NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1997-01-01
Melt convection, along with species diffusion and segregation on the solidification interface are the primary factors responsible for species redistribution during HgCdTe crystal growth from the melt. As no direct information about convection velocity is available, numerical modeling is a logical approach to estimate convection. Furthermore influence of microgravity level, double-diffusion and material properties should be taken into account. In the present study, HgCdTe is considered as a binary alloy with melting temperature available from a phase diagram. The numerical model of convection and solidification of binary alloy is based on the general equations of heat and mass transfer in two-dimensional region. Mathematical modeling of binary alloy solidification is still a challenging numericial problem. A Rigorous mathematical approach to this problem is available only when convection is not considered at all. The proposed numerical model was developed using the finite element code FIDAP. In the present study, the numerical model is used to consider thermal, solutal convection and a double diffusion source of mass transport.
Interview with Paul W. Kruse on the Early History of HgCdTe, Conducted on October 22, 1980
NASA Astrophysics Data System (ADS)
Reine, Marion B.
2015-09-01
This paper presents an interview with Dr Paul W. Kruse (1927-2012) on the early history of the semiconductor alloy mercury cadmium telluride (HgCdTe or Hg1- x Cd x Te) at the Honeywell Corporate Research Center near Minneapolis, Minnesota. Conducted on October 22, 1980, the interview covers two main areas. One area is the story of how the HgCdTe research effort came about at the Honeywell Research Center in the early 1960s, what technical choices were made and when, and what technical challenges were overcome and how. The other area is the organization, culture, environment and personnel at the Honeywell Research Center that made the early HgCdTe research programs so successful. HgCdTe has emerged as the highest-performance, most widely applicable infrared detector material. HgCdTe continues to satisfy a broad variety of advanced military and space applications. It is illustrative to look back on the early history of this remarkable semiconductor alloy to help to understand why its technological development as an infrared detector has been so successful.
HgCdTe Photoconductive Mixers for 2-8 THz
NASA Technical Reports Server (NTRS)
Betz, A. L.; Boreiko, R. T.; Sivananthan, S.; Ashokan, R.
2001-01-01
Heterodyne spectroscopy has been taken to wavelengths as short as 63 micrometers with Schottky-diode mixers. Schottkys, however, are relatively insensitive compared to superconducting mixers such as the hot-electron microbolometer (HEB), which has an effective quantum efficiency of 3% at 120 micrometers (2.5 THz). Although HEB sensitivities are bound to improve, there will always be losses associated with antenna coupling of radiation into sub-micron size devices. Another approach to far infrared (FIR) mixer design is to use a photoconductive device which can be made much larger than a wavelength, and thus act as its own antenna. For example, HgCdTe photodiodes have been used as mixers in the lambda = 10 micrometers band for over 25 years, with sensitivities now only a factor of 2 from the quantum-noise-limit. HgCdTe can also be applied at FIR wavelengths, but surprisingly little work has been done to date. The exception is the pioneering work of Spears and Kostiuk and Spears, who developed HgCdTe photomixers for the 20-120 micrometer region. The spectral versatility of the HgCdTe alloy is well recognized for wavelengths as long as 8-20 micrometers. What is not so recognized, however, is that theoretically there is no long wavelength limit for appropriately composited HgCdTe. Although Spears successfully demonstrated a photoconductive response from HgCdTe at 120 micrometers, this initial effort was apparently never followed up, in part because of the difficulty of controlling the HgCdTe alloy composition with liquid-phase-epitaxy (LPE) techniques. With the availability of precise molecular-beam-epitaxy (MBE) since the early 1990's, it is now appropriate to reconsider HgCdTe for detector applications longward of lambda = 20 micrometers. We recently initiated an effort to fabricate detectors and mixers using II-VI materials for FIR wavelengths. Of particular interest are device structures called superlattices, which offer a number of advantages for high sensitivity direct detectors and very long wavelength heterodyne mixers.
Solidification and crystal growth of solid solution semiconducting alloys
NASA Technical Reports Server (NTRS)
Lehoczky, S. L.; Szofran, F. R.
1984-01-01
Problems associated with the solidification and crytal growth of solid-solution semiconducting alloy crystals in a terrestrial environment are described. A detailed description is given of the results for the growth of mercury cadmium telluride (HgCdTe) alloy crystals by directional solidification, because of their considerable technological importance. A series of HgCdTe alloy crystals are grown from pseudobinary melts by a vertical Bridgman method using a wide range of growth rates and thermal conditions. Precision measurements are performed to establish compositional profiles for the crystals. The compositional variations are related to compositional variations in the melts that can result from two-dimensional diffusion or density gradient driven flow effects ahead of the growth interface. These effects are discussed in terms of the alloy phase equilibrium properties, the recent high temperature thermophysical data for the alloys and the highly unusual heat transfer characteristics of the alloy/ampule/furnace system that may readily lead to double diffusive convective flows in a gravitational environment.
NASA Astrophysics Data System (ADS)
Wijewarnasuriya, P. S.
HgCdTe alloy is currently the most important semiconductor material for IR detection technology. Different growth techniques are used to produce HgCdTe, but achieving a high-quality material is still a major objective in the field. Among the growth techniques for HgCdTe, molecular beam epitaxy (MBE) is one of the most promising, mainly because of its versatility. Furthermore, the growth by MBE is carried out at a low temperature which limits interdiffusion processes. The focus of this research is the understanding of the electrical properties of HgCdTe layers grown by MBE technique. Using a model based on a single discrete acceptor level near the valence band and a corresponding fully ionized donor level, a good fit to the observed Hall data on p-type epilayers was obtained. In some samples, another acceptor level was needed. Also, analysis of R _{h} data and low temperature mobilities indicated that the p-type MBE growth layers were highly compensated. This was also confirmed by mercury saturated annealing experiments. Annealing of (111)B epilayers with Hg pressure leads us to believe that Hg vacancies are responsible for the p-type character. The findings reveal that the electrical properties differ drastically between different growth orientations, with (111)B having the highest residual doping levels for a particular Cd composition. It is concluded that MBE growth for HgCdTe is essentially a Te rich growth and our understanding is that this extra Te is responsible for the n-type character in the epilayers. A comparison between HgCdTe twinned layers and twin-free layers has shown that electrically active acceptors and high hole mobilities are associated with the presence of twins. Incorporation of several foreign elements also tried and all were found to substitute the metal sites during growth. With magnetic field studies on R_ {h}, resistivity and conductivity tensor analysis, the band structure of the HgCdTe alloy is also investigated. Junction depth and the doping profile on low energy Ar ion sputtered epilayers are investigated and they are found to behave similar to the ion implanted layers.
NASA Astrophysics Data System (ADS)
Wen, Hanqing; Bellotti, Enrico
2016-05-01
Intrinsic carrier lifetime due to radiative and Auger recombination in HgCdTe and strained InGaAs has been computed in the extended short-wavelength infrared (ESWIR) spectrum from 1.7 μm to 2.7 μm. Using the Green's function theory, both direct and phonon-assisted indirect Auger recombination rates as well as the radiative recombination rates are calculated for different cutoff wavelengths at 300 K with full band structures of the materials. In order to properly model the full band structures of strained InGaAs, an empirical pseudo-potential model for the alloy is fitted using the virtual crystal approximation with spin-orbit coupling included. The results showed that for InxGa1-xAs grown on InP substrate, the compressive strain, which presents in the film when the cutoff wavelength is longer than 1.7 μm, leads to decrease of Auger recombination rate and increase of radiative recombination rate. Since the dominant intrinsic recombination mechanism in this spectral range is radiative recombination, the overall intrinsic carrier lifetime in the strained InGaAs alloys is shorter than that in the relaxed material. When compared to the relaxed HgCdTe, both relaxed and compressively strained InGaAs alloys show shorter intrinsic carrier lifetime at the same cutoff wavelength in room temperature which confirms the potential advantage of HgCdTe as wide-band infrared detector material. While HgCdTe offers superior performance, ultimately the material of choice for ESWIR application will also depend on material quality and cost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Hanqing; Bellotti, Enrico, E-mail: bellotti@bu.edu
2016-05-28
Intrinsic carrier lifetime due to radiative and Auger recombination in HgCdTe and strained InGaAs has been computed in the extended short-wavelength infrared (ESWIR) spectrum from 1.7 μm to 2.7 μm. Using the Green's function theory, both direct and phonon-assisted indirect Auger recombination rates as well as the radiative recombination rates are calculated for different cutoff wavelengths at 300 K with full band structures of the materials. In order to properly model the full band structures of strained InGaAs, an empirical pseudo-potential model for the alloy is fitted using the virtual crystal approximation with spin-orbit coupling included. The results showed that for In{sub x}Ga{submore » 1−x}As grown on InP substrate, the compressive strain, which presents in the film when the cutoff wavelength is longer than 1.7 μm, leads to decrease of Auger recombination rate and increase of radiative recombination rate. Since the dominant intrinsic recombination mechanism in this spectral range is radiative recombination, the overall intrinsic carrier lifetime in the strained InGaAs alloys is shorter than that in the relaxed material. When compared to the relaxed HgCdTe, both relaxed and compressively strained InGaAs alloys show shorter intrinsic carrier lifetime at the same cutoff wavelength in room temperature which confirms the potential advantage of HgCdTe as wide-band infrared detector material. While HgCdTe offers superior performance, ultimately the material of choice for ESWIR application will also depend on material quality and cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koster, J.N.; Sani, R.L.
1990-01-01
Various papers on low-gravity fluid dynamics and transport phenomena are presented. Individual topics addressed include: fluid management in low gravity, nucleate pool boiling in variable gravity, application of energy-stability theory to problems in crystal growth, thermosolutal convection in liquid HgCdTe near the liquidus temperature, capillary surfaces in microgravity, thermohydrodynamic instabilities and capillary flows, interfacial oscillators, effects of gravity jitter on typical fluid science experiments and on natural convection in a vertical cylinder. Also discussed are: double-diffusive convection and its effects under reduced gravity, segregation and convection in dendritic alloys, fluid flow and microstructure development, analysis of convective situations with themore » Soret effect, complex natural convection in low Prandtl number metals, separation physics, phase partitioning in reduced gravity, separation of binary alloys with miscibility gap in the melt, Ostwald ripening in liquids, particle cloud combustion in reduced gravity, opposed-flow flame spread with implications for combustion at microgravity.« less
Infrared power cells for satellite power conversion
NASA Technical Reports Server (NTRS)
Summers, Christopher J.
1991-01-01
An analytical investigation is performed to assess the feasibility of long-wavelength power converters for the direct conversion of IR radiation onto electrical power. Because theses devices need to operate between 5 and 30 um the only material system possible for this application is the HgCdTe system which is currently being developed for IR detectors. Thus solar cell and IR detector theories and technologies are combined. The following subject areas are covered: electronic and optical properties of HgCdTe alloys; optimum device geometry; junction theory; model calculation for homojunction power cell efficiency; and calculation for HgCdTe power cell and power beaming.
HgCdTe Surface and Defect Study Program.
1985-01-01
LWIR (x 0.2) HgCdTe surface will be so depleted in cations that the resulting equivajqnt alloy will be metallic or semimetallic (x < 0.17), and hence...spectrometry (PES) results on MWIR are applicable to the first 10 to 15A of the surface. The point here is that LWIR material may respond to passivation...processes to produce a fundamentally different result than does MWIR material, and LWIR should in fact be treated as a completely different material. These
Properties of Unrelaxed InAs1-XSbX Alloys Grown on Compositionally Graded Buffers
2011-10-07
beam epitaxy (MBE) as an alternative to HgCdTe for the fabrication of infrared (IR) photodetectors. These photodetector structures require the...FTIR) spectrometer equipped with a liquid-nitrogen cooled HgCdTe detector with a cut-off wavelength of 12 lm. The PL was excited by a 970 nm laser...characterized by surface roughness up to 10 nm for InAs0.56Sb0.44 samples. The PL and absorption spectra were measured with a Fourier-transform infrared
NASA Technical Reports Server (NTRS)
Watring, D. A.; Gillies, D. C.; Lehoczky, S. L.; Szofran, F. R.; Alexander, H.
1996-01-01
In order to simulate the space environment for basic research into the crystal growth mechanism, Hg(0.8)Cd(0.2)Te crystals were grown by the vertical Bridgman-Stockbarger method in the presence of an applied axial magnetic field. The influence of convection, by magneto hydrodynamic damping, on mass transfer in the melt and segregation at the solid-liquid interface was investigated by measuring the axial and radial compositional variations in the grown samples. The reduction of convective mixing in the melt through the application of the magnetic field is found to have a large effect on radial segregation and interface morphology in the grown crystals. Direct comparisons are made with a Hg(0.8)Cd(0.2)Te crystal grown without field and also in the microgravity environment of space during the second United States Microgravity Payload Mission (USMP-2).
InAs/GaSb type-II superlattice infrared detectors: three decades of development
NASA Astrophysics Data System (ADS)
Rogalski, A.; Kopytko, M.; Martyniuk, P.
2017-02-01
Recently, there has been considerable progress towards III-V antimonide-based low dimensional solids development and device design innovations. From a physics point of view, the type-II InAs/GaSb superlattice is an extremely attractive proposition. Their development results from two primary motivations: the perceived challenges of reproducibly fabricating high-operability HgCdTe FPAs at reasonable cost and theoretical predictions of lower Auger recombination for type-II superlattice (T2SL) detectors compared to HgCdTe. Lower Auger recombination should be translated into a fundamental advantage for T2SL over HgCdTe in terms of lower dark current and/or higher operating temperature, provided other parameters such as Shockley-Read-Hall lifetime are equal. Based on these promising results it is obvious now that the InAs/GaSb superlattice technology is competing with HgCdTe third generation detector technology with the potential advantage of standard III-V technology to be more competitive in costs and as a consequence series production pricing. Comments to the statement whether the superlattice IR photodetectors can outperform the "bulk" narrow gap HgCdTe detectors is one of the most important questions for the future of IR photodetectors presented by Rogalski at the April 2006 SPIE meeting in Orlando, Florida, are more credible today and are presented in this paper. It concerns the trade-offs between two most competing IR material technologies: InAs/GaSb type-II superlattices and HgCdTe ternary alloy system.
Growth and Properties of MERCURY(1-X) Cadmium (x) Tellurium Alloys and Quantum Well Structures
NASA Astrophysics Data System (ADS)
Han, Jeong-Whan
1990-01-01
Photoassisted molecular beam epitaxy was employed to grow Hg-based films, which include Hg_{1-x}Cd_{x}Te alloys, modulation-doped HgCdTe, modulation-doped HgCdTe quantum well structures and HgCdTe heterostructures. The structural, electrical and optical properties of these films were studied. A series of Hg_{1 -x}Cd_{x}Te films were deposited on lattice-matched (111)B CdZnTe substrates. The rm Hg_{1-x}Cd_{x}Te films grown under the optimum growth conditions exhibited both high structural perfections and outstanding electrical properties, which can be attributed to the role played by the photons in the growth process. For the first time, conducting p-type and n-type modulation-doped HgCdTe were successfully prepared using arsenic and indium as the p-type and n-type dopants, respectively. Most of them exhibited both excellent structural qualities and very sharp interfaces. The hole concentrations of p-type samples showed no evidence of carrier freeze-out at low temperatures. The electron concentrations of n-type samples also exhibited temperature independence up to 300K. PL measurements exhibited two peaks due to the subband transitions. Many of the modulation-doped HgCdTe superlattices samples exhibited very bright and narrow PL peaks at 4.2K. Both electron and hole mobilities of modulation-doped HgCdTe superlattices increase monotonically with decreasing temperature. The electrical properties of n-type modulation-doped HgCdTe heterostructures having spacer layers were also studied. A series of p-type HgTe-Hg_ {0.15}Cd_{0.85}Te superlattices were grown on (100) CdTe substrates by MBE for an extensive study of the optical and electrical properties of such structures. The absorption coefficient versus photon energy spectra show consecutive rises and plateaus characteristic of two-dimensional quantum structures. Temperature-dependent free carrier mobilities and densities were obtained from a mixed-conduction analysis of the Hall and resistivity data as a function of magnetic field. The experimental results were compared with theoretical tight-binding calculation of the superlattice band structure. Hg-based quantum well structures were grown on (100) CdZnTe substrates at 170^circ C. Stimulated emission at 2.8 mu m was observed for the first time in these quantum well structures where the active regions are HgCdTe. A cw Nd:YAG laser was used as an optical pumping source for the laser cavities. Stimulated emission cavity modes were seen at cw laser power densities as low as 3.4 kW/cm ^2 and at temperatures >=q 60K.
NASA Astrophysics Data System (ADS)
Bellotti, Enrico; Wen, Hanqing; Dominici, Stefano; Glasmann, Andreu L.
2017-02-01
HgCdTe has been the material of choice for MWIR, and LWIR infrared sensing due to its highly tunable band gap and favorable material properties. However, HgCdTe growth and processing for the ESWIR spectral region is less developed, so alternative materials are actively researched. It is important to compare the fundamental limitations of each material to determine which offers optimal device performance. In this article, we investigate the intrinsic recombination mechanisms of ESWIR materials—InGaAs, GeSn, and HgCdTe—with cutoff wavelength near 2.5μm, and MWIR with cutoff of 5μm. First, using an empirical pseudo-potential model, we calculate the full band structure of each alloy using the virtual crystal approximation, modified to include disorder effects and spin-orbit coupling. We then evaluate the Auger and radiative recombination rates using a Green's function based model, applied to the full material band structure, yielding intrinsic carrier lifetimes for each given temperature, carrier injection, doping density, and cutoff wavelength. For example, we show that ESWIR HgCdTe has longer carrier lifetimes than InGaAs when strained or relaxed near room temperature, which is advantageous for high operating temperature photodetectors. We perform similar analyses for varying composition GeSn by comparing the calculated lifetimes with InGaAs and HgCdTe. Finally, we compare HgCdTe, InAsSb and GeSn with a cutoff in the MWIR spectral band.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1998-01-01
A numerical calculation for a non-dilute alloy solidification was performed using the FIDAP finite element code. For low growth velocities plane front solidification occurs. The location and the shape of the interface was determined using melting temperatures from the HgCdTe liquidus curve. The low thermal conductivity of the solid HgCdTe causes thermal short circuit through the ampoule walls, resulting in curved isotherms in the vicinity of the interface. Double-diffusive convection in the melt is caused by radial temperature gradients and by material density inversion with temperature. Cooling from below and the rejection at the solid-melt interface of the heavier HgTe-rich solute each tend to reduce convection. Because of these complicating factors dimensional rather then non-dimensional modeling was performed. Estimates of convection contributions for various gravity conditions was performed parametrically. For gravity levels higher then 1 0 -7 of earth's gravity it was found that the maximum convection velocity is extremely sensitive to gravity vector orientation and can be reduced at least by factor of 50% for precise orientation of the ampoule in the microgravity environment. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D modeling are compared with previous 2-D finding. A video film featuring melt convection will be presented.
InAs/GaSb type-II superlattices versus HgCdTe ternary alloys: future prospect
NASA Astrophysics Data System (ADS)
Rogalski, A.
2017-10-01
InAs/GaSb T2SL photodetectors offer similar performance to HgCdTe at an equivalent cutoff wavelength, but with a sizeable penalty in operating temperature, due to the inherent difference in Shockley-Read lifetimes. It is predicted that since the future IR systems will be based on the room temperature operation of depletion-current limited arrays with pixel densities that are fully consistent with background- and diffraction-limited performance due to the system optics, the material system with long Shockley-Read lifetime will be required. Since T2SLs are much resisted in attempts to improve its SR lifetime, currently the only material that meets this requirement is HgCdTe. Due to less ionic chemical bonding, III-V semiconductors are more robust than their II-VI counterparts. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability, scalability, producibility, and affordability - the so-called "ibility" advantages.
Modeling of HgCdTe focal plane array spectral inhomogeneities
NASA Astrophysics Data System (ADS)
Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme
2015-06-01
Infrared focal plane arrays (IRFPA) are widely used to perform high quality measurements such as spectrum acquisition at high rate, ballistic missile defense, gas detection, and hyperspectral imaging. For these applications, the fixed pattern noise represents one of the major limiting factors of the array performance. This sensor imperfection refers to the nonuniformity between pixels, and is partially caused by disparities of the cut-off wavenumbers. In this work, we focus particularly on mercury cadmium telluride (HgCdTe), which is the most important material of IR cooled detector applications. Among the many advantages of this ternary alloy is the tunability of the bandgap energy with Cadmium composition, as well as the high quantum efficiency. In order to predict and understand spectral inhomogeneities of HgCdTe-based IRFPA, we propose a modeling approach based on the description of optical phenomena inside the pixels. The model considers the p-n junctions as a unique absorbent bulk layer, and derives the sensitivity of the global structure to both Cadmium composition and HgCdTe layer thickness. For this purpose, HgCdTe optical and material properties were necessary to be known at low temperature (80K), in our operating conditions. We therefore achieved the calculation of the real part of the refractive index using subtracti
Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector
NASA Technical Reports Server (NTRS)
Huntington, Andrew
2013-01-01
The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.
Evaluation of a HgCdTe e-APD based detector for 2 μm CO2 DIAL application.
Dumas, Arnaud; Rothman, Johan; Gibert, Fabien; Édouart, Dimitri; Lasfargues, Gilles; Cénac, Claire; Mounier, Florian Le; Pellegrino, Jessica; Zanatta, Jean-Paul; Bardoux, Alain; Tinto, Francesc; Flamant, Pierre
2017-09-20
Benefiting from close to ideal amplification properties (high gain, low dark current, and low excess noise factor), HgCdTe electron initiated avalanche photodiode (e-APD) technology exhibits state of the art sensitivity, thus being especially relevant for applications relying on low light level detection, such as LIDAR (Light Detection And Ranging). In addition, the tunable gap of the Hg 1-x Cd x Te alloy enables coverage of the short wavelength infrared (SWIR) and especially the 2 μm spectral range. For these two reasons, a HgCdTe e-APD based detector is a promising candidate for future differential absorption LIDAR missions targeting greenhouse gas absorption bands in SWIR. In this study, we report on the design and evaluation of such a HgCdTe e-APD based detector. The first part focuses on detector architecture and performance. Key figures of merit are: 2.8 μm cutoff wavelength, 200 μm diameter almost circular sensitive area, 185 K operating temperature (thermo-electric cooling), 22 APD gain (at 12 V reverse bias), 360 kΩ transimpedance gain, and 60 fWHz -0.5 noise equivalent power (at 12 V reverse bias). The second part presents an analysis of atmospheric LIDAR signals obtained by mounting the HgCdTe e-APD based detector on the 2 μm differential absorption LIDAR developed at the Laboratoire de Météorologie Dynamique and dedicated to CO 2 monitoring. Discussion emphasizes random and systematic errors in LIDAR measurements regarding breadboard detector characterization. In particular, we investigate the influence of parasitic tails in detector impulse response on short range DIAL measurements.
NASA Astrophysics Data System (ADS)
Velicu, S.; Bommena, R.; Morley, M.; Zhao, J.; Fahey, S.; Cowan, V.; Morath, C.
2013-09-01
The development of a broadband IR focal plane array poses several challenges in the area of detector design, material, device physics, fabrication process, hybridization, integration and testing. The purpose of our research is to address these challenges and demonstrate a high-performance IR system that incorporates a HgCdTe-based detector array with high uniformity and operability. Our detector architecture, grown using molecular beam epitaxy (MBE), is vertically integrated, leading to a stacked detector structure with the capability to simultaneously detect in two spectral bands. MBE is the method of choice for multiplelayer HgCdTe growth because it produces material of excellent quality and allows composition and doping control at the atomic level. Such quality and control is necessary for the fabrication of multicolor detectors since they require advanced bandgap engineering techniques. The proposed technology, based on the bandgap-tunable HgCdTe alloy, has the potential to extend the broadband detector operation towards room temperature. We present here our modeling, MBE growth and device characterization results, demonstrating Auger suppression in the LWIR band and diffusion limited behavior in the MWIR band.
Recent progress in infrared detector technologies
NASA Astrophysics Data System (ADS)
Rogalski, A.
2011-05-01
In the paper, fundamental and technological issues associated with the development and exploitation of the most advanced infrared detector technologies are discussed. In this class of detectors both photon and thermal detectors are considered. Special attention is directed to HgCdTe ternary alloys on silicon, type-II superlattices, uncooled thermal bolometers, and novel uncooled micromechanical cantilever detectors. Despite serious competition from alternative technologies and slower progress than expected, HgCdTe is unlikely to be seriously challenged for high-performance applications, applications requiring multispectral capability and fast response. However, the nonuniformity is a serious problem in the case of LWIR and VLWIR HgCdTe detectors. In this context, it is predicted that type-II superlattice system seems to be an alternative to HgCdTe in long wavelength spectral region. In well established uncooled imaging, microbolometer arrays are clearly the most used technology. Present state-of-the-art microbolometers are based on polycrystalline or amorphous materials, typically vanadium oxide (VO x) or amorphous silicon (α-Si), with only modest temperature sensitivity and noise properties. Basic efforts today are mainly focused on pixel reduction and performance enhancement. Attractive alternatives consist of low-resistance α-SiGe monocrystalline SiGe quantum wells or quantum dots. In spite of successful commercialization of uncooled microbolometers, the infrared community is still searching for a platform for thermal imagers that combine affordability, convenience of operation, and excellent performance. Recent advances in MEMS systems have lead to the development of uncooled IR detectors operating as micromechanical thermal detectors. Between them the most important are biomaterial microcantilevers.
Massless Dirac fermions in semimetal HgCdTe
NASA Astrophysics Data System (ADS)
Marchewka, M.; Grendysa, J.; Żak, D.; Tomaka, G.; Śliż, P.; Sheregii, E. M.
2017-01-01
Magneto-transport results obtained for the strained 100 nm thick Hg1-x CdxTe (x=0.135) layer grown by MBE on the CdTe/GaAs substrate are interpreted by the 8×8 kp model with the in-plane tensile strain. The dispersion relation for the investigated structure proves that the Dirac point is located in the gap caused by the strain. It is also shown that the fan of the Landau Levels (LL's) energy calculated for topological protected surface states for the studied HgCdTe alloy corresponds to the fan of the LL's calculated using the graphen-like Hamiltonian which gives excellent agreement with the experimental data for velocity on the Fermi level equal to vf ≈ 0.85×106 m/s. That characterized strained Hg1-x CdxTe layers (0.13 < x < 0.14) are a perfect Topological Insulator with good perspectives of further applications.
Hardness behavior of binary and ternary niobium alloys at 77 and 300 K
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1974-01-01
The effects of alloy additions of zirconium, hafnium, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and iridium on the hardness of niobium was determined. Both binary and ternary alloys were investigated by means of hardness tests at 77 K and 300 K. Results showed that atomic size misfit plays a dominant role in controlling hardness of binary niobium alloys. Alloy softening, which occurred at dilute solute additions, is most likely due to an extrinsic mechanism involving interaction between solute elements and interstitial impurities.
NASA Astrophysics Data System (ADS)
Thakur, Anil; Sharma, Nalini; Chandel, Surjeet; Ahluwalia, P. K.
2013-02-01
The electrical resistivity (ρL) of Rb1-XCsX binary alloys has been made calculated using Troullier Martins ab-initio pseudopotentials. The present results of the electrical resistivity (ρL) of Rb1-XCsX binary alloys have been found in good agreement with the experimental results. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys. Hence ab-initio pseudopotentials can be used instead of model pseudopotentials having problem of transferability.
Binary titanium alloys as dental implant materials-a review.
Liu, Xiaotian; Chen, Shuyang; Tsoi, James K H; Matinlinna, Jukka Pekka
2017-10-01
Titanium (Ti) has been used for long in dentistry and medicine for implant purpose. During the years, not only the commercially pure Ti but also some alloys such as binary and tertiary Ti alloys were used. The aim of this review is to describe and compare the current literature on binary Ti alloys, including Ti-Zr, Ti-In, Ti-Ag, Ti-Cu, Ti-Au, Ti-Pd, Ti-Nb, Ti-Mn, Ti-Mo, Ti-Cr, Ti-Co, Ti-Sn, Ti-Ge and Ti-Ga, in particular to mechanical, chemical and biological parameters related to implant application. Literature was searched using the PubMed and Web of Science databases, as well as google without limiting the year, but with principle key terms such as ' Ti alloy', 'binary Ti ', 'Ti-X' (with X is the alloy element), 'dental implant' and 'medical implant'. Only laboratory studies that intentionally for implant or biomedical applications were included. According to available literatures, we might conclude that most of the binary Ti alloys with alloying <20% elements of Zr, In, Ag, Cu, Au, Pd, Nb, Mn, Cr, Mo, Sn and Co have high potential as implant materials, due to good mechanical performance without compromising the biocompatibility and biological behaviour compare to cp-Ti.
Effect of Ag Addition on the Electrochemical Performance of Cu10Al in Artificial Saliva
Salgado-Salgado, R. J.; Sotelo-Mazon, O.; Rodriguez-Diaz, R. A.; Salinas-Solano, G.
2016-01-01
In this work we proposed to evaluate the corrosion resistance of four different alloys by electrochemical techniques, a binary alloy Cu10Al, and three ternary alloys Cu10Al-xAg (x = 5, 10, and 15 wt.%) to be used like biomaterials in dental application. Biomaterials proposed were tested in artificial saliva at 37°C for 48 h. In addition, pure metals Cu, Al, Ag, and Ti as reference materials were evaluated. In general the short time tests indicated that the Ag addition increases the corrosion resistance and reduces the extent of localized attack of the binary alloy. Moreover, tests for 48 hours showed that the Ag addition increases the stability of the passive layer, thereby reducing the corrosion rate of the binary alloy. SEM analysis showed that Cu10Al alloy was preferably corroded by grain boundaries, and the Ag addition modified the form of attack of the binary alloy. Cu-rich phases reacted with SCN− anions forming a film of CuSCN, and the Ag-rich phase is prone to react with SCN− anions forming AgSCN. Thus, binary and ternary alloys are susceptible to tarnish in the presence of thiocyanate ions. PMID:27660601
Friction and wear of iron-base binary alloys in sliding contact with silicon carbide in vacuum
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Multipass sliding friction experiments were conducted with various iron base binary alloys in contact with a single crystal silicon carbide surface in vacuum. Results indicate that the atomic size and concentration of alloy elements play important roles in controlling the transfer and friction properties of iron base binary alloys. Alloys having high solute concentration produce more transfer than do alloys having low solute concentration. The coefficient of friction during multipass sliding generally increases with an increase in the concentration of alloying element. The change of friction with succeeding passes after the initial pass also increases as the solute to iron, atomic radius ratio increases or decreases from unity.
High-field superconductivity in the Nb-Ti-Zr ternary system
NASA Astrophysics Data System (ADS)
Ralls, K. M.; Rose, R. M.; Wulff, J.
1980-06-01
Resistive critical current densities, critical fields, and normal-state electrical resistivities were obtained at 4.2 °K for 55 alloys in the Nb-Ti-Zr ternary alloy system, excepting Ti-Zr binary compositions. The resistive critical field as a function of ternary composition has a saddle point between the Nb-Ti and Nb-Zr binaries, so that ternary alloying in this system is not expected to result in higher critical fields than the binary alloys.
Unfolding the band structure of disordered solids: From bound states to high-mobility Kane fermions
NASA Astrophysics Data System (ADS)
Rubel, O.; Bokhanchuk, A.; Ahmed, S. J.; Assmann, E.
2014-09-01
Supercells are often used in ab initio calculations to model compound alloys, surfaces, and defects. One of the main challenges of supercell electronic structure calculations is to recover the Bloch character of electronic eigenstates perturbed by disorder. Here we apply the spectral weight approach to unfolding the electronic structure of group III-V and II-VI semiconductor solid solutions. The illustrative examples include formation of donorlike states in dilute Ga(PN) and associated enhancement of its optical activity, direct observation of the valence band anticrossing in dilute GaAs:Bi, and a topological band crossover in ternary (HgCd)Te alloy accompanied by emergence of high-mobility Kane fermions. The analysis facilitates interpretation of optical and transport characteristics of alloys that are otherwise ambiguous in traditional first-principles supercell calculations.
Cellular-dendritic transition in directionally solidified binary alloys
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Laxmanan, V.
1987-01-01
The microstructural development of binary alloys during directional solidification is studied. Cellular growth data for the Al-Cu and Pb-Sn binary alloy systems are analyzed in order evaluate the criteria of Kurz and Fisher (1981) and Trivedi (1984) for cellular-dendritic transition. It is observed that the experimental growth values do not correlate with the Kurz and Fisher or Trivedi data.
Concentration dependence of electrical resistivity of binary liquid alloy HgZn: Ab-initio study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2013-06-01
The electrical resistivity of HgZn liquid alloy has been made calculated using Troullier and Martins ab-initio pseudopotential as a function of concentration. Hard sphere diameters of Hg and Zn are obtained through the inter-ionic pair potential have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys.
[Study on high temperature oxidation of Ni-Cr ceramic alloys. Effects of Cr and Mo].
Mizutani, M
1990-03-01
The effects of Cr and Mo addition to Ni-Cr alloys on high temperature oxidation were investigated. The alloys were prepared with the composition of Cr ranging from 5 to 40 wt%. Also 2, 4 and 9 wt% of Mo was added to both Ni-5% Cr and Ni-20% Cr binary alloys. The alloys were heated at 800 degrees C, 900 degrees C and 1000 degrees C for 15 minutes in air, and the weight change after heat treatment was measured by electric automatic balance. The weight change during heating was measured by thermogravimetric measurement (TG). The products after heat treatment were characterized by X-ray diffraction and scanning electron microscopy (SEM). The results are summarized as follows: The Ni-Cr binary alloys were classified into three types of Cr ranging from 5 to 20 wt%, Cr 25% and Cr from 30 wt% to 40 wt% according to the weight gains with oxidation. In the case of the more than 25 wt% Cr content of the Ni-Cr binary alloys, the weight gain was extremely low and the heating temperature effects on the weight change were also small. X-ray diffraction study showed that NiO, NiCr2O4 and Cr2O3 formed on the surface of the Ni-Cr binary alloys whose composition of Cr ranged from 5 to 25 wt%, whereas NiO and NiCr2O4 rarely formed on the Ni-Cr binary alloys whose composition of Cr ranged from 30 to 40 wt%. This suggests that the formation of Cr2O3 prevents the formation of NiO on the alloy with a high Cr content. The weight gain of the Ni-Cr-Mo ternary alloys was smaller than that of the Ni-Cr binary alloys without Mo, and the temperature effects on the weight gain of the Ni-Cr-Mo ternary alloys were different for each Cr content. However, the effect of the amounts of Mo was small. NiO, NiCr2O4, Cr2O3 and MoO2 were identified by X-ray diffraction on the surface of the Ni-Cr-Mo ternary alloys. According to the SEM observation, it seems that NiO was formed at the outermost layer, both NiCr2O4 and Cr2O3 at the inside layer, and MoO2 at the innermost layer. The formation of both NiO and Cr2O3 on the Ni-Cr-Mo ternary alloys was restrained compared with that of the Ni-Cr binary alloys. However, the adhesion of oxides to the Ni-Cr-Mo ternary alloys was lower than that of the Ni-Cr binary alloys.
Enhancing Army S&T Lessons from Project Hindsight Revisited
2007-01-01
Stinger–POST was equipped with a dual wave length detector assembly: one detector that operated at the mid- infrared and another detector that...as well reduce power and save space. • The Javelin CLU’s IR detectors require cooling to a very low temperature to increase the signal-to- noise ...The detectors are made of an alloy of cadmium-tellurium and mercury-tellurium (termed mercury cadmium telluride or HgCdTe ). Development of the 2D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shi-Yu, E-mail: buaasyliu@gmail.com; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong; Liu, Shiyang
Utilizing a combination of ab initio density-functional theory and thermodynamics formalism, we have established the microscopic mechanisms for oxidation of the binary and ternary alloy surfaces and provided a clear explanation for the experimental results of the oxidation. We construct three-dimensional surface phase diagrams (SPDs) for oxygen adsorption on three different Nb-X(110) (X = Ti, Al or Si) binary alloy surfaces. On the basis of the obtained SPDs, we conclude a general microscopic mechanism for the thermodynamic oxidation, that is, under O-rich conditions, a uniform single-phase SPD (type I) and a nonuniform double-phase SPD (type II) correspond to the sustainedmore » complete selective oxidation and the non-sustained partial selective oxidation by adding the X element, respectively. Furthermore, by revealing the framework of thermodynamics for the oxidation mechanism of ternary alloys through the comparison of the surface energies of two separated binary alloys, we provide an understanding for the selective oxidation behavior of the Nb ternary alloy surfaces. Using these general microscopic mechanisms, one could predict the oxidation behavior of any binary and multi-component alloy surfaces based on thermodynamics considerations.« less
Crystal growth and furnace analysis
NASA Technical Reports Server (NTRS)
Dakhoul, Youssef M.
1986-01-01
A thermal analysis of Hg/Cd/Te solidification in a Bridgman cell is made using Continuum's VAST code. The energy equation is solved in an axisymmetric, quasi-steady domain for both the molten and solid alloy regions. Alloy composition is calculated by a simplified one-dimensional model to estimate its effect on melt thermal conductivity and, consequently, on the temperature field within the cell. Solidification is assumed to occur at a fixed temperature of 979 K. Simplified boundary conditions are included to model both the radiant and conductive heat exchange between the furnace walls and the alloy. Calculations are performed to show how the steady-state isotherms are affected by: the hot and cold furnace temperatures, boundary condition parameters, and the growth rate which affects the calculated alloy's composition. The Advanced Automatic Directional Solidification Furnace (AADSF), developed by NASA, is also thermally analyzed using the CINDA code. The objective is to determine the performance and the overall power requirements for different furnace designs.
Liu, B; Zheng, Y F
2011-03-01
Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a concluding remark, Co, W, C and S are recommended as alloying elements for biodegradable iron-based biomaterials. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Adhesion and friction of iron-base binary alloys in contact with silicon carbide in vacuum
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Single pass sliding friction experiments were conducted with various iron base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum. Results indicate that atomic size and concentration of alloying elements play an important role in controlling adhesion and friction properties of iron base binary alloys. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases linearly as the solute to iron atomic radius ratio increases or decreases from unity. The chemical activity of the alloying elements was also an important parameter in controlling adhesion and friction of alloys, as these latter properties are highly dependent upon the d bond character of the elements.
Low-Cost Lattice Matching Si Based Composite Substrates for HgCdTe
2013-09-01
211). ..............................................5 Figure 3. Relationship between calculated alloy compositions based on Se/CdTe BEP ratio and...Se:CdTe beam equivalent pressure ( BEP ) ratios. During CdSeTe growth, Se and Te are in competition for the same nucleation sites. If we assume that all...therefore, x(cal) = ΦSe/ΦCd = 2ΦSe/ΦCdTe, where Φ is the BEP of the material, measured by the nude ion gauge at the substrate position. Figure 3 shows the
Alloy hardening and softening in binary molybdenum alloys as related to electron concentration
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1972-01-01
An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.
Binary titanium alloys as dental implant materials—a review
Liu, Xiaotian; Chen, Shuyang; Matinlinna, Jukka Pekka
2017-01-01
Abstract Titanium (Ti) has been used for long in dentistry and medicine for implant purpose. During the years, not only the commercially pure Ti but also some alloys such as binary and tertiary Ti alloys were used. The aim of this review is to describe and compare the current literature on binary Ti alloys, including Ti–Zr, Ti–In, Ti–Ag, Ti–Cu, Ti–Au, Ti–Pd, Ti–Nb, Ti–Mn, Ti–Mo, Ti–Cr, Ti–Co, Ti–Sn, Ti–Ge and Ti–Ga, in particular to mechanical, chemical and biological parameters related to implant application. Literature was searched using the PubMed and Web of Science databases, as well as google without limiting the year, but with principle key terms such as ‘ Ti alloy’, ‘binary Ti ’, ‘Ti-X’ (with X is the alloy element), ‘dental implant’ and ‘medical implant’. Only laboratory studies that intentionally for implant or biomedical applications were included. According to available literatures, we might conclude that most of the binary Ti alloys with alloying <20% elements of Zr, In, Ag, Cu, Au, Pd, Nb, Mn, Cr, Mo, Sn and Co have high potential as implant materials, due to good mechanical performance without compromising the biocompatibility and biological behaviour compare to cp-Ti. PMID:29026646
Effect of deformation twin on toughness in magnesium binary alloys
NASA Astrophysics Data System (ADS)
Somekawa, Hidetoshi; Inoue, Tadanobu; Tsuzaki, Kaneaki
2015-08-01
The impact of alloying elements on toughness was investigated using eight kinds of Mg-0.3 at.% X (X = Al, Ag, Ca, Gd, Mn, Pb, Y and Zn) binary alloys with meso-grained structures. These binary alloys had an average grain size of approximately 20 μm. The fracture toughness and crack propagation behaviour were influenced by the alloying elements; the Mg-Ag and Mg-Pb alloys had the highest and the lowest toughness amongst the alloys, respectively, irrespective of presence in their ? type deformation twins. The twin boundaries affected the crack propagation behaviour in most of the alloys; in contrast, not only was the fracture related to the twin boundaries, but also the intergranular fracture occurred in the alloys that included rare earth elements. The influential factor for toughness in the meso- and the coarse-grained magnesium alloys, which readily formed deformation twins during plastic deformation, was not the change in lattice parameter with chemical composition, but the twin boundary segregation energy.
Temperature dependent structural and dynamical properties of liquid Cu80Si20 binary alloy
NASA Astrophysics Data System (ADS)
Suthar, P. H.; Shah, A. K.; Gajjar, P. N.
2018-05-01
Ashcroft and Langreth binary structure factor have been used to study for pair correlation function and the study of dynamical variable: velocity auto correlation functions, power spectrum and mean square displacement calculated based on the static harmonic well approximation in liquid Cu80Si20 binary alloy at wide temperature range (1140K, 1175K, 1210K, 1250K, 1373K, 1473K.). The effective interaction for the binary alloy is computed by our well established local pseudopotential along with the exchange and correction functions Sarkar et al(S). The negative dip in velocity auto correlation decreases as the various temperature is increases. For power spectrum as temperature increases, the peak of power spectrum shifts toward lower ω. Good agreement with the experiment is observed for the pair correlation functions. Velocity auto correlation showing the transferability of the local pseudopotential used for metallic liquid environment in the case of copper based binary alloys.
Equivalent crystal theory of alloys
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John
1991-01-01
Equivalent Crystal Theory (ECT) is a new, semi-empirical approach to calculating the energetics of a solid with defects. The theory has successfully reproduced surface energies in metals and semiconductors. The theory of binary alloys to date, both with first-principles and semi-empirical models, has not been very successful in predicting the energetics of alloys. This procedure is used to predict the heats of formation, cohesive energy, and lattice parameter of binary alloys of Cu, Ni, Al, Ag, Au, Pd, and Pt as functions of composition. The procedure accurately reproduces the heats of formation versus composition curves for a variety of binary alloys. The results are then compared with other approaches such as the embedded atom and lattice parameters of alloys from pure metal properties more accurately than Vegard's law is presented.
Alloy softening in binary molybdenum alloys
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1972-01-01
An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.
Effect of Cu content on wear resistance and mechanical behavior of Ti-Cu binary alloys
NASA Astrophysics Data System (ADS)
Yu, Feifei; Wang, Hefeng; Yuan, Guozheng; Shu, Xuefeng
2017-04-01
Arc melting with nonconsumable tungsten electrode and water-cooled copper crucible was used to fabricate Ti-Cu binary alloys with different Cu contents in an argon atmosphere. The compositions and phase structures of the fabricated alloys were investigated by glow discharge optical emission spectroscopy (GDOES) and X-ray diffraction (XRD). Nanoindentation tests through continuous stiffness measurement were then performed at room temperature to analyze the mechanical behaviors of the alloys. Results indicated that the composition of each Ti-Cu binary alloy was Ti(100- x) Cu x ( x = 43, 60, 69, and 74 at.%). The XRD analysis results showed that the alloys were composed of different phases, indicating that different Cu contents led to the variations in alloy hardness. The wear tests results revealed that elemental Cu positively affects the wear resistance properties of the Ti-Cu alloys. Nanoindentation testing results showed that the moduli of the Ti-Cu alloys were minimally changed at increasing Cu content, whereas their hardness evidently increased according to the wear test results.
NASA Astrophysics Data System (ADS)
Lu, Haiming; Meng, Xiangkang
2015-06-01
Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size.
Stochastic simulation of nucleation in binary alloys
NASA Astrophysics Data System (ADS)
L’vov, P. E.; Svetukhin, V. V.
2018-06-01
In this study, we simulate nucleation in binary alloys with respect to thermal fluctuations of the alloy composition. The simulation is based on the Cahn–Hilliard–Cook equation. We have considered the influence of some fluctuation parameters (wave vector cutoff and noise amplitude) on the kinetics of nucleation and growth of minority phase precipitates. The obtained results are validated by the example of iron–chromium alloys.
Lee, Chan Woo; Yang, Ki Dong; Nam, Dae-Hyun; Jang, Jun Ho; Cho, Nam Heon; Im, Sang Won; Nam, Ki Tae
2018-01-24
While Cu electrodes are a versatile material in the electrochemical production of desired hydrocarbon fuels, Cu binary alloy electrodes are recently proposed to further tune reaction directionality and, more importantly, overcome the intrinsic limitation of scaling relations. Despite encouraging empirical demonstrations of various Cu-based metal alloy systems, the underlying principles of their outstanding performance are not fully addressed. In particular, possible phase segregation with concurrent composition changes, which is widely observed in the field of metallurgy, is not at all considered. Moreover, surface-exposed metals can easily form oxide species, which is another pivotal factor that determines overall catalytic properties. Here, the understanding of Cu binary alloy catalysts for CO 2 reduction and recent progress in this field are discussed. From the viewpoint of the thermodynamic stability of the alloy system and elemental mixing, possible microstructures and naturally generated surface oxide species are proposed. These basic principles of material science can help to predict and understand metal alloy structure and, moreover, act as an inspiration for the development of new binary alloy catalysts to further improve CO 2 conversion and, ultimately, achieve a carbon-neutral cycle. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An approximate formula for recalescence in binary eutectic alloys
NASA Technical Reports Server (NTRS)
Ohsaka, K.; Trinh, E. H.
1993-01-01
In alloys, solidification takes place along various paths which may be ascertained via phase diagrams; while there would be no single formula applicable to all alloys, an approximate formula for a specific solidification path would be useful in estimating the fraction of the solid formed during recalescence. A formulation is here presented of recalescence in binary eutectic alloys. This formula is applied to Ag-Cu alloys which are of interest in containerless solidification, due to their formation of supersaturated solutions.
Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors
NASA Astrophysics Data System (ADS)
Kebłowski, A.; Gawron, W.; Martyniuk, P.; Stepień, D.; Kolwas, K.; Piotrowski, J.; Madejczyk, P.; Kopytko, M.; Piotrowski, A.; Rogalski, A.
2016-05-01
In this paper we present progress in MOCVD growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool in fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping and without post grown annealing. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for long wavelength infrared photoconductors operated in HOT conditions. The (100) HgCdTe photoconductor optimized for 13-μm attain detectivity equal to 6.5x109 Jones and therefore outperform its (111) counterpart. The paper also presents technological progress in fabrication of MOCVD-grown (111) HgCdTe barrier detectors. The barrier device performance is comparable with state-of-the-art of HgCdTe photodiodes. The detectivity of HgCdTe detectors is close to the value marked HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07".
An Introduction to the BFS Method and Its Use to Model Binary NiAl Alloys
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, J.; Amador, C.
1998-01-01
We introduce the Bozzolo-Ferrante-Smith (BFS) method for alloys as a computationally efficient tool for aiding in the process of alloy design. An intuitive description of the BFS method is provided, followed by a formal discussion of its implementation. The method is applied to the study of the defect structure of NiAl binary alloys. The groundwork is laid for a detailed progression to higher order NiAl-based alloys linking theoretical calculations and computer simulations based on the BFS method and experimental work validating each step of the alloy design process.
Alloy softening in binary iron solid solutions
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1976-01-01
An investigation was conducted to determine softening and hardening behavior in 19 binary iron-alloy systems. Microhardness tests were conducted at four temperatures in the range 77 to 411 K. Alloy softening was exhibited by 17 of the 19 alloy systems. Alloy softening observed in 15 of the alloy systems was attributed to an intrinsic mechanism, believed to be lowering of the Peierls (lattice friction) stress. Softening and hardening rates could be correlated with the atomic radius ratio of solute to iron. Softening observed in two other systems was attributed to an extrinsic mechanism, believed to be associated with scavenging of interstitial impurities.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1979-01-01
Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.
NASA Astrophysics Data System (ADS)
Motlagh, H. Nakhaei; Rezaei, G.
2018-01-01
Monte Carlo simulation is used to study the magnetic properties of mixed spin (3/2, 1) disordered binary alloys on simple cubic, hexagonal and amorphous magnetic ultra-thin films with 18 × 18 × 2 atoms. To this end, at the first approximation, the exchange coupling interaction between the spins is considered as a constant value and at the second one, the Ruderman-Kittel-Kasuya-Yosida (RKKY) model is used. Effects of concentration, structure, exchange interaction, single ion-anisotropy and the film size on the magnetic properties of disordered ferromagnetic and ferrimagnetic binary alloys are investigated. Our results indicate that the spontaneous magnetization and critical temperatures of rare earth-3d transition binary alloys are affected by these parameters. It is also found that in the ferrimagnetic state, the compensation temperature (Tcom) and the magnetic rearrangement temperature (TR) appear for some concentrations.
Status of LWIR HgCdTe infrared detector technology
NASA Technical Reports Server (NTRS)
Reine, M. B.
1990-01-01
The performance requirements that today's advanced Long Wavelength Infrared (LWIR) focal plane arrays place on the HgCdTe photovoltaic detector array are summarized. The theoretical performance limits for intrinsic LWIR HgCdTe detectors are reviewed as functions of cutoff wavelength and operating temperature. The status of LWIR HgCdTe photovoltaic detectors is reviewed and compared to the focal plane array (FPA) requirements and to the theoretical limits. Emphasis is placed on recent data for two-layer HgCdTe PLE heterojunction photodiodes grown at Loral with cutoff wavelengths ranging between 10 and 19 microns at temperatures of 70 to 80 K. Development trends in LWIR HgCdTe detector technology are outlined, and conclusions are drawn about the ability for photovoltaic HgCdTe detector arrays to satisfy a wide variety of advanced FPA array applications.
Role of alloying elements in adhesive transfer and friction of copper-base alloys
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1978-01-01
Sliding friction experiments were conducted in a vacuum with binary-copper alloy riders sliding against a conventional bearing-steel surface with normal residual oxides present. The binary alloys contained 1 atomic percent of various alloying elements. Auger spectroscopy analysis was used to monitor the adhesive transfer of the copper alloys to the bearing-steel surface. A relation was found to exist between adhesive transfer and the reaction potential and free energy of formation of the alloying element in the copper. The more chemically active the element and the more stable its oxide, the greater was the adhesive transfer and wear of the copper alloy. Transfer occurred in all the alloys except copper-gold after relatively few (25) passes across the steel surface.
Numerical simulation of freckle formation in directional solidification of binary alloys
NASA Technical Reports Server (NTRS)
Felicelli, Sergio D.; Heinrich, Juan C.; Poirier, David R.
1992-01-01
A mathematical model of solidification is presented which simulates the formation of segregation models known as 'freckles' during directional solidification of binary alloys. The growth of the two-phase or dendritic zone is calculated by solving the coupled equations of momentum, energy, and solute transport, as well as maintaining the thermodynamic constraints dictated by the phase diagram of the alloy. Calculations for lead-tin alloys show that the thermosolutal convection in the dendritic zone during solidification can produce heavily localized inhomogeneities in the composition of the final alloy.
Free energy change of off-eutectic binary alloys on solidification
NASA Technical Reports Server (NTRS)
Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.
1991-01-01
A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.
Electrical Transport Properties of Liquid Sn-Sb Binary Alloys
NASA Astrophysics Data System (ADS)
Thakore, B. Y.; Suthar, P. H.; Khambholja, S. G.; Jani, A. R.
2010-06-01
The study of electrical transport properties viz. electrical resistivity, thermo electrical power and thermal conductivity of liquid Sn-Sb binary alloys have been made by our well recognized single parametric model potential. In the present work, screening functions due to Hartree, Taylor, Ichimaru et al.. Farid et al.. and Sarkar et al.. have been employed to incorporate the exchange and correlation effects. The liquid alloy is studied as a function of its composition at temperature 823 K according to the Faber-Ziman model. Further, thermoelectric power and thermal conductivity have been predicted. The values of electrical resistivity of binary alloys computed with Ichimaru et al. and Farid et al.. screening function are in good agreement with the experimental data.
Enthalpies of a binary alloy during solidification
NASA Technical Reports Server (NTRS)
Poirier, D. R.; Nandapurkar, P.
