Sample records for binary ap star

  1. First photometric study of two southern eclipsing binaries IS Tel and DW Aps

    NASA Astrophysics Data System (ADS)

    Özer, S.; Sürgit, D.; Erdem, A.; Öztürk, O.

    2017-02-01

    The paper presents the first photometric analysis of two southern eclipsing binary stars, IS Tel and DW Aps. Their V light curves from the All Sky Automated Survey were modelled by using Wilson-Devinney method. The final models give these two Algol-like binary stars as having detached configurations. Absolute parameters of the components of the systems were also estimated.

  2. V and K-band Mass-Luminosity Relations for M Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Benedict, George Frederick; Henry, Todd J.; McArthur, Barbara E.; Franz, Otto; Wasserman, Larry H.; Dieterich, Sergio

    2015-08-01

    Applying Hubble Space Telescope Fine Guidance Sensor astrometric techniques developed to establish relative orbits for binary stars (Franz et al. 1998, AJ, 116, 1432), determine masses of binary components (Benedict et al. 2001, AJ, 121, 1607), and measure companion masses of exoplanet host stars (McArthur et al. 2010, ApJ, 715, 1203), we derive masses with an average 2% error for 28 components of 14 M dwarf binary star systems. With these and other published masses we update the lower Main Sequence V-band Mass-Luminosity Relation first shown in Henry et al. 1999, ApJ, 512, 864. We demonstrate that a Mass-Luminosity Relation in the K-band has far less scatter. These relations can be used to estimate the masses of the ubiquitous red dwarfs (75% of all stars) to an accuracy of better than 5%.

  3. VizieR Online Data Catalog: Multiplicity among chemically peculiar stars II (Carrier+, 2002)

    NASA Astrophysics Data System (ADS)

    Carrier, F.; North, P.; Udry, S.; Babel, J.

    2002-08-01

    We present new orbits for sixteen Ap spectroscopic binaries, four of which might in fact be Am stars, and give their orbital elements. Four of them are SB2 systems: HD 5550, HD 22128, HD 56495 and HD 98088. The twelve other stars are : HD 9996, HD 12288, HD 40711, HD 54908, HD 65339, HD 73709, HD 105680, HD 138426, HD 184471, HD 188854, HD 200405 and HD 216533. Rough estimates of the individual masses of the components of HD 65339 (53 Cam) are given, combining our radial velocities with the results of speckle interferometry and with Hipparcos parallaxes. Considering the mass functions of 74 spectroscopic binaries from this work and from the literature, we conclude that the distribution of the mass ratio is the same for cool Ap stars as for normal G dwarfs. Therefore, the only differences between binaries with normal stars and those hosting an Ap star lie in the period distribution: except for the case of HD 200405, all orbital periods are longer than (or equal to) 3 days. A consequence of this peculiar distribution is a deficit of null eccentricities. There is no indication that the secondary has a special nature, like e.g. a white dwarf. (4 data files).

  4. Multiplicity among chemically peculiar stars. II. Cool magnetic Ap stars

    NASA Astrophysics Data System (ADS)

    Carrier, F.; North, P.; Udry, S.; Babel, J.

    2002-10-01

    We present new orbits for sixteen Ap spectroscopic binaries, four of which might in fact be Am stars, and give their orbital elements. Four of them are SB2 systems: HD 5550, HD 22128, HD 56495 and HD 98088. The twelve other stars are: HD 9996, HD 12288, HD 40711, HD 54908, HD 65339, HD 73709, HD 105680, HD 138426, HD 184471, HD 188854, HD 200405 and HD 216533. Rough estimates of the individual masses of the components of HD 65339 (53 Cam) are given, combining our radial velocities with the results of speckle interferometry and with Hipparcos parallaxes. Considering the mass functions of 74 spectroscopic binaries from this work and from the literature, we conclude that the distribution of the mass ratio is the same for cool Ap stars and for normal G dwarfs. Therefore, the only differences between binaries with normal stars and those hosting an Ap star lie in the period distribution: except for the case of HD 200405, all orbital periods are longer than (or equal to) 3 days. A consequence of this peculiar distribution is a deficit of null eccentricities. There is no indication that the secondary has a special nature, like e.g. a white dwarf. Based on observations collected at the Observatoire de Haute-Provence (CNRS), France. Tables 1 to 3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/394/151 Appendix B is only available in electronic form at http://www.edpsciences.org

  5. V and K-band Mass-Luminosity Relations for M dwarf Stars

    NASA Astrophysics Data System (ADS)

    Benedict, G. Fritz; Henry, Todd J.; McArthur, Barbara; Franz, Otto G.; Wasserman, Lawrence H.; Dieterich, Sergio

    2015-01-01

    Applying Hubble Space Telescope Fine Guidance Sensor astrometric techniques developed to establish relative orbits for binary stars (Franz et al. 1998, AJ, 116, 1432), determine masses of binary components (Benedict et al. 2001, AJ, 121, 1607), and measure companion masses of exoplanet host stars (McArthur et al. 2010, ApJ, 715, 1203), we derive masses with an average 2.1% error for 24 components of 12 M dwarf binary star systems. Masses range 0.08 to 0.40 solar masses. With these we update the lower Main Sequence V-band Mass-Luminosity Relation first shown in Henry et al. (1999, ApJ, 512, 864). We demonstrate that a Mass-Luminosity Relation in the K-band has far less scatter than in the V-band. For the eight binary components for which we have component magnitude differences in the K-band the RMS residual drops from 0.5 magnitude in the V-band to 0.05 magnitude in the K-band. These relations can be used to estimate the masses of the ubiquitous red dwarfs that account for 75% of all stars, to an accuracy of 5%, which is much better than ever before.

  6. Predicting the Presence of Companions for Stripped-envelope Supernovae: The Case of the Broad-lined Type Ic SN 2002ap

    NASA Astrophysics Data System (ADS)

    Zapartas, E.; de Mink, S. E.; Van Dyk, S. D.; Fox, O. D.; Smith, N.; Bostroem, K. A.; de Koter, A.; Filippenko, A. V.; Izzard, R. G.; Kelly, P. L.; Neijssel, C. J.; Renzo, M.; Ryder, S.

    2017-06-01

    Many young, massive stars are found in close binaries. Using population synthesis simulations we predict the likelihood of a companion star being present when these massive stars end their lives as core-collapse supernovae (SNe). We focus on stripped-envelope SNe, whose progenitors have lost their outer hydrogen and possibly helium layers before explosion. We use these results to interpret new Hubble Space Telescope observations of the site of the broad-lined Type Ic SN 2002ap, 14 years post-explosion. For a subsolar metallicity consistent with SN 2002ap, we expect a main-sequence (MS) companion present in about two thirds of all stripped-envelope SNe and a compact companion (likely a stripped helium star or a white dwarf/neutron star/black hole) in about 5% of cases. About a quarter of progenitors are single at explosion (originating from initially single stars, mergers, or disrupted systems). All of the latter scenarios require a massive progenitor, inconsistent with earlier studies of SN 2002ap. Our new, deeper upper limits exclude the presence of an MS companion star >8-10 {M}⊙ , ruling out about 40% of all stripped-envelope SN channels. The most likely scenario for SN 2002ap includes nonconservative binary interaction of a primary star initially ≲ 23 {M}⊙ . Although unlikely (<1% of the scenarios), we also discuss the possibility of an exotic reverse merger channel for broad-lined Type Ic events. Finally, we explore how our results depend on the metallicity and the model assumptions and discuss how additional searches for companions can constrain the physics that govern the evolution of SN progenitors.

  7. EVOLUTION OF INTERMEDIATE-MASS X-RAY BINARIES DRIVEN BY THE MAGNETIC BRAKING OF AP/BP STARS. I. ULTRACOMPACT X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wen-Cong; Podsiadlowski, Philipp, E-mail: chenwc@pku.edu.cn

    2016-10-20

    It is generally believed that ultracompact X-ray binaries (UCXBs) evolved from binaries consisting of a neutron star accreting from a low-mass white dwarf (WD) or helium star where mass transfer is driven by gravitational radiation. However, the standard WD evolutionary channel cannot produce the relatively long-period (40–60 minutes) UCXBs with a high time-averaged mass-transfer rate. In this work, we explore an alternative evolutionary route toward UCXBs, where the companions evolve from intermediate-mass Ap/Bp stars with an anomalously strong magnetic field (100–10,000 G). Including the magnetic braking caused by the coupling between the magnetic field and an irradiation-driven wind induced bymore » the X-ray flux from the accreting component, we show that intermediate-mass X-ray binaries (IMXBs) can evolve into UCXBs. Using the MESA code, we have calculated evolutionary sequences for a large number of IMXBs. The simulated results indicate that, for a small wind-driving efficiency f = 10{sup −5}, the anomalous magnetic braking can drive IMXBs to an ultra-short period of 11 minutes. Comparing our simulated results with the observed parameters of 15 identified UCXBs, the anomalous magnetic braking evolutionary channel can account for the formation of seven and eight sources with f = 10{sup −3}, and 10{sup −5}, respectively. In particular, a relatively large value of f can fit three of the long-period, persistent sources with a high mass-transfer rate. Though the proportion of Ap/Bp stars in intermediate-mass stars is only 5%, the lifetime of the UCXB phase is ≳2 Gyr, producing a relatively high number of observable systems, making this an alternative evolutionary channel for the formation of UCXBs.« less

  8. A Binary Nature of the Marginal CP Star Sigma Sculptoris

    NASA Astrophysics Data System (ADS)

    Janík, Jan; Krtička, Jiří; Mikulášek, Zdeněk; Zverko, Juraj; Pintado, Olga; Paunzen, Ernst; Prvák, Milan; Skalický, Jan; Zejda, Miloslav; Adam, Christian

    2018-05-01

    The A2 V star σ Scl was suspected of being a low-amplitude rotating variable of the Ap-type star by several authors. Aiming to decide whether the star is a variable chemically peculiar (CP) star, we searched for the photometric and spectroscopic variability, and determined chemical abundances of σ Scl. The possible variability was tested using several types of periodograms applied to the photometry from Long-Term Photometry of Variables project (LTPV) and Hipparcos. Sixty spectrograms of high signal-to-noise (S/N) were obtained and used for chemical analysis of the stellar atmosphere and for looking for spectral variability that is symptomatic for the CP stars. We did not find any signs of the light variability or prominent chemical peculiarity, that is specific for the CP stars. The only exception is the abundance of scandium, which is significantly lower than the solar one and yttrium and barium, which are strongly overabundant. As a by-product of the analysis, and with the addition of 29 further spectra, we found that σ Scl is a single-lined spectroscopic binary with orbital period of 46.877(8) d. We argue that σ Scl is not an Ap star, but rather a marginal Am star in SB1 system. The spectral energy distribution of the binary reveals infrared excess due to circumstellar material.

  9. On the spectroscopic nature of the cool evolved Am star HD151878

    NASA Astrophysics Data System (ADS)

    Freyhammer, L. M.; Elkin, V. G.; Kurtz, D. W.

    2008-10-01

    Recently, Tiwari, Chaubey & Pandey detected the bright component of the visual binary HD151878 to exhibit rapid photometric oscillations through a Johnson B filter with a period of 6min (2.78mHz) and a high, modulated amplitude up to 22mmag peak-to-peak, making this star by far the highest amplitude rapidly oscillating Ap (roAp) star known. As a new roAp star, HD151878 is of additional particular interest as a scarce example of the class in the northern sky, and only the second known case of an evolved roAp star - the other being HD116114. We used the FIbre-fed Echelle Spectrograph at the Nordic Optical Telescope to obtain high time-resolution spectra at high dispersion to attempt to verify the rapid oscillations. We show here that the star at this epoch is spectroscopically stable to rapid oscillations of no more than a few tens of ms-1. The high-resolution spectra furthermore show the star to be of type Am rather than Ap and we show the star lacks most of the known characteristics for roAp stars. We conclude that this is an Am star that does not pulsate with a 6-min period. The original discovery of pulsation is likely to be an instrumental artefact. Based on observations collected at the Nordic Optical Telescope as part of programme 36-418. E-mail: lfreyham@gmail.com

  10. An Atlas of O-C Diagrams of Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Kreiner, Jerzy M.; Kim, Chun-Hwey; Nha, Il-Seong

    The Atlas contains data for 1,138 eclipsing binaries represented by 91,798 minima timings, collected from the usual international and local journals, observatory publications and unpublished minima. Among this source material there is a considerable representation of amateur astronomers. Some timings were found in the card-index catalogue of the Astronomical Observatory of the Jagiellonian University, Cracow. Stars were included in the Atlas provided that they satisfied 3 criteria: (1) at least 20 minima had been times; (2) these minima spanned at least 2,500 cycles; and (3) the 2,500 cycles represented no fewer than 40 years. Some additional stars not strictly satisfying these criteria were also included if useful information was available. For each star, the Atlas contains the (O-C) diagram calculated by the authors and a table of general information containing: binary characteristics; assorted catalogue numbers; the statistics of the collected minima timings; the light elements (light ephemeris); comments and literature references. All of the data and diagrams in the Atlas are also available in electronic form on the Internet at http://www.as.ap.krakow.pl/o- c".

  11. The magnetic field of the double-lined spectroscopic binary system HD 5550

    NASA Astrophysics Data System (ADS)

    Alecian, E.; Tkachenko, A.; Neiner, C.; Folsom, C. P.; Leroy, B.

    2016-05-01

    Context. The origin of fossil fields in intermediate- and high-mass stars is poorly understood, as is the interplay between binarity and magnetism during stellar evolution. Thus we have begun a study of the magnetic properties of a sample of intermediate-mass and massive short-period binary systems as a function of binarity properties. Aims: This paper specifically aims to characterise the magnetic field of HD 5550, a double-lined spectroscopic binary system of intermediate mass. Methods: We gathered 25 high-resolution spectropolarimetric observations of HD 5550 using the instrument Narval. We first fitted the intensity spectra using Zeeman/ATLAS9 LTE synthetic spectra to estimate the effective temperatures, microturbulent velocities, and the abundances of some elements of both components, as well as the light ratio of the system. We then applied the multi-line least-square deconvolution (LSD) technique to the intensity and circularly polarised spectra, which provided us with mean LSD I and V line profiles. We fitted the Stokes I line profiles to determine the radial and projected rotational velocities of both stars. We then analysed the shape and evolution of the V profiles using the oblique rotator model to characterise the magnetic fields of both stars. Results: We confirm the Ap nature of the primary, which has previously been reported, and find that the secondary displays spectral characteristics typical of an Am star. While a magnetic field is clearly detected in the lines of the primary, no magnetic field is detected in the secondary in any of our observations. If a dipolar field were present at the surface of the Am star, its polar strength must be below 40 G. The faint variability observed in the Stokes V profiles of the Ap star allowed us to propose a rotation period of 6.84-0.39+0.61 d, which is close to the orbital period (~6.82 d), suggesting that the star is synchronised with its orbit. By fitting the variability of the V profiles, we propose that the Ap component hosts a dipolar field inclined with the rotation axis at an angle β = 156 ± 17 ° and a polar strength Bd = 65 ± 20 G. The field strength is the weakest known for an Ap star. Based on the BinaMIcS Large Programme (PI: C. Neiner, runID: L131N02) obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.

  12. Ap stars with resolved magnetically split lines: Magnetic field determinations from Stokes I and V spectra⋆

    NASA Astrophysics Data System (ADS)

    Mathys, G.

    2017-05-01

    Context. Some Ap stars that have a strong enough magnetic field and a sufficiently low v sini show spectral lines resolved into their magnetically split components. Aims: We present the results of a systematic study of the magnetic fields and other properties of those stars. Methods: This study is based on 271 new measurements of the mean magnetic field modulus ⟨ B ⟩ of 43 stars, 231 determinations of the mean longitudinal magnetic field ⟨ Bz ⟩ and of the crossover ⟨ Xz ⟩ of 34 stars, and 229 determinations of the mean quadratic magnetic field ⟨ Bq ⟩ of 33 stars. Those data were used to derive new values or meaningful lower limits of the rotation periods Prot of 21 stars. Variation curves of the mean field modulus were characterised for 25 stars, the variations of the longitudinal field were characterised for 16 stars, and the variations of the crossover and of the quadratic field were characterised for 8 stars. Our data are complemented by magnetic measurements from the literature for 41 additional stars with magnetically resolved lines. Phase coverage is sufficient to define the curve of variation of ⟨ B ⟩ for 2 of these stars. Published data were also used to characterise the ⟨ Bz ⟩ curves of variation for 10 more stars. Furthermore, we present 1297 radial velocity measurements of the 43 Ap stars in our sample that have magnetically resolved lines. Nine of these stars are spectroscopic binaries for which new orbital elements were derived. Results: The existence of a cut-off at the low end of the distribution of the phase-averaged mean magnetic field moduli ⟨ B ⟩ av of the Ap stars with resolved magnetically split lines, at about 2.8 kG, is confirmed. This reflects the probable existence of a gap in the distribution of the magnetic field strengths in slowly rotating Ap stars, below which there is a separate population of stars with fields weaker than 2 kG. In more than half of the stars with magnetically resolved lines that have a rotation period shorter than 150 days, ⟨ B ⟩ av > 7.5 kG, while those stars with a longer period all have ⟨ B ⟩ av < 7.5 kG. The difference between the two groups is significant at the 100.0% confidence level. The relative amplitudes of variation of the mean field modulus may tend to be greater in stars with Prot > 100 d than in shorter period stars. The root-mean-square longitudinal fields of all the studied stars but one is less than one-third of their phased-average mean field moduli, which is consistent with the expected behaviour for fields whose geometrical structure resembles a centred dipole. However, moderate but significant departures from the latter are frequent. Crossover resulting from the correlation between the Zeeman effect and the rotation-induced Doppler effect across the stellar surface is definitely detected in stars with rotation periods of up to 130 days and possibly even up to 500 days. Weak, but formally significant crossover of constant sign, has also been observed in a number of longer period stars, which could potentially be caused by pulsation velocity gradients across the depth of the photosphere. The quadratic field is in average 1.3 times greater than the mean field modulus and both of those moments vary with similar relative amplitudes and almost in phase in most stars. Rare exceptions almost certainly have unusual field structures. The distribution of the known values and lower limits of the rotation periods of the Ap stars with magnetically resolved lines indicates that for some of them, Prot must almost certainly reach 300 yr or possibly even much higher values. Of the 43 Ap stars that we studied in detail, 22 are in binary systems. The shortest orbital period Porb of those systems is 27 days. For those non-synchronised Ap binaries for which both the rotation period and the orbital period, or meaningful lower limits thereof, are reliably determined, the distribution of the orbital periods of the systems in which the Ap star has a rotation period that is shorter than 50 days is different from its distribution for those systems in which the rotation period of the Ap star is longer, at a confidence level of 99.6%. The shortest rotation and orbital periods are mutually exclusive: all but one of the non-synchronised systems that contain an Ap component with Prot < 50 d, have Porb > 1000 d. Conclusions: Stars with resolved magnetically split lines represent a significant fraction, of the order of several percent, of the whole population of Ap stars. Most of these stars are genuine slow rotators, whose consideration provides new insight into the long-period tail of the distribution of the periods of Ap stars. Emerging correlations between rotation periods and magnetic properties provide important clues for the understanding of the braking mechanisms that have been at play in the early stages of stellar evolution. The geometrical structures of the magnetic fields of Ap stars with magnetically resolved lines appear in general to depart slightly, but not extremely, from centred dipoles. However, there are a few remarkable exceptions, which deserve further consideration. Confirmation that pulsational crossover is indeed occurring at a detectable level would open the door to the study of non-radial pulsation modes of degree ℓ, which is too high for photometric or spectroscopic observations. How the lack of short orbital periods among binaries containing an Ap component with magnetically resolved lines is related to their (extremely) slow rotation remains to be fully understood, but the very existence of a correlation between the two periods lends support to the merger scenario for the origin of Ap stars. Based on observations collected at the European Southern Observatory, Chile (ESO Programmes 56.E-0688, 56.E-0690, 57.E-0557, 57.E-0637, 58.E-0155, 58.E-0159, 59.E-0372, 59.E-0373, 60.E-0564, 60.E-0565, 61.E-0711, and Period 56 Director Discretionary Time); at Observatoire de Haute Provence (CNRS), France; at Kitt Peak National Observatory, National Optical Astronomy Observatory (NOAO Prop. ID: KP2442; PI: T. Lanz), which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation; and at the Canada-France-Hawaii Telescope (CFHT), which is operated from the summit of Mauna Kea by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. The observations at the Canada-France-Hawaii Telescope were performed with care and respect from the summit of Mauna Kea, which is a significant cultural and historic site.Table 7 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A14

  13. A HST Search to Constrain the Binary Fraction of Stripped-Envelope Supernovae

    NASA Astrophysics Data System (ADS)

    Fox, Ori

    2018-01-01

    Stripped-envelope supernovae (e.g., SNe IIb, Ib, and Ic) refer to a subset of core-collapse explosions with progenitors that have lost some fraction of their outer envelopes in pre-SN mass loss. Mounting evidence over the past decade suggests that the mass loss in a large fraction of these systems occurs due to binary interaction. An unbiased, statistically significant sample of companion-star characteristics (including deep upper limits) can constrain the binary fraction, having direct implications on the theoretical physics of both single star and binary evolution. To date, however, only two detections have been made: SNe 1993J and 2011dh. Over the past year, we have improved this sample with an HST WFC3/NUV survey for binary companions of three additional nearby stripped-envelope SNe: 2002ap, 2001ig, and 2010br. I will present a review of previous companion searches and results from our current HST survey, which include one detection and two meaningful upper limits.

  14. Featured Image: Stars from Broken Clouds and Disks

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-04-01

    This still from a simulation captures binary star formation in action. Researchers have long speculated on the processes that lead to clouds of gas and dust breaking up into smaller pieces to form multiple-star systems but these take place over a large range of scales, making them difficult to simulate. In a new study led by Leonardo Sigalotti (UAM Azcapotzalco, Mexico), researchers have used a smoothed-particle hydrodynamics code to model binary star formation on scales of thousands of AU down to scales as small as 0.1 AU. In the scene shown above, a collapsing cloud of gas and dust has recently fragmented into two pieces, forming a pair of disks separated by around 200 AU. In addition, we can see that smaller-scale fragmentation is just starting in one of these disks, Disk B. Here, one of the disks spiral arms has become unstable and is beginning to condense; it will eventually form another star, producing a hierarchical system: a close binary within the larger-scale binary. Check out the broaderprocessin the four panels below (which show the system as it evolves over time), or visitthe paper linked below for more information about what the authors learned.Evolution of a collapsed cloud after large-scale fragmentation into a binary protostar: (a) 44.14 kyr, (b) 44.39 kyr, (c) 44.43 kyr, and (d) 44.68 kyr. The insets show magnifications of the binary cores. [Adapted from Sigalotti et al. 2018]CitationLeonardo Di G. Sigalotti et al 2018 ApJ 857 40. doi:10.3847/1538-4357/aab619

  15. Using an Iterative Fourier Series Approach in Determining Orbital Elements of Detached Visual Binary Stars

    NASA Astrophysics Data System (ADS)

    Tupa, Peter R.; Quirin, S.; DeLeo, G. G.; McCluskey, G. E., Jr.

    2007-12-01

    We present a modified Fourier transform approach to determine the orbital parameters of detached visual binary stars. Originally inspired by Monet (ApJ 234, 275, 1979), this new method utilizes an iterative routine of refining higher order Fourier terms in a manner consistent with Keplerian motion. In most cases, this approach is not sensitive to the starting orbital parameters in the iterative loop. In many cases we have determined orbital elements even with small fragments of orbits and noisy data, although some systems show computational instabilities. The algorithm was constructed using the MAPLE mathematical software code and tested on artificially created orbits and many real binary systems, including Gliese 22 AC, Tau 51, and BU 738. This work was supported at Lehigh University by NSF-REU grant PHY-9820301.

  16. Astronomical Observations by Speckle Interferometry.

    DTIC Science & Technology

    1986-06-12

    commonly -been noted [Heintz (101)] that it was Karl *, Schwarzchild who iui 1895 [ Schwarzschild (190)] made the first measure- ments of binary stars...J. Lett 163. Michelson, A A, Pease. F. G. 1921. Ap. 280: L23 J. 53: 249 190. Schwarzschild . K. 1896. Astron. Nadir. 164. Morgan. B. L., lieddoes. 1

  17. Building an Unusual White-Dwarf Duo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    A new study has examined how the puzzling wide binary system HS 2220+2146 which consists of two white dwarfs orbiting each other might have formed. This system may be an example of a new evolutionary pathway for wide white-dwarf binaries.Evolution of a BinaryMore than 100 stellar systems have been discovered consisting of two white dwarfs in a wide orbit around each other. How do these binaries form? In the traditional picture, the system begins as a binary consisting of two main-sequence stars. Due to the large separation between the stars, the stars evolve independently, each passing through the main-sequence and giant branches and ending their lives as white dwarfs.An illustration of a hierarchical triple star system, in which two stars orbit each other, and a third star orbits the pair. [NASA/JPL-Caltech]Because more massive stars evolve more quickly, the most massive of the two stars in a binary pair should be the first to evolve into a white dwarf. Consequently, when we observe a double-white-dwarf binary, its usually a safe bet that the more massive of the two white dwarfs will also be the older and cooler of the pair, since it should have formed first.But in the case of the double-white-dwarf binary HS 2220+2146, the opposite is true: the more massive of the two white dwarfs appears to be the younger and hotter of the pair. If it wasnt created in the traditional way, then how did this system form?Two From Three?Led by Jeff Andrews (Foundation for Research and Technology-Hellas, Greece and Columbia University), a team of scientists recently examined this system more carefully, analyzing its spectra to confirm our understanding of the white dwarfs temperatures and masses.Based on their observations, Andrews and collaborators determined that there are no hidden additional companions that could have caused the unusual evolution of this system. Instead, the team proposed that this unusual binary might be an example of an evolutionary channel that involves three stars.The authors proposed formation scenario for H220+2146. In this picture, the inner binary merges to form a blue straggler. This star and the remaining main-sequence star then evolve independently into white dwarfs, forming the system observed today. [Andrews et al. 2016]An Early MergerIn the model the authors propose for HS 2220+2146, the binary system began as a hierarchical triple system of main-sequence stars. The innermost binary then merged to form a large star known as a blue straggler a star that, due to the merger, will evolve more slowly than its larger mass implies it should.The blue straggler and the remaining main-sequence star, still in a wide orbit, then continued to evolve independently of each other. The smaller star ended its main-sequence lifetime and became a white dwarf first, followed by the more massive but slowly evolving blue straggler thus forming the system we observe today.If the authors model is correct, then HS 2220+2146 would be the first binary double white dwarf known to have formed through this channel. ESAs Gaia mission, currently underway, is expected to discover up to a million new white dwarfs, many of which will likely be in wide binary systems. Among these, we may well find many other systems like HS 2220+2146 that formed in the same way.CitationJeff J. Andrews et al 2016 ApJ 828 38. doi:10.3847/0004-637X/828/1/38

  18. Yet Another Model for the Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Leonard, P. J. T.

    2000-05-01

    We consider whether a gamma-ray burst can result from a merger between a neutron star and a massive main-sequence star in a binary system following a supernova explosion. The scenario for how this can happen is outlined in Leonard, Hills & Dewey 1994, ApJ, 423, L19-L22. The initially more massive star in a massive binary system evolves and undergoes core collapse to produce a neutron star and supernova. Since the outer layers of the originally more massive star have been transferred to the other star, then the supernova may be hydrogen deficient. The newly-formed neutron star receives a random kick during the explosion. In a small fraction of the cases, the kick has the appropriate direction and amplitude to remove most of the orbital angular momentum of the post-supernova binary system. The result is an orbit with a pericenter smaller than the radius of the non-exploding star. The neutron star rather quickly becomes embedded in the other star, and sinks to its center, giving the envelope of the merged object a lot of rotational angular momentum in the process. Leonard, Hills & Dewey estimate the rate of this process in the Galaxy to be 0.06 per square kpc per Myr for secondaries more massive than 15 solar masses. The fate of the merged object has been the source of much speculation, and we shall assume that a collapsar-like scenario results. That is, the neutron star experiences runaway accretion, collapses into a black hole, which continues to accrete, and produces a pair of jets that bore their way out of the merged object. Observers who lie in the direction of either jet will see a gamma-ray burst. Roughly 1% of supernovae in massive binary systems result in neutron stars quickly becoming embedded in the secondaries, and of those which produce black holes, only 1% would be observable as gamma-ray bursts, if the jets are beamed into 1% of the sky.

  19. A survey for pulsations in A-type stars using SuperWASP

    NASA Astrophysics Data System (ADS)

    Holdsworth, Daniel L.

    2015-12-01

    "It is sound judgement to hope that in the not too distant future we shall be competent to understand so simple a thing as a star." - Sir Arthur Stanley Eddington, The Internal Constitution of Stars, 1926 A survey of A-type stars is conducted with the SuperWASP archive in the search for pulsationally variable stars. Over 1.5 million stars are selected based on their (J-H) colour. Periodograms are calculated for light curves which have been extracted from the archive and cleaned of spurious points. Peaks which have amplitudes greater than 0.5 millimagnitude are identified in the periodograms. In total, 202 656 stars are identified to show variability in the range 5-300 c/d. Spectroscopic follow-up was obtained for 38 stars which showed high-frequency pulsations between 60 and 235 c/d, and a further object with variability at 636 c/d. In this sample, 13 were identified to be normal A-type δ Sct stars, 14 to be pulsating metallic-lined Am stars, 11 to be rapidly oscillating Ap (roAp) stars, and one to be a subdwarf B variable star. The spectra were used not only to classify the stars, but to determine an effective temperature through Balmer line fitting. Hybrid stars have been identified in this study, which show pulsations in both the high- and low-overtone domains; an observation not predicted by theory. These stars are prime targets to perform follow-up observations, as a confirmed detection of this phenomenon will have significant impact on the theory of pulsations in A-type stars. The detected number of roAp stars has expanded the known number of this pulsator class by 22 per cent. Within these results both the hottest and coolest roAp star have been identified. Further to this, one object, KIC 7582608, was observed by the Kepler telescope for 4 yr, enabling a detailed frequency analysis. This analysis has identified significant frequency variations in this star, leading to the hypothesis that this is the first close binary star of its type. The observational results presented in this thesis are able to present new challenges to the theory of pulsations in A-type stars, with potentially having the effect of further delaying the full understanding of 'so simple a thing as a star'.

  20. New Frontiers in Binary Stars: Science at High Angular Resolution

    DTIC Science & Technology

    2008-01-01

    been obtained (e.g., Horch et al. 2006), even a moderate improvement in ground-based interferometric sensitivities (V∼9 mag) could, within the decade...512, 864 Hillenbrand, L. A. & White, R. J. 2004, ApJ, 604, 741 Horch , E. P., et al. 2006, AJ, 132, 836 Hummel, C. A., et al. 2001, AJ, 121, 1623

  1. Hot Jupiters Aren't As Lonely As We Thought

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    The Friends of Hot Jupiters (FOHJ) project is a systematic search for planetary- and stellar-mass companions in systems that have known hot Jupiters short-period, gas-giant planets. This survey has discovered that many more hot Jupiters may have companions than originally believed.Missing FriendsFOHJ was begun with the goal of better understanding the systems that host hot Jupiters, in order to settle several longstanding issues.The first problem was one of observational statistics. We know that roughly half of the Sun-like stars nearby are in binary systems, yet weve only discovered a handful of hot Jupiters around binaries. Are binary systems less likely to host hot Jupiters? Or have we just missed the binary companions in the hot-Jupiter-hosting systems weve seen so far?An additional issue relates to formation mechanisms. Hot Jupiters probably migrated inward from where they formed out beyond the ice lines in protoplanetary disks but how?This median-stacked image, obtained with adaptive optics, shows one of the newly-discovered stellar companions to a star hosting a hot Jupiter. The projected separation is ~180 AU. [Ngo et al. 2015]Observations reveal two populations of hot Jupiters: those with circular orbits aligned with their hosts spins, and those with eccentric, misaligned orbits. The former population support a migration model dominated by local planet-disk interactions, whereas the latter population suggest the hot Jupiters migrated through dynamical interactions with distant companions. A careful determination of the companion rate in hot-Jupiter-hosting systems could help establish the ability of these two models to explain the observed populations.Search for CompanionsThe FOHJ project began in 2012 and studied 51 systems hosting known, transiting hot Jupiters with roughly half on circular, aligned orbits and half on eccentric, misaligned orbits. The survey consisted of three different, complementary components:Study 1Lead author: Heather Knutson (Caltech)Technique: Long-term radial velocity monitoringSearching for: Planetary companions at 120 AU from the starStudy 2Lead author: Henry Ngo (Caltech)Technique: Adaptive-optics imagingSearching for: Stellar companions at 502000 AU from the starStudy 3Lead author: Danielle Piskorz (Caltech)Technique: SpectroscopySearching for: Any additional stellar companions at 125 AU from the starThe companion fraction found within Study 2, the adaptive-optics imagine search. The three curves show the total, the systems with hot Jupiters on aligned and circular orbits, and those with hot Jupiters on misaligned and eccentric orbits. [Ngo et al. 2015]Migration ImplicationsUsing these three different techniques, the team found a significant number of both planetary and stellar companions that had not been previously detected. After correcting their results for completeness, they found a multiple-star rate of ~50% for these systems, resolving the problem of the missing companions. So really, we just werent looking hard enough for the companions previously.Intriguingly, the binary companion rate found for these hot Jupiter systems is higher than the average rate for the field stars (which is below 25% for the semimajor-axis range the FOHJ studies are sensitive to). This suggests that companion stars may indeed play a role in hot Jupiter formation and migration.That said, none of the three studies found a significant difference in the binary fraction for aligned versus misaligned hot Jupiters which means that the answer is not as simple as thought, with companion stars causing the misaligned planets. Thus, while hot Jupiters friends may play a role in their formation and migration, we still have work to do in understanding what that role is.CitationDanielle Piskorz et al 2015 ApJ 814 148. doi:10.1088/0004-637X/814/2/148Henry Ngo et al 2015 ApJ 800 138. doi:10.1088/0004-637X/800/2/138Heather A. Knutson et al 2014 ApJ 785 126. doi:10.1088/0004-637X/785/2/126

  2. Determination of Orbital Parameters for Visual Binary Stars Using a Fourier-Series Approach

    NASA Astrophysics Data System (ADS)

    Brown, D. E.; Prager, J. R.; DeLeo, G. G.; McCluskey, G. E., Jr.

    2001-12-01

    We expand on the Fourier transform method of Monet (ApJ 234, 275, 1979) to infer the orbital parameters of visual binary stars, and we present results for several systems, both simulated and real. Although originally developed to address binary systems observed through at least one complete period, we have extended the method to deal explicitly with cases where the orbital data is less complete. This is especially useful in cases where the period is so long that only a fragment of the orbit has been recorded. We utilize Fourier-series fitting methods appropriate to data sets covering less than one period and containing random measurement errors. In so doing, we address issues of over-determination in fitting the data and the reduction of other deleterious Fourier-series artifacts. We developed our algorithm using the MAPLE mathematical software code, and tested it on numerous "synthetic" systems, and several real binaries, including Xi Boo, 24 Aqr, and Bu 738. This work was supported at Lehigh University by the Delaware Valley Space Grant Consortium and by NSF-REU grant PHY-9820301.

  3. Featured Image: Making a Rapidly Rotating Black Hole

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    These stills from a simulation show the evolution (from left to right and top to bottom) of a high-mass X-ray binary over 1.1 days, starting after the star on the right fails to explode as a supernova and then collapses into a black hole. Many high-mass X-ray binaries like the well-known Cygnus X-1, the first source widely accepted to be a black hole host rapidly spinning black holes. Despite our observations of these systems, however, were still not sure how these objects end up with such high rotation speeds. Using simulations like that shown above, a team of scientists led by Aldo Batta (UC Santa Cruz) has demonstrated how a failed supernova explosion can result in such a rapidly spinning black hole. The authors work shows that in a binary where one star attempts to explode as a supernova and fails it doesnt succeed in unbinding the star the large amount of fallback material can interact with the companion star and then accrete onto the black hole, spinning it up in the process. You can read more about the authors simulations and conclusions in the paper below.CitationAldo Batta et al 2017 ApJL 846 L15. doi:10.3847/2041-8213/aa8506

  4. Featured Image: Orbiting Stars Share an Envelope

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    This beautiful series of snapshots from a simulation (click for a better look!) shows what happens when two stars in a binary system become enclosed in the same stellar envelope. In this binary system, one of the stars has exhausted its hydrogen fuel and become a red giant, complete with an expanding stellar envelope composed of hydrogen and helium. Eventually, the envelope expands so much that the companion star falls into it, where it releases gravitational potential energy into the common envelope. A team led by Sebastian Ohlmann (Heidelberg Institute for Theoretical Studies and University of Wrzburg) recently performed hydrodynamic simulations of this process. Ohlmann and collaborators discovered that the energy release eventually triggers large-scale flow instabilities, which leads to turbulence within the envelope. This process has important consequences for how these systems next evolve (for instance, determining whether or not a supernova occurs!). You can check out the authors video of their simulated stellar inspiral below, or see their paper for more images and results from their study.CitationSebastian T. Ohlmann et al 2016 ApJ 816 L9. doi:10.3847/2041-8205/816/1/L9

  5. VizieR Online Data Catalog: Photometric study of fourteen low-mass binaries (Korda+, 2017)

    NASA Astrophysics Data System (ADS)

    Korda, D.; Zasche, P.; Wolf, M.; Kucakova, H.; Honkova, K.; Vrastil, J.

    2018-05-01

    All new photometric observations of 14 binaries were carried out in the Ondrejov Observatory in the Czech Republic with the 0.65 m reflecting-type telescope and the G2-3200 CCD camera. Observations were collected from 2015 February to 2016 November in the I, R, and V filters (Bessell 1990PASP..102.1181B). Some of the older observations obtained only in the R filter were used for refining the individual orbital periods. The stars were primarily chosen from the catalog of Hoffman et al. (2008, J/AJ/136/1067). For the selection of suitable stars, we used several criteria. Each binary's classification as a low-mass binary was performed using the photometric indices J-H and H-K, which are known from the 2MASS survey (Cutri et al. 2003, Cat. II/246; J-H>0.25 and H-K>0.07 Pecaut & Mamajek (2013, J/ApJS/208/9; www.pas.rochester.edu/~emamajek/EEMdwarfUBVIJHKcolorsTeff.txt)). Furthermore, we selected binary systems that have short orbital periods (P<1.5 days) and we chose the declination to be higher than +30°. The last criterion was that these systems cannot have been analyzed in detail before. We chose 11 systems in Hoffman's catalog (2008, J/AJ/136/1067), 2 more were found in the measured field (one of them is on the edge of criteria), and 1 star was added later. (6 data files).

  6. PALFA Discovers Neutron Stars on a Collision Course

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-03-01

    Got any plans in 46 million years? If not, you should keep an eye out for PSR J1946+2052 around that time this upcoming merger of two neutron stars promises to be an exciting show!Survey SuccessAverage profile for PSR J1946+2052 at 1.43 GHz from a 2 hr observation from the Arecibo Observatory. [Stovall et al. 2018]It seems like we just wrote about the dearth of known double-neutron-star systems, and about how new surveys are doing their best to find more of these compact binaries. Observing these systems improves our knowledge of how pairs of evolved stars behave before they eventually spiral in, merge, and emit gravitational waves that detectors like the Laser Interferometer Gravitational-wave Observatory might observe.Todays study, led by Kevin Stovall (National Radio Astronomy Observatory), goes to show that these surveys are doing a great job so far! Yet another double-neutron-star binary, PSR J1946+2052, has now been discovered as part of the Arecibo L-Band Feed Array pulsar (PALFA) survey. This one is especially unique due to the incredible speed with which these neutron stars orbit each other and their correspondingly (relatively!) short timescale for merger.An Extreme ExampleThe PALFA survey, conducted with the enormous 305-meter radio dish at Arecibo, has thus far resulted in the discovery of 180 pulsars including two double-neutron-star systems. The most recent discovery by Stovall and collaborators brings that number up to three, for a grand total of 16 binary-neutron-star systems (confirmed and unconfirmed) known to date.The 305-m Arecibo Radio Telescope, built into the landscape at Arecibo, Puerto Rico. [NOAO/AURA/NSF/H. Schweiker/WIYN]The newest binary in this collection, PSR J1946+2052, exhibits a pulsar with a 17-millisecond spin period thatwhips around its compact companion at a terrifying rate: the binary period is just 1.88 hours. Follow-up observations with the Jansky Very Large Array and other telescopes allowed the team to identify the binarys location to high precision and establish additional parameters of the system.PSR J1946+2052 is a system of extremes. The binarys total mass is found to be 2.5 solar masses, placing it among the lightest binary-neutron-star systems known. Its orbital period is the shortest weve observed, and the two neutron stars are on track to merge in less time than any other known neutron-star binaries: in just 46 million years. When the two stars reach the final stages of their merger, the effects of the pulsars rapid spin on the gravitational-wave signal will be the largest of any such system discovered to date.More Tests of General RelativityWhat can PSR J1946+2052 do for us? This extreme system will be especially useful as a gravitational laboratory. Continued observations of PSR J1946+2052 will pin down with unprecedented precision parameters like the Einstein delay and the rate of decay of the binarys orbit due to the emission of gravitational waves, testing the predictions of general relativity to an order of magnitude higher precision than was possible before.As we expect there to be thousands of systems like PSR J1946+2052 in our galaxy alone, better understanding this binary and finding more like it continue to be important steps toward interpreting compact-object merger observations in the future.CitationK. Stovall et al 2018 ApJL 854 L22. doi:10.3847/2041-8213/aaad06

  7. Astrophysics in 2004

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia; Aschwanden, Markus

    2005-04-01

    In this 14th edition of ApXX,1 we bring you the Sun (§ 2) and Stars (§ 4), the Moon and Planets (§ 3), a truly binary pulsar (§ 5), a kinematic apology (§ 6), the whole universe (§§ 7 and 8), reconsideration of old settled (§ 9) and unsettled (§ 10) issues, and some things that happen only on Earth, some indeed only in these reviews (§§ 10 and 11).

  8. Spectroscopic study of the strontium AM binaries HD 434 and 41 Sex A

    NASA Astrophysics Data System (ADS)

    Sreedhar Rao, S.; Abhyankar, K. D.

    1992-10-01

    Improved spectroscopic orbital elements of the single-line Am binary HD 434 are presented, and cover large gaps in the radial velocity curve obtained earlier by Hube and Gulliver (1985). The MK morphology of the spectrum of HD 434 is examined, and the classification of its metallic line types in the violet and blue regions, along with its revised K- and H-line spectral types, are given for the first time. The strontium anomaly in its spectrum is discussed. 41 Sex A is found to be a prototype of an Am star exhibiting transitional characteristics, forming an evolutionary link between Ap and Am groups of CP stars. Its spectroscopic orbital elements are confirmed using our own velocities. The MK morphology of its spectrum and its spectral line behavior, especially that of the Sr II 4077 line, are briefly discussed.

  9. Main-sequence magnetic CP stars: II. Physical parameters and chemical composition of the atmosphere

    NASA Astrophysics Data System (ADS)

    Romanyuk, I. I.

    2007-03-01

    This paper continues a series of reviews dedicated to magnetic CP stars. The occurrence frequency of CP stars among B5 F0-type main-sequence stars is shown to be equal to about 15 20%. The problems of identification and classification of these objects are addressed. We prefer the classification of Preston, which subdivides chemically peculiar stars into the following groups: Am, λ Boo, Ap/Bp, Hg-Mn, He-weak, and He-strong stars. The main characteristic features of objects of each group are briefly analyzed. The rotation velocities of CP stars are shown to be about three times lower than those of normal stars of the same spectral types (except for λ Boo and He-strong objects). The rotation periods of CP stars range from 0.5 to 100 days, however, there is also a small group of objects with especially long (up to several tens of years) variability periods. All kinds of peculiar stars can be found in visual binaries, with Am-and Hg-Mn-type stars occurring mostly in short-period binaries with P < 10 days, and the binary rate of these stars is close to normal. The percentage of binaries among magnetic stars (20%) is lower than among normal stars. A rather large fraction of CP1-and CP2-type stars was found to occur in young clusters (with ages smaller than 107 years). Photometric and spectral variability of peculiar stars of various types is discussed, and it is shown that only objects possessing magnetic fields exhibit light and spectral variations. The chemical composition of the atmospheres of CP stars of various types is considered. The abundances of various elements are usually determined by comparing the line profiles in the observed spectrum with those of the synthetic spectra computed for various model atmospheres. Different mechanisms are shown to contribute to chemical inhomogeneity at the star’s surface, and the hypothesis of selective diffusion of atoms in a stable atmosphere is developed. Attention is also paid to the problems of the determination of local chemical composition including the stratification of elements. Some of the coolest SrCrEu peculiar stars are found to exhibit fast light variations with periods ranging from 6 to 15 min. These variations are unassociated with rotation, but are due to nonradial pulsations. The final part of the the review considers the fundamental parameters of CP stars. The effective temperatures, luminosities, radii, and masses of these objects are shown to agree with the corresponding physical parameters of normal main-sequence stars of the same spectral types.

  10. A New Method for the Quick Determination of S-Type and P-Type Habitable Zones in Binary Systems

    NASA Astrophysics Data System (ADS)

    Wang, Zhaopeng; Cuntz, Manfred

    2017-01-01

    More than 3500 exoplanets have been confirmed nowadays, including a very large number of planets discovered by the Kepler mission. Additional exoplanets are expected to be found by ongoing missions as, e.g., K2 as well as future missions such as TESS. Exoplanets, especially terrestrial planets, located in stellar habitable zones are drawing great attention from the community and the public at large due to their potential for hosting alien life - a prospect that makes the adequate determination of stellar habitable zones an important goal of exoplanetary research. In the local Galactic neighborhood, binary systems occur relatively frequently. Thus, it is the aim of my presentation to offer a method for the quick determination for the existence of habitable zones in binaries. Therefore, fitting formulas for binary habitable zones regarding both S-type and P-type star-planet configurations are provided. Based on previous work in the literature, a joint constraint regarding radiative habitable zones and planetary orbital stability limits is used. Models of stellar habitable zones utilize updated computations for planetary climate models as given by Kopparapu et al. (2013, 2014) [ApJ 765, 131; ApJL 787, L29]. Cases studies showing the quality of the fit formulas, as well as applications to observed systems, are presented as well.

  11. The Fate of Merging Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    A rapidly spinning, highly magnetized neutron star is one possible outcome when two smaller neutron stars merge. [Casey Reed/Penn State University]When two neutron stars collide, the new object that they make can reveal information about the interior physics of neutron stars. New theoretical work explores what we should be seeing, and what it can teach us.Neutron Star or Black Hole?So far, the only systems from which weve detected gravitational waves are merging black holes. But other compact-object binaries exist and are expected to merge on observable timescales in particular, binary neutron stars. When two neutron stars merge, the resulting object falls into one of three categories:a stable neutron star,a black hole, ora supramassive neutron star, a large neutron star thats supported by its rotation but will eventually collapse to a black hole after it loses angular momentum.Histograms of the initial (left) and final (right) distributions of objects in the authors simulations, for five different equations of state. Most cases resulted primarily in the formation of neutron stars (NSs) or supramassive neutron stars (sNSs), not black holes (BHs). [Piro et al. 2017]Whether a binary-neutron-star merger results in another neutron star, a black hole, or a supramassive neutron star depends on the final mass of the remnant and what the correct equation of state is that describes the interiors of neutron stars a longstanding astrophysical puzzle.In a recent study, a team of scientists led by Anthony Piro (Carnegie Observatories) estimated which of these outcomes we should expect for mergers of binary neutron stars. The teams results along with future observations of binary neutron stars may help us to eventually pin down the equation of state for neutron stars.Merger OutcomesPiro and collaborators used relativistic calculations of spinning and non-spinning neutron stars to estimate the mass range that neutron stars would have for several different realistic equations of state. They then combined this information with Monte Carlo simulations based on the mass distribution of neutron-star binaries in our galaxy. From these simulations, Piro and collaborators could predict the distribution of fates expected for merging neutron-star binaries, given different equations of state.The authors found that the fate of the merger could vary greatly depending on the equation of state you assume. Intriguingly, all equations of state resulted in a surprisingly high fraction of systems that merged to form a neutron star or a supramassive neutron star in fact, four out of the five equations of state predicted that 80100% of systems would result in a neutron star or a supermassive neutron star.Lessons from ObservationsThe frequency bands covered by various current and planned gravitational wave observatories. Advanced LIGO has the right frequency coverage to be able to explore a neutron-star remnant if the signal is loud enough. [Christopher Moore, Robert Cole and Christopher Berry]These results have important implications for our future observations. The high predicted fraction of neutron stars resulting from these mergers tells us that its especially important for gravitational-wave observatories to probe 14 kHz emission. This frequency range will enable us to study the post-merger neutron-star or supramassive-neutron-star remnants.Even if we cant observe the remnants behavior after it forms, we can still compare the distribution of remnants that we observe in the future to the predictions made by Piro and collaborators. This will potentially allow us to constrain the neutron-star equation of state, revealing the physics of neutron-star interiors even without direct observations.CitationAnthony L. Piro et al 2017 ApJL 844 L19. doi:10.3847/2041-8213/aa7f2f

  12. Featured Image: A Slow-Spinning X-Ray Pulsar

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    This image (click for a closer look!) reveals the sky location of a new discovery: the slowest spinning X-ray pulsar a spinning, highly magnetized neutron star ever found in an extragalactic globular cluster. The pulsar, XB091D (circled in the bottom left inset), lies in the globular cluster B091D in the Andromeda galaxy. In a recent study led by Ivan Zolotukhin (University of Toulouse, Moscow State University, and Special Astrophysical Observatory of the Russian Academy of Sciences), a team of scientists details the importance of this discovery. This pulsar is gradually spinning faster and faster a process thats known as recycling, thought to occur as a pulsar accretes material from a donor star in a binary system. Zolotukhin and collaborators think that this particular pairing formed relatively recently, when the pulsar captured a passing star into a binary system. Were now seeing it in a unique stage of evolution where the pulsar is just starting to get recycled. For more information, check out the paper below!CitationIvan Yu. Zolotukhin et al 2017 ApJ 839 125. doi:10.3847/1538-4357/aa689d

  13. Sizing Up Red-Giant Twins

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    In KIC 9246715, two red-giant stars twins in nearly every way circle each other in a 171-day orbit. This binary pair may be a key to learning about masses and radii of stars with asteroseismology, the study of oscillations in the interiors of stars.Two Ways to MeasureIn order to understand a stars evolution, it is critical that we know its mass and radius. Unfortunately, these quantities are often difficult to pin down!One of the few cases in which we can directly measure stars masses and radii is in eclipsing binaries, wherein two stars eclipse each other as they orbit. If we have a well-sampled light curve for the binary, as well as radial velocities for both stars, then we can determine the stars complete orbital information, including their masses and radii.But there may be another way to obtain stellar mass and radius: asteroseismology. In asteroseismology, oscillations inside stars are used to characterize the stellar interiors. Conveniently, if a star with a convective envelope exhibits solar-like oscillations, these oscillations can be directly compared to those of the Sun. Mass and radius scaling relations which use the Sun as a benchmark and scale based on the stars temperature can then be used to derive the mass and radius of the star.Test Subjects from KeplerSolar-like oscillations from KIC 9246715 are shown in red across different resonant frequencies. The oscillations of a single red-giant star with similar properties are shown upside down in grey for reference. [Rawls et al. 2016]Of course, scaling relations are only useful if we can test them! A team of scientists including Meredith Rawls (New Mexico State University) has identified 18 red-giant eclipsing binaries in the Kepler field of view that also exhibit solar-like oscillations perfect for testing the scaling relations.In a recent study led by Rawls, the team analyzed the first of these binaries, KIC 9246715. Using the Kepler light curves in addition to radial velocity measurements from high-resolution ground-based spectroscopy at the Fred Lawrence Whipple Observatory and Apache Point Observatory, Rawls and collaborators established that the two stars have masses of 2.17 and 2.15 solar masses, and radii of 8.4 and 8.3 solar radii.Not Quite Twins?Intriguingly, when the authors measured the stellar oscillations from the binary, they were only able to pick out one signal. Using the scaling relations, their measurements reveal that the star producing the oscillations has a mass of 2.17 solar masses and radius of 8.3 radii consistent with both red giants in the system, within error bars. This provides excellent confirmation of the scaling relations for obtaining mass and radius, but it also raises a new question: why is only one star of this twin system producing oscillations?Rawls and collaborators have an idea: one star might be more magnetically active than the other, causing the suppression of oscillations in the more active star. The authors observations and detailed modeling support this idea, but similar analyses of the rest of the red-giant eclipsing binaries identified in the Kepler field will help to determine if KIC 9246715 is unusual, or if this behavior is common among such systems.CitationMeredith L. Rawls et al 2016 ApJ 818 108. doi:10.3847/0004-637X/818/2/108

  14. Circular polarimetry of fifteen interesting objects.

    NASA Technical Reports Server (NTRS)

    Kemp, J. C.; Wolstencroft, R. D.; Swedlund, J. B.

    1972-01-01

    The results of a search are presented for circular polarization of visible light in 15 objects, including two eclipsing binaries, six magnetic Ap stars, three planetary nebulae, Hubble's Nebula, M87, Sirius, and the Orion A region. On the whole, the results were null, down to typical upper limits for q of 0.01 per cent. A complete description of the used photoelastic polarimeter is given, with special attention to the incidental linear-circular conversion.

  15. VizieR Online Data Catalog: Spectroscopically Identified Hot Subdwarf Stars (Kilkenny+ 1988)

    NASA Astrophysics Data System (ADS)

    Kilkenny, D.; Heber, U.; Drilling, J. S.

    1996-05-01

    Prior to 1986 there were around 200 spectroscopically classified hot subdwarf stars. The Palomar-Green survey (Green et al., 1986ApJS...61..305G) detected over 900 hot subdwarfs, mostly in the North Galactic Cap and mostly previously unknown objects; the Kitt-Peak_Downes survey found another 60 near the Galactic Plane (Downes, 1986ApJS...61..569D). These form the basis of the present catalog but new subdwarfs are continually being found by spectroscopic surveys of photographically discovered faint blue star samples; examples are the work of Wegner and his co-workers on the Kiso survey (Wegner et al., 1985AJ.....90.1511W, 1986AJ.....91..139W, 1987AJ.....94.1271W) and of Kilkenny and Muller (1987) on southern discoveries by Luyten and collaborators (e.g. Haro and Luyten, 1962, Cat. III/74; Luyten and Anderson, 1958, 1959, 1967, "A Search for Faint Blue Stars"). Only stars for which a spectroscopic classification exists have been included. There is a significant probability that stars with only photometric classifications can be normal high-latitude B stars, white dwarfs or cataclysmic variable, for example. Hot subdwarfs in binary systems have been included but not planetary nebulae nuclei classified 'sd' since the latter have been catalogued elsewhere. Although there is not a universally accepted classification scheme for hot subdwarfs, it is fairly clear that the main criterion is a surface gravity higher than that of hot main sequence stars but less than that of hot white dwarfs. Also, hot subdwarf stars typically show helium abundance anomalies. (3 data files).

  16. Title: Detection of a 31.6 s pulse period for the supernova impostor SN 2010da in NGC 300, observed in ULX state

    NASA Astrophysics Data System (ADS)

    Carpano, S.; Haberl, F.; Maitra, C.

    2018-01-01

    The supernova impostor SN 2010da located in NGC 300, later identified as a likely Supergiant B[e] High-mass X-ray binary (Lau et al. 2016, ApJ, 830, 142 and Villar et al. 2016, ApJ, 830, 11), was observed in outburst during two long (139 and 82 ks) XMM-Newton observations performed on 2016 December 17 to 20. We report the discovery of a strong periodic modulation in the X-ray flux with a pulse period of 31.6 s and a very rapid spin-up, and confirm therefore that the compact object is a neutron star.

  17. VizieR Online Data Catalog: Late-type targets in Taurus, Cha I, and Upper Sco (Todorov+, 2014)

    NASA Astrophysics Data System (ADS)

    Todorov, K. O.; Luhman, K. L.; Konopacky, Q. M.; McLeod, K. K.; Apai, D.; Ghez, A. M.; Pascucci, I.; Robberto, M.

    2017-07-01

    To characterize the multiplicity of low-mass stars and brown dwarfs in Taurus and Chamaeleon I, we combine the results from our survey with those from previous high-resolution images in these regions. The latter were collected with WFPC2 (Kraus et al. 2006ApJ...649..306K), Keck speckle imaging (Konopacky et al. 2007ApJ...663..394K), and Keck AO imaging (Kraus & Hillenbrand 2012, J/ApJ/757/141) in Taurus and with WFPC2 (Neuhauser et al. 2002A&A...384..999N), the Advanced Camera for Surveys on Hubble (Luhman 2007, J/ApJS/173/104), and AO at the Very Large Telescope (Ahmic et al. 2007ApJ...671.2074A; Lafreniere et al. 2008ApJ...683..844L) in Chamaeleon I. For comparison to these two regions, we also have compiled binary data measured for late-type members of the Upper Sco association ({tau}~11 Myr; Pecaut et al. 2012, J/ApJ/746/154) with WFPC2 and Keck AO (Kraus et al. 2005ApJ...633..452K; Biller et al. 2011ApJ...730...39B; Kraus & Hillenbrand 2012, J/ApJ/757/141). (1 data file).

  18. Am stars and the influence of binarity on infall

    NASA Astrophysics Data System (ADS)

    Cowley, Charles R.

    2016-01-01

    We explore an old idea for the origin of Am star anomalies, possibly related to observations of pollution in white dwarfs (Jura & Young, ARAA, 42, 45, 2014; Gansicke, et al., Arxiv:1505.03142). It must be noted that infall of an earthlike body can explain some, but not all of the abundance anomalies of Am stars.The ingestion of earthlike material by an a star should have observable effects that are larger than for solar-type stars. We follow dynamical arguments discussed, e.g. by Debes, et al. ApJ., 747, 148, 2012), and postulate that gravitational interactions will produce an infalling stream of low angularmomentum bodies.Note that most if not all Am stars are binary. Here we investigate only whether there is an increased frequency of collisions with a close binary relative to a single star.We make quantitative estimates, using analytical 2-body solutions and restricted 3-body calculations with parameters similar to those of the eclipsing Am pair Beta Aur,or WW Aur. We use initial values for the binary similar to those which would lead to a certain collision on a (4M_sun) single star for a parabolic trajectory. All calculations begin with a distance from the center of mass along the axis of a paraboloid of revolution at 3 or 5 AU and such that a marginal collision occurs with a single star. The perpendicular area of this figure is a cross section for a collision. We sample trajectories starting within and near this cross section, for double starsystems. Based on many trials we find it about equally likely-- relative to a single star--that an incoming body will be ejected from the system than that it will collide with one of the stars. Although we have sampled only a fraction of possible parameter space, we find no basis to expect that the binarity of the Am systems makes them more likely to have ingested planetary material.Infall should probably still be considered, along with the generally accepted diffusion scenario, but it does not appear that the binarity of Am stars makes infall significantly more relevant.

  19. A seven-year northern sky survey of Ap stars for rapid variability

    NASA Technical Reports Server (NTRS)

    Nelson, Matthew J.; Kreidl, Tobias J.

    1993-01-01

    A high-speed photometric survey of 120 Ap stars in the northern sky, has been conducted, between 1985 and 1991, in order to search for rapid variability. Stars of spectral types, namely from B8 to F4, have been selected for the survey. The selected pulsational variable stars occupy the hotter regions of the instability strip of the Hertzsprung-Russel diagram. Noted is the absence of pulsations in the hotter B8-A3 Ap stars; this does not, however, preclude the existence of pulsations, since HD 218495 was recently discovered to be a rapidly oscillating Ap (roAp) star. The primary result of this study is that various combinations of photometric indices, while pointing towards roAp stars having the characteristic signatures of cool, SrCrEu stars, still fail to isolate the roAp phenomenon from similar nonpulsating Ap stars. Color-magnitude and color-color diagrams are presented in order to complete this survey.

  20. Chemical Compositions and Anomalies in Stellar Coronae ADP99

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Drake, Jeremy

    2005-01-01

    Recent progress includes a paper accepted by the ApJ on AB Dor and V471 Tau, and papers on xi UMa and on giant stars submitted but still under ApJ revision. Atomic data has been investigated for line ratio abundance diagnostics, and in particular to determine the contributions of radiative recombination to observed line fluxes. Effects have generally been found to be less than 10%. Further investigations have been in into the possibility of modelling some of the recent coronal abundance anomally results in terms of Alven wave-driven separation of neutrals and ions in the upper chromosphere. Papers being readied for publication include one on active binary stars, and one on the Ne/O ratio in stellar coronae. The Ne/O is found to be approximately constant in all stars examined, and suggests that the current local ISM ratio might be too low by a factor of two. In summary, the work to-date is making good progress in mapping abundance anomalies as a function of spectral type and activity level. We are also making good progress with modelling that we will be able to test with our observational results.

  1. A New Photometric Study of Ap and Am Stars in the Infrared

    NASA Astrophysics Data System (ADS)

    Chen, P. S.; Liu, J. Y.; Shan, H. G.

    2017-05-01

    In this paper, 426 well known confirmed Ap and Am stars are photometrically studied in the infrared. The 2MASS, Wide-field Infrared Survey Explorer (WISE), and IRAS data are employed to make analyses. The results in this paper have shown that in the 1-3 μm region over 90% Ap and Am stars have no or little infrared excesses, and infrared radiations in the near-infrared from these stars are probably dominated by the free-free emissions. It is also shown that in the 3-12 μm region, the majority of Ap stars and Am stars have very similar behavior, I.e., in the W1-W2 (3.4-4.6 μm) region, over half of Ap and Am stars have clear infrared excesses, which are possibly due to the binarity, the multiplicity, and/or the debris disk, but in the W2-W3 (4.6-12 μm) region they have no or little infrared excess. In addition, in the 12-22 μm region, some of Ap stars and Am stars show the infrared excesses and infrared radiations for these Ap and Am stars are probably due to the free-free emissions. In addition, it is seen that the probability of being the binarity, the multiplicity and/or the debris disk for Am stars is much higher than that for Ap stars. Furthermore, it can be seen that, in general, no relations can be found between infrared colors and spectral types either for Ap stars or for Am stars.

  2. Spectroscopic and asteroseismic analysis of the remarkable main-sequence A star KIC 11145123

    NASA Astrophysics Data System (ADS)

    Takada-Hidai, Masahide; Kurtz, Donald W.; Shibahashi, Hiromoto; Murphy, Simon J.; Takata, Masao; Saio, Hideyuki; Sekii, Takashi

    2017-10-01

    A spectroscopic analysis was carried out to clarify the properties of KIC 11145123 - the first main-sequence star with a directly measured core-to-surface rotation profile - based on spectra observed with the High Dispersion Spectrograph (HDS) of the Subaru telescope. The atmospheric parameters (Teff = 7600 K, log g = 4.2, ξ = 3.1 km s-1 and [Fe/H] = -0.71 dex), the radial and rotation velocities, and elemental abundances were obtained by analysing line strengths and fitting line profiles, which were calculated with a 1D LTE model atmosphere. The main properties of KIC 11145123 are: (1) a low [Fe/H] = -0.71 ± 0.11 dex and a high radial velocity of -135.4 ± 0.2 km s-1. These are remarkable among late-A stars. Our best asteroseismic models with this low [Fe/H] have slightly high helium abundance and low masses of 1.4 M⊙. All of these results strongly suggest that KIC 11145123 is a Population II blue straggler; (2) the projected rotation velocity confirms the asteroseismically predicted slow rotation of the star; (3) comparisons of abundance patterns between KIC 11145123 and Am, Ap, and blue stragglers show that KIC 11145123 is neither an Am star nor an Ap star, but has abundances consistent with a blue straggler. We conclude that the remarkably long 100-d rotation period of this star is a consequence of it being a blue straggler, but both pathways for the formation of blue stragglers - merger and mass loss in a binary system - pose difficulties for our understanding of the exceedingly slow rotation. In particular, we show that there is no evidence of any secondary companion star, and we put stringent limits on the possible mass of any such purported companion through the phase modulation technique.

  3. Tests of Stellar Models Using Four Extremely Massive Spectroscopic Binaries in the R136 Cluster

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    1999-07-01

    We are proposing to observe four non-interacting double-lined spectroscopic binaries discovered in the R136 cluster by our Cycle 6 FOS spectroscopy {Massey & Hunter 1998, ApJ, 493, 180}. These binaries are all of very early type {O3-4 + O3-8} and should prove to be of very high mass. These data will allow us to extend the empirical mass-luminosity relation to higher masses, providing crucial checks on stellar interior and atmosphere models. Examination of the WFPC2 archives reveals that at least three of the four systems undergo eclipses. We plan to obtain simultaneous spectroscopy and photometry for all four systems during a single 2-orbit visit. Fourteen such visits, over an interval of a few weeks, should provide direct measurements for the masses of eight of the highest mass stars ever analyzed.

