvarado, G.; Arnosio, M.

    2006-04-01

    This field-based and analytical laboratory study focuses on the genetic relationship between bimodal volcanic centres and fault types of an important tectonic transfer zone in the southern Central Andes, the NW-SE striking Calama-Olacapato-Toro (COT) volcanic belt. More specifically, tectono-magmatic relationships are examined for the 0.55 Ma Tocomar, the 0.78 Ma San Jerónimo and the 0.45 Ma Negro de Chorrillos volcanic centres in the Tocomar area (66°30 W-24°15 S). Structures of the COT volcanic belt, notably NW-SE striking strike-slip faults and NE-SW trending normal faults, accommodated differential shortening between major N-S striking thrust faults on the Puna Plateau. We present evidence that bimodal volcanism was contemporaneous with activity of these fault types in the COT volcanic belt, whereby eruption and composition of the volcanic rocks in the Tocomar and San Jerónimo-Negro de Chorrillos areas appear to have been controlled by the kinematics of individual faults. More specifically, rhyolitic centres such as the Tocomar are associated with normal faults, whereas shoshonitic-andesitic monogenetic volcanoes, e.g., the San Jerónimo and Negro de Chorrillos centres, formed at strike-slip dominated faults. Thus, the eruption of higher viscous rhyolite magmas appears to have been facilitated in tectonic settings characterized by horizontal dilation whereas ascent and effusive volcanic activity of less viscous and hot basaltic andesites to shoshonites were controlled by subvertical strike-slip faults. While the Tocomar rhyolites are interpreted to be derived from an anatectic crustal source, geochemical characteristics of the San Jerónimo and Negro de Chorrillos shoshonitic andesites are in agreement with a deeper source. This suggests that the composition of erupted volcanic rocks as well as their spatial distribution in the Tocomar area is controlled by the activity of specific fault types. Such volcano-tectonic relationships are also evident from older

  18. Comparison of empirical, semi-empirical and physically based models of soil hydraulic functions derived for bi-modal soils

    NASA Astrophysics Data System (ADS)

    Kutílek, M.; Jendele, L.; Krejča, M.

    2009-02-01

    The accelerated flow in soil pores is responsible for a rapid transport of pollutants from the soil surface to deeper layers up to groundwater. The term preferential flow is used for this type of transport. Our study was aimed at the preferential flow realized in the structural porous domain in bi-modal soils. We compared equations describing the soil water retention function h( θ) and unsaturated hydraulic conductivity K( h), eventually K( θ) modified for bi-modal soils, where θ is the soil water content and h is the pressure head. The analytical description of a curve passing experimental data sets of the soil hydraulic function is typical for the empirical equation characterized by fitting parameters only. If the measured data are described by the equation derived by the physical model without using fitting parameters, we speak about a physically based model. There exist several transitional subtypes between empirical and physically based models. They are denoted as semi-empirical, or semi-physical. We tested 3 models of soil water retention function and 3 models of unsaturated conductivity using experimental data sets of sand, silt, silt loam and loam. All used soils are typical by their bi-modality of the soil porous system. The model efficiency was estimated by RMSE (Root mean square error) and by RSE (Relative square error). The semi-empirical equation of the soil water retention function had the lowest values of RMSE and RSE and was qualified as "optimal" for the formal description of the shape of the water retention function. With this equation, the fit of the modelled data to experiments was the closest one. The fitting parameters smoothed the difference between the model and the physical reality of the soil porous media. The physical equation based upon the model of the pore size distribution did not allow exact fitting of the modelled data to the experimental data due to the rigidity and simplicity of the physical model when compared to the real soil

  19. Comparison of empirical, semi-empirical and physically based models of soil hydraulic functions derived for bi-modal soils.

    PubMed

    Kutílek, M; Jendele, L; Krejca, M

    2009-02-16

    The accelerated flow in soil pores is responsible for a rapid transport of pollutants from the soil surface to deeper layers up to groundwater. The term preferential flow is used for this type of transport. Our study was aimed at the preferential flow realized in the structural porous domain in bi-modal soils. We compared equations describing the soil water retention function h(theta) and unsaturated hydraulic conductivity K(h), eventually K(theta) modified for bi-modal soils, where theta is the soil water content and h is the pressure head. The analytical description of a curve passing experimental data sets of the soil hydraulic function is typical for the empirical equation characterized by fitting parameters only. If the measured data are described by the equation derived by the physical model without using fitting parameters, we speak about a physically based model. There exist several transitional subtypes between empirical and physically based models. They are denoted as semi-empirical, or semi-physical. We tested 3 models of soil water retention function and 3 models of unsaturated conductivity using experimental data sets of sand, silt, silt loam and loam. All used soils are typical by their bi-modality of the soil porous system. The model efficiency was estimated by RMSE (Root mean square error) and by RSE (Relative square error). The semi-empirical equation of the soil water retention function had the lowest values of RMSE and RSE and was qualified as "optimal" for the formal description of the shape of the water retention function. With this equation, the fit of the modelled data to experiments was the closest one. The fitting parameters smoothed the difference between the model and the physical reality of the soil porous media. The physical equation based upon the model of the pore size distribution did not allow exact fitting of the modelled data to the experimental data due to the rigidity and simplicity of the physical model when compared to the

  20. Age, petrogenesis and tectonic implications of Early Devonian bimodal volcanic rocks in the South Altyn, NW China

    NASA Astrophysics Data System (ADS)

    Kang, Lei; Xiao, Pei-Xi; Gao, Xiao-Feng; Xi, Ren-Gang; Yang, Zai-Chao

    2015-11-01

    In this paper, we report zircon U-Pb dating, Hf isotopes, geochemical and Sr-Nd isotopic data, with the aim the petrogenesis and regional tectonic evolution of Early Devonian bimodal volcanic rock in the South Altyn, NW China. New LA-ICPMS zircon U-Pb isotopic data constrained them at ca. 406 Ma. The mafic samples are characterized by high Fe, Cr and Ni contents, low Ti and Mg contents, slightly enriched LREE patterns, and low (La/Yb)N, La/Nb and La/Ta ratios, and positive εNd(t) values (+3.3 to +3.4), indicating that they were likely derived from strong batch-melting of the asthenosphere in the spinel facies field. The felsic rocks show an A-type affinity, with high alkalis, Fe, Ga, Zr, Nb, Ce and Y contents, low Mg, Sr content, high Rb/Sr and Ga/Al ratios, enrichment in LILE (e.g., Rb, K, Th, U and LREE) and depletion in Ba, Sr, Nb, Ta, P and Ti, and fractionated REE patterns with very strong negative Eu anomalies. These features, along with distinct εNd(t) values (-0.5 to +2.3) and mostly positive εHf(t) (-0.29 to +5.18), indicate that the felsic rocks were mainly generated by partial melting of the crust in low pressure and high temperature conditions, and simultaneously underwent slight magma mixing of such melts with mantle magma. According to the petrogenetic schemes and geological background of the Early Devonian bimodal volcanic rocks (tholeiite and A-type dacite-rhyolite), they should have formed in a post-collisional extensional setting. Moreover, on the basis of spatial and temporal distribution, and formation mechanism, the tectonic magmatic evolution of the early Paleozoic South Altyn Tagh could be divided into three stages: - 505-472 Ma (continental collision), the magmatite formed under high-pressure conditions due to the deep subduction and initial tearing of continental slab; - 467-450 Ma (continental slab break-off), the magmatite formed at high temperature and low pressure in virtue of felsic upper crust uplifting and mantle magma