1988-01-01
The purpose of the paper is to present a method of calculating the enthalpy of a dendritic alloy during solidification. The enthalpies of the dendritic solid and interdendritic liquid of alloys of the Pb-Sn system are evaluated, but the method could be applied to other binaries, as well. The enthalpies are consistent with a recent evaluation of the thermodynamics of Pb-Sn alloys and with the redistribution of solute in the same during dendritic solidification. Because of the heat of mixing in Pb-Sn alloys, the interdendritic liquid of hypoeutectic alloys (Pb-rich) of less than 50 wt pct Sn has enthalpies that increase as temperature decreases during solidification.
Electrical resistivity of Al-Cu liquid binary alloy
NASA Astrophysics Data System (ADS)
Thakor, P. P.; Patel, J. J.; Sonvane, Y. A.; Jani, A. R.
2013-06-01
Present paper deals with the electrical resistivity (ρ) of liquid Al-Cu binary alloy. To describe electron-ion interaction we have used our parameter free model potential along with Faber-Ziman formulation combined with Ashcroft-Langreth (AL) partial structure factor. To see the influence of exchange and correlation effect, Hartree, Taylor and Sarkar et al local field correlation functions are used. From present results, it is seen that good agreements between present results and experimental data have been achieved. Lastly we conclude that our model potential successfully produces the data of electrical resistivity (ρ) of liquid Al-Cu binary alloy.
Walker photographs BCAT-5 (Binary Colloidal Alloy Test-5) payload
2010-10-19
ISS025-E-008239 (19 Oct. 2010) --- NASA astronaut Shannon Walker, Expedition 25 flight engineer, uses a digital still camera to photograph Binary Colloidal Alloy Test-5 (BCAT-5) experiment samples in the Kibo laboratory of the International Space Station.
Thermodynamics of Liquid Alkali Metals and Their Binary Alloys
NASA Astrophysics Data System (ADS)
Thakor, P. B.; Patel, Minal H.; Gajjar, P. N.; Jani, A. R.
2009-07-01
The theoretical investigation of thermodynamic properties like internal energy, entropy, Helmholtz free energy, heat of mixing (ΔE) and entropy of mixing (ΔS) of liquid alkali metals and their binary alloys are reported in the present paper. The effect of concentration on the thermodynamic properties of Ac1Bc2 alloy of the alkali-alkali elements is investigated and reported for the first time using our well established local pseudopotential. To investigate influence of exchange and correlation effects, we have used five different local field correction functions viz; Hartree(H), Taylor(T), Ichimaru and Utsumi(IU), Farid et al. (F) and Sarkar et al. (S). The increase of concentration C2, increases the internal energy and Helmholtz free energy of liquid alloy Ac1Bc2. The behavior of present computation is not showing any abnormality in the outcome and hence confirms the applicability of our model potential in explaining the thermodynamics of liquid binary alloys.
Chang, L. L.; Wang, Y. D.; Ren, Y.
2015-11-04
Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Here, optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated priormore » to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.« less
Adhesion, friction, and wear of binary alloys in contact with single-crystal silicon carbide
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Sliding friction experiments, conducted with various iron base alloys (alloying elements are Ti, Cr, Mn, Ni, Rh and W) in contact with a single crystal silicon carbide /0001/ surface in vacuum are discussed. Results indicate atomic size misfit and concentration of alloying elements play a dominant role in controlling adhesion, friction, and wear properties of iron-base binary alloys. The controlling mechanism of the alloy properties is as an intrinsic effect involving the resistance to shear fracture of cohesive bonding in the alloy. The coefficient of friction generally increases with an increase in solute concentration. The coefficient of friction increases as the solute-to-iron atomic radius ratio increases or decreases from unity. Alloys having higher solute concentration produce more transfer to silicon carbide than do alloys having low solute concentrations. The chemical activity of the alloying element is also an important parameter in controlling adhesion and friction of alloys.
Development of binary and ternary titanium alloys for dental implants.
Cordeiro, Jairo M; Beline, Thamara; Ribeiro, Ana Lúcia R; Rangel, Elidiane C; da Cruz, Nilson C; Landers, Richard; Faverani, Leonardo P; Vaz, Luís Geraldo; Fais, Laiza M G; Vicente, Fabio B; Grandini, Carlos R; Mathew, Mathew T; Sukotjo, Cortino; Barão, Valentim A R
2017-11-01
The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; ...
2017-11-26
The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300–360 °C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N 2 gas. Lastly, results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.
The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300–360 °C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N 2 gas. Lastly, results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.
The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300-360°C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N2 gas. Results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.
Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr
NASA Technical Reports Server (NTRS)
Whitacre, Jay F. (Inventor); Narayanan, Sekharipuram R. (Inventor)
2010-01-01
A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.
Primary arm spacing in chill block melt spun Ni-Mo alloys
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Glasgow, T. K.
1986-01-01
Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt % Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.
Primary arm spacing in chill block melt spun Ni-Mo alloys
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Glasgow, T. K.
1987-01-01
Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt pct Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacing measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.
NASA Astrophysics Data System (ADS)
Steenbergen, Elizabeth H.
Infrared photodetectors, used in applications for sensing and imaging, such as military target recognition, chemical/gas detection, and night vision enhancement, are predominantly comprised of an expensive II-VI material, HgCdTe. III-V type-II superlattices (SLs) have been studied as viable alternatives for HgCdTe due to the SL advantages over HgCdTe: greater control of the alloy composition, resulting in more uniform materials and cutoff wavelengths across the wafer; stronger bonds and structural stability; less expensive substrates, i.e., GaSb; mature III-V growth and processing technologies; lower band-to-band tunneling due to larger electron effective masses; and reduced Auger recombination enabling operation at higher temperatures and longer wavelengths. However, the dark current of InAs/Ga1-xInxSb SL detectors is higher than that of HgCdTe detectors and limited by Shockley-Read-Hall (SRH) recombination rather than Auger recombination. This dissertation work focuses on InAs/InAs1-xSbx SLs, another promising alternative for infrared laser and detector applications due to possible lower SRH recombination and the absence of gallium, which simplifies the SL interfaces and growth processes. InAs/InAs1-xSbx SLs strain-balanced to GaSb substrates were designed for the mid- and long-wavelength infrared (MWIR and LWIR) spectral ranges and were grown using MOCVD and MBE by various groups. Detailed characterization using high-resolution x-ray diffraction, atomic force microscopy, photoluminescence (PL), and photoconductance revealed the excellent structural and optical properties of the MBE materials. Two key material parameters were studied in detail: the valence band offset (VBO) and minority carrier lifetime. The VBO between InAs and InAs 1-xSbx strained on GaSb with x = 0.28--0.41 was best described by Qv = DeltaEv/DeltaE g = 1.75 +/- 0.03. Time-resolved PL experiments on a LWIR SL revealed a lifetime of 412 ns at 77 K, one order of magnitude greater than that of InAs/Ga1-xInxSb LWIR SLs due to less SRH recombination. MWIR SLs also had 100's of ns lifetimes that were dominated by radiative recombination due to shorter periods and larger wave function overlaps. These results allow InAs/InAs1-xSbx SLs to be designed for LWIR photodetectors with minority carrier lifetimes approaching those of HgCdTe, lower dark currents, and higher operating temperatures.
The surface-induced spatial-temporal structures in confined binary alloys
NASA Astrophysics Data System (ADS)
Krasnyuk, Igor B.; Taranets, Roman M.; Chugunova, Marina
2014-12-01
This paper examines surface-induced ordering in confined binary alloys. The hyperbolic initial boundary value problem (IBVP) is used to describe a scenario of spatiotemporal ordering in a disordered phase for concentration of one component of binary alloy and order parameter with non-linear dynamic boundary conditions. This hyperbolic model consists of two coupled second order differential equations for order parameter and concentration. It also takes into account effects of the “memory” on the ordering of atoms and their densities in the alloy. The boundary conditions characterize surface velocities of order parameter and concentration changing which is due to surface (super)cooling on walls confining the binary alloy. It is shown that for large times there are three classes of dynamic non-linear boundary conditions which lead to three different types of attractor’s elements for the IBVP. Namely, the elements of attractor are the limit periodic simple shock waves with fronts of “discontinuities” Γ. If Γ is finite, then the attractor contains spatiotemporal functions of relaxation type. If Γ is infinite and countable then we observe the functions of pre-turbulent type. If Γ is infinite and uncountable then we obtain the functions of turbulent type.
Binary Colloidal Alloy Test-5: Aspheres
NASA Technical Reports Server (NTRS)
Chaikin, Paul M.; Hollingsworth, Andrew D.
2008-01-01
The Binary Colloidal Alloy Test - 5: Aspheres (BCAT-5-Aspheres) experiment photographs initially randomized colloidal samples (tiny nanoscale spheres suspended in liquid) in microgravity to determine their resulting structure over time. BCAT-5-Aspheres will study the properties of concentrated systems of small particles when they are identical, but not spherical in microgravity..
Influence of silicon on friction and wear of iron-cobalt alloys
NASA Technical Reports Server (NTRS)
Buckley, D. H.; Brainard, W. A.
1972-01-01
Sliding friction and wear experiments were conducted with ternary ordered alloys of iron and cobalt containing various amounts of silicon to 5 weight percent. The friction and wear of these alloys were compared to those for binary iron-cobalt alloys in the ordered and disordered states and to those for the conventionally used bearing material, 440-C. Environments in which experiments were conducted included air, argon, and 0.25percent stearic acid in hexadecane. Results indicate that a ternary iron - cobalt - 5-percent-silicon alloy exhibits lower friction and wear than the simple binary iron-cobalt alloy. It exhibits lower wear than 440-C in all three environments. Friction was lower for the alloy in argon than in air. Auger analysis of the surface of the ternary alloy indicated segregation of silicon at the surface as a result of sliding.
Recent progress in MBE grown HgCdTe materials and devices at UWA
NASA Astrophysics Data System (ADS)
Gu, R.; Lei, W.; Antoszewski, J.; Madni, I.; Umana-Menbreno, G.; Faraone, L.
2016-05-01
HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the fabrication costs of HgCdTe based advanced infrared devices is relatively high, due to the low yield associated with lattice matched CdZnTe substrates and a complicated cooling system. One approach to ease this problem is to use a cost effective alternative substrate, such as Si or GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In addition, implementation of MBE-grown unipolar n-type/barrier/n-type detector structures in the HgCdTe material system has been recently proposed and studied intensively to enhance the detector operating temperature. The unipolar nBn photodetector structure can be used to substantially reduce dark current and noise without impeding photocurrent flow. In this paper, recent progress in MBE growth of HgCdTe infrared material at the University of Western Australia (UWA) is reported, including MBE growth of HgCdTe on GaSb alternative substrates and growth of HgCdTe nBn structures.
Jin, Ke; Zhang, Chuan; Zhang, Fan; ...
2018-03-07
To investigate the compositional effects on thermal-diffusion kinetics in concentrated solid-solution alloys, interdiffusion in seven diffusion couples with alloys from binary to quinary is systematically studied. The alloys with higher compositional complexity exhibit in general lower diffusion coefficients against homologous temperature, however, an exception is found that diffusion in NiCoFeCrPd is faster than in NiCoFeCr and NiCoCr. While the derived diffusion parameters suggest that diffusion in medium and high entropy alloys is overall more retarded than in pure metals and binary alloys, they strongly depend on specific constituents. The comparative features are captured by computational thermodynamics approaches using a self-consistentmore » database.« less
Li, H. F.; Qiu, K. J.; Yuan, W.; Zhou, F. Y.; Wang, B. L.; Li, L.; Zheng, Y. F.; Liu, Y. H.
2016-01-01
In the present study, the microstructure, mechanical property, castability, corrosion behavior and in vitro cytocompatibility of binary Ti–2X alloys with various alloying elements, including Ag, Bi, Ga, Ge, Hf, In, Mo, Nb, Sn and Zr, were systematically investigated, in order to assess their potential applications in dental field. The experimental results showed that all binary Ti‒2X alloys consisted entirely α–Ti phase. The tensile strength and microhardness of Ti were improved by adding alloying elements. The castability of Ti was significantly improved by separately adding 2 wt.% Bi, Ga, Hf, Mo, Nb, Sn and Zr. The corrosion resistance of Ti in both normal artificial saliva solution (AS) and extreme artificial saliva solution (ASFL, AS with 0.2 wt.% NaF and 0.3 wt.% lactic acid) has been improved by separately adding alloying elements. In addition, the extracts of studied Ti‒2X alloys produced no significant deleterious effect to both fibroblasts L929 cells and osteoblast-like MG63 cells, indicating a good in vitro cytocompatibility, at the same level as pure Ti. The combination of enhanced mechanical properties, castability, corrosion behavior, and in vitro cytocompatibility make the developed Ti‒2X alloys have great potential for future stomatological applications. PMID:27874034
Yamauchi, Yusuke; Tonegawa, Akihisa; Komatsu, Masaki; Wang, Hongjing; Wang, Liang; Nemoto, Yoshihiro; Suzuki, Norihiro; Kuroda, Kazuyuki
2012-03-21
Mesoporous Pt-Au binary alloys were electrochemically synthesized from lyotropic liquid crystals (LLCs) containing corresponding metal species. Two-dimensional exagonally ordered LLC templates were prepared on conductive substrates from diluted surfactant solutions including water, a nonionic surfactant, ethanol, and metal species by drop-coating. Electrochemical synthesis using such LLC templates enabled the preparation of ordered mesoporous Pt-Au binary alloys without phase segregation. The framework composition in the mesoporous Pt-Au alloy was controlled simply by changing the compositional ratios in the precursor solution. Mesoporous Pt-Au alloys with low Au content exhibited well-ordered 2D hexagonal mesostructures, reflecting those of the original templates. With increasing Au content, however, the mesostructural order gradually decreased, thereby reducing the electrochemically active surface area. Wide-angle X-ray diffraction profiles, X-ray photoelectron spectra, and elemental mapping showed that both Pt and Au were atomically distributed in the frameworks. The electrochemical stability of mesoporous Pt-Au alloys toward methanol oxidation was highly improved relative to that of nonporous Pt and mesoporous Pt films, suggesting that mesoporous Pt-Au alloy films are potentially applicable as electrocatalysts for direct methanol fuel cells. Also, mesoporous Pt-Au alloy electrodes showed a highly sensitive amperometric response for glucose molecules, which will be useful in next-generation enzyme-free glucose sensors.
NASA Astrophysics Data System (ADS)
Liu, Yong; Xu, Shenghang; Wang, Xin; Li, Kaiyang; Liu, Bin; Wu, Hong; Tang, Huiping
2018-05-01
The editors and authors have retracted the article, "Ultra-High Strength and Ductile Lamellar-Structured Powder Metallurgy Binary Ti-Ta Alloys" by Yong Liu, Shenghang Xu, Xin Wang, Kaiyang Li, Bin Liu, Hong Wu, and Huiping Tang (https://doi.org/10.1007/s11837-015-1801-1).
Calculation of the surface tension of liquid Ga-based alloys
NASA Astrophysics Data System (ADS)
Dogan, Ali; Arslan, Hüseyin
2018-05-01
As known, Eyring and his collaborators have applied the structure theory to the properties of binary liquid mixtures. In this work, the Eyring model has been extended to calculate the surface tension of liquid Ga-Bi, Ga-Sn and Ga-In binary alloys. It was found that the addition of Sn, In and Bi into Ga leads to significant decrease in the surface tension of the three Ga-based alloy systems, especially for that of Ga-Bi alloys. The calculated surface tension values of these alloys exhibit negative deviation from the corresponding ideal mixing isotherms. Moreover, a comparison between the calculated results and corresponding literature data indicates a good agreement.
Lifetime Measurement of HgCdTe Semiconductor Material
2012-03-01
long-wavelength (>15 μm) infrared spectral region. HgCdTe is a very effective infrared detector material because of its different properties. The...properties that make HgCdTe an effective infrared detector are its adjustable bandgap of 0.7 to 25 μm, its high absorption coefficient, its moderate... HgCdTe infrared detectors . Retrieved Jul. 17, 2011, from http://www.wat.edu.pl/review/optor/10(3)159.pdf Wagner, R. J. (1999 Apr. 16). In
Effects of surface poisons on the oxidation of binary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, P.S.; Polizzotti, R.S.; Luckman, G.
1985-10-01
A system of reaction-diffusion equations describing the oxidation of binary alloys in environments containing small amounts of surface poisons is analyzed. These poisons reduce the oxygen flux into the alloy, which causes the alloy to oxidize in two stages.During the initial stage, the oxidation reaction occurs in a stationary boundary layer at the alloy surface. Consequently, a thin zone containing a very high concentration of the metal oxide is created at the alloy surface. During the second stage, the oxidation reaction occurs in a moving boundary layer. This leads to a Stefan problem, which is analyzed by using asymptotic andmore » numerical techniques. By comparing the solutions to those of alloys in unpoisoned environments, it is concluded that surface poisons can lead to the formation of protective external oxide scales in alloys which would not normally form such scales. 11 references.« less
First Principles Calculations of Transition Metal Binary Alloys: Phase Stability and Surface Effects
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Shimizu, Koji; Kishida, Ryo; Kojima, Kazuki; Linh, Nguyen Hoang; Nakanishi, Hiroshi; Kasai, Hideaki
2017-06-01
The phase stability and surface effects on binary transition metal nano-alloy systems were investigated using density functional theory-based first principles calculations. In this study, we evaluated the cohesive and alloying energies of six binary metal alloy bulk systems that sample each type of alloys according to miscibility, i.e., Au-Ag and Pd-Ag for the solid solution-type alloys (SS), Pd-Ir and Pd-Rh for the high-temperature solid solution-type alloys (HTSS), and Au-Ir and Ag-Rh for the phase-separation (PS)-type alloys. Our results and analysis show consistency with experimental observations on the type of materials in the bulk phase. Varying the lattice parameter was also shown to have an effect on the stability of the bulk mixed alloy system. It was observed, particularly for the PS- and HTSS-type materials, that mixing gains energy from the increasing lattice constant. We furthermore evaluated the surface effects, which is an important factor to consider for nanoparticle-sized alloys, through analysis of the (001) and (111) surface facets. We found that the stability of the surface depends on the optimization of atomic positions and segregation of atoms near/at the surface, particularly for the HTSS and the PS types of metal alloys. Furthermore, the increase in energy for mixing atoms at the interface of the atomic boundaries of PS- and HTSS-type materials is low enough to overcome by the gain in energy through entropy. These, therefore, are the main proponents for the possibility of mixing alloys near the surface.
A review on plasma-etch-process induced damage of HgCdTe
NASA Astrophysics Data System (ADS)
Liu, Lingfeng; Chen, Yiyu; Ye, Zhenhua; Ding, Ruijun
2018-05-01
Dry etching techniques with minimal etch induced damage are required to develop highly anisotropic etch for pixel delineation of HgCdTe infrared focal plane arrays (IRFPAs). High density plasma process has become the main etching technique for HgCdTe in the past twenty years, In this paper, high density plasma electron cyclotron resonance (ECR) and inductively coupled plasma (ICP) etching of HgCdTe are summarized. Common plasma-etch-process induced type conversion and related mechanisms are reviewed particularly.
Surface tension modelling of liquid Cd-Sn-Zn alloys
NASA Astrophysics Data System (ADS)
Fima, Przemyslaw; Novakovic, Rada
2018-06-01
The thermodynamic model in conjunction with Butler equation and the geometric models were used for the surface tension calculation of Cd-Sn-Zn liquid alloys. Good agreement was found between the experimental data for limiting binaries and model calculations performed with Butler model. In the case of ternary alloys, the surface tension variation with Cd content is better reproduced in the case of alloys lying on vertical sections defined by high Sn to Zn molar fraction ratio. The calculated surface tension is in relatively good agreement with the available experimental data. In addition, the surface segregation of liquid ternary Cd-Sn-Zn and constituent binaries has also been calculated.
Durable pd-based alloy and hydrogen generation membrane thereof
Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry
2010-02-02
A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.
A comparison of techniques for nondestructive composition measurements in CdZnTe substrates
NASA Astrophysics Data System (ADS)
Tobin, S. P.; Tower, J. P.; Norton, P. W.; Chandler-Horowitz, D.; Amirtharaj, P. M.; Lopes, V. C.; Duncan, W. M.; Syllaios, A. J.; Ard, C. K.; Giles, N. C.; Lee, Jaesun; Balasubramanian, R.; Bollong, A. B.; Steiner, T. W.; Thewalt, M. L. W.; Bowen, D. K.; Tanner, B. K.
1995-05-01
We report an overview and a comparison of nondestructive optical techniques for determining alloy composition x in Cd1-xZnxTe substrates for HgCdTe epitaxy. The methods for single-point measurements include a new x-ray diffraction technique for precision lattice parameter measurements using a standard highresolution diffractometer, room-temperature photoreflectance, and low-temperature photoluminescence. We compare measurements on the same set of samples by all three techniques. Comparisons of precision and accuracy, with a discussion of the strengths and weaknesses of different techniques, are presented. In addition, a new photoluminescence excitation technique for full-wafer imaging of composition variations is described.
Type-II InAs/GaSb (InAsSb) superlattices for interband cascade midwavelength detectors
NASA Astrophysics Data System (ADS)
Hackiewicz, Klaudia; Martyniuk, Piotr
2018-02-01
Type-II superlattice (T2SL) interband cascade infrared detectors (IB CIDs) proved to be a promising candidate for short response time devices operating in room and higher temperatures. The current status of the higher operating temperature (HOT) T2SLs InAs/GaSb and InAs/InAsSb IB CID is presented. We compare both materials with HgCdTe alloy, which is widely described in literature. The detectivity of midwave infrared (MWIR) T2SLs InAs/GaSb and InAs/InAsSb based IB CID has been demonstrated up to 380 K.
Jiménez-Garrudo, Antonio; Gil-Mur, Francisco Javier; Manero, José María; Punset-Fuste, Miquel; Chávarri-Prado, David; Diéguez-Pereira, Markel; Monticelli, Francesca
2017-01-01
The objective of the study is to characterise the mechanical properties of Ti-15Zr binary alloy dental implants and to describe their biomechanical behaviour as well as their osseointegration capacity compared with the conventional Ti-6Al-4V (TAV) alloy implants. The mechanical properties of Ti-15Zr binary alloy were characterised using Roxolid© implants (Straumann, Basel, Switzerland) via ultrasound. Their biomechanical behaviour was described via finite element analysis. Their osseointegration capacity was compared via an in vivo study performed on 12 adult rabbits. Young's modulus of the Roxolid© implant was around 103 GPa, and the Poisson coefficient was around 0.33. There were no significant differences in terms of Von Mises stress values at the implant and bone level between both alloys. Regarding deformation, the highest value was observed for Ti-15Zr implant, and the lowest value was observed for the cortical bone surrounding TAV implant, with no deformation differences at the bone level between both alloys. Histological analysis of the implants inserted in rabbits demonstrated higher BIC percentage for Ti-15Zr implants at 3 and 6 weeks. Ti-15Zr alloy showed elastic properties and biomechanical behaviours similar to TAV alloy, although Ti-15Zr implant had a greater BIC percentage after 3 and 6 weeks of osseointegration. PMID:29318142
Effects of chemical alternation on damage accumulation in concentrated solid-solution alloys
Ullah, Mohammad W.; Xue, Haizhou; Velisa, Gihan; ...
2017-06-23
Single-phase concentrated solid-solution alloys (SP-CSAs) have recently gained unprecedented attention due to their promising properties. To understand effects of alloying elements on irradiation-induced defect production, recombination and evolution, an integrated study of ion irradiation, ion beam analysis and atomistic simulations are carried out on a unique set of model crystals with increasing chemical complexity, from pure Ni to Ni 80Fe 20, Ni 50Fe 50, and Ni 80Cr 20 binaries, and to a more complex Ni 40Fe 40Cr 20 alloy. Both experimental and simulation results suggest that the binary and ternary alloys exhibit higher radiation resistance than elemental Ni. The modelingmore » work predicts that Ni 40Fe 40Cr 20 has the best radiation tolerance, with the number of surviving Frenkel pairs being factors of 2.0 and 1.4 lower than pure Ni and the 80:20 binary alloys, respectively. While the reduced defect mobility in SP-CSAs is identified as a general mechanism leading to slower growth of large defect clusters, the effect of specific alloying elements on suppression of damage accumulation is clearly demonstrated. This work suggests that concentrated solid-solution provides an effective way to enhance radiation tolerance by creating elemental alternation at the atomic level. The demonstrated chemical effects on defect dynamics may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.« less
HP-41CX Programs for HgCdTe Detectors and IR Systems.
1987-10-01
FIELD GROUP SUB-GROUP IPocket Computer HgCdTe PhotoSensor Programs Detectors Analysis I I l-IP-41 Infrared IR Systems __________ 19 ABSTRACT (Continue... HgCdTe detectors , focal planes, and infrared systems. They have been written to run in a basic HP-41CV or HP-41CX with no card reader or additional ROMs...Programs have been written for the HP-41CX which aid in the analysis of HgCdTe detectors , focal r planes, and infrared systems. They have been installed as a
MBE HgCdTe for HDVIP Devices: Horizontal Integration in the US HgCdTe FPA Industry
NASA Astrophysics Data System (ADS)
Aqariden, F.; Elsworth, J.; Zhao, J.; Grein, C. H.; Sivananthan, S.
2012-10-01
Molecular beam epitaxy (MBE) growth of HgCdTe offers the possibility of fabricating multilayer device structures with an almost unlimited choice of infrared sensor designs for focal-plane array (FPA) fabrication. HgCdTe offers two major advantages that explain its dominance in the infrared photon detector marketplace. The thermal generation rate per unit volume of the material is lower and the quantum efficiency for photon absorption in the infrared is higher in HgCdTe than in any competing material—it yields devices with quantum efficiencies as high as 0.99. Recently, EPIR Technologies and DRS Infrared Technologies agreed to collaborate and examine: (i) the feasibility of employing MBE HgCdTe in the fabrication of high-density vertically interconnected photodiodes (HDVIPs), which are usually fabricated with liquid-phase epitaxy material, and (ii) the potential benefits of horizontal integration, with EPIR supplying the MBE materials to DRS for device and array fabrication. The team designed and developed passivation-absorber-passivation structures that are heavily used by DRS. This paper provides an overview of the characteristics of HDVIP devices and arrays fabricated from MBE HgCdTe and the anticipated advantages of horizontal integration in the industry. Material growth, device fabrication, and test results are presented.
NASA Astrophysics Data System (ADS)
Liu, L. F.; Chen, Y. Y.; Ye, Z. H.; Hu, X. N.; Ding, R. J.; He, L.
2018-03-01
Plasma etching is a powerful technique for transferring high-resolution lithographic patterns into HgCdTe material with low etch-induced damage, and it is important for fabricating small-pixel-size HgCdTe infrared focal plane array (IRFPA) detectors. P- to n-type conversion is known to occur during plasma etching of vacancy-doped HgCdTe; however, it is usually unwanted and its removal requires extra steps. Etching at cryogenic temperatures can reduce the etch-induced type conversion depth in HgCdTe via the electrical damage mechanism. Laser beam-induced current (LBIC) is a nondestructive photoelectric characterization technique which can provide information regarding the vertical and lateral electrical field distribution, such as defects and p-n junctions. In this work, inductively coupled plasma (ICP) etching of HgCdTe was implemented at cryogenic temperatures. For an Ar/CH4 (30:1 in SCCM) plasma with ICP input power of 1000 W and RF-coupled DC bias of ˜ 25 V, a HgCdTe sample was dry-etched at 123 K for 5 min using ICP. The sample was then processed to remove a thin layer of the plasma-etched region while maintaining a ladder-like damaged layer by continuously controlling the wet chemical etching time. Combining the ladder etching method and LBIC measurement, the ICP etching-induced electrical damage depth was measured and estimated to be about 20 nm. The results indicate that ICP etching at cryogenic temperatures can significantly suppress plasma etching-induced electrical damage, which is beneficial for defining HgCdTe mesa arrays.
Nanostructured Platinum Alloys for Use as Catalyst Materials
NASA Technical Reports Server (NTRS)
Narayan, Sri R. (Inventor); Hays, Charles C. (Inventor)
2015-01-01
A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.
Nanostructured Platinum Alloys for Use as Catalyst Materials
NASA Technical Reports Server (NTRS)
Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)
2013-01-01
A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.
Wilhelm, H.A.; Ames, D.P.
1959-02-01
A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.
Characteristics of Au Migration and Concentration Distributions in Au-Doped HgCdTe LPE Materials
NASA Astrophysics Data System (ADS)
Sun, Quanzhi; Yang, Jianrong; Wei, Yanfeng; Zhang, Juan; Sun, Ruiyun
2015-08-01
Annealing techniques and secondary ion mass spectrometry have been used to study the characteristics of Au migration and concentration distributions in HgCdTe materials grown by liquid phase epitaxy. Secondary ion mass spectrometry measurements showed that Au concentrations had obvious positive correlations with Hg-vacancy concentration and dislocation density of the materials. Au atoms migrate toward regions of high Hg-vacancy concentration or move away from these regions when the Hg-vacancy concentration decreases during annealing. The phenomenon can be explained by defect chemical equilibrium theory if Au atoms have a very large migration velocity compared with Hg vacancies. Au atoms will also migrate toward regions of high dislocation density, leading to a peak concentration in the inter-diffusion region of HgCdTe materials near the substrate. By use of an Hg and Te-rich annealing technique, different concentration distributions of both Au atoms and Hg vacancies in HgCdTe materials were obtained, indicating that Au-doped HgCdTe materials can be designed and prepared to satisfy the requirements of HgCdTe devices.
HgCdTe barrier infrared detectors
NASA Astrophysics Data System (ADS)
Kopytko, M.; Rogalski, A.
2016-05-01
In the last decade, new strategies to achieve high-operating temperature (HOT) detectors have been proposed, including barrier structures such as nBn devices, unipolar barrier photodiodes, and multistage (cascade) infrared detectors. The ability to tune the positions of the conduction and valence band edges independently in a broken-gap type-II superlattices is especially helpful in the design of unipolar barriers. This idea has been also implemented in HgCdTe ternary material system. However, the implementation of this detector structure in HgCdTe material system is not straightforward due to the existence of a valence band discontinuity (barrier) at the absorber-barrier interface. In this paper we present status of HgCdTe barrier detectors with emphasis on technological progress in fabrication of MOCVD-grown HgCdTe barrier detectors achieved recently at the Institute of Applied Physics, Military University of Technology. Their performance is comparable with state-of-the-art of HgCdTe photodiodes. From the perspective of device fabrication their important technological advantage results from less stringent surface passivation requirements and tolerance to threading dislocations.
Fine structure of Fe-Co-Ga and Fe-Cr-Ga alloys with low Ga content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinerman, Nadezhda M., E-mail: kleinerman@imp.uran.ru; Serikov, Vadim V., E-mail: kleinerman@imp.uran.ru; Vershinin, Aleksandr V., E-mail: kleinerman@imp.uran.ru
2014-10-27
Investigation of Ga influence on the structure of Fe-Cr and Fe-Co alloys was performed with the use of {sup 57}Fe Mössbauer spectroscopy and X-ray diffraction methods. In the alloys of the Fe-Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to entermore » the nearest surroundings of iron atoms, thus forming binary Fe-Ga regions (or phases)« less
NASA Astrophysics Data System (ADS)
Song, Jun-Tao; Zhang, Jian-Min
2018-06-01
The investigations of the electronic and magnetic properties show the binary Heusler alloys ZCl3 (Z = Be, Mg, Ca, Sr) are half-metallic (HM) ferromagnets with an integer magnetic moment (Mt) of 1 μB /f.u.. The alloy BeCl3 is thermodynamic meta-stable, while other alloys are thermodynamic stable according to their cohesive energies and formation energies. Moreover, wide HM regions for alloys ZCl3 (Z = Be, Mg, Ca, Sr) show their HM characters are robust when the lattices are expanded or compressed under uniform and tetragonal strains. Finally, some optical properties are analyzed in detail, such as the dielectric function, the absorption coefficient, the refractive index and the extinction coefficient.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1979-01-01
Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh and W) in contact with single crystal silicon carbide riders. Results indicate that the friction force in the plowing of metal and the groove height (corresponding to the wear volume of the groove) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease, and the contact pressure increases with an increase in solute content of binary alloys. There appears to be very good correlation of the solute to iron atomic ratio with the decreasing rate of change of coefficient of friction, the decreasing rate of change of groove height and the increasing rate of change of contact pressure with increasing solute content. These rates of change increase as the solute to iron atomic radius ratio increases or decreases from unity.
NASA Astrophysics Data System (ADS)
Shin, Yongjin; Jung, Woo-Sang; Lee, Young-Su
2016-11-01
In this study, we use the quasi-harmonic Debye model to predict the coefficient of thermal expansion of Ni- X binary alloys. The method bridges between the macroscopic elastic behavior and thermodynamic properties of materials without an expensive calculation of the volume dependence of the phonon density of states. Furthermore, the Grüneisen parameter is derived from the volume dependence of the Debye temperature, which is calculated from the first-principles elastic stiffness constants. The experimental coefficient of thermal expansion (CTE) of pure nickel is well reproduced, especially in the low temperature region. Among the few alloying elements tested, Al is predicted to slightly decrease the CTE whereas Mo and W are more effective in reducing the CTE. For the cases of Ni-X binary alloy systems, where the variation in the CTE is relatively small, the method used here appears to perform better than certain other formulations that rely entirely on the energy vs. volume relationship.
Diffuse scattering measurements of static atomic displacements in crystalline binary solid solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ice, G.E.; Sparks, C.J.; Jiang, X.
1997-09-01
Diffuse x-ray scattering from crystalline solid solutions is sensitive to both local chemical order and local bond distances. In short-range ordered alloys, fluctuations of chemistry and bond distances break the long-range symmetry of the crystal within a local region and contribute to the total energy of the alloy. Recent use of tunable synchrotron radiation to change the x-ray scattering contrast between elements has greatly advanced the measurement of bond distances between the three kinds of atom pairs found in crystalline binary alloys. The estimated standard deviation on these recovered static displacements approaches {+-}0.001 {angstrom} (0.0001 nm) which is an ordermore » of magnitude more precise than obtained with EXAFS. In addition, both the radial and tangential displacements can be recovered to five near neighbors and beyond. These static displacement measurements provide new information which challenges the most advanced theoretical models of binary crystalline alloys. 29 refs., 8 figs., 2 tabs.« less
Coffinberry, A.S.
1959-01-01
An alloy is presented for use as a reactor fuel. The binary alloy consists essentially of from about 5 to 90 atomic per cent cerium and the balance being plutonium. A complete phase diagram for the cerium--plutonium system is given.
Normal evaporation of binary alloys
NASA Technical Reports Server (NTRS)
Li, C. H.
1972-01-01
In the study of normal evaporation, it is assumed that the evaporating alloy is homogeneous, that the vapor is instantly removed, and that the alloy follows Raoult's law. The differential equation of normal evaporation relating the evaporating time to the final solute concentration is given and solved for several important special cases. Uses of the derived equations are exemplified with a Ni-Al alloy and some binary iron alloys. The accuracy of the predicted results are checked by analyses of actual experimental data on Fe-Ni and Ni-Cr alloys evaporated at 1600 C, and also on the vacuum purification of beryllium. These analyses suggest that the normal evaporation equations presented here give satisfactory results that are accurate to within an order of magnitude of the correct values, even for some highly concentrated solutions. Limited diffusion and the resultant surface solute depletion or enrichment appear important in the extension of this normal evaporation approach.
Microstructures and Grain Refinement of Additive-Manufactured Ti- xW Alloys
NASA Astrophysics Data System (ADS)
Mendoza, Michael Y.; Samimi, Peyman; Brice, David A.; Martin, Brian W.; Rolchigo, Matt R.; LeSar, Richard; Collins, Peter C.
2017-07-01
It is necessary to better understand the composition-processing-microstructure relationships that exist for materials produced by additive manufacturing. To this end, Laser Engineered Net Shaping (LENS™), a type of additive manufacturing, was used to produce a compositionally graded titanium binary model alloy system (Ti- xW specimen (0 ≤ x ≤ 30 wt pct), so that relationships could be made between composition, processing, and the prior beta grain size. Importantly, the thermophysical properties of the Ti- xW, specifically its supercooling parameter ( P) and growth restriction factor ( Q), are such that grain refinement is expected and was observed. The systematic, combinatorial study of this binary system provides an opportunity to assess the mechanisms by which grain refinement occurs in Ti-based alloys in general, and for additive manufacturing in particular. The operating mechanisms that govern the relationship between composition and grain size are interpreted using a model originally developed for aluminum and magnesium alloys and subsequently applied for titanium alloys. The prior beta grain factor observed and the interpretations of their correlations indicate that tungsten is a good grain refiner and such models are valid to explain the grain-refinement process. By extension, other binary elements or higher order alloy systems with similar thermophysical properties should exhibit similar grain refinement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Weicheng; National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083; Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn
2014-11-10
In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixedmore » conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.« less
Uncooled middle wavelength infrared photoconductors based on (111) and (100) oriented HgCdTe
NASA Astrophysics Data System (ADS)
Madejczyk, Paweł; Kębłowski, Artur; Gawron, Waldemar; Martyniuk, Piotr; Kopytko, Małgorzata; Stępień, Dawid; Rutkowski, Jarosław; Piotrowski, Józef; Piotrowski, Adam; Rogalski, Antoni
2017-09-01
We present progress in metal organic chemical vapor deposition (MOCVD) growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool for the fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping, and without post grown ex-situ annealing. Surface morphology, residual background concentration, and acceptor doping efficiency are compared in (111) and (100) oriented HgCdTe epilayers. At elevated temperatures, the carrier lifetime in measured p-type photoresistors is determined by Auger 7 process with about one order of magnitude difference between theoretical and experimental values. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for medium wavelength infrared photoconductors operated in high-operating temperature conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porobova, Svetlana, E-mail: porobova.sveta@yandex.ru; Loskutov, Oleg, E-mail: lom58@mail.ru; Markova, Tat’jana, E-mail: patriot-rf@mail.ru
2016-01-15
The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.
NASA Technical Reports Server (NTRS)
Brush, L. N.; Coriell, S. R.; Mcfadden, G. B.
1990-01-01
Directional solidification of pure materials and binary alloys with a planar crystal-metal interface in the presence of a time-dependent electric current is considered. For a variety of time-dependent currents, the temperature fields and the interface velocity as functions of time are presented for indium antimonide and bismuth and for the binary alloys germanium-gallium and tin-bismuth. For the alloys, the solid composition is calculated as a function of position. Quantitative predictions are made of the effect of an electrical pulse on the solute distribution in the solidified material.
Growth of Lattice-Matched ZnTeSe Alloys on (100) and (211)B GaSb
NASA Astrophysics Data System (ADS)
Chai, J.; Lee, K.-K.; Doyle, K.; Dinan, J. H.; Myers, T. H.
2012-10-01
A key issue with the current HgCdTe/Si system is the high dislocation density due to the large mismatch between HgCdTe and Si. An alternative system that has superior lattice matching is HgCdSe/GaSb. A buffer layer to mitigate issues with direct nucleation of HgCdSe on GaSb is ZnTe1- x Se x . We have performed preliminary studies into the growth of lattice-matched ZnTe1- x Se x on both (100) and (211)B GaSb. The effects of substrate orientation, substrate temperature, and growth conditions on the morphology and crystallography of ZnTe0.99Se0.01 alloys were investigated. The lattice-matching condition yielded minimum root-mean-square (rms) roughness of 1.1 nm, x-ray rocking curve full-width at half-maximum (FWHM) value of ~29 arcsec, and density of nonradiative defects of mid-105 cm-2 as measured by imaging photoluminescence.
Precipitation Modeling in Nitriding in Fe-M Binary System
NASA Astrophysics Data System (ADS)
Tomio, Yusaku; Miyamoto, Goro; Furuhara, Tadashi
2016-10-01
Precipitation of fine alloy nitrides near the specimen surface results in significant surface hardening in nitriding of alloyed steels. In this study, a simulation model of alloy nitride precipitation during nitriding is developed for Fe-M binary system based upon the Kampmann-Wagner numerical model in order to predict variations in the distribution of precipitates with depth. The model can predict the number density, average radius, and volume fraction of alloy nitrides as a function of depth from the surface and nitriding time. By a comparison with the experimental observation in a nitrided Fe-Cr alloy, it was found that the model can predict successfully the observed particle distribution from the surface into depth when appropriate solubility of CrN, interfacial energy between CrN and α, and nitrogen flux at the surface are selected.
Binary Colloidal Alloy Test-3 and 4: Critical Point
NASA Technical Reports Server (NTRS)
Weitz, David A.; Lu, Peter J.
2007-01-01
Binary Colloidal Alloy Test - 3 and 4: Critical Point (BCAT-3-4-CP) will determine phase separation rates and add needed points to the phase diagram of a model critical fluid system. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.
NASA Astrophysics Data System (ADS)
Lalneihpuii, R.; Shrivastava, Ruchi; Mishra, Raj Kumar
2018-05-01
Using statistical mechanical model with square-well (SW) interatomic potential within the frame work of mean spherical approximation, we determine the composition dependent microscopic correlation functions, interdiffusion coefficients, surface tension and chemical ordering in Ag-Cu melts. Further Dzugutov universal scaling law of normalized diffusion is verified with SW potential in binary mixtures. We find that the excess entropy scaling law is valid for SW binary melts. The partial and total structure factors in the attractive and repulsive regions of the interacting potential are evaluated and then Fourier transformed to get partial and total radial distribution functions. A good agreement between theoretical and experimental values for total structure factor and the reduced radial distribution function are observed, which consolidates our model calculations. The well-known Bhatia-Thornton correlation functions are also computed for Ag-Cu melts. The concentration-concentration correlations in the long wavelength limit in liquid Ag-Cu alloys have been analytically derived through the long wavelength limit of partial correlation functions and apply it to demonstrate the chemical ordering and interdiffusion coefficients in binary liquid alloys. We also investigate the concentration dependent viscosity coefficients and surface tension using the computed diffusion data in these alloys. Our computed results for structure, transport and surface properties of liquid Ag-Cu alloys obtained with square-well interatomic interaction are fully consistent with their corresponding experimental values.
NASA Astrophysics Data System (ADS)
Mukhina, I. Yu.
2014-11-01
The effect of 26 alloying elements on the corrosion resistance of high-purity magnesium in a 0.5-n solution of sodium chloride and in a humid atmosphere (0.005 n) is studied. The Mg - Li, Mg - Ag, Mg - Zn, Mg - Cu, Mg - Gd, Mg - Al, Mg - Zr, Mg - Mn and other binary systems, which present interest as a base for commercial or perspective castable magnesium alloys, are studied. The characteristics of corrosion resistance of the binary alloys are analyzed in accordance with the group and period of the Mendeleev's periodic law. The roles of the electrochemical and volume factors and of the factor of the valence of the dissolved element are determined.
Liquidus temperatures of Hg-rich Hg-Cd-Te alloys
NASA Technical Reports Server (NTRS)
Szofran, F. R.; Lehoczky, S. L.
1983-01-01
Measurements are made of the liquidus temperatures for ten (Hg/1-x/Cd)Te/1-y/ compositions in which x ranges from 0.091 to 0.401 and y ranges from 0.544 to 0.952. It is found that for metal-rich melts with the same x value, the liquidus temperature increases with y when y is in the range 0.5-0.7. This behavior is explained by the higher degree of association between Cd and Te than between Hg and Te in the melts. It is noted that recent calculated values of the liquidus isotherms by Tung et al. (1982) are in fair to good agreement with the experimental results obtained here.
Schonfeld, F.W.
1959-09-15
New plutonium-base binary alloys useful as liquid reactor fuel are described. The alloys consist of 50 to 98 at.% thorium with the remainder plutonium. The stated advantages of these alloys over unalloyed plutonium for reactor fuel use are easy fabrication, phase stability, and the accompanying advantuge of providing a means for converting Th/sup 232/ into U/sup 233/.
NASA Astrophysics Data System (ADS)
Zhang, R. F.; Zhang, Y. Q.; Zhang, S. F.; B. Qu; Guo, S. B.; Xiang, J. H.
2015-01-01
Micro arc oxidation (MAO) is an effective method to improve the corrosion resistance of magnesium alloys. In order to reveal the influence of alloying element Ca and CaCO3 electrolyte on the formation process and chemical compositions of MAO coatings on binary Mg-1.0Ca alloy, anodic coatings after different anodizing times were prepared on binary Mg-1.0Ca alloy in a base solution containing 3 g/L sodium hydroxide and 15 g/L sodium phytate with and without addition of CaCO3. The coating formation was studied by using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that Mg-1.0Ca alloy is composed of two phases, the Mg phase and Mg2Ca phase. After treating for 5 s, the coating began to develop and was preferentially formed on the area nearby Mg2Ca phase, which may be resulted from the intrinsic electronegative potential of the Mg phase than that of Mg2Ca phase. Anodic coatings unevenly covered the total surface after 20 s. After 80 s, the coatings were uniformly developed on Mg-1.0Ca alloy with micro pores. During MAO process, some sodium phytate molecules are hydrolyzed into inorganic phosphate. CaCO3 has minor influence on the calcium content of the obtained MAO coatings.
Geometric relationships for homogenization in single-phase binary alloy systems
NASA Technical Reports Server (NTRS)
Unnam, J.; Tenney, D. R.; Stein, B. A.
1978-01-01
A semiempirical relationship is presented which describes the extent of interaction between constituents in single-phase binary alloy systems having planar, cylindrical, or spherical interfaces. This relationship makes possible a quick estimate of the extent of interaction without lengthy numerical calculations. It includes two parameters which are functions of mean concentration and interface geometry. Experimental data for the copper-nickel system are included to demonstrate the usefulness of this relationship.
Jiang, Shujuan; Ma, Yanwen; Tao, Haisheng; Jian, Guoqiang; Wang, Xizhang; Fan, Yining; Zhu, Jianmin; Hu, Zheng
2010-06-01
Binary Pt-Ni alloyed nanoparticles supported on nitrogen-doped carbon nanotubes (NCNTs) have been facilely constructed without pre-modification by making use of the active sites in NCNTs due to the N-participation. So-obtained binary Pt-Ni alloyed nanoparticles have been highly dispersed on the outer surface of the support with the size of about 3-4 nm. The electrochemical properties of the catalysts for methanol oxidation have been systematically evaluated. Binary Pt-Ni alloyed composites with molar ratio (Pt:Ni) of 3:2 and 3:1 present enhanced electrocatalytic activities and improved tolerance to CO poisoning as well as the similar stability, in comparison with the commercial Pt/C catalyst and the monometallic Pt/NCNTs catalysts. These results imply that so-constructed nanocomposite catalysts have the potential for applications in direct methanol fuel cells.
Effects of Inductively Coupled Plasma Hydrogen on Long-Wavelength Infrared HgCdTe Photodiodes
NASA Astrophysics Data System (ADS)
Boieriu, P.; Buurma, C.; Bommena, R.; Blissett, C.; Grein, C.; Sivananthan, S.
2013-12-01
Bulk passivation of semiconductors with hydrogen continues to be investigated for its potential to improve device performance. In this work, hydrogen-only inductively coupled plasma (ICP) was used to incorporate hydrogen into long-wavelength infrared HgCdTe photodiodes grown by molecular-beam epitaxy. Fully fabricated devices exposed to ICP showed statistically significant increases in zero-bias impedance values, improved uniformity, and decreased dark currents. HgCdTe photodiodes on Si substrates passivated with amorphous ZnS exhibited reductions in shunt currents, whereas devices on CdZnTe substrates passivated with polycrystalline CdTe exhibited reduced surface leakage, suggesting that hydrogen passivates defects in bulk HgCdTe and in CdTe.
Short-Range-Order for fcc-based Binary Alloys Revisited from Microscopic Geometry
NASA Astrophysics Data System (ADS)
Yuge, Koretaka
2018-04-01
Short-range order (SRO) in disordered alloys is typically interpreted as competition between chemical effect of negative (or positive) energy gain by mixing constituent elements and geometric effects comes from difference in effective atomic radius. Although we have a number of theoretical approaches to quantitatively estimate SRO at given temperatures, it is still unclear to systematically understand trends in SRO for binary alloys in terms of geometric character, e.g., effective atomic radius for constituents. Since chemical effect plays significant role on SRO, it has been believed that purely geometric character cannot capture the SRO trends. Despite these considerations, based on the density functional theory (DFT) calculations on fcc-based 28 equiatomic binary alloys, we find that while conventional Goldschmidt or DFT-based atomic radius for constituents have no significant correlation with SRO, atomic radius for specially selected structure, constructed purely from information about underlying lattice, can successfully capture the magnitude of SRO. These facts strongly indicate that purely geometric information of the system plays central role to determine characteristic disordered structure.
First-principles study of intermetallic phase stability in the ternary Ti-Al-Nb alloy system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asta, M.; Ormeci, A.; Wills, J.M.
The stability of bcc-based phases in the Ti-Al-Nb alloy system has been studied from first-principles using a combination of ab-initio total energy and cluster variation method (CVM) calculations. Total energies have been computed for 18 binary and ternary bcc superstructures in order to determine low temperature ordering tendencies. From the results of these calculations a set of effective cluster interaction parameters have been derived. These interaction parameters are required input for CVM computations of alloy thermodynamic properties. The CVM has been used to study the effect of composition on finite-temperature ordering tendencies and site preferences for bcc-based phases. Strong orderingmore » tendencies are observed for binary Nb-Al and Ti-Al bcc phases as well as for ternary alloys with compositions near Ti{sub 2}AlNb. For selected superstructures we have also analyzed structural stabilities with respect to tetragonal distortions which transform the bcc into an fcc lattice. Instabilities with respect to such distortions are found to exist for binary but not ternary bcc compounds.« less
Lateral Diffusion Length Changes in HgCdTe Detectors in a Proton Environment
NASA Technical Reports Server (NTRS)
Hubbs, John E.; Marshall, Paul W.; Marshall, Cheryl J.; Gramer, Mark E.; Maestas, Diana; Garcia, John P.; Dole, Gary A.; Anderson, Amber A.
2007-01-01
This paper presents a study of the performance degradation in a proton environment of very long wavelength infrared (VLWIR) HgCdTe detectors. The energy dependence of the Non-Ionizing Energy Loss (NIEL) in HgCdTe provides a framework for estimating the responsivity degradation in VLWIR HgCdTe due to on orbit exposure from protons. Banded detector arrays that have different detector designs were irradiated at proton energies of 7, 12, and 63 MeV. These banded detector arrays allovedin sight into how the fundamental detector parameters degraded in a proton environment at the three different proton energies. Measured data demonstrated that the detector responsivity degradation at 7 MeV is 5 times larger than the degradation at 63 MeV. The comparison of the responsivity degradation at the different proton energies suggests that the atomic Columbic interaction of the protons with the HgCdTe detector is likely the primary mechanism responsible for the degradation in responsivity at proton energies below 30 MeV.
Ab initio simulations of molten Ni alloys
NASA Astrophysics Data System (ADS)
Woodward, Christopher; Asta, Mark; Trinkle, Dallas R.; Lill, James; Angioletti-Uberti, Stefano
2010-06-01
Convective instabilities responsible for misoriented grains in directionally solidified turbine airfoils are produced by variations in liquid-metal density with composition and temperature across the solidification zone. Here, fundamental properties of molten Ni-based alloys, required for modeling these instabilities, are calculated using ab initio molecular dynamics simulations. Equations of state are derived from constant number-volume-temperature ensembles at 1830 and 1750 K for elemental, binary (Ni-X, X=Al, W, Re, and Ta) and ternary (Ni-Al-X, X=W, Re, and Ta) Ni alloys. Calculated molar volumes agree to within 0.6%-1.8% of available measurements. Predictions are used to investigate the range of accuracy of a parameterization of molar volumes with composition and temperature based on measurements of binary alloys. Structural analysis reveals a pronounced tendency for icosahedral short-range order for Ni-W and Ni-Re alloys and the calculations provide estimates of diffusion rates and their dependence on compositions and temperature.