  4. A New Photometric Study of Ap and Am Stars in the Infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, P. S.; Liu, J. Y.; Shan, H. G., E-mail: chenps@ynao.ac.cn

    In this paper, 426 well known confirmed Ap and Am stars are photometrically studied in the infrared. The 2MASS, Wide-field Infrared Survey Explorer ( WISE ), and IRAS data are employed to make analyses. The results in this paper have shown that in the 1–3 μ m region over 90% Ap and Am stars have no or little infrared excesses, and infrared radiations in the near-infrared from these stars are probably dominated by the free–free emissions. It is also shown that in the 3–12 μ m region, the majority of Ap stars and Am stars have very similar behavior, i.e.,more » in the W 1– W 2 (3.4–4.6 μ m) region, over half of Ap and Am stars have clear infrared excesses, which are possibly due to the binarity, the multiplicity, and/or the debris disk, but in the W 2– W 3 (4.6–12 μ m) region they have no or little infrared excess. In addition, in the 12–22 μ m region, some of Ap stars and Am stars show the infrared excesses and infrared radiations for these Ap and Am stars are probably due to the free–free emissions. In addition, it is seen that the probability of being the binarity, the multiplicity and/or the debris disk for Am stars is much higher than that for Ap stars. Furthermore, it can be seen that, in general, no relations can be found between infrared colors and spectral types either for Ap stars or for Am stars.« less

  5. A Pulsar and White Dwarf in an Unexpected Orbit

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Astronomers have discovered a binary system consisting of a low-mass white dwarf and a millisecond pulsar but its eccentric orbit defies all expectations of how such binaries form.Observed orbital periods and binary eccentricities for binary millisecond pulsars. PSR J2234+0511 is the furthest right of the green stars that mark the five known eccentric systems. [Antoniadis et al. 2016]Unusual EccentricityIt would take a low-mass (0.4 solar masses) white dwarf over 100 billion years to form from the evolution of a single star. Since this is longer than the age of the universe, we believe that these lightweights are instead products of binary-star evolution and indeed, we observe many of these stars to still be in binary systems.But the binary evolution that can create a low-mass white dwarf includes a period of mass transfer, in which efficient tidal dissipation damps the systems orbital eccentricity. Because of this, we would expect all systems containing low-mass white dwarfs to have circular orbits.In the past, our observations of low-mass white dwarfmillisecond pulsar binaries have all been consistent with this expectation. But a new detection has thrown a wrench in the works: the unambiguous identification of a low-mass white dwarf thats in an eccentric (e=0.13) orbit with the millisecond pulsar PSR J2234+0511. How could this system have formed?Eliminating Formation ModelsLed by John Antoniadis (Dunlap Institute at University of Toronto), a team of scientists has used newly obtained optical photometry (from the Sloan Digital Sky Survey) and spectroscopy (from the Very Large Telescope in Chile) of the white dwarf to confirm the identification of this system.Antoniadis and collaborators then use measurements of the bodies masses (0.28 and 1.4 solar masses for the white dwarf and pulsar, respectively) and velocities, and constraints on the white dwarfs temperature, radius and surface gravity, to address three proposed models for the formation of this system.The 3D motion of the pulsar (black solid lines; current position marked with diamond) in our galaxy over the past 1.5 Gyr. This motion is typical for low-mass X-ray binary descendants, favoring a binary-evolution model over a 3-body-interaction model. [Antoniadis et al. 2016]In the first model, the eccentric binary was created via adynamic three-body formation channel. This possibility is deemed unlikely, as the white-dwarf properties and all the kinematic properties of the system point to normal binary evolution.In the secondmodel, the binary system gains its high eccentricity after mass transfer ends, when the pulsar progenitor experiences a spontaneous phase transition. The authors explore two options for this: one in which the neutron star implodes into a strange-quark star, and the other in which an over-massive white dwarf suffers a delayed collapse into a neutron star. Both cases are deemed unlikely, because the mass inferred for the pulsar progenitor is not consistent with either model.In the third model, the system forms a circumbinary disk fueled by material escaping the proto-white dwarf. After mass transfer has ended, interactions between the binary and its disk gradually increase the eccentricity of the system, pumping it up to what we observe today. All of the properties of the system measured by Antoniadis and collaborators are thus far consistent with this model.Further observations of this system and systems like it (several others have been detected, though not yet confirmed) will help determine whether binary evolution combined with interactions with a disk can indeed explain the formation of this unexpectedly eccentricsystem.CitationJohn Antoniadis et al 2016 ApJ 830 36. doi:10.3847/0004-637X/830/1/36

  6. Observational studies of roAp stars

    NASA Astrophysics Data System (ADS)

    Sachkov, M.

    2014-11-01

    Rapidly oscillating Ap (roAp) stars are high-overtone, low-degree p-mode pulsators that are also chemically peculiar magnetic A stars. Until recently the classical asteroseismic analysis i.e. frequency analysis, of these stars was based on ground and space photometric observations. Significant progress was achieved through access to uninterrupted, ultra-high-precision data from MOST, COROT and Kepler satellites. Over the last ten years the study of roAp stars has been altered drastically from an observational point of view through studies of time-resolved, high-resolution spectra. Their unusual pulsational characteristics, caused by an interplay between the short vertical lengths of the pulsation waves and strong stratification of chemical elements, allow us to examine the upper roAp atmosphere in more detail than is possible for any star except the Sun. In this paper I review the results of recent studies of the pulsations of roAp stars.

  7. Lightweight Double Neutron Star Found

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-02-01

    More than forty years after the first discovery of a double neutron star, we still havent found many others but a new survey is working to change that.The Hunt for PairsThe observed shift in the Hulse-Taylor binarys orbital period over time as it loses energy to gravitational-wave emission. [Weisberg Taylor, 2004]In 1974, Russell Hulse and Joseph Taylor discovered the first double neutron star: two compact objects locked in a close orbit about each other. Hulse and Taylors measurements of this binarys decaying orbit over subsequent years led to a Nobel prize and the first clear evidence of gravitational waves carrying energy and angular momentum away from massive binaries.Forty years later, we have since confirmed the existence of gravitational waves directly with the Laser Interferometer Gravitational-Wave Observatory (LIGO). Nonetheless, finding and studying pre-merger neutron-star binaries remains a top priority. Observing such systems before they merge reveals crucial information about late-stage stellar evolution, binary interactions, and the types of gravitational-wave signals we expect to find with current and future observatories.Since the Hulse-Taylor binary, weve found a total of 16 additional double neutron-star systems which represents only a tiny fraction of the more than 2,600 pulsars currently known. Recently, however, a large number of pulsar surveys are turning their eyes toward the sky, with a focus on finding more double neutron stars and at least one of them has had success.The pulse profile for PSR J1411+2551 at 327 MHz. [Martinez et al. 2017]A Low-Mass DoubleConducted with the 1,000-foot Arecibo radio telescope in Puerto Rico, the Arecibo 327 MHz Drift Pulsar Survey has enabled the recent discovery of dozens of pulsars and transients. Among them, as reported by Jose Martinez (Max Planck Institute for Radio Astronomy) and coauthors in a recent publication, is PSR J1411+2551: a new double neutron star with one of the lowest masses ever measured for such a system.Through meticulous observations over the span of 2.5 years, Martinez and collaborators were able to obtain a number of useful measurements for the system, including the pulsars period (62 ms), the period of the binary (2.62 days), and the systems eccentricity (e = 0.17).In addition, the team measured the rate of advance of periastron of the system, allowing them to estimate the total mass of the system: M = 2.54 solar masses. This mass, combined with the eccentricity of the orbit, demonstrate that the companion of the pulsar in PSR J1411+2551 is almost certainly a neutron star and the system is one of the lightest known to date, even including the double neutron-star merger that was observed by LIGO in August this past year.Constraining Stellar PhysicsBased on its measured properties, PSR J1411+2551 is most likely a recycled pulsar in a double neutron-star system. [Martinez et al. 2017]The intriguing orbital properties and low mass of PSR J1411+2551 have already allowed the authors to explore a number of constraints to stellar evolution models, including narrowing the possible equations of state for neutron stars that could produce such a system. These constraints will be interesting to compare to constraints from LIGO and Virgo in the future, as more merging neutron-star systems are observed.Meanwhile, our best bet for obtaining further constraints is to continue searching for more pre-merger double neutron-star systems like the Hulse-Taylor binary and PSR J1411+2551. Let the hunt continue!CitationJ. G. Martinez et al 2017 ApJL 851 L29. doi:10.3847/2041-8213/aa9d87

  8. Binary interaction dominates the evolution of massive stars.

    PubMed

    Sana, H; de Mink, S E; de Koter, A; Langer, N; Evans, C J; Gieles, M; Gosset, E; Izzard, R G; Le Bouquin, J-B; Schneider, F R N

    2012-07-27

    The presence of a nearby companion alters the evolution of massive stars in binary systems, leading to phenomena such as stellar mergers, x-ray binaries, and gamma-ray bursts. Unambiguous constraints on the fraction of massive stars affected by binary interaction were lacking. We simultaneously measured all relevant binary characteristics in a sample of Galactic massive O stars and quantified the frequency and nature of binary interactions. More than 70% of all massive stars will exchange mass with a companion, leading to a binary merger in one-third of the cases. These numbers greatly exceed previous estimates and imply that binary interaction dominates the evolution of massive stars, with implications for populations of massive stars and their supernovae.

  9. Project VeSElkA: a search for the vertical stratification of element abundances in HD 157087

    NASA Astrophysics Data System (ADS)

    Khalack, V.

    2018-06-01

    The new spectropolarimetric spectra of HD 157087 obtained recently with ESPaDOnS (Echelle SpectroPolarimetric Device for Observations of Stars) at the Canada-France-Hawaii Telescope are analysed to verify the nature of this object. The fundamental stellar parameters Teff = 8882 K, log g = 3.57 were obtained for HD 157087 from the analysis of nine Balmer line profiles in two available spectra. A comparison of the results of our abundance analysis with previously published data shows a variability of the average abundance with time for some chemical species, while the abundances of other elements remain almost constant. The abundance analysis also reveals evidence of a significant abundance increase towards the deeper atmospheric layers for C, S, Ca, Sc, V, Cr, Mn, Co, Ni and Zr. Together with the discovered enhanced abundance of Ca and Sc, this finding contradicts the classification of HD 157087 as a marginal Am star. An analysis of the available measurements of radial velocity revealed long- and short-period variations. The long-period variation supports the idea that HD 157087 is an astrometric binary system with a period longer than 6 yr. The presence of the short-period variation of Vr, as well as the detection of the temporal variation of the average abundance, suggests that HD 157087 may be a triple system, in which a short-period binary rotates around a third star. In this case, the short-period binary may consist of slowly rotating Am and A (or Ap with a weak magnetic field) stars that have similar effective temperatures and surface gravities, but different abundance peculiarities.

  10. VizieR Online Data Catalog: Spatial structure of young stellar clusters. III. (Kuhn+, 2015)

    NASA Astrophysics Data System (ADS)

    Kuhn, M. A.; Feigelson, E. D.; Getman, K. V.; Sills, A.; Bate, M. R.; Borissova, J.

    2017-10-01

    This paper uses the Paper I (Kuhn et al. 2014, J/ApJ/787/107) catalog of 142 subclusters of young stars in 17 MYStIX star-forming regions. These subclusters were found and characterized using the stars in the MYStIX Probable Complex Member (MPCM) catalogs from Broos et al. (2013, J/ApJS/209/32). The multiwavelength data analysis efforts that went into this catalog are described by Feigelson et al. (2013, J/ApJS/209/26), King et al. (2013, J/ApJS/209/28), Kuhn et al. (2013, J/ApJS/209/27; 2013, J/ApJS/209/29), Naylor et al. (2013, J/ApJS/209/30), Povich et al. (2013, J/ApJS/209/31), and Townsley et al. (2014, J/ApJS/213/1), which provided uniform data coverage across the 17 star-forming regions investigated here, including the most comprehensive and reliable lists of young stars in many of the nearest MSFRs. (3 data files).

  11. Colliding Neutron Stars as the Source of Heavy Elements

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Where do the heavy elements the chemical elements beyond iron in our universe come from? One of the primary candidate sources is the merger of two neutron stars, but recent observations have cast doubt on this model. Can neutron-star mergers really be responsible?Elements from Collisions?Periodic table showing the origin of each chemical element. Those produced by the r-process are shaded orange and attributed to supernovae in this image; though supernovae are one proposed source of r-process elements, an alternative source is the merger of two neutron stars. [Cmglee]When a binary-neutron-star system inspirals and the two neutron stars smash into each other, a shower of neutrons are released. These neutrons are thought to bombard the surrounding atoms, rapidly producing heavy elements in what is known as r-process nucleosynthesis.So could these mergers be responsible for producing the majority of the universes heavy r-process elements? Proponents of this model argue that its supported by observations. The overall amount of heavy r-process material in the Milky Way, for instance, is consistent with the expected ejection amounts from mergers, based both on predicted merger rates for neutron stars in the galaxy, and on the observed rates of soft gamma-ray bursts (which are thought to accompany double-neutron-star mergers).Challenges from Ultra-Faint DwarfsRecently, however, r-process elements have been observed in ultra-faint dwarf satellite galaxies. This discovery raises two major challenges to the merger model for heavy-element production:When neutron stars are born during a core-collapse supernova, mass is ejected, providing the stars with asymmetric natal kicks. During the second collapse in a double-neutron-star binary, wouldnt the kick exceed the low escape velocity of an ultra-faint dwarf, ejecting the binary before it could merge and enrich the galaxy?Ultra-faint dwarfs have very old stellar populations and the observation of r-process elements in these stars requires mergers to have occurred very early in the galaxys history. Can double-neutron-star systems merge quickly enough to account for the observed chemical enrichment?Small Kicks and Fast MergersFraction of double-neutron-star systems that remain bound, vs. the magnitude of the kick they receive. A typical escape velocity for an ultra-faint dwarf is ~15 km/s; roughly 55-65% of binaries receive smaller kicks than that and wouldnt be ejected from an ultra-faint dwarf. [Beniamini et al. 2016]Led by Paz Beniamini, a team of scientists from the Racah Institute of Physics at the Hebrew University of Jerusalem has set out to answer these questions. Using the statistics of our galaxys double-neutron-star population, the team performed Monte Carlo simulations to estimate the distributions of mass ejection and kick velocities for the systems.Beniamini and collaborators find that, for typical initial separations, more than half of neutron star binaries are born with small enough kicks that they remain bound and arent ejected even from small, ultra-faint dwarf galaxies.The team also used their statistics to calculate the time until merger for the population of binaries, finding that ~90% of the double-neutron-star systems merge within 300 Myr, and around 15% merge within 100 Myr quick enough to enrich even the old population of stars.This population of systems that remain confined to the galaxy and merge rapidly can therefore explain the observations of r-process material in ultra-faint dwarf galaxies. Beniamini and collaborators work suggests that the merger of neutron stars is indeed a viable model for the production of heavy elements in our universe.CitationPaz Beniamini et al 2016 ApJ 829 L13. doi:10.3847/2041-8205/829/1/L13

  12. A Speeding Binary in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    The recent discovery of a hyper-velocity binary star system in the halo of the Milky Way poses a mystery: how was this system accelerated to its high speed?Accelerating StarsUnlike the uniform motion in the Galactic disk, stars in the Milky Ways halo exhibit a huge diversity of orbits that are usually tilted relative to the disk and have a variety of speeds. One type of halo star, so-called hyper-velocity stars, travel with speeds that can approach the escape velocity of the Galaxy.How do these hyper-velocity stars come about? Assuming they form in the Galactic disk, there are multiple proposed scenarios through which they could be accelerated and injected into the halo, such as:Ejection after a close encounter with the supermassive black hole at the Galactic centerEjection due to a nearby supernova explosionEjection as the result of a dynamical interaction in a dense stellar population.Further observations of hyper-velocity stars are necessary to identify the mechanism responsible for their acceleration.J1211s SurpriseModels of J1211s orbit show it did not originate from the Galactic center (black dot). The solar symbol shows the position of the Sun and the star shows the current position of J1211. The bottom two panels show two depictions(x-y plane and r-z plane) of estimated orbits of J1211 over the past 10 Gyr. [Nmeth et al. 2016]To this end, a team of scientists led by Pter Nmeth (Friedrich Alexander University, Erlangen-Nrnberg) recently studied the candidate halo hyper-velocity star SDSS J121150.27+143716.2. The scientists obtained spectroscopy of J1211 using spectrographs at the Keck Telescope in Hawaii and ESOs Very Large Telescope in Chile. To their surprise, they discovered the signature of a companion in the spectra: J1211 is actually a binary!Nmeth and collaborators found that J1211, located roughly 18,000 light-years away, is moving at a rapid ~570 km/s relative to the galactic rest frame. The binary system consists of a hot (30,600 K) subdwarf and a cool (4,800 K) companion star in a wide orbit, likely separated by several AU.An Unknown Past and FutureWhy are these new observations of J1211 such a big deal? Because all the acceleration scenarios for a star originating in the Galactic disk fail in the case of J1211. The authors find by modeling J1211s motion that the system cant have originated in the Galactic center, so interactions with the supermassive black hole are out. And supernova explosions or dynamical interactions would tear the wide binary apart in the process of accelerating it. Nmeth and collaborators suggest instead that J1211 was either born in the halo population or accreted later from the debris of a destroyed satellite galaxy.J1211s speed is so extreme that its orbit could be either bound or unbound. Interestingly, when the authors model the binarys orbit, they find that the assumed mass of the Milky Ways dark-matter halo determines whether J1211s orbit is bound. This means that future observations of J1211 may provide a new way to probe the Galactic potential and determine the mass of the dark matter halo, in addition to revealing unexpected origins of high-velocity halo stars.CitationPter Nmeth et al 2016 ApJ 821 L13. doi:10.3847/2041-8205/821/1/L13

  13. Identifying Bright X-Ray Beasts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the accreting object. This provided strong support for the second model of ULXs as X-ray binaries with super-Eddington luminosity.But could this model in fact account for all ULXs? A team of authors led by Grzegorz Wiktorowicz (Kavli Institute for Theoretical Physics, UC Santa Barbara and Warsaw University, Poland) says yes.Time evolution of the number of ULXs since the beginning of star formation, for a star formation burst (left panels) and continuous star formation (right panels), and for solar-metallicity (top panels) and low-metallicity (bottom panels) environments. The heavy solid line shows ULXs with black-hole accretors, the dashed line ULXs with neutron-star accretors, and the solid line the total. [Wiktorowicz et al. 2017]No Exotic Objects NeededWiktorowicz and collaborators performed a massive suite of simulations made possible by donated computer time from the Universe@Home project to examine how 20 million binary systems evolve into X-ray binaries. They then determined the number and nature of the ones that could appear as ULXs to us. The authors results show that the vast majority of the observed population of ULXs can be accounted for with super-Eddington compact binaries, without needing to invoke intermediate-mass black holes.Wiktorowicz and collaborators demonstrate that in environments with short star-formation bursts, black-hole accretors are the most common ULX source in the early periods after the burst, but neutron-star accretors dominate the ULX population after a few 100 Myr. In the case of prolonged and continuous star formation, neutron-star accretors dominate ULXs if the environment is solar metallicity, whereas black-hole accretors dominate in low-metallicity environments.The authors results present very clear and testable relations between the companion and donor star evolutionary stage and the age of the system, which we will hopefully be able to use to test this model with future observations of ULXs.CitationGrzegorz Wiktorowicz et al 2017 ApJ 846 17. doi:10.3847/1538-4357/aa821d

  14. Subdwarf B Stars: Tracers Of Binary Evolution

    NASA Astrophysics Data System (ADS)

    Morales-Rueda, L.; Maxted, P. F. L.; Marsh, T. R.

    2007-08-01

    Subdwarf B stars are a superb stellar population to study binary evolution. In 2001, Maxted et al. (MNRAS, 326, 1391) found that 21 out of the 36 subdwarf B stars they studied were in short period binaries. These observations inspired new theoretical work that suggests that up to 90 per cent of subdwarf B stars are in binary systems with the remaining apparently single stars being the product of merging pairs. This high binary fraction added to the fact that they are detached binaries that have not changed significantly since they came out of the common envelope, make subdwarf B stars a perfect population to study binary evolution. By comparing the observed orbital period distribution of subdwarf B stars with that obtained from population synthesis calculations we can determine fundamental parameters of binary evolution such as the common envelope ejection efficiency. Here we give an overview of the fraction of short period binaries found from different surveys as well as the most up to date orbital period distribution determined observationally. We also present results from a recent search for subdwarf B stars in long period binaries.

  15. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.; Chambers, John; Duncan, Martin J.; Adams, Fred

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets within binary star systems, using a new, ultrafast, symplectic integrator that we have developed for this purpose. We show that the late stages of terrestrial planet formation can indeed take place in a wide variety of binary systems and we have begun to delineate the range of parameter space for which this statement is true. Results of our initial simulations of planetary growth around each star in the alpha Centauri system and other 'wide' binary systems, as well as around both stars in very close binary systems, will be presented.

  16. High-resolution spectroscopy of extremely metal-poor stars from SDSS/Segue. II. Binary fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Wako; Suda, Takuma; Beers, Timothy C.

    2015-02-01

    The fraction of binary systems in various stellar populations of the Galaxy and the distribution of their orbital parameters are important but not well-determined factors in studies of star formation, stellar evolution, and Galactic chemical evolution. While observational studies have been carried out for a large sample of nearby stars, including some metal-poor Population II stars, almost no constraints on the binary nature for extremely metal-poor (EMP; [Fe/H] <−3.0) stars have yet been obtained. Here we investigate the fraction of double-lined spectroscopic binaries and carbon-enhanced metal-poor (CEMP) stars, many of which could have formed as pairs of low-mass and intermediate-massmore » stars, to estimate the lower limit of the fraction of binary systems having short periods. The estimate is based on a sample of very metal-poor stars selected from the Sloan Digital Sky Survey and observed at high spectral resolution in a previous study by Aoki et al. That survey reported 3 double-lined spectroscopic binaries and 11 CEMP stars, which we consider along with a sample of EMP stars from the literature compiled in the SAGA database. We have conducted measurements of the velocity components for stacked absorption features of different spectral lines for each double-lined spectroscopic binary. Our estimate indicates that the fraction of binary stars having orbital periods shorter than 1000 days is at least 10%, and possibly as high as 20% if the majority of CEMP stars are formed in such short-period binaries. This result suggests that the period distribution of EMP binary systems is biased toward short periods, unless the binary fraction of low-mass EMP stars is significantly higher than that of other nearby stars.« less

  17. Radiative Reverse Shock Laser Experiments Relevant to Accretion Processes in Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Krauland, Christine

    2012-10-01

    We present results from experiments that explore radiative reverse shock waves and their contribution to the evolving dynamics of the cataclysmic variable (CV) system in which they reside. CVs are close binary star systems containing a white dwarf (WD) that accretes matter from its late-type main sequence companion star. In the process of accretion, a reverse shock forms when the supersonic infalling plasma is impeded. It provides the main source of radiation in the binary systems. In the case of a non-magnetic CV, the impact on an accretion disk produces this ``hot spot,'' where the flow obliquely strikes the rotating accretion disk. This collision region has many ambiguities as a radiation hydrodynamic system, but shock development in the infalling flow can be modeled [1]. We discuss the production of radiative reverse shocks in experiments at the Omega-60 laser facility. The ability of this high-intensity laser to create large energy densities in targets having millimeter-scale volumes makes it feasible to create supersonic plasma flows. Obtaining a radiative reverse shock in the laboratory requires a sufficiently fast flow (> 60 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. We will show the radiographic and emission data from three campaigns on Omega-60 with accompanying CRASH [2] simulations, and will discuss the implications in the context of the CV system. [4pt] [1] Armitage, P. J. and Livio, M., ApJ, 493, 898 (1998).[0pt] [2] van der Holst, B., Toth, G., Sokolov, I.V., et al., ApJS, 194, 23 (2011).

  18. Ultraviolet photometry from the orbiting astronomical observatory. 8: The blue Ap stars

    NASA Technical Reports Server (NTRS)

    Leckrone, D. S.

    1973-01-01

    The filter photometers in the Wisconsin Experiment Package on OAO-2 were used to obtain data for a carefully selected set of 24 blue Ap stars and 31 comparison standard B and A dwarfs and giants for a program of relative photometry. Observations were made in seven bandpasses over the effective wavelength range 1430A-4250A. The Ap stars observed include members of the Si, Hg-Mn and Sr-Cr-Eu peculiarity classes. Most of them are too blue in B-V for their published MK spectral classes. The blue Ap stars are markedly deficient in emitted ultraviolet flux and are underluminous as compared to normal stars with the same UBV colors. The Hg-Mn stars appear less flux deficient in the ultraviolet for their UBV colors than do Si or Sr-cr-Eu stars. Most of the Ap stars observed possess ultraviolet flux distributions, or ultraviolet color temperatures, consistent with their published MK spectral classes to well within the classification uncertainties.

  19. VizieR Online Data Catalog: Radial velocities of K-M dwarfs (Sperauskas+, 2016)

    NASA Astrophysics Data System (ADS)

    Sperauskas, J.; Bartasiute, S.; Boyle, R. P.; Deveikis, V.; Raudeliunas, S.; Upgren, A. R.

    2016-09-01

    We analyzed nearly 3300 measurements of radial velocities for 1049 K-M dwarfs, that we obtained during the past decade with a CORAVEL-type instrument, with a primary emphasis on detecting and eliminating from kinematic calculations the spectroscopic binaries and binary candidates. We present the catalog of our observations of radial velocities for 959 stars which are not suspected of velocity variability. Of these, 776 stars are from the MCC sample and 173 stars are K-M dwarfs from the CNS4. The catalog consists of two parts: Table 2 lists the mean radial velocities, and Table 2a contains individual measurements. Our radial velocities agree with the best published standard stars to within 0.7km/s in precision. Combining these and supplementary radial-velocity data with Hipparcos/Tycho-2 astrometry (Table 4 summarizes input observational data) we calculated the space velocity components and parameters of the galactic orbits in a three-component model potential by Johnston K.V. et al. (1995ApJ...451..598J) for a total of 1088 K-M dwarfs (Table 5), that we use for kinematical analysis and for the identification of possible candidate members of nearby stellar kinematic groups. We identified 146 stars as possible candidate members of the classical moving groups and known or suspected subgroups (Table 7). We show that the distributions of space-velocity components, orbital eccentricities, and maximum distances from the Galactic plane for nearby K-M dwarfs are consistent with the presence of young, intermediate-age and old populations of the thin disk and a small fraction (3%) of stars with the thick disk kinematics. (7 data files).

  20. X-ray emission from an Ap star /Phi Herculis/ and a late B star /Pi Ceti/

    NASA Technical Reports Server (NTRS)

    Cash, W.; Snow, T. P., Jr.; Charles, P.

    1979-01-01

    Using the HEAO 1 soft X-ray sky survey, a search was conducted for X-ray emission from 18 stars in the spectral range B5-A7. The detection of 0.25 keV X-ray sources consistent with the positions of Pi Ceti, a normal B7 V star, and Phi Herculis, a classic Ap star was reported. The detection of these stars argues for large mass motions in the upper layers of stars in this spectral range, and argues against radiative diffusion as the source of abundance anomalies in Ap stars.

  1. Where a Neutron Star's Accretion Disk Ends

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    In X-ray binaries that consist of a neutron star and a companion star, gas funnels from the companion into an accretion disk surrounding the neutron star, spiraling around until it is eventually accreted. How do the powerful magnetic fields threading through the neutron star affect this accretion disk? Recent observations provide evidence that they may push the accretion disk away from the neutron stars surface.Truncated DisksTheoretical models have indicated that neutron star accretion disks may not extend all the way in to the surface of a neutron star, but may instead be truncated at a distance. This prediction has been difficult to test observationally, however, due to the challenge of measuring the location of the inner disk edge in neutron-star X-ray binaries.In a new study, however, a team of scientists led by Ashley King (Einstein Fellow at Stanford University) has managed to measure the location of the inner edge of the disk in Aquila X-1, a neutron-star X-ray binary located 17,000 light-years away.Iron line feature detected by Swift (red) and NuSTAR (black). The symmetry of the line is one of the indicators that the disk is located far from the neutron star; if the inner regions of the disk were close to the neutron star, severe relativistic effects would skew the line to be asymmetric. [King et al. 2016]Measurements from ReflectionsKing and collaborators used observations made by NuSTAR and Swift/XRT both X-ray space observatories of Aquila X-1 during the peak of an X-ray outburst. By observing the reflection of Aquila X-1s emission off of the inner regions of the accretion disk, the authors were able to estimate the location of the inner edge of the disk.The authors find that this inner edge sits at ~15 gravitational radii. Since the neutron stars surface is at ~5 gravitational radii, this means that the accretion disk is truncated far from the stars surface. In spite of this truncation, material still manages to cross the gap and accrete onto the neutron star as evidenced by X-ray flaring (almost certainly caused by accretion) that occurred during the authors observations.Magnetic EffectsWhat could cause the truncation of the disk? The authors believe the most likely factor is pressure from the neutron stars sizable magnetic field, pushing the inner edge of the disk out. They calculate that a field strength of roughly 5*108 Gauss (for comparison, a typical refrigerator magnet has a field strength of ~100 G!) would be necessary to hold the inner edge this far out. This is consistent with previous estimates for the field of the neutron star in Aquila X-1.The authors point out that magnetic field lines could also explain how the neutron star is still accreting material despite the gap between it and its disk: gas could be channeled along field lines from the inner edge of the disk which is roughly co-rotating with the neutron star onto the neutron star poles.The observations of Aquila X-1s truncated disk are an important step toward confirming models of how neutron stars magnetic fields interact with their accretion disks in X-ray binaries.CitationAshley L. King et al 2016 ApJ 819 L29. doi:10.3847/2041-8205/819/2/L29

  2. Does the HMXB IGR J18214-1318 contain a black hole or neutron star?

    NASA Astrophysics Data System (ADS)

    Fornasini, Francesca; Tomsick, John; Bachetti, Matteo; Fuerst, Felix; Natalucci, Lorenzo; Pottschmidt, Katja; Smith, David M.; Wilms, Joern

    2015-01-01

    Measuring the fraction of high-mass X-ray binaries (HMXBs) that harbors a black hole (BH) rather than a neutron star (NS) can improve our understanding of the role of stellar winds and mass transfer in the evolution of massive stars and help constrain estimates of the numbers of NS/BH and BH/BH binaries in the Galaxy, potential sources of gravitational waves that could be detected by Advanced-LIGO. Some population synthesis studies have shown that BHs are likely to be rare among the Be HMXB population (Belczynki & Ziolkowski, 2009, ApJ, 707, 870) and the one BH Be HMXB that has been discovered has very low X-ray luminosity (Casares et al., 2014, Nature, 505, 378), indicating that BH Be HMXBs may exist but remain undetected by current surveys. However, since luminous supergiant BH HMXBs are known to exist (i.e. Cyg X-1), it is possible that some of the supergiant HMXBs discovered by INTEGRAL may host BHs. Therefore, we are trying to identify the nature of the compact objects in the IGR HMXBs by using NuSTAR and XMM-Newton to search for NS signatures in these systems: pulsations, cyclotron absorption lines, and exponential cutoffs with e-folding energies below ~20 keV. The absence of such features would make an HMXB an excellent black hole candidate. We present the spectral and timing properties of our first target, IGR J18214-1318.

  3. SIM Lite Detection of Habitable Planets in P-Type Binary-Planetary Systems

    NASA Technical Reports Server (NTRS)

    Pan, Xiaopei; Shao, Michael; Shaklan, Stuart; Goullioud, Renaud

    2010-01-01

    Close binary stars like spectroscopic binaries create a completely different environment than single stars for the evolution of a protoplanetary disk. Dynamical interactions between one star and protoplanets in such systems provide more challenges for theorists to model giant planet migration and formation of multiple planets. For habitable planets the majority of host stars are in binary star systems. So far only a small amount of Jupiter-size planets have been discovered in binary stars, whose minimum separations are 20 AU and the median value is about 1000 AU (because of difficulties in radial velocity measurements). The SIM Lite mission, a space-based astrometric observatory, has a unique capability to detect habitable planets in binary star systems. This work analyzed responses of the optical system to the field stop for companion stars and demonstrated that SIM Lite can observe exoplanets in visual binaries with small angular separations. In particular we investigated the issues for the search for terrestrial planets in P-type binary-planetary systems, where the planets move around both stars in a relatively distant orbit.

  4. Study of pulsations of chemically peculiar a stars

    NASA Astrophysics Data System (ADS)

    Sachkov, M. E.

    2014-01-01

    Rapidly oscillating chemically peculiar A stars (roAp) pulsate in high-overtone, low degree p-modes and form a sub-group of chemically peculiar magnetic A stars (Ap). Until recently, the classical asteroseismic research, i.e., frequency analysis, of these stars was based on photometric observations both ground-based and space-based. Significant progress has been achieved by obtaining uninterrupted, ultra-high precision data from the MOST, COROT, and Kepler satellites. Over the last ten years, a real breakthrough was achieved in the study of roAp stars due to the time-resolved, high spectral resolution spectroscopic observations. Unusual pulsational characteristics of these stars, caused by the interaction between propagating pulsationwaves and strong stratification of chemical elements, provide an opportunity to study the upper roAp star atmosphere in more detail than is possible for any star but the Sun, using spectroscopic data. In this paper the results of recent pulsation studies of these stars are reviewed.

  5. Truncation of the Binary Distribution Function in Globular Cluster Formation

    NASA Astrophysics Data System (ADS)

    Vesperini, E.; Chernoff, David F.

    1996-02-01

    We investigate a population of primordial binaries during the initial stage of evolution of a star cluster. For our calculations we assume that equal-mass stars form rapidly in a tidally truncated gas cloud, that ˜10% of the stars are in binaries, and that the resulting star cluster undergoes an epoch of violent relaxation. We study the collisional interaction of the binaries and single stars, in particular, the ionization of the binaries and the energy exchange between binaries and single stars. We find that for large N systems (N > 1000), even the most violent beginning leaves the binary distribution function largely intact. Hence, the binding energy originally tied up in the cloud's protostellar pairs is preserved during the relaxation process, and the binaries are available to interact at later times within the virialized cluster.

  6. Producing Runaway Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    How are the hypervelocity stars weve observed in our galaxy produced? A recent study suggests that these escapees could be accelerated by a massive black hole in the center of the Large Magellanic Cloud.A Black Hole SlingshotSince their discovery in 2005, weve observed dozens of candidate hypervelocity stars stars whose velocity in the rest frame of our galaxy exceeds the local escape velocity of the Milky Way. These stars present a huge puzzle: how did they attain these enormous velocities?One potential explanation is known as the Hills mechanism. In this process, a stellar binary is disrupted by a close encounter with a massive black hole (like those thought to reside at the center of every galaxy). One member of the binary is flung out of the system as a result of the close encounter, potentially reaching very large velocities.A star-forming region known as LHA 120-N 11, located within the LMC. Some binary star systems within the LMC might experience close encounters with a possible massive black hole at the LMCs center. [ESA/NASA/Hubble]Blame the LMC?Usually, discussions of the Hills mechanism assume that Sagittarius A*, the supermassive black hole at the center of the Milky Way, is the object guilty of accelerating the hypervelocity stars weve observed. But what if the culprit isnt Sgr A*, but a massive black hole at the center of the Large Magellanic Cloud (LMC), one of the Milky Ways satellite galaxies?Though we dont yet have evidence of a massive black hole at the center of the LMC, the dwarf galaxy is large enough to potentially host one as large as 100,000 solar masses. Assuming that it does, two scientists at the University of Cambridge, Douglas Boubert and Wyn Evans, have now modeled how this black hole might tear apart binary star systems and fling hypervelocity stars around the Milky Way.Models for AccelerationBoubert and Evans determined that the LMCs hypothetical black hole could easily eject stars at ~100 km/s, which is the escape velocity of the LMC. When this speed is combined with the orbital velocity of the LMC itself (another ~380 km/s relative to the Milky Way), this could result in hypervelocity stars moving faster than the escape speed of the Milky Way, as observed.Predicted distribution of hypervelocity stars ejected from the LMC, in galactic coordinates. The red crosses show locations of detected hypervelocity stars, and the green arrow marks the path of the LMC over the last 350 million years. [Boubert Evans 2016]If the LMC is indeed ejecting hypervelocity stars along its orbit, this could explain an observed anisotropy in the hypervelocity stars weve detected, with many of these stars clustering in the constellations of Leo and Sextans. This clustering is consistent with stars ejected ahead of the LMCs orbit.How can we test this model for the production of hypervelocity stars? The authors model predicts the presence of a significant number of hypervelocity stars near the LMC in the southern hemisphere, a region which has been poorly surveyed before now. Surveys such as SkyMapper and Gaia, however, will observe this region and their discoveries (or lack thereof) should provide a useful test of whether hypervelocity stars are accelerated by the LMC.CitationDouglas Boubert and N. Wyn Evans 2016 ApJ 825 L6. doi:10.3847/2041-8205/825/1/L6

  7. Binary neutron stars with arbitrary spins in numerical relativity

    NASA Astrophysics Data System (ADS)

    Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D.; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla

    2015-12-01

    We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasilocal angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of ˜2 ×10-4 . Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin and orbit precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ˜0.1 % . The neutron stars show quasinormal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  8. Large amplitude change in spot-induced rotational modulation of the Kepler Ap star KIC 2569073

    NASA Astrophysics Data System (ADS)

    Drury, Jason A.; Murphy, Simon J.; Derekas, Aliz; Sódor, Ádám; Stello, Dennis; Kuehn, Charles A.; Bedding, Timothy R.; Bognár, Zsófia; Szigeti, László; Szakáts, Róbert; Sárneczky, Krisztián; Molnár, László

    2017-11-01

    An investigation of the 200 × 200 pixel `superstamp' images of the centres of the open clusters NGC 6791 and NGC 6819 allows for the identification and study of many variable stars that were not included in the Kepler target list. KIC 2569073 (V = 14.22), is a particularly interesting variable Ap star that we discovered in the NGC 6791 superstamp. With a rotational period of 14.67 d and 0.034 mag variability, it has one of the largest peak-to-peak variations of any known Ap star. Colour photometry reveals an antiphase correlation between the B band, and the V, R and I bands. This Ap star is a rotational variable, also known as an α2 CVn star, and is one of only a handful of Ap stars observed by Kepler. While no change in spot period or amplitude is observed within the 4 yr Kepler time series, the amplitude shows a large increase compared to ground-based photometry obtained two decades ago.

  9. Hydrodynamical processes in coalescing binary stars

    NASA Astrophysics Data System (ADS)

    Lai, Dong

    1994-01-01

    Coalescing neutron star binaries are considered to be the most promising sources of gravitational waves that could be detected by the planned laser-interferometer LIGO/VIRGO detectors. Extracting gravity wave signals from noisy data requires accurate theoretical waveforms in the frequency range 10-1000 Hz end detailed understanding of the dynamics of the binary orbits. We investigate the quasi-equilibrium and dynamical tidal interactions in coalescing binary stars, with particular focus on binary neutron stars. We develop a new formalism to study the equilibrium and dynamics of fluid stars in binary systems. The stars are modeled as compressible ellipsoids, and satisfy polytropic equation of state. The hydrodynamic equations are reduced to a set of ordinary differential equations for the evolution of the principal axes and other global quantities. The equilibrium binary structure is determined by a set of algebraic equations. We consider both synchronized and nonsynchronized systems, obtaining the generalizations to compressible fluid of the classical results for the ellipsoidal binary configurations. Our method can be applied to a wide variety of astrophysical binary systems containing neutron stars, white dwarfs, main-sequence stars and planets. We find that both secular and dynamical instabilities can develop in close binaries. The quasi-static (secular) orbital evolution, as well as the dynamical evolution of binaries driven by viscous dissipation and gravitational radiation reaction are studied. The development of the dynamical instability accelerates the binary coalescence at small separation, leading to appreciable radial infall velocity near contact. We also study resonant excitations of g-mode oscillations in coalescing binary neutron stars. A resonance occurs when the frequency of the tidal driving force equals one of the intrinsic g-mode frequencies. Using realistic microscopic nuclear equations of state, we determine the g-modes in a cold neutron atar. Resonant excitations of these g-modes during the last few minutes of the binary coalescence result in energy transfer and angular momentum transfer from the binary orbit to the neutron star. Because of the weak coupling between the g-modes and the tidal potential, the induced orbital phase errors due to resonances are small. However, resonant excitations of the g-modes play an important role in the tidal heating of binary neutron stars.

  10. The incidence of stellar mergers and mass gainers among massive stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Mink, S. E.; Sana, H.; Langer, N.

    2014-02-10

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8{sub −4}{sup +9}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30{sub −15}{sup +10}% of massive main-sequence stars are the productsmore » of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.« less

  11. A ROSAT Survey of Contact Binary Stars

    NASA Astrophysics Data System (ADS)

    Geske, M. T.; Gettel, S. J.; McKay, T. A.

    2006-01-01

    Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.

  12. The Fate of Unstable Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    What happens to Tattooine-like planets that are instead in unstable orbits around their binary star system? A new study examines whether such planets will crash into a host star, get ejected from the system, or become captured into orbit around one of their hosts.Orbit Around a DuoAt this point we have unambiguously detected multiple circumbinary planets, raising questions about these planets formation and evolution. Current models suggest that it is unlikely that circumbinary planets would be able to form in the perturbed environment close their host stars. Instead, its thought that the planets formed at a distance and then migrated inwards.One danger such planets face when migrating is encountering ranges of radii where their orbits become unstable. Two scientists at the University of Chicago, Adam Sutherland and Daniel Fabrycky, have studied what happens when circumbinary planets migrate into such a region and develop unstable orbits.Producing Rogue PlanetsTime for planets to either be ejected or collide with one of the two stars, as a function of the planets starting distance (in AU) from the binary barycenter. Colors represent different planetary eccentricities. [Sutherland Fabrycky 2016]Sutherland and Fabrycky used N-body simulations to determine the fates of planets orbiting around a star system consisting of two stars a primary like our Sun and a secondary roughly a tenth of its size that are separated by 1 AU.The authors find that the most common fate for a circumbinary planet with an unstable orbit is ejection from the system; over 80% of unstable planets were ejected. This has interesting implications: if the formation of circumbinary planets is common, this mechanism could be filling the Milky Way with a population of free-floating, rogue planets that no longer are associated with their host star.The next most common outcome for unstable planets is collision with one of their host stars (most often the secondary), resulting inaccretion of the planet onto the star. Only rarely do unstable planets make it through the 10,000-yr integration without being removed from the system via ejection or collision.Tidal EffectsAs a final experiment, the authors also added the effects of tidal stripping, which occurs when the stars of the binary tear away some of the planets mass during close encounters. They found that this alters the orbit of the planets that have close encounters with one of the stars, making it slightly more likely that they can be captured around a star.How can we test these models? When a star tidally strips a planet or accretes a planet in a collision, this process leaves its mark on the star in the form of stellar pollution. By comparing the amount of planetary material in the two stars of a binary, it may be possible to confirm the rates predicted here thereby answering the question of what happens to unstable Tattooines.CitationAdam P. Sutherland and Daniel C. Fabrycky 2016 ApJ 818 6. doi:10.3847/0004-637X/818/1/6

  13. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2006-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars - compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.

  14. The Evolution of Compact Binary Star Systems.

    PubMed

    Postnov, Konstantin A; Yungelson, Lev R

    2014-01-01

    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Mergings of compact-star binaries are expected to be the most important sources for forthcoming gravitational-wave (GW) astronomy. In the first part of the review, we discuss observational manifestations of close binaries with NS and/or BH components and their merger rate, crucial points in the formation and evolution of compact stars in binary systems, including the treatment of the natal kicks, which NSs and BHs acquire during the core collapse of massive stars and the common envelope phase of binary evolution, which are most relevant to the merging rates of NS-NS, NS-BH and BH-BH binaries. The second part of the review is devoted mainly to the formation and evolution of binary WDs and their observational manifestations, including their role as progenitors of cosmologically-important thermonuclear SN Ia. We also consider AM CVn-stars, which are thought to be the best verification binary GW sources for future low-frequency GW space interferometers.

  15. Time-Series Monitoring of Open Star Clusters

    NASA Astrophysics Data System (ADS)

    Hojaev, A. S.; Semakov, D. G.

    2006-08-01

    Star clusters especially a compact ones (with diameter of few to ten arcmin) are suitable targets to search of light variability for orchestera of stars by means of ordinary Casegrain telescope plus CCD system. A special patroling with short time-fixed exposures and mmag accuracy could be used also to study of stellar oscillation for group of stars simultaneously. The last can be carried out both separately from one site and within international campaigns. Detection and study of optical variability of X-ray sources including X-ray binaries with compact objects might be as a result of a long-term monitoring of such clusters as well. We present the program of open star clusters monitoring with Zeiss 1 meter RCC telescope of Maidanak observatory has been recently automated. In combination with quite good seeing at this observatory (see, e.g., Sarazin, M. 1999, URL http://www.eso.org/gen-fac/pubs/astclim/) the automatic telescope equipped with large-format (2KX2K) CCD camera AP-10 available will allow to collect homogenious time-series for analysis. We already started this program in 2001 and had a set of patrol observations with Zeiss 0.6 meter telescope and AP-10 camera in 2003. 7 compact open clusters in the Milky Way (NGC 7801, King1, King 13, King18, King20, Berkeley 55, IC 4996) have been monitored for stellar variability and some results of photometry will be presented. A few interesting variables were discovered and dozens were suspected for variability to the moment in these clusters for the first time. We have made steps to join the Whole-Earth Telescope effort in its future campaigns.

  16. Frontiers of stellar evolution

    NASA Technical Reports Server (NTRS)

    Lambert, David L. (Editor)

    1991-01-01

    The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.

  17. The impact of IUE on binary star studies

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1981-01-01

    The use of IUE observations in the investigation of binary stars is discussed. The results of data analysis of several classes of binary systems are briefly reviewed including zeta Aurigae and VV Cephei stars, mu Sagittarii, epsilon Aurigae, beta Lyrae and the W Serpentis stars, symbiotic stars, and the Algols.

  18. Using binary statistics in Taurus-Auriga to distinguish between brown dwarf formation processes

    NASA Astrophysics Data System (ADS)

    Marks, M.; Martín, E. L.; Béjar, V. J. S.; Lodieu, N.; Kroupa, P.; Manjavacas, E.; Thies, I.; Rebolo López, R.; Velasco, S.

    2017-08-01

    Context. One of the key questions of the star formation problem is whether brown dwarfs (BDs) form in the manner of stars directly from the gravitational collapse of a molecular cloud core (star-like) or whether BDs and some very low-mass stars (VLMSs) constitute a separate population that forms alongside stars comparable to the population of planets, for example through circumstellar disk (peripheral) fragmentation. Aims: For young stars in Taurus-Auriga the binary fraction has been shown to be large with little dependence on primary mass above ≈ 0.2 M⊙, while for BDs the binary fraction is < 10%. Here we investigate a case in which BDs in Taurus formed dominantly, but not exclusively, through peripheral fragmentation, which naturally results in small binary fractions. The decline of the binary frequency in the transition region between star-like formation and peripheral formation is modelled. Methods: We employed a dynamical population synthesis model in which stellar binary formation is universal with a large binary fraction close to unity. Peripheral objects form separately in circumstellar disks with a distinctive initial mass function (IMF), their own orbital parameter distributions for binaries, and small binary fractions, according to observations and expectations from smoothed particle hydrodynamics (SPH) and grid-based computations. A small amount of dynamical processing of the stellar component was accounted for as appropriate for the low-density Taurus-Auriga embedded clusters. Results: The binary fraction declines strongly in the transition region between star-like and peripheral formation, exhibiting characteristic features. The location of these features and the steepness of this trend depend on the mass limits for star-like and peripheral formation. Such a trend might be unique to low density regions, such as Taurus, which host binary populations that are largely unprocessed dynamically in which the binary fraction is large for stars down to M-dwarfs and small for BDs. Conclusions: The existence of a strong decline in the binary fraction - primary mass diagram will become verifiable in future surveys on BD and VLMS binarity in the Taurus-Auriga star-forming region. The binary fraction - primary mass diagram is a diagnostic of the (non-)continuity of star formation along the mass scale, the separateness of the stellar and BD populations, and the dominant formation channel for BDs and BD binaries in regions of low stellar density hosting dynamically unprocessed populations.

  19. Commission 42: Close Binary Stars

    NASA Astrophysics Data System (ADS)

    Rucinski, Slavek M.; Ribas, Ignasi; Giménez, Alvaro; Harmanec, Petr; Hilditch, Ronald W.; Kaluzny, Janusz; Niarchos, Panayiotis; Nordström, Birgitta; Oláh, Katalin; Richards, Mercedes T.; Scarfe, Colin D.; Sion, Edward M.; Torres, Guillermo; Vrielmann, Sonja

    Two meetings of interest to close binaries took place during the reporting period: A full day session on short-period binary stars mostly CV's (Milone et al. 2008) during the 2006 AAS Spring meeting in Calgary and the very broadly designed IAU Symposium No. 240 on Binary Stars as Critical Tools and Tests in Contemporary Astrophysics in Prague, 2006, with many papers on close binaries [Hartkopf et al. 2007]. In addition, the book by Eggleton (2006), which is a comprehensive summary of evolutionary processes in binary and multiple stars, was published.

  20. Introduction & Overview to Symposium 240: Binary Stars as Critical Tools and Tests in Contemporary Astrophysics

    DTIC Science & Technology

    2006-01-01

    neutron stars and black holes properties of condensed matter Post CE Binaries V471 Tau (K2 V + wd) Symbiotic Binaries (M III + wd) X-ray Binaries CH...low-mass stars the respect they deserve, since these stars may be the dominant contributor to baryonic mass in the Universe. Ben Lane discussed recent

  1. BINARY CENTRAL STARS OF PLANETARY NEBULAE DISCOVERED THROUGH PHOTOMETRIC VARIABILITY. IV. THE CENTRAL STARS OF HaTr 4 AND Hf 2-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillwig, Todd C.; Schaub, S. C.; Bond, Howard E.

    We explore the photometrically variable central stars of the planetary nebulae HaTr 4 and Hf 2-2. Both have been classified as close binary star systems previously based on their light curves alone. Here, we present additional arguments and data confirming the identification of both as close binaries with an irradiated cool companion to the hot central star. We include updated light curves, orbital periods, and preliminary binary modeling for both systems. We also identify for the first time the central star of HaTr 4 as an eclipsing binary. Neither system has been well studied in the past, but we utilizemore » the small amount of existing data to limit possible binary parameters, including system inclination. These parameters are then compared to nebular parameters to further our knowledge of the relationship between binary central stars of planetary nebulae and nebular shaping and ejection.« less

  2. Flare Activity of Wide Binary Stars with Kepler

    NASA Astrophysics Data System (ADS)

    Clarke, Riley W.; Davenport, James R. A.; Covey, Kevin R.; Baranec, Christoph

    2018-01-01

    We present an analysis of flare activity in wide binary stars using a combination of value-added data sets from the NASA Kepler mission. The target list contains a set of previously discovered wide binary star systems identified by proper motions in the Kepler field. We cross-matched these systems with estimates of flare activity for ∼200,000 stars in the Kepler field, allowing us to compare relative flare luminosity between stars in coeval binaries. From a sample of 184 previously known wide binaries in the Kepler field, we find 58 with detectable flare activity in at least 1 component, 33 of which are similar in mass (q > 0.8). Of these 33 equal-mass binaries, the majority display similar (±1 dex) flare luminosity between both stars, as expected for stars of equal mass and age. However, we find two equal-mass pairs where the secondary (lower mass) star is more active than its counterpart, and two equal-mass pairs where the primary star is more active. The stellar rotation periods are also anomalously fast for stars with elevated flare activity. Pairs with discrepant rotation and activity qualitatively seem to have lower mass ratios. These outliers may be due to tidal spin-up, indicating these wide binaries could be hierarchical triple systems. We additionally present high-resolution adaptive optics images for two wide binary systems to test this hypothesis. The demographics of stellar rotation and magnetic activity between stars in wide binaries may be useful indicators for discerning the formation scenarios of these systems.

  3. An accessible echelle pipeline and its application to a binary star

    NASA Astrophysics Data System (ADS)

    Carmichael, Theron; Johnson, John Asher

    2018-01-01

    Nearly every star observed in the Galaxy has one or more companions that play an integral role in the evolution of the star. Whether it is a planet or another star, a companion opens up opportunities for unique forms of analysis to be done on a system. Some 2400 lightyears away, there is a 3-10 Myr old binary system called KH 15D, which not only includes two T Tauri K-type stars in a close orbit of 48 days, but also a truncated, coherently precessing warped disk in a circumbinary orbit.In binary systems, a double-lined spectroscopic binary may be observable in spectra. This is a spectrum that contains a mixture of each star's properties and manifests as two sets of spectral emission and absorption lines that correspond to each star. Slightly different is a single-lined spectroscopic binary, where only one set of spectral lines from one star is visible. The data of KH 15D are studied in the form of a double single-lined spectroscopic binary. This means that at two separate observing times, a single-lined spectroscopic binary is obtained from one of the stars of KH 15D. This is possible because of the circumbinary disk that blocks one star at a time from view.Here, we study this binary system with a combination of archival echelle data from the Keck Observatory and new echelle data from Las Campanas Observatory. This optical data is reduced with a new Python-based pipeline available on GitHub. The objective is to measure the mass function of the binary star and refine the current values of each star's properties.

  4. Efectos difusivos en la formación de enanas blancas de Helio de baja masa en sistemas binarios cerrados

    NASA Astrophysics Data System (ADS)

    De Vito, M. A.; Benvenuto, O. G.

    In the last years, and thanks to advances in observational techniques, many astronomers have discovered in a great number of binary radio-pulsars the presence of a helium white dwarf resulting from a previous evolutionary state in which the progenitor of this star experienced one or more episodes of mass transfer to the compact component in the pair. That is the case for PSR B1855+09 (van Kerkwijk, M. H., Bell, J. F, Kaspi, V. M., & Kulkarni, S. R. 2000, ApJ 530, L37), where the mass for the white dwarf is known accurately from measurements of the Shapiro delay of the pulsar signal, MWD = 0.258+0.028-0.016 M⊙; for PSR J02018 + 4232 (Bassa, C. G., van Kerkwijk, M. H., & Kulkarni, S. R. 2003, A&A, 403, 1067), the spectra confirm that the companion is a helium-core white dwarf of ≈ 0.2 M⊙. On the other hand, there are several authors (Ferraro, F., Possenti, A., Sabbi, E., & D'Amico, N. 2003, ApJ, 596, L211; Bassa et al. 2003) that have identified the optical binary companion to the BMSP PSR J1911 - 5958A, located in the halo of the Galactic globular cluster NGC 6752, like a blue star whose position in the color-magnitude diagram is consistent with the cooling sequence of a low-mass, ≈ 0.17 - 0.20 M⊙, low metallicity helium white dwarf at the cluster distance. Finally, the color and magnitude of the stellar companion for B 1620-26 indicate that is a white dwarf of 0.34 ± 0.04 M⊙ (Sigurdson, S., Richer, H. B., Hansen, B. M., Stairs, I. H. & Thorset, S. E. 2003, Science, 301, 193S). This has motivated us to study the formation of low mass helium white dwarfs in the context of binary evolution. For that purpose, using the code of binary evolution, entirely developed in the Facultad de Ciencias Astronómicas y Geofísicas of the Universidad Nacional de La Plata, Argentina, we have investigated the effects of diffusive processes on the evolution of a star member of a close binary system. A similar study was performed for Althaus, L. G., Serenelli, A. M., & Benvenuto, O. G. (2001, MNRAS, 323, 471) but in that paper the mass transfer was mimicked by subtracting mass to a progenitor of 1 M⊙ to obtain the mass for the desired object. Actually, our binary code has a full nuclear reactions network for hydrogen and helium burning that allowed us to follow the abundances of fifteen isotopes throughout the entire evolution of the star. We have also included a detailed equation of state. The mass loss treatment is non conservative. We have modified the conditions for the beginning and end of mass transfer episodes. In our previous version, we assumed it to occur when the stellar radius was greater or smaller, respectively, that the Roche Lobe radius for the star. This introduced numerical problems, especially at the end of mass transfer phases. We adopted H. Ritter (1988, A&A, 202, 93) formulation that considers a finite scale height in the stellar atmosphere. The numerical behaviour in much more satisfactory, besides that it constitutes a more appropriate description for the physical problem. We perform the calculations for the evolution of the primary star in a close binary system of initial mass 2 M⊙, initial period of 1 day, initial mass ratio of 1.4142 and solar metallicity. We have done the calculations in four cases: A) with diffusion and all Roche Lobe overflows, B) with diffusion and only the first Roche Lobe overflow, C) without diffusion and all Roche Lobe overflows, D) without diffusion and only the first Roche Lobe overflow. Cases B) and D) where performed to compare with results obtained for Althaus et al. (2001). The main conclusion of this work is that the age of these objects is mainly determined by diffusive effects, and the late stages of mass transfer, not considered in Althaus et al. (2001), constituted a minor effect on the scales of cooling times.

  5. VizieR Online Data Catalog: New IR photometric study of Ap and Am stars (Chen+, 2017)

    NASA Astrophysics Data System (ADS)

    Chen, P. S.; Liu, J. Y.; Shan, H. G.

    2018-05-01

    In the General Catalog of Ap and Am stars (Renson & Manfroid 2009, Cat. III/260) 8265 stars are included in which, as Renson & Manfroid (2009, Cat. III/260) described, only 426 stars are of the "well known confirmed sample". We take these 426 stars as our working sample. The cross-identifications of 2MASS/WISE counterparts for all Ap, Am, and HgMn stars listed in this paper are made from Cutri et al. (2012, Cat. II/311) by using the radius of 2 arcsec. All 426 Ap, Am, and HgMn stars have 2MASS and/or WISE counterparts, which are listed in Table 3. The cross-identifications of IRAS counterparts are made according to the positional error ellipse of the source, because it has a 95% confidence level (IRAS Explanatory Supplement, Beichman et al. 1988, Cat. II/274). Finally, 202 stars are found to have the IRAS counterparts from IRAS PSC/FSC, which is listed in Table 4. (5 data files).

  6. In what sense a neutron star-black hole binary is the holy grail for testing gravity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagchi, Manjari; Torres, Diego F., E-mail: manjari.bagchi@icts.res.in, E-mail: dtorres@ieec.uab.es

    2014-08-01

    Pulsars in binary systems have been very successful to test the validity of general relativity in the strong field regime [1-4]. So far, such binaries include neutron star-white dwarf (NS-WD) and neutron star-neutron star (NS-NS) systems. It is commonly believed that a neutron star-black hole (NS-BH) binary will be much superior for this purpose. But in what sense is this true? Does it apply to all possible deviations?.

  7. REJECTING PROPOSED DENSE MATTER EQUATIONS OF STATE WITH QUIESCENT LOW-MASS X-RAY BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillot, Sebastien; Rutledge, Robert E., E-mail: guillots@physics.mcgill.ca, E-mail: rutledge@physics.mcgill.ca

    2014-11-20

    Neutrons stars are unique laboratories for discriminating between the various proposed equations of state of matter at and above nuclear density. One sub-class of neutron stars—those inside quiescent low-mass X-ray binaries (qLMXBs)—produce a thermal surface emission from which the neutron star radius (R {sub NS}) can be measured, using the widely accepted observational scenario for qLMXBs, assuming unmagnetized H atmospheres. In a combined spectral analysis, this work first reproduces a previously published measurement of the R {sub NS}, assumed to be the same for all neutron stars, using a slightly expanded data set. The radius measured is R{sub NS}=9.4±1.2 km.more » On the basis of spectral analysis alone, this measured value is not affected by imposing an assumption of causality in the core. However, the assumptions underlying this R {sub NS} measurement would be falsified by the observation of any neutron star with a mass >2.6 M {sub ☉}, since radii <11 km would be rejected if causality is assumed, which would exclude most of the R {sub NS} parameter space obtained in this analysis. Finally, this work directly tests a selection of dense matter equations of state: WFF1, AP4, MPA1, PAL1, MS0, and three versions of equations of state produced through chiral effective theory. Two of those, MS0 and PAL1, are rejected at the 99% confidence level, accounting for all quantifiable uncertainties, while the other cannot be excluded at >99% certainty.« less

  8. Embedded binaries and their dense cores

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Stahler, Steven W.

    2017-08-01

    We explore the relationship between young, embedded binaries and their parent cores, using observations within the Perseus Molecular Cloud. We combine recently published Very Large Array observations of young stars with core properties obtained from Submillimetre Common-User Bolometer Array 2 observations at 850 μm. Most embedded binary systems are found towards the centres of their parent cores, although several systems have components closer to the core edge. Wide binaries, defined as those systems with physical separations greater than 500 au, show a tendency to be aligned with the long axes of their parent cores, whereas tight binaries show no preferred orientation. We test a number of simple, evolutionary models to account for the observed populations of Class 0 and I sources, both single and binary. In the model that best explains the observations, all stars form initially as wide binaries. These binaries either break up into separate stars or else shrink into tighter orbits. Under the assumption that both stars remain embedded following binary break-up, we find a total star formation rate of 168 Myr-1. Alternatively, one star may be ejected from the dense core due to binary break-up. This latter assumption results in a star formation rate of 247 Myr-1. Both production rates are in satisfactory agreement with current estimates from other studies of Perseus. Future observations should be able to distinguish between these two possibilities. If our model continues to provide a good fit to other star-forming regions, then the mass fraction of dense cores that becomes stars is double what is currently believed.

  9. Radio wavelength observations of magnetic fields on active dwarf M, RS CVn and magnetic stars

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1986-01-01

    The dwarf M stars, YZ Canis Minoris and AD Leonis, exhibit narrow-band, slowly varying (hours) microwave emission that cannot be explained by conventional thermal radiation mechanisms. The dwarf M stars, AD Leonis and Wolf 424, emit rapid spikes whose high brightness temperatures similarly require a nonthermal radiation process. They are attributed to coherent mechanisms such as an electron-cyclotron maser or coherent plasma radiation. If the electron-cyclotron maser emits at the second or third harmonic gyrofrequency, the coronal magnetic field strength equals 250 G or 167 G, and constraints on the plasma frequency imply an electron density of 6 x 10 to the 9th/cu cm. Radio spikes from AD Leonis and Wolf 424 have rise times less than or equal to 5 ms, indicating a linear size of less than or equal to 1.5 x 10 to the 8th cm, or less than 0.005 of the stellar radius. Although Ap magnetic stars have strong dipole magnetic fields, they exhibit no detectable gyroresonant radiation, suggesting that these stars do not have hot, dense coronae. The binary RS CVn star UX Arietis exhibits variable emission at 6 cm wavelength on time scales ranging from 30 s to more than one hour.

  10. Eclipsing binary stars with a δ Scuti component

    NASA Astrophysics Data System (ADS)

    Kahraman Aliçavuş, F.; Soydugan, E.; Smalley, B.; Kubát, J.

    2017-09-01

    Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin I, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin I of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin I and the filling factor have been found.

  11. Terrestrial Planet Formation Around Close Binary Stars

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets around close binary stars, using a new, ultrafast, symplectic integrator that we have developed for this purpose. The sum of the masses of the two stars is one solar mass, and the initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and in the Alpha Centauri wide binary star system. Giant planets &are included in the simulations, as they are in most simulations of the late stages of terrestrial planet accumulation in our Solar System. When the stars travel on a circular orbit with semimajor axis of up to 0.1 AU about their mutual center of mass, the planetary embryos grow into a system of terrestrial planets that is statistically identical to those formed about single stars, but a larger semimajor axis and/or a significantly eccentric binary orbit can lead to significantly more dynamically hot terrestrial planet systems.

  12. Binary Star Fractions from the LAMOST DR4

    NASA Astrophysics Data System (ADS)

    Tian, Zhi-Jia; Liu, Xiao-Wei; Yuan, Hai-Bo; Chen, Bing-Qiu; Xiang, Mao-Sheng; Huang, Yang; Wang, Chun; Zhang, Hua-Wei; Guo, Jin-Cheng; Ren, Juan-Juan; Huo, Zhi-Ying; Yang, Yong; Zhang, Meng; Bi, Shao-Lan; Yang, Wu-Ming; Liu, Kang; Zhang, Xian-Fei; Li, Tan-Da; Wu, Ya-Qian; Zhang, Jing-Hua

    2018-05-01

    Stellar systems composed of single, double, triple or higher-order systems are rightfully regarded as the fundamental building blocks of the Milky Way. Binary stars play an important role in formation and evolution of the Galaxy. Through comparing the radial velocity variations from multi-epoch observations, we analyze the binary fraction of dwarf stars observed with LAMOST. Effects of different model assumptions, such as orbital period distributions on the estimate of binary fractions, are investigated. The results based on log-normal distribution of orbital periods reproduce the previous complete analyses better than the power-law distribution. We find that the binary fraction increases with T eff and decreases with [Fe/H]. We first investigate the relation between α-elements and binary fraction in such a large sample as provided by LAMOST. The old stars with high [α/Fe] dominate with a higher binary fraction than young stars with low [α/Fe]. At the same mass, earlier forming stars possess a higher binary fraction than newly forming ones, which may be related with evolution of the Galaxy.

  13. Optical/Infrared properties of Be stars in X-ray Binary systems

    NASA Astrophysics Data System (ADS)

    Naik, Sachindra

    2018-04-01

    Be/X-ray binaries, consisting of a Be star and a compact object (neutron star), form the largest subclass of High Mass X-ray Binaries. The orbit of the compact object around the Be star is wide and highly eccentric. Neutron stars in the Be/X-ray binaries are generally quiescent in X-ray emission. Transient X-ray outbursts seen in these objects are thought to be due to the interaction between the compact object and the circumstellar disk of the Be star at the periastron passage. Optical/infrared observations of the companion Be star during these outbursts show that the increase in the X-ray intensity of the neutron star is coupled with the decrease in the optical/infrared flux of the companion star. Apart from the change in optical/infrared flux, dramatic changes in the Be star emission line profiles are also seen during X-ray outbursts. Observational evidences of changes in the emission line profiles and optical/infrared continuum flux along with associated X-ray outbursts from the neutron stars in several Be/X-ray binaries are presented in this paper.

  14. Fast transient X-rays from flare stars and RS CVn binaries

    NASA Astrophysics Data System (ADS)

    Rao, A. R.; Vahia, M. N.

    1987-12-01

    The authors have studied the fast transient X-ray (FTX) observations of the Ariel V satellite. They find that the FTX have characteristics very similar to the stellar flares detected in flare stars and RS CVn binaries by other satellites. It is found that, of the possible candidate objects, only the flare stars and RS CVn binaries can be associated with the Ariel V observations. 11 new flare stars and RS CVn binaries are associated with the FTX. This brings the total number of identifications with the flare stars and RS CVn binaries to 17. The authors further study the flare properties and correlate the peak X-ray luminosity of these Ariel V sources with the bolometric luminosity of the candidate stars. They discuss a solar flare model and show that the observed correlation can be explained under the assumption of constant temperature loops of binary sizes.

  15. Magnetic activity of red secondaries: clues from the outburst cycle variations of dwarf novae

    NASA Astrophysics Data System (ADS)

    Chinarova, L. L.

    Photometric variations of 6 dwarf novae stars are studied based on the photographic observations from the Odessa, Moscow and Sonneberg plate collections and published visual monitoring data from the AFOEV database (Schweitzer E.: 1993, Bull. AFOEV, 64, 14). The moments of maxima are determined by using the "running parabola" fit (Andronov I.L., 1990, Kinematika Fizika Nebesn. Tel., v.6,,N 6, 87) with automatically determined filter half-width (Andronov I.L., 1997, As.Ap. Suppl., in press). All investigated stars exhibit significant changes not only from cycle-to-cycle, but from season-to-season as well. Secondary decade-scale cycles of smooth variations (Bianchini A., 1990, AJ 99, 1941) and abrupt switchings (Andronov I.L., Shakun L.I., 1990, ASS 169, 237) were interpreted by a solar-type activity of the red dwarf secondary in a binary system and may argue for existence of two different subgroups of the dwarf novae.

  16. Analysis of stratification of Cr with depth in the atmospheres of normal and CP stars.

    NASA Astrophysics Data System (ADS)

    Savanov, I. S.

    We present the results of analysis of stratification of Cr with depth in the atmospheres of normal, Am, HgMn and Ap stars. On the base of high resolution CCD-spectrograms obtained with spectrograph of 2.6-meter Shajn reflector using synthetic spectrum technique analysis of eight Cr II lines (30 multiplet) located in the wings of Hb Hydrogen line. For all investigated Am stars as well as for HgMn components of 46 Dra we suspect the similar small increase of Cr abundance in the upper atmosphere. For the hot spotted Ap stars α2 CVn and 17 Com we do not find evidence for the inhomogeneity distribution of Chromium while for the group of cool Ap stars (β CrB, HR 7575, 10 Aql and γ Equ) the increase of Cr abundance with depth was found. Detailed modelling of Cr II line profiles was performed in order to obtain vertical distributions of this element in the atmospheres of several Ap and Am stars. Our results for cool Ap stars were compared with vertical Cr distribution calculated by J.Babel using the diffusion theory and magnetically confined wind for Ap star 53 Cam (e.g. Astronomy and Astrophysics, v.258, p.449-463, 1992). It was shown that our observational material cannot be interpreted using hypothesis of depth-dependent microturbulent velocity. While the investigation of β CrB we demonstrate that obtained results insignificantly depend upon the uncertainties of the parameters of models of atmospheres.

  17. New spectroscopic binary companions of giant stars and updated metallicity distribution for binary systems

    NASA Astrophysics Data System (ADS)

    Bluhm, P.; Jones, M. I.; Vanzi, L.; Soto, M. G.; Vos, J.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Olivares, F.; Mennickent, R. E.; Vučković, M.; Rojo, P.; Melo, C. H. F.

    2016-10-01

    We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions. The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between ~97-1600 days and eccentricities of between ~0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a different formation mechanism than planets. This result is confirmed by recent works showing that extrasolar planets orbiting giants are more frequent around metal-rich stars. Finally, we investigate the eccentricity as a function of the orbital period. We analyzed a total of 130 spectroscopic binaries, including those presented here and systems from the literature. We find that most of the binary stars with periods ≲30 days have circular orbits, while at longer orbital periods we observe a wide spread in their eccentricities. Based on observations collected at La Silla - Paranal Observatory under programs IDs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345, 096.A-9020 and through the Chilean Telescope Time under programs IDs CN2012A-73, CN2012B-47, CN2013A-111, CN2013B-51, CN2014A-52 and CN2015A-48.

  18. Formation and Evolution of X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Shao, Y.

    2017-07-01

    X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period-donor mass plane increases with the increasing neutron star mass. This may help to explain why some millisecond pulsars with orbital periods longer than ˜ 60 d seem to have less massive white dwarfs than expected. Alternatively, some of these wide binary pulsars may be formed through mass transfer driven by planet/brown dwarf-involved common envelope evolution; (2) Some of the pulsars in compact binaries might have evolved from intermediate-mass X-ray binaries with an anomalous magnetic braking; (3) The equilibrium spin periods of neutron stars in low-mass X-ray binaries are in general shorter than the observed spin periods of binary pulsars by more than one order of magnitude, suggesting that either the simple equilibrium spin model does not apply, or there are other mechanisms/processes spinning down the neutron stars. In Chapter 4, angular momentum loss mechanisms in the cataclysmic variables below the period gap are presented. By considering several kinds of consequential angular momentum loss mechanisms, we find that neither isotropic wind from the white dwarf nor outflow from the L1 point can explain the extra angular momentum loss rate, while an ouflow from the L2 point or a circumbinary disk can effectively extract the angular momentum provided that ˜ 15%-45% of the transferred mass is lost from the binary. A more promising mechanism is a circumbinary disk exerting a gravitational torque on the binary. In this case the mass loss fraction can be as low as ≲ 10-3. In Chapter 5 we present a study on the population of ultraluminous X-ray sources with an accreting neutron star. Most ULXs are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized neutron star. In this chapter we model the formation history of neutron star ULXs in an M82- or Milky Way-like galaxy, by use of both binary population synthesis and detailed binary evolution calculations. We find that the birthrate is around 10-4 yr-1 for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass - orbital period plane. Our results suggest that, compared with black hole X-ray binaries, neutron star X-ray binaries may significantly contribute to the ULX population, and high/intermediate-mass X-ray binaries dominate the neutron star ULX population in M82/Milky Way-like galaxies, respectively. In Chapter 6, the population of intermediate- and low-mass X-ray binaries in the Galaxy is explored. We investigate the formation and evolutionary sequences of Galactic intermediate- and low-mass X-ray binaries by combining binary population synthesis (BPS) and detailed stellar evolutionary calculations. Using an updated BPS code we compute the evolution of massive binaries that leads to the formation of incipient I/LMXBs, and present their distribution in the initial donor mass vs. initial orbital period diagram. We then follow the evolution of I/LMXBs until the formation of binary millisecond pulsars (BMSPs). We show that during the evolution of I/LMXBs they are likely to be observed as relatively compact binaries. The resultant BMSPs have orbital periods ranging from about 1 day to a few hundred days. These features are consistent with observations of LMXBs and BMSPs. We also confirm the discrepancies between theoretical predictions and observations mentioned in the literature, that is, the theoretical average mass transfer rates of LMXBs are considerably lower than observed, and the number of BMSPs with orbital periods ˜ 0.1-1 \\unit{d} is severely underestimated. Both imply that something is missing in the modeling of LMXBs, which is likely to be related to the mechanisms of the orbital angular momentum loss. Finally in Chapter 7 we summarize our results and give the prospects for the future work.

  19. Eclipsing and density effects on the spectral behavior of Beta Lyrae binary system in the UV

    NASA Astrophysics Data System (ADS)

    Sanad, M. R.

    2010-01-01

    We analyze both long and short high resolution ultraviolet spectrum of Beta Lyrae eclipsing binary system observed with the International Ultraviolet Explorer (IUE) between 1980 and 1989. The main spectral features are P Cygni profiles originating from different environments of Beta Lyrae. A set of 23 Mg II k&h spectral lines at 2800 Å, originating from the extended envelope [Hack, M., 1980. IAUS, 88, 271H], have been identified and measured to determine their fluxes and widths. We found that there is spectral variability for these physical parameters with phase, similar to that found for the light curve [Kondo, Y., McCluskey, G.E., Jeffery, M.M.S., Ronald, S.P., Carolina, P.S. McCluskey, Joel, A.E., 1994. ApJ, 421, 787], which we attribute to the eclipse effects [Ak, H., Chadima, P., Harmanec, P., Demircan, O., Yang, S., Koubský, P., Škoda, P., Šlechta, M., Wolf, M., Božić, H., 2007. A&A, 463, 233], in addition to the changes of density and temperature of the region from which these lines are coming, as a result of the variability of mass loss from the primary star to the secondary [Hoffman, J.L., Nordsieck, K.H., Fox, G.K., 1998. AJ, 115, 1576; Linnell, A.P., Hubeny, I., Harmanec, P., 1998. ApJ, 509, 379]. Also we present a study of Fe II spectral line at 2600 Å, originating from the atmosphere of the primary star [Hack, M., 1980. IAUS, 88, 271H]. We found spectral variability of line fluxes and line widths with phase similar to that found for Mg II k&h lines. Finally we present a study of Si IV spectral line at 1394 Å, originating from the extended envelope [Hack, M., 1980. IAUS, 88, 271H]. A set of 52 Si IV spectral line at 1394 Å have been identified and measured to determine their fluxes and widths. Also we found spectral variability of these physical parameters with phase similar to that found for Mg II k&h and Fe II spectral lines.

  20. r-Process Nucleosynthesis in the Early Universe Through Fast Mergers of Compact Binaries in Triple Systems

    NASA Astrophysics Data System (ADS)

    Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman

    2018-05-01

    Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] < -3), possibly within the first 108 yr after the formation of the first stars. Possible loci of early-Universe r-process nucleosynthesis are the ejecta of either black hole-neutron star or neutron star-neutron star binary mergers. Here, we study the effect of the inclination-eccentricity oscillations raised by a tertiary (e.g. a star) on the coalescence time-scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.

  1. Suppressed phase variations in a high amplitude rapidly oscillating Ap star pulsating in a distorted quadrupole mode

    NASA Astrophysics Data System (ADS)

    Holdsworth, Daniel L.; Saio, H.; Bowman, D. M.; Kurtz, D. W.; Sefako, R. R.; Joyce, M.; Lambert, T.; Smalley, B.

    2018-05-01

    We present the results of a multisite photometric observing campaign on the rapidly oscillating Ap (roAp) star 2MASS 16400299-0737293 (J1640; V = 12.7). We analyse photometric B data to show the star pulsates at a frequency of 151.93 d-1 (1758.45 μHz; P = 9.5 min) with a peak-to-peak amplitude of 20.68 mmag, making it one of the highest amplitude roAp stars. No further pulsation modes are detected. The stellar rotation period is measured at 3.674 7 ± 0.000 5 d, and we show that rotational modulation due to spots is in antiphase between broad-band and B observations. Analysis and modelling of the pulsation reveals this star to be pulsating in a distorted quadrupole mode, but with a strong spherically symmetric component. The pulsational phase variation in this star is suppressed, leading to the conclusion that the contribution of ℓ > 2 components dictate the shape of phase variations in roAp stars that pulsate in quadrupole modes. This is only the fourth time such a strong pulsation phase suppression has been observed, leading us to question the mechanisms at work in these stars. We classify J1640 as an A7 Vp SrEu(Cr) star through analysis of classification resolution spectra.

  2. Photometric and Spectroscopic Analysis for the Determination of Physical Parameters of an Eclipsing Binary Star System

    NASA Astrophysics Data System (ADS)

    Reid, Piper

    2013-01-01

    A binary star system is a pair of stars that are bound together by gravity. Most of the stars that we see in the night sky are members of multiple star systems. A system of stars where one star passes in front of the other (as observed from Earth) on a periodic basis is called an eclipsing binary. Eclipsing binaries can have very short rotational periods and in all cases these pairs of stars are so far away that they can only be resolved from Earth as a single point of light. The interaction of the two stars serves to produce physical phenomena that can be observed and used to study stellar properties. By careful data collection and analysis is it possible for an amateur astronomer using commercial, low cost equipment (including a home built spectroscope) to gather photometric (brightness versus time) and spectroscopic (brightness versus wavelength) data, analyze the data, and calculate the physical properties of a binary star system? Using a CCD camera, tracking mount and telescope photometric data of BB Pegasi was collected and a light curve produced. 57 Cygni was also studied using a spectroscope, tracking mount and telescope to prove that Doppler shift of Hydrogen Balmer absorption lines can be used to determine radial velocity. The orbital period, orbital velocity, radius of each star, separation of the two stars and mass of each star was calculated for the eclipsing binary BB Pegasi using photometric and spectroscopic data and Kepler’s 3rd Law. These data were then compared to published data. By careful use of consumer grade astronomical equipment it is possible for an amateur astronomer to determine an array of physical parameters of a distant binary star system from a suburban setting.

  3. Backyard Telescopes Watch an Expanding Binary

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-01-01

    What can you do with a team of people armed with backyard telescopes and a decade of patience? Test how binary star systems evolve under Einsteins general theory of relativity!Unusual VariablesCataclysmic variables irregularly brightening binary stars consisting of an accreting white dwarf and a donor star are a favorite target among amateur astronomers: theyre detectable even with small telescopes, and theres a lot we can learn about stellar astrophysics by observing them, if were patient.Diagram of a cataclysmic variable. In an AM CVn, the donor is most likely a white dwarf as well, or a low-mass helium star. [Philip D. Hall]Among the large family of cataclysmic variables is one unusual type: the extremely short-period AM Canum Venaticorum (AM CVn) stars. These rare variables (only 40 are known) are unique in having spectra dominated by helium, suggesting that they contain little or no hydrogen. Because of this, scientists have speculated that the donor stars in these systems are either white dwarfs themselves or very low-mass helium stars.Why study AM CVn stars? Because their unusual configuration allows us to predict the behavior of their orbital evolution. According to the general theory of relativity, the two components of an AM CVn will spiral closer and closer as the system loses angular momentum to gravitational-wave emission. Eventually they will get so close that the low-mass companion star overflows its Roche lobe, beginning mass transfer to the white dwarf. At this point, the orbital evolution will reverse and the binary orbit will expand, increasing its period.CBA member Enrique de Miguel, lead author on the study, with his backyard telescope in Huelva, Spain. [Enrique de Miguel]Backyard Astronomy Hard at WorkMeasuring the evolution of an AM CVns orbital period is the best way to confirm this model, but this is no simple task! To observe this evolution, we first need a system with a period that can be very precisely measured best achieved with an eclipsing binary system. Then the system must be observed regularly over a very long period of time.Though such a feat is challenging, a team of astronomers has done precisely this. The Center for Backyard Astrophysics (CBA) a group of primarily amateur astronomers located around the world has collectively observed the AM CVn star system ES Ceti using seven different telescopes over more than a decade. In total, they now have measurements of ES Cetis period spanning 20012017. Now, in a publication led by Enrique de Miguel (CBA-Huelva and University of Huelva, Spain), the group details the outcomes of their patience.Testing the ModelThis OC diagram of the timings of minimum light relative to a test ephemeris demonstrates that ES Cetis orbital period is steadily increasing over time. [de Miguel et al. 2017]De Miguel and collaborators find that ES Cetis 10.3-minute orbital period has indeed increased over time as predicted by the model at a relatively rapid rate: the timescale for change, described by P/(dP/dt), is 10 million years. This outcome is consistent with the hypothesis that the mass transfer and binary evolution of such systems is driven by gravitational radiation marking one of the first such demonstrations with a cataclysmic variable.Whats next for ES Ceti? Systems such as this one will make for interesting targets for the Laser Interferometer Space Antenna (LISA; planned for a 2034 launch). The gravitational radiation emitted by AM CVns like ES Ceti should be strong enough and in the right frequency range to be detected by LISA, providing another test of our models for how these star systems evolve.CitationEnrique de Miguel et al 2018 ApJ 852 19. doi:10.3847/1538-4357/aa9ed6

  4. Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's Sixth Science Run and Virgo's Science Runs 2 and 3

    NASA Technical Reports Server (NTRS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; hide

    2012-01-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20. 2010. We searched for signals from binaries with total mass between 2 and 25 Stellar Mass; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass. including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3 x 10(exp -4), 3.1 x 10(exp -5), and 6.4 x 10(exp -6)/cu Mpc/yr, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  5. Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Affeldt, C.; Agathos, M.; Ajith, P.; Allen, B.; Allen, G. S.; Amador Ceron, E.; Amariutei, D.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Arain, M. A.; Araya, M. C.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Barker, D.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Beker, M. G.; Bell, A. S.; Belletoile, A.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brummit, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannizzo, J.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chaibi, O.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; del Prete, M.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; DiGuglielmo, J.; Donovan, F.; Dooley, K. L.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Farr, W.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Flanigan, M.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P. J.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Ganija, M. R.; Garcia, J.; Garofoli, J. A.; Garufi, F.; Gáspár, M. E.; Gemme, G.; Geng, R.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Gray, N.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Ha, T.; Hage, B.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kamaretsos, I.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B.; Kim, C.; Kim, D.; Kim, H.; Kim, K.; Kim, N.; Kim, Y.-M.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, R.; Kwee, P.; Lam, P. K.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. M.; Leindecker, N.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Liguori, N.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Luan, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marandi, A.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menendez, D.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Moe, B.; Moesta, P.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Nawrodt, R.; Necula, V.; Nelson, J.; Newton, G.; Nishizawa, A.; Nocera, F.; Nolting, D.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Peiris, P.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Phelps, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C. R.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Redwine, K.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Ryll, H.; Sainathan, P.; Sakosky, M.; Salemi, F.; Samblowski, A.; Sammut, L.; Sancho de la Jordana, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schlamminger, S.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Smith, R. J. E.; Somiya, K.; Sorazu, B.; Soto, J.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Stein, A. J.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Tseng, K.; Tucker, E.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, X.; Wang, Z.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, H. R.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yu, P.; Yvert, M.; Zadroźny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhang, W.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2012-04-01

    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10-4, 3.1×10-5, and 6.4×10-6Mpc-3yr-1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge.

  6. Pulsation in Chemically Peculiar Stars

    NASA Astrophysics Data System (ADS)

    Sachkov, M.

    2015-04-01

    Chemically peculiar stars offer the opportunity to study the interaction of strong magnetic fields, rotation, and pulsation. The rapidly oscillating chemically peculiar A stars (roAp) are a subgroup of the chemically peculiar magnetic A stars. They are high-overtone, low-degree p-mode pulsators. Until recently, the classical asteroseismic analysis, i.e., frequency analysis, of these stars was based on ground and space photometric observations. Significant progress was achieved through the access to the uninterrupted, ultra-high-precision data from the MOST, COROT, and Kepler satellites. Over the last ten years, the studies of roAp stars have been altered drastically from the observational point of view through the usage of time-resolved, high-resolution spectra. Their unusual pulsation characteristics, caused by the interplay between short vertical lengths of pulsation waves and strong stratification of chemical elements, allow us to examine the upper roAp atmosphere in more detail than is possible for any star except the Sun. In this paper a review of the results of recent studies of the pulsations of roAp stars is presented.

  7. Binary statistics among population II stars

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.; Köhler, R.; Jahreiß, H.

    2004-08-01

    Population II stars are old, metal-poor, Galactic halo stars with high proper motion. We have carried out a visual binary survey of 164 halo stars in the solar neighborhood (median distance 100 pc), using infrared speckle interferometry, adaptive optics, and wide field direct imaging. The sample is based on the lists of Population II stars of Carney et al. (1994) and Norris (1986), with reliable distances from HIPPARCOS measurements. At face value, we found 33 binaries, 6 triples, and 1 quadruple system. When we limit ourselves to K-band flux ratios larger than 0.1 (to avoid background contamination), the numbers drop to 9 binaries and 1 triple, corresponding to a binary frequency of 6 - 7 % above our angular resolution limit of about 0.1 arcsec. If we count all systems with K-band flux ratios greater than 0.01, we obtain 15 more binaries and 3 more triples, corresponding to a binary frequency for projected separations in excess of 10 AU of around 20 %. This is to be compared with the frequency of spectroscopic binaries (up to a period of 3000 days) of Population II stars of about 15 % (Latham et al. 2002). We also determined a semi-major axis distribution for our visual Population II binary and triple systems, which appears to be remarkably different from that of Population I stars. Second epoch-observations must help confirm the reality of our results.

  8. KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gies, D. R.; Matson, R. A.; Guo, Z.

    2015-12-15

    Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars amongmore » this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.« less

  9. Chemical Evolution of Binary Stars

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.

    2013-02-01

    Energy generation by nuclear fusion is the fundamental process that prevents stars from collapsing under their own gravity. Fusion in the core of a star converts hydrogen to heavier elements from helium to uranium. The signature of this nucleosynthesis is often visible in a single star only for a very short time, for example while the star is a red giant or, in massive stars, when it explodes. Contrarily, in a binary system nuclear-processed matter can captured by a secondary star which remains chemically polluted long after its more massive companion star has evolved and died. By probing old, low-mass stars we gain vital insight into the complex nucleosynthesis that occurred when our Galaxy was much younger than it is today. Stellar evolution itself is also affected by the presence of a companion star. Thermonuclear novae and type Ia supernovae result from mass transfer in binary stars, but big questions still surround the nature of their progenitors. Stars may even merge and one of the challenges for the future of stellar astrophysics is to quantitatively understand what happens in such extreme systems. Binary stars offer unique insights into stellar, galactic and extragalactic astrophysics through their plethora of exciting phenomena. Understanding the chemical evolution of binary stars is thus of high priority in modern astrophysics.

  10. Orbital Circularization of Hot and Cool Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Van Eylen, Vincent; Winn, Joshua N.; Albrecht, Simon

    2016-06-01

    The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler. This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of the primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot-hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot-hot binaries, but not for hot-cool or cool-cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.

  11. ORBITAL CIRCULARIZATION OF HOT AND COOL KEPLER ECLIPSING BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eylen, Vincent Van; Albrecht, Simon; Winn, Joshua N., E-mail: vincent@phys.au.dk

    The rate of tidal circularization is predicted to be faster for relatively cool stars with convective outer layers, compared to hotter stars with radiative outer layers. Observing this effect is challenging because it requires large and well-characterized samples that include both hot and cool stars. Here we seek evidence of the predicted dependence of circularization upon stellar type, using a sample of 945 eclipsing binaries observed by Kepler . This sample complements earlier studies of this effect, which employed smaller samples of better-characterized stars. For each Kepler binary we measure e cos ω based on the relative timing of themore » primary and secondary eclipses. We examine the distribution of e cos ω as a function of period for binaries composed of hot stars, cool stars, and mixtures of the two types. At the shortest periods, hot–hot binaries are most likely to be eccentric; for periods shorter than four days, significant eccentricities occur frequently for hot–hot binaries, but not for hot–cool or cool–cool binaries. This is in qualitative agreement with theoretical expectations based on the slower dissipation rates of hot stars. However, the interpretation of our results is complicated by the largely unknown ages and evolutionary states of the stars in our sample.« less

  12. The Solar-Type Hard-Binary Frequency and Distributions of Orbital Parameters in the Open Cluster M37

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Meibom, Soren; Barnes, Sydney A.; Mathieu, Robert D.

    2014-02-01

    Binary stars, and particularly the short-period ``hard'' binaries, govern the dynamical evolution of star clusters and determine the formation rates and mechanisms for exotic stars like blue stragglers and X-ray sources. Understanding the near-primordial hard-binary population of star clusters is of primary importance for dynamical models of star clusters, which have the potential to greatly advance our understanding of star cluster evolution. Yet the binary frequencies and distributions of binary orbital parameters (period, eccentricity, etc.) for young coeval stellar populations are poorly known, due to a lack of necessary observations. The young (~540 Myr) open cluster M37 hosts a rich binary population that can be used to empirically define these initial conditions. Importantly, this cluster has been the target of a comprehensive WIYN/Hydra radial-velocity (RV) survey, from which we have already identified a nearly complete sample of 329 solar-type (1.5 <=M [M_⊙] <=1.0) members in M37. Of these stars, 82 show significant RV variability, indicative of a binary companion. We propose to build upon these data with a multi-epoch RV survey using WIYN/Hydra to derive kinematic orbital solutions for these 82 binaries in M37. This project was granted time in 2013B and scheduled for later this year. We anticipate that about half of the detected binaries in M37 will acquire enough RV measurements (>=10) in 2013B to begin searching for orbital solutions. With this proposal and perhaps one additional semester we should achieve >=10 RV measurements for the remaining binaries.

  13. Very massive runaway stars from three-body encounters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia

    2011-01-01

    Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.

  14. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  15. Habitability in Binary Systems: The Role of UV Reduction and Magnetic Protection

    NASA Astrophysics Data System (ADS)

    Clark, Joni; Mason, P. A.; Zuluaga, J. I.; Cuartas, P. A.; Bustamonte, S.

    2013-06-01

    The number of planets found in binary systems is growing rapidly and the discovery of many more planets in binary systems appears inevitable. We use the newly refined and more restrictive, single star habitable zone (HZ) models of Kopparapu et al. (2013) and include planetary magnetic protection calculations in order to investigate binary star habitability. Here we present results on circumstellar or S-type planets, which are planets orbiting a single star member of a binary. P-type planets, on the other hand, orbit the center of mass of the binary. Stable planetary orbits exist in HZs for both types of binaries as long as the semi-major axis of the planet is either greater than (P-type) or less than (S-type) a few times the semi-major axis of the binary. We define two types of S-type binaries for this investigation. The SA-type is a circumstellar planet orbiting the binary’s primary star. In this case, the limits of habitability are dominated by the primary being only slightly affected by the presence of the lower mass companion. Thus, the SA-type planets have habitability characteristics, including magnetic protection, similar to single stars of the same type. The SB-type is a circumstellar planet orbiting the secondary star in a wide binary. An SB-type planet needs to orbit slightly outside the secondary’s single star HZ and remain within the primary’s single star HZ at all times. We explore the parameter space for which this is possible. We have found that planets lying in the combined HZ of SB binaries can be magnetically protected against the effects of stellar winds from both primary and secondary stars in a limited number of cases. We conclude that habitable conditions exist for a subset of SA-type, and a smaller subset of SB-type binaries. However, circumbinary planets (P-types) provide the most intriguing possibilities for the existence of complex life due to the effect of synchronization of binaries with periods in the 20-30 day range which allows for planets with significant magnetic protection.

  16. The multiplicity of T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius: A 2.2 micron speckle imaging survey

    NASA Technical Reports Server (NTRS)

    Ghez, A. M.; Neugebauer, G.; Matthews, K.

    1993-01-01

    We present the results of a magnitude limited (K less than = 8.5 mag) speckle imaging survey of 69 T Tauri stars in the star forming regions Taurus-Auriga and Ophiuchus-Scorpius. Thirty-three companion stars were found with separations ranging from 0.07 sec to 2.5 sec, nine are new detections. This survey reveals a distinction between the classical T Tauri stars (CTTS) and the weak-lined T Tauri stars (WTTS) based on the binary star frequency as a function of separation: the WTTS binary star distribution is enhanced at the closer separations (less than 50 AU) relative to the CTTS binary star distribution. We suggest that the nearby companion stars shorten the accretion time scale in multiple star systems, thereby accounting for the presence of WTTS that are coeval with many CTTS. The binary star frequency in the projected linear separation range 16 to 252 AU for T Tauri stars (60 (+/- 17)%) is a factor of 4 greater than that of the solar-type main-sequence stars (16(+/- 3)%). Given the limited separation range of this survey, the rate at which binaries are detected suggests that most, if not all, T Tauri stars have companions. We propose that the observed overabundance of companions of T Tauri stars is an evolutionary effect, in which triple and higher order T Tauri stars are disrupted by close encounters with another star or system of stars.

  17. Finding binaries from phase modulation of pulsating stars with Kepler

    NASA Astrophysics Data System (ADS)

    Shibahashi, Hiromoto; Murphy, Simon; Bedding, Tim

    2017-09-01

    Binary orbital motion causes a periodic variation in the path length travelled by light emitted from a star towards us. Hence, if the star is pulsating, the observed phase of the pulsation varies over the orbit. Conversely, once we have observed such phase variation, we can extract information about the binary orbit from photometry alone. Continuous and precise space-based photometry has made it possible to measure these light travel time effects on the pulsating stars in binary systems. This opens up a new way of finding unseen brown dwarfs, planets, or massive compact stellar remnants: neutron stars and black holes.

  18. The Connection Between X-ray Binaries and Star Clusters in the Antennae

    NASA Astrophysics Data System (ADS)

    Rangelov, Blagoy; Chandar, R.; Prestwich, A.

    2011-05-01

    High Mass X-ray Binaries (HMXBs) are believed to form in massive, compact star clusters. However the correlation between these young binary star systems and properties of their parent clusters are still poorly known. We compare the locations of 82 X-ray binaries detected in the merging Antennae galaxies by Zezas et al. (2006) based on observations taken with the Chandra Space Telescope, with a catalog of optically selected star clusters presented recently by Whitmore et al. (2010) based on observations taken with the Hubble Space Telescope. We find 22 X-ray binaries coincident or nearly coincident with star clusters. The ages of the clusters were estimated by comparing their UBVIHα colors with predictions from stellar evolutionary models. We find that 14 of the 22 coincident sources (64%) are hosted by star clusters with ages of 6 Myr or less. At these very young ages, only stars initially more massive than M ≥ 30 Msun have evolved into compact remnants, almost certainly black holes. Therefore, these 14 sources are likely to be black hole binaries. Five of the XRBs are hosted by young clusters with ages τ 30-50 Myr, while three are hosted by intermediate age clusters with τ 100-300 Myr. We suggest that these older X-ray binaries likely have neutron stars as the compact object. We conclude that precision age-dating of star clusters, which are spatially coincident with XRBs in nearby star forming galaxies, is a powerful method of constraining the nature of the XRBs.

  19. Binary Neutron Stars with Arbitrary Spins in Numerical Relativity

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Harald; Tacik, Nick; Foucart, Francois; Haas, Roland; Kaplan, Jeffrey; Muhlberger, Curran; Duez, Matt; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    We present a code to construct initial data for binary neutron star where the stars are rotating. Our code, based on the formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ~ 0 . 1 % . Preliminary evolutions show that spin- and orbit-precession of Neutron stars is well described by post-Newtonian approximation. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.

  20. Emission-line diagnostics of nearby H II regions including interacting binary populations

    NASA Astrophysics Data System (ADS)

    Xiao, Lin; Stanway, Elizabeth R.; Eldridge, J. J.

    2018-06-01

    We present numerical models of the nebular emission from H II regions around young stellar populations over a range of compositions and ages. The synthetic stellar populations include both single stars and interacting binary stars. We compare these models to the observed emission lines of 254 H II regions of 13 nearby spiral galaxies and 21 dwarf galaxies drawn from archival data. The models are created using the combination of the BPASS (Binary Population and Spectral Synthesis) code with the photoionization code CLOUDY to study the differences caused by the inclusion of interacting binary stars in the stellar population. We obtain agreement with the observed emission line ratios from the nearby star-forming regions and discuss the effect of binary-star evolution pathways on the nebular ionization of H II regions. We find that at population ages above 10 Myr, single-star models rapidly decrease in flux and ionization strength, while binary-star models still produce strong flux and high [O III]/H β ratios. Our models can reproduce the metallicity of H II regions from spiral galaxies, but we find higher metallicities than previously estimated for the H II regions from dwarf galaxies. Comparing the equivalent width of H β emission between models and observations, we find that accounting for ionizing photon leakage can affect age estimates for H II regions. When it is included, the typical age derived for H II regions is 5 Myr from single-star models, and up to 10 Myr with binary-star models. This is due to the existence of binary-star evolution pathways, which produce more hot Wolf-Rayet and helium stars at older ages. For future reference, we calculate new BPASS binary maximal starburst lines as a function of metallicity, and for the total model population, and present these in Appendix A.

  1. Effect of binary fraction on color-magnitude diagram of NGC 1904

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Deng, Yangyang

    2018-05-01

    The age of a southern globular cluster in Milky Way, NGC 1904, was shown to be larger than the typical age of the universe, around 13.7 Gyr, by some photometric studies which assumed all stars as single stars. Besides the uncertainties in photometry, isochrone and fitting technique, the neglect of binary stars possibly distorted the result. We study the effect of binary fraction on the color-magnitude diagram (CMD) of NGC 1904, via a new tool for CMD studies, Powerful CMD, which can determine binary fraction, age, metallicity, distance modulus, color excess, rotating star fraction and star formation history simultaneously. We finally obtain the youngest age of 14.1±2.1 Gyr with a zero-age binary fraction of 60 percent for cluster NGC 1904. The result is consistent with the age of the universe. Although our result suggests that binary fraction affects the determination of age slightly, it can improve the fitting to observed CMD, in particular blue stragglers. This suggests us to consider the effect of binaries in the studies of star clusters.

  2. The Eclipsing Central Stars of the Planetary Nebulae Lo 16 and PHR J1040-5417

    NASA Astrophysics Data System (ADS)

    Hillwig, Todd C.; Frew, David; Jones, David; Crispo, Danielle

    2017-01-01

    Binary central stars of planetary nebula are a valuable tool in understanding common envelope evolution. In these cases both the resulting close binary system and the expanding envelope (the planetary nebula) can be studied directly. In order to compare observed systems with common envelope evolution models we need to determine precise physical parameters of the binaries and the nebulae. Eclipsing central stars provide us with the best opportunity to determine high precision values for mass, radius, and temperature of the component stars in these close binaries. We present photometry and spectroscopy for two of these eclipsing systems; the central stars of Lo 16 and PHR 1040-5417. Using light curves and radial velocity curves along with binary modeling we provide physical parameters for the stars in both of these systems.

  3. Evolution of black holes in the galaxy

    NASA Astrophysics Data System (ADS)

    Brown, G. E.; Lee, C.-H.; Wijers, R. A. M. J.; Bethe, H. A.

    2000-08-01

    In this article we consider the formation and evolution of black holes, especially those in binary stars where radiation from the matter falling on them can be seen. We consider a number of effects introduced by some of us, which are not traditionally included in binary evolution of massive stars. These are (i) hypercritical accretion, which allows neutron stars to accrete enough matter to collapse to a black hole during their spiral-in into another star. (ii) The strong mass loss of helium stars, which causes their evolution to differ from that of the helium core of a massive star. (iii) The direct formation of low-mass black holes (M~2Msolar) from single stars, a consequence of a significant strange-matter content of the nuclear-matter equation of state at high density. We discuss these processes here, and then review how they affect various populations of binaries with black holes and neutron stars. We have found that hypercritical accretion changes the standard scenario for the evolution of binary neutron stars: it now usually gives a black-hole, neutron-star (BH-NS) binary, because the first-born neutron star collapses to a low-mass black hole in the course of the evolution. A less probable double helium star scenario has to be introduced in order to form neutron-star binaries. The result is that low-mass black-hole, neutron star (LBH-NS) binaries dominate the rate of detectable gravity-wave events, say, by LIGO, by a factor /~20 over the binary neutron stars. The formation of high-mass black holes is suppressed somewhat due to the influence of mass loss on the cores of massive stars, raising the minimum mass for a star to form a massive BH to perhaps 80Msolar. Still, inclusion of high-mass black-hole, neutron-star (HBH-NS) binaries increases the predicted LIGO detection rate by another /~30% lowering of the mass loss rates of Wolf-Rayet stars may lower the HBH mass limit, and thereby further increase the merger rate. We predict that /~33 mergers per year will be observed with LIGO once the advanced detectors planned to begin in 2004 are in place. Black holes are also considered as progenitors for gamma ray bursters (GRB). Due to their rapid spin, potentially high magnetic fields, and relatively clean environment, mergers of black-hole, neutron-star binaries may be especially suitable. Combined with their 10 times greater formation rate than binary neutron stars this makes them attractive candidates for GRB progenitors, although the strong concentration of GRBs towards host galaxies may favor massive star progenitors or helium-star, black-hole mergers. We also consider binaries with a low-mass companion, and study the evolution of the very large number of black-hole transients, consisting of a black hole of mass ~7Msolar accompanied by a K or M main-sequence star (except for two cases with a somewhat more massive subgiant donor). We show that common envelope evolution must take place in the supergiant stage of the massive progenitor of the black hole, giving an explanation of why the donor masses are so small. We predict that there are about 22 times more binaries than observed, in which the main-sequence star, somewhat more massive than a K- or M-star, sits quietly inside its Roche Lobe, and will only become an X-ray source when the companion evolves off the main sequence. We briefly discuss the evolution of low-mass X-ray binaries into millisecond pulsars. We point out that in the usual scenario for forming millisecond pulsars with He white-dwarf companions, the long period of stable mass transfer will usually lead to the collapse of the neutron star into a black hole. We then discuss Van den Heuvel's ``Hercules X-1 scenario'' for forming low-mass X-ray binaries, commenting on the differences in accretion onto the compact object by radiative or semiconvective donors, rather than the deeply convective donors used in the earlier part of our review. In Appendix /A we describe the evolution of Cyg X-3, finding the compact object to be a black hole of ~3Msolar, together with an ~10Msolar He star. In Appendix /B we do the accounting for gravitational mergers and in Appendix /C we show low-mass black-hole, neutron-star binaries to be good progenitors for gamma ray bursters.

  4. A Search for Black Holes and Neutron Stars in the Kepler Field

    NASA Astrophysics Data System (ADS)

    Orosz, Jerome; Short, Donald; Welsh, William; Windmiller, Gur; Dabney, David

    2018-01-01

    Black holes and neutron stars represent the final evolutionary stages of the most massive stars. In addition to their use as probes into the evolution of massive stars, black holes and neutron stars are ideal laboratories to test General Relativity in the strong field limit. The number of neutron stars and black holes in the Milky Way is not precisely known, but there are an estimated one billion neutron stars in the galaxy based on the observed numbers of radio pulsars. The number of black holes is about 100 million, based on the behavior of the Initial Mass Function at high stellar masses.All of the known steller-mass black holes (and a fair number of neutron stars) are in ``X-ray binaries'' that were discovered because of their luminous X-ray emission. The requirement to be in an X-ray-emitting binary places a strong observational bias on the discovery of stellar-mass black holes. Thus the 21 known black hole binaries represent only the very uppermost tip of the population iceberg.We have conducted an optical survey using Kepler data designed to uncover black holes and neutron stars in both ``quiescent'' X-ray binaries and ``pre-contact'' X-ray binaries. We discuss how the search was conducted, including how potentially interesting light curves were classified and the how variability types were identified. Although we did not find any convincing candidate neutron star or black hole systems, we did find a few noteworthy binary systems, including two binaries that contain low-mass stars with unusually low albedos.

  5. A New Binary Star System of EW Type in Draco: GSC 03905-01870

    NASA Astrophysics Data System (ADS)

    Barquin, S.

    2018-05-01

    Discovery of a new binary star system (GSC 03905-01870 = USNO-B1.0 1431-0327922 = UCAC4 716-059522) in the Draco constellation is presented. It was discovered during a search for previously unreported eclipsing binary stars through the ASAS-SN database. The shape of the light curve and its characteristics (period of 0.428988+-0.000001 d, amplitude of 0.34+-0.02 V Mag, primary minimum epoch HJD 2457994.2756+-0.0002) indicates that the new variable star is an eclipsing binary of W Ursae Majoris type. I registered this variable star in The International Variable Star Index (VSX), its AAVSO UID is 000-BMP-891.

  6. Using Photometric Variability to Detect Binarity in the Central Stars of Four Planetary Nebulae, A 43, A 74, NGC 6720, and NGC 6853

    NASA Astrophysics Data System (ADS)

    Smith, Alexander; De Marco, O.

    2007-12-01

    Recent observational evidence and theoretical models are challenging the classical paradigm of single star planetary nebula (PN) evolution, suggesting instead that binary stars play a significant role in the process of PN formation. In order to shape the 90% of PN that are non-spherical, the central star must be rotating and have a magnetic field; the most-likely source of the angular momentum needed to sustain magnetic fields is a binary companion. More observational evidence is needed to confirm that the fraction of PN with close binary central stars is indeed higher than the currently known value of 10-15%. As part of an international effort to detect binary central stars (PLAN-B - Panetary Nebula Binaries), we are carrying out a new photometric survey to look for close binary central stars of PN. Here we present the findings for 4 objects: A 43, A 74, NGC 6720, and NGC 6853. NGC 6720 and NGC 6853 show evidence of periodic variability, the former of which might even show one eclipse. Once completed, the survey will assess the binarity of about 100 central stars of PN.

  7. Mass-Luminosity Relations for Rapid and Slow Rotators.

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.

    2006-08-01

    Comparing the radii of eclipsing binaries components and single stars we have found a noticeable difference between observational parameters of B0V-G0V components of eclipsing binaries and those of single stars of the corresponding spectral type. This difference was confirmed by re-analysing the results of independent investigations published in the literature. Larger radii and higher temperatures of A-F eclipsing binaries can be explained by synchronization of such stars in close systems that prevents them to rotate rapidly. So, we have found that the mass-luminosity relation based on eclipsing binary data cannot be used to derive the initial mass function of single stars. While our current knowledge of the empirical mass-luminosity relation for intermediate-mass (1.5 to 10 m[*]) stars is based exclusively on data from eclipsing binaries, knowledge of the mass-luminosity relation should come from dynamical mass determinations of visual binaries, combined with spatially resolved precise photometry. Then the initial mass function should be revised for m>1.5m[*]. Data were collected on fundamental parameters of stars with masses m > 1.5.m [*]). They are components of binaries with P > 15^d and consequently are not synchronised with the orbital periods and presumably are rapid rotators. These stars are believed to evolve similarly with single stars, so these data allow us to construct mass-luminosity and other relations that can more confidently be used for statistical and astrophysical investigations of single stars than so called standard relations, based on data on detached main-sequence double-lined short-period eclipsing binaries. Mass-luminosity, mass-temperature and mass-radius relations of single stars are presented, as well as their HR diagram.

  8. Colliding Winds in Massive Binaries

    NASA Astrophysics Data System (ADS)

    Thaller, M. L.

    1998-12-01

    In close binary systems of massive stars, the individual stellar winds will collide and form a bow shock between the stars, which may have significant impact on the mass-loss and evolution of the system. The existence of such a shock can be established through orbital-phase related variations in the UV resonance lines and optical emission lines. High density regions near the shock will produce Hα and Helium I emission which can be used to map the mass-flow structure of the system. The shock front between the stars may influence the balance of mass-loss versus mass-transfer in massive binary evolution, as matter lost to one star due to Roche lobe overflow may hit the shock and be deflected before it can accrete onto the surface of the other star. I have completed a high-resolution spectroscopic survey of 37 massive binaries, and compared the incidence and strength of emission to an independent survey of single massive stars. Binary stars show a statistically significant overabundance of optical emission, especially when one of the binary stars is in either a giant or supergiant phase of evolution. Seven systems in my survey exhibited clear signs of orbital phase related emission, and for three of the stars (HD 149404, HD 152248, and HD 163181), I present qualitative models of the mass-flow dynamics of the systems.

  9. Close encounters of the third-body kind. [intruding bodies in binary star systems

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1994-01-01

    We simulated encounters involving binaries of two eccentricities: e = 0 (i.e., circular binaries) and e = 0.5. In both cases the binary contained a point mass of 1.4 solar masses (i.e., a neutron star) and a 0.8 solar masses main-sequence star modeled as a polytrope. The semimajor axes of both binaries were set to 60 solar radii (0.28 AU). We considered intruders of three masses: 1.4 solar masses (a neutron star), 0.8 solar masses (a main-sequence star or a higher mass white dwarf), and 0.64 solar masses (a more typical mass white dwarf). Our strategy was to perform a large number (40,000) of encounters using a three-body code, then to rerun a small number of cases with a three-dimensional smoothed particle hydrodynamics (SPH) code to determine the importance of hydrodynamical effects. Using the results of the three-body runs, we computed the exchange across sections, sigma(sub ex). From the results of the SPH runs, we computed the cross sections for clean exchange, denoted by sigma(sub cx); the formation of a triple system, denoted by sigma(sub trp); and the formation of a merged binary with an object formed from the merger of two of the stars left in orbit around the third star, denoted by sigma(sub mb). For encounters between either binary and a 1.4 solar masses neutron star, sigma(sub cx) approx. 0.7 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 0.3 sigma(sub ex). For encounters between either binary and the 0.8 solar masses main-sequence star, sigma(sub cx) approx. 0.50 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.0 sigma(sub ex). If the main sequence star is replaced by a main-sequence star of the same mass, we have sigma(sub cx) approx. 0.5 sigma(sub ex) and sigma(sub mb) + sigma(sub trp) approx. 1.6 sigma(sub ex). Although the exchange cross section is a sensitive function of intruder mass, we see that the cross section to produce merged binaries is roughly independent of intruder mass. The merged binaries produced have semi-major axes much larger than either those of the original binaries or those of binaries produced in clean exchanges. Coupled with their lower kick velocities, received from the encounters, their larger size will enhance their cross section, shortening the waiting time to a subsequent encounter with another single star.

  10. Wide- and contact-binary formation in substructured young stellar clusters

    NASA Astrophysics Data System (ADS)

    Dorval, J.; Boily, C. M.; Moraux, E.; Roos, O.

    2017-02-01

    We explore with collisional gravitational N-body models the evolution of binary stars in initially fragmented and globally subvirial clusters of stars. Binaries are inserted in the (initially) clumpy configurations so as to match the observed distributions of the field-binary-stars' semimajor axes a and binary fraction versus primary mass. The dissolution rate of wide binaries is very high at the start of the simulations, and is much reduced once the clumps are eroded by the global infall. The transition between the two regimes is sharper as the number of stars N is increased, from N = 1.5 k up to 80 k. The fraction of dissolved binary stars increases only mildly with N, from ≈15 per cent to ≈25 per cent for the same range in N. We repeated the calculation for two initial system mean number densities of 6 per pc3 (low) and 400 per pc3 (high). We found that the longer free-fall time of the low-density runs allows for prolonged binary-binary interactions inside clumps and the formation of very tight (a ≈ 0.01 au) binaries by exchange collisions. This is an indication that the statistics of such compact binaries bear a direct link to their environment at birth. We also explore the formation of wide (a ≳ 5 × 104 au) binaries and find a low (≈0.01 per cent) fraction mildly bound to the central star cluster. The high-precision astrometric mission Gaia could identify them as outflowing shells or streams.

  11. Hypervelocity stars from young stellar clusters in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  12. Eclipsing binary stars in the era of massive surveys First results and future prospects

    NASA Astrophysics Data System (ADS)

    Papageorgiou, Athanasios; Catelan, Márcio; Ramos, Rodrigo Contreras; Drake, Andrew J.

    2017-09-01

    Our thinking about eclipsing binary stars has undergone a tremendous change in the last decade. Eclipsing binary stars are one of nature's best laboratories for determining the fundamental physical properties of stars and thus for testing the predictions of theoretical models. Some of the largest ongoing variable star surveys include the Catalina Real-time Transient Survey (CRTS) and the VISTA Variables in the Vía Láctea survey (VVV). They both contain a large amount of photometric data and plenty of information about eclipsing binaries that wait to be extracted and exploited. Here we briefly describe our efforts in this direction.

  13. New prospects for observing and cataloguing exoplanets in well-detached binaries

    NASA Astrophysics Data System (ADS)

    Schwarz, R.; Funk, B.; Zechner, R.; Bazsó, Á.

    2016-08-01

    This paper is devoted to study the circumstances favourable to detect circumstellar and circumbinary planets in well-detached binary-star systems using eclipse timing variations (ETVs). We investigated the dynamics of well-detached binary star systems with a star separation from 0.5 to 3 au, to determine the probability of the detection of such variations with ground-based telescopes and space telescopes (like former missions CoRoT and Kepler and future space missions Plato, Tess and Cheops). For the chosen star separations both dynamical configurations (circumstellar and circumbinary) may be observable. We performed numerical simulations by using the full three-body problem as dynamical model. The dynamical stability and the ETVs are investigated by computing ETV maps for different masses of the secondary star and the exoplanet (Earth, Neptune and Jupiter size). In addition we changed the planet's and binary's eccentricities. We conclude that many amplitudes of ETVs are large enough to detect exoplanets in binary-star systems. As an application, we prepared statistics of the catalogue of exoplanets in binary star systems which we introduce in this article and compared the statistics with our parameter-space which we used for our calculations. In addition to these statistics of the catalogue we enlarged them by the investigation of well-detached binary star systems from several catalogues and discussed the possibility of further candidates.

  14. On the kinematics of a runaway Be star population

    NASA Astrophysics Data System (ADS)

    Boubert, D.; Evans, N. W.

    2018-07-01

    We explore the hypothesis that B-type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution from the first Gaia data release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then 17.5 per cent of the Be stars in our catalogue should be runaways. The remaining 82.5 per cent should be in binaries with subdwarfs, white dwarfs, or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that 13.1^{+2.6}_{-2.4} per cent of the Be stars in our catalogue are runaways and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).

  15. On the kinematics of a runaway Be star population

    NASA Astrophysics Data System (ADS)

    Boubert, D.; Evans, N. W.

    2018-04-01

    We explore the hypothesis that B type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution (TGAS) from the first Gaia Data Release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then 17.5% of the Be stars in our catalogue should be runaways. The remaining 82.5% should be in binaries with subdwarfs, white dwarfs or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that 13.1^{+2.6}_{-2.4}% of the Be stars in our catalogue are runaways, and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).

  16. Relaxation near Supermassive Black Holes Driven by Nuclear Spiral Arms: Anisotropic Hypervelocity Stars, S-stars, and Tidal Disruption Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamers, Adrian S.; Perets, Hagai B., E-mail: hamers@ias.edu

    Nuclear spiral arms are small-scale transient spiral structures found in the centers of galaxies. Similarly to their galactic-scale counterparts, nuclear spiral arms can perturb the orbits of stars. In the case of the Galactic center (GC), these perturbations can affect the orbits of stars and binaries in a region extending to several hundred parsecs around the supermassive black hole (SMBH), causing diffusion in orbital energy and angular momentum. This diffusion process can drive stars and binaries to close approaches with the SMBH, disrupting single stars in tidal disruption events (TDEs), or disrupting binaries, leaving a star tightly bound to themore » SMBH and an unbound star escaping the galaxy, i.e., a hypervelocity star (HVS). Here, we consider diffusion by nuclear spiral arms in galactic nuclei, specifically the Milky Way GC. We determine nuclear-spiral-arm-driven diffusion rates using test-particle integrations and compute disruption rates. Our TDE rates are up to 20% higher compared to relaxation by single stars. For binaries, the enhancement is up to a factor of ∼100, and our rates are comparable to the observed numbers of HVSs and S-stars. Our scenario is complementary to relaxation driven by massive perturbers. In addition, our rates depend on the inclination of the binary with respect to the Galactic plane. Therefore, our scenario provides a novel potential source for the observed anisotropic distribution of HVSs. Nuclear spiral arms may also be important for accelerating the coalescence of binary SMBHs and for supplying nuclear star clusters with stars and gas.« less

  17. Accurate age determinations of several nearby open clusters containing magnetic Ap stars

    NASA Astrophysics Data System (ADS)

    Silaj, J.; Landstreet, J. D.

    2014-06-01

    Context. To study the time evolution of magnetic fields, chemical abundance peculiarities, and other characteristics of magnetic Ap and Bp stars during their main sequence lives, a sample of these stars in open clusters has been obtained, as such stars can be assumed to have the same ages as the clusters to which they belong. However, in exploring age determinations in the literature, we find a large dispersion among different age determinations, even for bright, nearby clusters. Aims: Our aim is to obtain ages that are as accurate as possible for the seven nearby open clusters α Per, Coma Ber, IC 2602, NGC 2232, NGC 2451A, NGC 2516, and NGC 6475, each of which contains at least one magnetic Ap or Bp star. Simultaneously, we test the current calibrations of Te and luminosity for the Ap/Bp star members, and identify clearly blue stragglers in the clusters studied. Methods: We explore the possibility that isochrone fitting in the theoretical Hertzsprung-Russell diagram (i.e. log (L/L⊙) vs. log Te), rather than in the conventional colour-magnitude diagram, can provide more precise and accurate cluster ages, with well-defined uncertainties. Results: Well-defined ages are found for all the clusters studied. For the nearby clusters studied, the derived ages are not very sensitive to the small uncertainties in distance, reddening, membership, metallicity, or choice of isochrones. Our age determinations are all within the range of previously determined values, but the associated uncertainties are considerably smaller than the spread in recent age determinations from the literature. Furthermore, examination of proper motions and HR diagrams confirms that the Ap stars identified in these clusters are members, and that the presently accepted temperature scale and bolometric corrections for Ap stars are approximately correct. We show that in these theoretical HR diagrams blue stragglers are particularly easy to identify. Conclusions: Constructing the theoretical HR diagram of a nearby open cluster makes possible an accurate age determination, with well defined uncertainty. This diagnostic of a cluster also provides a useful tool for studying unusual stars such as Ap stars and blue stragglers. Table 3 is available in electronic form at http://www.aanda.org

  18. Spectroscopy of Hot Horizontal Branch Stars in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Moni-Bidin, C. M.

    2006-06-01

    We will present our latest results on spectroscopy of hot horizontal branch stars in globular clusters. This class of stars still presents many puzzling features, and many aspects of their formation and evolution are still unclear. Extreme Horizontal Branch (EHB) stars, also known as Subdwarf B (sdB) stars, are post-He flash stars with a He-burning core and high effective temperature (T_{eff} ≥ 20000 K). They originate from stars of low initial mass that during their evolution have lost great part of their external envelope. Many channel for the formation of these stars have been studied in literature. The scenarios involving dynamical interactions inside close binary systems, deeply investigated by Han et al. (2003, MNRAS, 341, 669), have been recently preferred, since between field sdB stars many close binary systems have been detected. (Morales-Rueda et al. 2003, MNRAS, 338, 752). Maxted et al. (2001, MNRAS, 326, 1391) estimated that 69+/-9% of field sdB stars are close binary systems. Latest results indicates that also this scenario presents some problems (Lisker et al. 2005, A&A, 430, 223), and Napiwotzki et al. (2004) found a lower fraction of binaries among their sample (42%). Moni Bidin et al. (2005, A&A, submitted) recently showed that in globular cluster NGC6752 the binary fraction among EHB stars is sensibly lower than what observed among field sdBs, estimating an upper limit of 20%. This difference between field and cluster sdBs is quite surprising. We are performing further investigation of these stars extending our search for close binary systems to other two clusters with a rich population of EHB stars. This will allow us to tell if the results on NGC6752 indicate a pecular cluster or the lack of binaries is a common trend of EHB stars in globular clusters. Moreover, with a larger sample we will be able to better estimate the binary fraction, or an upper limit for it. With our contribution we are going to show our results on this investigation that at the moment is still a work in progress.

  19. A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu

    We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is amore » Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.« less

  20. Intelligent error correction method applied on an active pixel sensor based star tracker

    NASA Astrophysics Data System (ADS)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like geostationary telecom platforms.

  1. A Search for Low Mass Stars and Substellar Companions and A Study of Circumbinary Gas and Dust Disks

    NASA Astrophysics Data System (ADS)

    Rodriguez, David R.

    2011-01-01

    We have searched for nearby low-mass stars and brown dwarfs and have studied the planet-forming environment of binary stars. We have carried out a search for young, low-mass stars in nearby stellar associations using X-ray and UV source catalogs. We discovered a new technique to identify 10-100 Myr-old low-mass stars within 100 pc of the Earth using GALEX-optical/near-IR data. We present candidate young stars found by applying this new method in the 10 Myr old TW Hydrae and Scorpius-Centaurus associations. In addition, we have searched for the coolest brown dwarf class: Y-dwarfs, expected to appear at temperatures <500 K. Using wide-field near infrared imaging with ground (CTIO, Palomar, KPNO) and space (Spitzer, AKARI) observatories, we have looked for companions to nearby, old (2 Gyr or older), high proper motion white dwarfs. We present results for Southern Hemisphere white dwarfs. Additionally, we have characterized how likely planet formation occurs in binary star systems. While 20% of planets have been discovered around one member of a binary system, these binaries have semi-major axes larger than 20 AU. We have performed an AO and spectroscopic search for binary stars among a sample of known debris disk stars, which allows us to indirectly study planet formation and evolution in binary systems. As a case study, we examined the gas and dust present in the circumbinary disk around V4046 Sagittarii, a 2.4-day spectroscopic binary. Our results demonstrate it is unlikely that planets can form in binaries with stellar semi-major axes of 10s of AU. This research has been funded by a NASA ADA grant to UCLA and RIT.

  2. VizieR Online Data Catalog: Variable stars in M31 and M33. V. HR diagram (Humphreys+, 2017)

    NASA Astrophysics Data System (ADS)

    Humphreys, R. M.; Davidson, K.; Hahn, D.; Martin, J. C.; Weis, K.

    2017-09-01

    We use the large data set published by Massey+ (2016, J/AJ/152/62), together with our own spectral classifications from Papers II (Humphreys+, 2014, J/ApJ/790/48; III (Gordon+, 2016, J/ApJ/825/50), and IV (Humphreys+, 2017, J/ApJ/836/64), to create a catalog of luminous O-, B-, and A-type stars representative of the hot star populations in M31 and M33. (2 data files).

  3. Analysis of the IRAS Low Resolution Spectra

    DTIC Science & Technology

    1988-04-01

    WITH EU ANDROMEDAE : A CARBON 33 STAR NEAR AN OXYGEN-RICH CIRCUMSTELLAR SHELL (AP J COPYRIGHT - BENSON WORKED AT WELLESLEY COLL., WHILE LITTLE-MARENIN...OR AFGL MONEY) G. MASERS ASSOCIATED WITH TWO CARBON STARS: V778 CYGNI 71 AND EU ANDROMEDAE (ACCEPTED BY AP J FOR PUBLICATION 15 JUL 88; TWO NON...I.R. 1987, "A Water Maser Associated with EU Andromedae . A Carbon Star Near an Oxygen-Rich Circumstcllar Shell," Ap. J. (Letterc), 316, L37-L40. l

  4. Close Encounters of the Stellar Kind

    NASA Astrophysics Data System (ADS)

    2003-07-01

    NASA's Chandra X-ray Observatory has confirmed that close encounters between stars form X-ray emitting, double-star systems in dense globular star clusters. These X-ray binaries have a different birth process than their cousins outside globular clusters, and should have a profound influence on the cluster's evolution. A team of scientists led by David Pooley of the Massachusetts Institute of Technology in Cambridge took advantage of Chandra's unique ability to precisely locate and resolve individual sources to determine the number of X-ray sources in 12 globular clusters in our Galaxy. Most of the sources are binary systems containing a collapsed star such as a neutron star or a white dwarf star that is pulling matter off a normal, Sun-like companion star. "We found that the number of X-ray binaries is closely correlated with the rate of encounters between stars in the clusters," said Pooley. "Our conclusion is that the binaries are formed as a consequence of these encounters. It is a case of nurture not nature." A similar study led by Craig Heinke of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. confirmed this conclusion, and showed that roughly 10 percent of these X-ray binary systems contain neutron stars. Most of these neutron stars are usually quiet, spending less than 10% of their time actively feeding from their companion. NGC 7099 NGC 7099 A globular cluster is a spherical collection of hundreds of thousands or even millions of stars buzzing around each other in a gravitationally-bound stellar beehive that is about a hundred light years in diameter. The stars in a globular cluster are often only about a tenth of a light year apart. For comparison, the nearest star to the Sun, Proxima Centauri, is 4.2 light years away. With so many stars moving so close together, interactions between stars occur frequently in globular clusters. The stars, while rarely colliding, do get close enough to form binary star systems or cause binary stars to exchange partners in intricate dances. The data suggest that X-ray binary systems are formed in dense clusters known as globular clusters about once a day somewhere in the universe. Observations by NASA's Uhuru X-ray satellite in the 1970's showed that globular clusters seemed to contain a disproportionately large number of X-ray binary sources compared to the Galaxy as a whole. Normally only one in a billion stars is a member of an X-ray binary system containing a neutron star, whereas in globular clusters, the fraction is more like one in a million. The present research confirms earlier suggestions that the chance of forming an X-ray binary system is dramatically increased by the congestion in a globular cluster. Under these conditions two processes, known as three-star exchange collisions, and tidal captures, can lead to a thousandfold increase in the number of X-ray sources in globular clusters. 47 Tucanae 47 Tucanae In an exchange collision, a lone neutron star encounters a pair of ordinary stars. The intense gravity of the neutron star can induce the most massive ordinary star to "change partners," and pair up with the neutron star while ejecting the lighter star. A neutron star could also make a grazing collision with a single normal star, and the intense gravity of the neutron star could distort the gravity of the normal star in the process. The energy lost in the distortion, could prevent the normal star from escaping from the neutron star, leading to what is called tidal capture. "In addition to solving a long-standing mystery, Chandra data offer an opportunity for a deeper understanding of globular cluster evolution," said Heinke. "For example, the energy released in the formation of close binary systems could keep the central parts of the cluster from collapsing to form a massive black hole." NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. The image and additional information are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  5. Multipurpose active pixel sensor (APS)-based microtracker

    NASA Astrophysics Data System (ADS)

    Eisenman, Allan R.; Liebe, Carl C.; Zhu, David Q.

    1998-12-01

    A new, photon-sensitive, imaging array, the active pixel sensor (APS) has emerged as a competitor to the CCD imager for use in star and target trackers. The Jet Propulsion Laboratory (JPL) has undertaken a program to develop a new generation, highly integrated, APS-based, multipurpose tracker: the Programmable Intelligent Microtracker (PIM). The supporting hardware used in the PIM has been carefully selected to enhance the inherent advantages of the APS. Adequate computation power is included to perform star identification, star tracking, attitude determination, space docking, feature tracking, descent imaging for landing control, and target tracking capabilities. Its first version uses a JPL developed 256 X 256-pixel APS and an advanced 32-bit RISC microcontroller. By taking advantage of the unique features of the APS/microcontroller combination, the microtracker will achieve about an order-of-magnitude reduction in mass and power consumption compared to present state-of-the-art star trackers. It will also add the advantage of programmability to enable it to perform a variety of star, other celestial body, and target tracking tasks. The PIM is already proving the usefulness of its design concept for space applications. It is demonstrating the effectiveness of taking such an integrated approach in building a new generation of high performance, general purpose, tracking instruments to be applied to a large variety of future space missions.

  6. Effects of Disk Warping on the Inclination Evolution of Star-Disk-Binary Systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-04-01

    Several recent studies have suggested that circumstellar disks in young stellar binaries may be driven into misalignement with their host stars due to secular gravitational interactions between the star, disk and the binary companion. The disk in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disk warp profile, taking into account of bending wave propagation and viscosity in the disk. We show that for typical protostellar disk parameters, the disk warp is small, thereby justifying the "flat-disk" approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disk warp/twist tends to drive the disk toward alignment with the binary or the central star. We calculate the relevant timescales for the alignment. We find the alignment is effective for sufficiently cold disks with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of star-disk-binary systems. Viscous warp driven alignment may be necessary to account for the observed spin-orbit alignment in multi-planet systems if these systems are accompanied by an inclined binary companion.

  7. Effects of disc warping on the inclination evolution of star-disc-binary systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-07-01

    Several recent studies have suggested that circumstellar discs in young stellar binaries may be driven into misalignement with their host stars due to the secular gravitational interactions between the star, disc, and the binary companion. The disc in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disc warp profile, taking into account the bending wave propagation and viscosity in the disc. We show that for typical protostellar disc parameters, the disc warp is small, thereby justifying the `flat-disc' approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disc warp/twist tends to drive the disc towards alignment with the binary or the central star. We calculate the relevant time-scales for the alignment. We find that the alignment is effective for sufficiently cold discs with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of the star-disc-binary systems. Viscous warp-driven alignment may be necessary to account for the observed spin-orbit alignment in multiplanet systems if these systems are accompanied by an inclined binary companion.

  8. Photometric binary stars in Praesepe and the search for globular cluster binaries

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1991-01-01

    A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.

  9. The architecture of the hierarchical triple star KOI 928 from eclipse timing variations seen in Kepler photometry

    DOE PAGES

    Steffen, J. H.; Quinn, S. N.; Borucki, W. J.; ...

    2011-10-01

    We present a hierarchical triple star system (KIC 9140402) where a low mass eclipsing binary orbits a more massive third star. The orbital period of the binary (4.98829 Days) is determined by the eclipse times seen in photometry from NASA's Kepler spacecraft. The periodically changing tidal field, due to the eccentric orbit of the binary about the tertiary, causes a change in the orbital period of the binary. The resulting eclipse timing variations provide insight into the dynamics and architecture of this system and allow the inference of the total mass of the binary (0.424±0.017M circle-dot) and the orbital parametersmore » of the binary about the central star.« less

  10. Ages of young star clusters, massive blue stragglers, and the upper mass limit of stars: Analyzing age-dependent stellar mass functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, F. R. N.; Izzard, R. G.; Langer, N.

    2014-01-10

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. Wemore » find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M {sub ☉} limit and observations of four stars with initial masses of 165-320 M {sub ☉} in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M {sub ☉} star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M {sub ☉}.« less

  11. Ages of Young Star Clusters, Massive Blue Stragglers, and the Upper Mass Limit of Stars: Analyzing Age-dependent Stellar Mass Functions

    NASA Astrophysics Data System (ADS)

    Schneider, F. R. N.; Izzard, R. G.; de Mink, S. E.; Langer, N.; Stolte, A.; de Koter, A.; Gvaramadze, V. V.; Hußmann, B.; Liermann, A.; Sana, H.

    2014-01-01

    Massive stars rapidly change their masses through strong stellar winds and mass transfer in binary systems. The latter aspect is important for populations of massive stars as more than 70% of all O stars are expected to interact with a binary companion during their lifetime. We show that such mass changes leave characteristic signatures in stellar mass functions of young star clusters that can be used to infer their ages and to identify products of binary evolution. We model the observed present-day mass functions of the young Galactic Arches and Quintuplet star clusters using our rapid binary evolution code. We find that the shaping of the mass function by stellar wind mass loss allows us to determine the cluster ages as 3.5 ± 0.7 Myr and 4.8 ± 1.1 Myr, respectively. Exploiting the effects of binary mass exchange on the cluster mass function, we find that the most massive stars in both clusters are rejuvenated products of binary mass transfer, i.e., the massive counterpart of classical blue straggler stars. This resolves the problem of an apparent age spread among the most luminous stars exceeding the expected duration of star formation in these clusters. We perform Monte Carlo simulations to probe stochastic sampling, which support the idea of the most massive stars being rejuvenated binary products. We find that the most massive star is expected to be a binary product after 1.0 ± 0.7 Myr in Arches and after 1.7 ± 1.0 Myr in Quintuplet. Today, the most massive 9 ± 3 stars in Arches and 8 ± 3 in Quintuplet are expected to be such objects. Our findings have strong implications for the stellar upper mass limit and solve the discrepancy between the claimed 150 M ⊙ limit and observations of four stars with initial masses of 165-320 M ⊙ in R136 and of supernova 2007bi, which is thought to be a pair-instability supernova from an initial 250 M ⊙ star. Using the stellar population of R136, we revise the upper mass limit to values in the range 200-500 M ⊙.

  12. Binary stars in the Galactic thick disc

    NASA Astrophysics Data System (ADS)

    Izzard, Robert G.; Preece, Holly; Jofre, Paula; Halabi, Ghina M.; Masseron, Thomas; Tout, Christopher A.