Modeling of the Structure of Disordered Metallic Alloys and Its Transformation Under Thermal Forcing
NASA Astrophysics Data System (ADS)
Cress, Ryan Paul
The morphology of disordered binary metallic alloys is investigated. The structure of disordered binary metallic alloys is modeled as a randomly close packed (RCP) assembly of atoms. It was observed through a 2-D binary hard sphere experiment that RCP structure can be modeled as a mixture of nano-crystallites and glassy matter. We define the degree of crystallinity as the fraction of atoms contained in nano-crystallites in an RCP medium. Nano-crystallites by size in a crystallite size distribution were determined experimentally to define the morphology of the RCP medium. Both the degree of crystallinity and the crystallite size distribution have been found to be determined by the composition of a given binary mixture. A 2-D Monte Carlo simulation was developed in order to replicate the RCP structure observed in the experiment which is then extended to cases of arbitrary composition. Crystallites were assumed to be spherical with isotropic cross sections. The number of atoms in an individual crystallite in 2-D is simply transformed into the number of atoms in 3-D; we then obtain the crystallite size distribution in 3-D. This experiment accounts for the contribution from the repulsive core of the inter-atomic potential. The attractive part of the potential is recovered by constructing spherical nano-crystallites of a given radius from a crystalline specimen of each given alloy. A structural model of a disordered alloy is thus obtained. With the basic structure of the RCP medium defined, the response to heating would be in the form of changes to the crystallite size distribution. This was first investigated in a hard sphere mechanical oven experiment. The experimental setup consists of a 2-D cell which is driven by two independent stepper motors. The motors drive a binary RCP bed of spheres on a slightly tilted plane according to a chaotic algorithmm. The motors are driven at four different speed settings. The RCP medium was analyzed using a sequence of digital images taken of the beds. The bursts of images provide a Gaussian distribution of particle speeds in x and y directions thus giving rise to the notion of "temperature." This temperature scales with the motor speed settings. The measured average degree of crystallinity is found to decrease as the effective temperature was raised suggesting that nano-crystallites dissociate under thermal forcing. The evolution of a specimen's structure is calculated rigorously by means of the law of mass action formalism. A system of thermal dissociation reaction equations is written out for the set of nano-crystallites according to the 3-D crystallite size distribution. The equilibrium treatment is justified because the energy differences between metastable RCP structures fall within kT. Thermal dissociation of one surface atom at a time is assumed because the energy cost in dissociation of a surface atom on a nano-crystallite is significantly less than that of a multi atom cluster. The full set of reaction equations cover all possible dissociation steps, which may amount to several thousand for a disordered alloy specimen. The primary determining factor in each of these dissociation equations is the dissociation potential or the amount of attractive energy needed to remove a surface atom on a nano-crystallite of a given size. The attractive potential between atoms is calculated using a Lennard-Jones potential between a pair of atoms for which quantum chemistry calculations exist in the literature. All interactions impinged on the surface atom by all other atoms in a crystallite are summed. As the nano-crystallites dissociate due to heating, the structure of the alloy changes, and this leads to modifications of alloy's transport properties. The model is found to predict the melting temperature of various disordered binary alloys as well as refractory metals in good agreement with known data. The structure model for disordered binary alloys gives an excellent characterization of the alloy morphology. It therefore provides fruitful avenues for making predictions about how thermophysical properties of disordered binary alloys change as the alloy temperature is raised by heating.
Numerical model for dendritic solidification of binary alloys
NASA Technical Reports Server (NTRS)
Felicelli, S. D.; Heinrich, J. C.; Poirier, D. R.
1993-01-01
A finite element model capable of simulating solidification of binary alloys and the formation of freckles is presented. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. Numerical simulations are shown in which an NH4Cl-H2O mixture and a Pb-Sn alloy melt are cooled. The solidification process is followed in time. Instabilities in the process can be clearly observed and the final compositions obtained.
Surface Segregation in Multicomponent Systems: Modeling of Surface Alloys and Alloy Surfaces
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John; Noebe, Ronald D.; Good, Brian; Honecy, Frank S.; Abel, Phillip
1999-01-01
The study of surface segregation, although of great technological importance, has been largely restricted to experimental work due to limitations associated with theoretical methods. However, recent improvements in both first-particle and semi-empirical methods are opening, the doors to an array of new possibilities for surface scientists. We apply one of these techniques, the Bozzolo, Ferrante and Smith (BFS) method for alloys, which is particularly suitable for complex systems, to several aspects of the computational modeling of surfaces and segregation, including alloy surface segregation, structure and composition of alloy surfaces, and the formation of surface alloys. We conclude with the study of complex NiAl-based binary, ternary and quaternary thin films (with Ti, Cr and Cu additions to NiAl). Differences and similarities between bulk and surface compositions are discussed, illustrated by the results of Monte Carlo simulations. For some binary and ternary cases, the theoretical predictions are compared to experimental results, highlighting the accuracy and value of this developing theoretical tool.
Determination of parameters of a new method for predicting alloy properties
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John
1992-01-01
Recently, a semiempirical method for alloys based on equivalent crystal theory was introduced. The method successfully predicts the concentration dependence of the heat of formation and lattice parameter of binary alloys. A study of the parameters of the method is presented, along with new results for (gamma)Fe-Pd and (gamma)Fe-Ni alloys.
Prototyping of MWIR MEMS-based optical filter combined with HgCdTe detector
NASA Astrophysics Data System (ADS)
Kozak, Dmitry A.; Fernandez, Bautista; Velicu, Silviu; Kubby, Joel
2010-02-01
In the past decades, there have been several attempts to create a tunable optical detector with operation in the infrared. The drive for creating such a filter is its wide range of applications, from passive night vision to biological and chemical sensors. Such a device would combine a tunable optical filter with a wide-range detector. In this work, we propose using a Fabry-Perot interferometer centered in the mid-wave infrared (MWIR) spectrum with an HgCdTe detector. Using a MEMS-based interferometer with an integrated Bragg stack will allow in-plane operation over a wide range. Because such devices have a tendency to warp, creating less-than-perfect optical surfaces, the Fabry-Perot interferometer is prototyped using the SOI-MUMPS process to ensure desirable operation. The mechanical design is aimed at optimal optical flatness of the moving membranes and a low operating voltage. The prototype is tested for these requirements. An HgCdTe detector provides greater performance than a pyroelectic detector used in some previous work, allowing for lower noise, greater detection speed and higher sensitivity. Both a custom HgCdTe detector and commercially available pyroelectric detector are tested with commercial optical filter. In previous work, monolithic integration of HgCdTe detectors with optical filters proved to be problematic. Part of this work investigates the best approach to combining these two components, either monolithically in HgCdTe or using a hybrid packaging approach where a silicon MEMS Fabry-Perot filter is bonded at low temperature to a HgCdTe detector.
Li, Keyan; Xie, Hui; Liu, Jun; Ma, Zengsheng; Zhou, Yichun; Xue, Dongfeng
2013-10-28
Toward engineering high performance anode alloys for Li-ion batteries, we proposed a useful method to quantitatively estimate the bulk modulus of binary alloys in terms of metallic electronegativity (EN), alloy composition and formula volume. On the basis of our proposed potential viewpoint, EN as a fundamental chemistry concept can be extended to be an important physical parameter to characterize the mechanical performance of Li-Si and Li-Sn alloys as anode materials for Li-ion batteries. The bulk modulus of binary alloys is linearly proportional to the combination of average metallic EN and atomic density of alloys. We calculated the bulk moduli of Li-Si and Li-Sn alloys with different Li concentrations, which can agree well with the reported data. The bulk modulus of Li-Si and Li-Sn alloys decreases with increasing Li concentration, leading to the elastic softening of the alloys, which is essentially caused by the decreased strength of constituent chemical bonds in alloys from the viewpoint of EN. This work provides a deep understanding of mechanical failure of Si and Sn anodes for Li-ion batteries, and permits the prediction of the composition dependent bulk modulus of various lithiated alloys on the basis of chemical formula, metallic EN and cell volume (or alloy density), with no structural details required.
Fundamental Understanding of the Intrinsic Ductility in Nickel-Base L12 Type Alloys.
1987-05-12
COSATI CO0ES I L SUBJE CT TIE RMS (Conue an eo e eee it necessary and identify by blb .un bPe) . ". Eo GROUP SUB. G. Nickel Aluminide , Single...Ni3Al alloys, three series of alloys were formulated and produced as singl’e--crtals. The alloying additions selected include tantalum, tin and titanium ...been completed-for a tantalum and a titanium -containing alloy. Relative .. to the binary alloy, the alloying additions were found to significantly
NASA Technical Reports Server (NTRS)
Ferrante, J.
1973-01-01
Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.
Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth
NASA Astrophysics Data System (ADS)
Sturz, L.; Witusiewicz, V. T.; Hecht, U.; Rex, S.
2004-09-01
Transparent organic alloys showing a plastic crystal phase were investigated experimentally using differential scanning calorimetry and directional solidification with respect to find a suitable model system for regular ternary eutectic growth. The temperature, enthalpy and entropy of phase transitions have been determined for a number of pure substances. A distinction of substances with and without plastic crystal phases was made from their entropy of melting. Binary phase diagrams were determined for selected plastic crystal alloys with the aim to identify eutectic reactions. Examples for lamellar and rod-like eutectic solidification microstructures in binary systems are given. The system (D)Camphor-Neopentylglycol-Succinonitrile is identified as a system that exhibits, among others, univariant and a nonvariant eutectic reaction. The ternary eutectic alloy close to the nonvariant eutectic composition solidifies with a partially faceted solid-liquid interface. However, by adding a small amount of Amino-Methyl-Propanediol (AMPD), the temperature of the nonvariant eutectic reaction and of the solid state transformation from plastic to crystalline state are shifted such, that regular eutectic growth with three distinct nonfaceted phases is observed in univariant eutectic reaction for the first time. The ternary phase diagram and examples for eutectic microstructures in the ternary and the quaternary eutectic alloy are given.
Rate dependent strengths of some solder joints
NASA Astrophysics Data System (ADS)
Williamson, D. M.; Field, J. E.; Palmer, S. J. P.; Siviour, C. R.
2007-08-01
The shear strengths of three lead-free solder joints have been measured over the range of loading rates 10-3 to ~105 mm min-1. Binary (SnAg), ternary (SnAgCu) and quaternary (Castin: SnAgCuSb) alloys have been compared to a conventional binary SnPb solder alloy. Results show that at loading rates from 10-3 to 102 mm min-1, all four materials exhibit a linear relationship between the shear strength and the loading rate when the data are plotted on a log-log plot. At the highest loading rate of 105 mm min-1, the strengths of the binary alloys were in agreement with extrapolations made from the lower loading rate data. In contrast, the strengths of the higher order alloys were found to be significantly lower than those predicted by extrapolation. This is explained by a change in failure mechanism on the part of the higher order alloys. Similar behaviour was found in measurements of the tensile strengths of solder joints using a novel high-rate loading tensile test. Optical and electron microscopy were used to examine the microstructures of interest in conjunction with energy dispersive x-ray analysis for elemental identification. The effect of artificial aging and reflow of the solder joints is also reported.
Strengthening by Substitutional Solutes and the Temperature Dependence of the Flow Stress in Ni3Al
1989-05-26
stoichiometric composition in polycrystalline Ni3AI and Ni3Ga. 29 Fig. 3.1 The Ni-Al binary-alloy phase diagram in vacinity of Ni3A1 phase, as verified in...I <I- iai / I I- I I I I000 - - II 21 25 29 33 37 ATOMIC % Al Fig. 3.1 The Ni-Al binary-alloy phase diagram in vacinity of Ni3Al phase, as verified
Dynamic Curvature and Stress Studies for MBE CdTe on Si and GaAs Substrates
NASA Astrophysics Data System (ADS)
Jacobs, R. N.; Jaime Vasquez, M.; Lennon, C. M.; Nozaki, C.; Almeida, L. A.; Pellegrino, J.; Arias, J.; Taylor, C.; Wissman, B.
2015-09-01
Infrared focal plane arrays (IRFPA) based on HgCdTe semiconductor alloys have been shown to be ideal for tactical and strategic applications. High density (>1 M pixel), high operability HgCdTe detectors on large area, low-cost composite substrates, such as CdTe-buffered Si or GaAs, are envisioned for next-generation IRFPAs. Thermal expansion mismatch is among various material parameters that govern the structural properties of the final detector layer. It has previously been shown that thermal expansion mismatch plays the dominant role in the residual stress characteristics of these heteroepitaxial structures (Jacobs et al. in J Electron Mater 37:1480, 2008). The wafer curvature (bowing) resulting from residual stress, is a likely source of problems that may occur during subsequent processing. This includes cracking of the film and substrate during post-growth annealing processes or even certain characterization techniques. In this work, we examine dynamic curvature and stress during molecular beam epitaxy (MBE), of CdTe on Si and GaAs substrates. The effect of temperature changes on wafer curvature throughout the growth sequence is documented using a multi-beam optical sensor developed by K-Space Associates. This monitoring technique makes possible the study of growth sequences which employ annealing schemes and/or interlayers to influence the final residual stress state of the heteroepitaxial structures.
1975-04-17
1-3. CO2 laser raster scan sensitivity profile of HgCdTe quadrantal array with two of the four elements connected to 50-ohm load. Fig. 1-4...Response of HgCdTe quadrantal array to CO2 laser beam scanned across center with (a) two opposite photodiodes connected, and (b) all four photodiodes...RESEARCH 1 A. Planar HgCdTe Quadrantal Arrays for Gigahertz Heterodyne Operation at 10.6 (im 1 B. Electrical Properties of Silicon Ion-Implanted
Electronic structure of alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehrenreich, H.; Schwartz, L.M.
1976-01-01
The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references. (GHT)
Research and Development on Titanium Alloys
1949-10-31
EVALUATION OF EPERIMENTAL TITANIUM-BASE ALLOYS• 65 Binary Alloys of Titanium . . . . .. 65 Titanium-Silver Alloys. . . . . ..... ... 68 Mechanical Properties...using a technique in melting designed to give more uniform distribution of the alloying additions. NMATTWLL MOMORIAL INSTITUTE 4...tc Dr. Derge for analysis. BATTELLE MEMORIAL INSTITUTE -107- 2TABLE 28. OXYGEN STANDARDS FOR ANALYSIS Wt fSapl Pein Cen Designation Sample lielting, 1
Liu, Hui; Shen, Mingwu; Zhao, Jinglong; Guo, Rui; Cao, Xueyan; Zhang, Guixiang; Shi, Xiangyang
2012-06-01
In this study, amine-terminated generation 5 poly(amidoamine) dendrimers were used as templates or stabilizers to synthesize dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy nanoparticles (NPs) with different gold atom/silver atom/dendrimer molar ratios with the assistance of sodium borohydride reduction chemistry. Following a one-step acetylation reaction to transform the dendrimer terminal amines to acetyl groups, a series of dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy NPs with terminal acetyl groups were formed. The formed Au-Ag alloy NPs before and after acetylation reaction were characterized using different techniques. We showed that the optical property and the size of the bimetallic NPs were greatly affected by the metal composition. At the constant total metal atom/dendrimer molar ratio, the size of the alloy NPs decreased with the gold content. The formed Au-Ag alloy NPs were stable at different pH (pH 5-8) and temperature (4-50°C) conditions. X-ray absorption coefficient measurements showed that the attenuation of the binary NPs was dependent on both the gold content and the surface modification. With the increase of gold content in the binary NPs, their X-ray attenuation intensity was significantly enhanced. At a given metal composition, the X-ray attenuation intensity of the binary NPs was enhanced after acetylation. Cytotoxicity assays showed that after acetylation, the cytocompatibility of Au-Ag alloy NPs was significantly improved. With the controllable particle size and optical property, metal composition-dependent X-ray attenuation characteristics, and improved cytocompatibility after acetylation, these dendrimer-entrapped or dendrimer-stabilized Au-Ag alloy NPs should have a promising potential for CT imaging and other biomedical applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Correction factors for on-line microprobe analysis of multielement alloy systems
NASA Technical Reports Server (NTRS)
Unnam, J.; Tenney, D. R.; Brewer, W. D.
1977-01-01
An on-line correction technique was developed for the conversion of electron probe X-ray intensities into concentrations of emitting elements. This technique consisted of off-line calculation and representation of binary interaction data which were read into an on-line minicomputer to calculate variable correction coefficients. These coefficients were used to correct the X-ray data without significantly increasing computer core requirements. The binary interaction data were obtained by running Colby's MAGIC 4 program in the reverse mode. The data for each binary interaction were represented by polynomial coefficients obtained by least-squares fitting a third-order polynomial. Polynomial coefficients were generated for most of the common binary interactions at different accelerating potentials and are included. Results are presented for the analyses of several alloy standards to demonstrate the applicability of this correction procedure.
Estimation of the Viscosities of Liquid Sn-Based Binary Lead-Free Solder Alloys
NASA Astrophysics Data System (ADS)
Wu, Min; Li, Jinquan
2018-01-01
The viscosity of a binary Sn-based lead-free solder alloy was calculated by combining the predicted model with the Miedema model. The viscosity factor was proposed and the relationship between the viscosity and surface tension was analyzed as well. The investigation result shows that the viscosity of Sn-based lead-free solders predicted from the predicted model shows excellent agreement with the reported values. The viscosity factor is determined by three physical parameters: atomic volume, electronic density, and electro-negativity. In addition, the apparent correlation between the surface tension and viscosity of the binary Sn-based Pb-free solder was obtained based on the predicted model.
Nonergodicity in binary alloys
NASA Astrophysics Data System (ADS)
Son, Leonid; Sidorov, Valery; Popel, Pjotr; Shulgin, Dmitry
2015-09-01
For binary liquids with limited miscibility of the components, we provide the corrections to the equation of state which arise from the nonergogic diffusivity. It is shown that these corrections result in lowering of critical miscibility point. In some cases, it may result in a bifurcation of miscibility curve: the mixtures near 50% concentration which are homogeneous at the microscopic level, occur to be too stable to provide a quasi - eutectic triple point. These features provide a new look on the phase diagrams of some binary systems. In present work, we discuss Ga-Pb, Fe-Cu, and Cu-Zr alloys. Our investigation corresponds their complex behavior in liquid state to the shapes of their phase diagrams.
Transient and diffusion analysis of HgCdTe
NASA Technical Reports Server (NTRS)
Clayton, J. C.
1982-01-01
Solute redistribution during directional solidification of HgCdTe is addressed. Both one-dimensional and two-dimensional models for solute redistribution are treated and model results compared to experiment. The central problem studied is the cause of radial inhomogeneities found in directionally solidified HgCdTe. A large scale gravity-driven interface instability, termed shape instability, is postulated to be the cause of radial inhomogeneities. Recommendations for future work, along with appropriate computer programs, are included.
Single- and two-color infrared focal plane arrays made by MBE in HgCdTe
NASA Astrophysics Data System (ADS)
Zanatta, Jean-Paul; Ferret, P.; Loyer, R.; Petroz, G.; Cremer, S.; Chamonal, Jean-Paul; Bouchut, Philippe; Million, Alain; Destefanis, Gerard L.
2000-12-01
We present here recent developments obtained at LETI infrared laboratory in the field of infrared detectors made in HgCdTe material and using the molecular beam epitaxial growth technique (MBE). We discuss the metallurgical points (growth temperature and flux control) that lead to achieve excellent quality epitaxial layers grown by MBE. We show a run-to-run reproducibility measured on growth run of more than 15 layers. The crystalline quality, surface morphology, and composition uniformity are excellent. The etch pits density (EPD) are in the low 105.cm-2 when HgCdTe grows on a CdZnTe substrate. Transport properties reveal a low n-type carrier concentration in the 1014 to 1015.cm-3 range with a carrier mobility in excess of 105 cm2/V/sec at 77K for epilayers grown with 10 micrometers cutoff wavelength. We describe the performances of several kinds of our HgCdTe- MBE devices: single color MWIR and LWIR detectors on HgCdTe/CdZnTe operating at 77K in respectively (3-5 micrometers ) and (8-12 micrometers ) wavelength range; single color MWIR detectors on HgCdTe grown on germanium heterosubstrate operating at 77K in the (3-5 micrometers ) wavelength range; two color HgCdTe detectors operating within the MWIR (3-5 micrometers ) band.
Trace copper measurements and electrical effects in LPE HgCdTe
NASA Astrophysics Data System (ADS)
Tower, J. P.; Tobin, S. P.; Norton, P. W.; Bollong, A. B.; Socha, A.; Tregilgas, J. H.; Ard, C. K.; Arlinghaus, H. F.
1996-08-01
Recent improvements in sputter initiated resonance ionization spectroscopy (SIRIS) have now made it possible to measure copper in HgCdTe films into the low 1013 cm-3 range. We have used this technique to show that copper is responsible for type conversion in n-type HgCdTe films. Good n-type LPE films were found to have less than 1 x 1014 cm-3 copper, while converted p-type samples were found to have copper concentrations approximately equal to the hole concentrations. Some compensated n-type samples with low mobilities have copper concentrations too low to account for the amount of compensation and the presence of a deep acceptor level is suggested. In order to study diffusion of copper from substrates into LPE layers, a CdTe boule was grown intentionally spiked with copper at approximately 3 x 1016 cm-3. Annealing HgCdTe films at 360°C was found to greatly increase the amount of copper that diffuses out of the substrates and a substrate screening technique was developed based on this phenomenon. SIRIS depth profiles showed much greater copper in HgCdTe films than in the substrates, indicating that copper is preferentially attracted to HgCdTe over Cd(Zn)Te. SIRIS spatial mapping showed that copper is concentrated in substrate tellurium inclusions 5 25 times greater than in the surrounding CdZnTe matrix.
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
An empirical relationship for homogenization in single-phase binary alloy systems
NASA Technical Reports Server (NTRS)
Unnam, J.; Tenney, D. R.; Stein, B. A.
1979-01-01
A semiempirical formula is developed for describing the extent of interaction between constituents in single-phase binary alloy systems with planar, cylindrical, or spherical interfaces. The formula contains two parameters that are functions of mean concentration and interface geometry of the couple. The empirical solution is simple, easy to use, and does not involve sequential calculations, thereby allowing quick estimation of the extent of interactions without lengthy calculations. Results obtained with this formula are in good agreement with those from a finite-difference analysis.
Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology
NASA Astrophysics Data System (ADS)
Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.
2016-09-01
In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor /acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.
Self-assembly of metal nanostructures on binary alloy surfaces
Duguet, T.; Han, Yong; Yuen, Chad; Jing, Dapeng; Ünal, Barış; Evans, J. W.; Thiel, P. A.
2011-01-01
Deposition of metals on binary alloy surfaces offers new possibilities for guiding the formation of functional metal nanostructures. This idea is explored with scanning tunneling microscopy studies and atomistic-level analysis and modeling of nonequilibrium island formation. For Au/NiAl(110), complex monolayer structures are found and compared with the simple fcc(110) bilayer structure recently observed for Ag/NiAl(110). We also consider a more complex codeposition system, (Ni + Al)/NiAl(110), which offers the opportunity for fundamental studies of self-growth of alloys including deviations for equilibrium ordering. A general multisite lattice-gas model framework enables analysis of structure selection and morphological evolution in these systems. PMID:21097706
NASA Astrophysics Data System (ADS)
Psakhie, S. G.; Lotkov, A. I.; Meisner, L. L.; Meisner, S. N.; Matveeva, V. A.
2013-02-01
The corrosion resistance behavior and cytotoxicity of binary NiTi-base alloy specimens subjected to surface modification by silicon ion beams and the proliferative ability of mesenchymal stem cells of rat marrow on an ion-implanted surface of the alloy have been studied. The silicon ion beam processing of specimen surfaces is shown to bring about a nearly two-fold improvement in the corrosion resistance of the material to attack by aqueous solutions of NaCl (artificial body fluid) and human plasma and a drastic decrease in the nickel concentration after immersion of the specimens into the solutions for ˜3400 and ˜6000 h, respectively (for the artificial plasma solution, a nearly 20-fold decrease in the Ni concentration is observed.)
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Unnam, J.
1978-01-01
Diffusion calculations were performed to establish the conditions under which concentration dependence of the diffusion coefficient was important in single, two, and three phase binary alloy systems. Finite-difference solutions were obtained for each type of system using diffusion coefficient variations typical of those observed in real alloy systems. Solutions were also obtained using average diffusion coefficients determined by taking a logarithmic average of each diffusion coefficient variation considered. The constant diffusion coefficient solutions were used as reference in assessing diffusion coefficient variation effects. Calculations were performed for planar, cylindrical, and spherical geometries in order to compare the effect of diffusion coefficient variations with the effect of interface geometries. In most of the cases considered, the diffusion coefficient of the major-alloy phase was the key parameter that controlled the kinetics of interdiffusion.
Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan
2013-09-25
Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gemain, F.; Robin, I. C.; Feuillet, G.
2013-12-07
HgCdTe films grown by liquid phase epitaxy with different Cd compositions were post-annealed to control the Hg vacancy concentration. Then temperature-dependent Hall measurements and photoluminescence measurements allowed us to study the evolution of the Hg vacancy acceptor levels with the cadmium composition. For Cd compositions below 33% the Hg vacancies in HgCdTe present a negative-U property with the ionized state V{sup −} stabilized compared to the neutral state V{sup 0}. For Cd compositions higher than 45%, the Hg vacancies in HgCdTe present a more standard level ordering with the ionized state V{sup −} at higher energy than the neutral statemore » V{sup 0}.« less
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehozky, Sandor L.
1997-01-01
A numerical model of HgCdTe solidification was implemented using finite the element code FIDAP. Model verification was done using both experimental data and numerical test problems. The model was used to evaluate possible effects of double-diffusion convection in molten material, and microgravity level on concentration distribution in the solidified HgCdTe. Particular attention was paid to incorporation of HgCdTe phase diagram. It was found, that below a critical microgravity amplitude, the maximum convective velocity in the melt appears virtually independent on the microgravity vector orientation. Good agreement between predicted interface shape and an interface obtained experimentally by quenching was achieved. The results of numerical modeling are presented in the form of video film.
Characterization of HgCdTe and HgCdSe Materials for Third Generation Infrared Detectors
2011-12-01
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Arizona State University ORSPA...UNIVERSITY December 2011 i ABSTRACT HgCdTe is the dominant material currently in use for infrared (IR) focal- plane-array (FPA) technology. In...using HgCdTe have since been made, and it currently represents the dominant material used in all IR spectral bands, primarily for space and
NASA Technical Reports Server (NTRS)
Marshall, Paul; Reed, Robert; Fodness, Bryan; Jordan, Tom; Pickel, Jim; Xapsos, Michael; Burke, Ed
2004-01-01
This slide presentation examines motivation for Monte Carlo methods, charge deposition in sensor arrays, displacement damage calculations, and future work. The discussion of charge deposition sensor arrays includes Si active pixel sensor APS arrays and LWIR HgCdTe FPAs. The discussion of displacement damage calculations includes nonionizing energy loss (NIEL), HgCdTe NIEL calculation results including variance, and implications for damage in HgCdTe detector arrays.
Stimulated emission from HgCdTe quantum well heterostructures at wavelengths up to 19.5 μm
NASA Astrophysics Data System (ADS)
Morozov, S. V.; Rumyantsev, V. V.; Fadeev, M. A.; Zholudev, M. S.; Kudryavtsev, K. E.; Antonov, A. V.; Kadykov, A. M.; Dubinov, A. A.; Mikhailov, N. N.; Dvoretsky, S. A.; Gavrilenko, V. I.
2017-11-01
We report on stimulated emission at wavelengths up to 19.5 μm from HgTe/HgCdTe quantum well heterostructures with wide-gap HgCdTe dielectric waveguide, grown by molecular beam epitaxy on GaAs(013) substrates. The mitigation of Auger processes in structures under study is exemplified, and the promising routes towards the 20-50 μm wavelength range, where HgCdTe lasers may be competitive to the prominent emitters, are discussed.
Du, Jinglian; Guo, Zhipeng; Zhang, Ang; Yang, Manhong; Li, Mei; Xiong, Shoumei
2017-10-19
Both synchrotron X-ray tomography and EBSD characterization revealed that the preferred growth directions of magnesium alloy dendrite change as the type and amount of solute elements. Such growth behavior was further investigated by evaluating the orientation-dependent surface energy and the subsequent crystallographic anisotropy via ab-initio calculations based on density functional theory and hcp lattice structure. It was found that for most binary magnesium alloys, the preferred growth direction of the α-Mg dendrite in the basal plane is always [Formula: see text], and independent on either the type or concentration of the additional elements. In non-basal planes, however, the preferred growth direction is highly dependent on the solute concentration. In particular, for Mg-Al alloys, this direction changes from [Formula: see text] to [Formula: see text] as the Al-concentration increased, and for Mg-Zn alloys, this direction changes from [Formula: see text] to [Formula: see text] or [Formula: see text] as the Zn-content varied. Our results provide a better understanding on the dendritic orientation selection and morphology transition of magnesium alloys at the atomic level.
Es-Souni, M; Es-Souni, M; Brandies, H F
2001-08-01
The transformation behaviour, mechanical properties and cytotoxicity of a binary NiTi42 and a ternary NiTi42Cu7 alloy have been investigated. The transformation temperatures were determined via differential scanning calorimetry, the mechanical properties have been investigated in 3-point bending tests in the temperature range between 6 and 60 degrees C. The cytotoxicity tests were performed on both alloys in cultured epithelial cells from human gingiva. The cytotoxicity investigations included both MTT tests and morphological observations. It is shown that although the ternary alloy is characterised by a narrower hysteresis and superior mechanical properties, including fatigue resistance, its cytotoxicity is higher than that of the binary alloy. This is thought to arise from the release of copper ions in the medium, which upon atomic absorption spectroscopy measurements amount to approximately 2.8 microg cm(-2) for an incubation period of 7 days.
Chanbi, Daoud; Ogam, Erick; Amara, Sif Eddine; Fellah, Z E A
2018-05-07
Precise but simple experimental and inverse methods allowing the recovery of mechanical material parameters are necessary for the exploration of materials with novel crystallographic structures and elastic properties, particularly for new materials and those existing only in theory. The alloys studied herein are of new atomic compositions. This paper reports an experimental study involving the synthesis and development of methods for the determination of the elastic properties of binary (Fe-Al, Fe-Ti and Ti-Al) and ternary (Fe-Ti-Al) intermetallic alloys with different concentrations of their individual constituents. The alloys studied were synthesized from high purity metals using an arc furnace with argon flow to ensure their uniformity and homogeneity. Precise but simple methods for the recovery of the elastic constants of the isotropic metals from resonant ultrasound vibration data were developed. These methods allowed the fine analysis of the relationships between the atomic concentration of a given constituent and the Young’s modulus or alloy density.
Susarla, Sandhya; Kochat, Vidya; Kutana, Alex; ...
2017-08-15
Transition metal dichalcogenide (TMD) alloys form a broad class of two-dimensional (2D) layered materials with tunable bandgaps leading to interesting optoelectronic applications. In the bottom-up approach of building these atomically thin materials, atomic doping plays a crucial role. Here we demonstrate a single step CVD (chemical vapor deposition) growth procedure for obtaining binary alloys and heterostructures by tuning atomic composition. We show that a minute doping of tin during the growth phase of the Mo 1–xW xS 2 alloy system leads to formation of lateral and vertical heterostructure growth. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imagingmore » and density functional theory (DFT) calculations also support the modified stacking and growth mechanism due to the nonisomorphous Sn substitution. Our experiments demonstrate the possibility of growing heterostructures of TMD alloys whose spectral responses can be desirably tuned for various optoelectronic applications.« less
2013-01-01
Cobalt-nickel (Co-Ni) binary alloy nanowires of different compositions were co-deposited in the nanopores of highly ordered anodic aluminum oxide (AAO) templates from a single sulfate bath using alternating current (AC) electrodeposition. AC electrodeposition was accomplished without modifying or removing the barrier layer. Field emission scanning electron microscope was used to study the morphology of templates and alloy nanowires. Energy-dispersive X-ray analysis confirmed the deposition of Co-Ni alloy nanowires in the AAO templates. Average diameter of the alloy nanowires was approximately 40 nm which is equal to the diameter of nanopore. X-ray diffraction analysis showed that the alloy nanowires consisted of both hexagonal close-packed and face-centered cubic phases. Magnetic measurements showed that the easy x-axis of magnetization is parallel to the nanowires with coercivity of approximately 706 Oe. AC electrodeposition is very simple, fast, and is useful for the homogenous deposition of various secondary nanostuctured materials into the nanopores of AAO. PMID:23941234
Fabrication of (Ba,K)Fe2As2 tapes by ex situ PIT process using Ag-Sn alloy single sheath
NASA Astrophysics Data System (ADS)
Togano, K.; Gao, Z.; Matsumoto, A.; Kikuchi, A.; Kumakura, H.
2017-01-01
Instead of ordinal pure Ag, Ag-based Sn binary alloys (up to 7.5 at%Sn) with higher mechanical strength are used for the sheath material of ex situ powder-in-tube (PIT)-processed (Ba,K)Fe2As2(Ba-122) tapes. We found that the use of the Ag-Sn alloy enhances the densification and texturing of the Ba-122 core, resulting in higher transport, J c. Moreover, the optimum heat treatment temperature for a high J c can be lowered by around 100 °C due to the higher packing density of the Ba-122 core prior to the final heat treatment. We also found that the smoothness of the interface between the sheath and Ba-122 core is significantly improved by using the Ag-Sn binary alloy sheaths. These results show that the Ag-Sn alloy is promising as a sheath material in PIT-processed Ba-122 superconducting wires.
Chanbi, Daoud; Amara, Sif Eddine; Fellah, Z. E. A.
2018-01-01
Precise but simple experimental and inverse methods allowing the recovery of mechanical material parameters are necessary for the exploration of materials with novel crystallographic structures and elastic properties, particularly for new materials and those existing only in theory. The alloys studied herein are of new atomic compositions. This paper reports an experimental study involving the synthesis and development of methods for the determination of the elastic properties of binary (Fe-Al, Fe-Ti and Ti-Al) and ternary (Fe-Ti-Al) intermetallic alloys with different concentrations of their individual constituents. The alloys studied were synthesized from high purity metals using an arc furnace with argon flow to ensure their uniformity and homogeneity. Precise but simple methods for the recovery of the elastic constants of the isotropic metals from resonant ultrasound vibration data were developed. These methods allowed the fine analysis of the relationships between the atomic concentration of a given constituent and the Young’s modulus or alloy density. PMID:29735946
NASA Astrophysics Data System (ADS)
Widom, Mike; Al-Lehyani, Ibrahim; Moriarty, John A.
2000-08-01
Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase.
Model many-body Stoner Hamiltonian for binary FeCr alloys
NASA Astrophysics Data System (ADS)
Nguyen-Manh, D.; Dudarev, S. L.
2009-09-01
We derive a model tight-binding many-body d -electron Stoner Hamiltonian for FeCr binary alloys and investigate the sensitivity of its mean-field solutions to the choice of hopping integrals and the Stoner exchange parameters. By applying the local charge-neutrality condition within a self-consistent treatment we show that the negative enthalpy-of-mixing anomaly characterizing the alloy in the low chromium concentration limit is due entirely to the presence of the on-site exchange Stoner terms and that the occurrence of this anomaly is not specifically related to the choice of hopping integrals describing conventional chemical bonding between atoms in the alloy. The Bain transformation pathway computed, using the proposed model Hamiltonian, for the Fe15Cr alloy configuration is in excellent agreement with ab initio total-energy calculations. Our investigation also shows how the parameters of a tight-binding many-body model Hamiltonian for a magnetic alloy can be derived from the comparison of its mean-field solutions with other, more accurate, mean-field approximations (e.g., density-functional calculations), hence stimulating the development of large-scale computational algorithms for modeling radiation damage effects in magnetic alloys and steels.
Roman bronze artefacts from Thamusida (Morocco): Chemical and phase analyses
NASA Astrophysics Data System (ADS)
Gliozzo, E.; Kockelmann, W.; Bartoli, L.; Tykot, R. H.
2011-02-01
Twenty-six objects (1st to the 3rd century AD) found at the archaeological site of Thamusida (Morocco), which is a military settlement between the 1st and the 3rd century AD, have been investigated by means of portable X-ray fluorescence and time of flight-neutron diffraction. The combination of element-sensitive X-ray fluorescence and structure-sensitive neutron diffraction yields, in a totally non-destructive way, the necessary information to discriminate the copper alloy from corrosion and alteration layers. Results allowed dividing the repertory into five groups: (a) unalloyed copper, (b) binary alloys made of Cu and Sn, frequently leaded; (c) unleaded binary alloys made of Cu and Zn; (d) ternary alloys made of Cu, Sn and Zn, both leaded and unleaded; (e) quaternary alloys made of Cu, Sn, Zn and As. The choice of alloy is heterogeneous, mainly depending on availability and costs of raw and/or scrap materials and on technological constraints. Interestingly, the reconstruction obtained for Thamusida could either anticipate the important change in the Roman use of copper alloys generally referred as 'zinc decline', or more likely, indicate that brass never conspicuously entered the local metal-working activities of this military site.
First principles study of surface stability and segregation of PdRuRh ternary metal alloy system
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Arevalo, Ryan Lacdao; Nakanishi, Hiroshi; Kasai, Hideaki
2018-05-01
The recognized importance on the studies of alloyed materials is due to the high possibility of forming designer materials that caters to different applications. In any reaction and application, the stability and configuration of the alloy combination are important. In this study, we analyzed the surface stability and segregation of ternary metal alloy system PdRuRh through first principles calculation using density functional theory (DFT). We considered the possibility of forming phases as observed in the binary combinations of elements, i.e., completely miscible, and separating phases. With that, the model we analyzed for the ternary metal alloy slabs considers forming complete atomic miscibility, segregation of each component, and segregation of one component with mixing of the two other. Our results show that for the ternary combination of Pd, Rh and Ru, the Pd atoms have high tendency to segregate at the surface, while due to the high tendency of Ru and Rh to mix, core formation of a mixed RuRh is possible. Also, we determined that the trend of stability in the binary alloy system is a good determinant of stability in the ternary alloy system.
Advanced methods for preparation and characterization of infrared detector materials
NASA Technical Reports Server (NTRS)
Broerman, J. G.; Morris, B. J.; Meschter, P. J.
1983-01-01
Crystals were prepared by the Bridgman-Stockbarger method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady-state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of solute redistribution during the crystal growth of the alloys. Measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential-thermal-analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Experiments were conducted to determine the ternary phase equilibria in selected regions of the Hg-Cd-Te constitutional phase diagram. Electron and hole mobilities as functions of temperature were analyzed to establish charge-carrier scattering probabilities. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge-carrier concentration, charge-carrier mobilities, Hall coefficient, and Dermi Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchewka, M., E-mail: marmi@ur.edu.pl; Woźny, M.; Polit, J.
2014-03-21
To understand and interpret the experimental data on the phonon spectra of the solid solutions, it is necessary to describe mathematically the non-regular distribution of atoms in their lattices. It appears that such description is possible in case of the strongly stochastically homogenous distribution which requires a great number of atoms and very carefully mixed alloys. These conditions are generally fulfilled in case of high quality homogenous semiconductor solid solutions of the III–V and II–VI semiconductor compounds. In this case, we can use the Bernoulli relation describing probability of the occurrence of one n equivalent event which can be applied,more » to the probability of finding one from n configurations in the solid solution lattice. The results described in this paper for ternary HgCdTe and GaAsP as well as quaternary ZnCdHgTe can provide an affirmative answer to the question: whether stochastic geometry, e.g., the Bernoulli relation, is enough to describe the observed phonon spectra.« less
NASA Astrophysics Data System (ADS)
Marchewka, M.; Woźny, M.; Polit, J.; Kisiel, A.; Robouch, B. V.; Marcelli, A.; Sheregii, E. M.
2014-03-01
To understand and interpret the experimental data on the phonon spectra of the solid solutions, it is necessary to describe mathematically the non-regular distribution of atoms in their lattices. It appears that such description is possible in case of the strongly stochastically homogenous distribution which requires a great number of atoms and very carefully mixed alloys. These conditions are generally fulfilled in case of high quality homogenous semiconductor solid solutions of the III-V and II-VI semiconductor compounds. In this case, we can use the Bernoulli relation describing probability of the occurrence of one n equivalent event which can be applied, to the probability of finding one from n configurations in the solid solution lattice. The results described in this paper for ternary HgCdTe and GaAsP as well as quaternary ZnCdHgTe can provide an affirmative answer to the question: whether stochastic geometry, e.g., the Bernoulli relation, is enough to describe the observed phonon spectra.
MBE Growth of HgCdTe on Large-Area Si and CdZnTe Wafers for SWIR, MWIR and LWIR Detection
NASA Astrophysics Data System (ADS)
Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Franklin, J. A.; Vang, T.; Smith, E. P. G.; Wehner, J. G. A.; Kasai, I.; Bangs, J. W.; Johnson, S. M.
2008-09-01
Molecular beam epitaxy (MBE) growth of HgCdTe on large-size Si (211) and CdZnTe (211)B substrates is critical to meet the demands of extremely uniform and highly functional third-generation infrared (IR) focal-panel arrays (FPAs). We have described here the importance of wafer maps of HgCdTe thickness, composition, and the macrodefects across the wafer not only to qualify material properties against design specifications but also to diagnose and classify the MBE-growth-related issues on large-area wafers. The paper presents HgCdTe growth with exceptionally uniform composition and thickness and record low macrodefect density on large Si wafers up to 6-in in diameter for the detection of short-wave (SW), mid-wave (MW), and long-wave (LW) IR radiation. We have also proposed a cost-effective approach to use the growth of HgCdTe on low-cost Si substrates to isolate the growth- and substrate-related problems that one occasionally comes across with the CdZnTe substrates and tune the growth parameters such as growth rate, cutoff wavelength ( λ cutoff) and doping parameters before proceeding with the growth on costly large-area CdZnTe substrates. In this way, we demonstrated HgCdTe growth on large CdZnTe substrates of size 7 cm × 7 cm with excellent uniformity and low macrodefect density.
NASA Astrophysics Data System (ADS)
Anani, A.; Huggins, R. A.
The desire to produce high specific energy rechargeable batteries has led to the investigation of ternary alloy systems for use as negative electrode components in lithium-based cells. The addition of a third component to a binary alloy electrode could result in a significant change in the thermodynamic and/or kinetic behavior of the electrode material, depending on the relevant phase diagram and the crystal structures of the phases present. The influence of ternary phase diagram characteristics upon the thermodynamic properties and specific energies of multi-component electrodes is discussed with lithiumsilicon-based systems as an illustration. It is shown that the electrode potentials (and thus specific energies of the ensuing cell) as well as the theoretical lithium capacities of electrodes based on these ternary alloy modifications can be significantly increased with respect to their present day binary counterpart.
Nigl, Thomas P.; Smith, Nathan D.; Lichtenstein, Timothy; Gesualdi, Jarrod; Kumar, Kuldeep; Kim, Hojong
2017-01-01
A novel electrochemical cell based on a CaF2 solid-state electrolyte has been developed to measure the electromotive force (emf) of binary alkaline earth-liquid metal alloys as functions of both composition and temperature in order to acquire thermodynamic data. The cell consists of a chemically stable solid-state CaF2-AF2 electrolyte (where A is the alkaline-earth element such as Ca, Sr, or Ba), with binary A-B alloy (where B is the liquid metal such as Bi or Sb) working electrodes, and a pure A metal reference electrode. Emf data are collected over a temperature range of 723 K to 1,123 K in 25 K increments for multiple alloy compositions per experiment and the results are analyzed to yield activity values, phase transition temperatures, and partial molar entropies/enthalpies for each composition. PMID:29155770
Tafen, De Nyago
2015-02-14
The diffusion of dilute hydrogen in fcc Ni–Al and Ni–Fe binary alloys was examined using kinetic Monte Carlo method with input kinetic parameters obtained from first-principles density functional theory. The simulation involves the implementation of computationally efficient energy barrier model that describes the configuration dependence of the hydrogen hopping. The predicted hydrogen diffusion coefficients in Ni and Ni 89.4Fe 10.6 are compared well with the available experimental data. In Ni–Al, the model predicts lower hydrogen diffusivity compared to that in Ni. Overall, diffusion prefactors and the effective activation energies of H in Ni–Fe and Ni–Al are concentration dependent of themore » alloying element. Furthermore, the changes in their values are the results of the short-range order (nearest-neighbor) effect on the interstitial diffusion of hydrogen in fcc Ni-based alloys.« less
NASA Astrophysics Data System (ADS)
Hetmaniok, Edyta; Hristov, Jordan; Słota, Damian; Zielonka, Adam
2017-05-01
The paper presents the procedure for solving the inverse problem for the binary alloy solidification in a two-dimensional space. This is a continuation of some previous works of the authors investigating a similar problem but in the one-dimensional domain. Goal of the problem consists in identification of the heat transfer coefficient on boundary of the region and in reconstruction of the temperature distribution inside the considered region in case when the temperature measurements in selected points of the alloy are known. Mathematical model of the problem is based on the heat conduction equation with the substitute thermal capacity and with the liquidus and solidus temperatures varying in dependance on the concentration of the alloy component. For describing this concentration the Scheil model is used. Investigated procedure involves also the parallelized Ant Colony Optimization algorithm applied for minimizing a functional expressing the error of approximate solution.
ERIC Educational Resources Information Center
D'Amelia, Ronald P.; Clark, Daniel; Nirode, William
2012-01-01
An alloy is an intimate association of two or more metals, with or without a definite composition, which has metallic properties. Heterogeneous alloys, such as tin-lead (Sn/Pb) solders, consist of a mixture of crystalline phases with different compositions. A homogeneous alloy with a unique composition having the lowest possible melting point is…
Surface Segregation in Ternary Alloys
NASA Technical Reports Server (NTRS)
Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.
2000-01-01
Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.
In vitro corrosion and biocompatibility of binary magnesium alloys.
Gu, Xuenan; Zheng, Yufeng; Cheng, Yan; Zhong, Shengping; Xi, Tingfei
2009-02-01
As bioabsorbable materials, magnesium alloys are expected to be totally degraded in the body and their biocorrosion products not deleterious to the surrounding tissues. It's critical that the alloying elements are carefully selected in consideration of their cytotoxicity and hemocompatibility. In the present study, nine alloying elements Al, Ag, In, Mn, Si, Sn, Y, Zn and Zr were added into magnesium individually to fabricate binary Mg-1X (wt.%) alloys. Pure magnesium was used as control. Their mechanical properties, corrosion properties and in vitro biocompatibilities (cytotoxicity and hemocompatibility) were evaluated by SEM, XRD, tensile test, immersion test, electrochemical corrosion test, cell culture and platelet adhesion test. The results showed that the addition of alloying elements could influence the strength and corrosion resistance of Mg. The cytotoxicity tests indicated that Mg-1Al, Mg-1Sn and Mg-1Zn alloy extracts showed no significant reduced cell viability to fibroblasts (L-929 and NIH3T3) and osteoblasts (MC3T3-E1); Mg-1Al and Mg-1Zn alloy extracts indicated no negative effect on viabilities of blood vessel related cells, ECV304 and VSMC. It was found that hemolysis and the amount of adhered platelets decreased after alloying for all Mg-1X alloys as compared to the pure magnesium control. The relationship between the corrosion products and the in vitro biocompatibility had been discussed and the suitable alloying elements for the biomedical applications associated with bone and blood vessel had been proposed.
Compressive creep behavior of alloys based on B2 FeAl
NASA Technical Reports Server (NTRS)
Mantravadi, N.; Vedula, K.; Gaydosh, D.; Titran, R. H.
1986-01-01
Alloys based on FeAl are attractive alternate materials for environmental resistance at intermediate temperatures. Addition of small amounts of Nb, Hf, Ta, Mo, Zr, and B were shown to improve the compressive creep of this alloy at 1100 K. Boron, in particular, was found to have a synergistic effect along with Zr in providing properties substantially better than the binary alloy. This improvement seems to be related to the higher activation energy found for this alloy, suggesting a modification in the diffusion behavior due to the alloying additions.
Compressive creep behavior of alloys based on B2 FeAl
NASA Technical Reports Server (NTRS)
Mantravadi, N.; Vedula, K.; Gaydosh, D.; Titran, R. H.
1987-01-01
Alloys based on FeAl are attractive alternative materials for environmental resistance at intermediate temperatures. Addition of small amounts of Nb, Hf, Ta, Mo, Zr, and B were shown to improve the compressive creep of this alloy at 1100 K. Boron, in particular, was found to have a synergistic effect along with Zr in providing properties substantially better than the binary alloy. This improvement seems to be related to the higher activation energy found for this alloy, suggesting a modification in the diffusion behavior due to the alloying additions.
ERIC Educational Resources Information Center
Wang, Yue; Xu, Xinhua; Wu, Meifen; Hu, Huikang; Wang, Xiaogang
2015-01-01
Scanning electron microscopy (SEM) was introduced into undergraduate physical chemistry laboratory curriculum to help students observe the phase composition and morphology characteristics of tin-lead alloys and thus further their understanding of binary alloy phase diagrams. The students were captivated by this visual analysis method, which…
NASA Astrophysics Data System (ADS)
Nahhas, M. K.; Groh, S.
2018-02-01
In this study, the structure, the energetic, and the strength of a { 10 1 bar 1 } < 11 2 bar 0 > symmetric tilt grain boundary in magnesium and magnesium binary alloys were analyzed in the framework of (semi-)empirical potentials. Following a systematic investigation of the transferability and accuracy of the interatomic potentials, atomistic calculations of the grain boundary energy, the grain boundary sliding energy, and the grain boundary strength were performed in pure magnesium and in binary MgX alloys (X = Al, Ca, Gd, Li, Sn, Y, Ag, Nd, and Pb). The data gained in this study were analyzed to identify the most critical material parameters controlling the strength of the grain boundary, and their consequence on atomic shuffling motions occurring at the grain boundary. From the methodology perspective, the role of in-plane and out-of plane relaxation on the grain boundary sliding energy curves was investigated. In pure magnesium, the results showed that in-plane relaxation is critical in activating b2{ 10 1 bar 1 } twinning dislocation resulting in grain boundary migration. In the alloy systems, however, grain boundary migration was disabled as a consequence of the pinning of the grain boundary by segregated elements. Finally, while the grain boundary energy, the shape of the grain boundary sliding energy curves, and the grain boundary sliding energy are critical parameters controlling the grain boundary strength in pure magnesium, only the grain boundary energy and the segregation energy of the alloying elements at the grain boundary were identified as critical material parameters in the alloys system.
Binary Colloidal Alloy Test-5: Compete
NASA Technical Reports Server (NTRS)
Frisken, Barbara J.; Bailey, Arthur E.; Weitz, David A.
2008-01-01
The Binary Colloidal Alloy Test - 5: Compete (BCAT-5-Compete) investigation will photograph andomized colloidal samples onboard the International Space Station (ISS) to determine their resulting structure over time. The use of EarthKAM software and hardware will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-Compete will utilize samples 6 - 8 in the BCAT-5 hardware to study the competition between phase separation and crystallization, which is important in the manufacture of plastics and other materials.
Binary Colloidal Alloy Test-5: Phase Separation
NASA Technical Reports Server (NTRS)
Lynch, Matthew; Weitz, David A.; Lu, Peter J.
2008-01-01
The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment will photograph initially randomized colloidal samples onboard the ISS to determine their resulting structure over time. This allows the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-PhaseSep studies collapse (phase separation rates that impact product shelf-life); in microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth.
Choi, Young Cheol; Lee, Han Myoung; Kim, Woo Youn; Kwon, S K; Nautiyal, Tashi; Cheng, Da-Yong; Vishwanathan, K; Kim, Kwang S
2007-02-16
On the basis of first-principles calculations of clusters and one dimensional infinitely long subnanowires of the binary systems, we find that alkali-noble metal alloy wires show better linearity and stability than either pure alkali metal or noble metal wires. The enhanced alternating charge buildup on atoms by charge transfer helps the atoms line up straight. The cesium doped gold wires showing significant charge transfer from cesium to gold can be stabilized as linear or circular monoatomic chains.
Structural difference rule for amorphous alloy formation by ion mixing
NASA Technical Reports Server (NTRS)
Liu, B.-X.; Johnson, W. L.; Nicolet, M.A.; Lau, S. S.
1983-01-01
A rule is formulated which establishes a sufficient condition that an amorphous binary alloy will be formed by ion mixing of multilayered samples when the two constituent metals are of different crystalline structure, regardless of their atomic sizes and electronegativities. The rule is supported by the experimental results obtained on six selected binary metal systems, as well as by the previous data reported in the literature. The amorphization mechanism is discussed in terms of the competition between two different structures resulting in frustration of the crystallization process.
Modelling of MWIR HgCdTe complementary barrier HOT detector
NASA Astrophysics Data System (ADS)
Martyniuk, Piotr; Rogalski, Antoni
2013-02-01
The paper reports on the photoelectrical performance of medium wavelength infrared (MWIR) HgCdTe complementary barrier infrared detector (CBIRD) with n-type barriers. CBIRD nB1nB2 HgCdTe/B1,2-n type detector is modelled with commercially available software APSYS by Crosslight Software Inc. The detailed analysis of the detector's performance such as dark current, photocurrent, responsivity, detectivity versus applied bias, operating temperature, and structural parameters (cap, barriers and absorber doping; and absorber and barriers compositions) are performed pointing out optimal working conditions. Both conduction and valence bands' alignment of the HgCdTe CBIRD structure are calculated stressing their importance on detectors performance. It is shown that higher operation temperature (HOT) conditions achieved by commonly used thermoelectric (TE) coolers allows to obtain detectivities D∗ ≈ 2 × 1010 cm Hz1/2/W at T = 200 K and reverse polarisation V = 400 mV, and differential resistance area product RA = 0.9 Ωcm2 at T = 230 K for V = 50 mV, respectively. Finally, CBIRD nB1nB2 HgCdTe/B1,2-n type state of the art is compared to unipolar barrier HgCdTe nBn/B-n type detector, InAs/GaSb/B-Al0.2Ga0.8Sb type-II superlattice (T2SL) nBn detectors, InAs/GaSb T2SLs PIN and the HOT HgCdTe bulk photodiodes' performance operated at near-room temperature (T = 230 K). It was shown that the RA product of the MWIR CBIRD HgCdTe detector is either comparable or higher (depending on structural parameters) to the state of the art of HgCdTe HOT bulk photodiodes and both AIIIBV 6.1 Å family T2SLs nBn and PIN detectors.