    2018-01-01

    The combination of asteroseismologically measured masses with abundances from detailed analyses of stellar atmospheres challenges our fundamental knowledge of stars and our ability to model them. Ancient red-giant stars in the Galactic thick disc are proving to be most troublesome in this regard. They are older than 5 Gyr, a lifetime corresponding to an initial stellar mass of about 1.2 M⊙. So why do the masses of a sizeable fraction of thick-disc stars exceed 1.3 M⊙, with some as massive as 2.3 M⊙? We answer this question by considering duplicity in the thick-disc stellar population using a binary population-nucleosynthesis model. We examine how mass transfer and merging affect the stellar mass distribution and surface abundances of carbon and nitrogen. We show that a few per cent of thick-disc stars can interact in binary star systems and become more massive than 1.3 M⊙. Of these stars, most are single because they are merged binaries. Some stars more massive than 1.3 M⊙ form in binaries by wind mass transfer. We compare our results to a sample of the APOKASC data set and find reasonable agreement except in the number of these thick-disc stars more massive than 1.3 M⊙. This problem is resolved by the use of a logarithmically flat orbital-period distribution and a large binary fraction.

  13. Full Ionisation In Binary-Binary Encounters With Small Positive Energies

    NASA Astrophysics Data System (ADS)

    Sweatman, W. L.

    2006-08-01

    Interactions between binary stars and single stars and binary stars and other binary stars play a key role in the dynamics of a dense stellar system. Energy can be transferred between the internal dynamics of a binary and the larger scale dynamics of the interacting objects. Binaries can be destroyed and created by the interaction. In a binary-binary encounter, full ionisation occurs when both of the binary stars are destroyed in the interaction to create four single stars. This is only possible when the total energy of the system is positive. For very small energies the probability of this occurring is very low and it tends towards zero as the total energy tends towards zero. Here the case is considered for which all the stars have equal masses. An asymptotic power law is predicted relating the probability of full ionisation with the total energy when this latter quantity is small. The exponent, which is approximately 2.31, is compared with the results from numerical scattering experiments. The theoretical approach taken is similar to one used previously in the three-body problem. It makes use of the fact that the most dramatic changes in scale and energies of a few-body system occur when its components pass near to a central configuration. The position, and number, of these configurations is not known for the general four-body problem, however, with equal masses there are known to be exactly five different cases. Separate consideration and comparison of the properties of orbits close to each of these five central configurations enables the prediction of the form of the cross-section for full ionisation for the case of small positive total energy. This is the relation between total energy and the probability of total ionisation described above.

  14. How I Learned to Stop Worrying and Love Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Moe, Maxwell Cassady

    Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital periods. This thesis utilizes large data sets of eclipsing binaries to measure the physical properties of B-type binaries in these previously unexplored portions of the parameter space. The updated binary statistics provide invaluable insight into the formation of massive stars and binaries as well as reliable initial conditions for population synthesis studies of binary star evolution. We first compare the properties of B-type eclipsing binaries in our Milky Way Galaxy and the nearby Magellanic Cloud Galaxies. We model the eclipsing binary light curves and perform detailed Monte Carlo simulations to recover the intrinsic properties and distributions of the close binary population. We find the frequency, period distribution, and mass-ratio distribution of close B-type binaries do not significantly depend on metallicity or environment. These results indicate the formation of massive binaries are relatively insensitive to their chemical abundances or immediate surroundings. Second, we search for low-mass eclipsing companions to massive B-type stars in the Large Magellanic Cloud Galaxy. In addition to finding such extreme mass-ratio binaries, we serendipitously discover a new class of eclipsing binaries. Each system comprises a massive B-type star that is fully formed and a nascent low-mass companion that is still contracting toward its normal phase of evolution. The large low-mass secondaries discernibly reflect much of the light they intercept from the hot B-type stars, thereby producing sinusoidal variations in perceived brightness as they orbit. These nascent eclipsing binaries are embedded in the hearts of star-forming emission nebulae, and therefore provide a unique snapshot into the formation and evolution of massive binaries and stellar nurseries. We next examine a large sample of B-type eclipsing binaries with intermediate orbital periods. To achieve such a task, we develop an automated pipeline to classify the eclipsing binaries, measure their physical properties from the observed light curves, and recover the intrinsic binary statistics by correcting for selection effects. We find the population of massive binaries at intermediate separations differ from those orbiting in close proximity. Close massive binaries favor small eccentricities and have correlated component masses, demonstrating they coevolved via competitive accretion during their formation in the circumbinary disk. Meanwhile, B-type binaries at slightly wider separations are born with large eccentricities and are weighted toward extreme mass ratios, indicating the components formed relatively independently and subsequently evolved to their current configurations via dynamical interactions. By using eclipsing binaries as accurate age indicators, we also reveal that the binary orbital eccentricities and the line-of-sight dust extinctions are anticorrelated with respect to time. These empirical relations provide robust constraints for tidal evolution in massive binaries and the evolution of the dust content in their surrounding environments. Finally, we compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, lucky imaging, high-contrast photometry, and common proper motion. We combine the samples from the various surveys and correct for their respective selection effects to determine a comprehensive nature of the intrinsic binary statistics of massive stars. We find the probability distributions of primary mass, secondary mass, orbital period, and orbital eccentricity are all interrelated. These updated multiplicity statistics imply a greater frequency of low-mass X-ray binaries, millisecond pulsars, and Type Ia supernovae than previously predicted.

  15. Kinematic Clues to OB Field Star Origins: Radial Velocities, Runaways, and Binaries

    NASA Astrophysics Data System (ADS)

    Januszewski, Helen; Castro, Norberto; Oey, Sally; Becker, Juliette; Kratter, Kaitlin M.; Mateo, Mario; Simón-Díaz, Sergio; Bjorkman, Jon E.; Bjorkman, Karen; Sigut, Aaron; Smullen, Rachel; M2FS Team

    2018-01-01

    Field OB stars are a crucial probe of star formation in extreme conditions. Properties of massive stars formed in relative isolation can distinguish between competing star formation theories, while the statistics of runaway stars allow an indirect test of the densest conditions in clusters. To address these questions, we have obtained multi-epoch, spectroscopic observations for a spatially complete sample of 48 OB field stars in the SMC Wing with the IMACS and M2FS multi-object spectrographs at the Magellan Telescopes. The observations span 3-6 epochs per star, with sampling frequency ranging from one day to about one year. From these spectra, we have calculated the radial velocities (RVs) and, in particular, the systemic velocities for binaries. Thus, we present the intrinsic RV distribution largely uncontaminated by binary motions. We estimate the runaway frequency, corresponding to the high velocity stars in our sample, and we also constrain the binary frequency. The binary frequency and fitted orbital parameters also place important constraints on star formation theories, as these properties drive the process of runaway ejection in clusters, and we discuss these properties as derived from our sample. This unique kinematic analysis of a high mass field star population thus provides a new look at the processes governing formation and interaction of stars in environments at extreme densities, from isolation to dense clusters.

  16. The dichotomy between strong and ultra-weak magnetic fields among intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Lignières, François; Petit, Pascal; Aurière, Michel; Wade, Gregg A.; Böhm, Torsten

    2014-08-01

    Until recently, the detection of magnetic fields at the surface of intermediate-mass main-sequence stars has been limited to Ap/Bp stars, a class of chemically peculiar stars. This class represents no more than 5-10% of the stars in this mass range. This small fraction is not explained by the fossil field paradigm that describes the Ap/Bp type magnetism as a remnant of an early phase of the star-life. Also, the limitation of the field measurements to a small and special group of stars is obviously a problem to study the effect of the magnetic fields on the stellar evolution of a typical intermediate-mass star. Thanks to the improved sensitivity of a new generation of spectropolarimeters, a lower bound to the magnetic fields of Ap/Bp stars, a two orders of magnitude desert in the longitudinal magnetic field and a new type of sub-gauss magnetism first discovered on Vega have been identified. These advances provide new clues to understand the origin of intermediate-mass magnetism as well as its influence on stellar evolution. In particular, a scenario has been proposed whereby the magnetic dichotomy between Ap/Bp and Vega-like magnetism originate from the bifurcation between stable and unstable large scale magnetic configurations in differentially rotating stars. In this paper, we review these recent observational findings and discuss this scenario.

  17. Searches for all types of binary mergers in the first Advanced LIGO observing run

    NASA Astrophysics Data System (ADS)

    Read, Jocelyn

    2017-01-01

    The first observational run of the Advanced LIGO detectors covered September 12, 2015 to January 19, 2016. In that time, two definitive observations of merging binary black hole systems were made. In particular, the second observation, GW151226, relied on matched-filter searches targeting merging binaries. These searches were also capable of detecting binary mergers from binary neutron stars and from black-hole/neutron-star binaries. In this talk, I will give an overview of LIGO compact binary coalescence searches, in particular focusing on systems that contain neutron stars. I will discuss the sensitive volumes of the first observing run, the astrophysical implications of detections and non-detections, and prospects for future observations

  18. Life and light: exotic photosynthesis in binary and multiple-star systems.

    PubMed

    O'Malley-James, J T; Raven, J A; Cockell, C S; Greaves, J S

    2012-02-01

    The potential for Earth-like planets within binary/multiple-star systems to host photosynthetic life was evaluated by modeling the levels of photosynthetically active radiation (PAR) such planets receive. Combinations of M and G stars in (i) close-binary systems; (ii) wide-binary systems, and (iii) three-star systems were investigated, and a range of stable radiation environments were found to be possible. These environmental conditions allow for the possibility of familiar, but also more exotic, forms of photosynthetic life, such as IR photosynthesizers and organisms that are specialized for specific spectral niches.

  19. CAFÉ-BEANS: An exhaustive hunt for high-mass binaries

    NASA Astrophysics Data System (ADS)

    Negueruela, I.; Maíz-Apellániz, J.; Simón-Díaz, S.; Alfaro, E. J.; Herrero, A.; Alonso, J.; Barbá, R.; Lorenzo, J.; Marco, A.; Monguió, M.; Morrell, N.; Pellerin, A.; Sota, A.; Walborn, N. R.

    2015-05-01

    CAFÉ-BEANS is an on-going survey running on the 2.2 m telescope at Calar Alto. For more than two years, CAFÉ-BEANS has been collecting high-resolution spectra of early-type stars with the aim of detecting and characterising spectroscopic binaries. The main goal of this project is a thorough characterisation of multiplicity in high-mass stars by detecting all spectroscopic and visual binaries in a large sample of Galactic O-type stars, and solving their orbits. Our final objective is eliminating all biases in the high-mass-star IMF created by undetected binaries.

  20. Radial-velocity measures and the existence of astrophysical binaries in late-type dwarf stars

    NASA Technical Reports Server (NTRS)

    Bopp, B. W.; Meredith, R.

    1986-01-01

    Radial velocities with errors of 1-2 km/s are presented based on CCD scans obtained with the Kitt Peak National Observatory coude feed telescope between 1982 and 1985 of 48 dK-M stars that lack Balmer emission. Comparison with Gliese's (1969) values shows only two stars to be spectroscopic binary candidates with small velocity amplitudes. No evidence for any short period (less than 10 days) binaries is found, supporting the conclusions of Young et al. (1986) that there are no astrophysical binaries among these chromosherically inactive dM stars.

  1. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    NASA Astrophysics Data System (ADS)

    Fleming, David; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-04-01

    To date, no binary star system with an orbital period less than 7.5 days has been observed to host a circumbinary planet (CBP), a puzzling observation given the thousands of binary stars with orbital periods < 10 days discovered by the Kepler mission (Kirk et al., 2016) and the observational biases that favor their detection (Munoz & Lai, 2015). We outline a mechanism that explains the observed lack of CBPs via coupled stellar-tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations, transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that in some cases, the stability semi-major axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that typically, at least one planet is ejected from the system. We apply our theory to the shortest period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar-tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  2. What we learn from eclipsing binaries in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Guinan, Edward F.

    1990-01-01

    Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.

  3. A possible formation channel for blue hook stars in globular cluster - II. Effects of metallicity, mass ratio, tidal enhancement efficiency and helium abundance

    NASA Astrophysics Data System (ADS)

    Lei, Zhenxin; Zhao, Gang; Zeng, Aihua; Shen, Lihua; Lan, Zhongjian; Jiang, Dengkai; Han, Zhanwen

    2016-12-01

    Employing tidally enhanced stellar wind, we studied in binaries the effects of metallicity, mass ratio of primary to secondary, tidal enhancement efficiency and helium abundance on the formation of blue hook (BHk) stars in globular clusters (GCs). A total of 28 sets of binary models combined with different input parameters are studied. For each set of binary model, we presented a range of initial orbital periods that is needed to produce BHk stars in binaries. All the binary models could produce BHk stars within different range of initial orbital periods. We also compared our results with the observation in the Teff-logg diagram of GC NGC 2808 and ω Cen. Most of the BHk stars in these two GCs locate well in the region predicted by our theoretical models, especially when C/N-enhanced model atmospheres are considered. We found that mass ratio of primary to secondary and tidal enhancement efficiency have little effects on the formation of BHk stars in binaries, while metallicity and helium abundance would play important roles, especially for helium abundance. Specifically, with helium abundance increasing in binary models, the space range of initial orbital periods needed to produce BHk stars becomes obviously wider, regardless of other input parameters adopted. Our results were discussed with recent observations and other theoretical models.

  4. Star formation history: Modeling of visual binaries

    NASA Astrophysics Data System (ADS)

    Gebrehiwot, Y. M.; Tessema, S. B.; Malkov, O. Yu.; Kovaleva, D. A.; Sytov, A. Yu.; Tutukov, A. V.

    2018-05-01

    Most stars form in binary or multiple systems. Their evolution is defined by masses of components, orbital separation and eccentricity. In order to understand star formation and evolutionary processes, it is vital to find distributions of physical parameters of binaries. We have carried out Monte Carlo simulations in which we simulate different pairing scenarios: random pairing, primary-constrained pairing, split-core pairing, and total and primary pairing in order to get distributions of binaries over physical parameters at birth. Next, for comparison with observations, we account for stellar evolution and selection effects. Brightness, radius, temperature, and other parameters of components are assigned or calculated according to approximate relations for stars in different evolutionary stages (main-sequence stars, red giants, white dwarfs, relativistic objects). Evolutionary stage is defined as a function of system age and component masses. We compare our results with the observed IMF, binarity rate, and binary mass-ratio distributions for field visual binaries to find initial distributions and pairing scenarios that produce observed distributions.

  5. Pulsar-irradiated stars in dense globular clusters

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  6. The Effects of Single and Close Binary Evolution on the Stellar Mass Function

    NASA Astrophysics Data System (ADS)

    Schneider, R. N. F.; Izzard, G. R.; de Mink, S.; Langer, N., Stolte, A., de Koter, A.; Gvaramadze, V. V.; Hussmann, B.; Liermann, A.; Sana, H.

    2013-06-01

    Massive stars are almost exclusively born in star clusters, where stars in a cluster are expected to be born quasi-simultaneously and with the same chemical composition. The distribution of their birth masses favors lower over higher stellar masses, such that the most massive stars are rare, and the existence of an stellar upper mass limit is still debated. The majority of massive stars are born as members of close binary systems and most of them will exchange mass with a close companion during their lifetime. We explore the influence of single and binary star evolution on the high mass end of the stellar mass function using a rapid binary evolution code. We apply our results to two massive Galactic star clusters and show how the shape of their mass functions can be used to determine cluster ages and comment on the stellar upper mass limit in view of our new findings.

  7. The OGLE Collection of Variable Stars. Over 450 000 Eclipsing and Ellipsoidal Binary Systems Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Soszyński, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Hamanowicz, A.

    2016-12-01

    We present a collection of 450 598 eclipsing and ellipsoidal binary systems detected in the OGLE fields toward the Galactic bulge. The collection consists of binary systems of all types: detached, semi-detached, and contact eclipsing binaries, RS CVn stars, cataclysmic variables, HW Vir binaries, double periodic variables, and even planetary transits. For all stars we provide the I- and V-band time-series photometry obtained during the OGLE-II, OGLE-III, and OGLE-IV surveys. We discuss methods used to identify binary systems in the OGLE data and present several objects of particular interest.

  8. Upper Limits on the Rates of Binary Neutron Star and Neutron Star-Black Hole Mergers from Advanced LIGO’s First Observing Run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio., M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-12-01

    We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary-neutron star systems with component masses \\in [1,3] {M}⊙ and component dimensionless spins <0.05. We also searched for neutron star-black hole systems with the same neutron star parameters, black hole mass \\in [2,99] {M}⊙ , and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary-neutron star systems with component mass distributions of 1.35 ± 0.13 M ⊙ at a volume-weighted average distance of ˜70 Mpc, and for neutron star-black hole systems with neutron star masses of 1.4 M ⊙ and black hole masses of at least 5 M ⊙, a volume-weighted average distance of at least ˜110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc-3 yr-1 for binary-neutron star systems and less than 3600 Gpc-3 yr-1 for neutron star-black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star-binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of {10}-7+20 Gpc-3 yr-1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary-neutron star (neutron star-black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than 2\\buildrel{\\circ}\\over{.} {3}-1.1+1.7 (4\\buildrel{\\circ}\\over{.} {3}-1.9+3.1).

  9. Massive, wide binaries as tracers of massive star formation

    NASA Astrophysics Data System (ADS)

    Griffiths, Daniel W.; Goodwin, Simon P.; Caballero-Nieves, Saida M.

    2018-05-01

    Massive stars can be found in wide (hundreds to thousands au) binaries with other massive stars. We use N-body simulations to show that any bound cluster should always have approximately one massive wide binary: one will probably form if none are present initially, and probably only one will survive if more than one is present initially. Therefore, any region that contains many massive wide binaries must have been composed of many individual subregions. Observations of Cyg OB2 show that the massive wide binary fraction is at least a half (38/74), which suggests that Cyg OB2 had at least 30 distinct massive star formation sites. This is further evidence that Cyg OB2 has always been a large, low-density association. That Cyg OB2 has a normal high-mass initial mass function (IMF) for its total mass suggests that however massive stars form, they `randomly sample' the IMF (as the massive stars did not `know' about each other).

  10. A stellar audit: the computation of encounter rates for 47 Tucanae and omega Centauri

    NASA Astrophysics Data System (ADS)

    Davies, Melvyn B.; Benz, Willy

    1995-10-01

    Using King-Mitchie models, we compute encounter rates between the various stellar species in the globular clusters omega Cen and 47 Tuc. We also compute event rates for encounters between single stars and a population of primordial binaries. Using these rates, and what we have learnt from hydrodynamical simulations of encounters performed earlier, we compute the production rates of objects such as low-mass X-ray binaries (LMXBs), smothered neutron stars and blue stragglers (massive main-sequence stars). If 10 per cent of the stars are contained in primordial binaries, the production rate of interesting objects from encounters involving these binaries is as large as that from encounters between single stars. For example, encounters involving binaries produce a significant number of blue stragglers in both globular cluster models. The number of smothered neutron stars may exceed the number of LMXBs by a factor of 5-20, which may help to explain why millisecond pulsars are observed to outnumber LMXBs in globular clusters.

  11. The Universe, Two by Two.

    ERIC Educational Resources Information Center

    Metz, William

    1983-01-01

    Discusses the nature of and current research related to binary stars, indicating that the knowledge that most stars come in pairs is critical to the understanding of stellar phenomena. Subjects addressed include aberrant stellar behavior, x-ray binaries, lobes/disks, close binaries, planetary nebulas, and formation/evolution of binaries. (JN)

  12. Young Binaries and Early Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Brandner, Wolfgang

    1996-07-01

    Most main-sequence stars are members of binary or multiple systems. The same is true for pre-main-sequence (PMS) stars, as recent surveys have shown. Therefore studying star formation means to a large extent studying the formation of binary systems. Similarly, studying early stellar evolution primarily involves PMS binary systems. In this thesis I have studied the binary frequency among ROSAT selected T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association, and the evolutionary status of Hα-selected PMS binaries in the T associations of Chamaeleon, Lupus, and ρ Ophiuchi. The direct imaging and spectroscopic observations in the optical have been carried out under subarcsec seeing conditions at the ESO New Technology Telescope (NTT) at La Silla. Furthermore, high-spatial resolution images of selected PMS stars in the near infrared were obtained with the ESO adaptive optics system COME-ON+/ADONIS. Among 195 T Tauri stars observed using direct imaging 31 binaries could be identified, 12 of them with subarcsec separation. Based on statistical arguments alone I conclude that almost all of them are indeed physical (i.e. gravitationally bound) binary or multiple systems. Using astrometric measurements of some binaries I showed that the components of these binaries are common proper motion pairs, very likely in a gravitationally bound orbit around each other. The overall binary frequency among T Tauri stars with a range of separations between 120 and 1800 AU is in agreement with the binary frequency observed among main-sequence stars in the solar neighbourhood. However, within individual regions the spatial distribution of binaries is non-uniform. In particular, in Upper Scorpius, weak-line T Tauri stars in the vicinity of early type stars seem to be almost devoid of multiple systems, whereas in another area in Upper Scorpius half of all weak-line T Tauri stars have a companion in a range of separation between 0.''7 and 3.''0. For a sample of 14 spatially resolved PMS binaries (separations 0.''6 to 1.prime'7) located in the above mentioned T associations both photometric and spectroscopic information has been analyzed. All binaries (originally unresolved) were identified as PMS stars based on their strong Hα emission and their association with dark clouds. Using the spectral A index, which measures the strength of the CaH band at 697.5nm relative to the nearby continuum as a luminosity class indicator, I showed that the classical T Tauri stars in the sample tend to be close to luminosity class V. Eight out of the 14 pairs could be placed on an H--R diagram. When comparing with theoretical PMS evolutionary tracks the individual components of all pairs appear to be coeval within the observational errors. This result is similar to Hartigan et al. (1994) who found two thirds of the wider pairs with separations from 400 AU to 6000 AU to be coeval. However, unlike Hartigan et al.'s finding for the wider pairs, I find no non-coeval pairs. One of the presumed binaries in our sample (ESO Hα 281) turned out to be a likely chance projection with the ``primary'' showing neither Hα emission nor Li absorption. Finally, using adaptive optics at the ESO 3.6m telescope, diffraction-limited JHK images of the region around the Herbig AeBe star NX Pup were obtained. The close companion (sep. 0.''128) to NX Pup -- originally discovered by HST -- was clearly resolved and its JHK magnitudes were determined. A third object at a separation of 7.''0 from NX Pup was identified as a classical T Tauri star so that NX Pup may in fact form a hierarchical triple system. I discuss the evolutionary status of these stars and derive estimates for their spectral types, luminosities, masses, and ages. My conclusions are that binarity is established very early in stellar evolution, that the orbital parameters of wide binaries (a >= 120AU) remain virtually unchanged during their PMS evolution, and that the components of the wide binaries were formed at the same time --- perhaps either through collisional fragmentation or fragmentation of rotating filaments. (Copies of the thesis (written in German) and related pre-/reprints are available from the author upon request.)

  13. Massive binary stars as a probe of massive star formation

    NASA Astrophysics Data System (ADS)

    Kiminki, Daniel C.

    2010-10-01

    Massive stars are among the largest and most influential objects we know of on a sub-galactic scale. Binary systems, composed of at least one of these stars, may be responsible for several types of phenomena, including type Ib/c supernovae, short and long gamma ray bursts, high-velocity runaway O and B-type stars, and the density of the parent star clusters. Our understanding of these stars has met with limited success, especially in the area of their formation. Current formation theories rely on the accumulated statistics of massive binary systems that are limited because of their sample size or the inhomogeneous environments from which the statistics are collected. The purpose of this work is to provide a higher-level analysis of close massive binary characteristics using the radial velocity information of 113 massive stars (B3 and earlier) and binary orbital properties for the 19 known close massive binaries in the Cygnus OB2 Association. This work provides an analysis using the largest amount of massive star and binary information ever compiled for an O-star rich cluster like Cygnus OB2, and compliments other O-star binary studies such as NGC 6231, NGC 2244, and NGC 6611. I first report the discovery of 73 new O or B-type stars and 13 new massive binaries by this survey. This work involved the use of 75 successful nights of spectroscopic observation at the Wyoming Infrared Observatory in addition to observations obtained using the Hydra multi-object spectrograph at WIYN, the HIRES echelle spectrograph at KECK, and the Hamilton spectrograph at LICK. I use these data to estimate the spectrophotometric distance to the cluster and to measure the mean systemic velocity and the one-sided velocity dispersion of the cluster. Finally, I compare these data to a series of Monte Carlo models, the results of which indicate that the binary fraction of the cluster is 57 +/- 5% and that the indices for the power law distributions, describing the log of the periods, mass-ratios, and eccentricities, are --0.2 +/- 0.3, 0.3 +/- 0.3, and --0.8 +/- 0.3 respectively (or not consistent with a simple power law distribution). The observed distributions indicate a preference for short period systems with nearly circular orbits and companions that are not likely drawn from a standard initial mass function, as would be expected from random pairing. An interesting and unexpected result is that the period distribution is inconsistent with a standard power-law slope stemming mainly from an excess of periods between 3 and 5 days and an absence of periods between 7 and 14 days. One possible explanation of this phenomenon is that the binary systems with periods from 7--14 days are migrating to periods of 3--5 days. In addition, the binary distribution here is not consistent with previous suggestions in the literature that 45% of OB binaries are members of twin systems (mass ratio near 1).

  14. Separation in 5 Msun Binaries

    NASA Astrophysics Data System (ADS)

    Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.

    2013-01-01

    Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.

  15. The close binary frequency of Wolf-Rayet stars as a function of metallicity in M31 and M33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugent, Kathryn F.; Massey, Philip, E-mail: kneugent@lowell.edu, E-mail: phil.massey@lowell.edu

    Massive star evolutionary models generally predict the correct ratio of WC-type and WN-type Wolf-Rayet stars at low metallicities, but underestimate the ratio at higher (solar and above) metallicities. One possible explanation for this failure is perhaps single-star models are not sufficient and Roche-lobe overflow in close binaries is necessary to produce the 'extra' WC stars at higher metallicities. However, this would require the frequency of close massive binaries to be metallicity dependent. Here we test this hypothesis by searching for close Wolf-Rayet binaries in the high metallicity environments of M31 and the center of M33 as well as in themore » lower metallicity environments of the middle and outer regions of M33. After identifying ∼100 Wolf-Rayet binaries based on radial velocity variations, we conclude that the close binary frequency of Wolf-Rayets is not metallicity dependent and thus other factors must be responsible for the overabundance of WC stars at high metallicities. However, our initial identifications and observations of these close binaries have already been put to good use as we are currently observing additional epochs for eventual orbit and mass determinations.« less

  16. New Results on Contact Binary Stars

    NASA Astrophysics Data System (ADS)

    He, J.; Qian, S.; Zhu, L.; Liu, L.; Liao, W.

    2014-08-01

    Contact binary star is a kind of close binary with the strongest interaction binary system. Their formations and evolutions are unsolved problems in astrophysics. Since 2000, our groups have observed and studied more than half a hundred of contact binaries. In this report, I will summarize our new results of some contact binary stars (e.g. UZ CMi, GSC 03526-01995, FU Dra, GSC 0763-0572, V524 Mon, MR Com, etc.). They are as follow: (1) We discovered that V524 Mon and MR Com are shallow-contact binaries with their period decreasing; (2) GSC 03526-01995 is middle-contact binary without a period increasing or decreasing continuously; (3) UZ CMi, GSC 0763-0572 and FU Dra are middle-contact binaries with the period increasing continuously; (4) UZ CMi, GSC 03526-01995, FU Dra and V524 Mon show period oscillation which may imply the presence of additional components in these contact binaries.

  17. The Evolution of Massive Stars: a Selection of Facts and Questions

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.

    In the present paper we discuss a selection of facts and questions related to observations and evolutionary calculations of massive single stars and massive stars in interacting binaries. We focus on the surface chemical abundances, the role of stellar winds, the early Be-stars, the high mass X-ray binaries and the effects of rotation on stellar evolution. Finally, we present an unconventionally formed object scenario (UFO-scenario) of WR binaries in dense stellar environments.

  18. Distinguishing boson stars from black holes and neutron stars from tidal interactions in inspiraling binary systems

    NASA Astrophysics Data System (ADS)

    Sennett, Noah; Hinderer, Tanja; Steinhoff, Jan; Buonanno, Alessandra; Ossokine, Serguei

    2017-07-01

    Binary systems containing boson stars—self-gravitating configurations of a complex scalar field—can potentially mimic black holes or neutron stars as gravitational-wave sources. We investigate the extent to which tidal effects in the gravitational-wave signal can be used to discriminate between these standard sources and boson stars. We consider spherically symmetric boson stars within two classes of scalar self-interactions: an effective-field-theoretically motivated quartic potential and a solitonic potential constructed to produce very compact stars. We compute the tidal deformability parameter characterizing the dominant tidal imprint in the gravitational-wave signals for a large span of the parameter space of each boson star model, covering the entire space in the quartic case, and an extensive portion of interest in the solitonic case. We find that the tidal deformability for boson stars with a quartic self-interaction is bounded below by Λmin≈280 and for those with a solitonic interaction by Λmin≈1.3 . We summarize our results as ready-to-use fits for practical applications. Employing a Fisher matrix analysis, we estimate the precision with which Advanced LIGO and third-generation detectors can measure these tidal parameters using the inspiral portion of the signal. We discuss a novel strategy to improve the distinguishability between black holes/neutrons stars and boson stars by combining tidal deformability measurements of each compact object in a binary system, thereby eliminating the scaling ambiguities in each boson star model. Our analysis shows that current-generation detectors can potentially distinguish boson stars with quartic potentials from black holes, as well as from neutron-star binaries if they have either a large total mass or a large (asymmetric) mass ratio. Discriminating solitonic boson stars from black holes using only tidal effects during the inspiral will be difficult with Advanced LIGO, but third-generation detectors should be able to distinguish between binary black holes and these binary boson stars.

  19. The Bulgarian Contribution to the Study of variable stars on observational data from the Kepler mission

    NASA Astrophysics Data System (ADS)

    Kjurkchieva, D. P.; Dimitrov, D. P.; Radeva, V. S.; Vasileva, D. L.; Atanasova, T. V.; Stateva, I. V.; Petrov, N. I.; Iliev, I. Kh.

    2018-02-01

    This review paper presents the results of investigations of variable stars obtained by Bulgarian astronomers based on observations of Kepler mission. The main contributions are: determination of orbits and global parameters of more than 100 binary stars; creation of the largest catalog of eccentric stars; identification of sixty new binaries with eccentricity over 0.5; discovery of 19 heartbeat stars; detailed investigation of the spot and flare activity of several binary stars; asteroseismic study of three pulsating stars; detection of deep transits of WD 1145+017 due to its disentangling planet system. The paper illustrates not only scientific significance but also educational and social impact of the work on these tasks.

  20. The Clusters AgeS Experiment (CASE). Variable stars in the field of the globular cluster NGC 362

    NASA Astrophysics Data System (ADS)

    Rozyczka, M.; Thompson, I. B.; Narloch, W.; Pych, W.; Schwarzenberg-Czerny, A.

    2016-09-01

    The field of the globular cluster NGC 362 was monitored between 1997 and 2015 in a search for variable stars. BV light curves were obtained for 151 periodic or likely periodic variable stars, over a hundred of which are new detections. Twelve newly detected variable stars are proper-motion members of the cluster: two SX Phe and two RR Lyr pulsators, one contact binary, three detached or semi-detached eclipsing binaries, and four spotted variable stars. The most interesting objects among these are the binary blue straggler V20 with an asymmetric light curve, and the 8.1 d semidetached binary V24 located on the red giant branch of NGC 362, which is a Chandra X-ray source. We also provide substantial new data for 24 previously known variable stars.

  1. VizieR Online Data Catalog: High quality Spitzer/MIPS obs. of F4-K2 stars (Sierchio+, 2014)

    NASA Astrophysics Data System (ADS)

    Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.; Gaspar, A.

    2016-11-01

    We used specific criteria to draw samples of stars from the entire Spitzer Debris Disk Database (see section 2.1.1). V magnitudes were taken from Hipparcos and transformed to Johnson V. All stars were also required to have observations on the Two Micron All Sky Survey (2MASS) Ks system. Additional measurements were obtained at SAAO on the 0.75m telescope using the MarkII Infrared Photometer (transformed as described by Koen et al. 2007MNRAS.380.1433K), and at the Steward Observatory 61 in telescope using a NICMOS2-based camera with a 2MASS filter set and a neutral density filter to avoid saturation. These measurements will be described in a forthcoming paper (K. Y. L. Su et al., in preparation). The original programs in which our sample stars were measured are identified in Table 1. A large majority (93%) come from seven Spitzer programs: (1) the MIPS Guaranteed Time Observer (GTO) Sun-like star observations (Trilling+ 2008ApJ...674.1086T); (2) Formation and Evolution of Planetary Systems (FEPS; Meyer+ 2006, J/PASP/118/1690); (3) Completing the Census of Debris Disks (Koerner+ 2010ApJ...710L..26K); (4) potential Space Interferometry Mission/Terrestrial Planet Finder (SIM/TPF) targets (Beichman+ 2006ApJ...652.1674B); (5) an unbiased sample of F-stars (Trilling+ 2008ApJ...674.1086T); and (6) two coordinated programs selecting stars on the basis of indicators of youth (Low+ 2005ApJ...631.1170L; Plavchan+ 2009ApJ...698.1068P). See section 2.1.2. (1 data file).

  2. The multiplicity of massive stars: A high angular resolution survey with the HST fine guidance sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aldoretta, E. J.; Gies, D. R.; Henry, T. J.

    2015-01-01

    We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additionalmore » targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.« less

  3. THE HOT R CORONAE BOREALIS STAR DY CENTAURI IS A BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kameswara Rao, N.; Lambert, David L.; McArthur, Barbara

    2012-11-20

    The remarkable hot R Coronae Borealis (RCB) star DY Cen is revealed to be the first and only binary system to be found among the RCB stars and their likely relatives, including the extreme helium stars and the hydrogen-deficient carbon stars. Radial velocity determinations from 1982 to 2010 have shown that DY Cen is a single-lined spectroscopic binary in an eccentric orbit with a period of 39.67 days. It is also one of the hottest and most H-rich member of the class of RCB stars. The system may have evolved from a common envelope to its current form.

  4. Formation of Thorne-Żytkow objects in close binaries

    NASA Astrophysics Data System (ADS)

    Hutilukejiang, Bumareyamu; Zhu, Chunhua; Wang, Zhaojun; Lü, Guoliang

    2018-04-01

    Thorne-Żytkow objects (TŻOs), originally proposed by Thorne and Żytkow, may form as a result of unstable mass transfer in a massive X-ray binary after a neutron star (NS) is engulfed in the envelope of its companion star. Using a rapid binary evolution program and the Monte Carlo method, we simulated the formation of TŻOs in close binary stars. The Galactic birth rate of TŻOs is about 1.5× 10^{-4} yr^{-1}. Their progenitors may be composed of a NS and a main-sequence star, a star in the Hertzsprung gap or a core-helium burning, or a naked helium star. The birth rates of TŻOs via the above different progenitors are 1.7× 10^{-5}, 1.2× 10^{-4}, 0.7× 10^{-5}, 0.6× 10^{-5} yr^{-1}, respectively. These progenitors may be massive X-ray binaries. We found that the observational properties of three massive X-ray binaries (SMC X-1, Cen X-3 and LMC X-4) in which the companions of NSs may fill their Roche robes were consistent with those of their progenitors.

  5. THE PROPERTIES OF DYNAMICALLY EJECTED RUNAWAY AND HYPER-RUNAWAY STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perets, Hagai B.; Subr, Ladislav

    2012-06-01

    Runaway stars are stars observed to have large peculiar velocities. Two mechanisms are thought to contribute to the ejection of runaway stars, both of which involve binarity (or higher multiplicity). In the binary supernova scenario, a runaway star receives its velocity when its binary massive companion explodes as a supernova (SN). In the alternative dynamical ejection scenario, runaway stars are formed through gravitational interactions between stars and binaries in dense, compact clusters or cluster cores. Here we study the ejection scenario. We make use of extensive N-body simulations of massive clusters, as well as analytic arguments, in order to characterizemore » the expected ejection velocity distribution of runaway stars. We find that the ejection velocity distribution of the fastest runaways (v {approx}> 80 km s{sup -1}) depends on the binary distribution in the cluster, consistent with our analytic toy model, whereas the distribution of lower velocity runaways appears independent of the binaries' properties. For a realistic log constant distribution of binary separations, we find the velocity distribution to follow a simple power law: {Gamma}(v){proportional_to}v{sup -8/3} for the high-velocity runaways and v{sup -3/2} for the low-velocity ones. We calculate the total expected ejection rates of runaway stars from our simulated massive clusters and explore their mass function and their binarity. The mass function of runaway stars is biased toward high masses and strongly depends on their velocity. The binarity of runaways is a decreasing function of their ejection velocity, with no binaries expected to be ejected with v > 150 km s{sup -1}. We also find that hyper-runaways with velocities of hundreds of km s{sup -1} can be dynamically ejected from stellar clusters, but only at very low rates, which cannot account for a significant fraction of the observed population of hyper-velocity stars in the Galactic halo.« less

  6. Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes

    NASA Astrophysics Data System (ADS)

    Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica

    2016-04-01

    In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.

  7. Discovery of Strong EUV-induced Balmer Emission in the New WD+dM Binary EUVE J2013+40.0 (RE 2013+400)

    NASA Astrophysics Data System (ADS)

    Thorstensen, J. R.; Vennes, S.

    1993-12-01

    The binary system EUVE J2013+40.0 (= RE 2013+400) was discovered in the EUV-selected sample of white dwarfs identified in the course of the ROSAT Wide Field Camera (WFC) all-sky survey (Pounds et al. 1993, MNRAS, 260, 77). The intense extreme ultraviolet (EUV) emission from the hot white dwarf (DAO type) was also detected in the course of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (Bowyer et al. 1993, ApJ, submitted), and the subsequent optical identification campaign suggested the association of EUVE J2013+40.0 with the Feige 24 class of binary systems (see Vennes & Thorstensen, these proceedings). Such systems consist of a hot H-rich white dwarf (DA/DAO) and a red dwarf companion (dM) and are characterized by strong, narrow, variable Balmer emission. We obtained spectroscopy with 4 Angstroms resolution at the Michigan-Dartmouth-MIT Hiltner 2.4 m, covering the Hα and Hβ range. The Hα emission line velocity and equivalent widths varied with a period of 0.708 +/- 0.003 d; the velocity semiamplitude is 89 +/- 3 km s(-1) . The emission equivalent width reaches maximum strength 0.251 +/- 0.007 cycle after maximum emission-line velocity, that is, when the emission source reaches superior conjunction. This is just as expected if the emission arises from reprocessing of the EUV radiation incident upon the face of the dM star facing the white dwarf, as proposed for Feige 24 by Thorstensen et al. (1978, ApJ, 223, 260). EUVE J2013+40.0 is one of a handful of WD+dM binary systems in which the illumination effect is observed with unambiguous clarity. By comparing Feige 24 and EUVE J2013+40.0, and modelling the white dwarf EUV emission and red dwarf Balmer emission, we constrain the orbital inclinations. Additional spectroscopy of EUVE J2013+40.0 is being scheduled to determine the component masses. These are important input data for the study of the close binary systems which arise from common envelope evolution. This work is supported by a forthcoming NASA Guest Observer grant.

  8. Confusing Binaries: The Role of Stellar Binaries in Biasing Disk Properties in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Naoz, Smadar; Ghez, Andrea M.; Hees, Aurelien; Do, Tuan; Witzel, Gunther; Lu, Jessica R.

    2018-02-01

    The population of young stars near the supermassive black hole (SMBH) in the Galactic Center (GC) has presented an unexpected challenge to theories of star formation. Kinematic measurements of these stars have revealed a stellar disk structure (with an apparent 20% disk membership) that has provided important clues regarding the origin of these mysterious young stars. However, many of the apparent disk properties are difficult to explain, including the low disk membership fraction and the high eccentricities given the youth of this population. Thus far, all efforts to derive the properties of this disk have made the simplifying assumption that stars at the GC are single stars. Nevertheless, stellar binaries are prevalent in our Galaxy, and recent investigations suggested that they may also be abundant in the Galactic Center. Here, we show that binaries in the disk can largely alter the apparent orbital properties of the disk. The motion of binary members around each other adds a velocity component, which can be comparable to the magnitude of the velocity around the SMBH in the GC. Thus, neglecting the contribution of binaries can significantly vary the inferred stars’ orbital properties. While the disk orientation is unaffected, the apparent disk’s 2D width will be increased to about 11.°2, similar to the observed width. For a population of stars orbiting the SMBH with zero eccentricity, unaccounted for binaries will create a wide apparent eccentricity distribution with an average of 0.23. This is consistent with the observed average eccentricity of the stars’ in the disk. We suggest that this high eccentricity value, which poses a theoretical challenge, may be an artifact of binary stars. Finally, our results suggest that the actual disk membership might be significantly higher than the one inferred by observations that ignore the contribution of binaries, alleviating another theoretical challenge.

  9. Biases in Planet Occurrence Caused by Unresolved Binaries in Transit Surveys

    NASA Astrophysics Data System (ADS)

    Bouma, L. G.; Masuda, Kento; Winn, Joshua N.

    2018-06-01

    Wide-field surveys for transiting planets, such as the NASA Kepler and TESS missions, are usually conducted without knowing which stars have binary companions. Unresolved and unrecognized binaries give rise to systematic errors in planet occurrence rates, including misclassified planets and mistakes in completeness corrections. The individual errors can have different signs, making it difficult to anticipate the net effect on inferred occurrence rates. Here, we use simplified models of signal-to-noise limited transit surveys to try and clarify the situation. We derive a formula for the apparent occurrence rate density measured by an observer who falsely assumes all stars are single. The formula depends on the binary fraction, the mass function of the secondary stars, and the true occurrence of planets around primaries, secondaries, and single stars. It also takes into account the Malmquist bias by which binaries are over-represented in flux-limited samples. Application of the formula to an idealized Kepler-like survey shows that for planets larger than 2 R ⊕, the net systematic error is of order 5%. In particular, unrecognized binaries are unlikely to be the reason for the apparent discrepancies between hot-Jupiter occurrence rates measured in different surveys. For smaller planets the errors are potentially larger: the occurrence of Earth-sized planets could be overestimated by as much as 50%. We also show that whenever high-resolution imaging reveals a transit host star to be a binary, the planet is usually more likely to orbit the primary star than the secondary star.

  10. Binary-corrected velocity dispersions from single- and multi-epoch radial velocities: massive stars in R136 as a test case

    NASA Astrophysics Data System (ADS)

    Cottaar, M.; Hénault-Brunet, V.

    2014-02-01

    Orbital motions from binary stars can broaden the observed line-of-sight velocity distribution of a stellar system and artificially inflate the measured line-of-sight velocity dispersion, which can in turn lead to erroneous conclusions about the dynamical state of the system. Recently, a maximum-likelihood procedure was proposed to recover the intrinsic velocity dispersion of a resolved star cluster from a single epoch of radial velocity data of individual stars, which was achieved by simultaneously fitting the intrinsic velocity distribution of the single stars and the centers of mass of the binaries along with the velocity shifts caused by binary orbital motions. Assuming well-characterized binary properties, this procedure can accurately reproduce intrinsic velocity dispersions below 1 km s-1 for solar-type stars. Here we investigate the systematic offsets induced when the binary properties are uncertain and we show that two epochs of radial velocity data with an appropriate baseline can help to mitigate these systematic effects. We first test the method described above using Monte Carlo simulations, taking into account the large uncertainties in the binary properties of OB stars. We then apply it to radial velocity data in the young massive cluster R136 for which the intrinsic velocity dispersion of O-type stars is known from an intensive multi-epoch approach. For typical velocity dispersions of young massive clusters (≳4 km s-1) and with a single epoch of data, we demonstrate that the method can just about distinguish between a cluster in virial equilibrium and an unbound cluster. This is due to the higher spectroscopic binary fraction and more loosely constrained distributions of orbital parameters of OB stars compared to solar-type stars. By extending the maximum-likelihood method to multi-epoch data, we show that the accuracy on the fitted velocity dispersion can be improved by only a few percent by using only two epochs of radial velocities. This procedure offers a promising method of accurately measuring the intrinsic stellar velocity dispersion in other systems for which the binary properties are poorly constrained, for example, young clusters and associations whose luminosity is dominated by OB stars. Appendix A is available in electronic form at http://www.aanda.org

  11. Neutron Stars and NuSTAR

    NASA Astrophysics Data System (ADS)

    Bhalerao, Varun

    2012-05-01

    My thesis centers around the study of neutron stars, especially those in massive binary systems. To this end, it has two distinct components: the observational study of neutron stars in massive binaries with a goal of measuring neutron star masses and participation in NuSTAR, the first imaging hard X-ray mission, one that is extremely well suited to the study of massive binaries and compact objects in our Galaxy. The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing high energy X-ray telescope to orbit. NuSTAR has an order-of-magnitude better angular resolution and has two orders of magnitude higher sensitivity than any currently orbiting hard X-ray telescope. I worked to develop, calibrate, and test CdZnTe detectors for NuSTAR. I describe the CdZnTe detectors in comprehensive detail here - from readout procedures to data analysis. Detailed calibration of detectors is necessary for analyzing astrophysical source data obtained by the NuSTAR. I discuss the design and implementation of an automated setup for calibrating flight detectors, followed by calibration procedures and results. Neutron stars are an excellent probe of fundamental physics. The maximum mass of a neutron star can put stringent constraints on the equation of state of matter at extreme pressures and densities. From an astrophysical perspective, there are several open questions in our understanding of neutron stars. What are the birth masses of neutron stars? How do they change in binary evolution? Are there multiple mechanisms for the formation of neutron stars? Measuring masses of neutron stars helps answer these questions. Neutron stars in high-mass X-ray binaries have masses close to their birth mass, providing an opportunity to disentangle the role of "nature" and "nurture" in the observed mass distributions. In 2006, masses had been measured for only six such objects, but this small sample showed the greatest diversity in masses among all classes of neutron star binaries. Intrigued by this diversity - which points to diverse birth masses - we undertook a systematic survey to measure the masses of neutron stars in nine high-mass X-ray binaries. In this thesis, I present results from this ongoing project. While neutron stars formed the primary focus of my work, I also explored other topics in compact objects. Appendix A describes the discovery and complete characterization of a 1RXS J173006.4+033813, a polar cataclysmic variable. Appendix B describes the discovery of a diamond planet orbiting a millisecond pulsar, and our search for its optical counterpart.

  12. Binary Systems and the Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Malkov, O. Yu.

    2017-07-01

    In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.

  13. On the origin of the hypervelocity runaway star HD 271791

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2010-01-01

    We discuss the origin of the early-B-type runaway star HD 271791 and show that its extremely high velocity (≃530 - 920km s-1) cannot be explained within the framework of the binary-supernova ejection scenario. Instead, we suggest that HD 271791 attained its peculiar velocity in the course of a strong dynamical encounter between two hard, massive binaries or through an exchange encounter between a hard, massive binary and a very massive star, formed through runaway mergers of ordinary massive stars in the dense core of a young massive star cluster.

  14. The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M. K.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.

    2004-03-01

    We present new version of the OGLE-II catalog of eclipsing binary stars detected in the Small Magellanic Cloud, based on Difference Image Analysis catalog of variable stars in the Magellanic Clouds containing data collected from 1997 to 2000. We found 1351 eclipsing binary stars in the central 2.4 square degree area of the SMC. 455 stars are newly discovered objects, not found in the previous release of the catalog. The eclipsing objects were selected with the automatic search algorithm based on the artificial neural network. The full catalog is accessible from the OGLE Internet archive.

  15. Primordial binary populations in low-density star clusters as seen by Chandra: globular clusters versus old open clusters

    NASA Astrophysics Data System (ADS)

    van den Berg, Maureen C.

    2015-08-01

    The binaries in the core of a star cluster are the energy source that prevents the cluster from experiencing core collapse. To model the dynamical evolution of a cluster, it is important to have constraints on the primordial binary content. X-ray observations of old star clusters are very efficient in detecting the close interacting binaries among the cluster members. The X-ray sources in star clusters are a mix of binaries that were dynamically formed and primordial binaries. In massive, dense star clusters, dynamical encounters play an important role in shaping the properties and numbers of the binaries. In contrast, in the low-density clusters the impact of dynamical encounters is presumed to be very small, and the close binaries detected in X-rays represent a primordial population. The lowest density globular clusters have current masses and central densities similar to those of the oldest open clusters in our Milky Way. I will discuss the results of studies with the Chandra X-ray Observatory that have nevertheless revealed a clear dichotomy: far fewer (if any at all) X-ray sources are detected in the central regions of the low-density globular clusters compared to the number of secure cluster members that have been detected in old open clusters (above a limiting X-ray luminosity of typically 4e30 erg/s). The low stellar encounter rates imply that dynamical destruction of binaries can be ignored at present, therefore an explanation must be sought elsewhere. I will discuss several factors that can shed light on the implied differences between the primordial close binary populations in the two types of star clusters.

  16. THE EFFECT OF UNRESOLVED BINARIES ON GLOBULAR CLUSTER PROPER-MOTION DISPERSION PROFILES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchini, P.; Norris, M. A.; Ven, G. van de

    2016-03-20

    High-precision kinematic studies of globular clusters (GCs) require an accurate knowledge of all possible sources of contamination. Among other sources, binary stars can introduce systematic biases in the kinematics. Using a set of Monte Carlo cluster simulations with different concentrations and binary fractions, we investigate the effect of unresolved binaries on proper-motion dispersion profiles, treating the simulations like Hubble Space Telescope proper-motion samples. Since GCs evolve toward a state of partial energy equipartition, more-massive stars lose energy and decrease their velocity dispersion. As a consequence, on average, binaries have a lower velocity dispersion, since they are more-massive kinematic tracers. Wemore » show that, in the case of clusters with high binary fractions (initial binary fractions of 50%) and high concentrations (i.e., closer to energy equipartition), unresolved binaries introduce a color-dependent bias in the velocity dispersion of main-sequence stars of the order of 0.1–0.3 km s{sup −1} (corresponding to 1%−6% of the velocity dispersion), with the reddest stars having a lower velocity dispersion, due to the higher fraction of contaminating binaries. This bias depends on the ability to distinguish binaries from single stars, on the details of the color–magnitude diagram and the photometric errors. We apply our analysis to the HSTPROMO data set of NGC 7078 (M15) and show that no effect ascribable to binaries is observed, consistent with the low binary fraction of the cluster. Our work indicates that binaries do not significantly bias proper-motion velocity-dispersion profiles, but should be taken into account in the error budget of kinematic analyses.« less

  17. DIFFERENT DYNAMICAL AGES FOR THE TWO YOUNG AND COEVAL LMC STAR CLUSTERS, NGC 1805 AND NGC 1818, IMPRINTED ON THEIR BINARY POPULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Aaron M.; Grijs, Richard de; Li, Chengyuan

    2015-05-20

    The two Large Magellanic Cloud star clusters, NGC 1805 and NGC 1818, are approximately the same chronological age (∼30 Myr), but show different radial trends in binary frequency. The F-type stars (1.3–2.2 M{sub ⊙}) in NGC 1818 have a binary frequency that decreases toward the core, while the binary frequency for stars of similar mass in NGC 1805 is flat with radius, or perhaps bimodal (with a peak in the core). We show here, through detailed N-body modeling, that both clusters could have formed with the same primordial binary frequency and with binary orbital elements and masses drawn from themore » same distributions (defined from observations of open clusters and the field of our Galaxy). The observed radial trends in binary frequency for both clusters are best matched with models that have initial substructure. Furthermore, both clusters may be evolving along a very similar dynamical sequence, with the key difference that NGC 1805 is dynamically older than NGC 1818. The F-type binaries in NGC 1818 still show evidence of an initial period of rapid dynamical disruptions (which occur preferentially in the core), while NGC 1805 has already begun to recover a higher core binary frequency, owing to mass segregation (which will eventually produce a distribution in binary frequency that rises only toward the core, as is observed in old Milky Way star clusters). This recovery rate increases for higher-mass binaries, and therefore even at one age in one cluster, we predict a similar dynamical sequence in the radial distribution of the binary frequency as a function of binary primary mass.« less

  18. Physical properties of the WR stars in Westerlund 1

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, P. A.; Clark, J. S.; Negueruela, I.

    The Westerlund 1 (Wd1) cluster hosts a rich and varied collection of massive stars. Its dynamical youth and the absence of ongoing star formation indicate a coeval population. As such, the simultaneous presence of both late-type supergiants and Wolf-Rayet stars has defied explanation in the context of single-star evolution. Observational evidence points to a high binary fraction, hence this stellar population offers a robust test for stellar models accounting for both single-star and binary evolution. We present an optical to near-IR (VLT & NTT) spectroscopic analysis of 22 WR stars in Wd 1, delivering physical properties for the WR stars. We discuss how these differ from the Galactic field population, and how they may be reconciled with the predictions of single and binary evolutionary models.

  19. Exploring X-ray Emission from Winds in Two Early B-type Binary Systems

    NASA Astrophysics Data System (ADS)

    Rotter, John P.; Hole, Tabetha; Ignace, Richard; Oskinova, Lida

    2017-01-01

    The winds of the most massive (O-type) stars have been well studied, but less is known about the winds of early-type B stars, especially in binaries. Extending O-star wind theory to these smaller stars, we would expect them to emit X-rays, and when in a B-star binary system, the wind collision should emit additional X-rays. This combined X-ray flux from nearby B-star binary systems should be detectable with current telescopes. Yet X-ray observations of two such systems with the Chandra Observatory not only show far less emission than predicted, but also vary significantly from each other despite having very similar observed characteristics. We will present these observations, and our work applying the classic Castor, Abbott, and Klein (CAK) wind theory, combined with more recent analytical wind-shock models, attempting to reproduce this unexpected range of observations.

  20. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Ivanova, Natalia; da Rocha, Cassio A.; Van, Kenny X.; Nandez, Jose L. A.

    2017-07-01

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 105 stars pc-3, the formation rates are about one binary per Gyr per 50-100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of the same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50-200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.

  1. Hot Subdwarf Stars Among the Objects Rejected from the PG Catalog: a First Assessment Using GALEX Photometry

    NASA Technical Reports Server (NTRS)

    Wade, Richard A.; Stark, M. A.; Green, Richard F.; Durrell, Patrick R.

    2009-01-01

    The hot subdwarf (sd) stars in the Palomar Green (PG) catalog of ultraviolet excess (UVX) objects play a key role in investigations of the frequency and types of binary companions and the distribution of orbital periods. These are important for establishing whether and by which channels the sd stars arise from interactions in close binary systems. It has been suggested that the list of PG sd stars is biased by the exclusion of many stars in binaries, whose spectra show the Ca I1 K line in absorption. A total of 1125 objects that were photometrically selected as candidates were ultimately rejected from the final PG catalog using this K-line criterion. We study 88 of these 'PG-Rejects' (PGRs), to assess whether there are significant numbers of unrecognized sd stars in binaries among the PGR objects. The presence of a sd should cause a large UVX, compared with the cool K-line star. We assemble GALEX, Johnson V, and 2MASS photometry and compare the colors of these PGR objects with those of known sd stars, cool single stars, and hot+cool binaries. Sixteen PGRs were detected in both the far- and near-ultraviolet GALEX passbands. Eleven of these, plus the 72 cases with only an upper limit in the far-ultraviolet band, are interpreted as single cool stars, appropriately rejected by the PG spectroscopy. Of the remaining five stars, three are consistent with being sd stars paired with a cool main sequence companion, while two may be single stars or composite systems of another type. We discuss the implications of these findings for the 1125 PGR objects as a whole. An enlarged study is desirable to increase confidence in these first results and to identify individual sd+cool binaries or other composites for follow-up study. The GALEX AIS data have sufficient sensitivity to carry out this larger study.

  2. A survey of the Local Group of galaxies for symbiotic binary stars - I. First detection of symbiotic stars in M33

    NASA Astrophysics Data System (ADS)

    Mikołajewska, Joanna; Shara, Michael M.; Caldwell, Nelson; Iłkiewicz, Krystian; Zurek, David

    2017-02-01

    We present and discuss initial selection criteria and first results in M33 from a systematic search for extragalactic symbiotic stars. We show that the presence of diffuse ionized gas (DIG) emission can significantly contaminate the spectra of symbiotic star candidates. This important effect forces upon us a more stringent working definition of an extragalactic symbiotic star. We report the first detections and spectroscopic characterization of 12 symbiotic binaries in M33. We found that four of our systems contain carbon-rich giants. In another two of them, the giant seems to be a Zr-enhanced MS star, while the remaining six objects host M-type giants. The high number ratio of C to M giants in these binaries is consistent with the low metallicity of M33. The spatial and radial velocity distributions of these new symbiotic binaries are consistent with a wide range of progenitor star ages.

  3. Searching for New Variable Stars: an Educational Project to Mine Archival Data

    NASA Astrophysics Data System (ADS)

    Walls, B. D.; Redmond, C. E.; Murdick, L. J.; Caton, D. B.

    1998-12-01

    As a Senior Seminar project,. three students were each assigned a night of images of a field containing a variable star observed under our eclipsing binary photometry program. Each field was eight arc-minutes square, with the images coming from the DFM 32-inch telescope at our Dark Sky Observatory. The exposures used a Photometrics CH250 camera with a Tektronix 1024(2) CCD and V-filter. Darks were obtained throughout the night, as well as sky flats at dusk or dawn. The fields were around the systems V442 Cas, WW Cyg, and V345 Lac. The students used Axiom Research's MIRA AP software for doing the aperture photometry, using one initial coordinates file for all of the reasonably bright stars in the field. This number varied from about 60 to almost 200 stars. The MIRA software is easy to use, with auto-centroiding and calibration built in, so it was just a matter of loading images and applying the calibration. One of the student/authors (BDW) wrote an application in Microsoft Visual BASIC to scan the output data files and produce new files, per star. These data sets were examined using PSI-Plot, to look for variability. Errors due to occasional drift led to centroiding problems, a lesson in itself! There were still some residual variations in a few stars that may be real. Follow-up observations will be made to verify these suspicions.

  4. High-resolution spectroscopic observations of binary stars and yellow stragglers in three open clusters: NGC 2360, NGC 3680, and NGC 5822

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales Silva, J. V.; Peña Suárez, V. J.; Katime Santrich, O. J.

    2014-11-01

    Binary stars in open clusters are very useful targets in constraining the nucleosynthesis process. The luminosities of the stars are known because the distances of the clusters are also known, so chemical peculiarities can be linked directly to the evolutionary status of a star. In addition, binary stars offer the opportunity to verify a relationship between them and the straggler population in both globular and open clusters. We carried out a detailed spectroscopic analysis to derive the atmospheric parameters for 16 red giants in binary systems and the chemical composition of 11 of them in the open clusters NGC 2360,more » NGC 3680, and NGC 5822. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employ the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that the stars NGC 2360-92 and 96, NGC 3680-34, and NGC 5822-4 and 312 are yellow straggler stars. We show that the spectra of NGC 5822-4 and 312 present evidence of contamination by an A-type star as a secondary star. For the other yellow stragglers, evidence of contamination is given by the broad wings of the Hα. Detection of yellow straggler stars is important because the observed number can be compared with the number predicted by simulations of binary stellar evolution in open clusters. We also found that the other binary stars are not s-process enriched, which may suggest that in these binaries the secondary star is probably a faint main-sequence object. The lack of any s-process enrichment is very useful in setting constraints for the number of white dwarfs in the open cluster, a subject that is related to the birthrate of these kinds of stars in open clusters and also to the age of a cluster. Finally, rotational velocities were also determined and their values were compared with those already determined for field giant stars.« less

  5. A Photometric Study of Three Eclipsing Binary Stars (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Ryan, A.

    2016-12-01

    (Abstract only) As part of a program to study eclipsing binary stars that exhibit the O'Connell Effect (OCE) we are observing a selection of binary stars in a long term study. The OCE is a difference in maximum light across the ligthcurve possibly cause by starspots. We observed for 7 nights at McDonald Observatory using the 30-inch telescope in July 2015, and used the same telescope remotely for a total of 20 additional nights in August, October, December, and January. We will present lightcurves for three stars from this study, characterize the OCE for these stars, and present our model results for the physical parameters of the star making up each of these systems.

  6. Where Planets Take up Residence

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This diagram illustrates that mature planetary systems like our own might be more common around twin, or binary, stars that are either really close together, or really far apart.

    NASA's Spitzer Space Telescope observed that debris disks, which are signposts of mature planetary systems, are more abundant around the tightest and widest of binary stars it studied. Specifically, the infrared telescope found significantly more debris disks around binary stars that are 0 to 3 astronomical units apart (top panel) and 50 to 500 astronomical units apart (bottom panel) than binary stars that are 3 to 50 astronomical units apart (middle panel). An astronomical unit is the distance between Earth and the sun.

    In other words, if two stars are as far apart from each other as the sun is from Jupiter (5 astronomical units) or Pluto (40 astronomical units), they would be unlikely to host a family of planetary bodies.

    The Spitzer data also revealed that debris disks circle all the way around both members of a close-knit binary (top panel), but only a single member of a wide duo (bottom panel). This could explain why the intermediately spaced binary systems (middle panel) can be inhospitable to planetary disks: they are too far apart to support one big disk around both stars, and they are too close together to have enough room for a disk around just one star.

  7. INTERRUPTED STELLAR ENCOUNTERS IN STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Aaron M.; Leigh, Nathan W. C., E-mail: a-geller@northwestern.edu, E-mail: nleigh@amnh.org

    Strong encounters between single stars and binaries play a pivotal role in the evolution of star clusters. Such encounters can also dramatically modify the orbital parameters of binaries, exchange partners in and out of binaries, and are a primary contributor to the rate of physical stellar collisions in star clusters. Often, these encounters are studied under the approximation that they happen quickly enough and within a small enough volume to be considered isolated from the rest of the cluster. In this paper, we study the validity of this assumption through the analysis of a large grid of single–binary and binary–binarymore » scattering experiments. For each encounter we evaluate the encounter duration, and compare this with the expected time until another single or binary star will join the encounter. We find that for lower-mass clusters, similar to typical open clusters in our Galaxy, the percent of encounters that will be “interrupted” by an interloping star or binary may be 20%–40% (or higher) in the core, though for typical globular clusters we expect ≲1% of encounters to be interrupted. Thus, the assumption that strong encounters occur in relative isolation breaks down for certain clusters. Instead, many strong encounters develop into more complex “mini-clusters,” which must be accounted for in studying, for example, the internal dynamics of star clusters, and the physical stellar collision rate.« less

  8. Hiding in Plain Sight: The Low Mass Helium Star Companion of EL CVn

    NASA Astrophysics Data System (ADS)

    Gies, Douglas

    2016-10-01

    Binary stars with orbital periods of a decade or less are destined to interact during their evolution. The mass donor star among intermediate binaries may be stripped of its envelope by mass transfer to reveal its helium core. In cases that avoid merger, the low mass helium star will remain in a binary orbit but be lost in the glare of the mass gainer star.Thanks to photometric time series from Kepler and WASP, we now know of 27 such systems that are oriented to produce mutual eclipses. Althoughthe helium star companions are too small and faint in the optical bandfor spectroscopic detection, they contribute a larger fraction of the total flux in the ultraviolet. HST/COS measurements of one long period system, KOI-81, successfully detected the helium star's spectrum in the far-ultraviolet, leading to estimates of its mass and temperature. Here we propose to obtain new HST/COS FUV spectra of the prototype of this class of evolved binaries, EL CVn, and to determine the mass and physical properties of a star that barely escaped a merger.

  9. New results of the spectral observations of CP stars

    NASA Astrophysics Data System (ADS)

    Polosukhina, N. S.; Shavrina, A. V.; Drake, N. A.; Kudryavtsev, D. O.; Smirnova, M. A.

    2010-04-01

    The lithium problem in Ap-CP stars has been, for a long time, a subject of debate. Individual characteristics of CP stars, such as high abundance of the rare-earth elements presence of magnetic fields, complicate structure of the surface distribution of chemical elements, rapid oscillations of some CP-stars, make the detection of the lithium lines and the determination of the lithium abundance, a difficult task. During the International Meeting in Slovakia in 1996, the lithium problem in Ap-CP stars was discussed. The results of the Li study carried out in CrAO Polosukhina (1973-1976), the works of Hack & Faraggiana (1963), Wallerstein & Hack (1964), Faraggiana et al. (1992-1996) formed the basis of the International project ‘Lithium in the cool CP-stars with magnetic fields’. The main goal of the project was, using systematical observations of Ap-CP stars with phase rotation in the spectral regions of the resonance doublet Li I 6708 Å and subordinate 6104 Å lithium lines with different telescopes, to create a database, which will permit to explain the physical origin of anomalous Li abundance in the atmospheres of these stars.

  10. Core Collapse: The Race Between Stellar Evolution and Binary Heating

    NASA Astrophysics Data System (ADS)

    Converse, Joseph M.; Chandar, R.

    2012-01-01

    The dynamical formation of binary stars can dramatically affect the evolution of their host star clusters. In relatively small clusters (M < 6000 Msun) the most massive stars rapidly form binaries, heating the cluster and preventing any significant contraction of the core. The situation in much larger globular clusters (M 105 Msun) is quite different, with many showing collapsed cores, implying that binary formation did not affect them as severely as lower mass clusters. More massive clusters, however, should take longer to form their binaries, allowing stellar evolution more time to prevent the heating by causing the larger stars to die off. Here, we simulate the evolution of clusters between those of open and globular clusters in order to find at what size a star cluster is able to experience true core collapse. Our simulations make use of a new GPU-based computing cluster recently purchased at the University of Toledo. We also present some benchmarks of this new computational resource.

  11. A Brightness-Referenced Star Identification Algorithm for APS Star Trackers

    PubMed Central

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-01-01

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4∼5 times that of the pyramid method and 35∼37 times that of the geometric method. PMID:25299950

  12. A brightness-referenced star identification algorithm for APS star trackers.

    PubMed

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-10-08

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4~5 times that of the pyramid method and 35~37 times that of the geometric method.

  13. Discovery of a Free-Floating Double Planet?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-07-01

    An object previously identified as a free-floating, large Jupiter analogturns out to be two objects each with the mass of a few Jupiters. This system is the lowest-mass binary weve ever discovered.Tracking Down Ages2MASS J111932541137466 is thought to be a member of the TW Hydrae Association, a group of roughly two dozen young stars moving together in the solar neighborhood. [University of Western Ontario/Carnegie Institution of Washington DTM/David Rodriguez]Brown dwarfs represent the bottom end of the stellar mass spectrum, with masses too low to fuse hydrogen (typically below 75-80 Jupiter masses). Observing these objects provides us a unique opportunity to learn about stellar evolution and atmospheric models but to properly understand these observations, we need to determine the dwarfs masses and ages.This is surprisingly difficult, however. Brown dwarfs cool continuously as they age, which creates an observational degeneracy: dwarfs of different masses and ages can have the same luminosity, making it difficult to infer their physical properties from observations.We can solve this problem with an independent measurement of the dwarfs masses. One approach is to find brown dwarfs that are members of nearby stellar associations called moving groups. The stars within the association share the same approximate age, so a brown dwarfs age can be estimated based on the easier-to-identify ages of other stars in the group.An Unusual BinaryRecently, a team of scientists led by William Best (Institute for Astronomy, University of Hawaii) were following up on such an object: the extremely red, low-gravity L7 dwarf 2MASS J111932541137466, possibly a member of the TW Hydrae Association. With the help of the powerful adaptive optics on the Keck II telescope in Hawaii, however, the team discovered that this Jupiter-like objectwas hiding something: its actually two objects of equal flux orbiting each other.Keck images of 2MASS J111932541137466 reveal that this object is actually a binary system. A similar image of another dwarf, WISEA J1147-2040, is shown at bottom left for contrast: this one does not show signs of being a binary at this resolution. [Best et al. 2017]To learn more about this unusual binary, Best and collaborators began by using observed properties like sky position, proper motion, and radial velocity to estimate the likelihood that 2MASS J111932541137466AB is, indeed, a member of the TW Hydrae Association of stars. They found roughly an 80% chance that it belongs to this group.Under this assumption, the authors then used the distance to the group around 160 light-years to estimate that the binarys separation is 3.9 AU. The assumed membership in the TW Hydrae Association also provides binarys age: roughly 10 million years. This allowed Best and collaborators to estimate the masses and effective temperatures of the components from luminosities and evolutionary models.Planetary-Mass ObjectsThe positions of 2MASS J111932541137466A and B on a color-magnitude diagram for ultracool dwarfs. The binary components lie among the faintest and reddest planetary-mass L dwarfs. [Best et al. 2017]The team found that each component is a mere 3.7 Jupiter masses, placing them in the fuzzy region between planets and stars. While the International Astronomical Union considers objects below the minimum mass to fuse deuterium (around 13 Jupiter masses) to be planets, other definitions vary, depending on factors such as composition, temperature, and formation. The authors describe the binary as consisting of two planetary-mass objects.Regardless of its definition, 2MASS J111932541137466AB qualifies as the lowest-mass binary discovered to date. The individual masses of the components also place them among the lowest-mass free-floating brown dwarfs known. This system will therefore be a crucial benchmark for tests of evolutionary and atmospheric models for low-mass stars in the future.CitationWilliam M. J. Best et al 2017 ApJL 843 L4. doi:10.3847/2041-8213/aa76df

  14. Adiabatic Mass Loss Model in Binary Stars

    NASA Astrophysics Data System (ADS)

    Ge, H. W.

    2012-07-01

    Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical time scale mass transfer; if the ratio of donor to accretor masses exceeds this critical value, the dynamical time scale mass transfer ensues. The grid of criterion for all stars can be used to be the basic input as the binary population synthetic method, which will be improved absolutely. In common envelope evolution, the dissipation of orbital energy of the binary provides the energy to eject the common envelope; the energy budget for this process essentially consists of the initial orbital energy of the binary and the initial binding energies of the binary components. We emphasize that, because stellar core and envelope contribute mutually to each other's gravitational potential energy, proper evaluation of the total energy of a star requires integration over the entire stellar interior, not the ejected envelope alone as commonly assumed. We show that the change in total energy of the donor star, as a function of its remaining mass along an adiabatic mass-loss sequence, can be calculated. This change in total energy of the donor star, combined with the requirement that both remnant donor and its companion star fit within their respective Roche lobes, then circumscribes energetically possible survivors of common envelope evolution. It is the first time that we can calculate the accurate total energy of the donor star in common envelope evolution, while the results with the old method are inconsistent with observations.

  15. Einstein observations of selected close binaries and shell stars

    NASA Technical Reports Server (NTRS)

    Guinan, E. F.; Koch, R. H.; Plavec, M. J.

    1984-01-01

    Several evolved close binaries and shell stars were observed with the IPC aboard the HEAO 2 Einstein Observatory. No eclipsing target was detected, and only two of the shell binaries were detected. It is argued that there is no substantial difference in L(X) for eclipsing and non-eclipsing binaries. The close binary and shell star CX Dra was detected as a moderately strong source, and the best interpretation is that the X-ray flux arises primarily from the corona of the cool member of the binary at about the level of Algol-like or RS CVn-type sources. The residual visible-band light curve of this binary has been modeled so as to conform as well as possible with this interpretation. HD 51480 was detected as a weak source. Substantial background information from IUE and ground scanner measurements are given for this binary. The positions and flux values of several accidentally detected sources are given.

  16. Revealing Companions to Nearby Stars with Astrometric Acceleration

    DTIC Science & Technology

    2012-07-01

    objects, such as stellar -mass black holes or failed supernova (Gould & Salim 2002). Table 4 includes a sample of some of the most interesting dis...knowledge of binary and multiple star statistics is needed for the study of star formation, for stellar population synthesis, for predicting the...frequency of supernovae, blue stragglers, X-ray binaries, etc. The statistical properties of binaries strongly depend on stellar mass. Only for nearby solar

  17. The Michigan Binary Star Program

    NASA Astrophysics Data System (ADS)

    Lindner, Rudi P.

    2007-07-01

    At the end of the nineteenth century, William J. Hussey and Robert G. Aitken, both at Lick Observatory, began a systematic search for unrecorded binary stars with the aid of the 12" and 36" refracting telescopes at Lick Observatory. Aitken's work (and book on binary stars) are well known, Hussey's contributions less so. In 1905 Hussey, a Michigan engineering graduate, returned to direct the Ann Arbor astronomy program, and immediately he began to design new instrumentation for the study of binary stars and to train potential observers. For a time, he spent six months a year at the La Plata Observatory, where he discovered a number of new pairs and decided upon a major southern hemisphere campaign. He spent a decade obtaining the lenses for a large refractor, through the vicissitudes of war and depression. Finally, he obtained a site in South Africa, a 26" refractor, and a small corps of observers, but he died in London en route to fulfill his dream. His right hand man, Richard Rossiter, established the observatory and spent the next thirty years discovering and measuring binary stars: his personal total is a record for the field. This talk is an account of the methods, results, and utility of the extraordinary binary star factory in the veldt.

  18. Circumstellar Structure Around Evolved Stars in the Cygnus-X Star Formation Region

    DTIC Science & Technology

    2010-06-01

    respectively: Jimenez-Esteban et al. 2010, ApJ, 713, 429 and Gvaramadze et al. 2010, MNRAS, in press; and Gvaramadze et al. 2009, MNRAS, 400, 524...F. 1978, ApJ, 222, LI29 Goebel, J. H., & Moseley, S. H. 1985, ApJ, 290, L35 Gutermuth, R. A., et al. 2008, ApJ, 674, 336 Gvaramadze , V. V., et al...2009, MNRAS, 400, 524 Gvaramadze , V. V., et al. 2010, MNRAS, in press Herbig, G. H. 2009, AJ, 138, 1502 Higgs, L. A., Wendker, H. J., & Landecker

  19. Photometric detection of a candidate low-mass giant binary system at the Milky Way Galactic Center

    NASA Astrophysics Data System (ADS)

    Krishna Gautam, Abhimat; Do, Tuan; Ghez, Andrea; Sakai, Shoko; Morris, Mark; Lu, Jessica; Witzel, Gunther; Jia, Siyao; Becklin, Eric Eric; Matthews, Keith

    2018-01-01

    We present the discovery of a new periodic variable star at the Milky Way Galactic Center (GC). This study uses laser guide-star adaptive optics data collected with the W. M. Keck 10 m telescope in the K‧-band (2.2 µm) over 35 nights spanning an 11 year time baseline, and 5 nights of additional H-band (1.6 µm) data. We implemented an iterative photometric calibration and local correction technique, resulting in a photometric uncertainty of Δm_K‧ ∼ 0.03 to a magnitude of m_K‧ ∼ 16.The periodically variable star has a 39.42 day period. We find that the star is not consistent with known periodically variable star classes in this period range with its observed color and luminosity, nor with an eclipsing binary system. The star's color and luminosity are however consistent with an ellipsoidal binary system at the GC, consisting of a K-giant and a dwarf component with an orbital period of 78.84 days. If a binary system, it represents the first detection of a low-mass giant binary system in the central half parsec of the GC. Such long-period binary systems can easily evaporate in the dense environment of the GC due to interactions with other stars. The existence and properties of a low-mass, long-period binary system can thus place valuable constraints on dynamical models of the GC environment and probe the density of the hypothesized dark cusp of stellar remnants at the GC.

  20. CMOS Active Pixel Sensor Star Tracker with Regional Electronic Shutter

    NASA Technical Reports Server (NTRS)

    Yadid-Pecht, Orly; Pain, Bedabrata; Staller, Craig; Clark, Christopher; Fossum, Eric

    1996-01-01

    The guidance system in a spacecraft determines spacecraft attitude by matching an observed star field to a star catalog....An APS(active pixel sensor)-based system can reduce mass and power consumption and radiation effects compared to a CCD(charge-coupled device)-based system...This paper reports an APS (active pixel sensor) with locally variable times, achieved through individual pixel reset (IPR).

  1. Wolf-Rayet stars in the Small Magellanic Cloud as testbed for massive star evolution

    NASA Astrophysics Data System (ADS)

    Schootemeijer, A.; Langer, N.

    2018-03-01

    Context. The majority of the Wolf-Rayet (WR) stars represent the stripped cores of evolved massive stars who lost most of their hydrogen envelope. Wind stripping in single stars is expected to be inefficient in producing WR stars in metal-poor environments such as the Small Magellanic Cloud (SMC). While binary interaction can also produce WR stars at low metallicity, it is puzzling that the fraction of WR binaries appears to be about 40%, independent of the metallicity. Aim. We aim to use the recently determined physical properties of the twelve known SMC WR stars to explore their possible formation channels through comparisons with stellar models. Methods: We used the MESA stellar evolution code to construct two grids of stellar models with SMC metallicity. One of these consists of models of rapidly rotating single stars, which evolve in part or completely chemically homogeneously. In a second grid, we analyzed core helium burning stellar models assuming constant hydrogen and helium gradients in their envelopes. Results: We find that chemically homogeneous evolution is not able to account for the majority of the WR stars in the SMC. However, in particular the apparently single WR star SMC AB12, and the double WR system SMC AB5 (HD 5980) appear consistent with this channel. We further find a dichotomy in the envelope hydrogen gradients required to explain the observed temperatures of the SMC WR stars. Shallow gradients are found for the WR stars with O star companions, while much steeper hydrogen gradients are required to understand the group of hot apparently single WR stars. Conclusions: The derived shallow hydrogen gradients in the WR component of the WR+O star binaries are consistent with predictions from binary models where mass transfer occurs early, in agreement with their binary properties. Since the hydrogen profiles in evolutionary models of massive stars become steeper with time after the main sequence, we conclude that most of the hot (Teff > 60 kK ) apparently single WR stars lost their envelope after a phase of strong expansion, e.g., as the result of common envelope evolution with a lower mass companion. The so far undetected companions, either main sequence stars or compact objects, are then expected to still be present. A corresponding search might identify the first immediate double black hole binary progenitor with masses as high as those detected in GW150914.

  2. H-beta line variability in magnetic Ap stars. I

    NASA Technical Reports Server (NTRS)

    Madej, J.; Jahn, K.; Stepien, K.

    1984-01-01

    Preliminary results of photometric measurements of H-beta in several Ap stars are presented. Periodic variations are found certainly in Theta Aur and Alpha (2) CVn, and possibly in Phi Dra. For the other stars upper limits for variations of H-beta are determined. Observed amplitudes are transformed into variations of equivalent width assuming specific profile variations. The results show that variations of equivalent width of H-beta in the stars investigated are of the order of 10 percent or less.

  3. A spectroscopic survey of the WNL stars in the Large Magellanic Cloud: General properties and binary status

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier

    2008-09-01

    This thesis presents the results of an intense, spectroscopic survey of 41 of the 47 known, late-type, nitrogen-rich Wolf-Rayet (WR) stars in the Large Magellanic Cloud (LMC) which could be observed with ground-based, optical telescopes. For the study of the remaining 6 WNL located in the extremely dense central object of 30 Dor, R136, adaptive-optics assisted, near-infrared spectroscopy was required. The results of this study will be published elsewhere. Our survey concludes the decade-long effort of the Montreal Massive-Star Group to monitor all known WR stars in the Magellanic Clouds for radial-velocity (RV) variations due to binarity, a point which has been debated since the true, evolved nature of WR stars has been recognized in the late 1960s. From model calculations, it was expected that with decreasing metallicity, the binary frequency among WR stars increases, or otherwise the progenitor stars could not have turned into a WR star. Our survey set out to observationally test this assumption. After summarizing the general importance of massive stars, we describe the spectroscopic observations of our program stars. We then detail the data analysis process, which encompasses careful calibration and proper choice of RV standards. We also include publicly available, visible and X-ray photometric data in our analysis. We are able to identify four previously unknown binaries in our sample, bringing the total number of known WNL binaries in the LMC to only nine. As a direct result, we question the assumption that binarity is required to form WR stars at lower metallicity. At least some of the hydrogen-containing WNL stars in our sample seem not to be genuine, evolved, helium-burning WR stars, but rather unevolved, hydrogen- burning objects. There is ample evidence that some of these stars are the most massive stars known. As a second and most remarkable result, all but one of our nine binaries harbor such extreme objects; this greatly enlarges the sample of such known binaries, and paves the way for an independent mass determination via Keplerian orbits in further studies, some of which we have already initiated. The results of those studies will be crucial for calibrating stellar models. One of these binaries, R145, is then studied in greater detail, combining previously published and unpublished data with ours, to present, for the first time, a full set of orbital parameters for both components of the binary system. Since we also determine the orbital inclination angle, we are able to derive the absolute masses of this extreme object. It is found that R145 very likely harbors the most massive star known and properly "weighed" so far.

  4. Matter effects on LIGO/Virgo searches for gravitational waves from merging neutron stars

    NASA Astrophysics Data System (ADS)

    Cullen, Torrey; Harry, Ian; Read, Jocelyn; Flynn, Eric

    2017-12-01

    Gravitational waves from merging neutron stars are expected to be observed in the next five years. We explore the potential impact of matter effects on gravitational waves from merging double neutron-star binaries. If neutron star binaries exist with chirp masses less than roughly one solar mass and typical neutron-star radii are larger than roughly 14 km, or if neutron-star radii are larger than 15-16 km for the chirp masses of galactic neutron-star binaries, then matter will have a significant impact on the effectiveness of a point-particle-based search at Advanced LIGO design sensitivity (roughly 5% additional loss of signals). In a configuration typical of LIGO’s first observing run, extreme matter effects lead to up to 10% potential loss in the most extreme cases.

  5. Dynamics of stellar black holes in young star clusters with different metallicities - II. Black hole-black hole binaries

    NASA Astrophysics Data System (ADS)

    Ziosi, Brunetto Marco; Mapelli, Michela; Branchesi, Marica; Tormen, Giuseppe

    2014-07-01

    In this paper, we study the formation and dynamical evolution of black hole-black hole (BH-BH) binaries in young star clusters (YSCs), by means of N-body simulations. The simulations include metallicity-dependent recipes for stellar evolution and stellar winds, and have been run for three different metallicities (Z = 0.01, 0.1 and 1 Z⊙). Following recent theoretical models of wind mass-loss and core-collapse supernovae, we assume that the mass of the stellar remnants depends on the metallicity of the progenitor stars. We find that BH-BH binaries form efficiently because of dynamical exchanges: in our simulations, we find about 10 times more BH-BH binaries than double neutron star binaries. The simulated BH-BH binaries form earlier in metal-poor YSCs, which host more massive black holes (BHs) than in metal-rich YSCs. The simulated BH-BH binaries have very large chirp masses (up to 80 M⊙), because the BH mass is assumed to depend on metallicity, and because BHs can grow in mass due to the merger with stars. The simulated BH-BH binaries span a wide range of orbital periods (10-3-107 yr), and only a small fraction of them (0.3 per cent) is expected to merge within a Hubble time. We discuss the estimated merger rate from our simulations and the implications for Advanced VIRGO and LIGO.

  6. First Detection of the Hatchett-McCray Effect in the High-Mass X-ray Binary

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Iping, R. C.; Kaper, L.; Hammerschiag-Hensberge, G.; Hutchings, J. B.

    2004-01-01

    The orbital modulation of stellar wind UV resonance line profiles as a result of ionization of the wind by the X-ray source has been observed in the high-mass X-ray binary 4U1700-37/HD 153919 for the first time. Far-UV observations (905-1180 Angstrom, resolution 0.05 Angstroms) were made at the four quadrature points of the binary orbit with the Far Ultraviolet Spectroscopic Explorer (FUSE) in 2003 April and August. The O6.5 laf primary eclipses the X-ray source (neutron star or black hole) with a 3.41-day period. Orbital modulation of the UV resonance lines, resulting from X-ray photoionization of the dense stellar wind, the so-called Hatchett-McCray (HM) effect, was predicted for 4U1700-37/HD153919 (Hatchett 8 McCray 1977, ApJ, 211, 522) but was not seen in N V 1240, Si IV 1400, or C IV 1550 in IUE and HST spectra. The FUSE spectra show that the P V 1118-1128 and S IV 1063-1073 P-Cygni lines appear to vary as expected for the HM effect, weakest at phase 0.5 (X-ray source conjunction) and strongest at phase 0.0 (X-ray source eclipse). The phase modulation of the O VI 1032-1037 lines, however, is opposite to P V and S IV, implying that O VI may be a byproduct of the wind's ionization by the X-ray source. Such variations were not observed in N V, Si IV, and C IV because of their high optical depth. Due to their lower cosmic abundance, the P V and S IV wind lines are unsaturated, making them excellent tracers of the ionization conditions in the O star's wind.

  7. The near-contact binary star RZ Dra revisited

    NASA Astrophysics Data System (ADS)

    Erdem, A.; Zola, S.; Winiarski, M.

    2011-01-01

    This paper presents the absolute parameters of RZ Dra. New CCD observations were made at the Mt. Suhora Observatory in 2007. Two photometric data sets (1990 BV and 2007 BVRI) were analysed using modern light-curve synthesis methods. Large asymmetries in the light curves may be explained in terms of a dark starspot on the primary component, an A6 type star. Due to this magnetic activity, the primary component would appear to belong to the class of Ap-stars and would show small amplitude with δ Scuti-type pulsations. With this in mind, a time-series analysis of the residual light curves was made. However, we found no evidence of pulsation behaviour in RZ Dra. Combining the solutions of our light curves and Rucinski et al. (2000)'s radial velocity curves, the following absolute parameters of the components were determined: M1 = 1.63 ± 0.03 M ⊙, M2 = 0.70 ± 0.02 M ⊙, R1 = 1.65 ± 0.02R ⊙, R2 = 1.15 ± 0.02 R ⊙, L1 = 9.72 ± 0.30 L ⊙ and L2 = 0.74 ± 0.10 L ⊙. The distance to RZ Dra was calculated as 400 ± 25 pc, taking into account interstellar extinction. The orbital period of the system was studied using updated O- C information. It was found that the orbital period varied in its long-period sinusoidal form, superimposed on a downward parabola. The parabolic term shows a secular period decrease at a slow rate of 0.06 ± 0.02 s per century and is explained by the mass loss via magnetized wind of the Ap-star primary. The tilted sinusoidal form of the period variation may be considered as an apparent change and may be interpreted in terms of the light-time effect due to the presence of a third body.

  8. X-Ray Background from Early Binaries

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    What impact did X-rays from the first binary star systems have on the universe around them? A new study suggests this radiation may have played an important role during the reionization of our universe.Ionizing the UniverseDuring the period of reionization, the universe reverted from being neutral (as it was during recombination, the previous period)to once again being ionized plasma a state it has remained in since then. This transition, which occurred between 150 million and one billion years after the Big Bang (redshift of 6 z 20), was caused by the formation of the first objects energetic enough to reionize the universes neutral hydrogen.ROSAT image of the soft X-ray background throughout the universe. The different colors represent different energy bands: 0.25 keV (red), 0.75 keV (green), 1.5 keV (blue). [NASA/ROSAT Project]Understanding this time period in particular, determining what sources caused the reionization, and what the properties were of the gas strewn throughout the universe during this time is necessary for us to be able to correctly interpret cosmological observations.Conveniently, the universe has provided us with an interesting clue: the large-scale, diffuse X-ray background we observe all around us. What produced these X-rays, and what impact did this radiation have on the intergalactic medium long ago?The First BinariesA team of scientists led by Hao Xu (UC San Diego) has suggested that the very first generation of stars might be an important contributor to these X-rays.This hypothetical first generation, Population III stars, are thought to have formed before and during reionization from large clouds of gas containing virtually no metals. Studies suggest that a large fraction of Pop III stars formed in binaries and when those stars ended their lives as black holes, ensuing accretion from their companions could produceX-ray radiation.The evolution with redshift of the mean X-ray background intensities. Each curve represents a different observed X-ray energy (and the total X-ray background is given by the sum of the curves). The two panels show results from two different calculation methods. [Xu et al. 2016]Xu and collaborators have now attempted to model to the impact of this X-ray production from Pop III binaries on the intergalactic medium and determine how much it could have contributed to reionization and the diffuse X-ray background we observe today.Generating a BackgroundThe authorsestimated the X-ray luminosities from Pop III binaries using the results of a series of galaxy-formation simulations, beginning at a redshift of z 25 and evolving up to z = 7.6. They then used these luminosities to calculate the resulting X-ray background.Xu and collaborators find that Pop III binaries can produce significant X-ray radiation throughout the period of reionization, and this radiation builds up gradually into an X-ray background. The team shows that X-rays from Pop III binaries might actually dominate more commonly assumed sources of the X-ray background at high redshifts (such as active galactic nuclei), and this radiation isstrong enough to heat the intergalactic medium to 1000K and ionize a few percent of the neutral hydrogen.If Pop III binaries are indeed this large of a contributor to the X-ray background and to the local and global heating of the intergalactic medium, then its important that we follow up with more detailed modeling to understand what this means for our interpretation of cosmological observations.CitationHao Xu et al 2016 ApJL 832 L5. doi:10.3847/2041-8205/832/1/L5

  9. Chandra Reveals Nest of Tight Binaries in Dense Cluster

    NASA Astrophysics Data System (ADS)

    2001-05-01

    Scientists have gazed into an incredibly dense star cluster with NASA's Chandra X-ray Observatory and identified a surprising bonanza of binary stars, including a large number of rapidly rotating neutron stars. The discovery may help explain how one of the oldest structures in our Galaxy evolved over its lifetime. By combining Chandra, Hubble Space Telescope, and ground-based radio data, the researchers conducted an important survey of the binary systems that dominate the dynamics of 47 Tucanae, a globular cluster about 12 billion years old located in our Milky Way galaxy. Most of the binaries in 47 Tucanae are systems in which a normal, Sun-like companion orbits a collapsed star, either a white dwarf or a neutron star. White dwarf stars are dense, burnt-out remnants of stars like the Sun, while neutron stars are even denser remains of a more massive star. When matter from a nearby star falls onto either a white dwarf or a neutron star, as in the case with the binaries in 47 Tucanae, X-rays are produced. 47 Tuc This composite image shows relation of the Chandra image of 47 Tucanae to ground-based, optical observations. "This Chandra image provides the first complete census of compact binaries in the core of a globular cluster," said Josh Grindlay of the Harvard-Smithsonian Center for Astrophysics (CfA) and lead author of the report that appears in the May 18 issue of Science. "The relative number of neutron stars versus white dwarfs in these binaries tell us about the development of the first stars in the cluster, and the binaries themselves are key to the evolution of the entire cluster core." Many of the binaries in 47 Tucanae are exotic systems never before seen in such large quantities. Perhaps the most intriguing are the "millisecond pulsars", which contain neutron stars that are rotating extremely rapidly, between 100 to nearly 1000 times a second. "The Chandra data, in conjunction with radio observations, indicate that there are many more millisecond pulsars than we would expect based on the number of their likely progenitors we found," said co-author Peter Edmonds, also of the CfA. "While there is a general consensus on how some of the millisecond pulsars form, these new data suggest that there need to be other methods to create them." In addition to the millisecond pulsars, Chandra also detected other important populations of binary systems, including those with white dwarf stars and normal stars, and others where pairs of normal stars undergo large flares induced by their close proximity. The Chandra data also indicate an apparent absence of a central black hole. Stellar-sized mass black holes -- those about five to ten times as massive as the Sun -- have apparently not coalesced to the center of the star cluster. All or most stellar-sized black holes that formed over the lifetime of the cluster have likely been ejected by their slingshot encounters with binaries deep in the cluster core. "These results show that binary star systems are a source of gravitational energy which ejects stellar mass black holes and prevents the collapse of the cluster’s core to a more massive, central black hole," said the CfA's Craig Heinke. "In other words, binary systems - not black holes - are the dynamical heat engines that drive the evolution of globular clusters." Chandra observed 47 Tucanae on March 16-17, 2000, for a period of 74,000 seconds with the Advanced CCD Imaging Spectrometer (ACIS). The ACIS X-ray camera was developed for NASA by Penn State and the Massachusetts Institute of Technology. The High Energy Transmission Grating Spectrometer was built by MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov

  10. On the Lack of Circumbinary Planets Orbiting Isolated Binary Stars

    NASA Astrophysics Data System (ADS)

    Fleming, David P.; Barnes, Rory; Graham, David E.; Luger, Rodrigo; Quinn, Thomas R.

    2018-05-01

    We outline a mechanism that explains the observed lack of circumbinary planets (CBPs) via coupled stellar–tidal evolution of isolated binary stars. Tidal forces between low-mass, short-period binary stars on the pre-main sequence slow the stellar rotations transferring rotational angular momentum to the orbit as the stars approach the tidally locked state. This transfer increases the binary orbital period, expanding the region of dynamical instability around the binary, and destabilizing CBPs that tend to preferentially orbit just beyond the initial dynamical stability limit. After the stars tidally lock, we find that angular momentum loss due to magnetic braking can significantly shrink the binary orbit, and hence the region of dynamical stability, over time, impacting where surviving CBPs are observed relative to the boundary. We perform simulations over a wide range of parameter space and find that the expansion of the instability region occurs for most plausible initial conditions and that, in some cases, the stability semimajor axis doubles from its initial value. We examine the dynamical and observable consequences of a CBP falling within the dynamical instability limit by running N-body simulations of circumbinary planetary systems and find that, typically, at least one planet is ejected from the system. We apply our theory to the shortest-period Kepler binary that possesses a CBP, Kepler-47, and find that its existence is consistent with our model. Under conservative assumptions, we find that coupled stellar–tidal evolution of pre-main sequence binary stars removes at least one close-in CBP in 87% of multi-planet circumbinary systems.

  11. BinCat: a Catalog of Nearby Binary Stars with Tools for Calculating Light-Leakage for Direct Imaging Missions

    NASA Astrophysics Data System (ADS)

    Holte, Elias Peter; Sirbu, Dan; Belikov, Ruslan

    2018-01-01

    Binary stars have been largely left out of direct imaging surveys for exoplanets, specifically for earth-sized planets in their star's habitable zone. Utilizing new direct imaging techniques brings us closer to being able to detect earth-like exoplanets around binary stars. In preparation for the upcoming WFIRST mission and other direct imaging-capable missions (HabEx, LUVIOR) it is important to understand the expected science yield resulting from the implementation of these imaging techniques. BinCat is a catalog of binary systems within 30 parsecs to be used as a target list for future direct imaging missions. There is a non-static component along with BinCat that allows researchers to predict the expected light-leakage between a binary component and its off-axis companion (a value critical to the aforementioned techniques) at any epoch. This is accomplished by using orbital elements from the Sixth Orbital Catalog to model the orbits of the binaries. The software was validated against the historical data used to generate the orbital parameters. When orbital information is unknown or the binaries are purely optical the proper motion of the pair taken from the Washington Double Star catalog is integrated in time to estimate expected light-leakage.

  12. GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-03-01

    The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f =25 Hz )=1. 8-1.3+2.7×10-9 with 90% confidence, compared with ΩGW(f =25 Hz )=1. 1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

  13. Hidden slow pulsars in binaries

    NASA Technical Reports Server (NTRS)

    Tavani, Marco; Brookshaw, Leigh

    1993-01-01

    The recent discovery of the binary containing the slow pulsar PSR 1718-19 orbiting around a low-mass companion star adds new light on the characteristics of binary pulsars. The properties of the radio eclipses of PSR 1718-19 are the most striking observational characteristics of this system. The surface of the companion star produces a mass outflow which leaves only a small 'window' in orbital phase for the detection of PSR 1718-19 around 400 MHz. At this observing frequency, PSR 1718-19 is clearly observable only for about 1 hr out of the total 6.2 hr orbital period. The aim of this Letter is twofold: (1) to model the hydrodynamical behavior of the eclipsing material from the companion star of PSR 1718-19 and (2) to argue that a population of binary slow pulsars might have escaped detection in pulsar surveys carried out at 400 MHz. The possible existence of a population of partially or totally hidden slow pulsars in binaries will have a strong impact on current theories of binary evolution of neutron stars.

  14. Searching for Compact Binary Mergers with Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Nitz, Alexander` Harvey

    2017-06-01

    Several binary black hole mergers were discovered during Advanced LIGOs first observing run, and LIGO is currently well into its second observing run. We will discuss the state of the art in searching for merger signals in LIGO data, and how this will aid in the detection of binary neutron star, neutron-star black hole, and binary black hole mergers.

  15. Replacing colour blindness with Depth Perception

    NASA Astrophysics Data System (ADS)

    Matthews, Jaymie M.

    Until recently, most work on rapidly oscillating Ap (roAp) stars has concentrated on rapid single-bandpass photometry, which efficiently samples their short periods even with telescopes of modest aperture. Global campaigns of this nature have yielded eigenfrequency spectra essential to asteroseismology. However, we have reached a threshold where such data must be supplemented with rapid spectroscopy and photometry at many bandpasses if we are to (a) identify the modes in roAp stars, and (b) fully exploit those modes to probe the stars' atmospheres and interiors. Studies by Medupe & Kurtz and Matthews raise the prospect of using the wavelength dependence of oscillation amplitude to map pulsational dynamics and/or atmospheric structure in roAp stars. Also, precise measurements of velocity oscillations through rapid high-resolution spectroscopy suggest that spectral lines from different ions behave differently. Given the chemical stratification and inhomogeneities of peculiar atmospheres, this may be a way to map spherical harmonic modes in 3-D (i.e., depths of upper radial nodes and positions of the surface nodes).

  16. The Galactic O-Star Spectroscopic Survey (GOSSS): new results from the southern stars

    NASA Astrophysics Data System (ADS)

    Sota, A.; Maíz Apellániz, J.; Barbá, R. H.; Walborn, N. R.; Alfaro, E. J.; Gamen, R. C.; Morrell, N. I.; Arias, J. I.; Penadés Ordaz, M.

    2013-05-01

    The Galactic O-Star Spectroscopic Survey (GOSSS) is a project that will observe all known Galactic O stars with B < 14 in the blue-violet part of the spectrum with R ˜ 3000. It is based on v2.0 of the the most complete Galactic O star catalog with accurate spectral types (Maíz Apellániz et al. 2004, ApJS, 151, 103; Sota et al. 2008, RevMexAA Conf. Series, 33, 55) that we have recently compiled. We have completed the first part of the main project and recently published the first articles (Walborn et al. 2010, ApJ, 711, 143; Walborn et al. 2011, AJ, 142, 150; Sota et al. 2011, ApJS, 193, 24). GOSSS is part of a bigger project with the next companion surveys: High resolution spectroscopic surveys: OWN, IACOB, IACOB-sweG, NoMaDS, CAFÉ-BEANS High resolution imaging surveys: Astralux, Astralux Sur.

  17. Binaries, cluster dynamics and population studies of stars and stellar phenomena

    NASA Astrophysics Data System (ADS)

    Vanbeveren, Dany

    2005-10-01

    The effects of binaries on population studies of stars and stellar phenomena have been investigated over the past 3 decades by many research groups. Here we will focus mainly on the work that has been done recently in Brussels and we will consider the following topics: the effect of binaries on overall galactic chemical evolutionary models and on the rates of different types of supernova, the population of point-like X-ray sources where we distinguish the standard high mass X-ray binaries and the ULXs, a UFO-scenario for the formation of WR+OB binaries in dense star systems. Finally we critically discuss the possible effect of rotation on population studies.

  18. The Exciting World of Binary Stars: Not Just Eclipses Anymore (Abstract)

    NASA Astrophysics Data System (ADS)

    Pablo, B.

    2018-06-01

    (Abstract only) Binary stars have always been essential to astronomy. Their periodic eclipses are the most common and efficient method for determining precise masses and radii of stars. Binaries are known for their predictability and have been observed for hundreds if not thousands of years. As such, they are often ignored by observers as uninteresting, however, nothing could be farther from the truth. In the last ten years alone the importance of binary stars, as well of our knowledge of them, has changed significantly. In this talk, I will introduce you to this new frontier of heartbeats, mergers, and evolution, while hopefully motivating a change in the collective thinking of how this unique class of objects is viewed. Most importantly,

  19. Binarity and Variable Stars in the Open Cluster NGC 2126

    NASA Astrophysics Data System (ADS)

    Chehlaeh, Nareemas; Mkrtichian, David; Kim, Seung-Lee; Lampens, Patricia; Komonjinda, Siramas; Kusakin, Anatoly; Glazunova, Ljudmila

    2018-04-01

    We present the results of an analysis of photometric time-series observations for NGC 2126 acquired at the Thai National Observatory (TNO) in Thailand and the Mount Lemmon Optical Astronomy Observatory (LOAO) in USA during the years 2004, 2013 and 2015. The main purpose is to search for new variable stars and to study the light curves of binary systems as well as the oscillation spectra of pulsating stars. NGC 2126 is an intermediate-age open cluster which has a population of stars inside the δ Scuti instability strip. Several variable stars are reported including three eclipsing binary stars, one of which is an eclipsing binary star with a pulsating component (V551 Aur). The Wilson-Devinney technique was used to analyze its light curves and to determine a new set of the system’s parameters. A frequency analysis of the eclipse-subtracted light curve was also performed. Eclipsing binaries which are members of open clusters are capable of delivering strong constraints on the cluster’s properties which are in turn useful for a pulsational analysis of their pulsating components. Therefore, high-resolution, high-quality spectra will be needed to derive accurate component radial velocities of the faint eclipsing binaries which are located in the field of NGC 2126. The new Devasthal Optical Telescope, suitably equipped, could in principle do this.

  20. Multiplicity of Massive Stars

    NASA Astrophysics Data System (ADS)

    Zinnecker, Hans

    We review the multiplicity of massive stars by compiling the abstracts of the most relevant papers in the field. We start by discussing the massive stars in the Orion Trapezium Cluster and in other Galactic young clusters and OB associations, and end with the R136 cluster in the LMC. The multiplicity of field O-stars and runaway OB stars is also reviewed. The results of both visual and spectroscopic surveys are presented, as well as data for eclipsing systems. Among the latter, we find the most massive known binary system WR20a, with two ~,80M_⊙ components in a 3 day orbit. Some 80% of the wide visual binaries in stellar associations are in fact hierarchical triple systems, where typically the more massive of the binary components is itself a spectroscopic or even eclipsing binary pair. The multiplicity (number of companions) of massive star primaries is significantly higher than for low-mass solar-type primaries or for young low-mass T Tauri stars. There is also a striking preponderance of very close nearly equal mass binary systems (the origin of which has recently been explained in an accretion scenario). Finally, we offer a new idea as to the origin of massive Trapezium systems, frequently found in the centers of dense young clusters.

  1. Formation of Black Hole X-Ray Binaries with Non-degenerate Donors in Globular Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, Natalia; Rocha, Cassio A. da; Van, Kenny X.

    In this Letter, we propose a formation channel for low-mass X-ray binaries with black hole accretors and non-degenerate donors via grazing tidal encounters with subgiants. We estimate that in a typically dense globular cluster with a core density of 10{sup 5} stars pc{sup −3}, the formation rates are about one binary per Gyr per 50–100 retained black holes. The donors—stripped subgiants—will be strongly underluminous when compared to subgiant or giant branch stars of the same colors. The products of tidal stripping are underluminous by at least one magnitude for several hundred million years when compared to normal stars of themore » same color, and differ from underluminous red stars that could be produced by non-catastrophic mass transfer in an ordinary binary. The dynamically formed binaries become quiescent LMXBs, with lifetimes of about a Gyr. The expected number of X-ray binaries is one per 50–200 retained black holes, while the expected number of strongly underluminous subsubgiant is about half this. The presence of strongly underluminous stars in a GC may be indicative of the presence of black holes.« less

  2. Something borrowed, something blue: The nature of blue metal-poor stars inferred from their colours and chemical abundances

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Jofré, P.; Koch, A.; McWilliam, A.; Sneden, C. S.

    2017-02-01

    Blue metal-poor (BMP) stars are main sequence stars that appear bluer and more luminous than normal turnoff stars. They were originally singled out by using B-V and U-B colour cuts.Early studies found that a larger fraction of field BMP stars were binaries compared to normal halo stars. Thus, BMP stars are ideal field blue straggler candidates for investigating internal stellar evolution processes and binary interaction. In particular, the presence or depletion in lithium in their spectra is a powerful indicator of their origin. They are either old, halo blue stragglers experiencing internal mixing processes or mass transfer (Li-depletion), or intermediate-age, single stars of possibly extragalactic origin (2.2 dex halo plateau Li). However, we note that internal mixing processes can lead to an increased level of Li. Hence, this study combines photometry and spectroscopy to unveil the origin of various BMP stars. We first show how to separate binaries from young blue stars using photometry, metallicity and lithium. Using a sample of 80 BMP stars (T > 6300 K), we find that 97% of the BMP binaries have V-Ks0 < 1.08 ± 0.03, while BMP stars that are not binaries lie above this cut in two thirds of the cases. This cut can help classify stars that lack radial velocities from follow-up observations. We then trace the origin of two BMP stars from the photometric sample by conducting a full chemical analysis using new high-resolution and high signal-to-noise spectra. Based on their radial velocities, Li, α and s- and r-process abundances we show that BPS CS22874-042 is a single star (A(Li) = 2.38 ± 0.10 dex) while with A(Li)= 2.23 ± 0.07 dex CD-48 2445 is a binary, contrary to earlier findings. Our analysis emphasises that field blue stragglers can be segregated from single metal-poor stars, using (V-Ks) colours with a fraction of single stars polluting the binary sample, but not vice versa. These two groups can only be properly separated by using information from stellar spectra, illustrating the need for accurate and precise stellar parameters and high-resolution, high-S/N spectra in order to fully understand and classify this intriguing class of stars. Our high-resolution spectrum analysis confirms the findings from the colour cuts and shows that CS 22874-042 is single, while CD -48 2445 is most likely a binary. Moreover, the stellar abundances show that both stars formed in situ; CS 22874-042 carries traces of massive star enrichment and CD -48 2445 shows indications of AGB mass transfer mixed with gases ejected possibly from neutron star mergers. Based on UVES archive data 077.B-0507 and 090.B-0605. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Full Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A54

  3. Innocent Bystanders and Smoking Guns: Dwarf Carbon Stars

    NASA Astrophysics Data System (ADS)

    Green, Paul J.

    2014-01-01

    As far as we know, most carbon throughout the Universe is created and dispersed by AGB stars. So it was at first surprising to find that the carbon stars most prevalent in the Galaxy are in fact dwarfs. We suspect that dC stars are most likely innocent bystanders in post-mass transfer binaries, and may be predominantly metal-poor. Among 1200 C stars found in the SDSS (Green 2013), we confirm 724 dCs, of which a dozen are DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. The dCs likely span absolute magnitudes M_i from about 6.5 to 10.5. G-type dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C_2 bands. Eleven very red C stars with strong red CN bands appear to be N-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Le A. Two such stars within 30arcmin of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We describe follow-up projects to study the spatial, kinematic, and binary properties of these C-enriched dwarfs.

  4. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers

    NASA Astrophysics Data System (ADS)

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-01

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  5. Mining Planet Search Data for Binary Stars: The ψ1 Draconis system

    NASA Astrophysics Data System (ADS)

    Gullikson, Kevin; Endl, Michael; Cochran, William D.; MacQueen, Phillip J.

    2015-12-01

    Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to ψ1 Draconis A, which has a known roughly equal-mass companion at ∼680 AU. We measure the mass of ψ1 Draconis C as M2 = 0.70 ± 0.07M⊙, with an orbital period of ∼20 years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.

  6. Binary star orbits from speckle interferometry. 5: A combined speckle/spectroscopic study of the O star binary 15 Monocerotis

    NASA Technical Reports Server (NTRS)

    Gies, Douglas R.; Mason, Brian D.; Hartkopf, William I.; Mcalister, Harold A.; Frazin, Richard A.; Hahula, Michael E.; Penny, Laura R.; Thaller, Michelle L.; Fullerton, Alexander W.; Shara, Michael M.

    1993-01-01

    We report on the discovery of a speckle binary companion to the O7 V (f) star 15 Monocerotis. A study of published radial velocities in conjunction with new measurements from Kitt Peak National Observatory (KPNO) and IUE suggests that the star is also a spectroscopic binary with a period of 25 years and a large eccentricity. Thus, 15 Mon is the first O star to bridge the gap between the spectroscopic and visual separation regimes. We have used the star's membership in the cluster NGC 2264 together with the cluster distance to derive masses of 34 and 19 solar mass for the primary and secondary, respectively. Several of the He I line profiles display a broad shallow component which we associate with the secondary, and we estimate the secondary's classification to be O9.5 Vn. The new orbit leads to several important predictions that can be tested over the next few years.

  7. Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.

    PubMed

    Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim

    2018-03-16

    We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.

  8. Contact binary stars. I - An X-ray survey

    NASA Technical Reports Server (NTRS)

    Cruddace, R. G.; Dupree, A. K.

    1984-01-01

    X-ray emission from a contact binary star was first detected by the HEAO 1 satellite in 1977. Spectroscopic observations of 44i Boo and VW Cep by IUE established the presence of high-temperature chromospheric and transition region emission lines in the spectra of these stars. The HEAO 1 and IUE results implied that the processes causing X-ray emission from VW Cep might be similar to those energizing the solar corona, and that X-ray emission might be a common occurrence among contact binary stars. A series of observations of these stars was, therefore, conducted with the aid of the HEAO 2 (Einstein) Observatory. The present investigation is concerned with the results of these observations, giving attention to their implications with respect to the nature of contact binary stars. The results are compared with similar HEAO 2 studies of coronal X-ray sources in the local region of the Galaxy, in the Hyades, and other rapidly rotating systems.

  9. Dynamical Mass Segregation Versus Disruption of Binary Stars in Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, C.; Deng, L.

    2013-01-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses due to gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr-old Large Magellanic Cloud cluster NGC 1818 is characterized by an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 solar masses) with increasing distance from the cluster center. This offers unprecedented support of the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of "soft" binary systems (with relatively low binding energies compared to the kinetic energy of their stellar members) in star clusters, which we could unravel by virtue of the cluster's unique combination of youth and high stellar density.

  10. THE PROPERTIES OF HYPERVELOCITY STARS AND S-STARS ORIGINATING FROM AN ECCENTRIC DISK AROUND A SUPERMASSIVE BLACK HOLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šubr, Ladislav; Haas, Jaroslav, E-mail: subr@sirrah.troja.mff.cuni.cz, E-mail: haas@sirrah.troja.mff.cuni.cz

    2016-09-01

    Hypervelocity stars (HVSs), which are observed in the Galactic halo, are believed to be accelerated to large velocities by a process of tidal disruption of binary stars passing close to the supermassive black hole (SMBH) which resides in the center of the Galaxy. It is, however, still unclear where these relatively young stars were born and what dynamical process pushed them to nearly radial orbits around the SMBH. In this paper we investigate the possibility that the young binaries originated from a thin eccentric disk, similar to the one currently observed in the Galactic center. By means of direct Nmore » -body simulations, we follow the dynamical evolution of an initially thin and eccentric disk of stars with a 100% binary fraction orbiting around the SMBH. Such a configuration leads to Kozai–Lidov oscillations of orbital elements, bringing a considerable number of binaries to the close vicinity of the black hole. Subsequent tidal disruption of these binaries accelerates one of their components to velocities well above the escape velocity from the SMBH, while the second component becomes tightly bound to the SMBH. We describe the main kinematic properties of the escaping and tightly bound stars within our model, and compare them qualitatively to the properties of the observed HVSs and S-stars, respectively. The most prominent feature is strong anisotropy in the directions of the escaping stars, which is observed for Galactic HVSs but has not yet been explained.« less

  11. Wind-driven angular momentum loss in binary systems. I - Ballistic case

    NASA Technical Reports Server (NTRS)

    Brookshaw, Leigh; Tavani, Marco

    1993-01-01

    We study numerically the average loss of specific angular momentum from binary systems due to mass outflow from one of the two stars for a variety of initial injection geometries and wind velocities. We present results of ballistic calculations in three dimensions for initial mass ratios q of the mass-losing star to primary star in the range q between 10 exp -5 and 10. We consider injection surfaces close to the Roche lobe equipotential surface of the mass-losing star, and also cases with the mass-losing star underfilling its Roche lobe. We obtain that the orbital period is expected to have a negative time derivative for wind-driven secular evolution of binaries with q greater than about 3 and with the mass-losing star near filling its Roche lobe. We also study the effect of the presence of an absorbing surface approximating an accretion disk on the average final value of the specific angular momentum loss. We find that the effect of an accretion disk is to increase the wind-driven angular momentum loss. Our results are relevant for evolutionary models of high-mass binaries and low-mass X-ray binaries.

  12. Neutron Star Spin Measurements and Dense Matter with LOFT

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod

    2011-01-01

    Observations over the last decade with RXTE have begun to reveal the X-ray binary progenitors of the fastest spinning neutron stars presently known. Detection and study of the spin rates of binary neutron stars has important implications for constraining the nature of dense matter present in neutron star interiors, as both the maximum spin rate and mass for neutron stars is set by the equation of state. Precision pulse timing of accreting neutron star binaries can enable mass constraints. Particularly promIsing is the combination of the pulse and eclipse timing, as for example, in systems like Swift 11749.4-2807. With its greater sensitivity, LOFT will enable deeper searches for the spin periods of the neutron stars, both during persistent outburst intervals and thermonuclear X-ray bursts, and enable more precise modeling of detected pulsations. I will explore the anticipated impact of LOFT on spin measurements and its potential for constraining dense matter in neutron stars

  13. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system.

    PubMed

    Burgay, M; D'Amico, N; Possenti, A; Manchester, R N; Lyne, A G; Joshi, B C; McLaughlin, M A; Kramer, M; Sarkissian, J M; Camilo, F; Kalogera, V; Kim, C; Lorimer, D R

    2003-12-04

    The merger of close binary systems containing two neutron stars should produce a burst of gravitational waves, as predicted by the theory of general relativity. A reliable estimate of the double-neutron-star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors will be successful in detecting such bursts. Present estimates of this rate are rather low, because we know of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we report the discovery of a 22-ms pulsar, PSR J0737-3039, which is a member of a highly relativistic double-neutron-star binary with an orbital period of 2.4 hours. This system will merge in about 85 Myr, a time much shorter than for any other known neutron-star binary. Together with the relatively low radio luminosity of PSR J0737-3039, this timescale implies an order-of-magnitude increase in the predicted merger rate for double-neutron-star systems in our Galaxy (and in the rest of the Universe).

  14. Observations of hot stars and eclipsing binaries with FRESIP

    NASA Technical Reports Server (NTRS)

    Gies, Douglas R.

    1994-01-01

    The FRESIP project offers an unprecedented opportunity to study pulsations in hot stars (which vary on time scales of a day) over a several year period. The photometric data will determine what frequencies are present, how or if the amplitudes change with time, and whether there is a connection between pulsation and mass loss episodes. It would initiate a new field of asteroseismology studies of hot star interiors. A search should be made for selected hot stars for inclusion in the list of project targets. Many of the primary solar mass targets will be eclipsing binaries, and I present estimates of their frequency and typical light curves. The photometric data combined with follow up spectroscopy and interferometric observations will provide fundamental data on these stars. The data will provide definitive information on the mass ratio distribution of solar-mass binaries (including the incidence of brown dwarf companions) and on the incidence of planets in binary systems.

  15. Imaging the cool stars in the interacting binaries AE Aqr, BV Cen and V426 Oph

    NASA Astrophysics Data System (ADS)

    Watson, C. A.; Steeghs, D.; Dhillon, V. S.; Shahbaz, T.

    2007-10-01

    It is well known that magnetic activity in late-type stars increases with increasing rotation rate. Using inversion techniques akin to medical imaging, the rotationally broadened profiles from such stars can be used to reconstruct `Doppler images' of the distribution of cool, dark starspots on their stellar surfaces. Interacting binaries, however, contain some of the most rapidly rotating late-type stars known and thus provide important tests of stellar dynamo models. Furthermore, magnetic activity is thought to play a key role in their evolution, behaviour and accretion dynamics. Despite this, we know comparatively little about the magnetic activity and its influence on such binaries. In this review we summarise the concepts behind indirect imaging of these systems, and present movies of the starspot distributions on the cool stars in some interacting binaries. We conclude with a look at the future opportunities that such studies may provide.

  16. Absolute parameters and chemical composition of the binary star OU Gem

    NASA Astrophysics Data System (ADS)

    Glazunova, L. V.; Mishenina, T. V.; Soubiran, C.; Kovtyukh, V. V.

    2014-10-01

    The absolute parameters and chemical composition of the BY Dra-type spectroscopic binary OU Gem (HD 45088) were determined on the basis of 10 high-resolution spectra. A new orbital solution of the binary system was determined, the binary ephemerides were specified, and the main physical and atmospheric parameters of the binary components were obtained. The chemical composition of both components was estimated for the first time for the stars of such type.

  17. A Gamma-Ray Burst Model Via Compressional Heating of Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Salmonson, J. D.; Wilson, J. R.; Mathews, G. J.

    1998-12-01

    We present a model for gamma-ray bursts based on the compression of neutron stars in close binary systems. General relativistic (GR) simulations of close neutron star binaries have found compression of the neutron stars estimated to produce 1053 ergs of thermal neutrinos on a timescale of seconds. The hot neutron stars will emit neutrino pairs which will partially recombine to form 1051 to 1052 ergs of electron-positron (e^-e^+) pair plasma. GR hydrodynamic computational modeling of the e^-e^+ plasma flow and recombination yield a gamma-ray burst in good agreement with general characteristics (duration ~10 seconds, spectrum peak energy ~100 keV, total energy ~1051 ergs) of many observed gamma-ray bursts.

  18. Microlensing Signature of Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  19. Stripped Red Giants - Helium Core White Dwarf Progenitors and their sdB Siblings

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2017-03-01

    Some gaps in the mosaic of binary star evolution have recently been filled by the discoveries of helium-core white dwarf progenitors (often called extremely low mass (ELM) white dwarfs) as stripped cores of first-giant branch objects. Two varieties can be distinguished. One class is made up by SB1 binaries, companions being white dwarfs as well. Another class, the so-called EL CVn stars, are composite spectrum binaries, with A-Type companions. Pulsating stars are found among both classes. A riddle is posed by the apparently single objects. There is a one-to-one correspondence of the phenomena found for these new classes of star to those observed for sdB stars. In fact, standard evolutionary scenarios explain the origin of sdB stars as red giants that have been stripped close to the tip of first red giant branch. A subgroup of subluminous B stars can also be identified as stripped helium-cores of red giants. They form an extension of the ELM sequence to higher temperatures. Hence low mass white dwarfs of helium cores and sdB stars in binaries are close relatives in terms of stellar evolution.

  20. Unveiling hidden properties of young star clusters: differential reddening, star-formation spread, and binary fraction

    NASA Astrophysics Data System (ADS)

    Bonatto, C.; Lima, E. F.; Bica, E.

    2012-04-01

    Context. Usually, important parameters of young, low-mass star clusters are very difficult to obtain by means of photometry, especially when differential reddening and/or binaries occur in large amounts. Aims: We present a semi-analytical approach (ASAmin) that, when applied to the Hess diagram of a young star cluster, is able to retrieve the values of mass, age, star-formation spread, distance modulus, foreground and differential reddening, and binary fraction. Methods: The global optimisation method known as adaptive simulated annealing (ASA) is used to minimise the residuals between the observed and simulated Hess diagrams of a star cluster. The simulations are realistic and take the most relevant parameters of young clusters into account. Important features of the simulations are a normal (Gaussian) differential reddening distribution, a time-decreasing star-formation rate, the unresolved binaries, and the smearing effect produced by photometric uncertainties on Hess diagrams. Free parameters are cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and binary fraction. Results: Tests with model clusters built with parameters spanning a broad range of values show that ASAmin retrieves the input values with a high precision for cluster mass, distance modulus, and foreground reddening, but they are somewhat lower for the remaining parameters. Given the statistical nature of the simulations, several runs should be performed to obtain significant convergence patterns. Specifically, we find that the retrieved (absolute minimum) parameters converge to mean values with a low dispersion as the Hess residuals decrease. When applied to actual young clusters, the retrieved parameters follow convergence patterns similar to the models. We show how the stochasticity associated with the early phases may affect the results, especially in low-mass clusters. This effect can be minimised by averaging out several twin clusters in the simulated Hess diagrams. Conclusions: Even for low-mass star clusters, ASAmin is sensitive to the values of cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and to a lesser degree, binary fraction. Compared with simpler approaches, including binaries, a decaying star-formation rate, and a normally distributed differential reddening appears to yield more constrained parameters, especially the mass, age, and distance from the Sun. A robust determination of cluster parameters may have a positive impact on many fields. For instance, age, mass, and binary fraction are important for establishing the dynamical state of a cluster or for deriving a more precise star-formation rate in the Galaxy.

  1. Survival of planets around shrinking stellar binaries

    PubMed Central

    Muñoz, Diego J.; Lai, Dong

    2015-01-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412

  2. Survival of planets around shrinking stellar binaries.

    PubMed

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  3. Contamination of RR Lyrae stars from Binary Evolution Pulsators

    NASA Astrophysics Data System (ADS)

    Karczmarek, Paulina; Pietrzyński, Grzegorz; Belczyński, Krzysztof; Stępień, Kazimierz; Wiktorowicz, Grzegorz; Iłkiewicz, Krystian

    2016-06-01

    Binary Evolution Pulsator (BEP) is an extremely low-mass member of a binary system, which pulsates as a result of a former mass transfer to its companion. BEP mimics RR Lyrae-type pulsations but has different internal structure and evolution history. We present possible evolution channels to produce BEPs, and evaluate the contamination value, i.e. how many objects classified as RR Lyrae stars can be undetected BEPs. In this analysis we use population synthesis code StarTrack.

  4. Rotational properties of hypermassive neutron stars from binary mergers

    NASA Astrophysics Data System (ADS)

    Hanauske, Matthias; Takami, Kentaro; Bovard, Luke; Rezzolla, Luciano; Font, José A.; Galeazzi, Filippo; Stöcker, Horst

    2017-08-01

    Determining the differential-rotation law of compact stellar objects produced in binary neutron stars mergers or core-collapse supernovae is an old problem in relativistic astrophysics. Addressing this problem is important because it impacts directly on the maximum mass these objects can attain and, hence, on the threshold to black-hole formation under realistic conditions. Using the results from a large number of numerical simulations in full general relativity of binary neutron star mergers described with various equations of state and masses, we study the rotational properties of the resulting hypermassive neutron stars. We find that the angular-velocity distribution shows only a modest dependence on the equation of state, thus exhibiting the traits of "quasiuniversality" found in other aspects of compact stars, both isolated and in binary systems. The distributions are characterized by an almost uniformly rotating core and a "disk." Such a configuration is significantly different from the j -constant differential-rotation law that is commonly adopted in equilibrium models of differentially rotating stars. Furthermore, the rest-mass contained in such a disk can be quite large, ranging from ≃0.03 M⊙ in the case of high-mass binaries with stiff equations of state, up to ≃0.2 M⊙ for low-mass binaries with soft equations of state. We comment on the astrophysical implications of our findings and on the long-term evolutionary scenarios that can be conjectured on the basis of our simulations.

  5. High-velocity runaway stars from three-body encounters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.

    2010-01-01

    We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 - 400 km s-1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M⊙) and found that about 3 - 4% of all encounters produce velocities ≥ 400 km s-1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 - 400 km s-1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 - 100 M⊙ stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 - 400 km s-1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s-1) late B-type escapers.

  6. VizieR Online Data Catalog: Solar analogs and twins rotation by Kepler (do Nascimento+, 2014)

    NASA Astrophysics Data System (ADS)

    Do Nascimento, J.-D. Jr; Garcia, R. A.; Mathur, S.; Anthony, F.; Barnes, S. A.; Meibom, S.; da Costa, J. S.; Castro, M.; Salabert, D.; Ceillier, T.

    2017-03-01

    Our sample of 75 stars consists of a seismic sample of 38 from Chaplin et al. (2014, J/ApJS/210/1), 35 additional stars selected from the Kepler Input Catalog (KIC), and 16 Cyg A and B. We selected 38 well-studied stars from the asteroseismic data with fundamental properties, including ages, estimated by Chaplin et al. (2014, J/ApJS/210/1), and with Teff and log g as close as possible to the Sun's value (5200 K < Teff < 6060 K and 3.63 < log g < 4.40). This seismic sample allows a direct comparison between gyro- and seismic-ages for a subset of eight stars. These seismic samples were observed in short cadence for one month each in survey mode. Stellar properties for these stars have been estimated using two global asteroseismic parameters and complementary photometric and spectroscopic observations as described by Chaplin et al. (2014, J/ApJS/210/1). The median final quoted uncertainties for the full Chaplin et al. (2014, J/ApJS/210/1) sample were approximately 0.020 dex in log g and 150 K in Teff. (1 data file).

  7. New Results of Spectral Observations of CP Stars in the Li I 6708 Å Spectral Region with the 6-m BTA Telescope

    NASA Astrophysics Data System (ADS)

    Polosukhina, N.; Shavrina, A.; Drake, N.; Kudryavtsev, D.; Smirnova, M.

    The lithium problem in Ap-CP stars has for a long time been a subject of debates. Individual characteristics of CP stars, such as a high abundance of rare-earth elements, the presence of magnetic fields, complex structures of the surface distribution of chemical elements, rapid oscillations of some CP stars, make the detection of lithium lines, and determination of lithium abundance a challenging task. The lithium problem in Ap-CP stars was discussed during the meeting in Slovakia in 1996. The results of the Li study, carried out in CrAO (Polosukhina, 1973 - 1976), the works of Faraggiana & Hack (1963), Wallerstein & Hack (1964), Faraggiana et al. (1992 - 1996) formed the basis of the international project, called Lithium in the Cool CP Stars with Magnetic Fields. The main goal of the project was, using systematical observations of Ap-CP stars with phase rotation in the spectral regions of the resonance doublet Li I 6708 Å and subordinate 6104 Å lithium lines with different telescopes, to create a database, which will permit to explain the physical origin of the anomalous Li abundance in the atmospheres of these stars.

  8. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach

    NASA Astrophysics Data System (ADS)

    Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W.

    2016-05-01

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.

  9. Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach.

    PubMed

    Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W

    2016-05-06

    Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.

  10. The evolution of photoevaporating viscous discs in binaries

    NASA Astrophysics Data System (ADS)

    Rosotti, Giovanni P.; Clarke, Cathie J.

    2018-02-01

    A large fraction of stars are in binary systems, yet the evolution of protoplanetary discs in binaries has been little explored from the theoretical side. In this paper, we investigate the evolution of the discs surrounding the primary and secondary components of binary systems on the assumption that this is driven by photoevaporation induced by X-rays from the respective star. We show how for close enough separations (20-30 au for average X-ray luminosities) the tidal torque of the companion changes the qualitative behaviour of disc dispersal from inside out to outside in. Fewer transition discs created by photoevaporation are thus expected in binaries. We also demonstrate that in close binaries the reduction in viscous time leads to accelerated disc clearing around both components, consistent with unresolved observations. When looking at the differential disc evolution around the two components, in close binaries discs around the secondary clear first due to the shorter viscous time-scale associated with the smaller outer radius. In wide binaries instead the difference in photoevaporation rate makes the secondaries longer lived, though this is somewhat dependent on the assumed scaling of viscosity with stellar mass. We find that our models are broadly compatible with the growing sample of resolved observations of discs in binaries. We also predict that binaries have higher accretion rates than single stars for the same disc mass. Thus, binaries probably contribute to the observed scatter in the relationship between disc mass and accretion rate in young stars.

  11. Extreme isolation of WN3/O3 stars and implications for their evolutionary origin as the elusive stripped binaries

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Götberg, Ylva; de Mink, Selma E.

    2018-03-01

    Recent surveys of the Magellanic Clouds have revealed a subtype of Wolf-Rayet (WR) star with peculiar properties. WN3/O3 spectra exhibit both WR-like emission and O3 V-like absorption - but at lower luminosity than O3 V or WN stars. We examine the projected spatial distribution of WN3/O3 stars in the Large Magellanic Cloud as compared to O-type stars. Surprisingly, WN3/O3 stars are among the most isolated of all classes of massive stars; they have a distribution similar to red supergiants dominated by initial masses of 10-15 M⊙, and are far more dispersed than classical WR stars or luminous blue variables. Their lack of association with clusters of O-type stars suggests strongly that WN3/O3 stars are not the descendants of single massive stars (30 M⊙ or above). Instead, they are likely products of interacting binaries at lower initial mass (10-18 M⊙). Comparison with binary models suggests a probable origin with primaries in this mass range that were stripped of their H envelopes through non-conservative mass transfer by a low-mass secondary. We show that model spectra and positions on the Hertzsprung-Russell diagram for binary-stripped stars are consistent with WN3/O3 stars. Monitoring radial velocities with high-resolution spectra can test for low-mass companions or runaway velocities. With lower initial mass and environments that avoid very massive stars, the WN3/O3 stars fit expectations for progenitors of Type Ib and possibly Type Ibn supernovae.

  12. Polar orbits around binary stars

    NASA Astrophysics Data System (ADS)

    Egan, Greg

    2018-01-01

    Oks proposes the existence of a new class of stable planetary orbits around binary stars, in the shape of a helix on a conical surface whose axis of symmetry coincides with the interstellar axis, and rotates with the same orbital frequency as the binary pair. We show that this claim relies on the inappropriate use of an effective potential that is only applicable when the stars are held motionless. We also present numerical evidence that the only planetary orbits whose planes are initially orthogonal to the interstellar axis that remain stable on the time scale of the stellar orbit are ordinary polar orbits around one of the stars, and that the perturbations due to the binary companion do not rotate the plane of the orbit to maintain a fixed relationship with the axis.

  13. Surprising dissimilarities in a newly formed pair of `identical twin' stars

    NASA Astrophysics Data System (ADS)

    Stassun, Keivan G.; Mathieu, Robert D.; Cargile, Phillip A.; Aarnio, Alicia N.; Stempels, Eric; Geller, Aaron

    2008-06-01

    The mass and chemical composition of a star are the primary determinants of its basic physical properties-radius, temperature and luminosity-and how those properties evolve with time. Accordingly, two stars born at the same time, from the same natal material and with the same mass, are `identical twins,' and as such might be expected to possess identical physical attributes. We have discovered in the Orion nebula a pair of stellar twins in a newborn binary star system. Each star in the binary has a mass of 0.41+/-0.01 solar masses, identical to within 2per cent. Here we report that these twin stars have surface temperatures differing by ~300K (~10per cent) and luminosities differing by ~50per cent, both at high confidence level. Preliminary results indicate that the stars' radii also differ, by 5-10per cent. These surprising dissimilarities suggest that one of the twins may have been delayed by several hundred thousand years in its formation relative to its sibling. Such a delay could only have been detected in a very young, definitively equal-mass binary system. Our findings reveal cosmic limits on the age synchronization of young binary stars, often used as tests for the age calibrations of star-formation models.

  14. Statistical studies of superflares on G-, K-, M- type stars from Kepler data

    NASA Astrophysics Data System (ADS)

    Notsu, Yuta; Maehara, Hiroyuki; Honda, Satoshi; Notsu, Shota; Namekata, Kosuke; Ikuta, Kai; Nogami, Daisaku; Shibata, Kazunari

    2017-05-01

    Flares are thought to be sudden releases of magnetic energy stored around starspots. Recent space high-precision photometry shows “superflares”, 10-104 times more energetic than the largest solar flares, occur on many G, K, M-type stars (e.g., Maehara+2012 Nature). Harmful UV/X-ray radiation and high-energy particles such as protons are caused by such superflares. This may suggest that exoplanet host stars have severe effects on the physical and chemical evolution of exoplanetary atmospheres (cf. Segura+2010 Astrobiology, Takahashi+2016 ApJL).We here present statistical properties of superflares on G, K, M-type stars on the basis of our analyses of Kepler photometric data (Maehara+2012 Nature, Shibayama+2013 ApJS, Notsu+2013 ApJ, Canderaresi+2014 ApJ, Maehara+2015 EPS, Maehara+2017 PASJ). We found more than 5000 superflares on 800 G, K, M-type main-sequence stars, and the occurrence frequency (dN/dE) of superflares as a function of flare energy (E) shows the power-law distribution with the index of -1.8 -1.9. This power-law distribution is consistent with that of solar flares.Flare frequency increases as stellar temperature decreases. As for M-type stars, energy of the largest flares is smaller compared with G,K-type stars, but more frequent “hazardous” flares for the habitable planets since the habitable zone around M-type stars is much smaller compared with G, K-type stars.Rotation period and starspot coverage can be estimated from the quasi-periodic brightness variation of the superflare stars. The intensity of Ca II 8542 line of superflare stars, which is measured from spectroscopic observations with Subaru Telescope, has a well correlation with the brightness variation amplitude (Notsu+2015a&b PASJ).Flare frequency has a correlation with rotation period, and this suggests young rapidly-rotating stars (like “young Sun”) have more severe impacts of flares on the planetary atmosphere (cf. Airapetian+2016 ApJL). Flare energy and frequency also depends on starspot coverage, and this suggests existence of large starspots is important factor of superflares.These statistical properties of superflares discussed here can be one of the basic information for considering the impacts of flares on planet-host stars.