Impulse response measurement in the HgCdTe avalanche photodiode
NASA Astrophysics Data System (ADS)
Singh, Anand; Pal, Ravinder
2018-04-01
HgCdTe based mid-wave infrared focal plane arrays (MWIR FPAs) are being developed for high resolution imaging and range determination of distant camouflaged targets. Effect of bandgap grading on the response time in the n+/ν/p+ HgCdTe electron avalanche photodiode (e-APD) is evaluated using impulse response measurement. Gain normalized dark current density of 2 × 10-9 A/cm2 at low reverse bias for passive mode and 2 × 10-4 A/cm2 at -8 V for active mode is measured in the fabricated APD device, yielding high gain bandwidth product of 2.4 THZ at the maximum gain. Diffusion of carriers is minimized to achieve transit time limited impulse response by introducing composition grading in the HgCdTe epilayer. The noise equivalent photon performance less than one is achievable in the FPA that is suitable for active cum passive imaging applications.
Modeling of LWIR HgCdTe Auger-Suppressed Infrared Photodiodes under Nonequilibrium Operation
NASA Astrophysics Data System (ADS)
Emelie, P. Y.; Velicu, S.; Grein, C. H.; Phillips, J. D.; Wijewarnasuriya, P. S.; Dhar, N. K.
2008-09-01
The general approach and effects of nonequilibrium operation of Auger-suppressed HgCdTe infrared photodiodes are well understood. However, the complex relationships of carrier generation and dependencies on nonuniform carrier profiles in the device prevent the development of simplistic analytical device models with acceptable accuracy. In this work, finite element methods are used to obtain self-consistent steady-state solutions of Poisson’s equation and the carrier continuity equations. Experimental current-voltage characteristics between 120 K and 300 K of HgCdTe Auger-suppressed photodiodes with cutoff wavelength of λ c = 10 μm at 120 K are fitted using our numerical model. Based on this fitting, we study the lifetime in the absorber region, extract the current mechanisms limiting the dark current in these photodiodes, and discuss design and fabrication considerations in order to optimize future HgCdTe Auger-suppressed photodiodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, W. C.; Wang, R.; Xu, Z. J.
2014-05-28
In this paper, experimental results of temperature-dependent signal inversion of laser beam induced current (LBIC) for femtosecond-laser-drilling-induced junction on vacancy-doped p-type HgCdTe are reported. LBIC characterization shows that the traps induced by femtosecond laser drilling are sensitive to temperature. Theoretical models for trap-related p-n junction transformation are proposed and demonstrated using numerical simulations. The simulations are in good agreement with the experimental results. The effects of traps and mixed conduction are possibly the main reasons that result in the novel signal inversion of LBIC microscope at room temperature. The research results provide a theoretical guide for practical applications of large-scalemore » array HgCdTe infrared photovoltaic detectors formed by femtosecond laser drilling, which may act as a potential new method for fabricating HgCdTe photodiodes.« less
Viscosities of Fe Ni, Fe Co and Ni Co binary melts
NASA Astrophysics Data System (ADS)
Sato, Yuzuru; Sugisawa, Koji; Aoki, Daisuke; Yamamura, Tsutomu
2005-02-01
Viscosities of three binary molten alloys consisting of the iron group elements, Fe, Ni and Co, have been measured by using an oscillating cup viscometer over the entire composition range from liquidus temperatures up to 1600 °C with high precision and excellent reproducibility. The viscosities measured showed good Arrhenius linearity for all the compositions. The viscosities of Fe, Ni and Co as a function of temperature are as follows: \\eqalign{ & \\log \\eta={-}0.6074 + 2493/T\\qquad for\\quad Fe\\\\ & \\log \\eta={-}0.5695 + 2157/T\\qquad for\\quad Ni \\\\ & \\log \\eta={-}0.6620 + 2430/T\\qquad for\\quad Co.} The isothermal viscosities of Fe-Ni and Fe-Co binary melts increase monotonically with increasing Fe content. On the other hand, in Ni-Co binary melt, the isothermal viscosity decreases slightly and then increases with increasing Co. The activation energy of Fe-Co binary melt increased slightly on mixing, and those of Fe-Ni and Ni-Co melts decreased monotonically with increasing Ni content. The above behaviour is discussed based on the thermodynamic properties of the alloys.
[delta] precipitation in an Al-Li-Cu-Mg-Zr alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, K.S.; Mukhopadhyay, A.K.; Gokhale, A.A.
1994-05-15
AlLi based [delta] phase has an NaTl structure (i.e., a diamond cubic) with a = 0.637nm and is an equilibrium phase in the binary Al-Li system. In heat treated binary Al-Li alloys of appropriate compositions, [delta] phase can format grain boundaries as well as within the grains. In commercially heat treated Al-Li-Cu alloys of 2090 specification, the grain boundary precipitate [delta] of the binary Al-Li system is replaced by a combination of T[sub 2](Al[sub 6]CuLi[sub 3]), R(Al[sub 5]CuLi[sub 3]) and T[sub 1](Al[sub 2]CuLi) phases. In similarly treated Al-Li-Cu-Mg alloys of 8090 specification, the copper rich T[sub 2] phase, present inmore » the form of Al[sub 6]CuLi[sub 3[minus]x]Mg[sub x], is known to be the major coarse g.b. precipitate. The presence of an Al-Li-Cu-Mg based C phase at the grain boundaries of the commercially heat treated 8090 alloys has also been documented. No detailed study has yet been carried out to verify whether the [delta] phase can be present at the grain boundaries of the commercially heat treated 8090 alloys. Given the correlations between the g.b. phase morphology, g.b. phase chemistry, and the stress corrosion cracking resistance of these alloys, it is important that the g.b. precipitates be examined and identified. In this paper results using TEM are presented to show that the [delta] phase can be present in varying amounts at the grain boundaries in an 8090 alloy when heat treated in the temperature range of 170--350 C. An examination is also made of the [delta] precipitation within the grain to establish that the T[sub 2]/[alpha]-Al interface is the dominant nucleation site for the noncoherent [delta] phase.« less
NEUTRON REACTOR FUEL ELEMENT UTILIZING ZIRCONIUM-BASE ALLOYS
Saller, H.A.; Keeler, J.R.; Szumachowski, E.R.
1957-11-12
This patent relates to clad fuel elements for use in neutronic reactors and is drawn to such a fuel element which consists of a core of fissionable material, comprised of an alloy of zirconium and U/sup 235/ enriched uranium, encased in a jacket of a binary zirconium-tin alloy in which the tin content ranges between 1 and 15% by weight.
Magnetic susceptibilities of liquid Cr-Au, Mn-Au and Fe-Au alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohno, S.; Shimakura, H.; Tahara, S.
The magnetic susceptibility of liquid Cr-Au, Mn-Au, Fe-Au and Cu-Au alloys was investigated as a function of temperature and composition. Liquid Cr{sub 1-c}Au{sub c} with 0.5 ≤ c and Mn{sub 1-c}Au{sub c} with 0.3≤c obeyed the Curie-Weiss law with regard to their dependence of χ on temperature. The magnetic susceptibilities of liquid Fe-Au alloys also exhibited Curie-Weiss behavior with a reasonable value for the effective number of Bohr magneton. On the Au-rich side, the composition dependence of χ for liquid TM-Au (TM=Cr, Mn, Fe) alloys increased rapidly with increasing TM content, respectively. Additionally, the composition dependences of χ for liquidmore » Cr-Au, Mn-Au, and Fe-Au alloys had maxima at compositions of 50 at% Cr, 70 at% Mn, and 85 at% Fe, respectively. We compared the composition dependences of χ{sub 3d} due to 3d electrons for liquid binary TM-M (M=Au, Al, Si, Sb), and investigated the relationship between χ{sub 3d} and E{sub F} in liquid binary TM-M alloys at a composition of 50 at% TM.« less
NASA Astrophysics Data System (ADS)
Yang, Tai; Li, Qiang; Liu, Ning; Liang, Chunyong; Yin, Fuxing; Zhang, Yanghuan
2018-02-01
Yttrium (Y) is selected to modify the microstructure of magnesium (Mg) to improve the hydrogen storage performance. Thereby, binary alloys with the nominal compositions of Mg24Yx (x = 1-5) are fabricated by inexpensive casting technique. Their microstructure and phase transformation during hydriding and dehydriding process are characterized by using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy analysis. The isothermal hydrogen absorption and desorption kinetics are also measured by a Sievert's-type apparatus at various temperatures. Typical multiphase structures of binary alloy can be clearly observed. All of these alloys can reversibly absorb and desorb large amount of hydrogen at proper temperatures. The addition of Y markedly promotes the hydrogen absorption kinetics. However, it results in a reduction of reversible hydrogen storage capacity. A maximum value of dehydrogenation rate is observed with the increase of Y content. The Mg24Y3 alloy has the optimal desorption kinetic performance, and it can desorb about 5.4 wt% of hydrogen at 380 °C within 12 min. Combining Johnson-Mehl-Avrami kinetic model and Arrhenius equation, the dehydrogenation activation energy of the alloys are evaluated. The Mg24Y3 alloy also has the lowest dehydrogenation activation energy (119 kJ mol-1).
Analytical model of radiation-induced precipitation at the surface of dilute binary alloy
NASA Astrophysics Data System (ADS)
Pechenkin, V. A.; Stepanov, I. A.; Konobeev, Yu. V.
2002-12-01
Growth of precipitate layer at the foil surface of an undersaturated binary alloy under uniform irradiation is treated analytically. Analytical expressions for the layer growth rate, layer thickness limit and final component concentrations in the matrix are derived for coherent and incoherent precipitate-matrix interfaces. It is shown that the high temperature limit of radiation-induced precipitation is the same for both types of interfaces, whereas layer thickness limits are different. A parabolic law of the layer growth predicted for both types of interfaces is in agreement with experimental data on γ '-phase precipitation at the surface of Ni-Si dilute alloys under ion irradiation. Effect of sputtering on the precipitation rate and on the low temperature limit of precipitation under ion irradiation is discussed.
Static and vibrational properties of equiatomic Na-based binary alloys
NASA Astrophysics Data System (ADS)
Vora, Aditya M.
2007-09-01
The computations of the static and vibrational properties of four equiatomic Na-based binary alloys viz. Na0.5Li0.5, Na0.5K0.5, Na0.5Rb0.5 and Na0.5Cs0.5, to second order in local model potential is discussed in terms of real-space sum of Born von Karman central force constants. The local field correlation functions due to Hartree (H), Ichimaru Utsumi (IU) and Sarkar et al. (S) are used to investigate the influence of the screening effects on the aforesaid properties. Results for the lattice constants C11, C12, C44, C12 C44, C12/C44 and bulk modulus B obtained using the H-local field correction function have higher values in comparison with the results obtained for the same properties using IU- and S-local field correction functions. The results for the Shear modulus (C‧), deviation from Cauchy's relation, Poisson's ratio σ, Young modulus Y, propagation velocity of elastic waves, phonon dispersion curves and degree of anisotropy A are highly appreciable for the four equiatomic Na-based binary alloys.
Effect of Ni +-ION bombardment on nickel and binary nickel alloys
NASA Astrophysics Data System (ADS)
Roarty, K. B.; Sprague, J. A.; Johnson, R. A.; Smidt, F. A.
1981-03-01
Pure nickel and four binary nickel alloys have been subjected to high energy Ni ion bombardment at 675, 625 and 525°C. After irradiation, each specimen was studied by transmission electron microscopy. The pure nickel control was found to swell appreciably (1 to 5%) and the Ni-Al and the Ni-Ti samples were found to swell at all temperatures, but to a lesser degree (0.01 to 0.35%). The Ni-Mo contained a significant density of voids only at 525° C, while swelling was suppressed at all temperatures in the Ni-Si alloy. The dislocation structure progressed from loops to tangles as temperature increased in all materials except the Ni-Ti, in which there was an absence of loops at all temperatures. Dislocation densities decreased as temperature increased in all samples. These results do not correlate well with the relative behavior of the same alloys observed after neutron irradiation at 455°C. The differences between these two sets of data appear to be caused by different mechanisms controlling void nucleation in ion and neutron irradiation of these alloys.
Long linear MWIR and LWIR HgCdTe infrared detection arrays for high resolution imaging
NASA Astrophysics Data System (ADS)
Chamonal, Jean-Paul; Audebert, Patrick; Medina, Philippe; Destefanis, Gérard; Deschamps, Joel R.; Girard, Michel; Chatard, Jean-Pierre
2018-04-01
This paper, "Long linear MWIR and LWIR HgCdTe infrared detection arrays for high resolution imaging," was presented as part of International Conference on Space Optics—ICSO 1997, held in Toulouse, France.
Zhao, Dapeng; Chang, Keke; Ebel, Thomas; Qian, Ma; Willumeit, Regine; Yan, Ming; Pyczak, Florian
2013-12-01
The application of titanium (Ti) based biomedical materials which are widely used at present, such as commercially pure titanium (CP-Ti) and Ti-6Al-4V, are limited by the mismatch of Young's modulus between the implant and the bones, the high costs of products, and the difficulty of producing complex shapes of materials by conventional methods. Niobium (Nb) is a non-toxic element with strong β stabilizing effect in Ti alloys, which makes Ti-Nb based alloys attractive for implant application. Metal injection molding (MIM) is a cost-efficient near-net shape process. Thus, it attracts growing interest for the processing of Ti and Ti alloys as biomaterial. In this investigation, metal injection molding was applied to the fabrication of a series of Ti-Nb binary alloys with niobium content ranging from 10wt% to 22wt%, and CP-Ti for comparison. Specimens were characterized by melt extraction, optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). Titanium carbide formation was observed in all the as-sintered Ti-Nb binary alloys but not in the as-sintered CP-Ti. Selected area electron diffraction (SAED) patterns revealed that the carbides are Ti2C. It was found that with increasing niobium content from 0% to 22%, the porosity increased from about 1.6% to 5.8%, and the carbide area fraction increased from 0% to about 1.8% in the as-sintered samples. The effects of niobium content, porosity and titanium carbides on mechanical properties have been discussed. The as-sintered Ti-Nb specimens exhibited an excellent combination of high tensile strength and low Young's modulus, but relatively low ductility. © 2013 Elsevier Ltd. All rights reserved.
Enhanced-wetting, boron-based liquid-metal ion source and method
Bozack, Michael J.; Swanson, Lynwood W.; Bell, Anthony E.; Clark Jr., William M.; Utlaut, Mark W.; Storms, Edmund K.
1999-01-01
A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B.sub.4 C and thus to promote wetting of an associated carbon support substrate.
Enhanced-wetting, boron-based liquid-metal ion source and method
Bozack, M.J.; Swanson, L.W.; Bell, A.E.; Clark, W.M. Jr.; Utlaut, M.W.; Storms, E.K.
1999-02-16
A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent is disclosed. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B{sub 4}C and thus to promote wetting of an associated carbon support substrate. 1 fig.
Role of electron concentration in softening and hardening of ternary molybdenum alloys
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1975-01-01
Effects of various combinations of hafnium, tantalum, rhenium, osmium, iridium, and platinum in ternary molybdenum alloys on alloy softening and hardening were determined. Hardness tests were conducted at four test temperatures over the temperature range 77 to 411 K. Results showed that hardness data for ternary molybdenum alloys could be correlated with anticipated results from binary data based upon expressions involving the number of s and d electrons contributed by the solute elements. The correlation indicated that electron concentration plays a dominant role in controlling the hardness of ternary molybdenum alloys.
NASA Astrophysics Data System (ADS)
Martyniuk, P.; Gawron, W.; Madejczyk, P.; Rogalski, A.
2017-08-01
The vast majority of HgCdTe detectors designed to detect long wavelength (8-14 μm) infrared radiation must be cooled to achieve the required performance. It must be stressed that cooling requirement is both expensive and bulky and the main objective is to reach higher operating temperature condition preserving near background limited performance and high speed response. In order to reach that goal the thermal generation rate needs to be reduced below the photon generation rate. Except Auger 7, p-type HgCdTe active layers are mostly limited by technology dependent Shockley-Read-Hall generation-recombination processes. One of the ways to reduce of the trap density is a growth of the (1 0 0) HgCdTe epilayers on GaAs substrates. In addition, that orientation allows reaching lower carrier concentration in comparison to the commonly used (1 1 1) orientation (5 × 1015-1016 cm-3). In this paper we report on theoretical utmost performance of (1 0 0) HgCdTe Auger suppressed photodetectors grown on GaAs substrates. (1 0 0) HgCdTe orientation allows to reduce p-type doping to the level of ∼5 × 1014 cm-3 in analyzed long wavelength range. In addition Shockley-Read-Hall traps could be reduced to the level of ∼4.4 × 108 cm-3 resulting in suppression of the dark current by nearly two orders of magnitude within the range ∼20 ÷ 0.31 A/cm2 and detectivity, ∼1010-1011 cmHz1/2/W at temperature 230 K, voltage 200 mV.
NASA Technical Reports Server (NTRS)
Pathare, Viren M.
1988-01-01
Powder processed NiAl + Ta alloys containing 1, 2, and 4.5 at percent tantalum and NiAl + Nb alloys containing 1 and 2 at percent niobium were developed for improved creep properties. In addition, a cast alloy with 5 at percent tantalum was also studied. Hot extrusion parameters for processing alloys with 1 and 2 at percent of tantalum or niobium were designed. The NiAl + 4.5 at percent Ta alloy could be vacuum hot pressed successfully, even though it could not be extruded. All the phases in the multiphase alloys were identified and the phase transformations studied. The Ni2AlTa in NiAl + 4.5 at percent Ta alloy transforms into a liquid phase above 1700 K. Solutionizing and annealing below this temperature gives rise to a uniform distribution of fine second phase precipitates. Compressive creep properties were evaluated at 1300 K using constant load and constant velocity tests. In the higher strain rate region single phase NiAl + 1 at percent Ta and NiAl + 1 at percent Nb alloys exhibit a stress exponent of 5 characteristic of climb controlled dislocation creep. In slower strain rate regime diffusional creep becomes important. The two phase alloys containing 2 to 5 at percent Ta and 2 at percent Nb show considerable improvement over binary NiAl and single phase alloys. Loose dislocation networks and tangles stabilized by the precipitates were found in the as crept microstructure. The cast alloy which has larger grains and a distribution of fine precipitates shows the maximum improvement over binary NiAl.
Material considerations for third generation infrared photon detectors
NASA Astrophysics Data System (ADS)
Rogalski, A.
2007-04-01
In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well photoconductors are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. The metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an alternative to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm. In this context the material properties of type II superlattices are considered more in detail.
NASA Astrophysics Data System (ADS)
Wang, Peng; Wang, Yueming; Wu, Mingzai; Ye, Zhenhua
2018-06-01
Third-generation HgCdTe-based infrared focal plane arrays require high aspect ratio trenches with admissible etch induced damage at the surface and sidewalls for effectively isolating the pixels. In this paper, the high-density inductively coupled plasma enhanced reaction ion etching technique has been used for micro-mesa delineation of HgCdTe for third-generation infrared focal-plane array detectors. A nondestructive junction-level optoelectronic characterization method called laser beam induced current (LBIC) is used to evaluate the lateral junction extent of HgCdTe etch-induced damage scanning electron microscopy. It is found that the LBIC profiles exhibit evident double peaks and valleys phenomena. The lateral extent of etch induced mesa damage of ∼2.4 μm is obtained by comparing the LBIC profile and the scanning electron microscopy image of etched sample. This finding will guide us to nondestructively identify the distributions of the etching damages in large scale HgCdTe micro-mesa.
Microstructure and physical properties of bismuth-lead-tin ternary eutectic alloy
NASA Astrophysics Data System (ADS)
Kamal, M.; Moharram, B. M.; Farag, H.; El-Bediwi, A.; Abosheiasha, H. F.
2006-07-01
Using different experimental techniques, microstructure, electrical resistivity, attenuation coefficient, and mechanical and thermal properties of the quenched Bi-Pb-Sn ternary eutectic alloy have been investigated. From the X-ray analysis, Bi3Pb7 and Bi-Sn meta-stable phases are detected, in addition to rhombohedral bismuth and Sn body-centered tetragonal phases. This study also compared the physical properties of the Bi-Sn-Pb ternary eutectic alloys with the base binary Bi-Sn and Bi-Pb eutectic alloys.
Advanced hydrogen electrode for hydrogen-bromide battery
NASA Technical Reports Server (NTRS)
Kosek, Jack A.; Laconti, Anthony B.
1987-01-01
Binary platinum alloys are being developed as hydrogen electrocatalysts for use in a hydrogen bromide battery system. These alloys were varied in terms of alloy component mole ratio and heat treatment temperature. Electrocatalyst evaluation, performed in the absence and presence of bromide ion, includes floating half cell polarization studies, electrochemical surface area measurements, X ray diffraction analysis, scanning electron microscopy analysis and corrosion measurements. Results obtained to date indicate a platinum rich alloy has the best tolerance to bromide ion poisoning.
Thermal Conductivity of Ten Selected Binary Alloy Systems.
1975-05-01
of Commercial Metals and Alloys. IL Aluminmnns," J. Appt. Pys., .1(3), 496-503, 1960. 58. Mikryukov , V . E . and Karagpyan, A. 0., "Thermal and...74, 1900. 136. Mikryukov , V . E ., "Thermal and Electrical Properties of Copper Alloys," Moscow Univ. Vest. Ser. Mat. Mekh. Astron. Fiz. Khim., 12(2... Mikryukov , V . E ., "Thermal and Electrical Properties of Copper Alloys, "Moscow Univ. Vest. Ser. Mat. Mekh. Astron. Fis. Ehim., 12(3), 57-64, 195?. 145
Cobalt-Free Permanent Magnet Alloys.
1984-10-01
carbide co- UC CbC lumbium carbide M003 Uranium carbide - tho- UC 2 25ThC rium carbide ZrO2 MgO WOs Use of this Process for MnAlC As indicated in the...cobalt. Free World Cobal Consumption Estimated Breakdown by End Uses Magnetic alloys 20% Cemented carbides - 5% 30 SuPerolloy _ 15% Other steels and...would normally result in the formation of binary alloy of TbFe 2 and preventing the formation of amorphous alloy (Fe-B) contain- ing Tb. The
Bakhsheshi-Rad, H R; Hamzah, E; Low, H T; Kasiri-Asgarani, M; Farahany, S; Akbari, E; Cho, M H
2017-04-01
In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg 2 (Zn, Al) 11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mg
Modeling the elastic energy of alloys: Potential pitfalls of continuum treatments.
Baskaran, Arvind; Ratsch, Christian; Smereka, Peter
2015-12-01
Some issues that arise when modeling elastic energy for binary alloys are discussed within the context of a Keating model and density-functional calculations. The Keating model is a simplified atomistic formulation based on modeling elastic interactions of a binary alloy with harmonic springs whose equilibrium length is species dependent. It is demonstrated that the continuum limit for the strain field are the usual equations of linear elasticity for alloys and that they correctly capture the coarse-grained behavior of the displacement field. In addition, it is established that Euler-Lagrange equation of the continuum limit of the elastic energy will yield the same strain field equation. This is the same energy functional that is often used to model elastic effects in binary alloys. However, a direct calculation of the elastic energy atomistic model reveals that the continuum expression for the elastic energy is both qualitatively and quantitatively incorrect. This is because it does not take atomistic scale compositional nonuniformity into account. Importantly, this result also shows that finely mixed alloys tend to have more elastic energy than segregated systems, which is the exact opposite of predictions made by some continuum theories. It is also shown that for strained thin films the traditionally used effective misfit for alloys systematically underestimate the strain energy. In some models, this drawback is handled by including an elastic contribution to the enthalpy of mixing, which is characterized in terms of the continuum concentration. The direct calculation of the atomistic model reveals that this approach suffers serious difficulties. It is demonstrated that elastic contribution to the enthalpy of mixing is nonisotropic and scale dependent. It is also shown that such effects are present in density-functional theory calculations for the Si-Ge system. This work demonstrates that it is critical to include the microscopic arrangements in any elastic model to achieve even qualitatively correct behavior.
Phase-field crystal modeling of compositional domain formation in ultrathin films.
Muralidharan, Srevatsan; Haataja, Mikko
2010-09-17
Bulk-immiscible binary systems often form stress-induced miscible alloy phases when deposited on a substrate. Both alloying and surface dislocation formation lead to the decrease of the elastic strain energy, and the competition between these two strain-relaxation mechanisms gives rise to the emergence of pseudomorphic compositional nanoscale domains, often coexisting with a partially coherent single phase. In this work, we develop a phase-field crystal model for compositional patterning in monolayer aggregates of binary metallic systems. We first demonstrate that the model naturally incorporates the competition between alloying and misfit dislocations, and quantify the effects of misfit and line tension on equilibrium domain size. Then, we quantitatively relate the parameters of the phase-field crystal model to a specific system, CoAg/Ru(0001), and demonstrate that the simulations capture experimentally observed morphologies.
Influence of grain boundaries on the distribution of components in binary alloys
NASA Astrophysics Data System (ADS)
L'vov, P. E.; Svetukhin, V. V.
2017-12-01
Based on the free-energy density functional method (the Cahn-Hilliard equation), a phenomenological model that describes the influence of grain boundaries on the distribution of components in binary alloys has been developed. The model is built on the assumption of the difference between the interaction parameters of solid solution components in the bulk and at the grain boundary. The difference scheme based on the spectral method is proposed to solve the Cahn-Hilliard equation with interaction parameters depending on coordinates. Depending on the ratio between the interaction parameters in the bulk and at the grain boundary, temperature, and alloy composition, the model can give rise to different types of distribution of a dissolved component, namely, either depletion or enrichment of the grain-boundary area, preferential grainboundary precipitation, competitive precipitation in the bulk and at the grain boundary, etc.
Development of a HgCdTe photomixer and impedance matched GaAs FET amplifier
NASA Technical Reports Server (NTRS)
Shanley, J. F.; Paulauskas, W. A.; Taylor, D. R.
1982-01-01
A research program for the development of a 10.6 micron HgCdTe photodiode/GaAs field effect transistor amplifier package for use at cryogenic temperatures (77k). The photodiode/amplifier module achieved a noise equivalent power per unit bandwidth of 5.7 times 10 to the 20th power W/Hz at 2.0 GHz. The heterodyne sensitivity of the HgCdTe photodiode was improved by designing and building a low noise GaAs field effect transistor amplifier operating at 77K. The Johnson noise of the amplifier was reduced at 77K, and thus resulted in an increased photodiode heterodyne sensitivity.
Long wavelength stimulated emission up to 9.5 μm from HgCdTe quantum well heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, S. V.; Rumyantsev, V. V., E-mail: rumyantsev@ipmras.ru; Dubinov, A. A.
2016-02-29
Stimulated emission from waveguide HgCdTe structures with several quantum wells inside waveguide core is demonstrated at wavelengths up to 9.5 μm. Photoluminescence line narrowing down to kT energy, as well as superlinear rise in its intensity evidence the onset of the stimulated emission, which takes place under optical pumping with intensity as small as ∼0.1 kW/cm{sup 2} at 18 K and 1 kW/cm{sup 2} at 80 K. One can conclude that HgCdTe structures potential for long-wavelength lasers is not exhausted.
Electrical and Magnetic Properties of Binary Amorphous Transition Metal Alloys.
NASA Astrophysics Data System (ADS)
Liou, Sy-Hwang
The electrical, superconductive and magnetic properties of several binary transition metal amorphous and metastable crystalline alloys, Fe(,x)Ti(,100-x) (30 (LESSTHEQ) x (LESSTHEQ) 100), Fe(,x)Zr(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 93), Fe(,x)Hf(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 100), Fe(,x)Nb(,100 -x) (22 (LESSTHEQ) x (LESSTHEQ) 85), Ni(,x)Nb(,100-x) (20 (LESSTHEQ) x (LESSTHEQ) 80), Cu(,x)Nb(,100-x) (10 (LESSTHEQ) x (LESSTHEQ) 90) were studied over a wide composition range. Films were made using a magnetron sputtering system, and the structure of the films was investigated by energy dispersive x-ray diffraction. The composition region of each amorphous alloys system was determined and found in good agreement with a model proposed by Egami and Waseda. The magnetic properties and hyperfine interactions in the films were investigated using a conventional Mossbauer spectrometer and a ('57)Co in Rh matrix source. In all Fe-early transition metal binary alloys systems, Fe does not retain its moment in the low iron concentration region and the result is that the critical concentration for magnetic order (x(,c)) is much larger than anticipated from percolation considerations. A direct comparison between crystalline alloys and their amorphous counterparts of the same composition illustrate no clear correlation between crystalline and amorphous states. Pronounced discontinuities in the magnetic properties with variation in Fe content of all Fe-early transition metal alloys at phase boundaries separating amorphous and crystalline states have been observed. This is caused by the differences in the atomic arrangement and the electronic structure between crystalline and amorphous solids. The temperature dependence of resistivity, (rho)(T), of several binary amorphous alloys of Fe-TM (where TM = Ti, Zr, Hf, Nb etc.) has been studied from 2K to 300K. The Fe-poor (x < x(,c)) samples and the Fe-rich (x > x(,c)) samples have distinctive differences in (rho)(T) at low temperature (below 30K). All the magnetic samples show a logarithmic dependence at low temperature that can be described by Kondo scattering. In addition, there is a change in slope of (rho)(T) at a temperature close to the magnetic ordering temperature, indicating a contribution attributed to magnetic ordering. Several Nb-based amorphous alloys (Fe-Nb, Ni-Nb, Cu-Nb) have also been systematically studied. The effect of the magnetic species on superconductivity is investigated. The value of superconducting transition temperature (T(,s)) increases linearly with increasing Nb concentration. (Abstract shortened with permission of author.).
NASA Astrophysics Data System (ADS)
Le Bars, Michael; Worster, M. Grae
2006-07-01
A finite-element simulation of binary alloy solidification based on a single-domain formulation is presented and tested. Resolution of phase change is first checked by comparison with the analytical results of Worster [M.G. Worster, Solidification of an alloy from a cooled boundary, J. Fluid Mech. 167 (1986) 481-501] for purely diffusive solidification. Fluid dynamical processes without phase change are then tested by comparison with previous numerical studies of thermal convection in a pure fluid [G. de Vahl Davis, Natural convection of air in a square cavity: a bench mark numerical solution, Int. J. Numer. Meth. Fluids 3 (1983) 249-264; D.A. Mayne, A.S. Usmani, M. Crapper, h-adaptive finite element solution of high Rayleigh number thermally driven cavity problem, Int. J. Numer. Meth. Heat Fluid Flow 10 (2000) 598-615; D.C. Wan, B.S.V. Patnaik, G.W. Wei, A new benchmark quality solution for the buoyancy driven cavity by discrete singular convolution, Numer. Heat Transf. 40 (2001) 199-228], in a porous medium with a constant porosity [G. Lauriat, V. Prasad, Non-darcian effects on natural convection in a vertical porous enclosure, Int. J. Heat Mass Transf. 32 (1989) 2135-2148; P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967] and in a mixed liquid-porous medium with a spatially variable porosity [P. Nithiarasu, K.N. Seetharamu, T. Sundararajan, Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium, Int. J. Heat Mass Transf. 40 (1997) 3955-3967; N. Zabaras, D. Samanta, A stabilized volume-averaging finite element method for flow in porous media and binary alloy solidification processes, Int. J. Numer. Meth. Eng. 60 (2004) 1103-1138]. Finally, new benchmark solutions for simultaneous flow through both fluid and porous domains and for convective solidification processes are presented, based on the similarity solutions in corner-flow geometries recently obtained by Le Bars and Worster [M. Le Bars, M.G. Worster, Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, J. Fluid Mech. (in press)]. Good agreement is found for all tests, hence validating our physical and numerical methods. More generally, the computations presented here could now be considered as standard and reliable analytical benchmarks for numerical simulations, specifically and independently testing the different processes underlying binary alloy solidification.
Optimization of plasma etching of SiO2 as hard mask for HgCdTe dry etching
NASA Astrophysics Data System (ADS)
Chen, Yiyu; Ye, Zhenhua; Sun, Changhong; Zhang, Shan; Xin, Wen; Hu, Xiaoning; Ding, Ruijun; He, Li
2016-10-01
HgCdTe is one of the dominating materials for infrared detection. To pattern this material, our group has proven the feasibility of SiO2 as a hard mask in dry etching process. In recent years, the SiO2 mask patterned by plasma with an auto-stopping layer of ZnS sandwiched between HgCdTe and SiO2 has been developed by our group. In this article, we will report the optimization of SiO2 etching on HgCdTe. The etching of SiO2 is very mature nowadays. Multiple etching recipes with deferent gas mixtures can be used. We utilized a recipe containing Ar and CHF3. With strictly controlled photolithography, the high aspect-ratio profile of SiO2 was firstly achieved on GaAs substrate. However, the same recipe could not work well on MCT because of the low thermal conductivity of HgCdTe and CdTe, resulting in overheated and deteriorated photoresist. By decreasing the temperature, the photoresist maintained its good profile. A starting table temperature around -5°C worked well enough. And a steep profile was achieved as checked by the SEM. Further decreasing of temperature introduced profile with beveled corner. The process window of the temperature is around 10°C. Reproducibility and uniformity were also confirmed for this recipe.
Solute effects on deformation and fracture of beta brass
NASA Technical Reports Server (NTRS)
Shea, M. M.; Stoloff, N. S.
1973-01-01
It is shown that the ductility of several ternary beta brass alloys in air and in several liquid metals can be related to the operative slip and grain boundary relaxation processes. Nickel and manganese were chosen as alloying elements because they are expected to respectively enhance and suppress cross slip in beta brass. Single-phase binary and ternary beta brass alloys were used in both polycrystalline and single crystal form.
Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.
Li, H F; Xie, X H; Zheng, Y F; Cong, Y; Zhou, F Y; Qiu, K J; Wang, X; Chen, S H; Huang, L; Tian, L; Qin, L
2015-05-29
Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals.
Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr
Li, H. F.; Xie, X. H.; Zheng, Y. F.; Cong, Y.; Zhou, F. Y.; Qiu, K. J.; Wang, X.; Chen, S. H.; Huang, L.; Tian, L.; Qin, L.
2015-01-01
Biodegradable metals have attracted considerable attentions in recent years. Besides the early launched biodegradable Mg and Fe metals, Zn, an essential element with osteogenic potential of human body, is regarded and studied as a new kind of potential biodegradable metal quite recently. Unfortunately, pure Zn is soft, brittle and has low mechanical strength in the practice, which needs further improvement in order to meet the clinical requirements. On the other hand, the widely used industrial Zn-based alloys usually contain biotoxic elements (for instance, ZA series contain toxic Al elements up to 40 wt.%), which subsequently bring up biosafety concerns. In the present work, novel Zn-1X binary alloys, with the addition of nutrition elements Mg, Ca and Sr were designed (cast, rolled and extruded Zn-1Mg, Zn-1Ca and Zn-1Sr). Their microstructure and mechanical property, degradation and in vitro and in vivo biocompatibility were studied systematically. The results demonstrated that the Zn-1X (Mg, Ca and Sr) alloys have profoundly modified the mechanical properties and biocompatibility of pure Zn. Zn-1X (Mg, Ca and Sr) alloys showed great potential for use in a new generation of biodegradable implants, opening up a new avenue in the area of biodegradable metals. PMID:26023878
Thermal Cycle Annealing and its Application to Arsenic-Ion Implanted HgCdTe
2014-06-26
Rao Mulpuri Sina Simingalam, Priyalal Wijewarnasuriya, Mulpuri V. Rao 1720BH c. THIS PAGE The public reporting burden for this collection of...Implanted HgCdTe Sina Simingalama,b,c, Priyalal Wijewarnasuriyab, Mulpuri V. Raoc a. School of Physics, Astronomy and Computational Sciences, George
Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique.
Tavakoli, Mohammad Mahdi; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Fan, Zhiyong
2018-03-01
Fast research progress on lead halide perovskite solar cells has been achieved in the past a few years. However, the presence of lead (Pb) in perovskite composition as a toxic element still remains a major issue for large-scale deployment. In this work, a novel and facile technique is presented to fabricate tin (Sn)-rich perovskite film using metal precursors and an alloying technique. Herein, the perovskite films are formed as a result of the reaction between Sn/Pb binary alloy metal precursors and methylammonium iodide (MAI) vapor in a chemical vapor deposition process carried out at 185 °C. It is found that in this approach the Pb/Sn precursors are first converted to (Pb/Sn)I 2 and further reaction with MAI vapor leads to the formation of perovskite films. By using Pb-Sn eutectic alloy, perovskite films with large grain sizes up to 5 µm can be grown directly from liquid phase metal. Consequently, using an alloying technique and this unique growth mechanism, a less-toxic and efficient perovskite solar cell with a power conversion efficiency (PCE) of 14.04% is demonstrated, while pure Sn and Pb perovskite solar cells prepared in this manner yield PCEs of 4.62% and 14.21%, respectively. It is found that this alloying technique can open up a new direction to further explore different alloy systems (binary or ternary alloys) with even lower melting point. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study of Plastic Deformation in Binary Aluminum Alloys by Internal-Friction Methods
NASA Technical Reports Server (NTRS)
Olson, E. C.; Maringer, R. E.; Marsh, L. L.; Manning, G. K.
1959-01-01
The damping capacity of several aluminum-copper alloys has been investigated during tensile elongation. This damping is shown to depend on strain rate, strain, temperature, alloy content, and heat treatment. A tentative hypothesis, based on the acceleration of solute atom diffusion by deformation-produced vacancies, is proposed to account for the observed behavior. Internal-friction maxima are observed in deformed aluminum and aluminum-copper alloys at -70 deg and -50 deg C. The peaks appear to be relatively insensitive to frequency and alloy content, but they disappear after annealing at temperatures nearing the recrystallization temperature.
Influence of alloying elements on friction and wear of copper
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1972-01-01
The friction and wear characteristics were determined for copper binary alloys containing 10 atomic percent aluminum, silicon, indium, and tin. A ternary alloy containing 10 atomic percent aluminum and 5 atomic percent silicon was also examined. The effectiveness of each of the alloying elements aluminum and silicon were very effective in reducing friction. Silicon, however, also reduced wear appreciably. With lubrication, silicon, indium, and tin were all effective alloying elements in reducing friction and wear from values obtained for copper. Silicon was the most effective single element in reducing friction and wear in dry sliding and with lubrication.
Influence of the alloying effect on nickel K-shell fluorescence yield in Ni Si alloys
NASA Astrophysics Data System (ADS)
Kalayci, Y.; Agus, Y.; Ozgur, S.; Efe, N.; Zararsiz, A.; Arikan, P.; Mutlu, R. H.
2005-02-01
Alloying effects on the K-shell fluorescence yield ωK of nickel in Ni-Si binary alloy system have been studied by energy dispersive X-ray fluorescence. It is found that ωK increases from pure Ni to Ni 2Si and then decreases from Ni 2Si to NiSi. These results are discussed in terms of d-occupation number on the Ni site and it is concluded that electronic configuration as a result of p-d hybridization explain qualitatively the observed variation of ωK in Ni-Si alloys.
1986-11-14
5wt % Si was completely different from that of the alloy without silicon. The (X phase formed around the primary Mg2 Si crystals, and an irregular...content, and primary crystals in a binary Mg- 5wt % Si alloy did not exhibit this behavior. The surface of the rapidly solidified melt pools was rough and...Microhardness* of the laser treated alloys . Alloy As-cast Laser treated Mg- 5wt %Li 40.8 55.7 o, Mg- 5wt %Li- 5wt % Si 51.1 74.1 Mg-8wt%Li 42.8 71.2
NASA Astrophysics Data System (ADS)
Al-Aqeeli, N.; Suryanarayana, C.; Hussein, M. A.
2013-10-01
Mechanical alloying of binary Nb-Zr powder mixtures was carried out to evaluate the formation of metastable phases in this immiscible system. The milled powders were characterized for their constitution and structure by X-ray diffraction and transmission electron microscopy methods. It was shown that an amorphous phase had formed on milling the binary powder mixture for about 10 h and that it had crystallized on subsequent milling up to 50-70 h, referred to as mechanical crystallization. Thermodynamic and structural arguments have been presented to explain the formation of the amorphous phase and its subsequent crystallization.
Effect of solutes in binary columbium /Nb/ alloys on creep strength
NASA Technical Reports Server (NTRS)
Klein, M. J.; Metcalfe, A. G.
1973-01-01
The effect of seven different solutes in binary columbium (Nb) alloys on creep strength was determined from 1400 to 3400 F for solute concentrations to 20 at.%, using a new method of creep-strength measurement. The technique permits rapid determination of approximate creep strength over a large temperature span. All of the elements were found to increase the creep strength of columbium except tantalum. This element did not strengthen columbium until the concentration exceeded 10 at.%. Hafnium, zirconium, and vanadium strengthed columbium most at low temperatures and concentrations, whereas tungsten, molybdenum, and rhenium contributed more to creep strength at high temperatures and concentrations.
Properties Of Passivant Films On HgCdTe - Interaction With The Substrate
NASA Astrophysics Data System (ADS)
Davis, G. D.; Sun, T. S.; Buchner, S. P.; Byer, N. E.
1981-12-01
Two commonly used passivants of Hg0.8Cd0.2Te, the anodic oxide and ZnS, have been studied by x-ray photoelectron spectroscopy combined with ion sputtering. Chemical depth profiles of anodic oxide films of 360 to 1600 A showed that the oxide composition is constant with depth and independent of oxide thickness. Chemical shifts and line shape analysis of the Cd M45N45N45 Auger transition in the oxide, CdO, Cd(OH)2, and CdTeO3 demonstrate that CdTeO3 is the major constituent of the anodic oxide. The oxide composi-tion is interpreted as 44% CdTeO3, 29% CdTe2O5, 17% HgTeO3, and 10% HgTe2O5. Anodization of HgCdTe depletes the semiconductor of 30% - 40% of its Hg near the interface. The spatial extent of this Hg depletion is a function of oxide thickness for thin oxides (<1000 A) but is a constant (150-200 A) for thick films. No significant change in the Cd concentration is seen. A ZnS film deposited on a chemically etched sample forms a graded interface of a (ZnHgCd)Te alloy. In this case, no Hg depletion is seen. Deposi-tion of ZnS on an anodized substrate in high vacuum leads to a reaction of the Zn with the residual 02 in the chamber to form ZnO on the anodic oxide before the ZnS. The ZnO then diffuses throughout the anodic oxide.
Determination of the composition of HgCdTe oxide films by neutron activation analysis
NASA Astrophysics Data System (ADS)
Gnade, B.; Simmons, A.; Little, D.; Strong, R.
1987-04-01
The composition of HgCdTe oxides grown by anodic oxidation in a standard KOH/ethylene glycol solution has been determined by neutron activation analysis (NAA). This technique is not hindered by the difficulties normally associated with methods using ion beams or electron beams. Neutron activation analysis has the advantage of being quantitative, and also NAA is not affected by the chemical composition of the matrix. The analysis of the KOH/ethylene glycol oxide film by neutron activation yields Hg:Cd:Te ratios of 0.534:0.19:1, in close agreement with Rutherford backscattering spectroscopy analysis (R.L. Strong et al., J. Vac. Sci. Technol. A4 (4) (1986) 1992).
Primary radiation damage of an FeCr alloy under pressure: Atomistic simulation
NASA Astrophysics Data System (ADS)
Tikhonchev, M. Yu.; Svetukhin, V. V.
2017-05-01
The primary radiation damage of a binary FeCr alloy deformed by applied mechanical loading is studied by an atomistic molecular dynamics simulation. Loading is simulated by specifying an applied pressure of 0.25, 1.0, and 2.5 GPa of both signs. Hydrostatic and uniaxial loading is considered along the [001], [111], [112], and [210] directions. The influence of loading on the energy of point defect formation and the threshold atomic displacement energy in single-component bcc iron is investigated. The 10-keV atomic displacement cascades in a "random" binary Fe-9 at % Cr alloy are simulated at an initial temperature of 300 K. The number of the point defects generated in a cascade is estimated, and the clustering of point defects and the spatial orientation of interstitial configurations are analyzed. Our results agree with the results of other researchers and supplement them.
Acoustic emission from a solidifying aluminum-lithium alloy
NASA Technical Reports Server (NTRS)
Henkel, D. P.; Wood, J. D.
1992-01-01
Physical phenomena associated with the solidification of an AA2090 Al-Li alloy have been characterized by AE methods. Repeatable patterns of AE activity as a function of solidification time are recorded and explained for ultrahigh-purity (UHP) aluminum and an Al-4.7 wt pct Cu binary alloy, in addition to the AA2090 Al-Li alloy, by the complementary utilization of thermal, AE, and metallographic methods. One result shows that the solidification of UHP aluminum produces one discrete period of high AE activity as the last 10 percent of solid forms.
A method to eliminate wetting during the homogenization of HgCdTe
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Lehoczky, S. L.; Szofran, F. R.
1986-01-01
Adhesion of HgCdTe samples to fused silica ampoule walls, or 'wetting', during the homogenization process was eliminated by adopting a slower heating rate. The idea is to decrease Cd activity in the sample so as to reduce the rate of reaction between Cd and the silica wall.
Arsenic complexes optical signatures in As-doped HgCdTe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gemain, F.; Robin, I. C.; Brochen, S.
2013-04-08
In this paper, the optical signatures of arsenic complexes in As-doped HgCdTe samples grown by molecular beam epitaxy are clearly identified using comparison between photoluminescence spectra, Extended X-Ray Absorption Fine Structure, and Hall measurements. The ionization energies of the different complexes are measured both by photoluminescence and Hall measurements.
Temperature-driven massless Kane fermions in HgCdTe crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teppe, F.; Marcinkiewicz, M.; Krishtopenko, S. S.
2016-08-30
It has recently been shown that electronic states in bulk gapless HgCdTe offer another realization of pseudo-relativistic three-dimensional particles in condensed matter systems. These single valley relativistic states, massless Kane fermions, cannot be described by any other relativistic particles. Furthermore, the HgCdTe band structure can be continuously tailored by modifying cadmium content or temperature. At critical concentration or temperature, the bandgap collapses as the system undergoes a semimetal-to-semiconductor topological phase transition between the inverted and normal alignments. Here, using far-infrared magneto-spectroscopy we explore the continuous evolution of band structure of bulk HgCdTe as temperature is tuned across the topological phasemore » transition. We demonstrate that the rest mass of Kane fermions changes sign at critical temperature, whereas their velocity remains constant. The velocity universal value of (1.07±0.05) × 106 m s -1 remains valid in a broad range of temperatures and Cd concentrations, indicating a striking universality of the pseudo-relativistic description of the Kane fermions in HgCdTe.« less
NASA Technical Reports Server (NTRS)
Vural, Kadri; Blessinger, Michael; Chen, Jenkon; Kleinhans, William
1989-01-01
Researchers developed a HgCdTe 256x256 focal plane array (FPA) which operates in the 1 to 5 micron band. This is presently the largest demonstrated HgCdTe FPA. The detector material is HgCdTe on sapphire (PACE-1 technology) which has a low thermal expansion mismatch with silicon. The multiplexer is a CMOS FET-switch device processed through a commercial silicon foundry. The multiplexer input is direct injection and the charge capacity is about 2 times 10 to the 7th power electrons. The kTC limited read noise is 400 electrons. Researchers demonstrated high background imaging using the device. The broadband quantum efficiency is measured to be 59 percent. Dark currents less than 0.1 pA were measured at 77 K for detectors processed on PACE-1 material with 4.9 microns cutoff. The dark currents decrease as the temperature is lowered, and researchers are presently studying the T less than 77 K characteristics. The interconnect yield is greater than 95 percent. The devices are available for astronomical applications.
Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors
NASA Astrophysics Data System (ADS)
Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li
2016-09-01
The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.
NASA Technical Reports Server (NTRS)
Tewari, S. N.; Kumar, M. Vijaya; Lee, J. E.; Curreri, P. A.
1990-01-01
Primary dendrite spacings, secondary dendrite spacings, and microsegregation have been examined in PWA-1480 single crystal specimens which were directionally solidified during parabolic maneuvers on the KC-135 aircraft. Experimentally observed growth rate and thermal gradient dependence of primary dendrite spacings are in good agreement with predictions from dendrite growth models for binary alloys. Secondary dendrite coarsening kinetics show a reasonable fit with the predictions from an analytical model proposed by Kirkwood for a binary alloy. The partition coefficients of tantalum, titanium, and aluminum are observed to be less than unity, while that for tungsten and cobalt are greater than unity. This is qualitatively similar to the nickel base binaries. Microsegregation profiles experimentally observed for PWA-1480 superalloy show a good fit with Bower, Brody, and Flemings model developed for binary alloys. Transitions in gravity levels do not appear to affect primary dendrite spacings. A trend of decreased secondary arm spacings with transition from high gravity to the low gravity period was observed at a growth speed of 0.023 cm s(exp -1). However, definite conclusions can only be drawn by experiments at lower growth speeds which make it possible to examine the side-branch coarsening kinetics over a longer duration. Such experiments, not possible due to the insufficient low-gravity time of the KC-135, may be carried out in the low-gravity environment of space.
PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS
Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.
1962-08-14
A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)
A new approximate sum rule for bulk alloy properties
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John
1991-01-01
A new, approximate sum rule is introduced for determining bulk properties of multicomponent systems, in terms of the pure components properties. This expression is applied for the study of lattice parameters, cohesive energies, and bulk moduli of binary alloys. The correct experimental trends (i.e., departure from average values) are predicted in all cases.
NASA Astrophysics Data System (ADS)
Kim, Y. W.; Cress, R. P.
2016-11-01
Disordered binary alloys are modeled as a randomly close-packed assembly of nanocrystallites intermixed with randomly positioned atoms, i.e., glassy-state matter. The nanocrystallite size distribution is measured in a simulated macroscopic medium in two dimensions. We have also defined, and measured, the degree of crystallinity as the probability of a particle being a member of nanocrystallites. Both the distribution function and the degree of crystallinity are found to be determined by alloy composition. When heated, the nanocrystallites become smaller in size due to increasing thermal fluctuation. We have modeled this phenomenon as a case of thermal dissociation by means of the law of mass action. The crystallite size distribution function is computed for AuCu3 as a function of temperature by solving some 12 000 coupled algebraic equations for the alloy. The results show that linear thermal expansion of the specimen has contributions from the temperature dependence of the degree of crystallinity, in addition to respective thermal expansions of the nanocrystallites and glassy-state matter.
NASA Astrophysics Data System (ADS)
Maxwell, J. L.; Black, M. R.; Chavez, C. A.; Maskaly, K. R.; Espinoza, M.; Boman, M.; Landstrom, L.
2008-06-01
This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.
Predicted trends of core-shell preferences for 132 late transition-metal binary-alloy nanoparticles.
Wang, Lin-Lin; Johnson, Duane D
2009-10-07
Transition-metal alloyed nanoparticles with core-shell features (shell enrichment by one of the metals) are becoming ubiquitous, from (electro-)catalysis to biomedical applications, due to their size control, performance, biocompatibility, and cost. We investigate 132 binary-alloyed nanoparticle systems (groups 8 to 11 in the Periodic Table) using density functional theory (DFT) and systematically explore their segregation energies to determine core-shell preferences. We find that core-shell preferences are generally described by two independent factors: (1) cohesive energy (related to vapor pressure) and (2) atomic size (quantified by the Wigner-Seitz radius), and the interplay between them. These independent factors are shown to provide general trends for the surface segregation preference for atoms in nanoparticles, as well as semi-infinite surfaces, and give a simple correlation (a "design map") for the alloying and catalytic behavior. Finally, we provide a universal description of core-shell preference via tight-binding theory (band-energy differences) that (i) quantitatively reproduces the DFT segregation energies and (ii) confirms the electronic origins and correlations for core-shell behavior.
NASA Technical Reports Server (NTRS)
Bentz, Daniel N.; Betush, William; Jackson, Kenneth A.
2003-01-01
In this paper we report on two related topics: Kinetic Monte Carlo simulations of the steady state growth of rod eutectics from the melt, and a study of the surface roughness of binary alloys. We have implemented a three dimensional kinetic Monte Carlo (kMC) simulation with diffusion by pair exchange only in the liquid phase. Entropies of fusion are first chosen to fit the surface roughness of the pure materials, and the bond energies are derived from the equilibrium phase diagram, by treating the solid and liquid as regular and ideal solutions respectively. A simple cubic lattice oriented in the {100} direction is used. Growth of the rods is initiated from columns of pure B material embedded in an A matrix, arranged in a close packed array with semi-periodic boundary conditions. The simulation cells typically have dimensions of 50 by 87 by 200 unit cells. Steady state growth is compliant with the Jackson-Hunt model. In the kMC simulations, using the spin-one Ising model, growth of each phase is faceted or nonfaceted phases depending on the entropy of fusion. There have been many studies of the surface roughening transition in single component systems, but none for binary alloy systems. The location of the surface roughening transition for the phases of a eutectic alloy determines whether the eutectic morphology will be regular or irregular. We have conducted a study of surface roughness on the spin-one Ising Model with diffusion using kMC. The surface roughness was found to scale with the melting temperature of the alloy as given by the liquidus line on the equilibrium phase diagram. The density of missing lateral bonds at the surface was used as a measure of surface roughness.
Structure and Properties of Titanium Tantalum Alloys for Biocompatibility
NASA Astrophysics Data System (ADS)
Huber, Daniel E.
In this thesis, the phase stability and elastic modulus of Ti-Ta simple binary alloys as well as alloys with small additions of ternary elements have been studied. The binary alloy from a nominal 8 to 28 wt.% Ta was first explored using a combinatorial approach. This approach included Laser Engineered Net Shape (LENSTM) processing of materials and subsequent characterization by instrumented indentation and site specific Transmission Electron Microscopy (TEM). The composition range of 15 to 75 wt.% Ta was further explored by more traditional methods that included vacuum arc melting high purity elements, X-Ray Diffraction (XRD) and modulus measurements made by ultrasonic methods. Beyond the simple binary, alloys with low levels of ternary elements, oxygen, aluminum, zirconium and small additions of rare earth oxides were investigated. The crystal structure with space group Cmcm was chosen for it applicability with P63/mmc and Im-3¯m sub group / super group symmetry. This provides a consistent crystal structure framework for the purpose of studying the alpha to beta transformation pathway and associated alpha' and alpha'' martensitic phases. In this case, the pathway is defined by both the lattice parameters and the value of the parameter "y", where the parameter "y" describes the atomic positions of the [002]alpha plane. It was found that the lattice parameter changes in the Ti-Ta binary alloys are similar to structures reported for compositions in the Ti-Nb system of similar atomic percentages. Although samples produced by the LENSTM; process and characterized by instrumented indentation demonstrated the correct trends in modulus behavior, absolute agreement was not seen with modulus values published in literature. Alloys of the binary Ti-Ta system produced from high purity materials do indeed show close agreement with literature where there exist two minima of modulus near the compositions of Ti-28Ta wt.% and Ti-68Ta wt.%. These two minima occur at the discreet boundary between alpha' / alpha'' and alpha'' / beta respectively. The role of oxygen as an alloying addition was studied as it relates to the stability of alpha' and alpha'' martensite, here it was found that oxygen will stabilize alpha' yet cause an increase in the Young's modulus. Rare earth additions to getter interstitial oxygen in the high purity materials show no further reduction in modulus. Conversely, additions of another alpha stabilizer, Al, proved to lower the alpha' stability, with one composition exhibiting a modulus as low as 53 GPa. Zirconium being a neutral element regarding alpha and beta stability slightly changed the structure and lattice parameter, while making a little or no difference in the observed modulus. Observations by TEM of quenched specimens indicate the rise in modulus observed between the two minima is not caused the appearance of o. Rather weak o reflections were observed in Ti-65Ta wt.% in the as arc-melted condition and on annealing for 450°C for 24 hours. Precipitates of o were not clearly identified by dark-field TEM imaging. High Resolution Scanning Transmission Electron Microscopy (HRSTEM) of the aged specimen indicated that o might exist as 3-5nm particles.
1982-09-01
alloy , a number of minor phases have been reported (Thompson and Brooks, 1975). The precipitates expected after the heat treatments used in this study... precipitate or inclusion fracture, twin formation, martensite to create detectable acoustic emission. In alloy formation, dislocation motion, and... precipitate anticipated for each heat The nominal composition of 2219 is given in Table 2. It is treatment. essentially a binary aluminium- copper alloy
Thermal stability of atomic layer deposition Al2O3 film on HgCdTe
NASA Astrophysics Data System (ADS)
Zhang, P.; Sun, C. H.; Zhang, Y.; Chen, X.; He, K.; Chen, Y. Y.; Ye, Z. H.
2015-06-01
Thermal stability of Atomic Layer Deposition Al2O3 film on HgCdTe was investigated by Al2O3 film post-deposition annealing treatment and Metal-Insulator-Semiconductor device low-temperature baking treatment. The effectiveness of Al2O3 film was evaluated by measuring the minority carrier lifetime and capacitance versus voltage characteristics. After annealing treatment, the minority carrier lifetime of the HgCdTe sample presented a slight decrease. Furthermore, the fixed charge density and the slow charge density decreased significantly in the annealed MIS device. After baking treatment, the fixed charge density and the slow charge density of the unannealed and annealed MIS devices decreased and increased, respectively.
Phase-field-crystal study of solute trapping
NASA Astrophysics Data System (ADS)
Humadi, Harith; Hoyt, Jeffrey J.; Provatas, Nikolas
2013-02-01
In this study we have incorporated two time scales into the phase-field-crystal model of a binary alloy to explore different solute trapping properties as a function of crystal-melt interface velocity. With only diffusive dynamics, we demonstrate that the segregation coefficient, K as a function of velocity for a binary alloy is consistent with the model of Kaplan and Aziz where K approaches unity in the limit of infinite velocity. However, with the introduction of wavelike dynamics in both the density and concentration fields, the trapping follows the kinetics proposed by Sobolev [Phys. Lett. A10.1016/0375-9601(95)00084-G 199, 383 (1995)], where complete trapping occurs at a finite velocity.
NASA Astrophysics Data System (ADS)
Ektarawong, A.; Simak, S. I.; Alling, B.
2017-07-01
We examine the thermodynamic stability of compounds and alloys in the ternary B-As-P system theoretically using first-principles calculations. We demonstrate that the icosahedral B12As2 is the only stable compound in the binary B-As system, while the zinc-blende BAs is thermodynamically unstable with respect to B12As2 and the pure arsenic phase at 0 K, and increasingly so at higher temperature, suggesting that BAs may merely exist as a metastable phase. On the contrary, in the binary B-P system, both zinc-blende BP and icosahedral B12P2 are predicted to be stable. As for the binary As-P system, As1 -xPx disordered alloys are predicted at elevated temperature—for example, a disordered solid solution of up to ˜75 at.% As in black phosphorus as well as a small solubility of ˜1 at.% P in gray arsenic at T =750 K, together with the presence of miscibility gaps. The calculated large solubility of As in black phosphorus explains the experimental syntheses of black-phosphorus-type As1 -xPx alloys with tunable compositions, recently reported in the literature. We investigate the phase stabilities in the ternary B-As-P system and demonstrate a high tendency for a formation of alloys in the icosahedral B12(As1 -xPx )2 structure by intermixing of As and P atoms at the diatomic chain sites. The phase diagram displays noticeable mutual solubility of the icosahedral subpnictides in each other even at room temperature as well as a closure of a pseudobinary miscibility gap around 900 K. As for pseudobinary BAs1 -xPx alloys, only a tiny amount of BAs is predicted to be able to dissolve in BP to form the BAs1 -xPx disordered alloys at elevated temperature. For example, less than 5% of BAs can dissolve in BP at T =1000 K. The small solubility limit of BAs in BP is attributed to the thermodynamic instability of BAs with respect to B12As2 and As.
NASA Astrophysics Data System (ADS)
Oh, Min-Suk; Kim, Sang-Heon; Kim, Jong-Sang; Lee, Jae-Won; Shon, Je-Ha; Jin, Young-Sool
2016-01-01
The effects of Mg and Al content on the microstructure and corrosion resistance of hot-dip Zn-Mg-Al alloycoated steel sheets were investigated. Pure Zn and Zn-based alloy coatings containing Mg (0-5 wt%) and Al (0.2-55 wt%) were produced by a hot-dip galvanizing method. Mg and Al addition induced formation of intermetallic microstructures, like primary Zn, Zn/MgZn2 binary eutectic, dendric Zn/Al eutectoid, and Zn/Al/MgZn2/ternary eutectic structures in the coating layer. MgZn2-related structures (Zn/MgZn2, Zn/Al/MgZn2, MgZn2) played an important role in increasing the corrosion resistance of Zn-Mg-Al alloy-coated steel sheets. Zn-3%Mg-2.5%Al coating layer containing a large volume of lamellar-shaped Zn/MgZn2 binary eutectic structures showed the best cut-edge corrosion resistance. The analysis indicated that Mg dissolved from MgZn2 in the early stage of corrosion and migrated to the cathodic region of steel-exposed cut-edge area to form dense and ordered protective corrosion products, leading to prolonged cathodic protection of Zn-Mg-Al alloy-coated steel sheets.
NASA Technical Reports Server (NTRS)
Joslin, Steven M.
1995-01-01
A containerless electromagnetically levitated zone (CELZ) process has been used to directionally solidify NiAl and NiAl-based composites. The CELZ processing results in single crystal NiAl (HP-NiAl) having higher purity than commercially pure NiAl grown by a modified Bridgman process (CP-NiAl). The mechanical properties, specifically fracture toughness and creep strength, of the HP-NiAl are superior to binary CP-NiAl and are used as a base-line for comparison with the composite materials subsequently studied. Two-phase composite materials (NiAl-based eutectic alloys) show improvement in room temperature fracture toughness and 1200 to 1400 K creep strength over that of binary HP-NiAl. Metallic phase reinforcements produce the greatest improvement in fracture toughness, while intermetallic reinforcement produces the largest improvement in high temperature strength. Three-phase eutectic alloys and composite materials were identified and directionally solidified with the intent to combine the improvements observed in the two-phase alloys into one alloy. The room temperature fracture toughness and high temperature strength (in air) serve as the basis for comparison between all of the alloys. Finally, the composite materials are discussed in terms of dominant fracture mechanism observed by fractography.
NASA Astrophysics Data System (ADS)
Wang, H. P.; Wei, B.
2009-02-01
The thermophysical properties of the liquid Ni-Si binary alloy system were investigated by the molecular dynamics method. The properties investigated include density, excessive volume, enthalpy, mixing enthalpy and specific heat at both superheated and undercooled states. It is found that the density decreases with an increase in the Si content, and so do the temperature coefficients. If the Si content is smaller than 30%, the density changes linearly with the temperature. If it is larger than 30%, the density is a quadratic function of the temperature. The simulated enthalpies of different composition alloys increase linearly with a rise in temperature. This indicates that the specific heats of Ni-Si alloys change little with temperature. The specific heat versus composition first decreases to a minimum value at 50% Si, then experiences a rise to a maximum value at 90% Si and finally falls again. According to the excessive volume and mixing enthalpy, it can be deduced that the Ni-Si alloy system seriously deviates from the ideal solution. Moreover, a comparison was also performed between the present results and the approximated values by the Neumann-Kopp rule. It reveals that this work provides reasonable data in a broad temperature range, especially for the metastable undercooled liquid state.
Casting Characteristics of High Cerium Content Aluminum Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, D; Rios, O R; Sims, Z C
This paper compares the castability of the near eutectic aluminum-cerium alloy system to the aluminum-silicon and aluminum-copper systems. The alloys are compared based on die filling capability, feeding characteristics and tendency to hot tear in both sand cast and permanent mold applications. The castability ranking of the binary Al–Ce systems is as good as the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium and/or copper, the casting characteristics are generally better than the aluminum-copper system. In general, production systems formore » melting, de-gassing and other processing of aluminum-silicon or aluminum-copper alloys can be used without modification for conventional casting of aluminum-cerium alloys.« less
Low Temperature Photoluminescence Characterization of Orbitally Grown CdZnTe
NASA Technical Reports Server (NTRS)
Ritter, Timothy M.; Larson, D. J.
1998-01-01
The II-VI ternary alloy CdZnTe is a technologically important material because of its use as a lattice matched substrate for HgCdTe based devices. The increasingly stringent requirements on performance that must be met by such large area infrared detectors also necessitates a higher quality substrate. Such substrate material is typically grown using the Bridgman technique. Due to the nature of bulk semiconductor growth, gravitationally dependent phenomena can adversely affect crystalline quality. The most direct way to alleviate this problem is by crystal growth in a reduced gravity environment. Since it requires hours, even days, to grow a high quality crystal, an orbiting space shuttle or space station provides a superb platform on which to conduct such research. For well over ten years NASA has been studying the effects of microgravity semiconductor crystal growth. This paper reports the results of photoluminescence characterization performed on an arbitrary grown CdZnTe bulk crystal.
Thermal analysis of Bridgman-Stockbarger growth. [mercury cadmium telluride single crystals
NASA Technical Reports Server (NTRS)
Knopf, F. W.
1979-01-01
A thermal analysis of a cylindrical HgCdTe sample in a Bridgman-Stockbarger crystal growth configuration was conducted with emphasis on the thermal profile, interface shape and position, and the thermal gradients at the liquid-solid interface. Alloys of HgTe and CdTe with compositions approximating 20 percent CdTe, 80 percent HgTe were used. This composition results in a bandgap suited for the detection of 10.6 micron CO2 radiation. The sensitivity of the sample thermal characteristics to important growth parameters, such as thermal diffusivities, thermal conductivities, furnace temperature profile, ampoule dimensions, and growth velocity was assessed. Numerical techniques and associated computational models necessary to analyze the heat transfer process within the sample and the Bridgman-Stockbarger boundary conditions were developed. This thermal analysis mode was programmed in FORTRAN V, and is currently operational on the MSFC Univac 1100 system.
Prediction of A2 to B2 Phase Transition in the High Entropy Alloy Mo-Nb-Ta-W
NASA Astrophysics Data System (ADS)
Huhn, William; Widom, Michael
2014-03-01
In this talk we show that an effective Hamiltonian fit with first principles calculations predicts an order/disorder transition occurs in the high entropy alloy Mo-Nb-Ta-W. Using the Alloy Theoretic Automated Toolset, we find T=0K enthalpies of formation for all binaries containing Mo, Nb, Ta, and W, and in particular we find the stable structures for binaries at equiatomic concentrations are close in energy to the associated B2 structure, suggesting that at intermediate temperatures a B2 phase is stabilized in Mo-Nb-Ta-W. Our ``hybrid Monte Carlo/molecular dynamics'' results for the Mo-Nb-Ta-W system are analyzed to identify certain preferred chemical bonding types. A mean field free energy model incorporating nearest neighbor bonds will be presented, allowing us to predict the mechanism of the order/disorder transition. We find the temperature evolution of the system is driven by strong Mo-Ta bonding. Comparison of the free energy model and our MC/MD results suggest the existence of additional low-temperature phase transitions in the system likely ending with phase segregation into binary phases. We would like to thank DOD-DTRA for funding this research under contract number DTRA-11-1-0064.
HgZnTe-based detectors for LWIR NASA applications
NASA Technical Reports Server (NTRS)
Patten, Elizabeth A.; Kalisher, Murray H.
1990-01-01
The initial goal was to grow and characterize HgZnTe and determine if it indeed had the advantageous properties that were predicted. Researchers grew both bulk and liquid phase epitaxial HgZnTe. It was determined that HgZnTe had the following properties: (1) microhardness at least 50 percent greater than HgCdTe of equivalent bandgap; (2) Hg annealing rates of at least 2 to 4 times longer than HgCdTe; and (3) higher Hg vacancy formation energies. This early work did not focus on one specific composition (x-value) of HgZnTe since NASA was interested in HgZnTe's potential for a variety of applications. Since the beginning of 1989, researchers have been concentrating, however, on the liquid phase growth of very long wavelength infrared (VLWIR) HgZnTe (cutoff approx. equals 17 microns at 65K) to address the requirements of the Earth Observing System (EOS). Since there are no device models to predict the advantages in reliability one can gain with increased microhardness, surface stability, etc., one must fabricate HgZnTe detectors and assess their relative bake stability (accelerated life test behavior) compared with HgCdTe devices fabricated in the same manner. Researchers chose to fabricate HIT detectors as a development vehicle for this program because high performance in the VLWIR has been demonstrated with HgCdTe HIT detectors and the HgCdTe HIT process should be applicable to HgZnTe. HIT detectors have a significant advantage for satellite applications since these devices dissipate much less power than conventional photoconductors to achieve the same responsivity.
Modelling of Surfaces. Part 2: Metallic Alloy Surfaces Using the BFS Method
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Ferrante, John; Kobistek, Robert J.
1994-01-01
Using BFS, a new semiempirical method for alloys, we study the surface structure of fcc ordered binary alloys. We concentrate on the calculation of surface energies and surface relaxations for the L1(sub 0) and L1(sub 2) ordered structures. Different terminations of the low-index faces are studied. Also, we present results for the interlayer relaxations for planes close to the surface, revealing different relaxations for atoms of different species producing a rippled surface layer.
The Role of Grain Boundary Chemistry and the Environment on Intergranular Fracture.
1980-10-01
and alloys as well. Grain boundary segregation of phosphorus, for example, has been observed in thermally treated nickel-base alloys such as Inconel ...base alloys such as Inconel 600 and Hastelloy C-276. Hence, Ni-P binary glasses may be considered to be good structural and chemical analog of grain...p. 625 17. H.W. Pickering and M. Zamanzedeh: This Conference, Poster Session 18. B.J. Berkowitz, J.J. Burton, C.R. Helms and R.S. Polizzotti
CdZnTe substrate impurities and their effects on liquid phase epitaxy HgCdTe
NASA Astrophysics Data System (ADS)
Tower, J. P.; Tobin, S. P.; Kestigian, M.; Norton, P. W.; Bollong, A. B.; Schaake, H. F.; Ard, C. K.
1995-05-01
Impurity levels were tracked through the stages of substrate and liquid phase epitaxy (LPE) layer processing to identify sources of elements which degrade infrared photodetector performance. Chemical analysis by glow discharge mass spectrometry and Zeeman corrected graphite furnace atomic absorption effectively showed the levels of impurities introduced into CdZnTe substrate material from the raw materials and the crystal growth processes. A new purification process (in situ distillation zone refining) for raw materials was developed, resulting in improved CdZnTe substrate purity. Substrate copper contamination was found to degrade the LPE layer and device electrical properties, in the case of lightly doped HgCdTe. Anomalous HgCdTe carrier type conversion was correlated to certain CdZnTe and CdTe substrate ingots.
Yang, Lei; Ma, Liangong; Huang, Yuanding; Feyerabend, Frank; Blawert, Carsten; Höche, Daniel; Willumeit-Römer, Regine; Zhang, Erlin; Kainer, Karl Ulrich; Hort, Norbert
2017-06-01
Rare earth element Dy is one of the promising alloying elements for magnesium alloy as biodegradable implants. To understand the effect of Dy in solid solution on the degradation of Mg-Dy alloys in simulated physiological conditions, the present work studied the microstructure and degradation behavior of Mg-Dy alloys in cell culture medium. It is found the corrosion resistance enhances with the increase of Dy content in solid solution in Mg. This can be attributed to the formation of a relatively more corrosion resistant Dy-enriched film which decreases the anodic dissolution of Mg. Copyright © 2017 Elsevier B.V. All rights reserved.
Viscosity and diffusivity in melts: from unary to multicomponent systems
NASA Astrophysics Data System (ADS)
Chen, Weimin; Zhang, Lijun; Du, Yong; Huang, Baiyun
2014-05-01
Viscosity and diffusivity, two important transport coefficients, are systematically investigated from unary melt to binary to multicomponent melts in the present work. By coupling with Kaptay's viscosity equation of pure liquid metals and effective radii of diffusion species, the Sutherland equation is modified by taking the size effect into account, and further derived into an Arrhenius formula for the convenient usage. Its reliability for predicting self-diffusivity and impurity diffusivity in unary liquids is then validated by comparing the calculated self-diffusivities and impurity diffusivities in liquid Al- and Fe-based alloys with the experimental and the assessed data. Moreover, the Kozlov model was chosen among various viscosity models as the most reliable one to reproduce the experimental viscosities in binary and multicomponent melts. Based on the reliable viscosities calculated from the Kozlov model, the modified Sutherland equation is utilized to predict the tracer diffusivities in binary and multicomponent melts, and validated in Al-Cu, Al-Ni and Al-Ce-Ni melts. Comprehensive comparisons between the calculated results and the literature data indicate that the experimental tracer diffusivities and the theoretical ones can be well reproduced by the present calculations. In addition, the vacancy-wind factor in binary liquid Al-Ni alloys with the increasing temperature is also discussed. What's more, the calculated inter-diffusivities in liquid Al-Cu, Al-Ni and Al-Ag-Cu alloys are also in excellent agreement with the measured and theoretical data. Comparisons between the simulated concentration profiles and the measured ones in Al-Cu, Al-Ce-Ni and Al-Ag-Cu melts are further used to validate the present calculation method.
NASA Astrophysics Data System (ADS)
Imandoust, Aidin
The origin of texture components associated with rare-earth (RE) element additions in wrought magnesium (Mg) alloys is a long-standing problem in magnesium technology. The objective of this research is to identify the mechanisms accountable for rare-earth texture during dynamic recrystallization (DRX). Towards this end, we designed binary Mg-Cerium and Mg-Gadolinium alloys along with complex alloy compositions containing zinc, yttrium and Mischmetal. Binary alloys along with pure Mg were designed to individually investigate their effects on texture evolutions, while complex compositions are designed to develop randomized texture, and be used in automotive and aerospace applications. We selected indirect extrusion to thermo-mechanically process our materials. Different extrusion ratios and speeds were designed to produce partially and fully recrystallized microstructures, allowing us to analyze DRX from its early stages to completion. X-ray diffraction, electron backscattered diffraction (EBSD) and transmission electron microscopy (TEM) were used to conduct microstructure and texture analyses. Our analyses revealed that rare-earth elements in zinc-containing magnesium alloys promote discontinuous dynamic recrystallization at the grain boundaries. During nucleation, the effect of rare earth elements on orientation selection was explained by the concomitant actions of multiple Taylor axes in the same grain. Isotropic grain growth was observed due to rare earth elements segregating to grain boundaries, which lead to texture randomization. The nucleation in binary Mg-RE alloys took place by continuous formation of necklace structures. Stochastic relaxation of basal and non-basal dislocations into low-angle grain boundaries produced chains of embryos with nearly random orientations. Schmid factor analysis showed a lower net activation of dislocations in RE textured grains compared to ones on the other side of the stereographic triangle. Lower dislocation densities within RE grains favored their growth by setting the boundary migration direction toward grains with higher dislocation density, thereby decreasing the system energy. We investigated the influence of RE elements on extension twinning induced hardening. RE addition enhanced tensile twinning induced hardening significantly. EBSD analysis illustrated that tensile twins cross low angle grain boundaries in Mg-RE alloys, which produced large twins and facilitated transmutation of basal to prismatic dislocations. Higher activity of pyramidal II dislocations in Mg-RE alloys resulted in higher twinning induced hardening.
Gravity-induced anomalies in interphase spacing reported for binary eutectics.
Smith, Reginald W
2002-10-01
It has been reasoned that desirable microstructural refinement in binary eutectics could result from freezing in reduced-gravity. It is recognized that the interphase spacing in a binary eutectic is controlled by solute transport and that, on Earth, buoyancy-driven convection may enhance this. Hence, it has been presumed that the interphase spacing ought to decrease when a eutectic alloy is frozen under conditions of much-reduced gravity, where such buoyancy effects would be largely absent. The result of such speculation has been that many workers have frozen various eutectics under reduced gravity and have reported that, although some eutectics became finer, others showed no change, and some even became coarser. This reported varied behavior will be reviewed in the light of long term studies by the author at Queen's University, including recent microgravity studies in which samples of two eutectic alloy systems, MnBi-Bi and MnSb-Sb, were frozen under very stable conditions and showed no change in interphase spacing.
First-principles study of amorphous Ga4Sb6Te3 phase-change alloys
NASA Astrophysics Data System (ADS)
Bouzid, Assil; Gabardi, Silvia; Massobrio, Carlo; Boero, Mauro; Bernasconi, Marco
2015-05-01
First-principles molecular dynamics simulations within the density functional theory framework were performed to generate amorphous models of the Ga4Sb6Te3 phase change alloy by quenching from the melt. We find that Ga-Sb and Ga-Te are the most abundant bonds with only a minor amount of Sb-Te bonds participating to the alloy network. Ga and four-coordinated Sb atoms present a tetrahedral-like geometry, whereas three-coordinated Sb atoms are in a pyramidal configuration. The tetrahedral-like geometries are similar to those of the crystalline phase of the two binary compounds GaTe and GaSb. A sizable fraction of Sb-Sb bonds is also present, indicating a partial nanoscale segregation of Sb. Despite the fact that the composition Ga4Sb6Te3 lies on the pseudobinary Ga Sb -Sb2Te3 tie line, the amorphous network can be seen as a mixture of the two binary compounds GaTe and GaSb with intertwined elemental Sb.
Morphological instabilities of rapidly solidified binary alloys under weak flow
NASA Astrophysics Data System (ADS)
Kowal, Katarzyna; Davis, Stephen
2017-11-01
Additive manufacturing, or three-dimensional printing, offers promising advantages over existing manufacturing techniques. However, it is still subject to a range of undesirable effects. One of these involves the onset of flow resulting from sharp thermal gradients within the laser melt pool, affecting the morphological stability of the solidified alloys. We examine the linear stability of the interface of a rapidly solidifying binary alloy under weak boundary-layer flow by performing an asymptotic analysis for a singular perturbation problem that arises as a result of departures from the equilibrium phase diagram. Under no flow, the problem involves cellular and pulsatile instabilities, stabilised by surface tension and attachment kinetics. We find that travelling waves appear as a result of flow and we map out the effect of flow on two absolute stability boundaries as well as on the cells and solute bands that have been observed in experiments under no flow. This work is supported by the National Institute of Standards and Technology [Grant Number 70NANB14H012].
GPU-accelerated phase-field simulation of dendritic solidification in a binary alloy
NASA Astrophysics Data System (ADS)
Yamanaka, Akinori; Aoki, Takayuki; Ogawa, Satoi; Takaki, Tomohiro
2011-03-01
The phase-field simulation for dendritic solidification of a binary alloy has been accelerated by using a graphic processing unit (GPU). To perform the phase-field simulation of the alloy solidification on GPU, a program code was developed with computer unified device architecture (CUDA). In this paper, the implementation technique of the phase-field model on GPU is presented. Also, we evaluated the acceleration performance of the three-dimensional solidification simulation by using a single NVIDIA TESLA C1060 GPU and the developed program code. The results showed that the GPU calculation for 5763 computational grids achieved the performance of 170 GFLOPS by utilizing the shared memory as a software-managed cache. Furthermore, it can be demonstrated that the computation with the GPU is 100 times faster than that with a single CPU core. From the obtained results, we confirmed the feasibility of realizing a real-time full three-dimensional phase-field simulation of microstructure evolution on a personal desktop computer.
Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad
2017-11-01
Self-controlled hyperthermia is a non-invasive technique used to kill or destroy cancer cells while preserving normal surrounding tissues. We have explored bulk magnetic Ni-Si and Ni-Al alloys as a potential thermoseeds. The structural, magnetic and magnetocaloric properties of the samples were investigated, including saturation magnetisation, Curie temperature (T C ), and magnetic and thermal hysteresis, using room temperature X-ray diffraction and magnetometry. The annealing time, temperature and the effects of homogenising the thermoseeds were studied to determine the functional hyperthermia applications. The bulk Ni-Si and Ni-Al binary alloys have Curie temperatures in the desired range, 316 K-319 K (43 °C-46 °C), which is suitable for magnetic hyperthermia applications. We have found that T C strictly follows a linear trend with doping concentration over a wide range of temperature. The magnetic ordering temperature and the magnetic properties can be controlled through substitution in these binary alloys.
Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.
2003-12-16
A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.
NASA Technical Reports Server (NTRS)
Tewari, Surendra N.; Trivedi, Rohit
1991-01-01
Development of steady-state periodic cellular array is one of the critical problems in the study of nonlinear pattern formation during directional solidification of binary alloys. The criterion which establishes the values of cell tip radius and spacing under given growth condition is not known. Theoretical models, such as marginal stability and microscopic solvability, have been developed for purely diffusive regime. However, the experimental conditions where cellular structures are stable are precisely the ones where the convection effects are predominant. Thus, the critical data for meaningful evaluation of cellular array growth models can only be obtained by partial directional solidification and quenching experiments carried out in the low gravity environment of space.
New Approaches to the Computer Simulation of Amorphous Alloys: A Review.
Valladares, Ariel A; Díaz-Celaya, Juan A; Galván-Colín, Jonathan; Mejía-Mendoza, Luis M; Reyes-Retana, José A; Valladares, Renela M; Valladares, Alexander; Alvarez-Ramirez, Fernando; Qu, Dongdong; Shen, Jun
2011-04-13
In this work we review our new methods to computer generate amorphous atomic topologies of several binary alloys: SiH, SiN, CN; binary systems based on group IV elements like SiC; the GeSe 2 chalcogenide; aluminum-based systems: AlN and AlSi, and the CuZr amorphous alloy. We use an ab initio approach based on density functionals and computationally thermally-randomized periodically-continued cells with at least 108 atoms. The computational thermal process to generate the amorphous alloys is the undermelt-quench approach, or one of its variants, that consists in linearly heating the samples to just below their melting (or liquidus) temperatures, and then linearly cooling them afterwards. These processes are carried out from initial crystalline conditions using short and long time steps. We find that a step four-times the default time step is adequate for most of the simulations. Radial distribution functions (partial and total) are calculated and compared whenever possible with experimental results, and the agreement is very good. For some materials we report studies of the effect of the topological disorder on their electronic and vibrational densities of states and on their optical properties.
Estimation of the viscosities of liquid binary alloys
NASA Astrophysics Data System (ADS)
Wu, Min; Su, Xiang-Yu
2018-01-01
As one of the most important physical and chemical properties, viscosity plays a critical role in physics and materials as a key parameter to quantitatively understanding the fluid transport process and reaction kinetics in metallurgical process design. Experimental and theoretical studies on liquid metals are problematic. Today, there are many empirical and semi-empirical models available with which to evaluate the viscosity of liquid metals and alloys. However, the parameter of mixed energy in these models is not easily determined, and most predictive models have been poorly applied. In the present study, a new thermodynamic parameter Δ G is proposed to predict liquid alloy viscosity. The prediction equation depends on basic physical and thermodynamic parameters, namely density, melting temperature, absolute atomic mass, electro-negativity, electron density, molar volume, Pauling radius, and mixing enthalpy. Our results show that the liquid alloy viscosity predicted using the proposed model is closely in line with the experimental values. In addition, if the component radius difference is greater than 0.03 nm at a certain temperature, the atomic size factor has a significant effect on the interaction of the binary liquid metal atoms. The proposed thermodynamic parameter Δ G also facilitates the study of other physical properties of liquid metals.
New Approaches to the Computer Simulation of Amorphous Alloys: A Review
Valladares, Ariel A.; Díaz-Celaya, Juan A.; Galván-Colín, Jonathan; Mejía-Mendoza, Luis M.; Reyes-Retana, José A.; Valladares, Renela M.; Valladares, Alexander; Alvarez-Ramirez, Fernando; Qu, Dongdong; Shen, Jun
2011-01-01
In this work we review our new methods to computer generate amorphous atomic topologies of several binary alloys: SiH, SiN, CN; binary systems based on group IV elements like SiC; the GeSe2 chalcogenide; aluminum-based systems: AlN and AlSi, and the CuZr amorphous alloy. We use an ab initio approach based on density functionals and computationally thermally-randomized periodically-continued cells with at least 108 atoms. The computational thermal process to generate the amorphous alloys is the undermelt-quench approach, or one of its variants, that consists in linearly heating the samples to just below their melting (or liquidus) temperatures, and then linearly cooling them afterwards. These processes are carried out from initial crystalline conditions using short and long time steps. We find that a step four-times the default time step is adequate for most of the simulations. Radial distribution functions (partial and total) are calculated and compared whenever possible with experimental results, and the agreement is very good. For some materials we report studies of the effect of the topological disorder on their electronic and vibrational densities of states and on their optical properties. PMID:28879948
Surface tension estimation of high temperature melts of the binary alloys Ag-Au
NASA Astrophysics Data System (ADS)
Dogan, Ali; Arslan, Hüseyin
2017-11-01
Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.
InAs/GaSb type-II superlattice infrared detectors: Future prospect
NASA Astrophysics Data System (ADS)
Rogalski, A.; Martyniuk, P.; Kopytko, M.
2017-09-01
Investigations of antimonide-based materials began at about the same time as HgCdTe ternary alloys—in the 1950s, and the apparent rapid success of their technology, especially low-dimensional solids, depends on the previous five decades of III-V materials and device research. However, the sophisticated physics associated with the antimonide-based bandgap engineering concept started at the beginning of 1990s gave a new impact and interest in development of infrared detector structures within academic and national laboratories. The development of InAs/GaSb type-II superlattices (T2SLs) results from two primary motivations: the perceived challenges of reproducibly fabricating high-operability HgCdTe focal plane arrays (FPAs) at reasonable cost and the theoretical predictions of lower Auger recombination for type T2SL detectors compared with HgCdTe. Second motivation—lower Auger recombination should be translated into a fundamental advantage for T2SL over HgCdTe in terms of lower dark current and/or higher operating temperature, provided other parameters such as Shockley-Read-Hall (SRH) lifetime are equal. InAs/GaSb T2SL photodetectors offer similar performance to HgCdTe at an equivalent cut-off wavelength, but with a sizeable penalty in operating temperature, due to the inherent difference in SRH lifetimes. It is predicted that since the future infrared (IR) systems will be based on the room temperature operation of depletion-current limited arrays with pixel densities that are fully consistent with background- and diffraction-limited performance due to the system optics, the material system with long SRH lifetime will be required. Since T2SLs are very much resisted in attempts to improve its SRH lifetime, currently the only material that meets this requirement is HgCdTe. Due to less ionic chemical bonding, III-V semiconductors are more robust than their II-VI counterparts. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability, scalability, producibility, and affordability—the so-called "ibility" advantages.
Criteria for predicting the formation of single-phase high-entropy alloys
Troparevsky, M Claudia; Morris, James R..; Kent, Paul R.; ...
2015-03-15
High entropy alloys constitute a new class of materials whose very existence poses fundamental questions. Originally thought to be stabilized by the large entropy of mixing, these alloys have attracted attention due to their potential applications, yet no model capable of robustly predicting which combinations of elements will form a single-phase currently exists. Here we propose a model that, through the use of high-throughput computation of the enthalpies of formation of binary compounds, is able to confirm all known high-entropy alloys while rejecting similar alloys that are known to form multiple phases. Despite the increasing entropy, our model predicts thatmore » the number of potential single-phase multicomponent alloys decreases with an increasing number of components: out of more than two million possible 7-component alloys considered, fewer than twenty single-phase alloys are likely.« less
Characterization of microstructural, mechanical and thermophysical properties of Th-52U alloy
NASA Astrophysics Data System (ADS)
Das, Santanu; Kaity, S.; Kumar, R.; Banerjee, J.; Roy, S. B.; Chaudhari, G. P.; Daniel, B. S. S.
2016-11-01
Th-52 wt.% U alloy has a microstructure featuring interspersed networks of uranium rich and thorium rich phases. Room temperature hardness of the alloy is more than twice that of unalloyed thorium. The alloy age hardens (550 °C) only slightly (peak hardness/hardness of solution heated and quenched = 1.05). Room temperature thermal conductivity (25.6 W m-1 °C-1) is close to that of uranium and most of the binary and ternary metallic alloy fuel materials. Average linear coefficient of thermal expansion (CTE) of Th-52 wt.% U alloy [11.2 × 10-06 °C-1 (27-290 °C) and 16.75 × 10-06 °C-1 (27-600 °C)] are comparable with that of many metallic alloy fuel candidates. Th-52 wt.% U alloy with non-age hardenable microstructure, appreciable thermal conductivity, moderate thermal expansion may find metallic fuel applications in nuclear reactors.
Structural, microstructural and thermal analysis of U-(6-x)Zr-xNb alloys (x = 0, 2, 4, 6)
NASA Astrophysics Data System (ADS)
Kaity, Santu; Banerjee, Joydipta; Parida, S. C.; Bhasin, Vivek
2018-06-01
Uranium-rich U-Zr-Nb alloy is considered as a good alternative fuel for fast reactors from the perspective of excellent dimensional stability and desired thermo-physical properties to achieve higher burnup. Detailed investigations related to the structural and microstructural characterization, thermal expansion, phase transformation, microhardness were carried out on U-6Zr, U-4Zr-2Nb, U-2Zr-4Nb and U-6Nb alloys (composition in wt%) where the total amount of alloying elements was restricted to 6 wt%. Structural, microstructural and thermal analysis studies revealed that these alloys undergo a series of transformations from high temperature bcc γ-phase to a variety of equilibrium and intermediate phases depending upon alloy composition, cooling rate and quenching. The structural analysis was carried out by Rietveld refinement. The data of U-Nb and U-Zr-Nb alloys have been highlighted and compared with binary U-Zr alloy.
Acceptable aluminum additions for minimal environmental effect in iron-aluminum alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikka, V.K.; Viswanathan, S.; Vyas, S.
A systematic study of iron-aluminum alloys has shown that Fe-16 at. % Al alloys are not very sensitive to environmental embrittlement. The Fe-22 and -28 at. % Al alloys are sensitive to environmental embrittlement, and the effect can be reduced by the addition of chromium and through the control of grain size by additions of zirconium and carbon. The Fe-16 at. % Al binary, and alloys based on it, yielded over 20% room-temperature (RT) elongation even after high-temperature annealing treatments at 1100[degree]C. The best values for the Fe-22 and -28 at. % Al-base alloys after similar annealing treatments were 5more » and 10%, respectively. A multicomponent alloy, FAP, based on Fe- 16 at. % Al was designed, which gave an RT ductility of over 25%.« less
Acceptable aluminum additions for minimal environmental effect in iron-aluminum alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikka, V.K.; Viswanathan, S.; Vyas, S.
A systematic study of iron-aluminum alloys has shown that Fe-16 at. % Al alloys are not very sensitive to environmental embrittlement. The Fe-22 and -28 at. % Al alloys are sensitive to environmental embrittlement, and the effect can be reduced by the addition of chromium and through the control of grain size by additions of zirconium and carbon. The Fe-16 at. % Al binary, and alloys based on it, yielded over 20% room-temperature (RT) elongation even after high-temperature annealing treatments at 1100{degree}C. The best values for the Fe-22 and -28 at. % Al-base alloys after similar annealing treatments were 5more » and 10%, respectively. A multicomponent alloy, FAP, based on Fe- 16 at. % Al was designed, which gave an RT ductility of over 25%.« less
Liu, Yang; Wu, Yuanhao; Bian, Dong; Gao, Shuang; Leeflang, Sander; Guo, Hui; Zheng, Yufeng; Zhou, Jie
2017-10-15
Novel Mg-(3.5, 6.5wt%)Li-(0.5, 2, 4wt%)Zn ternary alloys were developed as new kinds of biodegradable metallic materials with potential for stent application. Their mechanical properties, degradation behavior, cytocompatibility and hemocompatibility were studied. These potential biomaterials showed higher ultimate tensile strength than previously reported binary Mg-Li alloys and ternary Mg-Li-X (X=Al, Y, Ce, Sc, Mn and Ag) alloys. Among the alloys studied, the Mg-3.5Li-2Zn and Mg-6.5Li-2Zn alloys exhibited comparable corrosion resistance in Hank's solution to pure magnesium and better corrosion resistance in a cell culture medium than pure magnesium. Corrosion products observed on the corroded surface were composed of Mg(OH) 2 , MgCO 3 and Ca-free Mg/P inorganics and Ca/P inorganics. In vitro cytotoxicity assay revealed different behaviors of Human Umbilical Vein Endothelial Cells (HUVECs) and Human Aorta Vascular Smooth Muscle Cells (VSMCs) to material extracts. HUVECs showed increasing nitric oxide (NO) release and tolerable toxicity, whereas VSMCs exhibited limited decreasing viability with time. Platelet adhesion, hemolysis and coagulation tests of these Mg-Li-Zn alloys showed different degrees of activation behavior, in which the hemolysis of the Mg-3.5Li-2Zn alloy was lower than 5%. These results indicated the potential of the Mg-Li-Zn alloys as good candidate materials for cardiovascular stent applications. Mg-Li alloys are promising as absorbable metallic biomaterials, which however have not received significant attention since the low strength, controversial corrosion performance and the doubts in Li toxicity. The Mg-Li-Zn alloy in the present study revealed much improved mechanical properties higher than most reported binary Mg-Li and ternary Mg-Li-X alloys, with superior corrosion resistance in cell culture media. Surprisingly, the addition of Li and Zn showed increased nitric oxide release. The present study indicates good potential of Mg-Li-Zn alloy as absorbable cardiovascular stent material. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dias, Marcelino; Costa, Thiago A.; Soares, Thiago; Silva, Bismarck L.; Cheung, Noé; Spinelli, José E.; Garcia, Amauri
2018-02-01
Transient directional solidification experiments, and further optical and scanning electron microscopy analyses and tensile tests, allowed the dependence of tensile properties on the micromorphology and length scale of the dendritic/cellular matrix of ternary Sn-5.5Sb-1Ag and Sn-5.5Sb-1Cu alloys to be determined. Extensive ranges of cooling rates were obtained, which permitted specific values of cooling rate for each sample examined along the length of the casting to be attributed. Very broad microstructural length scales were revealed as well as the presence of either cells or dendrites for the Ag-containing alloy. Hereafter, microstructural spacing values such as the cellular spacing, λ c, and the primary dendritic spacing, λ 1, may be correlated with thermal solidification parameters, that is, the cooling rate and the growth rate. While, for the Cu-containing Sn-Sb alloy, the β-Sn matrix is characterized only by the presence of dendritic arrangements, the Ag-containing Sn-Sb alloy is shown to have high-velocity β-Sn cells associated with high cooling rate regions, i.e., positions closer to the bottom of the alloy casting, with the remaining positions being characterized by a complex growth of β-Sn dendrites. Minor additions of Cu and Ag increase both the yield and ultimate tensile strengths when compared with the corresponding values of the binary Sn-5.5Sb alloy, with a small reduction in ductility. This has been attributed to the homogeneous distribution of the Ag3Sn and Cu6Sn5 intermetallic particles related to smaller λ 1 characterizing the dendritic zones of the ternary Sn-Sb-(Cu,Ag) alloys. In addition, the Ag-modified Sn-Sb alloy exhibited an initial wetting angle consistent with that characterizing the binary Sn-5.5Sb alloy.
Song, Ho-Jun; Han, Mi-Kyung; Jeong, Hyeon-Gyeong; Lee, Yong-Tai; Park, Yeong-Joon
2014-01-01
The microstructure, mechanical properties, and corrosion behavior of binary Ti-xPt alloys containing 5, 10, 15 and 20 wt% Pt were investigated in order to develop new Ti-based dental materials possessing superior properties than those of commercially pure titanium (cp-Ti). All of the Ti-xPt (x = 5, 10, 15, 20) alloys showed hexagonal α-Ti structure with cubic Ti3Pt intermetallic phase. The mechanical properties and corrosion behavior of Ti-xPt alloys were sensitive to the Pt content. The addition of Pt contributed to hardening of cp-Ti and to improving its oxidation resistance. Electrochemical results showed that the Ti-xPt alloys exhibited superior corrosion resistance than that of cp-Ti. PMID:28788660
Mashing up metals with carbothermal shock
NASA Astrophysics Data System (ADS)
Skrabalak, Sara E.
2018-03-01
Different materials and the capabilities they enabled have marked the ages of civilization. For example, the malleable copper alloys of the Bronze Age provided harder and more durable tools. Most exploration of new alloys has focused on random alloys, in which the alloying metal sites have no metal preference. In binary and ternary metal systems, dissimilar elements do not mix readily at high concentrations, which has limited alloying studies to intermetallics (ordered multimetallic phases) and random alloys, in which minor components are added to a principal element. In 2004, crystalline metal alloys consisting of five or more principal elements in equal or nearly equal amounts (1, 2) were reported that were stabilized by their high configurational entropy. Unlike most random alloys, the “high-entropy” alloys (3, 4) reside in the centers of their multidimensional phase diagrams (see the figure, right). On page 1489 of this issue, Yao et al. (5) present an innovative and general route to high-entropy alloys that can mix up to eight elements into single-phase, size-controlled nanoparticles (NPs).
Macrosegregation in aluminum alloy ingot cast by the semicontinuous direct chill method
NASA Technical Reports Server (NTRS)
Yu, H.; Granger, D. A.
1984-01-01
A theoretical model of the semicontinuous DC casting method is developed to predict the positive segregation observed at the subsurface and the negative segregation commonly found at the center of large commercial-size aluminum alloy ingot. Qualitative analysis of commercial-size aluminum alloy semicontinuous cast direct chill (DC) ingot is carried out. In the analysis, both positive segregation in the ingot subsurface and negative segregation at the center of the ingot are examined. Ingot subsurface macrosegregation is investigated by considering steady state casting of a circular cross-section binary alloy ingot. Nonequilibrium solidification is assumed with no solid diffusion, constant equilibrium partition ratio, and constant solid density.
HgCdTe APDS for time resolved space applications
NASA Astrophysics Data System (ADS)
Rothman, J.; Lasfargues, G.; Delacourt, B.; Dumas, A.; Gibert, F.; Bardoux, A.; Boutillier, M.
2017-09-01
HgCdTe APDs have opened a new horizon in photon starved applications due to their exceptional performance in terms of high linear gain, low excess noise and high quantum efficiency. Both focal plane arrays (FPAs) and large array single element using HgCdTe (MCT) APDs have been developed at CEA/Leti and Sofradir and high performance devices are at present available to detect without deterioration the spatial and/or temporal information in photon fluxes with a low number of photon in each spatio-temporal bin. The enhancement in performance that can be achieved with MCT has subsequently been demonstrated in a wide scope of applications such as astronomical observations, active imaging, deep space telecommunications, atmospheric LIDAR and mid-IR (MIR) time resolved photoluminescence measurements. Most of these applications can be used in space borne platforms.
NASA Astrophysics Data System (ADS)
Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon
2016-03-01
A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.
A phase field model for segregation and precipitation induced by irradiation in alloys
NASA Astrophysics Data System (ADS)
Badillo, A.; Bellon, P.; Averback, R. S.
2015-04-01
A phase field model is introduced to model the evolution of multicomponent alloys under irradiation, including radiation-induced segregation and precipitation. The thermodynamic and kinetic components of this model are derived using a mean-field model. The mobility coefficient and the contribution of chemical heterogeneity to free energy are rescaled by the cell size used in the phase field model, yielding microstructural evolutions that are independent of the cell size. A new treatment is proposed for point defect clusters, using a mixed discrete-continuous approach to capture the stochastic character of defect cluster production in displacement cascades, while retaining the efficient modeling of the fate of these clusters using diffusion equations. The model is tested on unary and binary alloy systems using two-dimensional simulations. In a unary system, the evolution of point defects under irradiation is studied in the presence of defect clusters, either pre-existing ones or those created by irradiation, and compared with rate theory calculations. Binary alloys with zero and positive heats of mixing are then studied to investigate the effect of point defect clustering on radiation-induced segregation and precipitation in undersaturated solid solutions. Lastly, irradiation conditions and alloy parameters leading to irradiation-induced homogeneous precipitation are investigated. The results are discussed in the context of experimental results reported for Ni-Si and Al-Zn undersaturated solid solutions subjected to irradiation.
Comparative performance of HgCdTe photodiodes for heterodyne application
NASA Technical Reports Server (NTRS)
Kowitz, H. R.
1980-01-01
The use of photodiodes as optical photomixers in laser heterodyne spectroscopy systems is discussed. The quantum efficiency of the photodiodes is reported with the emphasis on its effect on the system's signal to noise ratio. The measurement techniques used to determine photodiode dc and heterodyne quantum efficiencies are described. The theory behind the measurements as well as actual measurements data for two HgCdTe photodiodes are presented.
Defense Industrial Base Assessment: U.S. Imaging and Sensors Industry
2006-10-01
uncooled devices, but provide much higher resolution. The semiconductor material used in the detector is typically mercury cadmium telluride (HgCdTe...The material principally used in the arrays was mercury cadmium telluride (HgCdTe). Generation 2 detectors significantly improved the signal-to...Silicide (PtSi), Gallium Arsenide (GaAs), Aluminum Gallium Arsenide (AlGaAs), Mercury Cadmium Telluride (HgCdTe), Indium Gallium Arsenide (InGaAs
In-Vitro Corrosion Studies of Bioabsorbable Alloys
NASA Astrophysics Data System (ADS)
Gill, P.; Munroe, N.
Magnesium alloys have inspired a significant amount of attention from researchers all over the world for cardiovascular and orthopedic applications due to their light weight, mechanical integrity and degradation behavior. In this investigation, cast manufactured binary, ternary and quaternary magnesium alloys were studied for their degradation behavior by potentiodynamic polarization tests in phosphate buffer saline solution (PBS) and PBS containing amino acids (cysteine, C and tryptophan, W) at 37 °C. Electrochemical impedance spectroscopy (EIS) tests were performed to determine the charge transfer resistance and immersion tests were performed to assess corrosion rate and hydrogen evolution from the alloys. Furthermore, the surface morphology and surface chemistry of the alloys were observed by scanning electron microscopy (SEM) and X-ray diffraction (XRD).
LWIR HgCdTe Detectors Grown on Ge Substrates
NASA Astrophysics Data System (ADS)
Vilela, M. F.; Lofgreen, D. D.; Smith, E. P. G.; Newton, M. D.; Venzor, G. M.; Peterson, J. M.; Franklin, J. J.; Reddy, M.; Thai, Y.; Patten, E. A.; Johnson, S. M.; Tidrow, M. Z.
2008-09-01
Long-wavelength infrared (LWIR) HgCdTe p-on- n double-layer heterojunctions (DLHJs) for infrared detector applications have been grown on 100 mm Ge (112) substrates by molecular beam epitaxy (MBE). The objective of this current work was to grow our baseline p-on- n DLHJ detector structure (used earlier on Si substrates) on 100 mm Ge substrates in the 10 μm to 11 μm LWIR spectral region, evaluate the material properties, and obtain some preliminary detector performance data. Material characterization techniques included are X-ray rocking curves, etch pit density (EPD) measurements, compositional uniformity determined from Fourier-transform infrared (FTIR) transmission, and doping concentrations determined from secondary-ion mass spectroscopy (SIMS). Detector properties include resistance-area product (RoA), spectral response, and quantum efficiency. Results of LWIR HgCdTe detectors and test structure arrays (TSA) fabricated on both Ge and silicon (Si) substrates are presented and compared. Material properties demonstrated include X-ray full-width of half-maximum (FWHM) as low as 77 arcsec, typical etch pit densities in mid 106 cm-2 and wavelength cutoff maximum/minimum variation <2% across the full wafer. Detector characteristics were found to be nearly identical for HgCdTe grown on either Ge or Si substrates.
Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode
NASA Technical Reports Server (NTRS)
Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli
2014-01-01
The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.
Alloy Design Data Generated for B2-Ordered Compounds
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Bozzolo, Guillermo; Abel, Phillip B.
2003-01-01
Developing alloys based on ordered compounds is significantly more complicated than developing designs based on disordered materials. In ordered compounds, the major constituent elements reside on particular sublattices. Therefore, the addition of a ternary element to a binary-ordered compound is complicated by the manner in which the ternary addition is made (at the expense of which binary component). When ternary additions are substituted for the wrong constituent, the physical and mechanical properties usually degrade. In some cases the resulting degradation in properties can be quite severe. For example, adding alloying additions to NiAl in the wrong combination (i.e., alloying additions that prefer the Al sublattice but are added at the expense of Ni) will severely embrittle the alloy to the point that it can literally fall apart during processing on cooling from the molten state. Consequently, alloying additions that strongly prefer one sublattice over another should always be added at the expense of that component during alloy development. Elements that have a very weak preference for a sublattice can usually be safely added at the expense of either element and will accommodate any deviation from stoichiometry by filling in for the deficient component. Unfortunately, this type of information is not known beforehand for most ordered systems. Therefore, a computational survey study, using a recently developed quantum approximate method, was undertaken at the NASA Glenn Research Center to determine the preferred site occupancy of ternary alloying additions to 12 different B2-ordered compounds including NiAl, FeAl, CoAl, CoFe, CoHf, CoTi, FeTi, RuAl, RuSi, RuHf, RuTi, and RuZr. Some of these compounds are potential high temperature structural alloys; others are used in thin-film magnetic and other electronic applications. The results are summarized. The italicized elements represent the previous sum total alloying information known and verify the computational method used to establish the table. Details of the computational procedures used to determine the preferred site occupancy can be found in reference 2. As further substantiation of the validity of the technique, and its extension to even more complicated systems, it was applied to two simultaneous alloying additions in an ordered alloy.
Stable biomimetic super-hydrophobic engineering materials.
Guo, Zhiguang; Zhou, Feng; Hao, Jingcheng; Liu, Weimin
2005-11-16
We describe a simple and inexpensive method to produce super-hydrophobic surfaces on aluminum and its alloy by oxidation and chemical modification. Water or aqueous solutions (pH = 1-14) have contact angles of 168 +/- 2 and 161 +/- 2 degrees on the treated surfaces of Al and Al alloy, respectively. The super-hydrophobic surfaces are produced by the cooperation of binary structures at micro- and nanometer scales, thus reducing the energies of the surfaces. Such super-hydrophobic properties will greatly extend the applications of aluminum and its alloy as lubricating materials.
PROCESS OF DISSOLVING ZIRCONIUM ALLOYS
Shor, R.S.; Vogler, S.
1958-01-21
A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.
TERNARY ALLOY-CONTAINING PLUTONIUM
Waber, J.T.
1960-02-23
Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.
Enamullah, .; Johnson, D. D.; Suresh, K. G.; ...