  15. Tidal interactions of inspiraling compact binaries

    NASA Technical Reports Server (NTRS)

    Bildsten, Lars; Cutler, Curt

    1992-01-01

    We discuss the tidal interaction in neutron star-neutron star and neutron star-black hole binaries and argue that they will not be tidally locked during the gravitational inspiral. More specifically, we show that, for inspiraling neutron stars of mass greater than about 1.2 solar mass, the shortest possible tidal synchronization time exceeds the gravitational decay time, so that the neutron star cannot be tidally locked prior to tidal disruption, regardless of its internal viscosity. For smaller mass neutron stars, an implausibly large kinematic viscosity - nearly the speed of light times the stellar radius - is required for tidal locking. We also argue that the mass transfer which occurs when the neutron star reaches the tidal radius will be unstable in neutron star-black hole binaries, and the instability will destroy the neutron star in a few orbital periods. The implications of our work for the detection of these sources by LIGO and other gravitational wave observatories and for the gamma-ray burst scenarios of Paczynski (1986, 1991) are discussed.

  16. Molecular dynamics simulation for the test of calibrated OPLS-AA force field for binary liquid mixture of tri-iso-amyl phosphate and n-dodecane.

    PubMed

    Das, Arya; Ali, Sk Musharaf

    2018-02-21

    Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.

  17. Molecular dynamics simulation for the test of calibrated OPLS-AA force field for binary liquid mixture of tri-iso-amyl phosphate and n-dodecane

    NASA Astrophysics Data System (ADS)

    Das, Arya; Ali, Sk. Musharaf

    2018-02-01

    Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.

  18. How do binary separations depend on cloud initial conditions?

    NASA Astrophysics Data System (ADS)

    Sterzik, M. F.; Durisen, R. H.; Zinnecker, H.

    2003-11-01

    We explore the consequences of a star formation scenario in which the isothermal collapse of a rotating, star-forming core is followed by prompt fragmentation into a cluster containing a small number (N <~ 10) of protostars and/or substellar objects. The subsequent evolution of the cluster is assumed to be dominated by dynamical interactions among cluster members, and this establishes the final properties of the binary and multiple systems. The characteristic scale of the fragmenting core is determined by the cloud initial conditions (such as temperature, angular momentum and mass), and we are able to relate the separation distributions of the final binary population to the properties of the star-forming core. Because the fragmentation scale immediately after the isothermal collapse is typically a factor of 3-10 too large, we conjecture that fragmentation into small clusters followed by dynamical evolution is required to account for the observed binary separation distributions. Differences in the environmental properties of the cores are expected to imprint differences on the characteristic dimensions of the binary systems they form. Recent observations of hierarchical systems, differences in binary characteristics among star forming regions and systematic variations in binary properties with primary mass can be interpreted in the context of this scenario.

  19. GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2018-03-02

    The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude Ω_{GW}(f=25  Hz)=1.8_{-1.3}^{+2.7}×10^{-9} with 90% confidence, compared with Ω_{GW}(f=25  Hz)=1.1_{-0.7}^{+1.2}×10^{-9} from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

  20. A spectrum synthesis program for binary stars

    NASA Technical Reports Server (NTRS)

    Linnell, Albert P.; Hubeny, Ivan

    1994-01-01

    A new program produces synthetic spectra of binary stars at arbitrary values of orbital longitude, including longitudes of partial or complete eclipse. The stellar components may be distorted, either tidally or rotationally, or both. Either or both components may be rotating nonsynchronously. We illustrate the program performance with two cases: EE Peg, an eclipsing binary with small distortion, and SX Aur, an eclipsing binary that is close to contact.

  1. Merging strangeon stars

    NASA Astrophysics Data System (ADS)

    Lai, Xiao-Yu; Yu, Yun-Wei; Zhou, En-Ping; Li, Yun-Yang; Xu, Ren-Xin

    2018-02-01

    The state of supranuclear matter in compact stars remains puzzling, and it is argued that pulsars could be strangeon stars. What would happen if binary strangeon stars merge? This kind of merger could result in the formation of a hyper-massive strangeon star, accompanied by bursts of gravitational waves and electromagnetic radiation (and even a strangeon kilonova explained in the paper). The tidal polarizability of binary strangeon stars is different from that of binary neutron stars, because a strangeon star is self-bound on the surface by the fundamental strong force while a neutron star by the gravity, and their equations of state are different. Our calculation shows that the tidal polarizability of merging binary strangeon stars is favored by GW170817. Three kinds of kilonovae (i.e., of neutron, quark and strangeon) are discussed, and the light curve of the kilonova AT 2017 gfo following GW170817 could be explained by considering the decaying strangeon nuggets and remnant star spin-down. Additionally, the energy ejected to the fireball around the nascent remnant strangeon star, being manifested as a gamma-ray burst, is calculated. It is found that, after a prompt burst, an X-ray plateau could follow in a timescale of 102 ‑ 103 s. Certainly, the results could be tested also by further observational synergies between gravitational wave detectors (e.g., Advanced LIGO) and X-ray telescopes (e.g., the Chinese HXMT satellite and eXTP mission), and especially if the detected gravitational wave form is checked by peculiar equations of state provided by the numerical relativistical simulation.

  2. White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.

    2014-10-01

    White dwarfs are the evolutionary endpoint for nearly 95% of all stars born in our Galaxy, the final stages of evolution of all low- and intermediate mass stars, i.e., main sequence stars with masses below (8.5± 1.5) M_{odot}, depending on metallicity of the progenitor, mass loss and core overshoot. Massive white dwarfs are intrinsically rare objects, tand produce a gap in the determination of the initial vs. final mass relation at the high mass end (e.g. Weidemann 2000 A&A, 363, 647; Kalirai et al. 2008, ApJ, 676, 594; Williams, Bolte & Koester 2009, ApJ, 693, 355). Main sequences stars with higher masses will explode as SNII (Smartt S. 2009 ARA&A, 47, 63), but the limit does depend on the metallicity of the progenitor. Massive white dwarfs are probably SNIa progenitors through accretion or merger. They are rare, being the final product of massive stars (less common) and have smaller radius (less luminous). Kepler et al. 2007 (MNRAS, 375, 1315), Kleinman et al. 2013 (ApJS, 204, 5) estimate only 1-2% white dwarfs have masses above 1 M_{odot}. The final stages of evolution after helium burning are a race between core growth and loss of the H-rich envelope in a stellar wind. When the burning shell is exposed, the star rapidly cools and burning ceases, leaving a white dwarf. As they cool down, the magnetic field freezes in, ranging from a few kilogauss to a gigagauss. Peculiar type Ia SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg suggest progenitors in the range 2.4-2.8 M_{odot}, and Das U. & Mukhopadhyay B. (2012, Phys. Rev. D, 86, 042001) estimate that the Chandrasekhar limit increases to 2.3-2.6 M_{odot} for extremely high magnetic field stars, but differential rotation induced by accretion could also increase it, according to Hachisu I. et al. 2012 (ApJ, 744, 69). García-Berro et al. 2012, ApJ, 749, 25, for example, proposes double degenerate mergers are the progenitors of high-field magnetic white dwarfs. We propose magnetic fields enhance the line broadening in WDs, causing an overestimated surface gravity, and ultimately determine if these magnetic fields are likely developed through the star's own surface convection zone, or inherited from massive Ap/Bp progenitors. We discovered around 20 000 spectroscopic white dwarfs with the Sloan Digital Sky Survey (SDSS), with a corresponding increase in relatively rare varieties of white dwarfs, including the massive ones (Kleinman et al. 2013, ApJS, 204, 5, Kepler et al. 2013, MNRAS, 439, 2934). The mass distributions of the hydrogen-rich (DA) measured from fitting the spectra with model atmospheres calculated using unidimensinal mixing lenght-theory (MLT) shows the average mass (as measured by the surface gravity) increases apparently below 13 000K for DAs (e.g. Bergeron et al. 1991, ApJ, 367, 253; Tremblay et al. 2011, ApJ, 730, 128; Kleinman et al. 2013). Only with the tridimensional (3D) convection calculations of Tremblay et al. 2011 (A&A, 531, L19) and 2013 (A&A, 552, 13; A&A, 557, 7; arXiv 1309.0886) the problem has finally been solved, but the effects of magnetic fields are not included yet in the mass determinations. Pulsating white dwarf stars are used to measure their interior and envelope properties through seismology, and together with the luminosity function of white dwarf stars in clusters and around the Sun are valuable tools for the study of high density physics, and the history of stellar formation.

  3. The formation of planetary systems during the evolution of close binary stars

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.

    1991-08-01

    Modern scenarios of the formation of planetary systems around single stars and products of merging close binaries are described. The frequencies of the realization of different scenarios in the Galaxy are estimated. It is concluded that the modern theory of the early stages of the evolution of single stars and the theory of the evolution of close binaries offer several possible versions for the origin of planetary systems, while the scenario dating back to Kant and Laplace remains the likeliest.

  4. Detecting binary neutron star systems with spin in advanced gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Brown, Duncan A.; Harry, Ian; Lundgren, Andrew; Nitz, Alexander H.

    2012-10-01

    The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars’ angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, cJ/GM2, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational-wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with nonzero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximum signal-to-noise for only 9% (0.2%) of binary neutron star sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.

  5. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.

    2008-08-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  6. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Gosnell, Natalie; Latham, David W.

    2009-02-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  7. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.

    2008-02-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  8. Searching for Binary Systems Among Nearby Dwarfs Based on Pulkovo Observations and SDSS Data

    NASA Astrophysics Data System (ADS)

    Khovrichev, M. Yu.; Apetyan, A. A.; Roshchina, E. A.; Izmailov, I. S.; Bikulova, D. A.; Ershova, A. P.; Balyaev, I. A.; Kulikova, A. M.; Petyur, V. V.; Shumilov, A. A.; Os'kina, K. I.; Maksimova, L. A.

    2018-02-01

    Our goal is to find previously unknown binary systems among low-mass dwarfs in the solar neighborhood and to test the search technique. The basic ideas are to reveal the images of stars with significant ellipticities and/or asymmetries compared to the background stars on CCD frames and to subsequently determine the spatial parameters of the binary system and the magnitude difference between its components. For its realization we have developed a method based on an image shapelet decomposition. All of the comparatively faint stars with large proper motions ( V >13 m , μ > 300 mas yr-1) for which the "duplicate source" flag in the Gaia DR1 catalogue is equal to one have been included in the list of objects for our study. As a result, we have selected 702 stars. To verify our results, we have performed additional observations of 65 stars from this list with the Pulkovo 1-m "Saturn" telescope (2016-2017). We have revealed a total of 138 binary candidates (nine of them from the "Saturn" telescope and SDSS data). Six program stars are known binaries. The images of the primaries of the comparatively wide pairs WDS 14519+5147, WDS 11371+6022, and WDS 15404+2500 are shown to be resolved into components; therefore, we can talk about the detection of triple systems. The angular separation ρ, position angle, and component magnitude difference Δ m have been estimated for almost all of the revealed binary systems. For most stars 1.5'' < ρ < 2.5'', while Δ m <1.5m.

  9. ζ1 + ζ2 Reticuli binary system: a puzzling chromospheric activity pattern

    NASA Astrophysics Data System (ADS)

    Flores, M.; Saffe, C.; Buccino, A.; Jaque Arancibia, M.; González, J. F.; Nuñez, N. E.; Jofré, E.

    2018-05-01

    We perform, for the first time, a detailed long-term activity study of the binary system ζ Ret. We use all available HARPS spectra obtained between the years 2003 and 2016. We build a time series of the Mount Wilson S index for both stars, then we analyse these series by using Lomb-Scargle periodograms. The components ζ1 Ret and ζ2 Ret that belong to this binary system are physically very similar to each other and also similar to our Sun, which makes it a remarkable system. We detect in the solar-analogue star ζ2 Ret a long-term activity cycle with a period of ˜10 yr, similar to the solar one (˜11 yr). It is worthwhile to mention that this object satisfies previous criteria for a flat star and for a cycling star simultaneously. Another interesting feature of this binary system is a high ˜0.220 dex difference between the average log (R^' }_HK) activity levels of both stars. Our study clearly shows that ζ1 Ret is significantly more active than ζ2 Ret. In addition, ζ1 Ret shows an erratic variability in its stellar activity. In this work, we explore different scenarios trying to explain this rare behaviour in a pair of coeval stars, which could help to explain the difference in this and other binary systems. From these results, we also warn that for the development of activity-age calibrations (which commonly use binary systems and/or stellar clusters as calibrators) the whole history of activity available for the stars involved should be taken into account.

  10. 1974: the discovery of the first binary pulsar

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    2015-06-01

    The 1974 discovery, by Russell A Hulse and Joseph H Taylor, of the first binary pulsar, PSR B1913+16, opened up new possibilities for the study of relativistic gravity. PSR B1913+16, as well as several other binary pulsars, provided direct observational proof that gravity propagates at the velocity of light and has a quadrupolar structure. Binary pulsars also provided accurate tests of the strong-field regime of relativistic gravity. General relativity has passed all of the binary pulsar tests with flying colors. The discovery of binary pulsars also had very important consequences for astrophysics, leading to accurate measurement of neutron star masses, improved understanding of the possible evolution scenarios for the co-evolution of binary stars, and proof of the existence of binary neutron stars emitting gravitational waves for hundreds of millions of years, before coalescing in catastrophic events radiating intense gravitational wave signals, and probably also leading to important emissions of electromagnetic radiation and neutrinos. This article reviews the history of the discovery of the first binary pulsar, and describes both its immediate impact and its longer-term effect on theoretical and experimental studies of relativistic gravity.

  11. STABLE CONIC-HELICAL ORBITS OF PLANETS AROUND BINARY STARS: ANALYTICAL RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oks, E.

    2015-05-10

    Studies of planets in binary star systems are especially important because it was estimated that about half of binary stars are capable of supporting habitable terrestrial planets within stable orbital ranges. One-planet binary star systems (OBSS) have a limited analogy to objects studied in atomic/molecular physics: one-electron Rydberg quasimolecules (ORQ). Specifically, ORQ, consisting of two fully stripped ions of the nuclear charges Z and Z′ plus one highly excited electron, are encountered in various plasmas containing more than one kind of ion. Classical analytical studies of ORQ resulted in the discovery of classical stable electronic orbits with the shape ofmore » a helix on the surface of a cone. In the present paper we show that despite several important distinctions between OBSS and ORQ, it is possible for OBSS to have stable planetary orbits in the shape of a helix on a conical surface, whose axis of symmetry coincides with the interstellar axis; the stability is not affected by the rotation of the stars. Further, we demonstrate that the eccentricity of the stars’ orbits does not affect the stability of the helical planetary motion if the center of symmetry of the helix is relatively close to the star of the larger mass. We also show that if the center of symmetry of the conic-helical planetary orbit is relatively close to the star of the smaller mass, a sufficiently large eccentricity of stars’ orbits can switch the planetary motion to the unstable mode and the planet would escape the system. We demonstrate that such planets are transitable for the overwhelming majority of inclinations of plane of the stars’ orbits (i.e., the projections of the planet and the adjacent start on the plane of the sky coincide once in a while). This means that conic-helical planetary orbits at binary stars can be detected photometrically. We consider, as an example, Kepler-16 binary stars to provide illustrative numerical data on the possible parameters and the stability of the conic-helical planetary orbits, as well as on the transitability. Then for the general case, we also show that the power of the gravitational radiation due to this planet can be comparable or even exceed the power of the gravitational radiation due to the stars in the binary. This means that in the future, with a progress of gravitational wave detectors, the presence of a planet in a conic-helical orbit could be revealed by the noticeably enhanced gravitational radiation from the binary star system.« less

  12. Einstein@Home Finds a Double Neutron Star

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-12-01

    Have you been contributing your computer idle time to the Einstein@Home project? If so, youre partly responsible for the programs recent discovery of a new double-neutron-star system that will be key to learning about general relativity and stellar evolution.The 305-m Arecibo Radio Telescope, built into the landscape at Arecibo, Puerto Rico. [NOAO/AURA/NSF/H. Schweiker/WIYN]The Hunt for PulsarsObserving binary systems containing two neutron stars and in particular, measuring the timing of the pulses when one or both companions is a pulsar can provide highly useful tests of general relativity and binary stellar evolution. Unfortunately, these systems are quite rare: of 2500 known radio pulsars, only 14 of them are in double-neutron-starbinaries.To find more systems like these, we perform large-scale, untargeted radio-pulsar surveys like the ongoing Pulsar-ALFA survey conducted with the enormous 305-m radio telescope at Arecibo Observatory in Puerto Rico. But combing through these data for the signature of a highly accelerated pulsar (the acceleration is a clue that its in a compact binary) is very computationally expensive.PSR J1913+1102s L-band pulse profile, created by phase-aligning and summing all observations. [Adapted from Lazarus et al. 2016]To combat this problem, the Einstein@Home project was developed. Einstein@Home allows anyone to volunteer their personal computers idle time to help run the analysis of survey data in the search for pulsars. In a recent publication led by Patrick Lazarus (Max Planck Institute for Radio Astronomy), the Einstein@Home team announced the discovery of the pulsar PSR J1913+1102 a member of what seems to be a brand new double-neutron-starsystem.An Intriguing DiscoveryLazarus and collaborators followed up on the discovery to obtain timing measurements of the pulsar, which they found to have a spin period of 27.3 ms. They measured PSR J1913+1102 to be in a 4.95-hr, nearly circular (e 0.09) binary orbit with a massive companion that, based on its properties, is most likely another neutron star. The team wasnt able to detect pulsations from the companion, but that could mean that its beam doesnt cross the Earth, or its very faint, or its simply no longer active as a pulsar.Orbital evolution of the six known double-neutron-star systems that will coalesce within a Hubble time, including J1913+1102 (black solid line). They move toward the origin as they lose energy to gravitational waves and approach merger. Shown are current positions (black dots), estimates of the positions when the compact binaries were formed (grey dots), and future evolution. [Lazarus et al. 2016]Lazarus and collaborators use their observations of the system to arguethat PSR J1913+1102 waslikely spun up (recycled) by accretion of matter from its companions progenitor. The companion then exploded in the second supernova of the system, providing a very small kick hence the low eccentricity of the system and resulting in the current double-neutron-starbinary we observe.Lessons from PSR J1913+1102Observations of compact binaries such as this one can reveal a wealth of information. Besides providing clues about how the binary evolved, precise timing measurements (now being made) will also allow powerful tests of general relativity.One of the measurements that may be possible by the end of this year will provide information about the orbital decay of the binary expected to continue for 0.5 Gyr until the system merges due to the emission of gravitational waves.In the meantime, you can bet that Einstein@Home will continue hunting for more systems like PSR J1913+1102 and its companion!CitationP. Lazarus et al 2016 ApJ 831 150. doi:10.3847/0004-637X/831/2/150

  13. Analysis of the Conformally Flat Approximation for Binary Neutron Star Initial Conditions

    DOE PAGES

    Suh, In-Saeng; Mathews, Grant J.; Haywood, J. Reese; ...

    2017-01-09

    The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here in this paper, we analyze the viability of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasicircular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasicircular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect themore » emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.« less

  14. Three Investigations of Low Mass Stars in the Milky Way Using New Technology Surveys

    NASA Astrophysics Data System (ADS)

    Lurie, John C.

    At least 80% of stars in the Milky Way have masses less than or equal to the Sun. These long lived stars are the most likely hosts of planets where complex life can develop. Although relatively stable on the timescale of billions of years, many low mass stars possess strong magnetic fields that are manifested in energetic surface activity, which may pose a hazard to both life and technology. Magnetic activity also influences the evolution of a low mass star through a feedback process that slows the rotation rate, which in turn tends to decrease the amount of activity. In this way, the rotation rate and activity level of a low mass star may provide an estimate of its age. Beyond their rotation-activity evolution as isolated objects, a small but important fraction of low mass stars have a close binary companion that influences the rotational and orbital properties of the system. Binary interaction can lead to phenomena such as supernovae, cataclysmic variables, and degenerate object mergers. From a larger perspective, low mass stars trace Galactic structure, and through their longevity serve as archives of the dynamical and chemical history of the Milky Way. Thus a full picture of low mass stars, and by extension the Milky Way, requires understanding their rotation and activity; their interaction in close binaries; and their spatial and kinematic distribution throughout the Galaxy. Historically, these topics have been approached from two separate but complementary modes of observation. Time series photometric surveys measure the stellar variability caused by rotation, activity, and binary interaction, while wide field surveys measure the brightnesses and colors of millions of stars to map their distribution in the Galaxy. The first generation of digital detectors and computing technology limited intensive time series surveys to a small number of stars, and limited wide field surveys to little if any variability information. Today those limitations are falling away. This thesis is composed of three investigations of low mass stars using two recent surveys at the cutting edge of detector technology. The Kepler space telescope carried the largest camera ever launched into space, and continuously monitored the brightnesses of hundreds of thousands of stars with unprecedented precision and cadence. The Pan-STARRS survey was equipped with the largest camera ever constructed, and imaged 75% percent of the sky to greater depth than any previous optical survey. The first investigation in this thesis used Kepler observations of a binary system containing two stars that are about one third the mass of the Sun. The convective motions in these stars extend to their centers, and so there is no interface with a radiative core to drive a solar-like dynamo that powers the magnetic activity of stars like the Sun. By virtue of being in a binary, the stars have the same age, providing a control for the interdependent effects of activity and rotation. The investigation found that the stars have nearly the same level of activity, despite one star rotating almost three times faster than the other. This suggests that in fully convective stars, there is a threshold rotation rate above which activity is no longer correlated with rotation. The second investigation also used Kepler observations, but in this case focused on low mass stars in close binaries, where tidal interactions are expected to circularize the orbit and synchronize the rotation rates to the orbital period. Prior to this investigation, there were few observational constraints on the tidal synchronization of stars with convective envelopes, and this investigation resulted in rotation period measurements for over 800 such stars. At orbital periods below approximately ten days, nearly all binaries are synchronized, while beyond ten days most binaries have eccentric orbits and rotation rates that are synchronized to the angular velocity at periastron. An unexpected result was that 15% of binaries with orbital periods below ten days are rotating about 13% slower than the synchronized rate. It was suggested that the equators of the stars are in fact synchronized, and that the subsynchronous signal originates from slower rotating high latitudes. The subsynchronous population presents a new test for theories of activity and differential rotation in tidally interacting binaries. The final investigation used Pan-STARRS observations to search for asymmetries in the disk of the Milky Way. In this case, low mass stars served as tracers of Galactic structure. Previous deep optical surveys avoided the Galactic plane, but Pan-STARRS enabled a comprehensive search. In particular, asymmetries in the stellar density distribution may be the result of interactions with satellite galaxies, and the frequency and nature of the interactions provide an observational test case for theories of galaxy formation. (Abstract shortened by ProQuest.).

  15. VizieR Online Data Catalog: Spectroscopic binary population of ONC and NGC2264 (Kounkel+, 2016)

    NASA Astrophysics Data System (ADS)

    Kounkel, M.; Hartmann, L.; Tobin, J. J.; Mateo, M.; Bailey, J. I., III; Spencer, M.

    2016-06-01

    We reanalyzed all of the spectra previously obtained by T09 (Tobin et al. 2009, J/ApJ/697/1103) for the ONC region and by T15 (Tobin et al. 2015, J/AJ/149/119) for the NGC 2264 region (including several stars observed but not included in their published catalog) using Hectochelle and MIKE fibers. In addition to these data, we include new observations from these instruments (spanning 2008 Oct to 2009 Dec) and from the Michigan/Magellan Fiber System (M2FS). We observed a total of four fields toward the ONC and two fields toward NGC 2264 in 2013 November and 2014 February using M2FS. The MgI filter was used covering a wavelength range of ~5100-5210Å. (4 data files).

  16. An Astrometric Observation of Binary Star System WDS 15559-0210 at the Great Basin Observatory

    NASA Astrophysics Data System (ADS)

    Musegades, Lila; Niebuhr, Cole; Graham, Mackenzie; Poore, Andrew; Freed, Rachel; Kenney, John; Genet, Russell

    2018-04-01

    Researchers at Concordia University Irvine measured the position angle and separation of the double star system WDS 15559-0210 using a SBIG STX-16803 CCD camera on the PlaneWave 0.7-m CDK 700 telescope at the Great Basin Observatory. Images of the binary star system were measured using AstroImageJ software. Twenty observations of WDS 15559-0210 were measured and analyzed. The calculated mean resulted in a position angle of 345.95° and a separation of 5.94". These measurements were consistent with the previous values for this binary system listed in the Washington Double Star Catalog.

  17. Gravitational microlensing by double stars and planetary systems

    NASA Technical Reports Server (NTRS)

    Mao, Shunde; Paczynski, Bohdan

    1991-01-01

    Almost all stars are in binary systems. When the separation between the two components is comparable to the Einstein ring radius corresponding to the combined mass of the binary acting as a gravitational lens, then an extra pair of images can be created, and the light curve of a lensed source becomes complicated. It is estimated that about 10 percent of all lensing episodes of the Galactic bulge stars will strongly display the binary nature of the lens. The effect is strong even if the companion is a planet. A massive search for microlensing of the Galactic bulge stars may lead to a discovery of the first extrasolar planetary systems.

  18. Analysis of magnetic activity of the rapidly rotating stars He 373 and AP 225

    NASA Astrophysics Data System (ADS)

    Kolbin, A. I.; Tsymbal, V. V.

    2017-06-01

    Spectroscopic and photometric data for the two rapidly rotating members of the α Persei cluster He 373 and AP 225 are analyzed. Improved estimates have been obtained for the projected equatorial rotation velocities: v sin i = 164 km/s for He 323 and v sin i = 129 km/s for AP 225. Multi-band photometric mapping is used to map the spot distributions on the surfaces of the two stars. The fractional spotted areas S and mean temperature difference Δ T between the unspotted photosphere and the spots are estimated ( S = 7% and Δ T = 1000 K for He 373; S = 9% and Δ T = 800 K for AP 225). The H α line profiles of both stars have variable emission components whose widths are used to deduce the presence of extended regions of emission reaching the corotation radius.

  19. Lithium and Isotopic Ratio Li6/Li7 in Magnetic roAp Stars as an Indicator of Active Processes

    NASA Astrophysics Data System (ADS)

    Polosukhina, N.; Shavrina, A.; Lyashko, D.; Nesvacil, N.; Drake, N.; Smirnova, M.

    2015-04-01

    The lines of lithium at 6708 Å and 6103 Å are analyzed in high resolution spectra of some sharp-lined and slowly rotating roAp stars. Three spectral synthesis codes— STARSP, ZEEMAN2, and SYNTHM—were used. New lines of rare earth elements (REE) from the DREAM database and the lines calculated on the basis of the NIST energy levels were included. Magnetic splitting and other line broadening processes were taken into account. For both lithium lines, the enhanced abundances of lithium in the atmospheres of the stars studied are obtained. The lithium abundance determined from the Li 6103 Å line is higher than that from the Li 6708 Å for all the stars. This may be evidence of vertical lithium stratification, abnormal temperature distribution, or unidentified blending of the 6103 Å line. Our work on two roAp stars, HD 83368 and HD 60435 (Shavrina et al. 2001) provides evidence of an enhanced lithium abundance near the magnetic-field poles. We can expect similar effects in the sharp-lined roAp stars. High lithium abundance for all the stars and the estimates of the 6Li/7Li ratio (0.2-0.5) can be explained by production of Li in the cosmic ray spallation reactions in the interstellar medium where the stars were born, and by preservation of the original 6Li and 7Li by strong magnetic fields of these stars. The values of the 6Li/7Li ratio expected from production by cosmic rays are about 0.5-0.8 (Knauth et al. 2003; Webber et al. 2002). New laboratory and theoretical gf-values for REE lines are necessary in order to refine our estimates of lithium abundances and the isotopic ratio.

  20. VizieR Online Data Catalog: UV spectra of classical T Tauri stars (France+, 2014)

    NASA Astrophysics Data System (ADS)

    France, K.; Schindhelm, E.; Bergin, E. A.; Roueff, E.; Abgrall, H.

    2017-06-01

    We present 16 objects from the larger GTO + DAO T Tauri star samples described by Ardila et al. (2013ApJS..207....1A; focusing on the hot gas emission lines) and France et al. (2012, J/ApJ/756/171; focusing on the molecular circumstellar environment). Eleven of the 16 sources were observed as part of the DAO of Tau guest observing program (PID 11616; PI: G. Herczeg), four were part of the COS Guaranteed Time Observing program on protoplanetary disks (PIDs 11533 and 12036; PI: J. Green), and we have included archival STIS observations of the well-studied CTTS TW Hya (Herczeg et al. 2002ApJ...572..310H, 2004ApJ...607..369H), obtained through StarCAT (Ayres 2010, J/ApJS/187/149). The targets were selected by the availability of reconstructed Lyα spectra, as this emission line is a critical component to the intrinsic CTTS UV radiation field (Schindhelm et al. 2012ApJ...756L..23S) and has not been uniformly included in recent studies of the CTTS radiation field (e.g., Ingleby et al. 2011AJ....141..127I; Yang et al. 2012, J/ApJ/744/121). Most of the targets were observed with the medium-resolution FUV modes of COS (G130M and G160M; Green et al. 2012ApJ...744...60G). (2 data files).

  1. X-ray Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen; Gudel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2006-01-01

    We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Ka line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only nondetections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.

  2. The Role of Binarity in the Angular Momentum Evolution of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Stauffer, John; Rebull, Luisa; K2 clusters team

    2018-01-01

    We have analysed K2 light curves for of order a thousand low mass stars in each of the 8 Myr old Upper Sco association, the 125 Myr age Pleiades open cluster and the ~700 Myr old Praesepe cluster. A very large fraction of these stars show well-determined rotation periods with K2, and where the star is a binary, we usually are able to determine periods for both stars. In Upper Sco, where there are ~150 M dwarf binaries with K2 light curves, the binary stars have periods that are much shorter on average and much closer to each other than would be true if drawn at random from the Upper Sco M dwarf single stars. The same is true in the Pleiades,though the size of the differences from the single M dwarf population is smaller. By Praesepe age, the M dwarf binaries are still somewhat rapidly rotating but their period differences are not significantly different from what would be true if drawn by chance from the singles.

  3. MINING PLANET SEARCH DATA FOR BINARY STARS: THE ψ{sup 1} DRACONIS SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gullikson, Kevin; Endl, Michael; Cochran, William D.

    Several planet-search groups have acquired a great deal of data in the form of time-series spectra of several hundred nearby stars with time baselines of over a decade. While binary star detections are generally not the goal of these long-term monitoring efforts, the binary stars hiding in existing planet search data are precisely the type that are too close to the primary star to detect with imaging or interferometry techniques. We use a cross-correlation analysis to detect the spectral lines of a new low-mass companion to ψ{sup 1} Draconis A, which has a known roughly equal-mass companion at ∼680 AU.more » We measure the mass of ψ{sup 1} Draconis C as M{sub 2} = 0.70 ± 0.07M{sub ⊙}, with an orbital period of ∼20 years. This technique could be used to characterize binary companions to many stars that show large-amplitude modulation or linear trends in radial velocity data.« less

  4. Dynamical Asteroseismology: towards improving the theories of stellar structure and (tidal) evolution

    NASA Astrophysics Data System (ADS)

    Tkachenko, Andrew

    2017-10-01

    The potential of the dynamical asteroseismology, the research area that builds upon the synergies between the asteroseismology and binary stars research fields, is discussed in this manuscript. We touch upon the following topics: i) the mass discrepancy observed in intermediate-to high-mass main-sequence and evolved binaries as well as in the low mass systems that are still in the pre-main sequence phase of their evolution; ii) the rotationally induced mixing in high-mass stars, in particular how the most recent theoretical predictions and spectroscopic findings compare to the results of asteroseismic investigations; iii) internal gravity waves and their potential role in the evolution of binary star systems and surface nitrogen enrichment in high-mass stars; iv) the tidal evolution theory, in particular how its predictions of spin-orbit synchronisation and orbital circularisation compare to the present-day high-quality observations; v) the tidally-induced pulsations and their role in the angular momentum transport within binary star systems; vi) the scaling relations between fundamental and seismic properties of stars across the entire HR-diagram.

  5. Gravitational Waves from Stellar Black Hole Binaries and the Impact on Nearby Sun-like Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopes, Ilídio; Silk, Joseph, E-mail: ilidio.lopes@tecnico.ulisboa.pt, E-mail: silk@astro.ox.ac.uk

    We investigate the impact of resonant gravitational waves on quadrupole acoustic modes of Sun-like stars located nearby stellar black hole binary systems (such as GW150914 and GW151226). We find that the stimulation of the low-overtone modes by gravitational radiation can lead to sizeable photometric amplitude variations, much larger than the predictions for amplitudes driven by turbulent convection, which in turn are consistent with the photometric amplitudes observed in most Sun-like stars. For accurate stellar evolution models, using up-to-date stellar physics, we predict photometric amplitude variations of 1–10{sup 3} ppm for a solar mass star located at a distance between 1more » au and 10 au from the black hole binary and belonging to the same multi-star system. The observation of such a phenomenon will be within the reach of the Plato mission because the telescope will observe several portions of the Milky Way, many of which are regions of high stellar density with a substantial mixed population of Sun-like stars and black hole binaries.« less

  6. Simulating the X-ray luminosity of Be X-ray binaries: the case for black holes versus neutron stars

    NASA Astrophysics Data System (ADS)

    Brown, R. O.; Ho, W. C. G.; Coe, M. J.; Okazaki, A. T.

    2018-04-01

    There are over 100 Be stars that are known to have neutron star companions but only one such system with a black hole. Previous theoretical work suggests this is not due to their formation but due to differences in X-ray luminosity. It has also been proposed that the truncation of the Be star's circumstellar disc is dependent on the mass of the compact object. Hence, Be star discs in black hole binaries are smaller. Since accretion onto the compact object from the Be star's disc is what powers the X-ray luminosity, a smaller disc in black hole systems leads to a lower luminosity. In this paper, simulations are performed with a range of eccentricities and compact object mass. The disc's size and density are shown to be dependent on both quantities. Mass capture and, in turn, X-ray luminosity are heavily dependent on the size and density of the disc. Be/black hole binaries are expected to be up to ˜10 times fainter than Be/neutron star binaries when both systems have the same eccentricity and can be 100 times fainter when comparing systems with different eccentricity.

  7. The Lore of the Hair

    NASA Astrophysics Data System (ADS)

    Yunes, Nicolas; Yagi, Kent; Stein, Leo

    2016-03-01

    Stars can be hairy beasts, especially in theories that go beyond Einstein's. In the latter, a scalar field can be sourced and anchored to a neutron star, and if the later is in a binary system, the scalar field will emit dipole radiation. This radiation removes energy from the binary, forcing the orbit to adiabatically decay much more rapidly than due to the emission of gravitational waves as predicted in General Relativity. The detailed radio observation of binary pulsars has constrained the orbital decay of compact binaries stringently, so much so that theories that predict neutron stars with scalar hair are believed to be essentially ruled out. In this talk I will explain why this ``lore'' is actually incorrect, providing a counter-example in which scalar hair is sourced by neutron stars, yet dipole radiation is absent. I will then describe what binary systems need to be observed to constrain such theories with future astrophysical observations. I acknowledge support from NSF CAREER Grant PHY-1250636.

  8. Synergies in Astrometry: Predicting Navigational Error of Visual Binary Stars

    NASA Astrophysics Data System (ADS)

    Gessner Stewart, Susan

    2015-08-01

    Celestial navigation can employ a number of bright stars which are in binary systems. Often these are unresolved, appearing as a single, center-of-light object. A number of these systems are, however, in wide systems which could introduce a margin of error in the navigation solution if not handled properly. To illustrate the importance of good orbital solutions for binary systems - as well as good astrometry in general - the relationship between the center-of-light versus individual catalog position of celestial bodies and the error in terrestrial position derived via celestial navigation is demonstrated. From the list of navigational binary stars, fourteen such binary systems with at least 3.0 arcseconds apparent separation are explored. Maximum navigational error is estimated under the assumption that the bright star in the pair is observed at maximum separation, but the center-of-light is employed in the navigational solution. The relationships between navigational error and separation, orbital periods, and observers' latitude are discussed.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, S. G.; Marsh, T. R.; Gaensicke, B. T.

    Using Liverpool Telescope+RISE photometry we identify the 2.78 hr period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100 K primary star and a 10,500 K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy, we measure the radial velocities of both components of the binary from the H{alpha} absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M{sub 1}more » = 0.283 {+-} 0.064 M{sub sun} and M{sub 2} = 0.274 {+-} 0.034 M{sub sun}, making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary, CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.« less

  10. The critical binary star separation for a planetary system origin of white dwarf pollution

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Xu, Siyi; Rebassa-Mansergas, Alberto

    2018-01-01

    The atmospheres of between one quarter and one half of observed single white dwarfs in the Milky Way contain heavy element pollution from planetary debris. The pollution observed in white dwarfs in binary star systems is, however, less clear, because companion star winds can generate a stream of matter which is accreted by the white dwarf. Here, we (i) discuss the necessity or lack thereof of a major planet in order to pollute a white dwarf with orbiting minor planets in both single and binary systems, and (ii) determine the critical binary separation beyond which the accretion source is from a planetary system. We hence obtain user-friendly functions relating this distance to the masses and radii of both stars, the companion wind, and the accretion rate on to the white dwarf, for a wide variety of published accretion prescriptions. We find that for the majority of white dwarfs in known binaries, if pollution is detected, then that pollution should originate from planetary material.

  11. Magnetic field geometries of two slowly rotating Ap/Bp stars: HD 12288 and HD 14437

    NASA Astrophysics Data System (ADS)

    Wade, G. A.; Kudryavtsev, D.; Romanyuk, I. I.; Landstreet, J. D.; Mathys, G.

    2000-03-01

    In this paper we report magnetic field models and basic physical parameters for the slowly rotating Ap/Bp stars HD 12288 and HD 14437. Using new and previously published mean longitudinal magnetic field, mean magnetic field modulus, and hipparcos photometric measurements, we have inferred the rotational periods of both stars (HD 12288: P_rot=34.9d +/- 0.2d HD 14437: P_rot=26.87d +/- 0.02d). From the magnetic measurements we have determined the best-fit decentred magnetic dipole configurations. For HD 12288, we find that the field geometry is consistent with a centred dipole, while for HD 14437 a large decentring parameter (a=0.23 R_*) is inferred. Both stars show one angle in the ambiguous (i,beta ) couplet which is smaller than about 20degr . This is consistent with the observation of Landstreet & Mathys (2000), who point out that almost all magnetic Ap stars with periods longer than about 30 days exhibit magnetic fields aligned with their rotational axis.

  12. WNL Stars - the Most Massive Stars in the Universe?

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier; Moffat, Anthony F. J.; St-Louis, Nicole; Skalkowski, Gwenael; Niemela, Virpi; Shara, Michael M.

    2001-08-01

    We propose to carry out an intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.

  13. WNLh Stars - The Most Massive Stars in the Universe?

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier; St-Louis, Nicole; Moffat, Anthony F. J.; Foellmi, Cedric

    2002-08-01

    We propose to conclude our intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.

  14. Polarized light curves illuminate wind geometries in Wolf-Rayet binary stars

    NASA Astrophysics Data System (ADS)

    Hoffman, Jennifer L.; Fullard, Andrew G.; Nordsieck, Kenneth H.

    2018-01-01

    Although the majority of massive stars are affected by a companion during the course of their evolution, the role of binary systems in creating supernova and GRB progenitors is not well understood. Binaries containing Wolf-Rayet stars are particularly interesting because they may provide a mechanism for producing the rapid rotation necessary for GRB formation. However, constraining the evolutionary fate of a Wolf-Rayet binary system requires characterizing its mass loss and mass transfer, a difficult prospect in systems whose colliding winds obscure the stars and produce complicated spectral signatures.The technique of spectropolarimetry is ideally suited to studying WR binary systems because it can disentangle spectral components that take different scattering paths through a complex distribution of circumstellar material. In particular, comparing the polarization behavior as a function of orbital phase of the continuum (which arises from the stars) with that of the emission lines (which arise from the interaction region) can provide a detailed view of the wind structures in a WR+O binary and constrain the system’s mass loss and mass transfer properties.We present new continuum and line polarization curves for three WR+O binaries (WR 30, WR 47, and WR 113) obtained with the RSS spectropolarimeter at the Southern African Large Telescope. We use radiative transfer simulations to analyze the polarization curves, and discuss our interpretations in light of current models for V444 Cygni, a well-studied related binary system. Accurately characterizing the structures of the wind collision regions in these massive binaries is key to understanding their evolution and properly accounting for their contribution to the supernova (and possible GRB) progenitor population.

  15. CCD Times of Minima of Selected Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Zejda, Miloslav

    2004-12-01

    682 CCD minima observations of 259 eclipsing binaries made mainly by author are presented. The observed stars were chosen mainly from catalogue BRKA of observing programme of BRNO-Variable Star Section of CAS.

  16. OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. IV. OBSERVATIONS OF KEPLER, CoRoT, AND HIPPARCOS STARS FROM THE GEMINI NORTH TELESCOPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horch, Elliott P.; Howell, Steve B.; Everett, Mark E.

    2012-12-01

    We present the results of 71 speckle observations of binary and unresolved stars, most of which were observed with the DSSI speckle camera at the Gemini North Telescope in 2012 July. The main purpose of the run was to obtain diffraction-limited images of high-priority targets for the Kepler and CoRoT missions, but in addition, we observed a number of close binary stars where the resolution limit of Gemini was used to better determine orbital parameters and/or confirm results obtained at or below the diffraction limit of smaller telescopes. Five new binaries and one triple system were discovered, and first orbitsmore » are calculated for other two systems. Several systems are discussed in detail.« less

  17. The Young Visual Binary Survey

    NASA Astrophysics Data System (ADS)

    Prato, Lisa; Avilez, Ian; Lindstrom, Kyle; Graham, Sean; Sullivan, Kendall; Biddle, Lauren; Skiff, Brian; Nofi, Larissa; Schaefer, Gail; Simon, Michal

    2018-01-01

    Differences in the stellar and circumstellar properties of the components of young binaries provide key information about star and disk formation and evolution processes. Because objects with separations of a few to a few hundred astronomical units share a common environment and composition, multiple systems allow us to control for some of the factors which play into star formation. We are completing analysis of a rich sample of about 100 pre-main sequence binaries and higher order multiples, primarily located in the Taurus and Ophiuchus star forming regions. This poster will highlight some of out recent, exciting results. All reduced spectra and the results of our analysis will be publicly available to the community at http://jumar.lowell.edu/BinaryStars/. Support for this research was provided in part by NSF award AST-1313399 and by NASA Keck KPDA funding.

  18. Analysis of GSC 2475-1587 and GSC 841-277: Two Eclipsing Binary Stars Found During Asteroid Lightcurve Observations

    NASA Astrophysics Data System (ADS)

    Stephens, R. D.; Warner, B. D.

    2006-05-01

    When observing asteroids we select from two to five comparison stars for differential photometry, taking the average value of the comparisons for the single value to be subtracted from the value for the asteroid. As a check, the raw data of each comparison star are plotted as is the difference between any single comparison and the average of the remaining stars in the set. On more than one occasion, we have found that at least one of the comparisons was variable. In two instances, we took time away from our asteroid lightcurve work to determine the period of the two binaries and attempted to model the system using David Bradstreet's Binary Maker 3. Unfortunately, neither binary showed a total eclipse. Therefore, our results are not conclusive and present only one of many possibilities.

  19. Close Binaries in the Orion Nebula Cluster: On the Universality of Stellar Multiplicity and the Origin of Field Stars

    NASA Astrophysics Data System (ADS)

    Duchene, Gaspard; Lacour, Sylvestre; Moraux, Estelle; Bouvier, Jerome; Goodwin, Simon

    2018-01-01

    While stellar multiplicity is an ubiquitous outcome of star formation, there is a clear dichotomy between the multiplicity properties of young (~1 Myr-old) stellar clusters, like the ONC, which host a mostly field-like population of visual binaries, and those of equally young sparse populations, like the Taurus-Auriga region, which host twice as many stellar companions. Two distinct scenarios can account for this observation: one in which different star-forming regions form different number of stars, and one in which multiplicity properties are universal at birth but where internal cluster dynamics destroy many wide binaries. To solve this ambiguity, one must probe binaries that are sufficiently close so as not to be destroyed through interactions with other cluster members. To this end, we have conducted a survey for 10-100 au binaries in the ONC using the aperture masking technique with the VLT adaptive optics system. Among our sample of the 42 ONC members, we discovered 13 companions in this range of projected separations. This is consistent with the companion frequency observed in the Taurus population and twice as high as that observed among field stars. This survey thus strongly supports the idea that stellar multiplicity is characterized by near-universal initial properties that can later be dynamically altered. On the other hand, this exacerbates the question of the origin of field stars, since only clusters much denser than the ONC can effectively destroyed binaries closer than 100 au.

  20. Massive eclipsing binary candidates

    NASA Technical Reports Server (NTRS)

    Garrison, R. F.; Schild, R. E.; Hiltner, W. A.

    1983-01-01

    New UBV data are provided for 63 southern OB stars which are either identified in the survey by Garrison, Hiltner, and Schild as having double lines or are known from Wood et al. to be eclipsing binaries. Twenty of the stars are known eclipsing variables. Four stars, not previously known as eclipsing, have both spectroscopic evidence of duplicity and significant photometric variations. Several additional stars have a marginally significant spread in V magnitude.

  1. The planetary nebula IC 4776 and its post-common-envelope binary central star

    NASA Astrophysics Data System (ADS)

    Sowicka, Paulina; Jones, David; Corradi, Romano L. M.; Wesson, Roger; García-Rojas, Jorge; Santander-García, Miguel; Boffin, Henri M. J.; Rodríguez-Gil, Pablo

    2017-11-01

    We present a detailed analysis of IC 4776, a planetary nebula displaying a morphology believed to be typical of central star binarity. The nebula is shown to comprise a compact hourglass-shaped central region and a pair of precessing jet-like structures. Time-resolved spectroscopy of its central star reveals a periodic radial velocity variability consistent with a binary system. Whilst the data are insufficient to accurately determine the parameters of the binary, the most likely solutions indicate that the secondary is probably a low-mass main-sequence star. An empirical analysis of the chemical abundances in IC 4776 indicates that the common-envelope phase may have cut short the asymptotic giant branch evolution of the progenitor. Abundances calculated from recombination lines are found to be discrepant by a factor of approximately 2 relative to those calculated using collisionally excited lines, suggesting a possible correlation between low-abundance discrepancy factors and intermediate-period post-common-envelope central stars and/or Wolf-Rayet central stars. The detection of a radial velocity variability associated with the binarity of the central star of IC 4776 may be indicative of a significant population of (intermediate-period) post-common-envelope binary central stars that would be undetected by classic photometric monitoring techniques.

  2. Spectroscopic binaries in the Solar Twin Planet Search program: from substellar-mass to M dwarf companions

    NASA Astrophysics Data System (ADS)

    dos Santos, Leonardo A.; Meléndez, Jorge; Bedell, Megan; Bean, Jacob L.; Spina, Lorenzo; Alves-Brito, Alan; Dreizler, Stefan; Ramírez, Iván; Asplund, Martin

    2017-12-01

    Previous studies on the rotation of Sun-like stars revealed that the rotational rates of young stars converge towards a well-defined evolution that follows a power-law decay. It seems, however, that some binary stars do not obey this relation, often by displaying enhanced rotational rates and activity. In the Solar Twin Planet Search program, we observed several solar twin binaries, and found a multiplicity fraction of 42 per cent ± 6 per cent in the whole sample; moreover, at least three of these binaries (HIP 19911, HIP 67620 and HIP 103983) clearly exhibit the aforementioned anomalies. We investigated the configuration of the binaries in the program, and discovered new companions for HIP 6407, HIP 54582, HIP 62039 and HIP 30037, of which the latter is orbited by a 0.06 M⊙ brown dwarf in a 1 m long orbit. We report the orbital parameters of the systems with well-sampled orbits and, in addition, the lower limits of parameters for the companions that only display a curvature in their radial velocities. For the linear trend binaries, we report an estimate of the masses of their companions when their observed separation is available, and a minimum mass otherwise. We conclude that solar twin binaries with low-mass stellar companions at moderate orbital periods do not display signs of a distinct rotational evolution when compared to single stars. We confirm that the three peculiar stars are double-lined binaries, and that their companions are polluting their spectra, which explains the observed anomalies.

  3. Time-series Photometry of the Pre-Main Sequence Binary V4046 Sgr: Testing the Accretion Stream Theory

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Ciardi, David R.

    2015-01-01

    Most stars are born in binaries, and the evolution of protostellar disks in pre-main sequence (PMS) binary stars is a current frontier of star formation research. PMS binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces. Thus, accretion in PMS binaries is controlled by not only radiation, disk viscosity, and magnetic fields, but also by orbital dynamics.As part of a larger, ongoing effort to characterize mass accretion in young binary systems, we test the predictions of the binary accretion stream theory through continuous, multi-orbit, multi-color optical and near-infrared (NIR) time-series photometry. Observations such as these are capable of detecting and characterizing these modulated accretion streams, if they are generally present. Broad-band blue and ultraviolet photometry trace the accretion luminosity and photospheric temperature while NIR photometry provide a measurement of warm circumstellar material, all as a function of orbital phase. The predicted phase and magnitude of enhanced accretion are highly dependent on the binary orbital parameters and as such, our campaign focuses on 10 PMS binaries of varying periods and eccentricities. Here we present multi-color optical (U, B,V, R), narrowband (Hα), and multi-color NIR (J, H) lightcurves of the PMS binary V4046 Sgr (P=2.42 days) obtained with the SMARTS 1.3m telescope and LCOGT 1m telescope network. These results act to showcase the quality and breadth of data we have, or are currently obtaining, for each of the PMS binaries in our sample. With the full characterization of our sample, these observations will guide an extension of the accretion paradigm from single young stars to multiple systems.

  4. A near infrared speckle imaging study of T Tauri stars

    NASA Technical Reports Server (NTRS)

    Ghez, A. M.; Mccarthy, D. W., Jr.; Weinberger, A. J.; Neugebauer, G.; Matthews, K.

    1994-01-01

    The results of a speckle imaging survey of T Tauri stars suggest that most, if not all, young low mass stars have companions. Repeated observations of these young binary stars have revealed orbital motion in the closest pairs (less than or = 0.3 sec), providing that these systems are indeed gravitationally bound and providing the basis for mass estimates in the upcoming years. These mass estimates are necessary to distinguish between the various binary star formation mechanisms that have been proposed to date.

  5. Variable Star and Exoplanet Section of the Czech Astronomical Society

    NASA Astrophysics Data System (ADS)

    Brát, L.; Zejda, M.

    2010-12-01

    We present activities of Czech variable star observers organized in the Variable Star and Exoplanet Section of the Czech Astronomical Society. We work in four observing projects: B.R.N.O. - eclipsing binaries, MEDUZA - intrinsic variable stars, TRESCA - transiting exoplanets and candidates, HERO - objects of high energy astrophysics. Detailed information together with O-C gate (database of eclipsing binaries minima timings) and OEJV (Open European Journal on Variable stars) are available on our internet portal http://var.astro.cz.

  6. VizieR Online Data Catalog: Subdwarf A stars vs ELM WDs radial velocities (Brown+, 2017)

    NASA Astrophysics Data System (ADS)

    Brown, W. R.; Kilic, M.; Gianninas, A.

    2017-11-01

    Our sample is comprised of 11 subdwarf A-type (sdA) stars suspected of being eclipsing binaries (S. O. Kepler 2015, private communication) and 11 previously unpublished extremely low mass (ELM) white dwarf (WD) candidates that have sdA-like temperatures summarized in Table 1. We obtain time-series spectroscopy for all 22 objects and time-series optical photometry for 21 objects. We also obtain JHK infrared photometry for 6 objects. We obtain time-series spectroscopy for 20 of the 22 objects with the 6.5m MMT telescope. We obtain spectra for the two brightest objects with the 1.5m Tillinghast telescope at Fred Lawrence Whipple Observatory. We obtain additional spectra for six objects with the 4m Mayall telescope at Kitt Peak National Observatory. The spectra were mostly acquired in observing runs between 2014 December and 2016 December. We search the Catalina Surveys Data Release 2 (Drake+ 2009, J/ApJ/696/870) and find time-series V-band photometry for 21 of the 22 objects. Six objects show significant eclipses. (3 data files).

  7. A magnetic survey of AP stars in young clusters - Preliminary results

    NASA Astrophysics Data System (ADS)

    Brown, D. N.; Landstreet, J. D.; Thompson, I.

    Photoelectric polarimetry of Ap stars was undertaken in order to investigate the role of magnetic fields in the evolution of atmospheric chemical peculiarities and the braking of stellar rotation. The stars are grouped by cluster or association and listed by HD number, and each star's spectral type, reference for classification, number of magnetic observations, and root mean square of the equivalent magnetic field measurements obtained from an expression are shown. The data obtained to date include several new magnetic identifications and display the character of the survey, but are not yet sufficient to support any firm evolutionary conclusions.

  8. Protoplanetary disk evolution and stellar parameters of T Tauri binaries in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Daemgen, S.; Petr-Gotzens, M. G.; Correia, S.; Teixeira, P. S.; Brandner, W.; Kley, W.; Zinnecker, H.

    2013-06-01

    Aims: This study aims to determine the impact of stellar binary companions on the lifetime and evolution of circumstellar disks in the Chamaeleon I (Cha I) star-forming region by measuring the frequency and strength of accretion and circumstellar dust signatures around the individual components of T Tauri binary stars. Methods: We used high-angular resolution adaptive optics JHKsL' -band photometry and 1.5-2.5 μm spectroscopy of 19 visual binary and 7 triple stars in Cha I - including one newly discovered tertiary component - with separations between ~25 and ~1000 AU. The data allowed us to infer stellar component masses and ages and, from the detection of near-infrared excess emission and the strength of Brackett-γ emission, the presence of ongoing accretion and hot circumstellar dust of the individual stellar components of each binary. Results: Of all the stellar components in close binaries with separations of 25-100 AU, 10+15-5% show signs of accretion. This is less than half of the accretor fraction found in wider binaries, which itself appears significantly reduced (~44%) compared with previous measurements of single stars in Cha I. Hot dust was found around 50+30-15% of the target components, a value that is indistinguishable from that of Cha I single stars. Only the closest binaries (<25 AU) were inferred to have a significantly reduced fraction (≲25%) of components that harbor hot dust. Accretors were exclusively found in binary systems with unequal component masses Msecondary/Mprimary < 0.8, implying that the detected accelerated disk dispersal is a function of mass-ratio. This agrees with the finding that only one accreting secondary star was found, which is also the weakest accretor in the sample. Conclusions: The results imply that disk dispersal is more accelerated the stronger the dynamical disk truncation, i.e., the smaller the inferred radius of the disk. Nonetheless, the overall measured mass accretion rates appear to be independent of the cluster environment or the existence of stellar companions at any separation ≳25 AU, because they agree well with observations from our previous binary study in the Orion Nebula cluster and with studies of single stars in these and other star-forming regions. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile. ESO Data ID: 086.C-0762.Tables 2, 4, and Appendix A are available in electronic form at http://www.aanda.org

  9. Kepler Eclipsing Binary Stars. I. Catalog and Principal Characterization of 1879 Eclipsing Binaries in the First Data Release

    NASA Astrophysics Data System (ADS)

    Prša, Andrej; Batalha, Natalie; Slawson, Robert W.; Doyle, Laurance R.; Welsh, William F.; Orosz, Jerome A.; Seager, Sara; Rucker, Michael; Mjaseth, Kimberly; Engle, Scott G.; Conroy, Kyle; Jenkins, Jon; Caldwell, Douglas; Koch, David; Borucki, William

    2011-03-01

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg2 field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID), ephemeris (BJD0, P 0), morphology type, physical parameters (T eff, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T 2/T 1, q, fillout factor, and sin i for overcontacts, and T 2/T 1, (R 1 + R 2)/a, esin ω, ecos ω, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be ~1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.

  10. Astronomy in Denver: Spectropolarimetric Observations of 5 Wolf-Rayet Binary Stars with SALT/RSS

    NASA Astrophysics Data System (ADS)

    Fullard, Andrew; Ansary, Zyed; Azancot Luchtan, Daniel; Gallegos, Hunter; Luepker, Martin; Hoffman, Jennifer L.; Nordsieck, Kenneth H.; SALT observation team

    2018-06-01

    Mass loss from massive stars is an important yet poorly understood factor in shaping their evolution. Wolf-Rayet (WR) stars are of particular interest due to their stellar winds, which create large regions of circumstellar material (CSM). They are also supernova and possible gamma-ray burst (GRB) progenitors. Like other massive stars, WR stars often occur in binaries, where interaction can affect their mass loss rates and provide the rapid rotation thought to be required for GRB production. The diagnostic tool of spectropolarimetry, along with the potentially eclipsing nature of a binary system, helps us to better characterize the CSM created by the stars’ colliding winds. Thus, we can determine mass loss rates and infer rapid rotation. We present spectropolarimetric results for five WR+O eclipsing binary systems, obtained with the Robert Stobie Spectrograph at the South African Large Telescope, between April 2017 and April 2018. The data allow us to map both continuum and emission line polarization variations with phase, which constrains where different CSM components scatter light in the systems. We discuss our initial findings and interpretations of the polarimetric variability in each binary system, and compare the systems.

  11. HD271791: dynamical versus binary-supernova ejection scenario

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2009-05-01

    The atmosphere of the extremely high-velocity (530-920kms-1) early B-type star HD271791 is enriched in α-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the direction of Galactic rotation. In this Letter, we show that to explain the Galactic rest-frame velocity of HD271791 within the framework of the binary-supernova scenario, the stellar remnant of the supernova explosion (a <~10Msolar black hole) should receive an unrealistically large kick velocity of >=750-1200kms-1. We therefore consider the binary-supernova scenario as highly unlikely and instead propose that HD271791 attained its peculiar velocity in the course of a strong dynamical three- or four-body encounter in the dense core of the parent star cluster. Our proposal implies that by the moment of encounter HD271791 was a member of a massive post-supernova binary.

  12. The Binary Dwarf Carbon Star SDSS J125017.90+252427.6

    NASA Astrophysics Data System (ADS)

    Margon, Bruce; Kupfer, Thomas; Burdge, Kevin; Prince, Thomas A.; Kulkarni, Shrinivas R.; Shupe, David L.

    2018-03-01

    Although dwarf carbon (dC) stars are universally thought to be binaries in order to explain the presence of C 2 in their spectra while still near main-sequence luminosity, direct observational evidence for their binarity is remarkably scarce. Here, we report the detection of a 2.92 day periodicity in both the photometry and radial velocity of SDSS J125017.90+252427.6, an r = 16.4 dC star. This is the first photometric binary dC, and only the second dC spectroscopic binary. The relative phase of the photometric period to the spectroscopic observations suggests that the photometric variations are a reflection effect due to heating from an unseen companion. The observed radial velocity amplitude of the dC component (K = 98.8 ± 10.7 km s‑1) is consistent with a white dwarf companion, presumably the evolved star that earlier donated the carbon to the dC, although substantial orbital evolution must have occurred. Large synoptic photometric surveys such as the Palomar Transient Factory, which was used for this work, may prove useful for identifying binaries among the shorter-period dC stars.

  13. Indoor Astronomy: A Model Eclipsing Binary Star System.

    ERIC Educational Resources Information Center

    Bloomer, Raymond H., Jr.

    1979-01-01

    Describes a two-hour physics laboratory experiment modeling the phenomena of eclipsing binary stars developed by the Air Force Academy as part of a week-long laboratory-oriented experience for visiting high school students. (BT)

  14. Whole Earth Telescope discovery of a strongly distorted quadrupole pulsation in the largest amplitude rapidly oscillating Ap star

    NASA Astrophysics Data System (ADS)

    Holdsworth, Daniel L.; Kurtz, D. W.; Saio, H.; Provencal, J. L.; Letarte, B.; Sefako, R. R.; Petit, V.; Smalley, B.; Thomsen, H.; Fletcher, C. L.

    2018-01-01

    We present a new analysis of the rapidly oscillating Ap (roAp) star, 2MASS J19400781 - 4420093 (J1940; V = 13.1). The star was discovered using SuperWASP broad-band photometry to have a frequency of 176.39 d-1 (2041.55 μHz; P = 8.2 min; Holdsworth et al. 2014a) and is shown here to have a peak-to-peak amplitude of 34 mmag. J1940 has been observed during three seasons at the South African Astronomical Observatory, and has been the target of a Whole Earth Telescope campaign. The observations reveal that J1940 pulsates in a distorted quadrupole mode with unusual pulsational phase variations. A higher signal-to-noise ratio spectrum has been obtained since J1940's first announcement, which allows us to classify the star as A7 Vp Eu(Cr). The observing campaigns presented here reveal no pulsations other than the initially detected frequency. We model the pulsation in J1940 and conclude that the pulsation is distorted by a magnetic field of strength 1.5 kG. A difference in the times of rotational maximum light and pulsation maximum suggests a significant offset between the spots and pulsation axis, as can be seen in roAp stars.

  15. Asymmetric Planetary Nebulae VI: the conference summary

    NASA Astrophysics Data System (ADS)

    De Marco, O.

    2014-04-01

    The Asymmetric Planetary Nebulae conference series, now in its sixth edition, aims to resolve the shaping mechanism of PN. Eighty percent of PN have non spherical shapes and during this conference the last nails in the coffin of single stars models for non spherical PN have been put. Binary theories abound but observational tests are lagging. The highlight of APN6 has been the arrival of ALMA which allowed us to measure magnetic fields on AGB stars systematically. AGB star halos, with their spiral patterns are now connected to PPN and PN halos. New models give us hope that binary parameters may be decoded from these images. In the post-AGB and pre-PN evolutionary phase the naked post-AGB stars present us with an increasingly curious puzzle as complexity is added to the phenomenologies of objects in transition between the AGB and the central star regimes. Binary central stars continue to be detected, including the first detection of longer period binaries, however a binary fraction is still at large. Hydro models of binary interactions still fail to give us results, if we make an exception for the wider types of binary interactions. More promise is shown by analytical considerations and models driven by simpler, 1D simulations such as those carried out with the code MESA. Large community efforts have given us more homogeneous datasets which will yield results for years to come. Examples are the ChanPlaN and HerPlaNe collaborations that have been working with the Chandra and Herschel space telescopes, respectively. Finally, the new kid in town is the intermediate-luminosity optical transient, a new class of events that may have contributed to forming several peculiar PN and pre-PN.

  16. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  17. Formation of wide binaries by turbulent fragmentation

    NASA Astrophysics Data System (ADS)

    Lee, Jeong-Eun; Lee, Seokho; Dunham, Michael M.; Tatematsu, Ken'ichi; Choi, Minho; Bergin, Edwin A.; Evans, Neal J.

    2017-08-01

    Understanding the formation of wide-binary systems of very low-mass stars (M ≤ 0.1 solar masses, M⊙) is challenging 1,2,3 . The most obvious route is through widely separated low-mass collapsing fragments produced by turbulent fragmentation of a molecular core4,5. However, close binaries or multiples from disk fragmentation can also evolve to wide binaries over a few initial crossing times of the stellar cluster through tidal evolution6. Finding an isolated low-mass wide-binary system in the earliest stage of formation, before tidal evolution could occur, would prove that turbulent fragmentation is a viable mechanism for (very) low-mass wide binaries. Here we report high-resolution ALMA observations of a known wide-separation protostellar binary, showing that each component has a circumstellar disk. The system is too young7 to have evolved from a close binary, and the disk axes are misaligned, providing strong support for the turbulent fragmentation model. Masses of both stars are derived from the Keplerian rotation of the disks; both are very low-mass stars.

  18. Chromospheric activity of periodic variable stars (including eclipsing binaries) observed in DR2 LAMOST stellar spectral survey

    NASA Astrophysics Data System (ADS)

    Zhang, Liyun; Lu, Hongpeng; Han, Xianming L.; Jiang, Linyan; Li, Zhongmu; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang

    2018-05-01

    The LAMOST spectral survey provides a rich databases for studying stellar spectroscopic properties and chromospheric activity. We cross-matched a total of 105,287 periodic variable stars from several photometric surveys and databases (CSS, LINEAR, Kepler, a recently updated eclipsing star catalogue, ASAS, NSVS, some part of SuperWASP survey, variable stars from the Tsinghua University-NAOC Transient Survey, and other objects from some new references) with four million stellar spectra published in the LAMOST data release 2 (DR2). We found 15,955 spectra for 11,469 stars (including 5398 eclipsing binaries). We calculated their equivalent widths (EWs) of their Hα, Hβ, Hγ, Hδ and Caii H lines. Using the Hα line EW, we found 447 spectra with emission above continuum for a total of 316 stars (178 eclipsing binaries). We identified 86 active stars (including 44 eclipsing binaries) with repeated LAMOST spectra. A total of 68 stars (including 34 eclipsing binaries) show chromospheric activity variability. We also found LAMOST spectra of 12 cataclysmic variables, five of which show chromospheric activity variability. We also made photometric follow-up studies of three short period targets (DY CVn, HAT-192-0001481, and LAMOST J164933.24+141255.0) using the Xinglong 60-cm telescope and the SARA 90-cm and 1-m telescopes, and obtained new BVRI CCD light curves. We analyzed these light curves and obtained orbital and starspot parameters. We detected the first flare event with a huge brightness increase of more than about 1.5 magnitudes in R filter in LAMOST J164933.24+141255.0.

  19. MAPPING THE SHORES OF THE BROWN DWARF DESERT. II. MULTIPLE STAR FORMATION IN TAURUS-AURIGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, Adam L.; Ireland, Michael J.; Martinache, Frantz

    2011-04-10

    We have conducted a high-resolution imaging study of the Taurus-Auriga star-forming region in order to characterize the primordial outcome of multiple star formation and the extent of the brown dwarf desert. Our survey identified 16 new binary companions to primary stars with masses of 0.25-2.5 M{sub sun}, raising the total number of binary pairs (including components of high-order multiples) with separations of 3-5000 AU to 90. We find that {approx}2/3-3/4 of all Taurus members are multiple systems of two or more stars, while the other {approx}1/4-1/3 appear to have formed as single stars; the distribution of high-order multiplicity suggests thatmore » fragmentation into a wide binary has no impact on the subsequent probability that either component will fragment again. The separation distribution for solar-type stars (0.7-2.5 M{sub sun}) is nearly log-flat over separations of 3-5000 AU, but lower-mass stars (0.25-0.7 M{sub sun}) show a paucity of binary companions with separations of {approx}>200 AU. Across this full mass range, companion masses are well described with a linear-flat function; all system mass ratios (q = M{sub B} /M{sub A} ) are equally probable, apparently including substellar companions. Our results are broadly consistent with the two expected modes of binary formation (free-fall fragmentation on large scales and disk fragmentation on small scales), but the distributions provide some clues as to the epochs at which the companions are likely to form.« less

  20. Tidal breakup of triple stars in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Fragione, Giacomo; Gualandris, Alessia

    2018-04-01

    The last decade has seen the detection of fast moving stars in the Galactic halo, the so-called hypervelocity stars (HVSs). While the bulk of this population is likely the result of a close encounter between a stellar binary and the supermassive black hole (MBH) in the Galactic Centre (GC), other mechanims may contribute fast stars to the sample. Few observed HVSs show apparent ages, which are shorter than the flight time from the GC, thereby making the binary disruption scenario unlikely. These stars may be the result of the breakup of a stellar triple in the GC, which led to the ejection of a hypervelocity binary (HVB). If such binary evolves into a blue straggler star due to internal processes after ejection, a rejuvenation is possible that make the star appear younger once detected in the halo. A triple disruption may also be responsible for the presence of HVBs, of which one candidate has now been observed. We present a numerical study of triple disruptions by the MBH in the GC and find that the most likely outcomes are the production of single HVSs and single/binary stars bound to the MBH, while the production of HVBs has a probability ≲ 1 per cent regardless of the initial parameters. Assuming a triple fraction of ≈ 10 per cent results in an ejection rate of ≲ 1 Gyr - 1, insufficient to explain the sample of HVSs with lifetimes shorter than their flight time. We conclude that alternative mechanisms are responsible for the origin of such objects and HVBs in general.

  1. DEBCat: A Catalog of Detached Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Southworth, J.

    2015-07-01

    Detached eclipsing binary star systems are our primary source of measured physical properties of normal stars. I introduce DEBCat: a catalog of detached eclipsing binaries with mass and radius measurements to the 2% precision necessary to put useful constraints on theoretical models of stellar evolution. The catalog was begun in 2006, as an update of the compilation by Andersen (1991). It now contains over 170 systems, and new results are added on appearance in the refereed literature. DEBCat is available at: http://www.astro.keele.ac.uk/jkt/debcat/.

  2. VizieR Online Data Catalog: Cataclysmic Binaries, LMXBs, and related objects (Ritter+, 2003)

    NASA Astrophysics Data System (ADS)

    Ritter, H.; Kolb, U.

    2004-03-01

    Cataclysmic Binaries are semi-detached binaries consisting of a white dwarf or a white dwarf precursor primary and a low-mass secondary which is filling its critical Roche lobe. The secondary is not necessarily unevolved, it may even be a highly evolved star as for example in the case of the AM CVn-type stars. Low-Mass X-Ray Binaries are semi-detached binaries consisting of either a neutron star or a black hole primary, and a low-mass secondary which is filling its critical Roche lobe. Related Objects are detached binaries consisting of either a white dwarf or a white dwarf precursor primary and of a low-mass secondary. The secondary may also be a highly evolved star. The catalogue lists coordinates, apparent magnitudes, orbital parameters, stellar parameters of the components and other characteristic properties of 522 cataclysmic binaries, 75 low-mass X-ray binaries and 117 related objects with known or suspected orbital periods together with a comprehensive selection of the relevant recent literature. In addition the catalogue contains a list of references to published finding charts for 695 of the 714 objects. A cross-reference list of alias object designations concludes the catalogue. Literature published before 31 December 2003 has, as far as possible, been taken into account. This catalogue supersedes the 5th edition (catalogue ) and the updated lists by Ritter and Kolb (1995; catalogue ) (1998; catalogue ). (10 data files).

  3. VizieR Online Data Catalog: Cataclysmic Binaries, LMXBs, and related objects (Ritter+, 2003)

    NASA Astrophysics Data System (ADS)

    Ritter, H.; Kolb, U.

    2005-03-01

    Cataclysmic Binaries are semi-detached binaries consisting of a white dwarf or a white dwarf precursor primary and a low-mass secondary which is filling its critical Roche lobe. The secondary is not necessarily unevolved, it may even be a highly evolved star as for example in the case of the AM CVn-type stars. Low-Mass X-Ray Binaries are semi-detached binaries consisting of either a neutron star or a black hole primary, and a low-mass secondary which is filling its critical Roche lobe. Related Objects are detached binaries consisting of either a white dwarf or a white dwarf precursor primary and of a low-mass secondary. The secondary may also be a highly evolved star. The catalogue lists coordinates, apparent magnitudes, orbital parameters, stellar parameters of the components and other characteristic properties of 572 cataclysmic binaries, 80 low-mass X-ray binaries and 142 related objects with known or suspected orbital periods together with a comprehensive selection of the relevant recent literature. In addition the catalogue contains a list of references to published finding charts for 761 of the 794 objects. A cross-reference list of alias object designations concludes the catalogue. Literature published before 31 December 2004 has, as far as possible, been taken into account. This catalogue supersedes the 5th edition (catalogue ) and the updated lists by Ritter and Kolb (1995; catalogue ) (1998; catalogue ). (10 data files).

  4. SHAPING THE BROWN DWARF DESERT: PREDICTING THE PRIMORDIAL BROWN DWARF BINARY DISTRIBUTIONS FROM TURBULENT FRAGMENTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jumper, Peter H.; Fisher, Robert T., E-mail: robert.fisher@umassd.edu

    2013-05-20

    The formation of brown dwarfs (BDs) poses a key challenge to star formation theory. The observed dearth of nearby ({<=}5 AU) BD companions to solar mass stars, known as the BD desert, as well as the tendency for low-mass binary systems to be more tightly bound than stellar binaries, has been cited as evidence for distinct formation mechanisms for BDs and stars. In this paper, we explore the implications of the minimal hypothesis that BDs in binary systems originate via the same fundamental fragmentation mechanism as stars, within isolated, turbulent giant molecular cloud cores. We demonstrate analytically that the scalingmore » of specific angular momentum with turbulent core mass naturally gives rise to the BD desert, as well as wide BD binary systems. Further, we show that the turbulent core fragmentation model also naturally predicts that very low mass binary and BD/BD systems are more tightly bound than stellar systems. In addition, in order to capture the stochastic variation intrinsic to turbulence, we generate 10{sup 4} model turbulent cores with synthetic turbulent velocity fields to show that the turbulent fragmentation model accommodates a small fraction of binary BDs with wide separations, similar to observations. Indeed, the picture which emerges from the turbulent fragmentation model is that a single fragmentation mechanism may largely shape both stellar and BD binary distributions during formation.« less

  5. The Primordial Binary Fraction in Trumpler 14: Frequency and Multiplicity Parameters

    NASA Astrophysics Data System (ADS)

    Sabbi, Elena

    2017-08-01

    This is an astrometric proposal designed to identify and characterize the properties of medium- and long-period (orbital periods ranging from 1.8 to 100 years) visual binaries in the mass range between 4 and 20 Mo in the young compact cluster Trumpler 14 in the Carina Nebula. We aim to probe the virtually unexplored population of intermediate- and high-mass binaries that will experience a Roche-lobe overflow during their post-main-sequence evolution. These binaries are of particular interest because they are expected to be the progenitors of supernovae Type Ia, b, and c, X-ray binaries, double neutron stars and double black holes. Multiplicity properties of young stars can be further used to constrain the outcome of the star-formation process and hence distinguish between various formation scenarios. The medium- and long-period binaries (P> 0.5 yr) are hard to detect and expensive to characterize with traditional ground-based spectroscopy. Knowledge of their orbital properties is however crucial to properly estimate the overall fraction of OB stars whose evolution is affected by binary interaction and to predict the outcome of such interaction. Because of the well characterized PSF of WFC3/UVIS and its temporal stability, HST is the only facility able to characterize the properties of OB-type medium-period binaries in Tr14, and Tr14 is the only nearby high-density OB-type young cluster.

  6. The observed distribution of spectroscopic binaries from the Anglo-Australian Planet Search

    NASA Astrophysics Data System (ADS)

    Jenkins, J. S.; Díaz, M.; Jones, H. R. A.; Butler, R. P.; Tinney, C. G.; O'Toole, S. J.; Carter, B. D.; Wittenmyer, R. A.; Pinfield, D. J.

    2015-10-01

    We report the detection of sixteen binary systems from the Anglo-Australian Planet Search. Solutions to the radial velocity data indicate that the stars have companions orbiting with a wide range of masses, eccentricities and periods. Three of the systems potentially contain brown-dwarf companions while another two have eccentricities that place them in the extreme upper tail of the eccentricity distribution for binaries with periods less than 1000 d. For periods up to 12 years, the distribution of our stellar companion masses is fairly flat, mirroring that seen in other radial velocity surveys, and contrasts sharply with the current distribution of candidate planetary masses, which rises strongly below 10 MJ. When looking at a larger sample of binaries that have FGK star primaries as a function of the primary star metallicity, we find that the distribution maintains a binary fraction of ˜43 ± 4 per cent between -1.0 and +0.6 dex in metallicity. This is in stark contrast to the giant exoplanet distribution. This result is in good agreement with binary formation models that invoke fragmentation of a collapsing giant molecular cloud, suggesting that this is the dominant formation mechanism for close binaries and not fragmentation of the primary star's remnant protoplanetary disc.

  7. Tidal resonances in binary star systems. II - Slowly rotating stars

    NASA Astrophysics Data System (ADS)

    Alexander, M. E.

    1988-12-01

    The potential energy of tidal interactions in a binary system with rotating components is formulated as a perturbation Hamiltonian which self-consistently couples the dynamics of the rotating stars' oscillations and orbital motion. The action-angle formalism used to discuss tidal resonances in the nonrotating case (Alexander, 1987) is extended to rotating stars. The behavior of a two-mode system and the procedure for treating an arbitrary number of modes are discussed.

  8. A search for X-ray binary stars in their quiescent phase

    NASA Technical Reports Server (NTRS)

    Helfand, D. J.

    1980-01-01

    Fourteen early-type stars representative of systems which may be harboring a neutron star companion and are thus potential progenitors of massive X-ray binaries have been examined for X-ray emission with the HEAO A-1 experiment. Limits on the 0.5-20 keV luminosity for these objects lie in the range 10 to the 31-33 erg/sec. In several cases, the hypothesis of a collapsed companion, in combination with the X-ray limit, places a serious constraint on the mass-loss rate of the primary star. In one instance, an X-ray source was discovered coincident with a candidate star, although the luminosity of 5 x 10 to the 31 is consistent with that expected from a single star of the same spectral type. The prospects for directly observing the quiescent phase of a binary X-ray source with the Einstein Observatory are discussed in the context of these results.

  9. Gravitational waves from remnant massive neutron stars of binary neutron star merger: Viscous hydrodynamics effects

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Kiuchi, Kenta

    2017-06-01

    Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.

  10. The Search for Pre-Main Sequence Eclipsing Binary Stars in the Lagoon Nebula

    NASA Astrophysics Data System (ADS)

    Henderson, Calen B.; Stassun, K. G.

    2009-01-01

    We report time-series CCD I-band photometry for the pre-main-sequence cluster NGC 6530, located within the Lagoon Nebula. The data were obtained with the 4Kx4K imager on the SMARTS 1.0m telescope at CTIO on 36 nights over the summers of 2005 and 2006. In total we have light curves for 50,000 stars in an area 1 deg2, with a sampling cadence of 1 hour. The stars in our sample have masses in the range 0.25-4.0 Msun, assuming a distance of 1.25 kpc to the cluster. Our goals are to look for stars with rotation periods and to identify eclipsing binary candidates. Here we present light curves of photometrically variable stars and potential eclipsing binary star systems. This work has been supported by the National Science Foundation under Career grant AST-0349075.

  11. Alien Sunset (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Our solitary sunsets here on Earth might not be all that common in the grand scheme of things. New observations from NASA's Spitzer Space Telescope have revealed that mature planetary systems -- dusty disks of asteroids, comets and possibly planets -- are more frequent around close-knit twin, or binary, stars than single stars like our sun. That means sunsets like the one portrayed in this artist's photo concept, and more famously in the movie 'Star Wars,' might be quite commonplace in the universe.

    Binary and multiple-star systems are about twice as abundant as single-star systems in our galaxy, and, in theory, other galaxies. In a typical binary system, two stars of roughly similar masses twirl around each other like pair-figure skaters. In some systems, the two stars are very far apart and barely interact with each other. In other cases, the stellar twins are intricately linked, whipping around each other quickly due to the force of gravity.

    Astronomers have discovered dozens of planets that orbit around a single member of a very wide stellar duo. Sunsets from these worlds would look like our own, and the second sun would just look like a bright star in the night sky.

    But do planets exist in the tighter systems, where two suns would dip below a planet's horizon one by one? Unveiling planets in these systems is tricky, so astronomers used Spitzer to look for disks of swirling planetary debris instead. These disks are made of asteroids, comets and possibly planets. The rocky material in them bangs together and kicks up dust that Spitzer's infrared eyes can see. Our own solar system is swaddled in a similar type of disk.

    Surprisingly, Spitzer found more debris disks around the tightest binaries it studied (about 20 stars) than in a comparable sample of single stars. About 60 percent of the tight binaries had disks, while the single stars only had about 20 percent. These snug binary systems are as close or closer than just three times the distance between Earth and the sun. And the disks in these systems were found to circumnavigate both members of the star pair, rather than just one.

    Though follow-up studies are needed, the results could mean that planet formation is more common around extra-tight binary stars than single stars. Since these types of systems would experience double sunsets, the artistic view portrayed here might not be fiction.

    The original sunset photo used in this artist's concept was taken by Robert Hurt of the Spitzer Science Center at the California Institute of Technology, Pasadena, Calif.

  12. Cannibals in the thick disk: the young α-rich stars as evolved blue stragglers

    NASA Astrophysics Data System (ADS)

    Jofré, P.; Jorissen, A.; Van Eck, S.; Izzard, R. G.; Masseron, T.; Hawkins, K.; Gilmore, G.; Paladini, C.; Escorza, A.; Blanco-Cuaresma, S.; Manick, R.

    2016-10-01

    Spectro-seismic measurements of red giants enabled the recent discovery of stars in the thick disk that are more massive than 1.4 M⊙. While it has been claimed that most of these stars are younger than the rest of the typical thick disk stars, we show evidence that they might be products of mass transfer in binary evolution, notably evolved blue stragglers. We took new measurements of the radial velocities in a sample of 26 stars from APOKASC, including 13 "young" stars and 13 "old" stars with similar stellar parameters but with masses below 1.2 M⊙ and found that more of the young starsappear to be in binary systems with respect to the old stars.Furthermore, we show that the young stars do not follow the expected trend of [C/H] ratios versus mass for individual stars. However, with a population synthesis of low-mass stars including binary evolution and mass transfer, we can reproduce the observed [C/N] ratios versus mass. Our study shows how asteroseismology of solar-type red giants provides us with a unique opportunity to study the evolution of field blue stragglers after they have left the main-sequence.

  13. R144: a very massive binary likely ejected from R136 through a binary-binary encounter

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel; Banerjee, Sambaran

    2014-02-01

    R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from an R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of ≈355 M⊙ and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km s-1 at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with another massive binary or single star. In addition, we discuss all massive binaries and single stars which are ejected dynamically from their parent cluster in the N-body models.

  14. Autonomous star sensor ASTRO APS: flight experience on Alphasat

    NASA Astrophysics Data System (ADS)

    Schmidt, U.; Fiksel, T.; Kwiatkowski, A.; Steinbach, I.; Pradarutti, B.; Michel, K.; Benzi, E.

    2015-06-01

    Jena-Optronik GmbH, located in Jena/Germany, has profound experience in designing and manufacturing star trackers since the early 80s. Today the company has a worldwide leading position in supplying geo-stationary and Earth observation satellites with robust and reliable star tracker systems. In the first decade of the new century Jena-Optronik received a development contract (17317/2003/F/WE) from the European Space Agency to establish the technologically challenging elements for which advanced star tracker technologies as CMOS Active Pixel Sensors were being introduced or were considered strategic. This activity was performed in the frame of the Alphabus large platform pre-development lead by ESA and the industrial Joint Project Team consisting of Astrium (now Airbus Defence and Space), Thales Alenia Space and CNES (Centre national d'études spatiales). The new autonomous star tracker, ASTRO APS (Active Pixel Sensor), extends the Jena-Optronik A stro-series CCD-based star tracker products taken the full benefit of the CMOS APS technology. ASTRO APS is a fully autonomous compact star tracker carrying either the space-qualified radiation hard STAR1000 or the HAS2 APS detectors. The star tracker is one of four Technology Demonstration Payloads (TDP6) carried by Alphasat as hosted payload in the frame of a successful Private Public Partnership between ESA and Inmarsat who owns and operates the satellite as part of its geo-stationary communication satellites fleet. TDP6 supports also directly TDP1, a Laser Communication Terminal, for fine pointing tasks. Alphasat was flawlessly brought in orbit at the end of July 2013 by a European Ariane 5 launcher. Only a few hours after launch the star tracker received its switch ON command and acquired nominally within 6 s the inertial 3-axes attitude. In the following days of the early in-orbit operations of Alphasat the TDP6 unit tracked reliably all the spacecraft maneuvers including the 0.1 and 0.2°/s spin stabilization for Sun pointing, all of the apogee engine thrusts, Moon field of view transits and recovered to stable tracking after several Earth and Sun blindings before the spacecraft entered a preliminary Earth pointing in a nominal geo-stationary attitude. The Jena-Optronik TDP6 operation center received daily the star tracker status and attitude data. The huge amount of acquired raw data has been evaluated to characterize the ASTRO APS (STAR1000) star tracker in-orbit performance. The paper will present in detail these data processing activities and will show the extraordinary good results. Due to the diverse transfer orbit satellite operations the key performance star tracker data like attitude random noise, single star noise, star brightness measurement, baffle Sun exclusion angle, temperature control, etc., could be derived and have been compared to the ground based laboratory and field measurements. The ultimate performance parameters achieved and verified as well as the lessons learned from the comparison to the ground test data are summarized in the conclusion of the paper.

  15. Hot subdwarfs: Small stars marking important events in stellar evolution. Ludwig Biermann Award Lecture 2014

    NASA Astrophysics Data System (ADS)

    Geier, S.

    2015-06-01

    Hot subdwarfs are considered to be the compact helium cores of red giants which lost almost their entire hydrogen envelope. What causes this enormous mass loss is still unclear. Binary interactions are invoked, and a significant fraction of the hot subdwarf population is indeed found in close binaries. In a large project we search for close binary sdBs with the most and the least massive companions. Significantly enhancing the known sample of close binary sdBs we performed the first comprehensive study of this population. Triggered by the discovery of two sdB binaries with close brown dwarf companions in the course of this project, we were able to show that the interaction of stars with substellar companions is an important channel to form sdB stars. Finally, we discovered a unique and very compact binary system consisting of an sdB and a massive white dwarf which qualifies as a progenitor candidate for a supernova of type Ia. In addition to that, we could connect those explosions to the class of hypervelocity hot subdwarf stars which we consider as the surviving companions of such events. Being the stripped cores of red giants, hot subdwarfs turned out to be important markers of peculiar events in stellar evolution ranging all the way from star-planet interactions to the progenitors of stellar explosions used to measure the expansion of our Universe.

  16. CCD Times of Minima of Faint Eclipsing Binaries in 2000

    NASA Astrophysics Data System (ADS)

    Zejda, Miloslav

    2002-06-01

    196 CCD minima observations of 122 eclipsing binaries made by the author in 2000 are presented. The observed stars were chosen from the catalogue BRKA of observing programme of BRNO-Variable Star Section of CAS.

  17. Exoplanet detection. A terrestrial planet in a ~1-AU orbit around one member of a ~15-AU binary.

    PubMed

    Gould, A; Udalski, A; Shin, I-G; Porritt, I; Skowron, J; Han, C; Yee, J C; Kozłowski, S; Choi, J-Y; Poleski, R; Wyrzykowski, Ł; Ulaczyk, K; Pietrukowicz, P; Mróz, P; Szymański, M K; Kubiak, M; Soszyński, I; Pietrzyński, G; Gaudi, B S; Christie, G W; Drummond, J; McCormick, J; Natusch, T; Ngan, H; Tan, T-G; Albrow, M; DePoy, D L; Hwang, K-H; Jung, Y K; Lee, C-U; Park, H; Pogge, R W; Abe, F; Bennett, D P; Bond, I A; Botzler, C S; Freeman, M; Fukui, A; Fukunaga, D; Itow, Y; Koshimoto, N; Larsen, P; Ling, C H; Masuda, K; Matsubara, Y; Muraki, Y; Namba, S; Ohnishi, K; Philpott, L; Rattenbury, N J; Saito, To; Sullivan, D J; Sumi, T; Suzuki, D; Tristram, P J; Tsurumi, N; Wada, K; Yamai, N; Yock, P C M; Yonehara, A; Shvartzvald, Y; Maoz, D; Kaspi, S; Friedmann, M

    2014-07-04

    Using gravitational microlensing, we detected a cold terrestrial planet orbiting one member of a binary star system. The planet has low mass (twice Earth's) and lies projected at ~0.8 astronomical units (AU) from its host star, about the distance between Earth and the Sun. However, the planet's temperature is much lower, <60 Kelvin, because the host star is only 0.10 to 0.15 solar masses and therefore more than 400 times less luminous than the Sun. The host itself orbits a slightly more massive companion with projected separation of 10 to 15 AU. This detection is consistent with such systems being very common. Straightforward modification of current microlensing search strategies could increase sensitivity to planets in binary systems. With more detections, such binary-star planetary systems could constrain models of planet formation and evolution. Copyright © 2014, American Association for the Advancement of Science.

  18. Binary catalogue of exoplanets

    NASA Astrophysics Data System (ADS)

    Schwarz, Richard; Bazso, Akos; Zechner, Renate; Funk, Barbara

    2016-02-01

    Since 1995 there is a database which list most of the known exoplanets (The Extrasolar Planets Encyclopaedia at http://exoplanet.eu/). With the growing number of detected exoplanets in binary and multiple star systems it became more important to mark and to separate them into a new database, which is not available in the Extrasolar Planets Encyclopaedia. Therefore we established an online database (which can be found at: http://www.univie.ac.at/adg/schwarz/multiple.html) for all known exoplanets in binary star systems and in addition for multiple star systems, which will be updated regularly and linked to the Extrasolar Planets Encyclopaedia. The binary catalogue of exoplanets is available online as data file and can be used for statistical purposes. Our database is divided into two parts: the data of the stars and the planets, given in a separate list. We describe also the different parameters of the exoplanetary systems and present some applications.

  19. Shaping planetary nebulae with jets in inclined triple stellar systems

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2017-08-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a 'messy' planetary nebula (PN), namely a PN lacking any type of symmetry (I.e. highly irregular). In building the initial conditions, we assume that a tight binary system orbits the AGB star and that the orbital plane of the tight binary system is inclined to the orbital plane of the binary system and the AGB star (the triple system plane). We further assume that the accreted mass on to the tight binary system forms an accretion disc around one of the stars and that the plane of the disc is tilted to the orbital plane of the triple system. The highly asymmetrical and filamentary structures that we obtain support the notion that messy PNe might be shaped by triple stellar systems.

  20. Shaping planetary nebulae with jets in inclined triple stellar systems

    NASA Astrophysics Data System (ADS)

    Akashi, Muhammad; Soker, Noam

    2017-10-01

    We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a `messy' planetary nebula (PN), namely, a PN lacking any type of symmetry (highly irregular). In building the initial conditions we assume that a tight binary system orbits the AGB star, and that the orbital plane of the tight binary system is inclined to the orbital plane of binary system and the AGB star. We further assume that the accreted mass onto the tight binary system forms an accretion disk around one of the stars, and that the plane of the disk is in between the two orbital planes. The highly asymmetrical lobes that we obtain support the notion that messy PNe might be shaped by triple stellar systems.

  1. Are the O stars in WR+O binaries exceptionally rapid rotators?

    NASA Astrophysics Data System (ADS)

    Reeve, Dominic; Howarth, Ian D.

    2018-05-01

    We examine claims of strong gravity-darkening effects in the O-star components of WR+O binaries. We generate synthetic spectra for a wide range of parameters, and show that the line-width results are consistent with extensive measurements of O stars that are either single or are members of `normal' binaries. By contrast, the WR+O results are at the extremes of, or outside, the distributions of both models and other observations. Remeasurement of the WR+O spectra shows that they can be reconciled with other results by judicious choice of pseudo-continuum normalization. With this interpretation, the supersynchronous rotation previously noted for the O-star components in the WR+O binaries with the longest orbital periods appears to be unexceptional. Our investigation is therefore consistent with the aphorism that if the title of a paper ends with a question mark, the answer is probably `no'.

  2. Theoretical studies of binaries in astrophysics

    NASA Astrophysics Data System (ADS)

    Dischler, Johann Sebastian

    This thesis introduces and summarizes four papers dealing with computer simulations of astrophysical processes involving binaries. The first part gives the rational and theoretical background to these papers. In paper I and II a statistical approach to studying eclipsing binaries is described. By using population synthesis models for binaries the probabilities for eclipses are calculated for different luminosity classes of binaries. These are compared with Hipparcos data and they agree well if one uses a standard input distribution for the orbit sizes. If one uses a random pairing model, where both companions are independently picked from an IMF, one finds too feclipsing binaries by an order of magnitude. In paper III we investigate a possible scenario for the origin of the stars observed close to the centre of our galaxy, called S stars. We propose that a cluster falls radially cowards the central black hole. The binaries within the cluster can then, if they have small impact parameters, be broken up by the black hole's tidal held and one of the components of the binary will be captured by the black hole. Paper IV investigates how the onset of mass transfer in eccentric binaries depends on the eccentricity. To do this we have developed a new two-phase SPH scheme where very light particles are at tire outer edge of our simulated star. This enables us to get a much better resolution of the very small mass that is transferred in close binaries. Our simulations show that the minimum required distance between the stars to have mass transfer decreases with the eccentricity.

  3. Evidence for a planetary mass third body orbiting the binary star KIC 5095269

    NASA Astrophysics Data System (ADS)

    Getley, A. K.; Carter, B.; King, R.; O'Toole, S.

    2017-07-01

    In this paper, we report the evidence for a planetary mass body orbiting the close binary star KIC 5095269. This detection arose from a search for eclipse timing variations amongst the more than 2000 eclipsing binaries observed by Kepler. Light curve and periodic eclipse time variations have been analysed using systemic and a custom Binary Eclipse Timings code based on the Transit Analysis Package which indicates a 7.70 ± 0.08MJup object orbiting every 237.7 ± 0.1 d around a 1.2 M⊙ primary and a 0.51 M⊙ secondary in an 18.6 d orbit. A dynamical integration over 107 yr suggests a stable orbital configuration. Radial velocity observations are recommended to confirm the properties of the binary star components and the planetary mass of the companion.

  4. KOI-3278: a self-lensing binary star system.

    PubMed

    Kruse, Ethan; Agol, Eric

    2014-04-18

    Over 40% of Sun-like stars are bound in binary or multistar systems. Stellar remnants in edge-on binary systems can gravitationally magnify their companions, as predicted 40 years ago. By using data from the Kepler spacecraft, we report the detection of such a "self-lensing" system, in which a 5-hour pulse of 0.1% amplitude occurs every orbital period. The white dwarf stellar remnant and its Sun-like companion orbit one another every 88.18 days, a long period for a white dwarf-eclipsing binary. By modeling the pulse as gravitational magnification (microlensing) along with Kepler's laws and stellar models, we constrain the mass of the white dwarf to be ~63% of the mass of our Sun. Further study of this system, and any others discovered like it, will help to constrain the physics of white dwarfs and binary star evolution.

  5. Gravitational waves from neutron star excitations in a binary inspiral

    NASA Astrophysics Data System (ADS)

    Parisi, Alessandro; Sturani, Riccardo

    2018-02-01

    In the context of a binary inspiral of mixed neutron star-black hole systems, we investigate the excitation of the neutron star oscillation modes by the orbital motion. We study generic eccentric orbits and show that tidal interaction can excite the f -mode oscillations of the star by computing the amount of energy and angular momentum deposited into the star by the orbital motion tidal forces via closed form analytic expressions. We study the f -mode oscillations of cold neutron stars using recent microscopic nuclear equations of state, and we compute their imprint into the emitted gravitational waves.

  6. The origin of ultra-compact binaries

    NASA Technical Reports Server (NTRS)

    Hachisu, Izumi; Miyaji, Shigeki; Saio, Hideyuki

    1987-01-01

    The origin of ultra-compact binaries composed of a neutron star and a low-mass (about 0.06 solar mass) white dwarf is considered. Taking account of the systemic losses of mass and angular momentum, it was found that a serious difficulty exists in the scenarios which involve tidal captures of a normal star (a main sequence star or a red giant) by a neutron star. This difficulty can be avoided if a red giant star is captured by a massive white dwarf (M is approx. greater than 1.2 solar masses), which becomes a neutron star through the accretion induced collapse.

  7. DETECTABILITY OF EARTH-LIKE PLANETS IN CIRCUMSTELLAR HABITABLE ZONES OF BINARY STAR SYSTEMS WITH SUN-LIKE COMPONENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggl, Siegfried; Pilat-Lohinger, Elke; Haghighipour, Nader, E-mail: siegfried.eggl@univie.ac.at

    2013-02-20

    Given the considerable percentage of stars that are members of binaries or stellar multiples in the solar neighborhood, it is expected that many of these binaries host planets, possibly even habitable ones. The discovery of a terrestrial planet in the {alpha} Centauri system supports this notion. Due to the potentially strong gravitational interaction that an Earth-like planet may experience in such systems, classical approaches to determining habitable zones (HZ), especially in close S-type binary systems, can be rather inaccurate. Recent progress in this field, however, allows us to identify regions around the star permitting permanent habitability. While the discovery ofmore » {alpha} Cen Bb has shown that terrestrial planets can be detected in solar-type binary stars using current observational facilities, it remains to be shown whether this is also the case for Earth analogs in HZs. We provide analytical expressions for the maximum and rms values of radial velocity and astrometric signals, as well as transit probabilities of terrestrial planets in such systems, showing that the dynamical interaction of the second star with the planet may indeed facilitate the planets' detection. As an example, we discuss the detectability of additional Earth-like planets in the averaged, extended, and permanent HZs around both stars of the {alpha} Centauri system.« less

  8. Plan-B - Do All Planetary Nebulae Derive From Binaries?

    NASA Astrophysics Data System (ADS)

    De Marco, Orsola; PLAN-B working Group

    2007-12-01

    The planetary nebula (PN) field is facing a paradigm problem. For the last thirty years the role of binarity in the formation and shaping of PNe has been hotly debated. The majority of the active research community favored a scenario in which the majority of PNe are formed by single asymptotic giant stars that impart elliptical and bipolar shapes to their ejected envelopes by means of rotation and magnetic fields. However it has recently come to light that magnetic fields and rotation would not survive in a single star for long enough to be dynamically important. What is needed is an angular momentum source which can resupply the star of rotation at the right time. This angular momentum reservoir is most likely in the form of a binary companion. Today we know of only a handful of binary central stars of PN which are close enough to have interacted. Detecting binary central stars has therefore become paramount to provide an observational confirmation of the binary hypothesis. This task has however proven to be difficult, since most of the traditional techniques are difficult to apply to these bright, windy, and pulsating stars. In June 2007 an international working group has therefore been forged to aggressively tackle this observational challenge with a diverse range of observational approaches. This This work is funded in part by NSF grant AST-0607111 (PI: De Marco)

  9. Mass flow in interacting binaries observed in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    1989-01-01

    Recent satellite observations of close binary systems show that practically all binaries exhibit evidence of mass flow and that, where the observations are sufficiently detailed, a fraction of the matter flowing out of the mass-losing component is accreted by the companion and the remainder is lost from the binary system. The mass flow is not conservative. During the phase of dynamic mass flow, the companion star becomes immersed in optically-thick plasma and the physical properties of that star elude close scrutiny.

  10. Evolution of magnetic cataclysmic binaries

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.; Melia, F.

    1988-01-01

    The evolution of magnetic cataclysmic binaries is reviewed, with emphasis on the synchronization process by which DQ Herculis stars become AM Herculis stars. The various mechanisms that are thought to drive the evolution of cataclysmic binaries are discussed, and the criterion for stream versus disk accretion, the physics of the accretion and synchronization torques, and the conditions required for synchronization are described. The different physical regimes to which magnetic cataclysmic binaries belong are summarized, and how synchronization may be achieved, and how it may be broken, are considered.

  11. Cas A and the Crab were not stellar binaries at death

    NASA Astrophysics Data System (ADS)

    Kochanek, C. S.

    2018-01-01

    The majority of massive stars are in binaries, which implies that many core collapse supernovae should be binaries at the time of the explosion. Here we show that the three most recent, local (visual) SNe (the Crab, Cas A and SN 1987A) were not stellar binaries at death, with limits on the initial mass ratios of q = M2/M1 ≲ 0.1. No quantitative limits have previously been set for Cas A and the Crab, while for SN 1987A we merely updated existing limits in view of new estimates of the dust content. The lack of stellar companions to these three ccSNe implies a 90 per cent confidence upper limit on the q ≳ 0.1 binary fraction at death of fb < 44 per cent. In a passively evolving binary model (meaning no binary interactions), with a flat mass ratio distribution and a Salpeter IMF, the resulting 90 per cent confidence upper limit on the initial binary fraction of F < 63 per cent is in tension with observed massive binary statistics. Allowing a significant fraction fM ≃ 25 per cent of stellar binaries to merge reduces the tension, with F < 63({1-f}M)^{-1}{ per cent} ˜eq 81{ per cent}, but allowing for the significant fraction in higher order systems (triples, etc.) reintroduces the tension. That Cas A was not a stellar binary at death also shows that a surviving massive binary companion at the time of the explosion is not necessary for producing a Type IIb SNe. Much larger surveys for binary companions to Galactic SNe will become feasible with the release of the full Gaia proper motion and parallax catalogues providing a powerful probe of the statistics of such binaries and their role in massive star evolution, neutron star velocity distributions and runaway stars.

  12. "Horseshoe" Structures in the Debris Disks of Planet-Hosting Binary Stars

    NASA Astrophysics Data System (ADS)

    Demidova, T. V.

    2018-03-01

    The formation of a planetary system from the protoplanetary disk leads to destruction of the latter; however, a debris disk can remain in the form of asteroids and cometary material. The motion of planets can cause the formation of coorbital structures from the debris disk matter. Previous calculations have shown that such a ring-like structure is more stable if there is a binary star in the center of the system, as opposed to a single star. To analyze the properties of the coorbital structure, we have calculated a grid of models of binary star systems with a circumbinary planet moving in a planetesimal disk. The calculations are performed considering circular orbits of the stars and the planet; the mass and position of the planet, as well as the mass ratio of the stars, are varied. The analysis of the models shows that the width of the coorbital ring and its stability significantly depend on the initial parameters of the problem. Additionally, the empirical dependences of the width of the coorbital structure on the parameters of the system have been obtained, and the parameters of the models with the most stable coorbital structures have been determined. The results of the present study can be used for the search of planets around binary stars with debris disks.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S.

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from themore » active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.« less

  14. A mass transfer origin for blue stragglers in NGC 188 as revealed by half-solar-mass companions.

    PubMed

    Geller, Aaron M; Mathieu, Robert D

    2011-10-19

    In open star clusters, where all members formed at about the same time, blue straggler stars are typically observed to be brighter and bluer than hydrogen-burning main-sequence stars, and therefore should already have evolved into giant stars and stellar remnants. Correlations between blue straggler frequency and cluster binary star fraction, core mass and radial position suggest that mass transfer or mergers in binary stars dominates the production of blue stragglers in open clusters. Analytic models, detailed observations and sophisticated N-body simulations, however, argue in favour of stellar collisions. Here we report that the blue stragglers in long-period binaries in the old (7 × 10(9)-year) open cluster NGC 188 have companions with masses of about half a solar mass, with a surprisingly narrow mass distribution. This conclusively rules out a collisional origin, as the collision hypothesis predicts a companion mass distribution with significantly higher masses. Mergers in hierarchical triple stars are marginally permitted by the data, but the observations do not favour this hypothesis. The data are highly consistent with a mass transfer origin for the long-period blue straggler binaries in NGC 188, in which the companions would be white dwarfs of about half a solar mass.

  15. VizieR Online Data Catalog: Basic properties of Kepler and CoRoT targets (Yildiz+, 2016)

    NASA Astrophysics Data System (ADS)

    Yildiz, M.; Celik Orhan, Z.; Kayhan, C.

    2018-01-01

    The basic data of certain Kepler (79 stars) and CoRoT (seven stars) target stars, compiled from the literature, are listed in Table A1. Oscillation frequencies of three stars (Procyon A, HD 2151 and HD 146233) were obtained from ground-based observations (Bedding et al., 2010ApJ...713..935B; Bedding et al., 2007ApJ...663.1315B and Bazot et al. 2012, Cat. J/A+A/544/A106, respectively). These stars are also listed in this table, with data for the Sun for comparison. For most stars, we provide B-V and V-K colours (SIMBAD data base) from photometric observations, and surface gravity [log(g)], effective temperature (TeS) and metallicity ([Fe/H]) from spectroscopic observations. (2 data files).

  16. A Catalog of Eclipsing Binaries and Variable Stars Observed with ASTEP 400 from Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Chapellier, E.; Mékarnia, D.; Abe, L.; Guillot, T.; Agabi, K.; Rivet, J.-P.; Schmider, F.-X.; Crouzet, N.; Aristidi, E.

    2016-10-01

    We used the large photometric database of the ASTEP program, whose primary goal was to detect exoplanets in the southern hemisphere from Antarctica, to search for eclipsing binaries (EcBs) and variable stars. 673 EcBs and 1166 variable stars were detected, including 31 previously known stars. The resulting online catalogs give the identification, the classification, the period, and the depth or semi-amplitude of each star. Data and light curves for each object are available at http://astep-vo.oca.eu.

  17. Recent Minima of 171 Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Samolyk, G.

    2015-12-01

    This paper continues the publication of times of minima for 171 eclipsing binary stars from observations reported to the AAVSO EB section. Times of minima from observations received by the author from March 2015 thru October 2015 are presented.

  18. Black-hole binaries as relics of gamma-ray burst/hypernova explosions

    NASA Astrophysics Data System (ADS)

    Moreno Mendez, Enrique

    The Collapsar model, in which a fast-spinning massive star collapses into a Kerr black hole, has become the standard model to explain long-soft gamma-ray bursts and hypernova explosions (GRB/HN). However, stars massive enough (those with ZAMS mass ≳ (18--20) M⊙ ) to produce these events evolve through a path that loses too much angular momentum to produce a central engine capable of delivering the necessary energy. In this work I suggest that the soft X-ray transient sources are the remnants of GRBs/HNe. Binaries in which the massive primary star evolves a carbon-oxygen burning core, then start to transfer material to the secondary star (Case C mass transfer), causing the orbit to decay until a common-envelope phase sets in. The secondary spirals in, further narrowing the orbit of the binary and removing the hydrogen envelope of the primary star. Eventually the primary star becomes tidally locked and spins up, acquiring enough rotational energy to power up a GRB/HN explosion. The central engine producing the GRB/HN event is the Kerr black hole acting through the Blandford-Znajek mechanism. This model can explain not only the long-soft GRBs, but also the subluminous bursts (which comprise ˜ 97% of the total), the long-soft bursts and the short-hard bursts (in a neutron star, black hole merger). Because of our binary evolution through Case C mass transfer, it turns out that for the subluminous and cosmological bursts, the angular momentum O is proportional to m3/2D , where mD is the mass of the donor (secondary star). This binary evolution model has a great advantage over the Woosley Collapsar model; one can "dial" the donor mass in order to obtain whatever angular momentum is needed to drive the explosion. Population syntheses show that there are enough binaries to account for the progenitors of all known classes of GRBs.

  19. The 2001 U.S. Naval Observatory Double Star CD-Rom. III. The Third Catalog of Interferometric Measurements of Binary Stars

    DTIC Science & Technology

    2001-12-01

    CHARA southern speckle program from 1989 to 1996 (cf. Hartkopf et al. 1996), and by the more recent speckle e†orts of Horch and colleagues (cf. Horch ...Mason, B. D. 2001, Third Catalog of Interferometric Measurements of Binary Stars (CHARA Contrib. No. 4) (Atlanta : Georgia State Univ.) Horch , E

  20. KIC 8164262: a heartbeat star showing tidally induced pulsations with resonant locking

    NASA Astrophysics Data System (ADS)

    Hambleton, K.; Fuller, J.; Thompson, S.; Prša, A.; Kurtz, D. W.; Shporer, A.; Isaacson, H.; Howard, A. W.; Endl, M.; Cochran, W.; Murphy, S. J.

    2018-02-01

    We present the analysis of KIC 8164262, a heartbeat star with a high-amplitude (∼1 mmag), tidally resonant pulsation (a mode in resonance with the orbit) at 229 times the orbital frequency and a plethora of tidally induced g-mode pulsations (modes excited by the orbit). The analysis combines Kepler light curves with follow-up spectroscopic data from the Keck telescope, KPNO (Kitt Peak National Observatory) 4-m Mayall telescope and the 2.7-m telescope at the McDonald observatory. We apply the binary modelling software, PHOEBE, to the Kepler light curve and radial velocity data to determine a detailed binary star model that includes the prominent pulsation and Doppler boosting, alongside the usual attributes of a binary star model (including tidal distortion and reflection). The results show that the system contains a slightly evolved F star with an M secondary companion in a highly eccentric orbit (e = 0.886). We use the results of the binary star model in a companion paper (Fuller) where we show that the prominent pulsation can be explained by a tidally excited oscillation mode held near resonance by a resonance locking mechanism.

  1. A Spectroscopic Orbit for the Late-type Be Star β CMi

    NASA Astrophysics Data System (ADS)

    Dulaney, Nicholas A.; Richardson, Noel D.; Gerhartz, Cody J.; Bjorkman, J. E.; Bjorkman, K. S.; Carciofi, Alex C.; Klement, Robert; Wang, Luqian; Morrison, Nancy D.; Bratcher, Allison D.; Greco, Jennifer J.; Hardegree-Ullman, Kevin K.; Lembryk, Ludwik; Oswald, Wayne L.; Trucks, Jesica L.

    2017-02-01

    The late-type Be star β CMi is remarkably stable compared to other Be stars that have been studied. This has led to a realistic model of the outflowing Be disk by Klement et al. These results showed that the disk is likely truncated at a finite radius from the star, which Klement et al. suggest is evidence for an unseen binary companion in orbit. Here we report on an analysis of the Ritter Observatory spectroscopic archive of β CMi to search for evidence of the elusive companion. We detect periodic Doppler shifts in the wings of the Hα line with a period of 170 days and an amplitude of 2.25 km s-1, consistent with a low-mass binary companion (M ≈ 0.42 M ⊙). We then compared small changes in the violet-to-red peak height changes (V/R) with the orbital motion. We find weak evidence that it does follow the orbital motion, as suggested by recent Be binary models by Panoglou et al. Our results, which are similar to those for several other Be stars, suggest that β CMi may be a product of binary evolution where Roche lobe overflow has spun up the current Be star, likely leaving a hot subdwarf or white dwarf in orbit around the star. Unfortunately, no direct sign of this companion star is found in the very limited archive of International Ultraviolet Explorer spectra.

  2. The CHARA Array resolves the long-period Wolf-Rayet binaries WR 137 and WR 138

    NASA Astrophysics Data System (ADS)

    Richardson, Noel D.; Shenar, Tomer; Roy-Loubier, Olivier; Schaefer, Gail; Moffat, Anthony F. J.; St-Louis, Nicole; Gies, Douglas R.; Farrington, Chris; Hill, Grant M.; Williams, Peredur M.; Gordon, Kathryn; Pablo, Herbert; Ramiaramanantsoa, Tahina

    2016-10-01

    We report on interferometric observations with the CHARA Array of two classical Wolf-Rayet (WR) stars in suspected binary systems, namely WR 137 and WR 138. In both cases, we resolve the component stars to be separated by a few milliarcseconds. The data were collected in the H band, and provide a measure of the fractional flux for both stars in each system. We find that the WR star is the dominant H-band light source in both systems (fWR,137 = 0.59 ± 0.04; fWR,138 = 0.67 ± 0.01), which is confirmed through both comparisons with estimated fundamental parameters for WR stars and O dwarfs, as well as through spectral modelling of each system. Our spectral modelling also provides fundamental parameters for the stars and winds in these systems. The results on WR 138 provide evidence that it is a binary system which may have gone through a previous mass-transfer episode to create the WR star. The separation and position of the stars in the WR 137 system together with previous results from the IOTA interferometer provides evidence that the binary is seen nearly edge-on. The possible edge-on orbit of WR 137 aligns well with the dust production site imaged by the Hubble Space Telescope during a previous periastron passage, showing that the dust production may be concentrated in the orbital plane.

  3. Long-orbital-period Prepolars Containing Early K-type Donor Stars. Bottleneck Accretion Mechanism in Action

    NASA Astrophysics Data System (ADS)

    Tovmassian, G.; González–Buitrago, D.; Zharikov, S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.; Miroshnichenko, A. S.

    2016-03-01

    We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.

  4. A Pulsar and a Disk

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Recent, unusual X-ray observations from our galactic neighbor, the Small Magellanic Cloud, have led to an interesting model for SXP 214, a pulsar in a binary star system.Artists illustration of the magnetic field lines of a pulsar, a highly magnetized, rotating neutron star. [NASA]An Intriguing BinaryAn X-ray pulsar is a magnetized, rotating neutron star in a binary system with a stellar companion. Material is fed from the companion onto the neutron star, channeled by the objects magnetic fields onto a hotspot thats millions of degrees. This hotspot rotating past our line of sight is what produces the pulsations that we observe from X-ray pulsars.Located in the Small Magellanic Cloud, SXP 214 is a transient X-ray pulsar in a binary with a Be-type star. This star is spinning so quickly that material is thrown off of it to form a circumstellar disk.Recently, a team of authors led by JaeSub Hong (Harvard-Smithsonian Center for Astrophysics) have presented new Chandra X-ray observations of SXP 214, tracking it for 50 ks (~14 hours) in January 2013. These observations reveal some very unexpected behavior for this pulsar.X-ray PuzzleThe energy distribution of the X-ray emission from SXP 214 over time. Dark shades or blue colors indicate high counts, and light shades or yellow colors indicate low counts. Lower-energy X-ray emission appeared only later, after about 20 ks. [Hong et al. 2016]Three interesting pieces of information came from the Chandra observations:SXP 214s rotation period was measured to be 211.5 s an increase in the spin rate since the discovery measurement of a 214-second period. Pulsars usually spin down as they lose angular momentum over time so what caused this one to spin up?Its overall X-ray luminosity steadily increased over the 50 ks of observations.Its spectrum became gradually softer (lower energy) over time; in the first 20 ks, the spectrum only consisted of hard X-ray photons above 3 keV, but after 20 ks, softer X-ray photons below 2 keV appeared.Hong and collaborators were then left with the task of piecing together this strange behavior into a picture of what was happening with this binary system.The authors proposed model for SXP 214. Here the binary has a ~30-day orbit tilted at 15 to the circumstellar disk. The pulsar passes through the circumstellar disk of its companion once per orbit. The interval marked A (orange line) is suggested as the period of time corresponding to the Chandra observations in this study: just as the neutron star is emerging from the disk after passing through it. [Hong et al. 2016]Passing Through a DiskIn the model the authors propose, the pulsar is on a ~30-day eccentric orbit that takes it through the circumstellar disk of its companion once per orbit.In this picture, the authors Chandra detections must have been made just as the pulsar was emerging from the circumstellar disk. The disk had initially hidden the soft X-ray emission from the pulsar, but as the pulsar emerged, that component became brighter, causing both the overall rise in X-ray counts and the shift in the spectrum to lower energies.Since the pulsars accretion is fueled by material picked up as it passes through the circumstellar disk, the accretion from a recent passage through the disk likely also caused the observed spin-up to the shorter period.If the authors model is correct, this series of observations of the pulsar as it emerges from the disk provides a rare opportunity to examine what happens to X-ray emission during this passage. More observations of this intriguing system can help us learn about the properties of the disk and the emission geometry of the neutron star surface.CitationJaeSub Hong et al 2016 ApJ 826 4. doi:10.3847/0004-637X/826/1/4

  5. Discrete X-Ray Source Populations and Star-Formation History in Nearby Galaxies

    NASA Technical Reports Server (NTRS)

    Zezas, Andreas

    2004-01-01

    This program aims in understanding the connection between the discrete X-ray source populations observed in nearby galaxies and the history of star-formation in these galaxies. The ultimate goal is to use this knowledge in order to constrain X-ray binary evolution channels. For this reason although the program is primarily observational it has a significant modeling component. During the first year of this study we focused on the definition of a pilot sample of galaxies with well know star-formation histories. A small part of this sample has already been observed and we performed initial analysis of the data. However, the majority of the objects in our sample either have not been observed at all, or the detection limit of the existing observations is not low enough to probe the bulk of their young X-ray binary populations. For this reason we successfully proposed for additional Chandra observations of three targets in Cycle-5. These observations are currently being performed. The analysis of the (limited) archival data for this sample indicated that the X-ray luminosity functions (XLF) of the discrete sources in these galaxies may not have the same shape as is widely suggested. However, any solid conclusions are hampered by the small number of detected sources. For this reason during the second year of this study, we will try to extend the sample in order to include more objects in each evolutionary stage. In addition we are completing the analysis of the Chandra monitoring observations of the Antennae galaxies. The results from this work, apart from important clues on the nature of the most luminous sources (Ultra-luminous X-ray sources; ULXs) provide evidence that source spectral and/or temporal variability does not significantly affect the shape of their X-ray luminosity functions. This is particularly important for comparisons between the XLFs of different galaxies and comparisons with predictions from theoretical models. Results from this work have been presented in several conferences. Refereed journal papers presenting these conclusions are currently in preparation. An important part of this study is the Chandra survey of the Small Magellanic Cloud, our second nearest star- forming galaxy. So far we have been awarded 5 Chandra observations of the central youngest part of the galaxy. These observations will help to study the very faint end of the young X-ray binary populations which is not possible to probe in more distant objects. Results from this study have been presented in several conferences and two papers are in preparation. In addition during year-2 we are planning of undertaking the task of identifying optical counterparts to the X-ray sources, which will help us to isolate interlopers (sources not associated with the SMC) and classify the X-ray binaries which are found to be associated with the SMC. In the theoretical front, the Star-Track X-ray binary population synthesis code which will be used for the modeling of the X-ray binary populations (led by co-I V. Kalogera and C. Belczynski), is complete. A first test using the XLF of the star-forming galaxy NGC-1569 showed remarkable agreement between the observed and the modeled XLF. These results are presented in an ApJ. Letters paper (Belczynski et al, 2004, 601, 147). During year-2 of this study we are planning of performing a parameter study in order to investigate which parameters are most important for the shape of the XLF. In addition we will perform comparisons with observations of other galaxies from our sample as they become available.

  6. Dwarf carbon stars are likely metal-poor binaries and unlikely hosts to carbon planets

    NASA Astrophysics Data System (ADS)

    Whitehouse, Lewis J.; Farihi, J.; Green, P. J.; Wilson, T. G.; Subasavage, J. P.

    2018-06-01

    Dwarf carbon stars make up the largest fraction of carbon stars in the Galaxy with ≈1200 candidates known to date primarily from the Sloan Digital Sky Survey. They either possess primordial carbon-enhancements, or are polluted by mass transfer from an evolved companion such that C/O is enhanced beyond unity. To directly test the binary hypothesis, a radial velocity monitoring survey has been carried out on 28 dwarf carbon stars, resulting in the detection of variations in 21 targets. Using Monte Carlo simulations,this detection fraction is found to be consistent with a 100% binary population and orbital periods on the order of hundreds of days. This result supports the post-mass transfer nature of dwarf carbon stars, and implies they are not likely hosts to carbon planets.

  7. BD+43° 3654 - a blue straggler?

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-07-01

    The astrometric data on the runaway star BD+43° 3654 are consistent with the origin of this O4If star in the center of the Cyg OB2 association, while BD+43° 3654 is younger than the association. To reconcile this discrepancy, we suggest that BD+43° 3654 is a blue straggler formed via a close encounter between two tight massive binaries in the core of Cyg OB2. A possible implication of this suggestion is that the very massive (and therefore apparently very young) stars in Cyg OB2 could be blue stragglers as well. We also suggest that the binary-binary encounter producing BD+43° 3654 might be responsible for ejection of two high-velocity stars (the stripped helium cores of massive stars) - the progenitors of the pulsars B2020+28 and B2021+51.

  8. Using Kepler K2 to Measure the Binary Fraction of PN Central Stars

    NASA Astrophysics Data System (ADS)

    Jacoby, George H.; Hillwig, Todd; De Marco, Orsola; Hurowitz, Jonathan; Jones, David; Kronberger, Matthias; Harmer, Dianne

    2018-01-01

    During the initial Kepler mission, 5 Planetary Nebula (PN) central stars were observed. The light curves for 4 of these central stars indicated a history of close binary interactions. That large fraction was suggestive that the actual fraction of PN harboring close binaries is much larger than the known lower limit of 20%, but that sample is far too small to be compelling. We have since acquired Kepler K2 data for Campaigns 0, 2, 7, and 11, hosting PN samples of 3, 4, 8, and 185 targets, respectively. We will provide an update on the number of binary candidates found in each field, and in particular, the Galactic Bulge field of Campaign 11. We also will discuss the challenges of working with Kepler observations in the crowded Campaign 11 field and the impact of those challenges on our ability to estimate the fraction of PN central stars that are binaries. This study was supported in part by NASA grants NNX17AE64G and NNX17AF80G.

  9. Double stars with wide separations in the AGK3 - II. The wide binaries and the multiple systems*

    NASA Astrophysics Data System (ADS)

    Halbwachs, J.-L.; Mayor, M.; Udry, S.

    2017-02-01

    A large observation programme was carried out to measure the radial velocities of the components of a selection of common proper motion (CPM) stars to select the physical binaries. 80 wide binaries (WBs) were detected, and 39 optical pairs were identified. By adding CPM stars with separations close enough to be almost certain that they are physical, a bias-controlled sample of 116 WBs was obtained, and used to derive the distribution of separations from 100 to 30 000 au. The distribution obtained does not match the log-constant distribution, but agrees with the log-normal distribution. The spectroscopic binaries detected among the WB components were used to derive statistical information about the multiple systems. The close binaries in WBs seem to be like those detected in other field stars. As for the WBs, they seem to obey the log-normal distribution of periods. The number of quadruple systems agrees with the no correlation hypothesis; this indicates that an environment conducive to the formation of WBs does not favour the formation of subsystems with periods shorter than 10 yr.

  10. A two-step initial mass function:. Consequences of clustered star formation for binary properties

    NASA Astrophysics Data System (ADS)

    Durisen, R. H.; Sterzik, M. F.; Pickett, B. K.

    2001-06-01

    If stars originate in transient bound clusters of moderate size, these clusters will decay due to dynamic interactions in which a hard binary forms and ejects most or all the other stars. When the cluster members are chosen at random from a reasonable initial mass function (IMF), the resulting binary characteristics do not match current observations. We find a significant improvement in the trends of binary properties from this scenario when an additional constraint is taken into account, namely that there is a distribution of total cluster masses set by the masses of the cloud cores from which the clusters form. Two distinct steps then determine final stellar masses - the choice of a cluster mass and the formation of the individual stars. We refer to this as a ``two-step'' IMF. Simple statistical arguments are used in this paper to show that a two-step IMF, combined with typical results from dynamic few-body system decay, tends to give better agreement between computed binary characteristics and observations than a one-step mass selection process.

  11. A Unified Model for Repeating and Non-repeating Fast Radio Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagchi, Manjari, E-mail: manjari@imsc.res.in

    The model that fast radio bursts (FRBs) are caused by plunges of asteroids onto neutron stars can explain both repeating and non-repeating bursts. If a neutron star passes through an asteroid belt around another star, there would be a series of bursts caused by a series of asteroid impacts. Moreover, the neutron star would cross the same belt repetitively if it were in a binary with the star hosting the asteroid belt, leading to a repeated series of bursts. I explore the properties of neutron star binaries that could lead to the only known repeating FRB so far (FRB121102). Inmore » this model, the next two epochs of bursts are expected around 2017 February 27 and 2017 December 18. On the other hand, if the asteroid belt is located around the neutron star itself, then a chance fall of an asteroid from that belt onto the neutron star would lead to a non-repeating burst. Even a neutron star grazing an asteroid belt can lead to a non-repeating burst caused by just one asteroid plunge during the grazing. This is possible even when the neutron star is in a binary with the asteroid-hosting star, if the belt and the neutron star orbit are non-coplanar.« less

  12. Dynamical Effects of Stellar Companions

    NASA Astrophysics Data System (ADS)

    Naoz, Smadar

    2016-10-01

    The fraction of stellar binaries in the field is extremely high (about 40% - 70% forM > 1M⊙ stars), and thus, given this frequency, a high fraction of all exoplanetary systems may reside in binaries. While close-in giant planets tend to be found preferentially in binary stellar systems it seems that the frequency of giant planets in close binaries (>100-1000 AU) is significantly lower than in the overall population. Stellar companions gravitational perturbations may significantly alter the planetary orbits around their partner on secular timescales. They can drive planets to large eccentric orbits which can either result in plunging these planets into the star or shrinking their orbits and forming short period planets. These planets typically are misaligned with the parent star.

  13. The Formation and Gravitational-wave Detection of Massive Stellar Black Hole Binaries

    NASA Astrophysics Data System (ADS)

    Belczynski, Krzysztof; Buonanno, Alessandra; Cantiello, Matteo; Fryer, Chris L.; Holz, Daniel E.; Mandel, Ilya; Miller, M. Coleman; Walczak, Marek

    2014-07-01

    If binaries consisting of two ~100 M ⊙ black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ~ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several >~ 150 M ⊙ stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  14. KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prsa, Andrej; Engle, Scott G.; Conroy, Kyle

    2011-03-15

    The Kepler space mission is devoted to finding Earth-size planets orbiting other stars in their habitable zones. Its large, 105 deg{sup 2} field of view features over 156,000 stars that are observed continuously to detect and characterize planet transits. Yet, this high-precision instrument holds great promise for other types of objects as well. Here we present a comprehensive catalog of eclipsing binary stars observed by Kepler in the first 44 days of operation, the data being publicly available through MAST as of 2010 June 15. The catalog contains 1879 unique objects. For each object, we provide its Kepler ID (KID),more » ephemeris (BJD{sub 0}, P{sub 0}), morphology type, physical parameters (T{sub eff}, log g, E(B - V)), the estimate of third light contamination (crowding), and principal parameters (T{sub 2}/T{sub 1}, q, fillout factor, and sin i for overcontacts, and T{sub 2}/T{sub 1}, (R{sub 1} + R{sub 2})/a, esin {omega}, ecos {omega}, and sin i for detached binaries). We present statistics based on the determined periods and measure the average occurrence rate of eclipsing binaries to be {approx}1.2% across the Kepler field. We further discuss the distribution of binaries as a function of galactic latitude and thoroughly explain the application of artificial intelligence to obtain principal parameters in a matter of seconds for the whole sample. The catalog was envisioned to serve as a bridge between the now public Kepler data and the scientific community interested in eclipsing binary stars.« less

  15. Nonparametric statistical modeling of binary star separations

    NASA Technical Reports Server (NTRS)

    Heacox, William D.; Gathright, John

    1994-01-01

    We develop a comprehensive statistical model for the distribution of observed separations in binary star systems, in terms of distributions of orbital elements, projection effects, and distances to systems. We use this model to derive several diagnostics for estimating the completeness of imaging searches for stellar companions, and the underlying stellar multiplicities. In application to recent imaging searches for low-luminosity companions to nearby M dwarf stars, and for companions to young stars in nearby star-forming regions, our analyses reveal substantial uncertainty in estimates of stellar multiplicity. For binary stars with late-type dwarf companions, semimajor axes appear to be distributed approximately as a(exp -1) for values ranging from about one to several thousand astronomical units. About one-quarter of the companions to field F and G dwarf stars have semimajor axes less than 1 AU, and about 15% lie beyond 1000 AU. The geometric efficiency (fraction of companions imaged onto the detector) of imaging searches is nearly independent of distances to program stars and orbital eccentricities, and varies only slowly with detector spatial limitations.

  16. PG 0308 + 096 and PG 1026 + 002 - Two new short period binary stars resulting from common-envelope evolution

    NASA Technical Reports Server (NTRS)

    Saffer, Rex A.; Wade, Richard A.; Liebert, James; Green, Richard F.; Sion, Edward M.; Bechtold, J.; Foss, Diana; Kidder, K.

    1993-01-01

    Ultraviolet spectroscopy, optical spectroscopy, and spectrophotometry have been used to study the excess UV stars PG 0308 + 096 and PG 1026 + 002. Both objects are short-period binary systems, each containing a DA white dwarf star and a dM star. Orbital periods of approximately 0.284 day for PG 0308 + 096, and aproximately 0.597 day for PG 1026, have been found by spectroscopic analysis of the H-alpha emission line. Ly-alpha and Balmer line profile fitting were used to estimate the mass of white dwarf stars; mass estimates for the dM stars are based on their spectral types. The orbital inclinations are derived from these masses, the periods, and amplitudes of the H-alpha radial velocity curves. The equivalent width of the H-alpha emission line, in each binary system, varies with the orbital phase in such a manner as to imply that it arises, in large part at least, from the hemisphere of the M star that faces the white dwarf star.

  17. Eclipsing Stellar Binaries in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Li, Gongjie; Ginsburg, Idan; Naoz, Smadar; Loeb, Abraham

    2017-12-01

    Compact stellar binaries are expected to survive in the dense environment of the Galactic center. The stable binaries may undergo Kozai–Lidov oscillations due to perturbations from the central supermassive black hole (Sgr A*), yet the general relativistic precession can suppress the Kozai–Lidov oscillations and keep the stellar binaries from merging. However, it is challenging to resolve the binary sources and distinguish them from single stars. The close separations of the stable binaries allow higher eclipse probabilities. Here, we consider the massive star SO-2 as an example and calculate the probability of detecting eclipses, assuming it is a binary. We find that the eclipse probability is ∼30%–50%, reaching higher values when the stellar binary is more eccentric or highly inclined relative to its orbit around Sgr A*.

  18. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    PubMed

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  19. The Galactic Center S-stars and the Hypervelocity Stars in the Galactic Halo: Two Faces of the Tidal Breakup of Stellar Binaries by the Central Massive Black Hole?

    NASA Astrophysics Data System (ADS)

    Zhang, Fupeng; Lu, Youjun; Yu, Qingjuan

    2013-05-01

    In this paper, we investigate the link between the hypervelocity stars (HVSs) discovered in the Galactic halo and the Galactic center (GC) S-stars, under the hypothesis that they are both the products of the tidal breakup of the same population of stellar binaries by the central massive black hole (MBH). By adopting several hypothetical models for binaries to be injected into the vicinity of the MBH and doing numerical simulations, we realize the tidal breakup processes of the binaries and their follow-up dynamical evolution. We find that many statistical properties of the detected HVSs and GC S-stars could be reproduced under some binary injecting models, and their number ratio can be reproduced if the stellar initial mass function is top-heavy (e.g., with slope ~ - 1.6). The total number of the captured companions is ~50 that have masses in the range ~3-7 M ⊙ and semimajor axes <~ 4000 AU and survive to the present within their main-sequence lifetime. The innermost one is expected to have a semimajor axis ~300-1500 AU and a pericenter distance ~10-200 AU, with a significant probability of being closer to the MBH than S2. Future detection of such a close star would offer an important test to general relativity. The majority of the surviving ejected companions of the GC S-stars are expected to be located at Galactocentric distances <~ 20 kpc, and have heliocentric radial velocities ~ - 500-1500 km s-1 and proper motions up to ~5-20 mas yr-1. Future detection of these HVSs may provide evidence for the tidal breakup formation mechanism of the GC S-stars.

  20. VizieR Online Data Catalog: Three O-type binaries photometry in LMC (Morrell+, 2014)

    NASA Astrophysics Data System (ADS)

    Morrell, N. I.; Massey, P.; Neugent, K. F.; Penny, L. R.; Gies, D. R.

    2017-03-01

    We will concentrate on the presentation and discussion of our photometric and spectroscopic observations of 3 binary systems containing the earliest type components among the observed sample of 17 binaries in the LMC, namely, LMC 169782, LMC 171520, and [P93] 921. All three systems belong to the 30 Dor region, which harbors some of the most massive stars known to date (Crowther et al. 2010MNRAS.408..731C; Schnurr et al. 2009MNRAS.395..823S).Time-resolved photometry was carried out for all three systems in order to provide the light curves needed to establish periods and calculate orbital inclinations. As described in Paper I (Massey et al. 2012ApJ...748...96M), this was carried out using simple aperture photometry as opposed to point-spread-function fitting; tests showed that we obtained equally accurate results with aperture photometry, which was expected given that our targets are not overly crowded. In order to compute the observed absolute magnitudes for our targets, we have assumed a distance modulus of 18.50 (50 kpc) for the LMC following van den Bergh (2000, The Galaxies of the Local Group (Cambridge: Cambridge Univ. Press)), and we have used the intrinsic colors given by FitzGerald (1970A&A.....4..234F) and a normal reddening law with Rv = 3.1. (3 data files).

  1. Speckle interferometric measurements of binary stars. IX

    NASA Technical Reports Server (NTRS)

    Hartkopf, W. I.; Gaston, B. J.; Fekel, F. C.; Hendry, E. M.; Mcalister, H. A.

    1984-01-01

    Four hundred-forty measurements of 232 binary stars observed during 1981 by means of speckle interferometry with the 4-m telescope at KPNO are represented. Newly resolved systems include Xi-1 Cet, Rho Her A, HD 187321, and 59 Cyg A.

  2. The Optical Gravitational Lensing Experiment. Eclipsing Binary Stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, L.; Udalski, A.; Kubiak, M.; Szymanski, M.; Zebrun, K.; Soszynski, I.; Wozniak, P. R.; Pietrzynski, G.; Szewczyk, O.

    2003-03-01

    We present the catalog of 2580 eclipsing binary stars detected in 4.6 square degree area of the central parts of the Large Magellanic Cloud. The photometric data were collected during the second phase of the OGLE microlensing search from 1997 to 2000. The eclipsing objects were selected with the automatic search algorithm based on an artificial neural network. Basic statistics of eclipsing stars are presented. Also, the list of 36 candidates of detached eclipsing binaries for spectroscopic study and for precise LMC distance determination is provided. The full catalog is accessible from the OGLE Internet archive.