2016-11-07
Heusler compounds offer potential as spintronic devices due to their spin polarization and half-metallicity properties, where electron spin-majority (minority) manifold exhibits states (band gap) at the electronic chemical potential, yielding full spin polarization in a single manifold. Yet, Heuslers often exhibit intrinsic disorder that degrades its half-metallicity and spin polarization. Using density-functional theory, we analyze the electronic and magnetic properties of equiatomic Heusler (L2 1) CoMnCrAl and CoFeCrGe alloys for effects of hydrostatic pressure and intrinsic disorder (thermal antisites, binary swaps, and vacancies). Under pressure, CoMnCrAl undergoes a metallic transition, while half-metallicity in CoFeCrGe is retained for a limited range.more » Antisite disorder between Cr-Al pair in CoMnCrAl alloy is energetically the most favorable, and retains half-metallic character in Cr-excess regime. However, Co-deficient samples in both alloys undergo a transition from half-metallic to metallic, with a discontinuity in the saturation magnetization. For binary swaps, configurations that compete with the ground state are identified and show no loss of half-metallicity; however, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. For single binary swaps, there is a significant energy cost in CoMnCrAl but with no loss of half-metallicity. Although a few configurations in CoFeCrGe energetically compete with the ground state, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. Furthermore, this information should help in controlling these potential spintronic materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enamullah, .; Johnson, D. D.; Suresh, K. G.
Heusler compounds offer potential as spintronic devices due to their spin polarization and half-metallicity properties, where electron spin-majority (minority) manifold exhibits states (band gap) at the electronic chemical potential, yielding full spin polarization in a single manifold. Yet, Heuslers often exhibit intrinsic disorder that degrades its half-metallicity and spin polarization. Using density-functional theory, we analyze the electronic and magnetic properties of equiatomic Heusler (L2 1) CoMnCrAl and CoFeCrGe alloys for effects of hydrostatic pressure and intrinsic disorder (thermal antisites, binary swaps, and vacancies). Under pressure, CoMnCrAl undergoes a metallic transition, while half-metallicity in CoFeCrGe is retained for a limited range.more » Antisite disorder between Cr-Al pair in CoMnCrAl alloy is energetically the most favorable, and retains half-metallic character in Cr-excess regime. However, Co-deficient samples in both alloys undergo a transition from half-metallic to metallic, with a discontinuity in the saturation magnetization. For binary swaps, configurations that compete with the ground state are identified and show no loss of half-metallicity; however, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. For single binary swaps, there is a significant energy cost in CoMnCrAl but with no loss of half-metallicity. Although a few configurations in CoFeCrGe energetically compete with the ground state, the minority-spin band gap and magnetic moments vary depending on the atoms swapped. Furthermore, this information should help in controlling these potential spintronic materials.« less
High pressure study of Pu(0.92)Am(0.08) binary alloy.
Klosek, V; Griveau, J C; Faure, P; Genestier, C; Baclet, N; Wastin, F
2008-07-09
The phase transitions (by means of x-ray diffraction) and electrical resistivity of a Pu(0.92)Am(0.08) binary alloy were determined under pressure (up to 2 GPa). The evolution of atomic volume with pressure gives detailed information concerning the degree of localization of 5f electronic states and their delocalization process. A quasi-linear V = f(P) dependence reflects subtle modifications of the electronic structure when P increases. The electrical resistivity measurements reveal the very high stability of the δ phase for pressures less than 0.7 GPa, since no martensitic-like transformation occurs at low temperature. Remarkable electronic behaviours have also been observed. Finally, resistivity curves have shown the temperature dependence of the phase transformations together with unexpected kinetic effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Gurvinderjit; Singh, Bhajan, E-mail: bhajan2k1@yahoo.co.in; Sandhu, B. S.
2015-08-28
The present measurements are carried out to investigate the multiple scattering of 662 keV gamma photons emerging from targets of binary alloys (brass and soldering material). The scattered photons are detected by 51 mm × 51 mm NaI(Tl) scintillation detector whose response unscrambling converting the observed pulse–height distribution to a true photon energy spectrum, is obtained with the help of 10 × 10 inverse response matrix. The numbers of multiply scattered events, having same energy as in the singly scattered distribution, first increases with target thickness and then saturate. The application of response function of scintillation detector does not result in anymore » change of measured saturation thickness. Monte Carlo calculation supports the present experimental results.« less
Method for preparing homogeneous single crystal ternary III-V alloys
Ciszek, Theodore F.
1991-01-01
A method for producing homogeneous, single-crystal III-V ternary alloys of high crystal perfection using a floating crucible system in which the outer crucible holds a ternary alloy of the composition desired to be produced in the crystal and an inner floating crucible having a narrow, melt-passing channel in its bottom wall holds a small quantity of melt of a pseudo-binary liquidus composition that would freeze into the desired crystal composition. The alloy of the floating crucilbe is maintained at a predetermined lower temperature than the alloy of the outer crucible, and a single crystal of the desired homogeneous alloy is pulled out of the floating crucible melt, as melt from the outer crucible flows into a bottom channel of the floating crucible at a rate that corresponds to the rate of growth of the crystal.
Thermal conductivity of disordered two-dimensional binary alloys.
Zhou, Yang; Guo, Zhi-Xin; Cao, Hai-Yuan; Chen, Shi-You; Xiang, Hong-Jun; Gong, Xin-Gao
2016-10-20
Using non-equilibrium molecular dynamics simulations, we have studied the effect of disorder on the thermal conductivity of two-dimensional (2D) C 1-x N x alloys. We find that the thermal conductivity not only depends on the substitution concentration of nitrogen, but also strongly depends on the disorder distribution. A general linear relationship is revealed between the thermal conductivity and the participation ratio of phonons in 2D alloys. Localization mode analysis further indicates that the thermal conductivity variation in the ordered alloys can be attributed to the number of inequivalent atoms. As for the disordered alloys, we find that the thermal conductivity variation can be described by a simple linear formula with the disorder degree and the substitution concentration. The present study suggests some general guidance for phonon manipulation and thermal engineering in low dimensional alloys.
Center for Research on Infrared Detectors (CENTROID)
2006-09-30
calculations to reevaluate the band-to-band Auger-1lifetime inn-type LWIR HgCdTe because the Auger-1lifetime can be measured in long-wavelength...infrared ( LWIR ) HgCdTe. Our calculations of the electronic band structure are based on a fourteen-band bulk basis, including spin-orbit splitting. The...within better than a factor of two between theoretically and experimentally determined Auger rates for a wide variety of MWIR and LWIR superlattices
Thermal Stability of Nanocrystalline Alloys by Solute Additions and A Thermodynamic Modeling
NASA Astrophysics Data System (ADS)
Saber, Mostafa
Nanocrystalline alloys show superior properties due to their exceptional microstructure. Thermal stability of these materials is a critical aspect. It is well known that grain boundaries in nanocrystalline microstructures cause a significant increase in the total free energy of the system. A driving force provided to reduce this excess free energy can cause grain growth. The presence of a solute addition within a nanocrystalline alloy can lead to the thermal stability. Kinetic and thermodynamic stabilization are the two basic mechanisms with which stability of a nanoscale grain size can be achieved at high temperatures. The basis of this thesis is to study the effect of solute addition on thermal stability of nanocrystalline alloys. The objective is to determine the effect of Zr addition on the thermal stability of mechanically alloyed nanocrysatillne Fe-Cr and Fe-Ni alloys. In Fe-Cr-Zr alloy system, nanoscale grain size stabilization was maintained up to 900 °C by adding 2 at% Zr. Kinetic pinning by intermetallic particles in the nanoscale range was identified as a primary mechanism of thermal stabilization. In addition to the grain size strengthening, intermetallic particles also contribute to strengthening mechanisms. The analysis of microhardness, XRD data, and measured grain sizes from TEM micrographs suggested that both thermodynamic and kinetic mechanisms are possible mechanisms. It was found that alpha → gamma phase transformation in Fe-Cr-Zr system does not influence the grain size stabilization. In the Fe-Ni-Zr alloy system, it was shown that the grain growth in Fe-8Ni-1Zr alloy is much less than that of pure Fe and Fe-8Ni alloy at elevated temperatures. The microstructure of the ternary Fe-8Ni-1Zr alloy remains in the nanoscale range up to 700 °C. Using an in-situ TEM study, it was determined that drastic grain growth occurs when the alpha → gamma phase transformation occurs. Accordingly, there can be a synergistic relationship between grain growth and alpha → gamma phase transformation in Fe-Ni-Zr alloys. In addition to the experimental study of thermal stabilization of nanocrystalline Fe-Cr-Zr or Fe-Ni-Zr alloys, the thesis presented here developed a new predictive model, applicable to strongly segregating solutes, for thermodynamic stabilization of binary alloys. This model can serve as a benchmark for selecting solute and evaluating the possible contribution of stabilization. Following a regular solution model, both the chemical and elastic strain energy contributions are combined to obtain the mixing enthalpy. The total Gibbs free energy of mixing is then minimized with respect to simultaneous variations in the grain boundary volume fraction and the solute concentration in the grain boundary and the grain interior. The Lagrange multiplier method was used to obtained numerical solutions. Application are given for the temperature dependence of the grain size and the grain boundary solute excess for selected binary system where experimental results imply that thermodynamic stabilization could be operative. This thesis also extends the binary model to a new model for thermodynamic stabilization of ternary nanocrystalline alloys. It is applicable to strongly segregating size-misfit solutes and uses input data available in the literature. In a same manner as the binary model, this model is based on a regular solution approach such that the chemical and elastic strain energy contributions are incorporated into the mixing enthalpy DeltaHmix, and the mixing entropy DeltaSmix is obtained using the ideal solution approximation. The Gibbs mixing free energy Delta Gmix is then minimized with respect to simultaneous variations in grain growth and solute segregation parameters. The Lagrange multiplier method is similarly used to obtain numerical solutions for the minimum Delta Gmix. The temperature dependence of the nanocrystalline grain size and interfacial solute excess can be obtained for selected ternary systems. As an example, model predictions are compared to experimental results for Fe-Cr-Zr and Fe-Ni-Zr alloy systems. Consistency between the experimental results and the present model predictions provide a more rigorous criterion for investigating thermal stabilization. However, other possible contributions for grain growth stabilization should still be considered.
HgCdTe liquid phase epitaxy - An overview
NASA Astrophysics Data System (ADS)
Castro, C. A.; Korenstein, R.
1982-08-01
Techniques and results of using liquid phase epitaxy (LPE) to form crystalline thin HgCdTe films for industrial-scale applications in IR detectors and focal plane arrays are discussed. Varying the mole fraction of CdTe in HgCdTe is noted to permit control of the bandwidth. LPE-grown films are noted to have a low carrier concentration, on the order of 4 x 10 to the 14th to 5 x 10 to the 15th/cu cm, a good surface morphology and be amenable to production scale-up. Details of the isothermal, equilibrium cooling, and supersaturation cooling LPE growth modes are reviewed, noting the necessity of developing a reliable method for determining the liquidus temperature for all modes to maintain uniformity of film growth from batch to batch. Mechanical steps can be either dipping the substrate into the melt or the slider boat approach, which is used in the production of compound semiconductors.
Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications
NASA Technical Reports Server (NTRS)
Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry
2015-01-01
An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Jian; Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn; Ye, Zhenhua
2014-05-14
An HgCdTe long-wavelength infrared focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping infrared detector focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infraredmore » focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.« less
2011-10-24
ISS029-E-032412 (24 Oct. 2011) --- NASA Mike Fossum, Expedition 29 commander, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.
2011-10-24
ISS029-E-032414 (24 Oct. 2011) --- NASA Mike Fossum, Expedition 29 commander, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.
2011-10-24
ISS029-E-032422 (24 Oct. 2011) --- NASA Mike Fossum, Expedition 29 commander, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.
2011-10-24
ISS029-E-032410 (24 Oct. 2011) --- NASA Mike Fossum, Expedition 29 commander, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.
Zhou, W R; Zheng, Y F; Leeflang, M A; Zhou, J
2013-11-01
Mg-Li-based alloys were investigated for future cardiovascular stent application as they possess excellent ductility. However, Mg-Li binary alloys exhibited reduced mechanical strengths due to the presence of lithium. To improve the mechanical strengths of Mg-Li binary alloys, aluminum and rare earth (RE) elements were added to form Mg-Li-Al ternary and Mg-Li-Al-RE quarternary alloys. In the present study, six Mg-Li-(Al)-(RE) alloys were fabricated. Their microstructures, mechanical properties and biocorrosion behavior were evaluated by using optical microscopy, X-ray diffraction, scanning electronic microscopy, tensile tests, immersion tests and electrochemical measurements. Microstructure characterization indicated that grain sizes were moderately refined by the addition of rare earth elements. Tensile testing showed that enhanced mechanical strengths were obtained, while electrochemical and immersion tests showed reduced corrosion resistance caused by intermetallic compounds distributed throughout the magnesium matrix in the rare-earth-containing Mg-Li alloys. Cytotoxicity assays, hemolysis tests as well as platelet adhesion tests were performed to evaluate in vitro biocompatibilities of the Mg-Li-based alloys. The results of cytotoxicity assays clearly showed that the Mg-3.5Li-2Al-2RE, Mg-3.5Li-4Al-2RE and Mg-8.5Li-2Al-2RE alloys suppressed vascular smooth muscle cell proliferation after 5day incubation, while the Mg-3.5Li, Mg-8.5Li and Mg-8.5Li-1Al alloys were proven to be tolerated. In the case of human umbilical vein endothelial cells, the Mg-Li-based alloys showed no significantly reduced cell viabilities except for the Mg-8.5Li-2Al-2RE alloy, with no obvious differences in cell viability between different culture periods. With the exception of Mg-8.5Li-2Al-2RE, all of the other Mg-Li-(Al)-(RE) alloys exhibited acceptable hemolysis ratios, and no sign of thrombogenicity was found. These in vitro experimental results indicate the potential of Mg-Li-(Al)-(RE) alloys as biomaterials for future cardiovascular stent application and the worthiness of investigating their biodegradation behaviors in vivo. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yan; Yin, Xiaoming; Zhang, Jijia; Wang, Yaming; Han, Zhiwu; Ren, Luquan
2013-09-01
As one of the lightest metal materials, magnesium alloy plays an important role in industry such as automobile, airplane and electronic product. However, magnesium alloy is hindered due to its high chemical activity and easily corroded. Here, inspired by typical plant surfaces such as lotus leaves and petals of red rose with super-hydrophobic character, the new hydrophobic surface is fabricated on magnesium alloy to improve anti-corrosion by two-step methodology. The procedure is that the samples are processed by laser first and then immersed and etched in the aqueous AgNO3 solution concentrations of 0.1 mol/L, 0.3 mol/L and 0.5 mol/L for different times of 15 s, 40 s and 60 s, respectively, finally modified by DTS (CH3(CH2)11Si(OCH3)3). The microstructure, chemical composition, wettability and anti-corrosion are characterized by means of SEM, XPS, water contact angle measurement and electrochemical method. The hydrophobic surfaces with microscale crater-like and nanoscale flower-like binary structure are obtained. The low-energy material is contained in surface after DTS treatment. The contact angles could reach up to 138.4 ± 2°, which hydrophobic property is both related to the micro-nano binary structure and chemical composition. The results of electrochemical measurements show that anti-corrosion property of magnesium alloy is improved. Furthermore, our research is expected to create some ideas from natural enlightenment to improve anti-corrosion property of magnesium alloy while this method can be easily extended to other metal materials.
Phase Composition and Hardening of Castable Al - Ca - Ni - Sc Alloys Containing 0.3% Sc
NASA Astrophysics Data System (ADS)
Belov, N. A.; Naumova, E. A.; Bazlova, T. A.; Doroshenko, V. V.
2017-05-01
The phase composition of aluminum alloys of the Al - Ca - Ni - Sc system containing 0.3 wt.% Sc is studied. It is shown that the aluminum solid solution may be in equilibrium not only with binary phases (Al4Ca, Al3Sc and Al3Ni) but also with a ternary Al9NiCa compound. The temperature of attainment of maximum hardening due to precipitation of nanoparticles of phase Al3Sc is determined for all the alloys studied. Principal possibility of creation of castable alloys based on an (Al) + Al4Ca + Al9NiCa eutectic, the hardening heat treatment of which does not require quenching, is substantiated.
1975-12-31
9. The detectors were numbered as shown. Detector 2 of the HgCdTe array was turned off due to noise considerations. The array traces show an...The probe beam diagnostics were composed of a large area Au:Ge detector to measure the total probe beam transmission, and a five-element HgCdTe array...laser. ...^-J-..:..^il iitiiinnii" --- "-’ ^Ul.ü^^j .. r ■:, >iUj<&k focal spot size. Other shots show larger signals on the outside detectors
HgCdTe photomixers for CO2 laser radar systems
NASA Technical Reports Server (NTRS)
Bratt, Peter R.
1992-01-01
The Santa Barbara Research Center has developed a variety of high speed HgCdTe photodetectors for use in CO2 laser radar systems. These detectors have outstanding performance and can be made available in production quantities. Many of them have been employed in a variety of systems applications over the past ten years. In this paper, we briefly describe the detector technology, summarize the state-of-the-art, and indicate some practical applications.
Competitive technologies of third generation infrared photon detectors
NASA Astrophysics Data System (ADS)
Rogalski, A.
2006-03-01
Hitherto, two families of multielement infrared (IR) detectors are used for principal military and civilian infrared applications; one is used for scanning systems (first generation) and the other is used for staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolour functionality and other on-chip functions. In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well IR photoconductors (QWIPs) are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. However, the metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm.
Competitive technologies for third generation infrared photon detectors
NASA Astrophysics Data System (ADS)
Rogalski, A.
2006-05-01
Hitherto, two families of multielement infrared (IR) detectors are used for principal military and civilian infrared applications; one is used for scanning systems (first generation) and the other is used for staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolor functionality and other on-chip functions. In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well photoconductors are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. The metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm. In this context the material properties of type II superlattices are considered more in detail.
NASA Astrophysics Data System (ADS)
Kopytko, M.; Kębłowski, A.; Madejczyk, P.; Martyniuk, P.; Piotrowski, J.; Gawron, W.; Grodecki, K.; Jóźwikowski, K.; Rutkowski, J.
2017-10-01
Fast response is an important property of infrared detectors for many applications. Currently, high-temperature long-wavelength infrared HgCdTe heterostructure photodiodes exhibit subnanosecond time constants while operating under reverse bias. However, nonequilibrium devices exhibit excessive low-frequency 1/ f noise that extends up to MHz range, representing a severe obstacle to their widespread application. Present efforts are focused on zero-bias operation of photodiodes. Unfortunately, the time constant of unbiased photodiodes is still at the level of several nanoseconds. We present herein a theoretical investigation of device design for improved response time and detectivity of long-wavelength infrared HgCdTe photodiodes operating at 230 K in zero-bias mode. The calculation results show that highly doped p-type HgCdTe is the absorber material of choice for fast photodiodes due to its high electron diffusion coefficient. The detectivity of such a device can also be optimized by using absorber doping of N A = 1 × 1017 cm-3. Reduction of the thickness is yet another approach to improve the device response. Time constant below 1 ns is achieved for an unbiased photodiode with absorber thickness below 4 μm. A tradeoff between the contradictory requirements of achieving high detectivity and fast response time is expected in an optically immersed photodiode with very small active area.
2014-06-03
ISS040-E-006891 (3 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test (BCAT) experiment in the Kibo laboratory of the International Space Station.
NASA Astrophysics Data System (ADS)
Que, Zhongping; Wang, Yun; Fan, Zhongyun
2018-06-01
Iron (Fe) is the most common and the most detrimental impurity element in Al alloys due to the formation of Fe-containing intermetallic compounds (IMCs), which are harmful to mechanical performance of the Al-alloy components. In this paper we investigate the formation of Fe-containing IMCs during solidification of an Al-5Mg-2Si-0.7Mn-1.1Fe alloy under varied solidification conditions. We found that the primary Fe-containing intermetallic compound (P-IMC) in the alloy is the BCC α-Al15(Fe,Mn)3Si2 phase and has a polyhedral morphology with {1 1 0} surface termination. The formation of the P-IMCs can be easily suppressed by increasing the melt superheat and/or cooling rate, suggesting that the nucleation of the α-Al15(Fe,Mn)3Si2 phase is difficult. In addition, we found that the IMCs with a Chinese script morphology is initiated on the {1 0 0} surfaces of the P-IMCs during the binary eutectic reaction with the α-Al phase. Both the binary and ternary eutectic IMCs are also identified as the BCC α-Al15(Fe,Mn)3Si2 phase. Furthermore, we found that the Fe content increases and the Mn content decreases in the Fe-containing intermetallic compounds with the decrease of the formation temperature, although the sum of the Fe and Mn contents in all of the IMCs is constant.
NASA Astrophysics Data System (ADS)
Yalcin, Battal G.
2015-04-01
The semi-local Becke-Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators (e.g., sp semiconductors, noble-gas solids, and transition-metal oxides). The structural and electronic properties of ternary alloys BBi1-xNx (0≤x≤1) in zinc-blende phase have been reported in this study. The results of the studied binary compounds (BN and BBi) and ternary alloys BBi1-xNx structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation (GGA) functional of Wu and Cohen (WC) which is an improved form of the most popular Perdew-Burke-Ernzerhof (PBE). For electronic properties the modified Becke-Johnson (mBJ) potential, which is more accurate than standard semi-local LDA and PBE calculations, has been chosen. Geometric optimization has been implemented before the volume optimization calculations for all the studied alloys structure. The obtained equilibrium lattice constants of the studied binary compounds are in coincidence with experimental works. And, the variation of the lattice parameter of ternary alloys BBi1-xNx almost perfectly matches with Vegard's law. The spin-orbit interaction (SOI) has been also considered for structural and electronic calculations and the results are compared to those of non-SOI calculations.
Biocompatibility of austenite and martensite phases in NiTi-based alloys
NASA Astrophysics Data System (ADS)
Danilov, A.; Kapanen, A.; Kujala, S.; Saaranen, J.; Ryhänen, J.; Pramila, A.; Jämsä, T.; Tuukkanen, J.
2003-10-01
The effect of surface phase composition on the biocompatibility of NiTi-based shape memory alloys was studied. The biocompatibility characteristics of parent β-phase (austenite) in binary NiTi and of martensite in ternary NiTiCu alloys after similar surface mechanical treatment were compared. The martensitic phase as a result of surface mechanical treatment (strain-induced martensite) was shown to decrease the biocompatibility of material in comparison to fully austenite state. The cytotoxicity (amount of dead cells / 1000 cells) and cell attachent (paxillin count / frame) were found to be linear functions of structural stresses in austenite.
NASA Astrophysics Data System (ADS)
Ahmad, Z.; Aleem, A.
1993-10-01
Study of modified Al-2.5Mg alloys containing chromium, silica, iron, and manganese in various tempers (O, H-18, T-4, T-6, T-18, and H-34) has shown that their corrosion resistance is significantly altered by thermomechanical treatment and the beneficial effect of chromium on microstructural changes. Modified binary Al-2.5Mg alloys in the T-6 and T-4 tempers exhibit a higher resistance to corrosion in Arabian Gulf water than H-34 tempers due to the beneficial effect of chromium on microstructural changes.
NASA Astrophysics Data System (ADS)
Anyalebechi, P. N.
Reported experimentally determined values of hydrogen solubility in liquid and solid Al-H and Al-H-X (where X = Cu, Si, Zn, Mg, Li, Fe or Ti) systems have been critically reviewed and analyzed in terms of Wagner's interaction parameter. An attempt has been made to use Wagner's interaction parameter and statistic linear regression models derived from reported hydrogen solubility limits for binary aluminum alloys to predict the hydrogen solubility limits in liquid and solid (commercial) multicomponent aluminum alloys. Reasons for the observed poor agreement between the predicted and experimentally determined hydrogen solubility limits are discussed.
Prediction of novel alloy phases of Al with Sc or Ta
Bilić, Ante; Gale, Julian D.; Gibson, Mark A.; Wilson, Nick; McGregor, Kathie
2015-01-01
Using the evolutionary optimization algorithm, as implemented in the USPEX crystal predictor program, and first principles total energy calculations, the compositional phase diagrams for Al-Sc and Al-Ta alloy systems at zero temperature and pressure have been calculated. In addition to the known binary intermetallic phases, new potentially stable alloys, AlSc3 and AlTa7, have been identified in the Al-poor region of the phase diagram. The dynamic and thermal stability of their lattices has been confirmed from the calculated vibrational normal mode spectra in the harmonic approximation. PMID:25950915
NASA Astrophysics Data System (ADS)
El Mahallawy, N.; Hammouda, R.; Shoeib, M.; Diaa, Alia A.
2018-01-01
Working on magnesium alloys containing relatively inexpensive alloying elements such as tin, zinc, and manganese have been a target for many studies. The binary Mg-Sn and Mg-Zn systems have a wide range of solid solubility which make them heat-treatable alloys. In the present study, the microstructure, tensile properties, and corrosion behavior of the Mg-5Sn-2Zn-0.1Mn alloy was studied in the as cast state and after heat treatment at a temperature reaching 450 °C for about 24 h. It was found that a noticeable enhancement in strength and corrosion resistance was achieved through heat treatment. The strength of the as cast alloy increased from 76.24 ± 6.21 MPa to 187.33 ± 10.3 MPa, while the corrosion rate decreased from 1.129 to 0.399 mm y-1.
Precipitation-Strengthened, High-Temperature, High-Force Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Noebe, Ronald D.; Draper, Susan L.; Nathal, Michael V.; Crombie, Edwin A.
2008-01-01
Shape memory alloys (SMAs) are an enabling component in the development of compact, lightweight, durable, high-force actuation systems particularly for use where hydraulics or electrical motors are not practical. However, commercial shape memory alloys based on NiTi are only suitable for applications near room temperature, due to their relatively low transformation temperatures, while many potential applications require higher temperature capability. Consequently, a family of (Ni,Pt)(sub 1-x)Ti(sub x) shape memory alloys with Ti concentrations ranging from about 15 to 25 at.% have been developed for applications in which there are requirements for SMA actuators to exert high forces at operating temperatures higher than those of conventional binary NiTi SMAs. These alloys can be heat treated in the range of 500 C to produce a series of fine precipitate phases that increase the strength of alloy while maintaining a high transformation temperature, even in Ti-lean compositions.
Performance of ethanol electro-oxidation on Ni-Cu alloy nanowires through composition modulation.
Tian, Xi-Ke; Zhao, Xiao-Yu; Zhang, Li-de; Yang, Chao; Pi, Zhen-Bang; Zhang, Su-Xin
2008-05-28
To reduce the cost of the catalyst for direct ethanol fuel cells and improve its catalytic activity, highly ordered Ni-Cu alloy nanowire arrays have been fabricated successfully by differential pulse current electro-deposition into the pores of a porous anodic alumina membrane (AAMs). The energy dispersion spectrum, scanning and transmission electron microscopy were utilized to characterize the composition and morphology of the Ni-Cu alloy nanowire arrays. The results reveal that the nanowires in the array are uniform, well isolated and parallel to each other. The catalytic activity of the nanowire electrode arrays for ethanol oxidation was tested and the binary alloy nanowire array possesses good catalytic activity for the electro-oxidation of ethanol. The performance of ethanol electro-oxidation was controlled by varying the Cu content in the Ni-Cu alloy and the Ni-Cu alloy nanowire electrode shows much better stability than the pure Ni one.
NASA Astrophysics Data System (ADS)
Golovin, I. S.; Bychkov, A. S.; Mikhailovskaya, A. V.; Dobatkin, S. V.
2014-02-01
The effects of the processes of severe plastic deformation (SPD), recrystallization, and precipitation of the β phase in multicomponent alloys of the Al-5Mg-Mn-Cr and Al-(4-5%)Mg-Mn-Zn-Sc systems on the mechanisms of grain-boundary relaxation and dislocation-induced microplasticity have been studied in some detail. To stabilize the ultrafine-grained structure and prevent grain growth, dispersed Al-transition-metal particles, such as Al3Zr, Al6Mn, Al7Cr, Al6(Mn,Cr), Al18Cr2Mg3 have been used. We have special interest in alloys with additions of scandium, which forms compounds of the Al3Sc type and favors the precipitation of finer particles compared to the aluminides of other transition metals. After SPD, Al-(4-5%)Mg-Mn-Zr-Sc alloys exhibit an enhanced recrystallization temperature. The general features of the dislocation and grain-boundary anelasticity that have been established for the binary Al-Mg alloys are retained; i.e., (1) the decrease in the dislocation density in the process of recrystallization of cold-worked alloys leads to the formation of a pseudo-peak in the curves of the temperature dependences of internal friction (TDIF) and to a decrease in the critical amplitude of deformation corresponding to the onset of dislocation motion in a stress field; (2) the precipitation of the β phase suppresses the grain-boundary relaxation; (3) the dissolution of the β phase, the passage of the magnesium atoms into the solid solution, and the precipitation of the β' phase upon heating hinder the motion of dislocations; (4) the coarsening of the highly dispersed particles containing Zr and Sc increases the dislocation mobility. The grain-boundary relaxation and dislocation-impurity interaction and their temperature dependences, as well as processes of the additional alloying of the binary alloys by Mn, Cr, Zr, and Sc, have been estimated quantitatively.
2011-09-02
ISS028-E-036517 (2 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, conducts a session with the Binary Colloidal Alloy Test-5 (BCAT-5) in the Kibo laboratory of the International Space Station.
2014-06-17
ISS040-E-013856 (17 June 2014) --- NASA astronaut Reid Wiseman, Expedition 40 flight engineer, conducts a session with the Binary Colloidal Alloy Test (BCAT) experiment at a workstation in the Harmony node of the International Space Station.
2011-09-02
ISS028-E-036580 (2 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 28 flight engineer, conducts a session with the Binary Colloidal Alloy Test-5 (BCAT-5) in the Kibo laboratory of the International Space Station.
A quasi two-dimensional benchmark experiment for the solidification of a tin lead binary alloy
NASA Astrophysics Data System (ADS)
Wang, Xiao Dong; Petitpas, Patrick; Garnier, Christian; Paulin, Jean-Pierre; Fautrelle, Yves
2007-05-01
A horizontal solidification benchmark experiment with pure tin and a binary alloy of Sn-10 wt.%Pb is proposed. The experiment consists in solidifying a rectangular sample using two lateral heat exchangers which allow the application a controlled horizontal temperature difference. An array of fifty thermocouples placed on the lateral wall permits the determination of the instantaneous temperature distribution. The cases with the temperature gradient G=0, and the cooling rates equal to 0.02 and 0.04 K/s are studied. The time evolution of the interfacial total heat flux and the temperature field are recorded and analyzed. This allows us to evaluate heat transfer evolution due to natural convection, as well as its influence on the solidification macrostructure. To cite this article: X.D. Wang et al., C. R. Mecanique 335 (2007).
Effect of boundary heat flux on columnar formation in binary alloys: A phase-field study
NASA Astrophysics Data System (ADS)
Du, Lifei; Zhang, Peng; Yang, Shaomei; Chen, Jie; Du, Huiling
2018-02-01
A non-isothermal phase-field model was employed to simulate the columnar formation during rapid solidification in binary Ni-Cu alloy. Heat flux at different boundaries was applied to investigate the temperature gradient effect on the morphology, concentration and temperature distributions during directional solidifications. With the heat flux input/extraction from boundaries, coupling with latent heat release and initial temperature gradient, temperature distributions are significantly changed, leading to solute diffusion changes during the phase-transition. Thus, irregular columnar structures are formed during the directional solidification, and the concentration distribution in solid columnar arms could also be changed due to the different growing speeds and temperature distributions at the solid-liquid interfaces. Therefore, applying specific heat conditions at the solidifying boundaries could be an efficient way to control the microstructure during solidifications.
NASA Astrophysics Data System (ADS)
Vasil'eva, E. V.; Bochkov, V. E.; Mikheev, É. A.; Lyakishev, V. A.; Afanas'eva, T. N.
1983-10-01
With an increase in carbon content in the steel being treated, the thickness of the alloyed layer increases and its microhardness also increases. The carbon exerts a deoxidizing action on the layer being formed and promotes a reduction in the threshold of deerosion and also additional strengthening of the layer as the result of the formation of binary η-carbides.
1994-02-14
be explained by nonuniform distribution of carriers. The incorporation of indium, during growth, which is reported hereafter has been carried out not...than n-on-p junctions for LWIR photodiodes14 . One important advantage of this configuration is the easier control of low doping (101" cm-3 range) in...program. These characteristics are least as good if not better than those previously reported about LWIR HgCdTe material grown on the production line at
Producible Alternative to CdTe for Epitaxy (PACE-2) of LWIR HgCdTe
1984-01-01
esmv and .de~aty "p bisto momnberl isrepor cover the progre made toward the achievenientof device quality LWIR HgCdTe on an alternate substrte...initial phase of the research program en- titled, _Producible Alternative to CdTe for Epitaxyý(PACE-2) of LWIR HgCJie". Also described are alternate...objective of this program is the demonstration of the feasibility of PACE-2 technology through fabrication and evaluation of multi- plexed LWIR hybrid
2012-05-01
instrument was equipped with deuterated triglycine sulfide and mercury-cadmium-telluride ( HgCdTe ) detectors and was capable of obtaining spectra with...helium-neon [HeNe] laser zero-crossing frequency) using the HgCdTe detector . Absorbance spectra of the vapor effluent were computed using background...weak [a = 0.00021 (umol/mol) ’m ’, which gave a prediction of A ~ 0.001] and close to the detector cutoff (root mean square [RMS] noise = 0.0002 A
Passive Ranging Using Infra-Red Atmospheric Attenuation
2010-03-01
was the Bomem MR-154 Fourier Transform Spectrometer (FTS). The FTS used both an HgCdTe and InSb detector . For this study, the primary source of data...also outfitted with an HgCdTe and InSb detector . Again, only data from the InSb detector was used. The spectral range of data collected was from...an uncertainty in transmittance of 0.01 (figure 20). This would yield an error in range of 6%. Other sources of error include detector noise or
Monte Carlo Treatment of Displacement Damage in Bandgap Engineered HgCdTe Detectors
NASA Technical Reports Server (NTRS)
Fodness, Bryan C.; Marshall, Paul W.; Reed, Robert A.; Jordan, Thomas M.; Pickel, James C.; Jun, Insoo; Xapsos, Michael A.; Burke, Edward A.
2003-01-01
The conclusion are: 1. Description of NIEL calculation for short, mid, and longwave HgCdTe material compositions. 2. Full recoil spectra details captured and analyzed Importance of variance in high Z materials. 3. Can be applied directly to calculate damage distributions in arrays. 4. Future work will provide comparisons of measured array damage with calculated NIEL and damage energy distributions. 5. Technique to assess the full recoil spectrum behavior is extendable to other materials.
Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teter, D.F.; Thoma, D.J.
1999-03-01
A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts.more » Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.« less
Magnetic cluster expansion model for random and ordered magnetic face-centered cubic Fe-Ni-Cr alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrentiev, M. Yu., E-mail: Mikhail.Lavrentiev@ukaea.uk; Nguyen-Manh, D.; Dudarev, S. L.
A Magnetic Cluster Expansion model for ternary face-centered cubic Fe-Ni-Cr alloys has been developed, using DFT data spanning binary and ternary alloy configurations. Using this Magnetic Cluster Expansion model Hamiltonian, we perform Monte Carlo simulations and explore magnetic structures of alloys over the entire range of compositions, considering both random and ordered alloy structures. In random alloys, the removal of magnetic collinearity constraint reduces the total magnetic moment but does not affect the predicted range of compositions where the alloys adopt low-temperature ferromagnetic configurations. During alloying of ordered fcc Fe-Ni compounds with Cr, chromium atoms tend to replace nickel rathermore » than iron atoms. Replacement of Ni by Cr in ordered alloys with high iron content increases the Curie temperature of the alloys. This can be explained by strong antiferromagnetic Fe-Cr coupling, similar to that found in bcc Fe-Cr solutions, where the Curie temperature increase, predicted by simulations as a function of Cr concentration, is confirmed by experimental observations. In random alloys, both magnetization and the Curie temperature decrease abruptly with increasing chromium content, in agreement with experiment.« less
High-Strength Nanotwinned Al Alloys with 9R Phase.
Li, Qiang; Xue, Sichuang; Wang, Jian; Shao, Shuai; Kwong, Anthony H; Giwa, Adenike; Fan, Zhe; Liu, Yue; Qi, Zhimin; Ding, Jie; Wang, Han; Greer, Julia R; Wang, Haiyan; Zhang, Xinghang
2018-03-01
Light-weight aluminum (Al) alloys have widespread applications. However, most Al alloys have inherently low mechanical strength. Nanotwins can induce high strength and ductility in metallic materials. Yet, introducing high-density growth twins into Al remains difficult due to its ultrahigh stacking-fault energy. In this study, it is shown that incorporating merely several atomic percent of Fe solutes into Al enables the formation of nanotwinned (nt) columnar grains with high-density 9R phase in Al(Fe) solid solutions. The nt Al-Fe alloy coatings reach a maximum hardness of ≈5.5 GPa, one of the strongest binary Al alloys ever created. In situ uniaxial compressions show that the nt Al-Fe alloys populated with 9R phase have flow stress exceeding 1.5 GPa, comparable to high-strength steels. Molecular dynamics simulations reveal that high strength and hardening ability of Al-Fe alloys arise mainly from the high-density 9R phase and nanoscale grain sizes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Microstructure, Tensile Properties, and Corrosion Behavior of Die-Cast Mg-7Al-1Ca- xSn Alloys
NASA Astrophysics Data System (ADS)
Wang, Feng; Dong, Haikuo; Sun, Shijie; Wang, Zhi; Mao, Pingli; Liu, Zheng
2018-02-01
The microstructure, tensile properties, and corrosion behavior of die-cast Mg-7Al-1Ca- xSn ( x = 0, 0.5, 1.0, and 2.0 wt.%) alloys were studied using OM, SEM/EDS, tensile test, weight loss test, and electrochemical test. The experimental results showed that Sn addition effectively refined grains and intermetallic phases and increased the amount of intermetallic phases. Meanwhile, Sn addition to the alloys suppressed the formation of the (Mg,Al)2Ca phase and resulted in the formation of the ternary CaMgSn phase and the binary Mg2Sn phase. The Mg-7Al-1Ca-0.5Sn alloy exhibited best tensile properties at room temperature, while Mg-7Al-1Ca-1.0Sn alloy exhibited best tensile properties at elevated temperature. The corrosion resistance of studied alloys was improved by the Sn addition, and the Mg-7Al-1Ca-0.5Sn alloy presented the best corrosion resistance.
NASA Astrophysics Data System (ADS)
Du, Qiang; Li, Yanjun
2015-06-01
In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework.
NASA Astrophysics Data System (ADS)
Krasin, V. P.; Soyustova, S. I.
2018-07-01
Along with other liquid metals liquid lithium-tin alloys can be considered as an alternative to the use of solid plasma facing components of a future fusion reactor. Therefore, parameters characterizing both the ability to retain hydrogen isotopes and those that determine the extraction of tritium from a liquid metal can be of particular importance. Theoretical correlations based on the coordination cluster model have been used to obtain Sieverts' constants for solutions of hydrogen in liquid Li-Sn alloys. The results of theoretical computations are compared with the previously published experimental values for two alloys of the Li-Sn system. The Butler equation in combination with the equations describing the thermodynamic potentials of a binary solution is used to calculate the surface composition and surface tension of liquid Li-Sn alloys.
Electrical and mechanical properties of Sn-5wt.%Sb alloy with annealing temperature
NASA Astrophysics Data System (ADS)
Said Gouda, El; Ahmed, E. M.; Saad Allah, F. A.
2009-01-01
A binary Sn-5wt.%Sb solder alloy was chosen as a potential alternative to Sn-Pb solder alloy to be subjected to many studies. It was casted from the liquid state, cold drawn into wires of 1 mm diameters. The study includes the structure, electrical resistivity, tensile strength, hardness and indentation creep behavior using XRD, four probes electrical circuit, conventional tensile testing machine, Vickers microhardness tester, respectively. These properties were carried out for the cold worked alloy and after annealing at 393 and 473 K for 60 min. It was found that annealed samples exhibit more precipitations of the intermetallic compounds SnSb, higher lattice parameters and higher crystallite size, while have lower lattice-strain induced due to the cold working process. These structural changes greatly affect the electrical resistivity and mechanical properties of this alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudy, E.; Windisch.
1965-07-01
On the basis of X-ray, melting point, metallographic, and differential thermoanalytical studies on molybdenum-boron and tungsten-boron alloys, constitution diagrams for both binary systems are presented. In the high temperature regions, the newly established phase diagrams differ significantly from previously reported systems. The results are discussed and compared with available literature data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darsell, Jens T.; Weil, K. Scott
2007-05-16
As a means of increasing the use temperature of ceramic-ceramic and ceramic-metal air brazes, palladium was investigated as possible ternary addition to the currently employed silver - copper oxide system. The silver component was directly substituted with palladium to form the following series of alloys: (100-y)[(100-z)Pd - (z)Ag] - (y)CuOx where y = 0 - 34 mol% CuOx, z = 50 - 100 mol% silver, and x = 0, 0.5, and 1, denoting copper metal, Cu2O, or CuO. From differential scanning calorimetry, it was determined that the addition of palladium causes an increase in the solidus and liquidus temperatures ofmore » the resulting Pd-Ag-CuO brazes. In general, the liquidus was found to increase by approximately 220°C for the (100-y)(25Pd - 75Ag) - (z)CuOx filler metal compositions relative to comparable Ag-CuOx alloys. Likewise, the solidus was found to increase for these alloys, respectively by 185°C and 60°C, respectively for CuOx contents of y = 0 - 1mol% and 4 - 10 mol%. For the (100-y)(50Pd - 50Ag) - (y)CuOx alloys, the solidus increased between 280 - 390°C over a copper oxide compositional range of x = 0 to 8 mol%. It was determined from sessile drop experiments conducted on alumina substrates that in all cases the palladium causes an increase in the wetting angle relative to the corresponding binary braze. Alloy compositions of (100-y)(25Pd - 75Ag) - (y)CuOx displayed increased wetting angles of 5-20° relative to comparable binary compositions. (100-y)(50Pd - 50Ag) - (y)CuOx alloys exhibited an increase in contact angle of 10-60° and compositions containing less than 10 mol% CuOx were not able to wet the substrate. Scanning electron microscopy indicated that the microstructure of the braze consists of discrete CuOx precipitates in an alloyed silver-palladium matrix. In both the binary and ternary filler metal formulations, a reaction layer consisting of CuAlO2 was observed along the interface with the alumina substrate. This reaction product appears to be beneficial in promoting wetting by the remaining braze filler metal. However the formation of this layer is hindered as the concentration of palladium in the filler metal is increased, which appears to be the primary cause of poor wettability in these compositions, as indicated by the substantial amount of porosity found along the braze/substrate interface.« less
Gold diffusion in mercury cadmium telluride grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Selamet, Yusuf; Singh, Rasdip; Zhao, Jun; Zhou, Yong D.; Sivananthan, Sivalingam; Dhar, Nibir K.
2003-12-01
The growth and characterization of Au-doped HgCdTe layers on (211)B CdTe/Si substrates grown by molecular beam epitaxy reported. The electrical properties of these layers studied for diffusion are presented. For ex-situ experiments, thin Au layers were deposited by evaporation and annealed at various temperatures and times to investigate the p-type doping properties and diffusion of Au in HgCdTe. The atomic distribution of the diffused Au was determined by secondary ion mass spectroscopy. We found clear evidence for p-type doping of HgCdTe:Au by in-situ and ex-situ methods. For in-situ doped layers, we found that, the Au cell temperature needs to be around 900°C to get p-type behavior. The diffusion coefficient of Au in HgCdTe was calculated by fitting SIMS profiles after annealing. Both complementary error functions and gaussian fittings were used, and were in full agreement. Diffusion coefficient as low as 8x10-14cm2/s observed for a sample annealed at 250°C and slow component of a diffusion coefficient as low as 2x10-15 cm2/s observed for a sample annealed at 300°C. Our preliminary results indicate no appreciable diffusion of Au in HgCdTe under the conditions used in these studies. Further work is in progress to confirm these results and to quantify our SIMS profiles.
Surface leakage current in 12.5 μm long-wavelength HgCdTe infrared photodiode arrays.
Qiu, Weicheng; Hu, Weida; Lin, Chun; Chen, Xiaoshuang; Lu, Wei
2016-02-15
Long-wavelength (especially >12 μm) focal plane array (FPA) infrared detection is the cutting edge technique for third-generation infrared remote sensing. However, dark currents, which are very sensitive to the growth of small Cd composition HgCdTe, strongly limits the performance of long wavelength HgCdTe photodiode arrays in FPAs. In this Letter, 12.5 μm long-wavelength Hg1-xCdxTe (x≈0.219) infrared photodiode arrays are reported. The variable-area and variable-temperature electrical characteristics of the long-wavelength infrared photodiodes are measured. The characteristics of the extracted zero-bias resistance-area product (l/R0A) varying with the perimeter-to-area (P/A) ratio clearly show that surface leakage current mechanisms severely limit the overall device performance. A sophisticated model has been developed for investigating the leakage current mechanism in the photodiodes. Modeling of temperature-dependent I-V characteristic indicates that the trap-assisted tunneling effect dominates the dark current at 50 K resulting in nonuniformities in the arrays. The extracted trap density, approximately 1013-1014 cm-3, with an ionized energy of 30 meV is determined by simulation. The work described in this Letter provides the basic mechanisms for a better understanding of the leakage current mechanism for long-wavelength (>12 μm) HgCdTe infrared photodiode arrays.
NASA Astrophysics Data System (ADS)
Hoat, D. M.; Rivas Silva, J. F.; Méndez Blas, A.
2018-07-01
The structural, electronic and optical properties of GaP, BP binary compounds and their ternary alloys Ga1-xBxP (x = 0.25, 0.5 and 0.75) have been studied by full-potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT) as implemented in WIEN2k package. Local density approximation (LDA) and generalized gradient approximation (GGA) as proposed by Perdew-Burke-Ernzerhof (PBE), Wu-Cohen (WC) and PBE for solid (PBESol) were used for treatment of exchange-correlation effect in calculations. Additionally, the Tran-Blaha modified Becke-Johnson (mBJ) potential was also employed for electronic and optical calculations due to that it gives very accurate band gap of solids. As B concentration increases, the lattice constant reduces and the energy band gap firstly decreases for small composition x and then it shows increasing trend until pure BP. Our results show that the indirect-direct band gap transition can be reached from x = 0.33. The linear optical properties, such as reflectivity, absorption coefficient, refractive index and optical conductivity of binary compounds and ternary alloys were derived from their calculated complex dielectric function in wide energy range up to 30 eV, and the alloying effect on these properties was also analyzed in detail.
NASA Astrophysics Data System (ADS)
Wang, Qing; Dong, Chuang; Liaw, Peter K.
2015-08-01
Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.
NASA Astrophysics Data System (ADS)
Carl, Matthew; Van Doren, Brian; Young, Marcus L.
2018-03-01
Ternary additions to binary NiTi shape memory alloys are known to significantly affect the characteristic martensite-to-austenite phase transformation, i.e., decrease or increase transformation temperatures. High temperature shape memory alloys can be created by adding Au, Pt, Pd, Hf, or Zr to binary NiTi in appropriate amounts; however, the majority of these ternary additions are exceedingly expensive, unfortunately making them impractical for most commercial applications. Zr is the exception of the group, but it is often disregarded because of its poor workability and thermal stability. In an effort to find a temperature range that allows for the potential workability of NiTiZr alloys in normal atmosphere environments and to gain understanding as to the cause of failure during processing, a NiTi-20 at.% Zr was subjected to a thermal cycle ranging from RT to 1000 °C with short 15 min holds at select temperatures during both heating and cooling while simultaneously collecting high-energy synchrotron radiation X-ray diffraction measurements. This study provides valuable insight into the kinetics of precipitation and oxide formation and its relationship to processing. In addition, scanning electron microscopy was performed on five samples, each isothermally held to examine precipitation and oxide structure and growth.
NASA Astrophysics Data System (ADS)
Carl, Matthew; Van Doren, Brian; Young, Marcus L.
2018-02-01
Ternary additions to binary NiTi shape memory alloys are known to significantly affect the characteristic martensite-to-austenite phase transformation, i.e., decrease or increase transformation temperatures. High temperature shape memory alloys can be created by adding Au, Pt, Pd, Hf, or Zr to binary NiTi in appropriate amounts; however, the majority of these ternary additions are exceedingly expensive, unfortunately making them impractical for most commercial applications. Zr is the exception of the group, but it is often disregarded because of its poor workability and thermal stability. In an effort to find a temperature range that allows for the potential workability of NiTiZr alloys in normal atmosphere environments and to gain understanding as to the cause of failure during processing, a NiTi-20 at.% Zr was subjected to a thermal cycle ranging from RT to 1000 °C with short 15 min holds at select temperatures during both heating and cooling while simultaneously collecting high-energy synchrotron radiation X-ray diffraction measurements. This study provides valuable insight into the kinetics of precipitation and oxide formation and its relationship to processing. In addition, scanning electron microscopy was performed on five samples, each isothermally held to examine precipitation and oxide structure and growth.
Interpreting the Combustion Process for High-Performance ZrNiSn Thermoelectric Materials.
Hu, Tiezheng; Yang, Dongwang; Su, Xianli; Yan, Yonggao; You, Yonghui; Liu, Wei; Uher, Ctirad; Tang, Xinfeng
2018-01-10
The ZrNiSn alloy, a member of the half-Heusler family of thermoelectric materials, shows great potential for mid-to-high-temperature power generation applications due to its excellent thermoelectric properties, robust mechanical properties, and good thermal stability. The existing synthesis processes of half-Heusler alloys are, however, rather time and energy intensive. In this study, single-phase ZrNiSn bulk materials were prepared by self-propagating high-temperature synthesis (SHS) combined with spark plasma sintering (SPS) for the first time. The analysis of thermodynamic and kinetic processes shows that the SHS reaction in the ternary ZrNiSn alloy is different from the more usual binary systems. It consists of a series of SHS reactions and mass transfers triggered by the SHS fusion of the binary Ni-Sn system that eventually culminates in the formation of single-phase ternary ZrNiSn in a very short time, which reduced the synthesis period from few days to less than an hour. Moreover, the nonequilibrium feature induces Ni interstitials in the structure, which simultaneously enhances the electrical conductivity and decreases the thermal conductivity, which is favorable for thermoelectric properties. The maximum thermoelectric figure of merit ZT of the SHS + SPS-processed ZrNiSn 1-x Sb x alloy reached 0.7 at 870 K. This study opens a new avenue for the fast and low-cost fabrication of half-Heusler thermoelectric materials.
Suppression of vacancy cluster growth in concentrated solid solution alloys
Zhao, Shijun; Velisa, Gihan; Xue, Haizhou; ...
2016-12-13
Large vacancy clusters, such as stacking-fault tetrahedra, are detrimental vacancy-type defects in ion-irradiated structural alloys. Suppression of vacancy cluster formation and growth is highly desirable to improve the irradiation tolerance of these materials. In this paper, we demonstrate that vacancy cluster growth can be inhibited in concentrated solid solution alloys by modifying cluster migration pathways and diffusion kinetics. The alloying effects of Fe and Cr on the migration of vacancy clusters in Ni concentrated alloys are investigated by molecular dynamics simulations and ion irradiation experiment. While the diffusion coefficients of small vacancy clusters in Ni-based binary and ternary solid solutionmore » alloys are higher than in pure Ni, they become lower for large clusters. This observation suggests that large clusters can easily migrate and grow to very large sizes in pure Ni. In contrast, cluster growth is suppressed in solid solution alloys owing to the limited mobility of large vacancy clusters. Finally, the differences in cluster sizes and mobilities in Ni and in solid solution alloys are consistent with the results from ion irradiation experiments.« less
Mathis, Kristian; Capek, J.; Clausen, Bjorn; ...
2015-04-20
Influence of aluminium content on the deformation mechanisms in Mg–Al binary alloys has been studied using in-situ neutron diffraction and acoustic emission technique. Here, it is shown that the addition of the solute increases the critical resolved shear stress for twinning. Further, the role of aluminium on the solid solution hardening of the basal plane and softening of non-basal planes are discussed using results of the convolutional multiple peak profile analysis of diffraction patterns. In conclusion, the results indicate that the density of both prismatic and pyramidal dislocations increases with increasing alloying content.
Martensitic transformation and phase diagram in ternary Co-V-Ga Heusler alloys
NASA Astrophysics Data System (ADS)
Xu, Xiao; Nagashima, Akihide; Nagasako, Makoto; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke
2017-03-01
We report the martensitic transformation behavior in Co-V-Ga Heusler alloys. Thermoanalysis and thermomagnetization measurements were conducted to observe the martensitic transformation. By using a transmission electron microscope and an in situ X-ray diffractometer, martensitic transformation was found to occur from the L21 Heusler parent phase to the D022 martensite phase. Phase diagrams were determined for two pseudo-binary sections where martensitic transformation was detected. Magnetic properties, including the Curie temperatures and spontaneous magnetization of the parent phase, were also investigated. The magnetic properties showing behaviors different from those of NiMn-based alloys were found.
2012-08-08
ISS032-E-014593 (6 Aug. 2012) --- NASA astronaut Joe Acaba, Expedition 32 flight engineer, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.
Linear Stability of Binary Alloy Solidification for Unsteady Growth Rates
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Volz, M. P.
2010-01-01
An extension of the Mullins and Sekerka (MS) linear stability analysis to the unsteady growth rate case is considered for dilute binary alloys. In particular, the stability of the planar interface during the initial solidification transient is studied in detail numerically. The rapid solidification case, when the system is traversing through the unstable region defined by the MS criterion, has also been treated. It has been observed that the onset of instability is quite accurately defined by the "quasi-stationary MS criterion", when the growth rate and other process parameters are taken as constants at a particular time of the growth process. A singular behavior of the governing equations for the perturbed quantities at the constitutional supercooling demarcation line has been observed. However, when the solidification process, during its transient, crosses this demarcation line, a planar interface is stable according to the linear analysis performed.
NASA Technical Reports Server (NTRS)
Wheeler, A. A.; Mcfadden, G. B.; Coriell, S. R.; Hurle, D. T. J.
1990-01-01
The effect of a constant electric current on the crystal-melt interface morphology during directional solidification at constant velocity of a binary alloy is considered. A linear temperature field is assumed, and thermoelectric effects and Joule heating are neglected; electromigration and differing electrical conductivities of crystal and melt are taken into account. A two-dimensional weakly nonlinear analysis is carried out to third order in the interface amplitude, resulting in a cubic amplitude equation that describes whether the bifurcation from the planar state is supercritical or subcritical. For wavelengths corresponding to the most dangerous mode of linear theory, the demarcation between supercritical and subcritical behavior is calculated as a function of processing conditions and material parameters. The bifurcation behavior is a sensitive function of the magnitude and direction of the electric current and of the electrical conductivity ratio.
Study of thermodynamic properties of liquid binary alloys by a pseudopotential method
NASA Astrophysics Data System (ADS)
Vora, Aditya M.
2010-11-01
On the basis of the Percus-Yevick hard-sphere model as a reference system and the Gibbs-Bogoliubov inequality, a thermodynamic perturbation method is applied with the use of the well-known model potential. By applying a variational method, the hard-core diameters are found which correspond to a minimum free energy. With this procedure, the thermodynamic properties such as the internal energy, entropy, Helmholtz free energy, entropy of mixing, and heat of mixing are computed for liquid NaK binary systems. The influence of the local-field correction functions of Hartree, Taylor, Ichimaru-Utsumi, Farid-Heine-Engel-Robertson, and Sarkar-Sen-Haldar-Roy is also investigated. The computed excess entropy is in agreement with available experimental data in the case of liquid alloys, whereas the agreement for the heat of mixing is poor. This may be due to the sensitivity of the latter to the potential parameters and dielectric function.
Development of a HTSMA-Actuated Surge Control Rod for High-Temperature Turbomachinery Applications
NASA Technical Reports Server (NTRS)
Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Culley, Dennis; Stevens, Mark; Penney, Nicholas; Gaydosh, Darrell; Quackenbush, Todd; Carpenter, Bernie
2007-01-01
In recent years, a demand for compact, lightweight, solid-state actuation systems has emerged, driven in part by the needs of the aeronautics industry. However, most actuation systems used in turbomachinery require not only elevated temperature but high-force capability. As a result, shape memory alloy (SMA) based systems have worked their way to the forefront of a short list of viable options to meet such a technological challenge. Most of the effort centered on shape memory systems to date has involved binary NiTi alloys but the working temperatures required in many aeronautics applications dictate significantly higher transformation temperatures than the binary systems can provide. Hence, a high temperature shape memory alloy (HTSMA) based on NiTiPdPt, having a transformation temperature near 300 C, was developed. Various thermo-mechanical processing schemes were utilized to further improve the dimensional stability of the alloy and it was later extruded/drawn into wire form to be more compatible with envisioned applications. Mechanical testing on the finished wire form showed reasonable work output capability with excellent dimensional stability. Subsequently, the wire form of the alloy was incorporated into a benchtop system, which was shown to provide the necessary stroke requirements of approx.0.125 inches for the targeted surge-control application. Cycle times for the actuator were limited to 4 seconds due to control and cooling constraints but this cycle time was determined to be adequate for the surge control application targeted as the primary requirement was initial actuation of a surge control rod, which could be completed in approximately one second.
NASA Technical Reports Server (NTRS)
Locci, I. E.; Noebe, R. D.; Bowman, R. R.; Miner, R. V.; Nathal, M. V.; Darolia, R.
1991-01-01
The possibility of producing NiAl reinforced with the G-phase (Ni16X6Si7), where X is Zr or Hf, has been investigated. The microstructure of these NiAl alloys have been characterized in the as-cast and annealed conditions. The G-phases are present as fine cuboidal precipitates (10 to 40 nm) and have lattice parameters almost four times that of NiAl. They are coherent with the matrix and fairly resistant to coarsening during annealing heat treatments. Segregation and nonuniform precipitate distribution observed in as-cast materials were eliminated by homogenization at temperatures near 1600 K. Slow cooling from these temperatures resulted in large plate shaped precipitates, denuded zones, and a loss of coherency in some of the large particles. Faster cooling produced a homogeneous fine distribution of cuboidal G-phase particles in the matrix. Preliminary mechanical properties for the Zr-doped alloy are presented and compared to binary single crystal NiAl. The presence of these precipitates appears to have an important strengthening effect at temperatures not less than 1000 K compared to binary NiAl single crystals.
NASA Astrophysics Data System (ADS)
Herlach, Dieter M.; Kobold, Raphael; Klein, Stefan
2018-03-01
Glass formation of a liquid undercooled below its melting temperature requires the complete avoidance of crystal nucleation and subsequent crystal growth. Even though they are not part of the glass formation process, a detailed knowledge of both processes involved in crystallization is mandatory to determine the glass-forming ability of metals and metallic alloys. In the present work, methods of containerless processing of drops by electrostatic and electromagnetic levitation are applied to undercool metallic melts prior to solidification. Heterogeneous nucleation on crucible walls is completely avoided giving access to large undercoolings. A freely suspended drop offers the additional benefit of showing the rapid crystallization process of an undercooled melt in situ by proper diagnostic means. As a reference, crystal nucleation and dendrite growth in the undercooled melt of pure Zr are experimentally investigated. Equivalently, binary Zr-Cu, Zr-Ni and Zr-Pd and ternary Zr-Ni-Cu alloys are studied, whose glass-forming abilities differ. The experimental results are analyzed within classical nucleation theory and models of dendrite growth. The findings give detailed knowledge about the nucleation-undercooling statistics and the growth kinetics over a large range of undercooling.
The modelling of heat, mass and solute transport in solidification systems
NASA Technical Reports Server (NTRS)
Voller, V. R.; Brent, A. D.; Prakash, C.
1989-01-01
The aim of this paper is to explore the range of possible one-phase models of binary alloy solidification. Starting from a general two-phase description, based on the two-fluid model, three limiting cases are identified which result in one-phase models of binary systems. Each of these models can be readily implemented in standard single phase flow numerical codes. Differences between predictions from these models are examined. In particular, the effects of the models on the predicted macro-segregation patterns are evaluated.
An exact solution for the solidification of a liquid slab of binary mixture
NASA Technical Reports Server (NTRS)
Antar, B. N.; Collins, F. G.; Aumalia, A. E.
1986-01-01
The time dependent temperature and concentration profiles of a one dimensional finite slab of a binary liquid alloy is investigated during solidification. The governing equations are reduced to a set of coupled, nonlinear initial value problems using the method outlined by Meyer. Two methods will be used to solve these equations. The first method uses a Runge-Kutta-Fehlberg integrator to solve the equations numerically. The second method comprises of finding closed form solutions of the equations.
The development of binary Mg-Ca alloys for use as biodegradable materials within bone.
Li, Zijian; Gu, Xunan; Lou, Siquan; Zheng, Yufeng
2008-04-01
Binary Mg-Ca alloys with various Ca contents were fabricated under different working conditions. X-ray diffraction (XRD) analysis and optical microscopy observations showed that Mg-xCa (x=1-3 wt%) alloys were composed of two phases, alpha (Mg) and Mg2Ca. The results of tensile tests and in vitro corrosion tests indicated that the mechanical properties could be adjusted by controlling the Ca content and processing treatment. The yield strength (YS), ultimate tensile strength (UTS) and elongation decreased with increasing Ca content. The UTS and elongation of as-cast Mg-1Ca alloy (71.38+/-3.01 MPa and 1.87+/-0.14%) were largely improved after hot rolling (166.7+/-3.01 MPa and 3+/-0.78%) and hot extrusion (239.63+/-7.21 MPa and 10.63+/-0.64%). The in vitro corrosion test in simulated body fluid (SBF) indicated that the microstructure and working history of Mg-xCa alloys strongly affected their corrosion behaviors. An increasing content of Mg2Ca phase led to a higher corrosion rate whereas hot rolling and hot extrusion could reduce it. The cytotoxicity evaluation using L-929 cells revealed that Mg-1Ca alloy did not induce toxicity to cells, and the viability of cells for Mg-1Ca alloy extraction medium was better than that of control. Moreover, Mg-1Ca alloy pins, with commercial pure Ti pins as control, were implanted into the left and right rabbit femoral shafts, respectively, and observed for 1, 2 and 3 months. High activity of osteoblast and osteocytes were observed around the Mg-1Ca alloy pins as shown by hematoxylin and eosin stained tissue sections. Radiographic examination revealed that the Mg-1Ca alloy pins gradually degraded in vivo within 90 days and the newly formed bone was clearly seen at month 3. Both the in vitro and in vivo corrosion suggested that a mixture of Mg(OH)2 and hydroxyapatite formed on the surface of Mg-1Ca alloy with the extension of immersion/implantation time. In addition, no significant difference (p>0.05) of serum magnesium was detected at different degradation stages. All these results revealed that Mg-1Ca alloy had the acceptable biocompatibility as a new kind of biodegradable implant material. Based on the above results, a solid alloy/liquid solution interface model was also proposed to interpret the biocorrosion process and the associated hydroxyapatite mineralization.
Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs
Clark, Blythe G.; Hattar, Khalid Mikhiel; Marshall, Michael Thomas; ...
2016-03-24
Here, the widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest, yet have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dense systems. While traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloy can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdock et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10at.% Mg) with a predicted non-NC stable alloy (Fe-10at.%more » Cu) using the same processing and characterization methodologies. Results indicate improved thermal stability of the Fe-Mg alloy in comparison to the Fe-Cu, and observed microstructures are consistent with those predicted by Monte Carlo simulations.« less
NASA Astrophysics Data System (ADS)
Kong, Lingxin; Yang, Bin; Xu, Baoqiang; Li, Yifu
2014-09-01
Based on the molecular interaction volume model (MIVM), the activities of components of Sn-Sb, Sb-Bi, Sn-Zn, Sn-Cu, and Sn-Ag alloys were predicted. The predicted values are in good agreement with the experimental data, which indicate that the MIVM is of better stability and reliability due to its good physical basis. A significant advantage of the MIVM lies in its ability to predict the thermodynamic properties of liquid alloys using only two parameters. The phase equilibria of Sn-Sb and Sn-Bi alloys were calculated based on the properties of pure components and the activity coefficients, which indicates that Sn-Sb and Sn-Bi alloys can be separated thoroughly by vacuum distillation. This study extends previous investigations and provides an effective and convenient model on which to base refining simulations for Sn-based alloys.
NASA Astrophysics Data System (ADS)
Vodičková, Věra; Hanus, Pavel; Vlasák, Tomáš; Švec, Martin
2018-03-01
Iron aluminides were developed as an alternative to stainless steels after World War II. The main intended impact was to save strategic elements (chromium or nickel). The result of these investigations was development of registered alloys as Pyroferal (Czechoslovak Republic), Thugal (Soviet Union) or Thermagal (France). The investigation of these type alloys continued in the nineties thanks to technological progress. In this time iron aluminides seems to be promising material with very good corrosive and environment resistivity. The mechanical properties of binary iron aluminides (Fe-Al) are average at higher temperatures but strengthening effect of alloying elements is significant. The aim of the article is to show influence of non-critical additives (such as C, Ti, Zr) and also “slightly critical” elements as e.g. Ce, Nb on high temperature creep properties of alloys.
NASA Astrophysics Data System (ADS)
von Pezold, Johann; Dick, Alexey; Friák, Martin; Neugebauer, Jörg
2010-03-01
The performance of special-quasirandom structures (SQSs) for the description of elastic properties of random alloys was evaluated. A set of system-independent 32-atom-fcc SQS spanning the entire concentration range was generated and used to determine C11 , C12 , and C44 of binary random substitutional AlTi alloys. The elastic properties of these alloys could be described using the set of SQS with an accuracy comparable to the accuracy achievable by statistical sampling of the configurational space of 3×3×3 (108 atom, C44 ) and 4×4×4 (256 atom, C11 and C12 ) fcc supercells, irrespective of the impurity concentration. The smaller system size makes the proposed SQS ideal candidates for the ab initio determination of the elastic constants of random substitutional alloys. The set of optimized SQS is provided.
Vertical solidification of dendritic binary alloys
NASA Technical Reports Server (NTRS)
Heinrich, J. C.; Felicelli, S.; Poirier, D. R.
1991-01-01
Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L. L.; Wang, Y. D.; Ren, Y.
Microstructure evolution, mechanical behaviors of cold rolled Ti-Nb alloys with different Nb contents subjected to different heat treatments were investigated. Here, optical microstructure and phase compositions of Ti-Nb alloys were characterized using optical microscopy and X-ray diffractometre, while mechanical behaviors of Ti-Nb alloys were examined by using tension tests. Stress-induced martensitic transformation in a Ti-30. at%Nb binary alloy was in-situ explored by synchrotron-based high-energy X-ray diffraction (HE-XRD). The results obtained suggested that mechanical behavior of Ti-Nb alloys, especially Young's modulus was directly dependent on chemical compositions and heat treatment process. According to the results of HE-XRD, α"-V1 martensite generated priormore » to the formation of α"-V2 during loading and a partial reversible transformation from α"-V1 to β phase was detected while α"-V2 tranformed to β completely during unloading.« less
HgCdTe avalanche photodiodes: A review
NASA Astrophysics Data System (ADS)
Singh, Anand; Srivastav, Vanya; Pal, Ravinder
2011-10-01
This paper presents a comprehensive review of fundamental issues, device architectures, technology development and applications of HgCdTe based avalanche photodiodes (APD). High gain, above 5×10 3, a low excess noise factor close to unity, THz gain-bandwidth product, and fast response in the range of pico-seconds has been achieved by electron-initiated avalanche multiplication for SWIR, MWIR, and LWIR detector applications involving low optical signals. Detector arrays with good element-to-element uniformity have been fabricated paving the way for fabrication of HgCdTe-APD FPAs.
2013-09-01
is very compatible to growth of mercury cadmium telluride (HgCdTe or MCT) on its surface. HgCdTe is the IR sensitive material. However, CdZnTe is...in Indiana which is one of the few test ranges in the developed world where battlefield smokes and live artillery fire could be 41 F. Shields, NV...spectral region of E&M spectrum) I2 – Image Intensification JIEDDO – Joint IED Defeat Office JPG – Jefferson Proving Ground, Indiana . JPO – Joint
1987-06-30
metal lattice sites using the liquid phase epitaxy. However, group V elements have not been successfully Incorporated Into MBE grown HgCdTe layer as...narrow-gap side was first Both groups used the liquid pweepitaxy (LPE) growth made with a thicknem of 2 to 3/pm before the growth condi- technique and...higher quasiequilibrium pressure than with the shutter opened. This study shows that with the particular geometry 27 used the time constant required
Minority Carrier Lifetime in Beryllium-Doped InAs/InAsSb Strained Layer Superlattices
2014-06-03
FTIR) spectrometer, operating in either continuous-scan or step-scan mode with a 14-lm cut-off wavelength external HgCdTe photo- detector . The PL...was collected by reflective optics and detected with a Vigo 10-lm cut-off, HgCdTe detector with a 3-ns time constant. The laser emission scattered from...45 ns and 8 ns were measured. The 6 × 10^16 cm?3 doping level is a factor of 6 greater than the typical background doping level in long-wave infrared
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boieriu, P.; Grein, C.H.; Velicu, S.
2006-02-06
We present the results of using an electron cyclotron resonance (ECR) plasma to incorporate hydrogen into long wavelength infrared HgCdTe layers grown by molecular beam epitaxy. Both as-grown and annealed layers doped in situ with indium were hydrogenated. Secondary ion mass spectroscopy confirmed the incorporation of hydrogen. Hall and photoconductive lifetime measurements were used to assess the effects of the hydrogenation. Increases in the electron mobilities and minority carrier lifetimes were observed for almost all ECR conditions.
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2013-02-01
The electrical resistivity of compound forming liquid alloy HgPb is studied as a function of concentration. Hard sphere diameters of Hg and Pb are obtained through the inter-ionic pair potential evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. The concentration dependence in resistivity occurs due to preferential ordering of unlike atoms as nearest neighbours with help of complex formation model. Though the compound HgiPbi as per structure peaks is found to be less stable. However it contributes significantly to resistivity as compared to bare ions.
NASA Astrophysics Data System (ADS)
Jeon, S.; Kang, D.-H.; Lee, Y. H.; Lee, S.; Lee, G. W.
2016-11-01
We investigate the relationship between the excess volume and undercoolability of Zr-Ti and Zr-Hf alloy liquids by using electrostatic levitation. Unlike in the case of Zr-Hf alloy liquids in which sizes of the constituent atoms are matched, a remarkable increase of undercoolability and negative excess volumes are observed in Zr-Ti alloy liquids as a function of their compositional ratios. In this work, size mismatch entropies for the liquids were obtained by calculating their hard sphere diameters, number densities, and packing fractions. We also show that the size mismatch entropy, which arises from the differences in atomic sizes of the constituent elements, plays an important role in determining the stabilities of metallic liquids.
Irradiation-enhanced α' precipitation in model FeCrAl alloys
Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; ...
2016-02-17
We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning ofmore » the Al from the α' precipitates was also observed.« less
2011-09-21
ISS029-E-010998 (21 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, prepares a camcorder for recording documentary video of the Binary Colloidal Alloy Test-5 (BCAT-5) payload operations in the Kibo laboratory of the International Space Station.
Burbank during session with BCAT-6 Experiment in the JPM
2012-02-08
ISS030-E-063961 (8 Feb. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.
Burbank during session with BCAT-6 Experiment in the JPM
2012-02-08
ISS030-E-063957 (8 Feb. 2012) --- NASA astronaut Dan Burbank, Expedition 30 commander, conducts a session with the Binary Colloidal Alloy Test-6 (BCAT-6) experiment in the Kibo laboratory of the International Space Station.
2011-09-21
ISS029-E-010999 (21 Sept. 2011) --- NASA astronaut Mike Fossum, Expedition 29 commander, prepares a camcorder for recording documentary video of the Binary Colloidal Alloy Test-5 (BCAT-5) payload operations in the Kibo laboratory of the International Space Station.
Magnetic properties of doped Mn-Ga alloys made by mechanical milling and heat treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Daniel R.; National High Magnetic Field Laboratory, Tallahassee, FL 32310; Han, Ke
2016-05-15
Mn-Ga alloys have shown hard magnetic properties, even though these alloys contain no rare-earth metals. However, much work is needed before rare-earth magnets can be replaced. We have examined the magnetic properties of bulk alloys made with partial replacement of both the Mn and Ga elements in the Mn{sub 0.8}Ga{sub 0.2} system. Bulk samples of Mn-Ga-Bi, Mn-Ga-Al, Mn-Fe-Ga and Mn-(FeB)-Ga alloys were fabricated and studied using mechanically milling and heat treatments while altering the atomic percentage of the third element between 2.5 and 20 at%. The ternary alloy exhibits all hard magnetic properties at room temperature with large coercivity. Annealedmore » Mn-Ga-X bulk composites exhibit high coercivities up to 16.6 kOe and remanence up to 9.8 emu/g, that is increased by 115% over the binary system.« less
DFT study of hydrogen production from formic acid decomposition on Pd-Au alloy nanoclusters
NASA Astrophysics Data System (ADS)
Liu, D.; Gao, Z. Y.; Wang, X. C.; Zeng, J.; Li, Y. M.
2017-12-01
Recently, it has been reported that the hydrogen production rate of formic acid decomposition can be significantly increased using Pd-Au binary alloy nano-catalysts [Wang et al. J. Mater. Chem. A 1 (2013) 12721-12725]. To explain the reaction mechanism of this alloy catalysis method, formic acid decomposition reactions on pure Pd and Pd-Au alloy nanoclusters are studied via density functional theory simulations. The simulation results indicate that the addition of inert element Au would not influence formic acid decomposition on Pd surface sites of Pd-Au alloy nanoclusters. On the other hand, the existence of Au surface sites brings relative weak hydrogen atom adsorption. On Pd-Au alloy nanoclusters, the dissociated hydrogen atoms from formic acid are easier to combine as hydrogen molecules than that on pure Pd clusters. Via the synergetic effect between Pd and Au, both formic acid decomposition and hydrogen production are events with large probability, which eventually results in high hydrogen production rate.
NASA Astrophysics Data System (ADS)
Martin, Brian
Combinatorial approaches have proven useful for rapid alloy fabrication and optimization. A new method of producing controlled isothermal gradients using the Gleeble Thermomechanical simulator has been developed, and demonstrated on the metastable beta-Ti alloy beta-21S, achieving a thermal gradient of 525-700 °C. This thermal gradient method has subsequently been coupled with existing combinatorial methods of producing composition gradients using the LENS(TM) additive manufacturing system, through the use of elemental blended powders. This has been demonstrated with a binary Ti-(0-15) wt% Cr build, which has subsequently been characterized with optical and electron microscopy, with special attention to the precipitate of TiCr2 Laves phases. The TiCr2 phase has been explored for its high temperature mechanical properties in a new oxidation resistant beta-Ti alloy, which serves as a demonstration of the new bicombinatorial methods developed as applied to a multicomponent alloy system.
NASA Astrophysics Data System (ADS)
Gulsoy, Gokce; Was, Gary S.
2015-04-01
Alloy 617 was exposed to He-CO-CO2 environments with of either 9 or 1320 at temperatures from 1023 K to 1123 K (750 °C to 850 °C) to determine the oxygen diffusion coefficients within the internal oxidation zone of the alloy. The oxygen diffusion coefficients determined based on both intergranular and transgranular oxidation rates were several orders of magnitude greater than those reported in pure nickel and in nickel-based binary alloys, indicating that the rapid internal aluminum oxidation of Alloy 617 was primarily due to enhanced oxygen diffusion along the incoherent Al2O3-alloy interfaces. The range of activation energy values determined for oxygen diffusion associated with the intergranular aluminum oxidation was from 149.6 to 154.7 kJ/mol, and that associated with the transgranular aluminum oxidation was from 244.7 to 283.5 kJ/mol.
Perpendicular Magnetic Anisotropy in Heusler Alloy Films and Their Magnetoresistive Junctions
Frost, William; Samiepour, Marjan
2018-01-01
For the sustainable development of spintronic devices, a half-metallic ferromagnetic film needs to be developed as a spin source with exhibiting 100% spin polarisation at its Fermi level at room temperature. One of the most promising candidates for such a film is a Heusler-alloy film, which has already been proven to achieve the half-metallicity in the bulk region of the film. The Heusler alloys have predominantly cubic crystalline structures with small magnetocrystalline anisotropy. In order to use these alloys in perpendicularly magnetised devices, which are advantageous over in-plane devices due to their scalability, lattice distortion is required by introducing atomic substitution and interfacial lattice mismatch. In this review, recent development in perpendicularly-magnetised Heusler-alloy films is overviewed and their magnetoresistive junctions are discussed. Especially, focus is given to binary Heusler alloys by replacing the second element in the ternary Heusler alloys with the third one, e.g., MnGa and MnGe, and to interfacially-induced anisotropy by attaching oxides and metals with different lattice constants to the Heusler alloys. These alloys can improve the performance of spintronic devices with higher recording capacity. PMID:29324709
Study of Ni-Mo electrodeposition in direct and pulse-reverse current
NASA Astrophysics Data System (ADS)
Stryuchkova, Yu M.; Rybin, N. B.; Suvorov, D. V.; Gololobov, G. P.; Tolstoguzov, A. B.; Tarabrin, D. Yu; Serpova, M. A.; Korotchenko, V. A.; Slivkin, E. V.
2017-05-01
Process of electrochemical deposition of the coating based on a binary nickel-molybdenum alloy onto a nickel substrate under pulse mode with current reverse within the range of current density change from 2 to 9 A/dm2 has been researched. Coating structure and its surface morphology have been studied. Method of X-ray energy dispersive spectroscopy has determined a percentage ratio of alloy components in the coating. Mode to obtain the densest and smoothest deposits has been identified under considered terms.
2009-11-22
The authors argued that the occurrence of the reversible step in the specific heat reflected “the freezing and unfreezing of some degree of freedom...of steel, the austenite phase is sometimes formed in a composition range where ferrite and liquid are the equilibrium phases. The formation of the...austenite is explained by the construction of a meta-stable extension of the (austenite+liquid) field into the ( ferrite +liquid) region. The
2009-04-01
Cu, germanium and tellurium ," J. Mat. Sci., vol. 9, pp. 707-717, 1974. [29] A. Inoue, T. Zhang, K. Kita, and T. Masumoto, "Mechanical strengths...Toribuchi, K. Aoki, and T. Masumoto, "Formation of La-M- Cu (M=Ca, Sr or Ba) amorphous alloys and their oxidization and superconductivity," Trans. JIM...structure of Pd- Ge alloys glasses by pulsed neutron total scattering," presented at Proc. 4 th International Conference on Rapidly Quenched Metals
Metastable Polymeric Nitrogen From N2H2 Alloys
2008-12-01
dioxide [Iota et al., 2oo7J and oxygen [MililZer and Hemley, 2006] and rich phase diagrams have been derived for each. However, the r~overy of the... oxygen , may lead to the stabilization of ordered extended molecular solid phases [Vos et aI., 1992; Loubeyre et a!., 1993; Somayazulu et al., 1996...and SlI7.hemechny, M.A., 2007: Structure of quench condensed nl·lz-Nl binary alloys: isotope effect, Low Temp. Phys. 33, 499 - 503. Goncharov, A.F
Investigation of High Temperature Ductility Losses in Alpha-Beta Titanium Alloys
1988-04-01
Gleeble simulation of GTAW thermal _ cycles, Figure 1.1 (6). They found that Ti-6AI-4V (Ti-64), Ti-6A1-2Nb-lTa-0.8Mo (Ti-6211), and Ti-6AI suffered...or weak beta stabilizers depending on the other alloying elements present. Vanadium, molybdenum, tantalum, niobium, chromium , silicon, copper...elements. Chromium , - silicon, copper, manganese, cobalt, iron, and hydrogen are all eutectic formers. A schematic binary phase diagram of a 0 beta
1978-10-09
melting point is around 4000*K. An exceedingly interesting feature of these solidification composites is the formation of fibrous MC type carbide ...the matrix could be refractory metal binary alloys with copper or uranium and the eutectic phase could be carbide of tungsten, * molybdenum, tantalum or...42 Accs -n or - *DTTI Tf Avn ! -7ll ’ i CrDi t , l’’*i,;. LIST OF FIGURES FIG. 1 Flow Diagram of Cemented Carbide Manufacture
Au-Ge MEAM potential fitted to the binary phase diagram
NASA Astrophysics Data System (ADS)
Wang, Yanming; Santana, Adriano; Cai, Wei
2017-02-01
We have developed a modified embedded atom method potential for the gold-germanium (Au-Ge) binary system that is fitted to the experimental binary phase diagram. The phase diagram is obtained from the common tangent construction of the free energy curves calculated by the adiabatic switching method. While maintaining the accuracy of the melting points of pure Au and Ge, this potential reproduces the eutectic temperature, eutectic composition and the solubility of Ge in solid Au, all in good agreement with the experimental values. To demonstrate the self-consistency of the potential, we performed benchmark molecular dynamics simulations of Ge crystal growth and etching in contact with a Au-Ge liquid alloy.
Chemical interactions and thermodynamic studies in aluminum alloy/molten salt systems
NASA Astrophysics Data System (ADS)
Narayanan, Ramesh
The recycling of aluminum and aluminum alloys such as Used Beverage Container (UBC) is done under a cover of molten salt flux based on (NaCl-KCl+fluorides). The reactions of aluminum alloys with molten salt fluxes have been investigated. Thermodynamic calculations are performed in the alloy/salt flux systems which allow quantitative predictions of the equilibrium compositions. There is preferential reaction of Mg in Al-Mg alloy with molten salt fluxes, especially those containing fluorides like NaF. An exchange reaction between Al-Mg alloy and molten salt flux has been demonstrated. Mg from the Al-Mg alloy transfers into the salt flux while Na from the salt flux transfers into the metal. Thermodynamic calculations indicated that the amount of Na in metal increases as the Mg content in alloy and/or NaF content in the reacting flux increases. This is an important point because small amounts of Na have a detrimental effect on the mechanical properties of the Al-Mg alloy. The reactions of Al alloys with molten salt fluxes result in the formation of bluish purple colored "streamers". It was established that the streamer is liquid alkali metal (Na and K in the case of NaCl-KCl-NaF systems) dissipating into the melt. The melts in which such streamers were observed are identified. The metal losses occurring due to reactions have been quantified, both by thermodynamic calculations and experimentally. A computer program has been developed to calculate ternary phase diagrams in molten salt systems from the constituting binary phase diagrams, based on a regular solution model. The extent of deviation of the binary systems from regular solution has been quantified. The systems investigated in which good agreement was found between the calculated and experimental phase diagrams included NaF-KF-LiF, NaCl-NaF-NaI and KNOsb3-TINOsb3-LiNOsb3. Furthermore, an insight has been provided on the interrelationship between the regular solution parameters and the topology of the phase diagram. The isotherms are flat (i.e. no skewness) when the regular solution parameters are zero. When the regular solution parameters are non-zero, the isotherms are skewed. A regular solution model is not adequate to accurately model the molten salt systems used in recycling like NaCl-KCl-LiF and NaCl-KCl-NaF.
NASA Astrophysics Data System (ADS)
Senturk, Bilge Seda
Metallic contacts are a ubiquitous method of connecting electrical and electronic components/systems. These contacts are usually fabricated from base metals because they are inexpensive, have high bulk electrical conductivities and exhibit excellent formability. Unfortunately, such base metals oxidize in air under ambient conditions, and the characteristics of the native oxide scales leads to contact resistances orders of magnitude higher than those for mating bare metal surface. This is a critical technological issue since the development of unacceptably high contact resistances over time is now by far the most common cause of failure in electrical/electronic devices and systems. To overcome these problems, several distinct approaches are developed for alloying base metals to promote the formation of self-healing inherently conductive native oxide scales. The objective of this dissertation study is to demonstrate the viability of these approaches through analyzing the data from Cu-9La (at%) and Fe-V binary alloy systems. The Cu-9 La alloy structure consists of eutectic colonies tens of microns in diameter wherein a rod-like Cu phase lies within a Cu6La matrix phase. The thin oxide scale formed on the Cu phase was found to be Cu2O as expected while the thicker oxide scale formed on the Cu6La phase was found to be a polycrystalline La-rich Cu2O. The enhanced electrical conductivity in the native oxide scale of the Cu-9La alloy arises from heavy n-type doping of the Cu2O lattice by La3+. The Fe-V alloy structures consist of a mixture of large elongated and equiaxed grains. A thin polycrystalline Fe3O4 oxide scale formed on all of the Fe-V alloys. The electrical conductivities of the oxide scales formed on the Fe-V alloys are higher than that formed on pure Fe. It is inferred that this enhanced conductivity arises from doping of the magnetite with V+4 which promotes electron-polaron hopping. Thus, it has been demonstrated that even in simple binary alloy systems one can obtain a dramatic reduction in the contact resistances of alloy oxidized surfaces as compared with those of the pure base metals.
Embedded atom method potential for studying mechanical properties of binary Cu–Au alloys
NASA Astrophysics Data System (ADS)
Gola, Adrien; Pastewka, Lars
2018-07-01
We present an embedded atom method (EAM) potential for the binary Cu–Au system. The unary phases are described by two well-tested unary EAM potentials for Cu and Au. We fitted the interaction between Cu and Au to experimental properties of the binary intermetallic phases Cu3Au, CuAu and CuAu3. Particular attention has been paid to reproducing stacking fault energies in order to obtain a potential suitable for studying deformation in this binary system. The resulting energies, lattice constant, elastic properties and melting points are in good agreement with available experimental data. We use nested sampling to show that our potential reproduces the phase boundaries between intermetallic phases and the disordered face-centered cubic solid solution. We benchmark our potential against four popular Cu–Au EAM parameterizations and density-functional theory calculations.
da Silva, Luciano Monteiro; Claro, Ana Paula Rosifini Alves; Donato, Tatiani Ayako Goto; Arana-Chavez, Victor E; Moraes, João Carlos Silos; Buzalaf, Marília Afonso Rabelo; Grandini, Carlos Roberto
2011-05-01
The most commonly used titanium (Ti)-based alloy for biological applications is Ti-6Al-4V, but some studies associate the vanadium (V) with the cytotoxic effects and adverse reactions in tissues, while aluminum (Al) has been associated with neurological disorders. Ti-Nb alloys belong to a new class of Ti-based alloys with no presence of Al and V and with elasticity modulus values that are very attractive for use as a biomaterial. It is well known that the presence of interstitial elements (such as oxygen, for example) changes the mechanical properties of alloys significantly, particularly the elastic properties, the same way that heat treatments can change the microstructure of these alloys. This article presents the effect of heat treatment and oxygen doping in some mechanical properties and the biocompatibility of three alloys of the Ti-Nb system, characterized by density measurements, X-ray diffraction, optical microscopy, Vickers microhardness, in vitro cytotoxicity, and mechanical spectroscopy. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
The Effects of Adding Elements of Zinc and Magnesium on Ag-Cu Eutectic Alloy for Warming Acupuncture
Park, Il Song; Kim, Keun Sik; Lee, Min Ho
2013-01-01
The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition. PMID:24078827
Kim, Yu Kyoung; Park, Il Song; Kim, Keun Sik; Lee, Min Ho
2013-01-01
The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition.
Microstructure and properties of Ti-Fe-Y alloy fabricated by laser-aided direct metal deposition
NASA Astrophysics Data System (ADS)
Wang, Cunshan; Han, Liying
2018-04-01
Ti-Fe-Y alloys were designed using a "cluster-plus-glue-atom" model and then were prepared by laser-aided direct metal deposition (LDMD) on a pure titanium substrate. The influence of the Y addition on the microstructure and properties of the alloys were investigated. The results show that the alloys are composed of β-Ti solid solution and FeTi compound. The addition of Y not only suppresses the formation of Ti4Fe2O oxide but also increases the supercooling degree of the melt, leading to the grain refinement and the increase in the solid solution of the β-Ti. Meanwhile, the microstructure changes sequentially from eutectic to hypereutectic to hypoeutectic with the increasing of the Y addition. The strengest Ti-Fe-Y alloy has a dispersed eutectic structure and exhibits a good combination of mechanical, tribological, and forming properties, which is superior to that obtained for the binary Ti70.6Fe29.4 eutectic alloy. This makes the alloy a promising candidate as a LDMD material.
NASA Astrophysics Data System (ADS)
Lee, Joohwi; Ikeda, Yuji; Tanaka, Isao
2017-11-01
Martensitic transformation with good structural compatibility between parent and martensitic phases are required for shape memory alloys (SMAs) in terms of functional stability. In this study, first-principles-based materials screening is systematically performed to investigate the intermetallic compounds with the martensitic phases by focusing on energetic and dynamical stabilities as well as structural compatibility with the parent phase. The B2, D03, and L21 crystal structures are considered as the parent phases, and the 2H and 6M structures are considered as the martensitic phases. In total, 3384 binary and 3243 ternary alloys with stoichiometric composition ratios are investigated. It is found that 187 alloys survive after the screening. Some of the surviving alloys are constituted by the chemical elements already widely used in SMAs, but other various metallic elements are also found in the surviving alloys. The energetic stability of the surviving alloys is further analyzed by comparison with the data in Materials Project Database (MPD) to examine the alloys whose martensitic structures may cause further phase separation or transition to the other structures.
Liquid-liquid phase separation and core-shell structure of ternary Al-In-Sn immiscible alloys
NASA Astrophysics Data System (ADS)
Zhao, Degang; Bo, Lin; Wang, Lin; Li, Shanshan
2018-04-01
In this study, the liquid-liquid phase separation of four kinds of ternary immiscible Al-In-Sn melts was investigated with resistivity and thermodynamics method. The nonlinear changes in ρ-T and DSC curves of Al-In-Sn immiscible alloys above monotectic reaction temperature revealed the occurrence of liquid-liquid phase separation of Al-In-Sn melts. The monotectic temperature, liquid phase separation temperature and immiscible gap of ternary Al-In-Sn alloys were lower than those of binary Al-In alloy. With the Al content decreasing, the immiscible gap of Al-In-Sn alloy decreased. The composition of Al80In10Sn10, Al70In15Sn15, Al60In20Sn20 and Al50In25Sn25 was located in the immiscible zone of Al-In-Sn system. Due to the differences of Stokes effect, Marangoni convection and immiscible gap, the solidification morphology of four kinds of Al-In-Sn monotectic alloy was different. The core–shell structure of Al-In-Sn monotectic alloy can form within a certain range of composition.
Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base
NASA Technical Reports Server (NTRS)
Zollars, G. F.
1980-01-01
These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.
Kelly takes photo of BCAT-5 Payload Setup
2011-02-23
ISS026-E-028666 (23 Feb. 2011) --- NASA astronaut Scott Kelly, Expedition 26 commander, uses a digital still camera to photograph the Binary Colloidal Alloy Test-5 (BCAT-5) payload setup in the Kibo laboratory of the International Space Station.
Large-Format HgCdTe Dual-Band Long-Wavelength Infrared Focal-Plane Arrays
NASA Astrophysics Data System (ADS)
Smith, E. P. G.; Venzor, G. M.; Gallagher, A. M.; Reddy, M.; Peterson, J. M.; Lofgreen, D. D.; Randolph, J. E.
2011-08-01
Raytheon Vision Systems (RVS) continues to further its capability to deliver state-of-the-art high-performance, large-format, HgCdTe focal-plane arrays (FPAs) for dual-band long-wavelength infrared (L/LWIR) detection. Specific improvements have recently been implemented at RVS in molecular-beam epitaxy (MBE) growth and wafer fabrication and are reported in this paper. The aim of the improvements is to establish producible processes for 512 × 512 30- μm-unit-cell L/LWIR FPAs, which has resulted in: the growth of triple-layer heterojunction (TLHJ) HgCdTe back-to-back photodiode detector designs on 6 cm × 6 cm CdZnTe substrates with 300-K Fourier-transform infrared (FTIR) cutoff wavelength uniformity of ±0.1 μm across the entire wafer; demonstration of detector dark-current performance for the longer-wavelength detector band approaching that of single-color liquid-phase epitaxy (LPE) LWIR detectors; and uniform, high-operability, 512 × 512 30- μm-unit-cell FPA performance in both LWIR bands.
Uniformity studies of inductively coupled plasma etching in fabrication of HgCdTe detector arrays
NASA Astrophysics Data System (ADS)
Bommena, R.; Velicu, S.; Boieriu, P.; Lee, T. S.; Grein, C. H.; Tedjojuwono, K. K.
2007-04-01
Inductively coupled plasma (ICP) chemistry based on a mixture of CH 4, Ar, and H II was investigated for the purpose of delineating HgCdTe mesa structures and vias typically used in the fabrication of second and third generation infrared photo detector arrays. We report on ICP etching uniformity results and correlate them with plasma controlling parameters (gas flow rates, total chamber pressure, ICP power and RF power). The etching rate and surface morphology of In-doped MWIR and LWIR HgCdTe showed distinct dependences on the plasma chemistry, total pressure and RF power. Contact stylus profilometry and cross-section scanning electron microscopy (SEM) were used to characterize the anisotropy of the etched profiles obtained after various processes and a standard deviation of 0.06 μm was obtained for etch depth on 128 x 128 format array vias. The surface morphology and the uniformity of the etched surfaces were studied by plan view SEM. Atomic force microscopy was used to make precise assessments of surface roughness.
LWIR HgCdTe: Innovative detectors in an incumbent technology
NASA Technical Reports Server (NTRS)
Tennant, William E.
1990-01-01
HgCdTe is the current material of choice for high performance imagers operating at relatively high temperatures. Its lack of technological maturity compared with silicon and wide-band gap III-V compounds is more than offset by its outstanding IR sensitivity and by the relatively benign effect of its materials defects. This latter property has allowed non-equilibrium growth techniques, metal oxide chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE), to produce device quality long wavelength infrared (LWIR) HgCdTe even on common substrates like GaAs and GaAs/Si. Detector performance in these exotic materials structures is comparable in many ways with devices in equilibrium-grown material. Lifetimes are similar. RoA values at 77K as high as several hundred have been seen in HgCdTe/GaAs/Si with 9.5 micron cut-off wavelength. HgCdTe/GaAs layers with approx. 15 micron cut-off wavelengths have given average 77K RoAs of greater than 2. Hybrid focal plane arrays have been evaluated with excellent operability.
Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors
NASA Astrophysics Data System (ADS)
Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.
2016-09-01
Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.
InAs/InGaSb Type-II strained layer superlattice IR detectors
NASA Astrophysics Data System (ADS)
Nathan, Vaidya; Anselm, K. Alex; Lin, C. H. T.; Johnson, Jeffrey L.
2002-05-01
InAs/InGaSb type2 strained layer superlattice (SLS) combines the advantages of III-V materials technology with the strong, broad-band absorption, and wavelength tunability of HgCdTe. In fact, the significantly reduced tunneling and Auger recombination rates in SLS compared to those in HgCdTe should enable SLS detectors to outperform HgCdTe. We report the results of our investigation of InAs/InGaSb type2 strained layer superlattices (SLS)for LWIR photovoltaic detector development. We modeled the band structure, and absorption spectrum of SLS's, and achieved good agreement with experimental data. We systematically investigated the SLS growth conditions, resulting in good uniformity, and the elimination of several defects. We designed, developed and evaluated 16x16 array of 13 micron cutoff photovoltaic detectors. Photodiodes with cutoff wavelengths of 13 and 18microns were demonstrated, which are the longest wavelengths demonstrated for this material system. Quantum efficiencies commensurate with the superlattice thickness were demonstrated and verified at AFRL. The electrical properties show excessive leakage current, most likely due to trap-assisted tunneling.
Integrated receiver for heterodyne detection dedicated to space applications
NASA Astrophysics Data System (ADS)
Fleury, Joel; Girard, Olivier; Royer, Michel; Bidaud, Michel
1998-10-01
This paper is devoted to the presentation of an Integrator Dewar Cooling Assembly dedicated to high frequency space applications. SAGEM SA has been a manufacturer of IR InSb and HgCdTe detectors for a long time. These detectors cover a large spectral range. The capability to use HgCdTe photovoltaic detectors for heterodyne applications at 10.6 micrometers has been demonstrated in the frame of ESA and CNES contracts. SAGEM SA has recently developed a new concept of heterodyne receiver, totally integrated, operating at variable temperatures down to 77K, using HgCdTe or InSb photovoltaic detectors. This receiver is an innovative product due to its small volume, its low weight and its low electrical consumption. The miniaturization of this product the latter to be used in space applications, specially for the earth observation missions. The performance of such a receiver with respect of the electrical bandwidth is presented in order to compare it with a receiver for terrestrial or airborne applications based on the use of a laboratory HF dewar.
Performance of Hg1-xCdxTe infrared focal plane array at elevated temperature
NASA Astrophysics Data System (ADS)
Singh, Anand; Pal, Ravinder
2017-04-01
The simulated optical and electrical performance of the infrared HgCdTe focal plane array (FPA) for elevated operation temperature is reported. The depleted absorber layer is explored for equilibrium mode of operation up to 160 K. A resonant cavity is created to improve photon-matter interaction and hence, reduces the required absorption volume. The volume of the active region of HgCdTe detector is reduced by 70% in this manner. Dark current density is decreased without compromising the quantum efficiency. The effect of the reduced band filling effect leading to higher absorption coefficient and more efficient utilization of incident flux is employed. High quantum efficiency is achieved in a thin compositionally graded n+/ν/π/p HgCdTe photo-diode. This architecture helps to minimize the requirement of charge handling capacity in the CMOS read-out integrated circuit (ROIC) as the operation temperature is increased. Quantum efficiency ˜30% or above is shown to be sufficient for Noise Equivalent Temperature Difference (NETD) less than 20 mK with the reported design.
Heat storage in alloy transformations
NASA Technical Reports Server (NTRS)
Birchenall, C. E.
1980-01-01
Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.
Improvement of Corrosion Resistance of Binary Mg-Ca Alloys Using Duplex Aluminum-Chromium Coatings
NASA Astrophysics Data System (ADS)
Daroonparvar, Mohammadreza; Yajid, Muhamad Azizi Mat; Yusof, Noordin Mohd; Bakhsheshi-Rad, Hamid Reza; Adabi, Mohsen; Hamzah, Esah; Kamali, Hussein Ali
2015-07-01
Al-AlCr was coated on Mg-Ca and Mg-Zn-Ce-La alloys using physical vapor deposition method. The surface morphology of the specimens was characterized by x-ray diffraction, scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and atomic force microscopy (AFM). The AFM results indicated that the average surface roughness of Al-AlCr coating on the Mg-Ca alloy is much lower than that of Al-AlCr coating on the Mg-Zn-Ce-La alloy. However, Al-AlCr coating on the Mg-Ca alloy presented a more compact structure with fewer pores, pinholes, and cracks than Al-AlCr coating on the Mg-Zn-Ce-La alloy. Electrochemical studies revealed that the novel coating (Al-AlCr) can remarkably reduce the corrosion rate of the Mg-Ca alloy in 3.5 wt.% NaCl solution. It was seen that the anodic current density of the Al-AlCr-coated Mg-Ca alloy was very small when compared to the Al-AlCr-coated Mg-Zn-Ce-La and uncoated alloys. Impedance modulus ( Z) of the Al-AlCr-coated samples was higher than that of the bare Mg alloys. Z of Al-AlCr-coated Mg-Ca alloy was higher than that of the Al-AlCr-coated Mg-Zn-Ce-La alloy at low frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, S.; Soda, H.; McLean, A.
2000-01-01
A ternary eutectic alloy with a composition of 57.2 pct Bi, 24.8 pct In, and 18 pct Sn was continuously cast into wire of 2 mm diameter with casting speeds of 14 and 79 mm/min using the Ohno Continuous Casting (OCC) process. The microstructures obtained were compared with those of statically cast specimens. Extensive segregation of massive Bi blocks, Bi complex structures, and tin-rich dendrites was found in specimens that were statically cast. Decomposition of {radical}Sn by a eutectoid reaction was confirmed based on microstructural evidence. Ternary eutectic alloy with a cooling rate of approximately 1 C/min formed a doublemore » binary eutectic. The double binary eutectic consisted of regions of BiIn and decomposed {radical}Sn in the form of a dendrite cell structure and regions of Bi and decomposed {radical}Sn in the form of a complex-regular cell. The Bi complex-regular cells, which are a ternary eutectic constituent, existed either along the boundaries of the BiIn-decomposed {radical}Sn dendrite cells or at the front of elongated dendrite cell structures. In the continuously cast wires, primary Sn dendrites coupled with a small Bi phase were uniformly distributed within the Bi-In alloy matrix. Neither massive Bi phase, Bi complex-regular cells, no BiIn eutectic dendrite cells were observed, resulting in a more uniform microstructure in contrast to the heavily segregated structures of the statically cast specimens.« less
On Nb Silicide Based Alloys: Alloy Design and Selection.
Tsakiropoulos, Panos
2018-05-18
The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb₅Si₃ (Materials 11 (2018) 69), and hexagonal C14-NbCr₂ and cubic A15-Nb₃X phases (Materials 11 (2018) 395) and eutectics with Nb ss and Nb₅Si₃ (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys.
On Nb Silicide Based Alloys: Alloy Design and Selection
Tsakiropoulos, Panos.
2018-01-01
The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb5Si3 (Materials 11 (2018) 69), and hexagonal C14-NbCr2 and cubic A15-Nb3X phases (Materials 11 (2018) 395) and eutectics with Nbss and Nb5Si3 (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys. PMID:29783707
Float processing of high-temperature complex silicate glasses and float baths used for same
NASA Technical Reports Server (NTRS)
Cooper, Reid Franklin (Inventor); Cook, Glen Bennett (Inventor)
2000-01-01
A float glass process for production of high melting temperature glasses utilizes a binary metal alloy bath having the combined properties of a low melting point, low reactivity with oxygen, low vapor pressure, and minimal reactivity with the silicate glasses being formed. The metal alloy of the float medium is exothermic with a solvent metal that does not readily form an oxide. The vapor pressure of both components in the alloy is low enough to prevent deleterious vapor deposition, and there is minimal chemical and interdiffusive interaction of either component with silicate glasses under the float processing conditions. Alloys having the desired combination of properties include compositions in which gold, silver or copper is the solvent metal and silicon, germanium or tin is the solute, preferably in eutectic or near-eutectic compositions.
Suzuki segregation in a binary Cu-Si alloy.
Mendis, Budhika G; Jones, Ian P; Smallman, Raymond E
2004-01-01
Suzuki segregation to stacking faults and coherent twin boundaries has been investigated in a Cu-7.15 at.% Si alloy, heat-treated at temperatures of 275, 400 and 550 degrees C, using field-emission gun transmission electron microscopy. Silicon enrichment was observed at the stacking fault plane and decreased monotonically with increasing annealing temperature. This increase in the concentration of solute at the fault is due to the stacking fault energy being lowered at higher values of the electron-to-atom ratio of the alloy. From a McLean isotherm, the binding energy for segregation was calculated to be -0.021 +/- 0.019 eV atom(-1). Hardly any segregation was observed to coherent twin boundaries in the same alloy. This is because a twin has a lower interfacial energy than a stacking fault, so that the driving force for segregation is diminished.
Mössbauer study of oxide films of Fe-, Sn-, Cr- doped zirconium alloys during corrosion in autoclave
NASA Astrophysics Data System (ADS)
Filippov, V. P.; Bateev, A. B.; Lauer, Yu. A.
2016-12-01
Mössbauer investigations were used to compare iron atom states in oxide films of binary Zr-Fe, ternary Zr-Fe-Cu and quaternary Zr-Fe-Cr-Sn alloys. Oxide films are received in an autoclave at a temperature of 350-360 °C and at pressure of 16.8 MPa. The corrosion process decomposes the intermetallic precipitates in alloys and forms metallic iron with inclusions of chromium atoms α-Fe(Cr), α-Fe(Cu), α-Fe 2O3 and Fe 3O4 compounds. Some iron ions are formed in divalent and in trivalent paramagnetic states. The additional doping influences on corrosion kinetics and concentration of iron compounds and phases formed in oxide films. It was shown the correlation between concentration of iron in different chemical states and corrosion resistance of alloys.
Interface morphology studies of liquid phase epitaxy grown HgCdTe films by atomic force microscopy
NASA Astrophysics Data System (ADS)
Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.
1994-04-01
In this paper we report an investigation of the morphology of the interfaces of liquid phase epitaxy (LPE) grown HgCdTe thin films on CdTe and CdZnTe substrates by atomic force microscopy (AFM) on freshly cleaved (110) crystallographic planes. An empirical observation which may be linked to lattice mismatch was indicated by an angle between the cleavage steps of the substrate to those of the film. The precipitates with size ranging from 5 nm to 20 nm were found to be most apparent near the interface.
Optical study of HgCdTe infrared photodetectors using internal photoemission spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lao, Yan-Feng; Unil Perera, A. G., E-mail: uperera@gsu.edu; Wijewarnasuriya, Priyalal S.
2014-03-31
We report a study of internal photoemission spectroscopy (IPE) applied to a n-type Hg{sub 1−x}Cd{sub x}Te/Hg{sub 1−y}Cd{sub y}Te heterojunction. An exponential line-shape of the absorption tail in HgCdTe is identified by IPE fittings of the near-threshold quantum yield spectra. The reduction of quantum yield (at higher photon energy) below the fitting value is explained as a result of carrier-phonon scatterings. In addition, the obtained bias independence of the IPE threshold indicates a negligible electron barrier at the heterojunction interface.
Performances of a HGCDTE APD based direct detection lidar at 2 μm. Application to dial measurements
NASA Astrophysics Data System (ADS)
Gibert, Fabien; Dumas, Arnaud; Rothman, Johan; Edouart, Dimitri; Cénac, Claire; Pellegrino, Jessica
2018-04-01
A lidar receiver with a direct detection chain adapted to a HgCdTe APD based detector with electric cooling is associated to a 2.05 μm Ho :YLF pulsed dual wavelength single mode transmitter to provide the first atmospheric lidar measurements using this technology. Experiments confirm the outstanding sensitivity of the detector and hightligth its huge potential for DIAL measurements of trace gas (CO2 and H2O) in this spectral domain. Performances of coherent vs direct detection at 2.05 μm is assessed.
NASA Astrophysics Data System (ADS)
Sitharaman, S.; Raman, R.; Durai, L.; Pal, Surendra; Gautam, Madhukar; Nagpal, Anjana; Kumar, Shiv; Chatterjee, S. N.; Gupta, S. C.
2005-12-01
In this paper, we report the experimental observations on the effect of plasma hydrogenation in passivating intrinsic point defects, shallow/deep levels and extended defects in low-resistivity undoped CdZnTe crystals. The optical absorption studies show transmittance improvement in the below gap absorption spectrum. Using variable temperature Hall measurement technique, the shallow defect level on which the penetrating hydrogen makes complex, has been identified. In 'compensated' n-type HgCdTe epitaxial layers, hydrogenation can improve the resistivity by two orders of magnitude.
McArthur photographs BCAT-3 samples during Expedition 12
2005-11-11
ISS012-E-07685 (11 Nov. 2005) --- Astronaut William S. (Bill) McArthur Jr., Expedition 12 commander and NASA space station science officer, photographs Binary Colloidal Alloy Test-3 (BCAT-3) experiment samples in the Destiny laboratory of the international space station.
Coleman takes photo of BCAT-5 Payload Setup
2011-02-23
ISS026-E-028660 (23 Feb. 2011) --- NASA astronaut Catherine (Cady) Coleman, Expedition 26 flight engineer, uses a digital still camera to photograph the Binary Colloidal Alloy Test-5 (BCAT-5) payload setup in the Kibo laboratory of the International Space Station.
Effects of gravity reduction on phase equilibria. Part 1: Unary and binary isostructural solids
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.
1975-01-01
Analysis of the Skylab II M553 Experiment samples resulted in the hypothesis that the reduced gravity environment was altering the melting and solidification reactions. A theoretical study was conducted to define the conditions under which such alteration of phase relations is feasible, determine whether it is restricted to space processing, and, if so, ascertain which alloy systems or phase reactions are most likely to demonstrate such effects. Phase equilibria of unary and binary systems with a single solid phase (unary and isomorphous) were considered.
Electrotransfer in Liquid Binary Aluminum Alloys
NASA Astrophysics Data System (ADS)
Tekuchev, V. V.; Kalinkin, D. P.; Ivanova, I. V.
2018-07-01
The mobility of ions in a liquid binary metal system based on aluminum is calculated for the first time in a wide range of concentrations, based on studies of its resistivity and self-diffusion coefficient. It is established that in an Al-Cu system, the ions of aluminum move to the anode, while Al-Mg, Al-Sn, and Al-Sb move to the cathode; i.e., there is inversion of the electrotransfer of aluminum ions. When the concentration of a component is reduced, the mobility of its ions is increased by the module.
Metastable phase in binary and ternary 12-carat gold alloys at low temperature
NASA Astrophysics Data System (ADS)
Lamiri, Imene; Abdelbaky, Mohammed S. M.; Hamana, Djamel; García-Granda, Santiago
2018-04-01
Low temperature phase transitions in 12-carat gold alloys have been investigated for binary Au-Cu and ternary Au-Cu-Ag compositions. The thermal analyses investigations using differential scanning calorimetry (DSC) and the dilatometry were performed in the 50–300 °C temperature range in order to detect the structural transformations. The thermal analyses were carried out on annealed samples at 700 °C for two hour followed by water quenching. They reveal an important new reaction for both used compositions and both thermal techniques confirm each other. This reaction has been assessed as pre-ordering reaction. SEM and STM imaging were performed on annealed samples at 700 °C for two hours and water quenched followed by a heating from room temperature up to the temperature of the new peaks obtained in the thermal study. The imaging reveals the relationship between the pre-ordering reaction and the surface aspect presented in the fact of dendrite precipitates. A series of SEM observation have been performed in order to follow the kinetic of the observed precipitates by the way of several series of heating up, from 140 to 220 °C for the binary composition and from 100 to 180 °C for the ternary composition. Furthermore, this study shows that the silver accelerates the ordering reaction.
Lattice misfits in four binary Ni-Base γ/γ1 alloys at ambient and elevated temperatures
NASA Astrophysics Data System (ADS)
Kamara, A. B.; Ardell, A. J.; Wagner, C. N. J.
1996-10-01
High-temperature X-ray diffractometry was used to determine the in situlattice parameters, a γ and a γ', and lattice misfits, δ = ( a γ', - a γ)/ a γ, of the matrix (γ) and dispersed γ'-type (Ni3X) phases in polycrystalline binary Ni-Al, Ni-Ga, Ni-Ge, and Ni-Si alloys as functions of temperature, up to about 680 °C. Concentrated alloys containing large volume fractions of the γ' phase (˜0.40 to 0.50) were aged at 700 °C to produce large, elastically unconstrained precipitates. The room-temperature misfits are 0.00474 (Ni-Al), 0.01005 (Ni-Ga), 0.00626 (Ni-Ge), and -0.00226 (Ni-Si), with an estimated error of ± 4 pct. The absolute values of the lattice constants of the γ and γ' phases, at compositions corresponding to thermodynamic equilibrium at about 700 °C, are in excellent agreement with data from the literature, with the exception of Ni3Ga, the lattice constant of which is much larger than expected. In Ni-Ge alloys, δ decreases to 0.00612 at 679 °C, and in Ni-Ga alloys, the decrease is to 0.0097. In Ni-Si and Ni-Al alloys, δ exhibits a stronger temperature dependence, changing to-0.00285 at 683 °C (Ni-Si) and to 0.00424 at 680 °C (Ni-Al). Since the times required to complete the high-temperature X-ray diffraction (XRD) scans were relatively short (2.5 hours at most), we believe that the changes in δ observed are attributable to differences between the thermal expansion coefficients of the γ and γ' phases, because the compositions of the phases in question reflect the equilibrium compositions at 700 δC. Empirical equations are presented that accurately describe the temperature dependences of a γ, a γ', and δ over the range of temperatures of this investigation.
Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale
Han, Lili; Meng, Qingping; Wang, Deli; Zhu, Yimei; Wang, Jie; Du, Xiwen; Stach, Eric A.; Xin, Huolin L.
2016-01-01
An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-induced chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. This work characterizes the pathways that can control the morphology in binary oxide materials. PMID:27928998
Structure of dental gallium alloys.
Herø, H; Simensen, C J; Jørgensen, R B
1996-07-01
The interest in gallium alloys as a replacement for amalgam has increased in recent years due to the risk of environmental pollution from amalgam. Alloy powders with compositions close to those for alloys of amalgam are mixed with a liquid gallium alloy. The mix is condensed into a prepared cavity in much the same way as for amalgam. The aim of the present work was to study the structure of: (1) two commercial alloy powders containing mainly silver, tin and copper, and (2) the phases formed by mixing these powders with a liquid alloy of gallium, indium and tin. One of the alloy powders contained 9 wt% palladium. Cross-sections of cylindrical specimens made by these gallium mixes were investigated by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Discrete grains of the following phases were found to be present in both gallium alloys: hexagonal Ag2Ga, tetragonal Cu(Pd)Ga2, cubic Ag9In4 and tetragonal beta-Sn. Indications of hexagonal or orthorhombic Ag2Sn were found in the remaining, unreacted alloy particles. In the palladium-containing alloy the X-ray reflections indicate a minor fraction of cubic Cu9Ga4 in addition to the Cu(Pd)Ga2 phase. Particles of beta-Sn are probably precipitated because Sn-Ga phases cannot be formed according to the binary phase diagram.
NASA Astrophysics Data System (ADS)
Ferreira, D. J. S.; Bezerra, B. N.; Collyer, M. N.; Garcia, A.; Ferreira, I. L.
2018-04-01
The simulation of casting processes demands accurate information on the thermophysical properties of the alloy; however, such information is scarce in the literature for multicomponent alloys. Generally, metallic alloys applied in industry have more than three solute components. In the present study, a general solution of Butler's formulation for surface tension is presented for multicomponent alloys and is applied in quaternary Al-Cu-Si-Fe alloys, thus permitting the Gibbs-Thomson coefficient to be determined. Such coefficient is a determining factor to the reliability of predictions furnished by microstructure growth models and by numerical computations of solidification thermal parameters, which will depend on the thermophysical properties assumed in the calculations. The Gibbs-Thomson coefficient for ternary and quaternary alloys is seldom reported in the literature. A numerical model based on Powell's hybrid algorithm and a finite difference Jacobian approximation has been coupled to a Thermo-Calc TCAPI interface to assess the excess Gibbs energy of the liquid phase, permitting liquidus temperature, latent heat, alloy density, surface tension and Gibbs-Thomson coefficient for Al-Cu-Si-Fe hypoeutectic alloys to be calculated, as an example of calculation capabilities for multicomponent alloys of the proposed method. The computed results are compared with thermophysical properties of binary Al-Cu and ternary Al-Cu-Si alloys found in the literature and presented as a function of the Cu solute composition.
Additive Manufacturing of Metastable Beta Titanium Alloys
NASA Astrophysics Data System (ADS)
Yannetta, Christopher J.
Additive manufacturing processes of many alloys are known to develop texture during the deposition process due to the rapid reheating and the directionality of the dissipation of heat. Titanium alloys and with respect to this study beta titanium alloys are especially susceptible to these effects. This work examines Ti-20wt%V and Ti-12wt%Mo deposited under normal additive manufacturing process parameters to examine the texture of these beta-stabilized alloys. Both microstructures contained columnar prior beta grains 1-2 mm in length beginning at the substrate with no visible equiaxed grains. This microstructure remained constant in the vanadium system throughout the build. The microstructure of the alloy containing molybdenum changed from a columnar to an equiaxed structure as the build height increased. Eighteen additional samples of the Ti-Mo system were created under different processing parameters to identify what role laser power and travel speed have on the microstructure. There appears to be a correlation in alpha lath size and power density. The two binary alloys were again deposited under the same conditions with the addition of 0.5wt% boron to investigate the effects an insoluble interstitial alloying element would have on the microstructure. The size of the prior beta grains in these two alloys were reduced with the addition of boron by approximately 50 (V) and 100 (Mo) times.
Kinetics and Equilibrium of Age-Induced Precipitation in Cu-4 At. Pct Ti Binary Alloy
NASA Astrophysics Data System (ADS)
Semboshi, Satoshi; Amano, Shintaro; Fu, Jie; Iwase, Akihiro; Takasugi, Takayuki
2017-03-01
Transformation kinetics and phase equilibrium of metastable and stable precipitates in age-hardenable Cu-4 at. pct Ti binary alloy have been investigated by monitoring the microstructural evolution during isothermal aging at temperatures between 693 K (420 °C) and 973 K (700 °C). The microstructure of the supersaturated solid solution evolves in four stages: compositional modulation due to spinodal decomposition, continuous precipitation of the needle-shaped metastable β'-Cu4Ti with a tetragonal structure, discontinuous precipitation of cellular components containing stable β-Cu4Ti lamellae with an orthorhombic structure, and eventually precipitation saturation at equilibrium. In specimens aged below 923 K (650 °C), the stable β-Cu4Ti phase is produced only due to the cellular reaction, whereas it can be also directly obtained from the intergranular needle-shaped β'-Cu4Ti precipitates in specimens aged at 973 K (700 °C). The precipitation kinetics and phase equilibrium observed for the specimens aged between 693 K (420 °C) and 973 K (700 °C) were characterized in accordance with a time-temperature-transformation (TTT) diagram and a Cu-Ti partial phase diagram, which were utilized to determine the alloy microstructure, strength, and electrical conductivity.
Sharifi, Hamid; Larouche, Daniel
2014-01-01
To study the variation of the mechanical behavior of binary aluminum copper alloys with respect to their microstructure, a numerical simulation of their granular structure was carried out. The microstructures are created by a repeated inclusion of some predefined basic grain shapes into a representative volume element until reaching a given volume percentage of the α-phase. Depending on the grain orientations, the coalescence of the grains can be performed. Different granular microstructures are created by using different basic grain shapes. Selecting a suitable set of basic grain shapes, the modeled microstructure exhibits a realistic aluminum alloy microstructure which can be adapted to a particular cooling condition. Our granular models are automatically converted to a finite element model. The effect of grain shapes and sizes on the variation of elastic modulus and plasticity of such a heterogeneous domain was investigated. Our results show that for a given α-phase fraction having different grain shapes and sizes, the elastic moduli and yield stresses are almost the same but the ultimate stress and elongation are more affected. Besides, we realized that the distribution of the θ phases inside the α phases is more important than the grain shape itself. PMID:28788607
Formation enthalpies for transition metal alloys using machine learning
NASA Astrophysics Data System (ADS)
Ubaru, Shashanka; Miedlar, Agnieszka; Saad, Yousef; Chelikowsky, James R.
2017-06-01
The enthalpy of formation is an important thermodynamic property. Developing fast and accurate methods for its prediction is of practical interest in a variety of applications. Material informatics techniques based on machine learning have recently been introduced in the literature as an inexpensive means of exploiting materials data, and can be used to examine a variety of thermodynamics properties. We investigate the use of such machine learning tools for predicting the formation enthalpies of binary intermetallic compounds that contain at least one transition metal. We consider certain easily available properties of the constituting elements complemented by some basic properties of the compounds, to predict the formation enthalpies. We show how choosing these properties (input features) based on a literature study (using prior physics knowledge) seems to outperform machine learning based feature selection methods such as sensitivity analysis and LASSO (least absolute shrinkage and selection operator) based methods. A nonlinear kernel based support vector regression method is employed to perform the predictions. The predictive ability of our model is illustrated via several experiments on a dataset containing 648 binary alloys. We train and validate the model using the formation enthalpies calculated using a model by Miedema, which is a popular semiempirical model used for the prediction of formation enthalpies of metal alloys.
Electrical properties of materials for high temperature strain gage applications
NASA Technical Reports Server (NTRS)
Brittain, John O.
1989-01-01
A study was done on the electrical resistance of materials that are potentially useful as resistance strain gages at high temperatures under static strain conditions. Initially a number of binary alloys were investigated. Later, third elements were added to these alloys, all of which were prepared by arc melting. Several transition metals were selected for experimentation, most prepared as thin films. Difficulties with electrical contacts thwarted efforts to extend measurements to the targeted 1000 C, but results obtained did suggest ways of improving the electrical resistance characteristics of certain materials.
Fraction eutectic measurements in slowly cooled Pb - 15 wt percent Sn alloys
NASA Technical Reports Server (NTRS)
Studer, Anthony C.; Laxmanan, V.
1988-01-01
A space shuttle experiment employing the General Purpose Furnace in its isothermal mode of operation is currently manifested for flight circa 1989. The aim of this experiment was to investigate the role of gravity in a slowly, and isothermally, cooled sample of a binary Pb - 15 wt percent Sn alloy. Ground based work in support of the microgravity experiment is discussed. In particular, it is shown that fraction eutectic measurements using an image analyzer, can be used to satisfactorily describe macrosegregation occurring in these slowly cooled ingots.
Some properties of low-vapor-pressure braze alloys for thermionic converters
NASA Technical Reports Server (NTRS)
Bair, V. L.
1978-01-01
Property measurements were made for arc-melted, rod-shaped specimens. Density and dc electrical resistivity at 296 K were measured for various binary eutectic alloys. Thermal conductivity was inferred from the electrical conductivity using the Wiedemann, Franz, Lorenz relation. Linear thermal expansion from 293 K to two-thirds melting point, under a helium atmosphere, was measured for Zr, 21.7-wt percent Ru; Zr, 13-wt percent W; Zr, 22.3-wt percent Nb; Nb, 66.9-wt percent Ru; and Zr, 25.7-wt percent Ta.
Transient Effects in Planar Solidification of Dilute Binary Alloys
NASA Technical Reports Server (NTRS)
Mazuruk, Konstantin; Volz, Martin P.
2008-01-01
The initial transient during planar solidification of dilute binary alloys is studied in the framework of the boundary integral method that leads to the non-linear Volterra integral governing equation. An analytical solution of this equation is obtained for the case of a constant growth rate which constitutes the well-known Tiller's formula for the solute transient. The more physically relevant, constant ramping down temperature case has been studied both numerically and analytically. In particular, an asymptotic analytical solution is obtained for the initial transient behavior. A numerical technique to solve the non-linear Volterra equation is developed and the solution is obtained for a family of the governing parameters. For the rapid solidification condition, growth rate spikes have been observed even for the infinite kinetics model. When recirculating fluid flow is included into the analysis, the spike feature is dramatically diminished. Finally, we have investigated planar solidification with a fluctuating temperature field as a possible mechanism for frequently observed solute trapping bands.
Phase-field model for isothermal phase transitions in binary alloys
NASA Technical Reports Server (NTRS)
Wheeler, A. A.; Boettinger, W. J.; Mcfadden, G. B.
1992-01-01
A new phase field model is described which models isothermal phase transitions between ideal binary alloy solution phases. Equations are developed for the temporal and spatial variation of the phase field, which describes the identity of the phase, and of the composition. An asymptotic analysis, as the gradient energy coefficient of the phase field becomes small, was conducted. From the analysis, it is shown that the model recovers classical sharp interface models of this situation when the interfacial layers are thin, and they show how to relate the parameters appearing in the phase field model to material and growth parameters in real systems. Further, three stages of temporal evolution are identified: the first corresponding to interfacial genesis which occurs very rapidly; the second to interfacial motion controlled by the local energy difference across the interface and diffusion; the last taking place on a long time scale in which curvature effects are important and which correspond to Ostwald ripening. The results of the numerical calculations are presented.
Directional Solidification of a Binary Alloy into a Cellular Convective Flow: Localized Morphologies
NASA Technical Reports Server (NTRS)
Chen, Y.- J.; Davis, S. H.
1999-01-01
A steady, two dimensional cellular convection modifies the morphological instability of a binary alloy that undergoes directional solidification. When the convection wavelength is far longer than that of the morphological cells, the behavior of the moving front is described by a slow, spatial-temporal dynamics obtained through a multiple-scale analysis. The resulting system has a "parametric-excitation" structure in space, with complex parameters characterizing the interactions between flow, solute diffusion, and rejection. The convection stabilizes two dimensional disturbances oriented with the flow, but destabilizes three dimensional disturbances in general. When the flow is weak, the morphological instability behaves incommensurably to the flow wavelength, but becomes quantized and forced to fit into the flow-box as the flow gets stronger. At large flow magnitudes the instability is localized, confined in narrow envelopes with cells traveling with the flow. In this case the solutions are discrete eigenstates in an unbounded space. Their stability boundary and asymptotics are obtained by the WKB analysis.
Magnetic response of a disordered binary ferromagnetic alloy to an oscillating magnetic field
NASA Astrophysics Data System (ADS)
Vatansever, Erol; Polat, Hamza
2015-08-01
By means of Monte Carlo simulation with local spin update Metropolis algorithm, we have elucidated non-equilibrium phase transition properties and stationary-state treatment of a disordered binary ferromagnetic alloy of the type ApB1-p on a square lattice. After a detailed analysis, we have found that the system shows many interesting and unusual thermal and magnetic behaviors, for instance, the locations of dynamic phase transition points change significantly depending upon amplitude and period of the external magnetic field as well as upon the active concentration of A-type components. Much effort has also been dedicated to clarify the hysteresis tools, such as coercivity, dynamic loop area as well as dynamic correlations between time dependent magnetizations and external time dependent applied field as a functions of period and amplitude of field as well as active concentration of A-type components, and outstanding physical findings have been reported in order to better understand the dynamic process underlying present system.
Enthalpies of mixing of liquid systems for lead free soldering: Co–Sb–Sn
Elmahfoudi, A.; Sabbar, A.; Flandorfer, H.
2012-01-01
The partial and integral enthalpy of mixing of molten ternary Co–Sb–Sn alloys was determined performing high temperature drop calorimetry in a large compositional range at 1273 K. Measurements have been done along five sections, xSb/xSn ≈ 1:1, xSb/xSn ≈ 1:3, xSb/xSn ≈ 3:1, xCo/xSn ≈ 1:4, and xCo/xSb ≈ 1:5. Additionally, binary alloys of the constituent systems Co–Sb and Co–Sn were investigated at the same temperature. All the binary data were evaluated by means of a standard Redlich–Kister polynomial fit whereas ternary data were fitted on the basis of an extended Redlich–Kister–Muggianu model for substitutional solutions. An iso-enthalpy plot of the ternary system was constructed. In addition, the extrapolation Model of Toop was applied and compared to our data. PMID:27087752
Enthalpies of mixing of liquid systems for lead free soldering: Co-Sb-Sn.
Elmahfoudi, A; Sabbar, A; Flandorfer, H
2012-04-01
The partial and integral enthalpy of mixing of molten ternary Co-Sb-Sn alloys was determined performing high temperature drop calorimetry in a large compositional range at 1273 K. Measurements have been done along five sections, x Sb / x Sn ≈ 1:1, x Sb / x Sn ≈ 1:3, x Sb / x Sn ≈ 3:1, x Co / x Sn ≈ 1:4, and x Co / x Sb ≈ 1:5. Additionally, binary alloys of the constituent systems Co-Sb and Co-Sn were investigated at the same temperature. All the binary data were evaluated by means of a standard Redlich-Kister polynomial fit whereas ternary data were fitted on the basis of an extended Redlich-Kister-Muggianu model for substitutional solutions. An iso-enthalpy plot of the ternary system was constructed. In addition, the extrapolation Model of Toop was applied and compared to our data.
InAs/GaInSb superlattices as a promising material system for third generation infrared detectors
NASA Astrophysics Data System (ADS)
Rogalski, A.; Martyniuk, P.
2006-04-01
Hitherto, two families of multielement detectors have been used for infrared applications: scanning systems (first generation) and staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolour functionality and other on-chip functions. In the class of third generation infrared photon detectors, two main competitors, HgCdTe photodiodes and AlGaAs/GaAs quantum well infrared photoconductors (QWIPs) are considered. However, in the long wavelength infrared (LWIR) region, the HgCdTe material fail to give the requirements of large format two-dimensional (2-D) arrays due to metallurgical problems of the epitaxial layers such as uniformity and number of defective elements. A superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive alternative to HgCdTe with good spatial uniformity and an ability to span cut-off wavelength from 3 to 25 μm. The recently published results have indicated that high performance middle wavelength infrared (MWIR) InAs/GaInSb superlattice focal plane arrays can be fabricated. Also LWIR photodiodes with the R0A values exceeding 100 Ωcm 2 even with a cut-off wavelength of 14 μm can be achieved. Based on these very promising results it is obvious now that the antimonide superlattice technology is competing with HgCdTe dual colour technology with the potential advantage of standard III-V technology to be more competitive in costs and as a consequence series production pricing.
A Highly Sensitive Multi-Element HgCdTe E-APD Detector for IPDA Lidar Applications
NASA Technical Reports Server (NTRS)
Beck, Jeff; Welch, Terry; Mitra, Pradip; Reiff, Kirk; Sun, Xiaoli; Abshire, James
2014-01-01
An HgCdTe electron avalanche photodiode (e-APD) detector has been developed for lidar receivers, one application of which is integrated path differential absorption lidar measurements of such atmospheric trace gases as CO2 and CH4. The HgCdTe APD has a wide, visible to mid-wave-infrared, spectral response, high dynamic range, substantially improved sensitivity, and an expected improvement in operational lifetime. A demonstration sensor-chip assembly consisting of a 4.3 lm cutoff HgCdTe 4 9 4 APD detector array with 80 micrometer pitch pixels and a custom complementary metal-oxide-semiconductor readout integrated circuit was developed. For one typical array the APD gain was 654 at 12 V with corresponding gain normalized dark currents ranging from 1.2 fA to 3.2 fA. The 4 9 4 detector system was characterized at 77 K with a 1.55 micrometer wavelength, 1 microsecond wide, laser pulse. The measured unit gain detector photon conversion efficiency was 91.1%. At 11 V bias the mean measured APD gain at 77 K was 307.8 with sigma/mean uniformity of 1.23%. The average, noise-bandwidth normalized, system noise-equivalent power (NEP) was 1.04 fW/Hz(exp 1/2) with a sigma/mean of 3.8%. The measured, electronics-limited, bandwidth of 6.8 MHz was more than adequate for 1 microsecond pulse detection. The system had an NEP (3 MHz) of 0.4 fW/Hz(exp 1/2) at 12 V APD bias and a linear dynamic range close to 1000. A gain-independent quantum-limited SNR of 80% of full theoretical was indicative of a gain-independent excess noise factor very close to 1.0 and the expected APD mode quantum efficiency.
Dry etched SiO2 Mask for HgCdTe Etching Process
NASA Astrophysics Data System (ADS)
Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.
2016-09-01
A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.
NASA Technical Reports Server (NTRS)
Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.
1998-01-01
Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.
Paul W. Kruse (1927-2012), In Memoriam
NASA Astrophysics Data System (ADS)
Reine, Marion B.; Norton, Paul R.; Stelzer, Ernie L.
2013-06-01
During his distinguished 37-year career as a research physicist at the Honeywell Research Center in Minneapolis, Minnesota, Dr. Paul W. Kruse (1927-2012) played leadership roles in two disruptive infrared detector technologies, the narrow-gap semiconductor alloy HgCdTe and the silicon CMOS-based microbolometer array, both of which revolutionized the worldwide infrared detector industry. He served on numerous government advisory boards and panels, including the Army Scientific Advisory Panel and the Army Science Board, for which he received the Outstanding Civilian Service Medal. After retiring for Honeywell in 1993, he remained active in the infrared detector field in several roles: as a successful small-business entrepreneur, as an author of two books, and as a SPIE lecturer. His books, papers and lectures have educated new generations of workers in the infrared detector industry. His career, a model for industrial research physicists, has had major and permanent impacts on the worldwide infrared detector industry. This paper is a summary of the career of Paul W. Kruse, as well as a tribute to that career and its lasting legacy.
Preliminary flight results from the second U.S. Microgravity Payload (USMP-2)
NASA Technical Reports Server (NTRS)
Curreri, Peter; Reiss, Donald
1994-01-01
The second U.S. Microgravity Payload (USMP-2) was flown on the Space Shuttle in March 1994. It carried four major microgravity experiments plus a sophisticated accelerometer system to record the microgravity environment during USMP-2 operations. The USMP program is designed to accommodate experiments requiring extensive resources short of a full Spacelab mission, and the experiments are remotely operated and monitored. Results are reviewed from the four experiments: the Advanced Automated Directional Solidification Facility (AADSF), the Isothermal Dendrite Growth Experiment (IDGE), the Materiel por Etude des Phenomenes Interessant la Soldification sur Terre et en Orbite (MEPHISTO), and the Critical Fluid Light Scattering Experiment (Zeno). AASDF grew what is expected to be the largest steady-state sample ever of HgCdTe during 240 hours of operation. IDGE provided 60 growth cycles over a wide range of supercooling conditions studying the dendritic solidification of succinonitrile. MEPHISTO achieved 55 melt-solidify cycles and grew over 1 m of Bi/Sn alloy. Zeno located the critical point temperature for liquid Xe to 0.00001 K. IDGE and Zeno also provided the most extensive demonstrations to date of telescience.
PLUTONIUM METALLIC FUELS FOR FAST REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
STAN, MARIUS; HECKER, SIEGFRIED S.
2007-02-07
Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low-melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuelsmore » suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher-melting U-PuZr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.« less
Trace element control in binary Ni-25Cr and ternary Ni-30Co-30Cr master alloy castings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detrois, Martin; Jablonski, Paul D.
Electro-slag remelting (ESR) is used for control of unwanted elements in commercial alloys. This study focuses on master alloys of Ni-25Cr and Ni-30Co-30Cr, processed through a combination of vacuum induction melting (VIM) and electro-slag remelting (ESR). Minor additions were made to control tramp element levels and modify the melting characteristics. Nitrogen and sulfur levels below 10 ppm and oxygen levels below 100 ppm were obtained in the final products. The role of the alloy additions in lowering the tramp element content, the resulting residual inclusions and the melting characteristics were determined computationally and confirmed experimentally. Additions of titanium were beneficialmore » to the control of oxygen levels during VIM and nitrogen levels during ESR. Aluminum additions helped to control oxygen levels during remelting, however, aluminum pickup occurred when excess titanium was present during ESR. The usefulness of these master alloys for use as experimental remelt stock will also be discussed.« less
Zhang, Yanwen; Stocks, George Malcolm; Jin, Ke; ...
2015-10-28
A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel tomore » binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys.« less
Generalized stacking fault energies of alloys.
Li, Wei; Lu, Song; Hu, Qing-Miao; Kwon, Se Kyun; Johansson, Börje; Vitos, Levente
2014-07-02
The generalized stacking fault energy (γ surface) provides fundamental physics for understanding the plastic deformation mechanisms. Using the ab initio exact muffin-tin orbitals method in combination with the coherent potential approximation, we calculate the γ surface for the disordered Cu-Al, Cu-Zn, Cu-Ga, Cu-Ni, Pd-Ag and Pd-Au alloys. Studying the effect of segregation of the solute to the stacking fault planes shows that only the local chemical composition affects the γ surface. The calculated alloying trends are discussed using the electronic band structure of the base and distorted alloys.Based on our γ surface results, we demonstrate that the previous revealed 'universal scaling law' between the intrinsic energy barriers (IEBs) is well obeyed in random solid solutions. This greatly simplifies the calculations of the twinning measure parameters or the critical twinning stress. Adopting two twinnability measure parameters derived from the IEBs, we find that in binary Cu alloys, Al, Zn and Ga increase the twinnability, while Ni decreases it. Aluminum and gallium yield similar effects on the twinnability.
NASA Astrophysics Data System (ADS)
Perez, E.; Keiser, D. D.; Sohn, Y. H.
2016-08-01
The U.S. Material Management and Minimization Reactor Conversion Program is developing low enrichment fuel systems encased in Al-alloy for use in research and test reactors. Monolithic fuel plates have local regions where the Usbnd Mo fuel plate may come into contact with the Al-alloy 6061 (AA6061) cladding. This results in the development of interdiffusion zones with complex microstructures with multiple phases. In this study, the microstructural development of diffusion couples, Usbnd 7 wt%Mo, Usbnd 10 wt%Mo, and Usbnd 12 wt%Mo vs. AA6061, annealed at 600 °C for 24 h and at 550 °C for 1, 5, and 20 h, were analyzed by scanning electron microscopy with x-ray energy dispersive spectroscopy. The microstructural development and kinetics were compared to diffusion couples Usbnd Mo vs. high purity Al and binary Alsbnd Si alloys. The diffusion couples developed complex interaction regions where phase development was influenced by the alloying additions of the AA6061.
NASA Astrophysics Data System (ADS)
Roik, Oleksandr S.; Samsonnikov, Oleksiy; Kazimirov, Volodymyr; Sokolskii, Volodymyr
2010-01-01
A local short-to-intermediate range order of liquid Al80Co10Ni10, Al72.5Co14.5Ni13, and Al65Co17.5Ni17.5 alloys was examined by X-ray diffraction and the reverse Monte Carlo modelling. The comprehensive analysis of three-dimensional models of the liquid ternary alloys was performed by means of the Voronoi-Delaunay method. The existence of a prepeak on the S(Q) function of the liquid alloys is caused by medium range ordering of 3d-transition metal atoms in dense-packed polytetrahedral clusters at temperatures close to the liquidus. The non-crystalline clusters, represented by aggregates of pentagons that consist of good tetrahedra, and chemical short-range order lead to the formation of the medium range order in the liquid binary Al-Ni, Al-Co and ternary Al-Ni-Co alloys.
NASA Astrophysics Data System (ADS)
Zeng, Zhensu; Kuroda, Seiji; Kawakita, Jin; Komatsu, Masayuki; Era, Hidenori
2010-01-01
The oxidation behavior of iron binary powders with addition of Si (1, 4 wt.%) and B (1, 3 wt.%) and that of a Ni-Cr based alloy powder with Si (4.3 wt.%), B (3.0 wt.%), and C (0.8 wt.%) additions during atmosphere plasma spray (APS) have been investigated. Analysis of the chemical composition and phases of oxides in the captured in-flight particles and deposited coatings was carried out. The results show that the addition of Si and B to iron effectively reduced the oxygen contents in the coatings, especially during the in-flight period at higher particles temperature. Ni-Cr based alloy powder with Si, B, and C additions reduced the oxidation of the base alloys significantly. Preferential oxidation and subsequent vaporization of Si, B, and C from the surface of the sprayed particles are believed to play a major role in controlling oxidation in the APS process.
The kinetics of composite particle formation during mechanical alloying
NASA Technical Reports Server (NTRS)
Aikin, B. J. M.; Courtney, T. H.
1993-01-01
The kinetics of composite particle formation during attritor milling of insoluble binary elemental powders have been examined. The effects of processing conditions (i.e., mill power, temperature, and charge ratio) on these kinetics were studied. Particle size distributions and fractions of elemental and composite particles were determined as functions of milling time and processing conditions. This allowed the deduction of phenomenological rate constants describing the propensity for fracture and welding during processing. For the mill-operating conditions investigated, the number of particles in the mill generally decreased with milling time, indicating a greater tendency for particle welding than fracture. Moreover, a bimodal size distribution is often obtained as a result of preferential welding. Copper and chromium 'alloy' primarily by encapsulation of Cr particles within Cu. This form of alloying also occurs in Cu-Nb alloys processed at low mill power and/or for short milling times. For other conditions, however, Cu-Nb alloys develop a lamellar morphology characteristic of mechanically alloyed two-phase ductile metals. Increasing mill power or charge (ball-to-powder weight) ratio (CR) increases the rate of composite particle formation.
Cerium-based, intermetallic-strengthened aluminum casting alloy: High-volume co-product development
Sims, Zachary C.; Weiss, David; McCall, S. K.; ...
2016-05-23
Here, several rare earth elements are considered by-products to rare earth mining efforts. By using one of these by-product elements in a high-volume application such as aluminum casting alloys, the supply of more valuable rare earths can be globally stabilized. Stabilizing the global rare earth market will decrease the long-term criticality of other rare earth elements. The low demand for Ce, the most abundant rare earth, contributes to the instability of rare earth extraction. In this article, we discuss a series of intermetallic-strengthened Al alloys that exhibit the potential for new high-volume use of Ce. The castability, structure, and mechanicalmore » properties of binary, ternary, and quaternary Al-Ce based alloys are discussed. We have determined Al-Ce based alloys to be highly castable across a broad range of compositions. Nanoscale intermetallics dominate the microstructure and are the theorized source of the high ductility. In addition, room-temperature physical properties appear to be competitive with existing aluminum alloys with extended high-temperature stability of the nanostructured intermetallic.« less
Contribution to the aluminum-tin-zinc ternary system
NASA Astrophysics Data System (ADS)
Drápala, J.; Kostiuková, G.; Losertová, M.
2017-11-01
The Sn-Zn-Al alloys are one of significant candidates in the proposal of alternative lead-free solders for higher temperature soldering. This paper deals with the study of the aluminum-tin-zinc system. Twenty Sn-Zn-Al alloys together with six binary Sn-Zn alloys were prepared and studied experimentally. Alloys were prepared from pure Sn, Zn and Al (melting and cooling in a vacuum resistance furnace). The specimens were studied metallographically including the micro-hardness measurements, complete chemical analysis (ICP-AES, OES), X-ray micro-analysis of alloys by SEM and EDX in order to determine the composition and identification of individual phases. Significant temperatures and enthalpies of phase transformations were determined by DTA. After long-term annealing of selected alloys in vacuum followed by quenching the structural and chemical microanalyses of the present phases and their limit concentrations were carried out. The achieved results were compared with the thermodynamic modelling of the ternary Sn-Zn-Al system (computer programs THERMOCALC, MTDATA, PANDAT and databases CALPHAD, COST). Electrical resistivity, density, magnetic susceptibility and wettability of Sn-Zn-Al solders were measured as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomar, Vikas
2017-03-06
DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated amore » basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.« less
Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys
Jin, Ke; Zhang, Yanwen; Bei, Hongbin
2015-09-09
In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 10 13 to 5 × 10 15 ions cm –2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. Withmore » continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.« less
Superconducting compounds and alloys research
NASA Technical Reports Server (NTRS)
Otto, G.
1975-01-01
Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.
Oxidation-chlorination of binary Ni-Cr alloys in flowing Ar-O2-Cl2 gas mixtures at 1200 K
NASA Technical Reports Server (NTRS)
Mcnallan, M. J.; Lee, Y. Y.; Chang, Y. W.; Jacobson, N. S.; Doychak, J.
1991-01-01
Nickel-chromium alloys are resistant to oxidation because of the selective oxidation of chromium to form a protective Cr2O3 scale. In chlorine-containing environments, volatile corrosion products can also be formed. The mixed oxidation-chlorination of Ni-4.5Cr, Ni-13.8Cr, and Ni-26.5Cr (by weight) alloys in Ar-O2-Cl2 gas mixtures is investigated using thermogravimetric analysis and atmospheric-pressure-sampling mass spectrometry, followed by examination of the corrosion products using scanning electron microscopy and X-ray diffraction analysis. The overall kinetics of the corrosion are affected by the relative amounts of oxides and chlorides formed and the composition of the oxide corrosion products.
NASA Astrophysics Data System (ADS)
Prasad, A.; Liotti, E.; McDonald, S. D.; Nogita, K.; Yasuda, H.; Grant, P. S.; StJohn, D. H.
2015-06-01
Recently, in-situ observations were carried out by synchrotron X-ray radiography to observe the nucleation and growth in Al alloys during solidification. The nucleation and grain formation of a range of Al-Si and Al-Cu binary alloys were studied. When grain refiner was added to the alloys, the location of the nucleation events was readily observed. Once nucleation began it continued to occur in a wave of events with the movement of the temperature gradient across the field of view due to cooling. Other features observed were the settling of the primary phase grains in the Al-Si alloys and floating in the Al-Cu alloys, the effects of convection with marked fluctuation of the growth rate of the solid-liquid interface in the Al-Si alloys, and an absence of fragmentation. The microstructures are typical of those produced in the equiaxed zone of actual castings. These observations are compared with predictions arising from the Interdependence model. The results from this comparison have implications for further refinement of the model and simulation and modelling approaches in general. These implications will be discussed.
Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.
2015-01-01
A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943
Thermoelastic martensitic transformations in ternary Ni50Mn50- z Ga z alloys
NASA Astrophysics Data System (ADS)
Belosludtseva, E. S.; Kuranova, N. N.; Marchenkova, E. B.; Popov, A. G.; Pushin, V. G.
2016-01-01
We have studied the effect of gallium alloying on the structure, phase composition, and physical properties of ternary alloys of the Ni50Mn50- z Ga z (0 ≤ z ≤ 25 at %) quasi-binary section in a broad temperature range. Dependences of the type of crystalline structure of the high-temperature austenite phase and martensite, as well as the critical temperatures of martensitic transformations on the alloy composition, are determined. A phase diagram of the structural and magnetic transformations is constructed. Concentration boundaries of the existence of tetragonal L10 (2 M) martensite and martensitic phases (10 M and 14 M) with complex multilayer crystalline lattices are found. It is established that the predominant martensite morphology is determined by the hierarchy of packets of thin coherent nano- and submicrocrystalline plates with habit planes close to {011} B2, pairwise twinned along one of 24 equivalent {011}<011> B2 twinning shear systems.
Recent progress in GeSn growth and GeSn-based photonic devices
NASA Astrophysics Data System (ADS)
Zheng, Jun; Liu, Zhi; Xue, Chunlai; Li, Chuanbo; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming
2018-06-01
The GeSn binary alloy is a new group IV material that exhibits a direct bandgap when the Sn content exceeds 6%. It shows great potential for laser use in optoelectronic integration circuits (OEIC) on account of its low light emission efficiency arising from the indirect bandgap characteristics of Si and Ge. The bandgap of GeSn can be tuned from 0.6 to 0 eV by varying the Sn content, thus making this alloy suitable for use in near-infrared and mid-infrared detectors. In this paper, the growth of the GeSn alloy is first reviewed. Subsequently, GeSn photodetectors, light emitting diodes, and lasers are discussed. The GeSn alloy presents a promising pathway for the monolithic integration of Si photonic circuits by the complementary metal–oxide–semiconductor (CMOS) technology. Project supported by the Beijing Natural Science Foundation (No. 4162063) and the Youth Innovation Promotion Association of CAS (No. 2015091).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susarla, Sandhya; Kochat, Vidya; Kutana, Alex
Transition metal dichalcogenide (TMD) alloys form a broad class of two-dimensional (2D) layered materials with tunable bandgaps leading to interesting optoelectronic applications. In the bottom-up approach of building these atomically thin materials, atomic doping plays a crucial role. Here we demonstrate a single step CVD (chemical vapor deposition) growth procedure for obtaining binary alloys and heterostructures by tuning atomic composition. We show that a minute doping of tin during the growth phase of the Mo 1–xW xS 2 alloy system leads to formation of lateral and vertical heterostructure growth. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imagingmore » and density functional theory (DFT) calculations also support the modified stacking and growth mechanism due to the nonisomorphous Sn substitution. Our experiments demonstrate the possibility of growing heterostructures of TMD alloys whose spectral responses can be desirably tuned for various optoelectronic applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seema, K., E-mail: s-phy@yahoo.co.in; Department of Physics, PGGC, Sector 11, Chandigarh, India-160011; Kumar, Ranjan, E-mail: ranjan@pu.ac.in
This paper presents the effect of disorder on electronic, magnetic and half-metallic properties of Co{sub 2}VGa Heusler alloy using density functional theory. Binary mixing is the most common form of atomic disorder in these compounds. We have considered three types of disorders: DO{sub 3}, A2 and B2 disorder which corresponds to X-Y, X-Z and Y-Z mixing respectively. After structural optimization, we found that A2 disorder has high formation energy and is most unlikely to occur. The half-metallic nature of the alloy is destroyed in presence of DO{sub 3} and A2 disorder. The destruction of half-metallicity is due to reconstruction ofmore » energy states. Also the loss of half-metallicity is accompanied by reversal of spin-polarization at the Fermi level. B2 disorder retains the half-metallic nature of the alloy but spin-polarization value is reduced as compared to the ordered alloy.« less
Containerless processing of Nb-Ge alloys in a long drop tube
NASA Technical Reports Server (NTRS)
Bayuzick, R. J.
1982-01-01
The thirty-two meter drop tube at the Marshall Space Flight Center was used to study the effect of zero gravity containerless processing on the structure and properties of materials. The concept involves the suppression of heterogeneous nucleation of solid in liquid and, therefore, solidification accompanied by large degrees of undercooling. Under these conditions metastable phases can be formed or, at the very least, unique nonequilibrium microstructures (containing equilibrium phases) with unique properties can be produced. The drop tube solidification was applied to niobium base alloys with emphasis on the Nb-Ge binary system in an effort to produce metastable phases with high superconducting transition temperatures in bulk specimens. In the past, only lower Ge alloys (Nb-13 a/o, Nb-18 a/o, and Nb-22 a/o) could be undercooled. Higher Ge alloys (e.g., Nb-25 a/o Ge and Nb-27 a/o Ge) can now be undercooled on a routine basis.
Cold crucible levitation melting of biomedical Ti-30 wt%Ta alloy.
Fukui, H; Yang, W; Yamada, S; Fujishiro, Y; Morita, A; Niinomi, M
2001-06-01
Recently, titanium-tantalum alloys have been studied as implant materials for dental and orthopedic surgery. However, titanium and tantalum are difficult to mix by common arc melting and induction melting, because of their high melting point and the marked difference between their densities (Ti: 1,680 degrees C, 4.5 g/cm3, Ta: 2,990 degrees C, 16.6 g/cm3). Thus, the Cold Crucible Levitation Melting (CCLM) method was chosen to produce a Ti-30 wt%Ta binary alloy in the present study. The CCLM furnace, with 1 kg capacity, consisted of a water-cooled crucible comprising oxygen-free high purity copper segments and coils wrapped around the crucible and connected to a frequency inverter power supply. A qualified ingot of 1.0 kg of Ti-30 wt%Ta alloy was obtained. The ingot was characterized from the surface quality, chemical composition distribution and microstructure, and finally the melting process was discussed.
Electron Dispersion in Liquid Alkali and Their Alloys
NASA Astrophysics Data System (ADS)
Vora, Aditya M.
2010-07-01
Ashcroft's local empty core (EMC) model pseudopotential in the second-order perturbation theory is used to study the electron dispersion relation, the Fermi energy, and deviation in the Fermi energy from free electron value for the liquid alkali metals and their equiatomic binary alloys for the first time. In the present computation, the use of pseudo-alloy-atom model (PAA) is proposed and found successful. The influence of the six different forms of the local field correction functions proposed by Hartree (H), Vashishta-Singwi (VS), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F), and Sarkar et al. (S) on the aforesaid electronic properties is examined explicitly, which reflects the varying effects of screening. The depth of the negative hump in the electron dispersion of liquid alkalis decreases in the order Li → K, except for Rb and Cs, it increases. The results of alloys are in predictive nature.
Effect of Alloying Elements on Nano-ordered Wear Property of Magnesium Alloys
NASA Astrophysics Data System (ADS)
Yagi, Takahiro; Hirayama, Tomoko; Matsuoka, Takashi; Somekawa, Hidetoshi
2017-03-01
The effect of alloying elements on nano-ordered wear properties was investigated using fine-grained pure magnesium and several types of 0.3 at. pct X (X = Ag, Al, Ca, Li, Mn, Y, and Zn) binary alloys. They had an average grain size of 3 to 5 μm and a basal texture due to their production by the extrusion process. The specific wear rate was influenced by the alloying element; the Mg-Ca and Mg-Mn alloys showed the best and worst wear property, respectively, among the present alloying elements, which was the same trend as that for indentation hardness. Deformed microstructural observations revealed no formation of deformation twins, because of the high activation of grain boundary-induced plasticity. On the contrary, according to scratched surface observations, when grain boundary sliding partially contributed to deformation, these alloys had large specific wear rates. These results revealed that the wear property of magnesium alloys was closely related to the plastic deformation mechanism. The prevention of grain boundary sliding is important to improve the wear property, which is the same as that of a large-scale wearing configuration. One of the influential factors is the change in the lattice parameter with the chemical composition, i.e., ∂( c/ a)/∂ C. An alloying element that has a large value of ∂( c/ a)/∂ C effectively enhances the wear property.
Performances of a HGCDTE APD Based Detector with Electric Cooling for 2-μm DIAL/IPDA Applications
NASA Astrophysics Data System (ADS)
Dumas, A.; Rothman, J.; Gibert, F.; Lasfargues, G.; Zanatta, J.-P.; Edouart, D.
2016-06-01
In this work we report on design and testing of an HgCdTe Avalanche Photodiode (APD) detector assembly for lidar applications in the Short Wavelength Infrared Region (SWIR : 1,5 - 2 μm). This detector consists in a set of diodes set in parallel -making a 200 μm large sensitive area- and connected to a custom high gain TransImpedance Amplifier (TIA). A commercial four stages Peltier cooler is used to reach an operating temperature of 185K. Crucial performances for lidar use are investigated : linearity, dynamic range, spatial homogeneity, noise and resistance to intense illumination.
Surface electrons in inverted layers of p-HgCdTe
NASA Technical Reports Server (NTRS)
Schacham, Samuel E.; Finkman, Eliezer
1990-01-01
Anodic oxide passivation of p-type HgCdTe generates an inversion layer. Extremely high Hall mobility data for electrons in this layer indicated the presence of a two-dimensional electron gas. This is verified by use of the Shubnikov-de Haas effect from 1.45 to 4.15 K. Data are extracted utilizing a numerical second derivative of dc measurement. Three sub-bands are detected. Their relative occupancies are in excellent agreement with theory and with experimental results obtained on anodic oxide as accumulation layers of n-type HgCdTe. The effective mass derived is comparable to what was expected.
Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays.
Schuster, Jonathan; Bellotti, Enrico
2013-06-17
We have investigated crosstalk in HgCdTe photovoltaic pixel arrays employing a photon trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. We have found that, compared to non-PT pixel arrays with similar geometry, the array employing the PT structure has a slightly higher optical crosstalk. However, when the total crosstalk is evaluated, the presence of the PT region drastically reduces the total crosstalk; making the use of the PT structure not only useful to obtain broadband operation, but also desirable for reducing crosstalk in small pitch detector arrays.
Extended short wavelength infrared HgCdTe detectors on silicon substrates
NASA Astrophysics Data System (ADS)
Park, J. H.; Hansel, D.; Mukhortova, A.; Chang, Y.; Kodama, R.; Zhao, J.; Velicu, S.; Aqariden, F.
2016-09-01
We report high-quality n-type extended short wavelength infrared (eSWIR) HgCdTe (cutoff wavelength 2.59 μm at 77 K) layers grown on three-inch diameter CdTe/Si substrates by molecular beam epitaxy (MBE). This material is used to fabricate test diodes and arrays with a planar device architecture using arsenic implantation to achieve p-type doping. We use different variations of a test structure with a guarded design to compensate for the lateral leakage current of traditional test diodes. These test diodes with guarded arrays characterize the electrical performance of the active 640 × 512 format, 15 μm pitch detector array.
Elastic moduli of cast Ti-Au, Ti-Ag, and Ti-Cu alloys.
Kikuchi, Masafumi; Takahashi, Masatoshi; Okuno, Osamu
2006-07-01
This study investigated the effect of alloying titanium with gold, silver, or copper on the elastic properties of the alloys. A series of binary titanium alloys was made with four concentrations of gold, silver, or copper (5, 10, 20, and 30 mass%) in an argon-arc melting furnace. The Young's moduli and Poisson's ratios of the alloy castings were determined with an ultrasonic-pulse method. The density of each alloy was previously measured by the Archimedes' principle. Results were analyzed using one-way ANOVA and the Scheffé's test. The densities of Ti-Au, Ti-Ag, and Ti-Cu alloys monotonically increased as the concentration of alloying elements increased. As the concentration of gold or silver increased to 20%, the Young's modulus significantly decreased, followed by a subsequent increase in value. As the concentration of copper increased, the Young's modulus monotonically increased. The Young's moduli of all the Ti-Cu alloys were significantly higher than that of the titanium. The density of all the experimental alloys was virtually independent of the alloy phases, while the Young's moduli and Poisson's ratios of the alloys were dependent. The addition of gold or silver slightly reduced the Young's modulus of the titanium when the alloy phase was single alpha. The increase in the Young's modulus of the Ti-Cu alloys is probably due to the precipitation of intermetallic compound Ti2Cu. Copper turned out to be a moderate stiffener that gains a Young's modulus of titanium up to 20% at the copper concentration of 30 mass%.
NASA Astrophysics Data System (ADS)
Gravrand, O.; Mollard, L.; Largeron, C.; Baier, N.; Deborniol, E.; Chorier, Ph.
2009-08-01
The very long infrared wavelength (>14 μm) is a very challenging range for the design of mercury cadmium telluride (HgCdTe) large focal plane arrays (FPAs). The need (mainly expressed by the space industry) for very long wave FPAs appears very difficult to fulfil. High homogeneity, low defect rate, high quantum efficiency, low dark current, and low excess noise are required. Indeed, for such wavelength, the corresponding HgCdTe gap becomes smaller than 100 meV and each step from the metallurgy to the technology becomes critical. This paper aims at presenting a status of long and very long wave FPAs developments at DEFIR (LETI-LIR/Sofradir joint venture). This study will focus on results obtained in our laboratory for three different ion implanted technologies: n-on- p mercury vacancies doped technology, n-on- p extrinsic doped technology, and p-on- n arsenic on indium technology. Special focus is given to 15 μm cutoff n/ p FPA fabricated in our laboratory demonstrating high uniformity, diffusion and shot noise limited photodiodes at 50 K.
Evaluation of Space Radiation Effects on HgCdTe Avalanche Photodiode Arrays for Lidar Applications
NASA Technical Reports Server (NTRS)
Sun, Xiaoli; Abshire, James B.; Lauenstein, Jean-Marie; Sullivan, William III; Beck, Jeff; Hubbs, John E.
2018-01-01
We report the results from proton and gamma ray radiation testing of HgCdTe avalanche photodiode (APD) arrays developed by Leonardo DRS for space lidar detectors. We tested these devices with both approximately 60 MeV protons and gamma rays, with and without the read out integrated circuit (ROIC). We also measured the transient responses with the device fully powered and with the APD gain from unity to greater than 1000. The detectors produced a large current impulse in response to each proton hit but the response completely recovered within 1 microsecond. The devices started to have persistent damage at a proton fluence of 7e10 protons/cm2, equivalent to 10 krad(Si) total ionization dose. The dark current became much higher after the device was warmed to room temperature and cooled to 80K again, but it completely annealed after baking at 85 C for several hours. These results showed the HgCdTe APD arrays are suitable for use in space lidar for typical Earth orbiting and planetary missions provided that provisions are made to heat the detector chip to 85 C for several hours after radiation damage becomes evident that system performance is impacted.
NASA Technical Reports Server (NTRS)
Marshall, C. J.; Ladbury, R.; Marshall, P. W.; Reed, R. A.; Howe, C.; Weller, B.; Mendenhall, M.; Waczynski, A.; Jordan, T. M.; Fodness, B.
2006-01-01
This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distribution were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [I]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Car10 code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. The nuclear elastic component (also calculated using the MCNPX) has a negligible effect on the shape of the damage distribution. The Coulombic contribution was calculated using MRED [3,4], a Geant4 [4,5] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.