  3. MESA models of the evolutionary state of the interacting binary epsilon Aurigae

    NASA Astrophysics Data System (ADS)

    Gibson, Justus L.; Stencel, Robert E.

    2018-06-01

    Using MESA code (Modules for Experiments in Stellar Astrophysics, version 9575), an evaluation was made of the evolutionary state of the epsilon Aurigae binary system (HD 31964, F0Iap + disc). We sought to satisfy several observational constraints: (1) requiring evolutionary tracks to pass close to the current temperature and luminosity of the primary star; (2) obtaining a period near the observed value of 27.1 years; (3) matching a mass function of 3.0; (4) concurrent Roche lobe overflow and mass transfer; (5) an isotopic ratio 12C/13C = 5 and, (6) matching the interferometrically determined angular diameter. A MESA model starting with binary masses of 9.85 + 4.5 M⊙, with a 100 d initial period, produces a 1.2 + 10.6 M⊙ result having a 547 d period, and a single digit 12C/13C ratio. These values were reached near an age of 20 Myr, when the donor star comes close to the observed luminosity and temperature for epsilon Aurigae A, as a post-RGB/pre-AGB star. Contemporaneously, the accretor then appears as an upper main-sequence, early B-type star. This benchmark model can provide a basis for further exploration of this interacting binary, and other long-period binary stars.

  4. Constraining the equation of state of neutron stars from binary mergers.

    PubMed

    Takami, Kentaro; Rezzolla, Luciano; Baiotti, Luca

    2014-08-29

    Determining the equation of state of matter at nuclear density and hence the structure of neutron stars has been a riddle for decades. We show how the imminent detection of gravitational waves from merging neutron star binaries can be used to solve this riddle. Using a large number of accurate numerical-relativity simulations of binaries with nuclear equations of state, we find that the postmerger emission is characterized by two distinct and robust spectral features. While the high-frequency peak has already been associated with the oscillations of the hypermassive neutron star produced by the merger and depends on the equation of state, a new correlation emerges between the low-frequency peak, related to the merger process, and the total compactness of the stars in the binary. More importantly, such a correlation is essentially universal, thus providing a powerful tool to set tight constraints on the equation of state. If the mass of the binary is known from the inspiral signal, the combined use of the two frequency peaks sets four simultaneous constraints to be satisfied. Ideally, even a single detection would be sufficient to select one equation of state over the others. We test our approach with simulated data and verify it works well for all the equations of state considered.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geier, S.; Schaffenroth, V.; Drechsel, H.

    Hot subdwarf B stars (sdBs) are extreme horizontal branch stars believed to originate from close binary evolution. Indeed about half of the known sdB stars are found in close binaries with periods ranging from a few hours to a few days. The enormous mass loss required to remove the hydrogen envelope of the red-giant progenitor almost entirely can be explained by common envelope ejection. A rare subclass of these binaries are the eclipsing HW Vir binaries where the sdB is orbited by a dwarf M star. Here, we report the discovery of an HW Vir system in the course ofmore » the MUCHFUSS project. A most likely substellar object ({approx_equal}0.068 M{sub sun}) was found to orbit the hot subdwarf J08205+0008 with a period of 0.096 days. Since the eclipses are total, the system parameters are very well constrained. J08205+0008 has the lowest unambiguously measured companion mass yet found in a subdwarf B binary. This implies that the most likely substellar companion has not only survived the engulfment by the red-giant envelope, but also triggered its ejection and enabled the sdB star to form. The system provides evidence that brown dwarfs may indeed be able to significantly affect late stellar evolution.« less

  6. NuSTAR Observations of Two New Black Hole X-ray Binary Candidates within 1 pc of Sgr A*

    NASA Astrophysics Data System (ADS)

    Hord, Benjamin; Hailey, Charles; Mori, Kaya; Mandel, Shifra

    2018-01-01

    Remarkably, two new X-ray transients were discovered in outburst within ~1 pc of the Galactic Center by the Swift X-ray Telescope in the first half of 2016. A few weeks after each outburst began, NuSTAR ToO observations were triggered for both of the objects. These sources have no known counterparts at other energies. Both objects exhibit relativistically broadened Fe lines in their spectra and possible quasi-periodic oscillations (QPO) in their power spectra, which are features seen in many black hole X-ray binaries. Combined with the fact that there have been no previously observed large outbursts at these positions over the decade of the Swift X-ray Telescope galactic center monitoring campaign, these sources make for prime black hole binary candidates (BHC) rather than neutron star low-mass X-ray binaries (NS-LMXB), which have a known short (<~5 year) recurrence time. We will present 3-79 keV NuSTAR spectra and timing analysis of these sources that supports a black hole binary interpretation over a neutron star scenario. These new BHC, combined with at least one other previously discovered BHC near the Galactic Center, hint at a potentially substantive black hole population in the vicinity of the supermassive black hole at Sgr A*.

  7. The most interesting roAp target for MONS: HR1217 ?

    NASA Astrophysics Data System (ADS)

    Knudsen, M. R.

    2000-04-01

    The roAp star HR1217 is presented as a good and possibly the best roAp target for MONS and the progress of the 1998 3-site STACC Campaign is briefly summarized incl. the first detection of EW oscillation in Hα and Hβ in this star, alongside evidence of EW varying with the phase of rotation. HR1217 has 6 known oscillation frequencies of which the four strongest appear to be rotationally split with photometric amplitudes ~< 1 mmag. The problem with groundbased observations is the 3-day-alias beating with neighbouring peaks which limits our chances for a solid mode id. With 30 days (2.4ṡ Prot) on MONS CAM we should have the needed observational data for doing asteroseismology on a magnetic star at last!

  8. Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald

    2017-01-01

    The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.

  9. Stellivore extraterrestrials? Binary stars as living systems

    NASA Astrophysics Data System (ADS)

    Vidal, Clément

    2016-11-01

    We lack signs of extraterrestrial intelligence (ETI) despite decades of observation in the whole electromagnetic spectrum. Could evidence be buried in existing data? To recognize ETI, we first propose criteria discerning life from non-life based on thermodynamics and living systems theory. Then we extrapolate civilizational development to both external and internal growth. Taken together, these two trends lead to an argument that some existing binary stars might actually be ETI. Since these hypothetical beings feed actively on stars, we call them "stellivores". I present an independent thermodynamic argument for their existence, with a metabolic interpretation of interacting binary stars. The jury is still out, but the hypothesis is empirically testable with existing astrophysical data.

  10. On the Possibility of Habitable Trojan Planets in Binary Star Systems.

    PubMed

    Schwarz, Richard; Funk, Barbara; Bazsó, Ákos

    2015-12-01

    Approximately 60% of all stars in the solar neighbourhood (up to 80% in our Milky Way) are members of binary or multiple star systems. This fact led to the speculations that many more planets may exist in binary systems than are currently known. To estimate the habitability of exoplanetary systems, we have to define the so-called habitable zone (HZ). The HZ is defined as a region around a star where a planet would receive enough radiation to maintain liquid water on its surface and to be able to build a stable atmosphere. We search for new dynamical configurations-where planets may stay in stable orbits-to increase the probability to find a planet like the Earth.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clausen, Drew; Wade, Richard A., E-mail: dclausen@astro.psu.edu, E-mail: wade@astro.psu.edu

    Many hot subdwarf B stars (sdBs) are in close binaries, and the favored formation channels for subdwarfs rely on mass transfer in a binary system to strip a core He-burning star of its envelope. However, these channels cannot account for sdBs that have been observed in long-period binaries nor the narrow mass distribution of isolated (or 'singleton') sdBs. We propose a new formation channel involving the merger of a helium white dwarf and a low-mass, hydrogen-burning star, which addresses these issues. Hierarchical triples whose inner binaries merge and form sdBs by this process could explain the observed long-period subdwarf+main-sequence binaries.more » This process would also naturally explain the observed slow rotational speeds of singleton sdBs. We also briefly discuss the implications of this formation channel for extreme horizontal branch morphology in globular clusters and the UV upturn in elliptical galaxies.« less

  12. Planet Formation in Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Martin, Rebecca

    About half of observed exoplanets are estimated to be in binary systems. Understanding planet formation and evolution in binaries is therefore essential for explaining observed exoplanet properties. Recently, we discovered that a highly misaligned circumstellar disk in a binary system can undergo global Kozai-Lidov (KL) oscillations of the disk inclination and eccentricity. These oscillations likely have a significant impact on the formation and orbital evolution of planets in binary star systems. Planet formation by core accretion cannot operate during KL oscillations of the disk. First, we propose to consider the process of disk mass transfer between the binary members. Secondly, we will investigate the possibility of planet formation by disk fragmentation. Disk self gravity can weaken or suppress the oscillations during the early disk evolution when the disk mass is relatively high for a narrow range of parameters. Thirdly, we will investigate the evolution of a planet whose orbit is initially aligned with respect to the disk, but misaligned with respect to the orbit of the binary. We will study how these processes relate to observations of star-spin and planet orbit misalignment and to observations of planets that appear to be undergoing KL oscillations. Finally, we will analyze the evolution of misaligned multi-planet systems. This theoretical work will involve a combination of analytic and numerical techniques. The aim of this research is to shed some light on the formation of planets in binary star systems and to contribute to NASA's goal of understanding of the origins of exoplanetary systems.

  13. VizieR Online Data Catalog: Cataclysmic Binaries, LMXBs, and related objects (Ritter+, 2003)

    NASA Astrophysics Data System (ADS)

    Ritter, H.; Kolb, U.

    2003-08-01

    Cataclysmic Binaries are semi-detached binaries consisting of a white dwarf or a white dwarf precursor primary and a low-mass secondary which is filling its critical Roche lobe. The secondary is not necessarily unevolved, it may even be a highly evolved star as for example in the case of the AM CVn-type stars. Low-Mass X-Ray Binaries are semi-detached binaries consisting of either a neutron star or a black hole primary, and a low-mass secondary which is filling its critical Roche lobe. Related Objects are detached binaries consisting of either a white dwarf or a white dwarf precursor primary and of a low-mass secondary. The secondary may also be a highly evolved star. The catalogue lists coordinates, apparent magnitudes, orbital parameters, stellar parameters of the components and other characteristic properties of 501 cataclysmic binaries, 74 low-mass X-ray binaries and 114 related objects with known or suspected orbital periods together with a comprehensive selection of the relevant recent literature. In addition the catalogue contains a list of references to published finding charts for 651 of the 689 objects. A cross-reference list of alias object designations concludes the catalogue. Literature published before 30 June 2003 has, as far as possible, been taken into account. This catalogue supersedes the 5th edition (catalogue ) and the updated lists by Ritter and Kolb (1995; catalogue ) (1998; catalogue ). (10 data files).

  14. Formation and tidal synchronization of sdB stars in binaries an asteroseismic investigation using Kepler Observations

    NASA Astrophysics Data System (ADS)

    Pablo, Herbert William

    Subdwarf B (sdB) stars are low mass (0.5 M sun) helium burning stars with thin hydrogen envelopes and Teff 22000-40000 K. Many of these stars are found in binary systems. One common proposed formation mechanism is common envelope (CE) ejection, where the companion spirals deep into the star's envelope ejecting the outer layers and forming a close binary system. In this dissertation, we use short cadence (tint=58.86 s) Kepler photometric time-series data to study three close sdB binaries with P ≈ 10 hours and g-mode pulsations. Asteroseismic analysis finds that each system has a constant period spacing of ΔP ≈ 250 s consistent with single sdB stars. This analysis also shows the presence of rotational multiplets which we used to find the rotation period. In all three cases the binary system is far from tidal synchronization with a rotation period an order of magnitude longer than the orbital period. These observations agree with predictions using the Zahn formulation of tidal evolution which predicts a synchronization time longer than the sdB lifetime (108 yr). We use this synchronization time to backtrack the sdB's rotation history and find its initial rotation period as it is first exiting the CE. This is one of the only observationally based constraints that has been placed on CE evolution. Preliminary investigations of single sdB stars show similar rotation periods, indicating that the rotation period may be independent of the formation channel.

  15. The very young resolved stellar populations around stripped-envelope supernovae

    NASA Astrophysics Data System (ADS)

    Maund, Justyn R.

    2018-05-01

    The massive star origins for Type IIP supernovae (SNe) have been established through direct detection of their red supergiants progenitors in pre-explosion observations; however, there has been limited success in the detection of the progenitors of H-deficient SNe. The final fate of more massive stars, capable of undergoing a Wolf-Rayet phase, and the origins of Type Ibc SNe remain debated, including the relative importance of single massive star progenitors or lower mass stars stripped in binaries. We present an analysis of the ages and spatial distributions of massive stars around the sites of 23 stripped-envelope SNe, as observed with the Hubble Space Telescope, to probe the possible origins of the progenitors of these events. Using a Bayesian stellar populations analysis scheme, we find characteristic ages for the populations observed within 150 pc of the target Type IIb, Ib, and Ic SNe to be log (t) = 7.20, 7.05, and 6.57, respectively. The Type Ic SNe in the sample are nearly all observed within 100 pc of young, dense stellar populations. The environment around SN 2002ap is an important exception both in terms of age and spatial properties. These findings may support the hypothesis that stars with Minit > 30 M⊙ produce a relatively large proportion of Type Ibc SNe, and that these SN subtypes arise from progressively more massive progenitors. Significantly higher extinctions are derived towards the populations hosting these SNe than previously used in analysis of constraints from pre-explosion observations. The large initial masses inferred for the progenitors are in stark contrast with the low ejecta masses estimated from SN light curves.

  16. Evolution of Optical Binary Fraction in Sparse Stellar Systems

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan

    2018-05-01

    This work studies the evolution of the fraction of optical binary stars (OBF; not including components such as neutron stars and black holes), which is caused by stellar evolution, and the contributions of various binaries to OBF via the stellar population synthesis technique. It is shown that OBF decreases from 1 to about 0.81 for stellar populations with the Salpeter initial mass function (IMF), and to about 0.85 for the case of the Kroupa IMF, on a timescale of 15 Gyr. This result depends on metallicity, slightly. The contributions of binaries varying with mass ratio, orbital period, separation, spectral types of primary and secondary, contact degree, and pair type to OBF are calculated for stellar populations with different ages and metallicities. The contribution of different kinds of binaries to OBF depends on age and metallicity. The results can be used for estimating the global OBF of star clusters or galaxies from the fraction of a kind of binary. It is also helpful for estimating the primordial and future binary fractions of sparse stellar systems from the present observations. Our results are suitable for studying field stars, open clusters, and the outer part of globular clusters, because the OBF of such objects is affected by dynamical processes, relatively slightly, but they can also be used for giving some limits for other populations.

  17. High Fill-out, Extreme Mass Ratio Overcontact Binary Systems. X. The Newly Discovered Binary XY Leonis Minoris

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Liu, L.; Zhu, L.-Y.; He, J.-J.; Yang, Y.-G.; Bernasconi, L.

    2011-05-01

    The newly discovered short-period close binary star, XY LMi, has been monitored photometrically since 2006. Its light curves are typical EW-type light curves and show complete eclipses with durations of about 80 minutes. Photometric solutions were determined through an analysis of the complete B, V, R, and I light curves using the 2003 version of the Wilson-Devinney code. XY LMi is a high fill-out, extreme mass ratio overcontact binary system with a mass ratio of q = 0.148 and a fill-out factor of f = 74.1%, suggesting that it is in the late evolutionary stage of late-type tidal-locked binary stars. As observed in other overcontact binary stars, evidence for the presence of two dark spots on both components is given. Based on our 19 epochs of eclipse times, we found that the orbital period of the overcontact binary is decreasing continuously at a rate of dP/dt = -1.67 × 10-7 days yr-1, which may be caused by mass transfer from the primary to the secondary and/or angular momentum loss via magnetic stellar wind. The decrease of the orbital period may result in the increase of the fill-out, and finally, it will evolve into a single rapid-rotation star when the fluid surface reaches the outer critical Roche lobe.

  18. Binary Lenses in OGLE-III EWS Database. Seasons 2002-2003

    NASA Astrophysics Data System (ADS)

    Jaroszynski, M.; Udalski, A.; Kubiak, M.; Szymanski, M.; Pietrzynski, G.; Soszynski, I.; Zebrun, K.; Szewczyk, O.; Wyrzykowski, L.

    2004-06-01

    We present 15 binary lens candidates from OGLE-III Early Warning System database for seasons 2002-2003. We also found 15 events interpreted as single mass lensing of double sources. The candidates were selected by visual light curves inspection. Examining the models of binary lenses of this and our previous study (10 caustic crossing events of OGLE-II seasons 1997--1999) we find one case of extreme mass ratio binary (q approx 0.005) and the rest in the range 0.1

  19. The Ruinous Influence of Close Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.

    2017-01-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34 +0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.

  20. The Ruinous Influence of Close Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.

    2017-06-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34+0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.

  1. RED GIANTS IN ECLIPSING BINARY AND MULTIPLE-STAR SYSTEMS: MODELING AND ASTEROSEISMIC ANALYSIS OF 70 CANDIDATES FROM KEPLER DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; McKeever, J.; Rawls, M. L.

    2013-04-10

    Red giant stars are proving to be an incredible source of information for testing models of stellar evolution, as asteroseismology has opened up a window into their interiors. Such insights are a direct result of the unprecedented data from space missions CoRoT and Kepler as well as recent theoretical advances. Eclipsing binaries are also fundamental astrophysical objects, and when coupled with asteroseismology, binaries provide two independent methods to obtain masses and radii and exciting opportunities to develop highly constrained stellar models. The possibility of discovering pulsating red giants in eclipsing binary systems is therefore an important goal that could potentiallymore » offer very robust characterization of these systems. Until recently, only one case has been discovered with Kepler. We cross-correlate the detected red giant and eclipsing-binary catalogs from Kepler data to find possible candidate systems. Light-curve modeling and mean properties measured from asteroseismology are combined to yield specific measurements of periods, masses, radii, temperatures, eclipse timing variations, core rotation rates, and red giant evolutionary state. After using three different techniques to eliminate false positives, out of the 70 systems common to the red giant and eclipsing-binary catalogs we find 13 strong candidates (12 previously unknown) to be eclipsing binaries, one to be a non-eclipsing binary with tidally induced oscillations, and 10 more to be hierarchical triple systems, all of which include a pulsating red giant. The systems span a range of orbital eccentricities, periods, and spectral types F, G, K, and M for the companion of the red giant. One case even suggests an eclipsing binary composed of two red giant stars and another of a red giant with a {delta}-Scuti star. The discovery of multiple pulsating red giants in eclipsing binaries provides an exciting test bed for precise astrophysical modeling, and follow-up spectroscopic observations of many of the candidate systems are encouraged. The resulting highly constrained stellar parameters will allow, for example, the exploration of how binary tidal interactions affect pulsations when compared to the single-star case.« less

  2. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochiai, H.; Nagasawa, M.; Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajormore » axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.« less

  3. Mind the Gap when Data Mining the Ritter-Kolb Cataclysmic Variable Catalogue

    NASA Astrophysics Data System (ADS)

    Sparks, Warren M.; Sion, Edward M.

    2017-01-01

    The cataclysmic variable (CV) binary consists of a white dwarf primary and a low-mass secondary which overflows its Roche lobe. The Ritter-Kolb catalogue (2003, A&A, 404, 301) is a collection (~1000) of CV binaries and related objects. We have mined this catalogue for CVs with unevolved secondaries whose mass ratio (secondary/primary) is known (~130). A plot of the secondary mass verses the log of the orbital period exhibits the well-known period gap at 2-3 hrs. In addition, this plot shows that the secondary masses just above the period gap are collectively much larger than those just below. The average of the first ten secondary masses above the period is 180% larger than the average below the gap.The disrupted magnetic braking hypothesis (Howell, Nelson, and Rappaport 2001, ApJ, 550, 897 [HNR]) predicts that when the secondary becomes fully convective, the magnetic braking, which has driven the secondary out of thermal equilibrium, stops. In adjusting to thermal equilibrium the secondary shrinks below its Roche lobe and no longer loses mass. The binary system ceases to appear as a CV until gravitational radiation loss brings the secondary back in contact with its Roche lobe. This scenario is at odds with the apparent secondary mass loss across the period gap. Either the secondary continues to lose mass while crossing the period gap or the secondary masses are miscalculated!Magnetic braking causes the secondary to expand or inflate larger than its single star counterpart. Any orbital parameter calculation which assumes a radius-mass relationship based on single main-sequence stars will overestimate the mass of the secondary. We can approximate this mass overestimation from calculations by HNR which take into account the thermal heating from magnetic braking. Using this approximation as a first-order correction to the secondary mass, we replot the deflated secondary mass versus the binary period. The deflated masses immediately above and below the period gap are similar and do not indicate secondary mass loss across the gap. Thus, magnetic braking not only explains the period gap but the apparent secondary mass shift across it. Orbital parameters must be based upon actual secondary mass-radius observations.

  4. The binarity of Galactic dwarf stars along with effective temperature and metallicity

    NASA Astrophysics Data System (ADS)

    Gao, Shuang; Zhao, He; Yang, Hang; Gao, Ran

    2017-07-01

    The fraction of binary stars fb is one of most valuable tools to probe the star formation and evolution of multiple systems in the Galaxy. We focus on the relationship between fb and stellar metallicity [Fe/H] by employing the differential radial velocity (DRV) method and the large sample observed by the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Main-sequence stars from A- to K-type in the third data release of LAMOST are selected to estimate fb. Contributions to a profile of DRV from the radial velocity (RV) error of single stars σRV and the orbital motion of binary stars are evaluated from the DRV profile. We employ 365 911 stars with randomly repeating spectral observations to present a detailed analysis of fb and σRV in the two-dimensional space of Teff and [Fe/H]. The A-type stars are more likely to be companions in binary star systems than other stars. Furthermore, the reverse correlation between fb and [Fe/H] can be shown statistically, which suggests that fb is a joint function of Teff and [Fe/H]. At the same time, σRV of the sample are fitted for different Teff and [Fe/H]. Metal-rich cold stars in our sample have the best RV measurement.

  5. The long-period binary central stars of the planetary nebulae NGC 1514 and LoTr 5

    NASA Astrophysics Data System (ADS)

    Jones, D.; Van Winckel, H.; Aller, A.; Exter, K.; De Marco, O.

    2017-04-01

    The importance of long-period binaries for the formation and evolution of planetary nebulae is still rather poorly understood, which in part is due to the lack of central star systems that are known to comprise such long-period binaries. Here, we report on the latest results from the on-going Mercator-HERMES survey for variability in the central stars of planetary nebulae. We present a study of the central stars of NGC 1514, BD+30°623, the spectrum of which shows features associated with a hot nebular progenitor as well as a possible A-type companion. Cross-correlation of high-resolution HERMES spectra against synthetic spectra shows the system to be a highly eccentric (e 0.5) double-lined binary with a period of 3300 days. Previous studies indicated that the cool component might be a horizontal branch star of mass 0.55 M⊙, but the observed radial velocity amplitudes rule out such a low mass. If we assume that the nebular symmetry axis and binary orbital plane are perpendicular, then the data are more consistent with a post-main-sequence star ascending towards the giant branch. We also present the continued monitoring of the central star of LoTr 5, HD 112313, which has now completed one full cycle, allowing the orbital period (P 2700 days) and eccentricity (e 0.3) to be derived. To date, the orbital periods of BD+30°623 and HD 112313 are the longest to have been measured spectroscopically in the central stars of planetary nebulae. Furthermore, these systems, along with BD+33°2642, comprise the only spectroscopic wide-binary central stars currently known. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.The radial velocity data for both objects are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/L9

  6. The first gravitational-wave source from the isolated evolution of two stars in the 40-100 solar mass range.

    PubMed

    Belczynski, Krzysztof; Holz, Daniel E; Bulik, Tomasz; O'Shaughnessy, Richard

    2016-06-23

    The merger of two massive (about 30 solar masses) black holes has been detected in gravitational waves. This discovery validates recent predictions that massive binary black holes would constitute the first detection. Previous calculations, however, have not sampled the relevant binary-black-hole progenitors--massive, low-metallicity binary stars--with sufficient accuracy nor included sufficiently realistic physics to enable robust predictions to better than several orders of magnitude. Here we report high-precision numerical simulations of the formation of binary black holes via the evolution of isolated binary stars, providing a framework within which to interpret the first gravitational-wave source, GW150914, and to predict the properties of subsequent binary-black-hole gravitational-wave events. Our models imply that these events form in an environment in which the metallicity is less than ten per cent of solar metallicity, and involve stars with initial masses of 40-100 solar masses that interact through mass transfer and a common-envelope phase. These progenitor stars probably formed either about 2 billion years or, with a smaller probability, 11 billion years after the Big Bang. Most binary black holes form without supernova explosions, and their spins are nearly unchanged since birth, but do not have to be parallel. The classical field formation of binary black holes we propose, with low natal kicks (the velocity of the black hole at birth) and restricted common-envelope evolution, produces approximately 40 times more binary-black-holes mergers than do dynamical formation channels involving globular clusters; our predicted detection rate of these mergers is comparable to that from homogeneous evolution channels. Our calculations predict detections of about 1,000 black-hole mergers per year with total masses of 20-80 solar masses once second-generation ground-based gravitational-wave observatories reach full sensitivity.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Myron A.; Shiao, Bernard; Bianchi, Luciana, E-mail: myronmeister@gmail.com, E-mail: shiao@stsci.edu, E-mail: bianchi@pha.jhu.edu

    We report on intriguing photometric properties of Galactic stars observed in the Galaxy Evolution Explorer (GALEX) satellite's far-UV (FUV) and near-UV (NUV) bandpasses, as well as from the ground-based Sloan Digital Sky Survey (SDSS) and the Kepler Input Catalog. The first property is that the (FUV – NUV) color distribution of stars in the Kepler field consists of two well-separated peaks. A second and more perplexing property is that for stars with spectral types G or later the mean (FUV – NUV) color becomes much bluer, contrary to expectation. Investigating this tendency further, we found in two samples of mid-Fmore » through K type stars that 17%-22% of them exhibit FUV excesses relative to their NUV fluxes and spectral types. A correction for FUV incompleteness of the FUV magnitude-limited star sample brings this ratio to 14%-18%. Nearly the same fractions are also discovered among members of the Kepler Eclipsing Binary Catalog and in the published list of Kepler Objects of Interest. These UV-excess ('UVe') colors are confirmed by the negative UV continuum slopes in GALEX spectra of members of the population. The SDSS spectra of some UVe stars exhibit metallic line weakening, especially in the blue. This suggests an enhanced contribution of UV flux relative to photospheric flux of a solar-type single star. We consider the possibility that the UV excesses originate from various types of hot stars, including white dwarf DA and sdB stars, binaries, and strong chromosphere stars that are young or in active binaries. The space density of compact stars is too low to explain the observed frequency of the UVe stars. Our model atmosphere-derived simulations of colors for binaries with main-sequence pairs with a hot secondary demonstrate that the color loci conflict with the observed sequence. As a preferred alternative we are left with the active chromospheres explanation, whether in active close binaries or young single stars, despite the expected paucity of young, chromospherically active stars in the field. We also address a third perplexing color property, namely, the presence of a prominent island of 'UV red' stars surrounded by 'UV blue' stars in the diagnostic (NUV–g), (g – i) color diagram. We find that the subpopulation composing this island is mainly horizontal branch stars. These objects do not exhibit UV excesses and therefore have UV colors typical for their spectral types. This subpopulation appears 'red' in the UV only because the stars' colors are not pulled to the blue by the inclusion of UVe stars.« less

  8. The Multiplicity of Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Wallace, Debra J.

    2004-01-01

    The most massive stars drastically reconfigure their surroundings via their strong stellar winds and powerful ionizing radiation. With this mass fueling their large luminosities, these stars are frequently used as standard candles in distance determination, and as tracers of stellar evolution in different regions and epochs. In their dieing burst, some of the once massive stars will enter a Wolf-Rayet (WR) phase lasting approx.10% of the stellar lifetime. This phase is particularly useful for study because these stars have strong spectroscopic signatures that allow them to be easily identified at great distances. But how accurate are these identifications? Increasingly, the relatively nearby stars we once assumed to be single are revealing themselves to be binary or multiple. New techniques, such as high-resolution imaging and interferometry, are changing our knowledge of these objects. I will discuss recent results in the literature and how this affects the binary distribution of WR stars. I will also discuss the implications of binary vs. single star evolution on evolution through the WR phase. Finally, I will discuss the implications of these revised numbers on both massive stellar evolution itself, and the impact that this has on the role of WR stars as calibrators.

  9. Observations of suspected low-mass post-T Tauri stars and their evolutionary status

    NASA Technical Reports Server (NTRS)

    Mundt, R.; Walter, F. M.; Feigelson, E. D.; Finkenzeller, U.; Herbig, G. H.; Odell, A. P.

    1983-01-01

    The results of a study of five X-ray discovered weak emission pre-main-sequence stars in the Taurus-Auriga star formation complex are presented. All are of spectral type K7-M0, and about 1-2 mag above the main sequence. One is a double-lined spectroscopic binary, the first spectroscopic binary PMS star to be confirmed. The ages, masses, and radii of these stars as determined by photometry and spectroscopy are discussed. The difference in emission strength between these and the T Tauri stars is investigated, and it is concluded that these 'post-T Tauri' stars do indeed appear more evolved than the T Tauri stars, although there is no evidence of any significant difference in ages.

  10. Rotational Synchronization May Enhance Habitability for Circumbinary Planets: Kepler Binary Case Studies

    NASA Astrophysics Data System (ADS)

    Mason, Paul A.; Zuluaga, Jorge I.; Clark, Joni M.; Cuartas-Restrepo, Pablo A.

    2013-09-01

    We report a mechanism capable of reducing (or increasing) stellar activity in binary stars, thereby potentially enhancing (or destroying) circumbinary habitability. In single stars, stellar aggression toward planetary atmospheres causes mass-loss, which is especially detrimental for late-type stars, because habitable zones are very close and activity is long lasting. In binaries, tidal rotational breaking reduces magnetic activity, thus reducing harmful levels of X-ray and ultraviolet (XUV) radiation and stellar mass-loss that are able to erode planetary atmospheres. We study this mechanism for all confirmed circumbinary (p-type) planets. We find that main sequence twins provide minimal flux variation and in some cases improved environments if the stars rotationally synchronize within the first Gyr. Solar-like twins, like Kepler 34 and Kepler 35, provide low habitable zone XUV fluxes and stellar wind pressures. These wide, moist, habitable zones may potentially support multiple habitable planets. Solar-type stars with lower mass companions, like Kepler 47, allow for protected planets over a wide range of secondary masses and binary periods. Kepler 38 and related binaries are marginal cases. Kepler 64 and analogs have dramatically reduced stellar aggression due to synchronization of the primary, but are limited by the short lifetime. Kepler 16 appears to be inhospitable to planets due to extreme XUV flux. These results have important implications for estimates of the number of stellar systems containing habitable planets in the Galaxy and allow for the selection of binaries suitable for follow-up searches for habitable planets.

  11. A Hidden Population of Hot Subdwarf Stars in Close Binaries

    NASA Astrophysics Data System (ADS)

    Wade, Richard A.; Clausen, Drew R.; Kopparapu, Ravi Kumar; O'Shaughnessy, Richard; Stark, M. A.; Walentosky, M. J.

    2010-12-01

    Observations to date preferentially find Galactic hot subdwarf (sdB/sdO) stars in binaries when the subdwarfs are more luminous than their relatively faint companions (G/K/M dwarfs, white dwarfs). As suggested by Han et al. [1], this selection bias may distort our perspective of the evolutionary channels that form hot subdwarfs in the galactic disk. A predicted and possibly more numerous population of binaries features a lower-mass, lower-luminosity, longer-lived hot subdwarf hiding in the glare from its companion: the subdwarf+A/early F binaries. Such systems may arise when mass transfer is initiated in the Hertzsprung gap; the A/F companion in some cases was ``created'' from a lower-mass star (i.e., it would be a blue straggler if seen in a cluster). A survey is underway at Penn State to identify hot subdwarfs paired with F stars, determine their properties, and establish their space density. The project makes use of ground and space archival data to identify these systems (from their UV excesses) and new spectroscopic observations to determine their orbital periods and other properties. Successful characterization of this group of close binaries should help to challenge, calibrate, or refine models of binary star evolution that are used in population synthesis studies, including the relative importance of the RLOF and common-envelope channels for the formation of hot subdwarfs. The motivation, methodology, and status of this search for hidden hot subdwarfs are presented in this contribution.

  12. A new look inside planetary nebula LoTr 5: a long-period binary with hints of a possible third component

    NASA Astrophysics Data System (ADS)

    Aller, A.; Lillo-Box, J.; Vučković, M.; Van Winckel, H.; Jones, D.; Montesinos, B.; Zorotovic, M.; Miranda, L. F.

    2018-05-01

    LoTr 5 is a planetary nebula with an unusual long-period binary central star. As far as we know, the pair consists of a rapidly rotating G-type star and a hot star, which is responsible for the ionization of the nebula. The rotation period of the G-type star is 5.95 d and the orbital period of the binary is now known to be ˜2700 d, one of the longest in central star of planetary nebulae. The spectrum of the G central star shows a complex H α double-peaked profile which varies with very short time-scales, also reported in other central stars of planetary nebulae and whose origin is still unknown. We present new radial velocity observations of the central star which allow us to confirm the orbital period for the long-period binary and discuss the possibility of a third component in the system at ˜129 d to the G star. This is complemented with the analysis of archival light curves from Super Wide Angle Search for Planets, All Sky Automated Survey, and Optical Monitoring Camera. From the spectral fitting of the G-type star, we obtain an effective temperature of Teff = 5410 ± 250 K and surface gravity of log g = 2.7 ± 0.5, consistent with both giant and subgiant stars. We also present a detailed analysis of the H α double-peaked profile and conclude that it does not present correlation with the rotation period and that the presence of an accretion disc via Roche lobe overflow is unlikely.

  13. The VLT-FLAMES Tarantula Survey. VIII. Multiplicity properties of the O-type star population

    NASA Astrophysics Data System (ADS)

    Sana, H.; de Koter, A.; de Mink, S. E.; Dunstall, P. R.; Evans, C. J.; Hénault-Brunet, V.; Maíz Apellániz, J.; Ramírez-Agudelo, O. H.; Taylor, W. D.; Walborn, N. R.; Clark, J. S.; Crowther, P. A.; Herrero, A.; Gieles, M.; Langer, N.; Lennon, D. J.; Vink, J. S.

    2013-02-01

    Context. The Tarantula Nebula in the Large Magellanic Cloud is our closest view of a starburst region and is the ideal environment to investigate important questions regarding the formation, evolution and final fate of the most massive stars. Aims: We analyze the multiplicity properties of the massive O-type star population observed through multi-epoch spectroscopy in the framework of the VLT-FLAMES Tarantula Survey. With 360 O-type stars, this is the largest homogeneous sample of massive stars analyzed to date. Methods: We use multi-epoch spectroscopy and variability analysis to identify spectroscopic binaries. We also use a Monte-Carlo method to correct for observational biases. By modeling simultaneously the observed binary fraction, the distributions of the amplitudes of the radial velocity variations and the distribution of the time scales of these variations, we constrain the intrinsic current binary fraction and period and mass-ratio distributions. Results: We observe a spectroscopic binary fraction of 0.35 ± 0.03, which corresponds to the fraction of objects displaying statistically significant radial velocity variations with an amplitude of at least 20 km s-1. We compute the intrinsic binary fraction to be 0.51 ± 0.04. We adopt power-laws to describe the intrinsic period and mass-ratio distributions: f(log 10P/d) ~ (log 10P/d)π (with log 10P/d in the range 0.15-3.5) and f(q) ~ qκ with 0.1 ≤ q = M2/M1 ≤ 1.0. The power-law indexes that best reproduce the observed quantities are π = -0.45 ± 0.30 and κ = -1.0 ± 0.4. The period distribution that we obtain thus favours shorter period systems compared to an Öpik law (π = 0). The mass ratio distribution is slightly skewed towards low mass ratio systems but remains incompatible with a random sampling of a classical mass function (κ = -2.35). The binary fraction seems mostly uniform across the field of view and independent of the spectral types and luminosity classes. The binary fraction in the outer region of the field of view (r > 7.8', i.e. ≈117 pc) and among the O9.7 I/II objects are however significantly lower than expected from statistical fluctuations. The observed and intrinsic binary fractions are also lower for the faintest objects in our sample (Ks > 15.5 mag), which results from observational effects and the fact that our O star sample is not magnitude-limited but is defined by a spectral-type cutoff. We also conclude that magnitude-limited investigations are biased towards larger binary fractions. Conclusions: Using the multiplicity properties of the O stars in the Tarantula region and simple evolutionary considerations, we estimate that over 50% of the current O star population will exchange mass with its companion within a binary system. This shows that binary interaction is greatly affecting the evolution and fate of massive stars, and must be taken into account to correctly interpret unresolved populations of massive stars. Based on observations collected at the European Southern Observatory under program ID 182.D-0222.Full Tables 1-3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A107Appendices are available in electronic form at http://www.aanda.org

  14. X-ray Binaries in the Galaxy and the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Cowley, Anne P.

    1993-05-01

    For more than two decades astronomers have been aware that the most X-ray luminous stellar sources (L_x > 10(35) erg s(-1) ) are interacting binaries where one component is a neutron star or black hole. While other types of single and multiple stars are known X-ray sources, none compare in X-ray luminosity with the ``classical" X-ray binaries. In these systems X-ray emission results from accretion of material from a non-degenerate companion onto the compact star through several alternate mechanisms including Roche lobe overflow, stellar winds, or periastron effects in non-circular orbits. It has been recognized for many years that X-ray binaries divide into two broad groups, characterized primarily by the mass of the non-degenerate star: 1) massive X-ray binaries (MXRB), in which the optical primary is a bright, early-type star, and 2) low-mass X-ray binaries (LMXB), where a lower main-sequence or subgiant star is the mass donor. A broad variety of observational characteristics further subdivide these classes. In the Galaxy these two groups appear to be spatially and kinematically associated with the disk and the halo populations, respectively. A few dozen MXRB are known in the Galaxy. A great deal of information about their physical properties has been learned from observational study. Their optical primaries can be investigated by conventional techniques. Furthermore, most MXRB contain X-ray pulsars, allowing accurate determination of their orbital parameters. From these data masses have been determined for the neutron stars, all of which are ~ 1.4 Msun, within measurement errors. By contrast, the LMXB have been much more difficult to study. Although there are ~ 150 LMXB in the Galaxy, most are distant and faint, requiring use of large telescopes for their study. Their optical light is almost always dominated by an accretion disk, rather than the mass-losing star, making interpretation of their spectral and photometric properties difficult. Their often uncertain distances further complicate our understanding. Thus, although the galactic LMXB greatly outnumber the MXRB, they are much less well understood. The X-ray binaries in the Magellanic Clouds in many ways make an ideal laboratory because they are all at the same, known distance. However, at the present time only a handful of X-ray binaries are known with certainty in these galaxies -- 7 in the LMC and 1 in the SMC. Only 3 of the LMC sources are low-mass X-ray binaries, and their properties are quite different from ``typical" galactic LMXB. In this review we will outline the general properties of X-ray binaries and summarize what types of information we have learned from their study over a wide range of wavelengths. An overall comparison of the global properties of X-ray binaries in the Galaxy and the Magellanic Clouds will be given.

  15. X-Ray source populations in old open clusters: Collinder 261

    NASA Astrophysics Data System (ADS)

    Vats, Smriti; van den Berg, Maureen; Wijnands, Rudy

    2014-09-01

    We are carrying out an X-ray survey of old open clusters with the Chandra X-ray Observatory. Single old stars, being slow rotators, are very faint in X-rays (L_X < 1×10^27 erg/s). Hence, X-rays produced by mass transfer in cataclysmic variables (CVs) or by rapid rotation of the stars in tidally locked, detached binaries (active binaries; ABs) can be detected, without contamination from single stars. By comparing the properties of various types of interacting binaries in different environments (the Galactic field, old open clusters, globular clusters), we aim to study binary evolution and how it may be affected by dynamical encounters with other cluster stars. Stellar clusters are good targets to study binaries, as age, distance, chemical composition, are well constrained. Collinder (Cr) 261 is an old open cluster (age ~ 7 Gyr), with one of the richest populations inferred of close binaries and blue stragglers of all open clusters and is therefore an obvious target to study the products of close encounters in open clusters. We will present the first results of this study, detailing the low-luminosity X-ray population of Cr 261, in conjunction with other open clusters in our survey (NGC 188, Berkeley 17, NGC 6253, M67, NGC 6791) and in comparison with populations in globular clusters.

  16. ON THE PULSATIONAL-ORBITAL-PERIOD RELATION OF ECLIPSING BINARIES WITH δ-SCT COMPONENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, X. B.; Luo, C. Q.; Fu, J. N.

    2013-11-01

    We have deduced a theoretical relation between the pulsation and orbital-periods of pulsating stars in close binaries based on their Roche lobe filling. It appears to be of a simple linear form, with the slope as a function of the pulsation constant, the mass ratio, and the filling factor for an individual system. Testing the data of 69 known eclipsing binaries containing δ-Sct-type components yields an empirical slope of 0.020 ± 0.006 for the P{sub pul}-P{sub orb} relation. We have further derived the upper limit of the P{sub pul}/P{sub orb} ratio for the δ-Sct stars in eclipsing binaries with amore » value of 0.09 ± 0.02. This value could serve as a criterion to distinguish whether or not a pulsator in an eclipsing binary pulsates in the p-mode. Applying the deduced P{sub pul}-P{sub orb} relation, we have computed the dominant pulsation constants for 37 δ-Sct stars in eclipsing systems with definite photometric solutions. These ranged between 0.008 and 0.033 days with a mean value of about 0.014 days, indicating that δ-Sct stars in eclipsing binaries mostly pulsate in the fourth or fifth overtones.« less

  17. Dynamical Formation and Merger of Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas

    2017-01-01

    The advent of gravitational wave (GW) astronomy began with Advanced LIGO's 2015 discovery of GWs from coalescing black hole (BH) binaries. GW astronomy holds great promise for testing general relativity, but also for investigating open astrophysical questions not amenable to traditional electromagnetic observations. One such question concerns the origin of stellar mass BH binaries in the universe: do these form primarily from evolution of isolated binaries of massive stars, or do they form through more exotic dynamical channels? The best studied dynamical formation channel involves multibody interactions of BHs and stars in dense globular cluster environments, but many other dynamical scenarios have recently been proposed, ranging from the Kozai effect in hierarchical triple systems to BH binary formation in the outskirts of Toomre-unstable accretion disks surrounding supermassive black holes. The BH binaries formed through these processes will have different distributions of observable parameters (e.g. mass ratios, spins) than BH binaries formed through the evolution of isolated binary stars. In my talk I will overview these and other dynamical formation scenarios, and summarize the key observational tests that will enable Advanced LIGO or other future detectors to determine what formation pathway creates the majority of binary BHs in the universe. NCS thanks NASA, which has funded his work through Einstein postdoctoral grant PF5-160145.

  18. MESA models for the evolutionary status of the epsilon Aurigae disk-eclipsed binary system

    NASA Astrophysics Data System (ADS)

    Stencel, Robert E.; Gibson, Justus

    2018-06-01

    The brightest member of the class of disk-eclipsed binary stars is the Algol-like long-period binary, epsilon Aurigae (HD 31964, F0Iap + disk, http://adsabs.harvard.edu/abs/2016SPIE.9907E..17S ). Using MESA (Modules for Experiments in Stellar Astrophysics, version 9575), we have made an evaluation of its evolutionary state. We sought to satisfy several observational constraints, including: (1) requiring evolutionary tracks to pass close to the current temperature and luminosity of the primary star; (2) obtaining a period near the observed value of 27.1 years; (3) matching a mass function of 3.0; (4) concurrent Roche lobe overflow and mass transfer; (5) an isotopic ratio 12C / 13C = 5 and, (6) matching the interferometrically determined angular diameter. A MESA model starting with binary masses of 9.85 + 4.5 solar masses, with a 100 day initial period, produces a 1.2 + 10.6 solar masses result having a 547 day period, plus a single digit 12C / 13C ratio. These values were reached near an age of 20 Myr, when the donor star comes close to the observed luminosity and temperature for epsilon Aurigae A, as a post-RGB/pre-AGB star. Contemporaneously, the accretor then appears as an upper main sequence, early B-type star. This benchmark model can provide a basis for further exploration of this interacting binary, and other long period binary stars. This report has been submitted to MNRAS, along with a parallel investigation of mass transfer stream and disk sub-structure. The authors are grateful to the estate of William Herschel Womble for the support of astronomy at the University of Denver.

  19. A Study of The Binary and Anomalous Stellar Populations in Two Intermediate-Aged Open Clusters

    NASA Astrophysics Data System (ADS)

    Mathieu, Robert D.; Milliman, Katelyn; Geller, Aaron M.; Gosnell, Natalie

    2010-08-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. It is now clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, sophisticated N-body models show that stellar dynamical processes play a central role in the formation of such anomalous stars. These stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose to expand our highly successful radial-velocity survey to include two new rich open clusters NGC 7789 (1.8 Gyr, -0.1 dex) and NGC 2506 (2.1 Gyr, -0.4 dex) as part of the WIYN Open Cluster Study (WOCS). Though these two clusters are both of intermediate age and of similar richness, they have quite different blue straggler populations. NGC 2506 has only 10 known blue stragglers, while NGC 7789 has at least 27, among the largest known populations of blue stragglers in an open cluster. Defining the hard-binary populations in these two clusters is critical for understanding the factors that determine blue straggler production rates. Our proposed observations will establish the hard- binary fraction and frequency distributions of orbital parameters (periods, eccentricities, mass-ratios, etc.) for orbital periods approaching the hard-soft boundary, and will provide a comprehensive survey of the blue stragglers and other anomalous stars, including secure cluster memberships and binary properties. These data will then form direct constraints for detailed N-body open cluster simulations from which we will study the impact of the hard-binary population on the production rates and mechanisms of blue stragglers.

  20. Multiplicity among Young Brown Dwarfs and Very Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Ahmic, Mirza; Jayawardhana, Ray; Brandeker, Alexis; Scholz, Alexander; van Kerkwijk, Marten H.; Delgado-Donate, Eduardo; Froebrich, Dirk

    2007-12-01

    We report on a near-infrared adaptive optics imaging survey of 31 young brown dwarfs and very low mass (VLM) stars, 28 of which are in the Chamaeleon I star-forming region, using the ESO Very Large Telescope. We resolve the suspected 0.16'' (~26 AU) binary Cha Hα 2 and present two new binaries, Hn 13 and CHXR 15, with separations of 0.13'' (~20 AU) and 0.30'' (~50 AU), respectively; the latter is one of the widest VLM systems known. We find a binary frequency of 11+9-6%, thus confirming the trend for a lower binary frequency with decreasing mass. By combining our work with previous surveys, we arrive at the largest sample of young VLM objects (72) with high angular resolution imaging to date. Its multiplicity fraction is in statistical agreement with that for VLM objects in the field. Furthermore, we note that many field stellar binaries with lower binding energies and/or wider cross sections have survived dynamical evolution and that statistical models suggest tidal disruption by passing stars is unlikely to affect the binary properties of our systems. Thus, we argue that there is no significant evolution of multiplicity with age among brown dwarfs and VLM stars in OB and T associations between a few megayears to several gigayears. Instead, the observations so far suggest that VLM objects are either less likely to be born in fragile multiple systems than solar-mass stars or such systems are disrupted very early. We dedicate this paper to the memory of our coauthor, Eduardo Delgado-Donate, who died in a hiking accident in Tenerife earlier this year.

  1. Convective Excitation of Inertial Modes in Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    De Pietri, Roberto; Feo, Alessandra; Font, José A.; Löffler, Frank; Maione, Francesco; Pasquali, Michele; Stergioulas, Nikolaos

    2018-06-01

    We present the first very long-term simulations (extending up to ˜140 ms after merger) of binary neutron star mergers with piecewise polytropic equations of state and in full general relativity. Our simulations reveal that, at a time of 30-50 ms after merger, parts of the star become convectively unstable, which triggers the excitation of inertial modes. The excited inertial modes are sustained up to several tens of milliseconds and are potentially observable by the planned third-generation gravitational-wave detectors at frequencies of a few kilohertz. Since inertial modes depend on the rotation rate of the star and they are triggered by a convective instability in the postmerger remnant, their detection in gravitational waves will provide a unique opportunity to probe the rotational and thermal state of the merger remnant. In addition, our findings have implications for the long-term evolution and stability of binary neutron star remnants.

  2. On the formation of runaway stars BN and x in the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Farias, J. P.; Tan, J. C.

    2018-05-01

    We explore scenarios for the dynamical ejection of stars BN and x from source I in the Kleinmann-Low nebula of the Orion Nebula Cluster (ONC), which is important because it is the closest region of massive star formation. This ejection would cause source I to become a close binary or a merger product of two stars. We thus consider binary-binary encounters as the mechanism to produce this event. By running a large suite of N-body simulations, we find that it is nearly impossible to match the observations when using the commonly adopted masses for the participants, especially a source I mass of 7 M⊙. The only way to recreate the event is if source I is more massive, that is, 20 M⊙. However, even in this case, the likelihood of reproducing the observed system is low. We discuss the implications of these results for understanding this important star-forming region.

  3. MUCHFUSS - Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS

    NASA Astrophysics Data System (ADS)

    Geier, S.; Schaffenroth, V.; Hirsch, H.; Tillich, A.; Heber, U.; Maxted, P. F. L.; Østensen, R. H.; Barlow, B. N.; O'Toole, S. J.; Kupfer, T.; Marsh, T.; Gänsicke, B.; Napiwotzki, R.; Cordes, O.; Müller, S.; Classen, L.; Ziegerer, E.; Drechsel, H.

    2012-06-01

    The project Massive Unseen Companions to Hot Faint Underluminous Stars from SDSS (MUCHFUSS) aims at finding hot subdwarf stars with massive compact companions (white dwarfs with masses M>1.0 M⊙, neutron stars or black holes). The existence of such systems is predicted by binary evolution calculations and some candidate systems have been found. We identified ≃1100 hot subdwarf stars from the Sloan Digital Sky Survey (SDSS). Stars with high velocities have been reobserved and individual SDSS spectra have been analysed. About 70 radial velocity variable subdwarfs have been selected as good candidates for follow-up time resolved spectroscopy to derive orbital parameters and photometric follow-up to search for features like eclipses in the light curves. Up to now we found nine close binary sdBs with short orbital periods ranging from ≃0.07 d to 1.5 d. Two of them are eclipsing binaries with companions that are most likely of substellar nature.

  4. A Binary System in the Hyades Cluster Hosting a Neptune-Sized Planet

    NASA Astrophysics Data System (ADS)

    Feinstein, Adina; Ciardi, David; Crossfield, Ian; Schlieder, Joshua; Petigura, Erik; David, Trevor J.; Bristow, Makennah; Patel, Rahul; Arnold, Lauren; Benneke, Björn; Christiansen, Jessie; Dressing, Courtney; Fulton, Benjamin; Howard, Andrew; Isaacson, Howard; Sinukoff, Evan; Thackeray, Beverly

    2018-01-01

    We report the discovery of a Neptune-size planet (Rp = 3.0Rearth) in the Hyades Cluster. The host star is in a binary system, comprising a K5V star and M7/8V star with a projected separation of 40 AU. The planet orbits the primary star with an orbital period of 17.3 days and a transit duration of 3 hours. The host star is bright (V = 11.2, J = 9.1) and so may be a good target for precise radial velocity measurements. The planet is the first Neptune-sized planet to be found orbiting in a binary system within an open cluster. The Hyades is the nearest star cluster to the Sun, has an age of 625-750 Myr, and forms one of the fundamental rungs in the distance ladder; understanding the planet population in such a well-studied cluster can help us understand and set contraints on the formation and evolution of planetary systems.

  5. Spectral energy distributions and colours of hot subluminous stars

    NASA Astrophysics Data System (ADS)

    Heber, Ulrich; Irrgang, Andreas; Schaffenroth, Johannes

    2018-02-01

    Photometric surveys at optical, ultraviolet, and infrared wavelengths provide ever-growing datasets as major surveys proceed. Colour-colour diagrams are useful tools to identify classes of star and provide large samples. However, combining all photometric measurements of a star into a spectral energy distribution will allow quantitative analyses to be carried out. We demonstrate how to construct and exploit spectral energy distributions and colours for sublumious B (sdB) stars. The aim is to identify cool companions to hot subdwarfs and to determine atmospheric parameters of apparently single sdB stars as well as composite spectrum sdB binaries.We analyse two sdB stars with high-quality photometric data which serve as our benchmarks, the apparently single sdB HD205805 and the sdB + K5 binary PG 0749+658, briefly present preliminary results for the sample of 142 sdB binaries with known orbits, and discuss future prospects from ongoing all-sky optical space- (Gaia) and ground-based (e.g. SkyMapper) as well as NIR surveys.

  6. Inferring the post-merger gravitational wave emission from binary neutron star coalescences

    NASA Astrophysics Data System (ADS)

    Chatziioannou, Katerina; Clark, James Alexander; Bauswein, Andreas; Millhouse, Margaret; Littenberg, Tyson B.; Cornish, Neil

    2017-12-01

    We present a robust method to characterize the gravitational wave emission from the remnant of a neutron star coalescence. Our approach makes only minimal assumptions about the morphology of the signal and provides a full posterior probability distribution of the underlying waveform. We apply our method on simulated data from a network of advanced ground-based detectors and demonstrate the gravitational wave signal reconstruction. We study the reconstruction quality for different binary configurations and equations of state for the colliding neutron stars. We show how our method can be used to constrain the yet-uncertain equation of state of neutron star matter. The constraints on the equation of state we derive are complementary to measurements of the tidal deformation of the colliding neutron stars during the late inspiral phase. In the case of nondetection of a post-merger signal following a binary neutron star inspiral, we show that we can place upper limits on the energy emitted.

  7. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  8. On the origin of high-velocity runaway stars

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2009-06-01

    We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100Msolar star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of >~200-400kms-1 (typical of pulsars), while 3-4Msolar stars can attain velocities of >~300-400kms-1 (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.

  9. X-ray Source Populations in Old Open Clusters - Collinder 261

    NASA Astrophysics Data System (ADS)

    Vats, Smriti

    2014-11-01

    We are carrying out an X-ray survey of old open clusters (OCs) with the Chandra X-ray Observatory. Single old stars emit very faint X-rays, making X-rays produced by mass transfer in CVs, or by rapid rotation of the stars in tidally-locked, detached binaries detectable, without contamination from single stars. By comparing properties of interacting binaries in different environments, we aim to study binary evolution, and how dynamical encounters with other cluster members affect it. Collinder (Cr) 261 is an old OC(~7Gyr), with one of the richest populations inferred, of close binary populations and blue stragglers of all OCs. We will present the first results, detailing the X-ray population of Cr 261, in conjugation with other OCs, and in comparison with populations in globular clusters.

  10. MARVELS Radial Velocity Solutions to Seven Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Heslar, Michael Francis; Thomas, Neil B.; Ge, Jian; Ma, Bo; Herczeg, Alec; Reyes, Alan; SDSS-III MARVELS Team

    2016-01-01

    Eclipsing binaries serve momentous purposes to improve the basis of understanding aspects of stellar astrophysics, such as the accurate calculation of the physical parameters of stars and the enigmatic mass-radius relationship of M and K dwarfs. We report the investigation results of 7 eclipsing binary candidates, initially identified by the Kepler mission, overlapped with the radial velocity observations from the SDSS-III Multi-Object APO Radial-Velocity Exoplanet Large-Area Survey (MARVELS). The RV extractions and spectroscopic solutions of these eclipsing binaries were generated by the University of Florida's 1D data pipeline with a median RV precision of ~60-100 m/s, which was utilized for the DR12 data release. We performed the cross-reference fitting of the MARVELS RV data and the Kepler photometric fluxes obtained from the Kepler Eclipsing Binary Catalog (V2) and modelled the 7 eclipsing binaries in the BinaryMaker3 and PHOEBE programs. This analysis accurately determined the absolute physical and orbital parameters of each binary. Most of the companion stars were determined to have masses of K and M dwarf stars (0.3-0.8 M⊙), and allowed for an investigation into the mass-radius relationship of M and K dwarfs. Among the cases are KIC 9163796, a 122.2 day period "heartbeat star", a recently-discovered class of eccentric binaries known for tidal distortions and pulsations, with a high eccentricity (e~0.75) and KIC 11244501, a 0.29 day period, contact binary with a double-lined spectrum and mass ratio (q~0.45). We also report on the possible reclassification of 2 Kepler eclipsing binary candidates as background eclipsing binaries based on the analysis of the flux measurements, flux ratios of the spectroscopic and photometric solutions, the differences in the FOVs, the image processing of Kepler, and RV and spectral analysis of MARVELS.

  11. Are neutron stars crushed? Gravitomagnetic tidal fields as a mechanism for binary-induced collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favata, Marc

    Numerical simulations of binary neutron stars by Wilson, Mathews, and Marronetti indicated that neutron stars that are stable in isolation can be made to collapse to black holes when placed in a binary. This claim was surprising as it ran counter to the Newtonian expectation that a neutron star in a binary should be more stable, not less. After correcting an error found by Flanagan, Wilson and Mathews found that the compression of the neutron stars was significantly reduced but not eliminated. This has motivated us to ask the following general question: Under what circumstances can general-relativistic tidal interactions causemore » an otherwise stable neutron star to be compressed? We have found that if a nonrotating neutron star possesses a current-quadrupole moment, interactions with a gravitomagnetic tidal field can lead to a compressive force on the star. If this current quadrupole is induced by the gravitomagnetic tidal field, it is related to the tidal field by an equation-of-state-dependent constant called the gravitomagnetic Love number. This is analogous to the Newtonian Love number that relates the strength of a Newtonian tidal field to the induced mass quadrupole moment of a star. The compressive force is almost never larger than the Newtonian tidal interaction that stabilizes the neutron star against collapse. In the case in which a current quadrupole is already present in the star (perhaps as an artifact of a numerical simulation), the compressive force can exceed the stabilizing one, leading to a net increase in the central density of the star. This increase is small (< or approx. 1%) but could, in principle, cause gravitational collapse in a star that is close to its maximum mass. This paper also reviews the history of the Wilson-Mathews-Marronetti controversy and, in an appendix, extends the discussion of tidally induced changes in the central density to rotating stars.« less

  12. Forming short-period Wolf-Rayet X-ray binaries and double black holes through stable mass transfer

    NASA Astrophysics Data System (ADS)

    van den Heuvel, E. P. J.; Portegies Zwart, S. F.; de Mink, S. E.

    2017-11-01

    We show that black hole high-mass X-ray binaries (HMXBs) with O- or B-type donor stars and relatively short orbital periods, of order one week to several months may survive spiral-in, to then form Wolf-Rayet (WR) X-ray binaries with orbital periods of order a day to a few days; while in systems where the compact star is a neutron star, HMXBs with these orbital periods never survive spiral-in. We therefore predict that WR X-ray binaries can only harbour black holes. The reason why black hole HMXBs with these orbital periods may survive spiral-in is: the combination of a radiative envelope of the donor star and a high mass of the compact star. In this case, when the donor begins to overflow its Roche lobe, the systems are able to spiral in slowly with stable Roche lobe overflow, as is shown by the system SS433. In this case, the transferred mass is ejected from the vicinity of the compact star (so-called isotropic re-emission mass-loss mode, or SS433-like mass-loss), leading to gradual spiral-in. If the mass ratio of donor and black hole is ≳3.5, these systems will go into common-envelope evolution and are less likely to survive. If they survive, they produce WR X-ray binaries with orbital periods of a few hours to one day. Several of the well-known WR+O binaries in our Galaxy and the Magellanic Clouds, with orbital periods in the range between a week and several months, are expected to evolve into close WR-black hole binaries, which may later produce close double black holes. The galactic formation rate of double black holes resulting from such systems is still uncertain, as it depends on several poorly known factors in this evolutionary picture. It might possibly be as high as ˜10-5 yr-1.

  13. Formation Timescales for High-Mass X-ray Binaries in M33

    NASA Astrophysics Data System (ADS)

    Garofali, Kristen; Williams, Benjamin F.; Hillis, Tristan; Gilbert, Karoline M.; Dolphin, Andrew E.; Eracleous, Michael; Binder, Breanna

    2018-06-01

    We have identified 55 candidate high-mass X-ray binaries (HMXBs) in M33 using available archival HST and Chandra imaging to find blue stars associated with X-ray positions. We use the HST photometric data to model the color-magnitude diagrams in the vicinity of each candidate HMXB to measure a resolved recent star formation history (SFH), and thus a formation timescale, or age for the source. Taken together, the SFHs for all candidate HMXBs in M33 yield an age distribution that suggests preferred formation timescales for HMXBs in M33 of < 5 Myr and ˜ 40 Myr after the initial star formation episode. The population at 40 Myr is seen in other Local Group galaxies, and can be attributed to a peak in formation efficiency of HMXBs with neutron stars as compact objects and B star secondary companions. This timescale is preferred as neutron stars should form in abundance from ˜ 8 M⊙ core-collapse progenitors on these timescales, and B stars are shown observationally to be most actively losing mass around this time. The young population at < 5 Myr has not be observed in other Local Group HMXB population studies, but may be attributed to a population of very massive progenitors forming black holes very early on. We discuss these results in the context of massive binary evolution, and the implications for compact object binaries and gravitational wave sources.

  14. Very Wide Binaries

    NASA Astrophysics Data System (ADS)

    Olling, Robert; Shaya, E.

    2011-01-01

    We develop Bayesian statistical methods for discovering and assigning probabilities to physical stellar companions. The probabilities depend on similarities in "corrected" proper motion, parallax, and the phase-space density of field stars. Very wide binaries with separations over 10,000 AU have recently been predicted to form during the dissolution process of low-mass star clusters. In this case, these wide systems would still carry information about the density and size of the star cluster in which they formed. Alternatively, Galactic tides and weak interactions with passing stars peel off stars from such very wide binaries in less than 1/2 of a Hubble time. In the past, these systems have been used to rule in/out MACHOs or less compact dark (matter) objects. Ours is the first all-sky survey to locate escaped companions that are still drifting along with each other, long after their binary bond has been broken. We test stars for companionship up to an apparent separation of 8 parsec: 10 to 100 times wider than previous searches. Among Hipparcos stars within 100 pc, we find about 260 systems with separations between 0.01 and 1 pc, and another 190 with separation from 1 to 8 parsec. We find a number of previously unnoticed naked-eye companions, among which: Capella & 50 Per; Alioth, Megrez & Alcor; gamma & tau Cen; phi Eri & eta Hor; 62 & 63 Cnc; gamma & tau Per; zeta & delta Hya; beta01, beta02 & beta03 Tuc; 44 & 58 Oph and pi & rho Cep. At least 15 of our candidates are exoplanet host stars.

  15. A Spectroscopic Orbit for the Late-type Be Star β CMi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulaney, Nicholas A.; Richardson, Noel D.; Gerhartz, Cody J.

    The late-type Be star β CMi is remarkably stable compared to other Be stars that have been studied. This has led to a realistic model of the outflowing Be disk by Klement et al. These results showed that the disk is likely truncated at a finite radius from the star, which Klement et al. suggest is evidence for an unseen binary companion in orbit. Here we report on an analysis of the Ritter Observatory spectroscopic archive of β CMi to search for evidence of the elusive companion. We detect periodic Doppler shifts in the wings of the H α linemore » with a period of 170 days and an amplitude of 2.25 km s{sup −1}, consistent with a low-mass binary companion ( M ≈ 0.42 M {sub ⊙}). We then compared small changes in the violet-to-red peak height changes ( V / R ) with the orbital motion. We find weak evidence that it does follow the orbital motion, as suggested by recent Be binary models by Panoglou et al. Our results, which are similar to those for several other Be stars, suggest that β CMi may be a product of binary evolution where Roche lobe overflow has spun up the current Be star, likely leaving a hot subdwarf or white dwarf in orbit around the star. Unfortunately, no direct sign of this companion star is found in the very limited archive of International Ultraviolet Explorer spectra.« less

  16. Two distinct sequences of blue straggler stars in the globular cluster M 30.

    PubMed

    Ferraro, F R; Beccari, G; Dalessandro, E; Lanzoni, B; Sills, A; Rood, R T; Pecci, F Fusi; Karakas, A I; Miocchi, P; Bovinelli, S

    2009-12-24

    Stars in globular clusters are generally believed to have all formed at the same time, early in the Galaxy's history. 'Blue stragglers' are stars massive enough that they should have evolved into white dwarfs long ago. Two possible mechanisms have been proposed for their formation: mass transfer between binary companions and stellar mergers resulting from direct collisions between two stars. Recently the binary explanation was claimed to be dominant. Here we report that there are two distinct parallel sequences of blue stragglers in M 30. This globular cluster is thought to have undergone 'core collapse', during which both the collision rate and the mass transfer activity in binary systems would have been enhanced. We suggest that the two observed sequences are a consequence of cluster core collapse, with the bluer population arising from direct stellar collisions and the redder one arising from the evolution of close binaries that are probably still experiencing an active phase of mass transfer.

  17. Stellar X-Ray Polarimetry

    NASA Technical Reports Server (NTRS)

    Swank, J.

    2011-01-01

    Most of the stellar end-state black holes, pulsars, and white dwarfs that are X-ray sources should have polarized X-ray fluxes. The degree will depend on the relative contributions of the unresolved structures. Fluxes from accretion disks and accretion disk corona may be polarized by scattering. Beams and jets may have contributions of polarized emission in strong magnetic fields. The Gravity and Extreme Magnetism Small Explorer (GEMS) will study the effects on polarization of strong gravity of black holes and strong magnetism of neutron stars. Some part of the flux from compact stars accreting from companion stars has been reflected from the companion, its wind, or accretion streams. Polarization of this component is a potential tool for studying the structure of the gas in these binary systems. Polarization due to scattering can also be present in X-ray emission from white dwarf binaries and binary normal stars such as RS CVn stars and colliding wind sources like Eta Car. Normal late type stars may have polarized flux from coronal flares. But X-ray polarization sensitivity is not at the level needed for single early type stars.

  18. Dynamics of the Triple-Star System Alpha Centauri and its Impact on Habitable Planets

    NASA Astrophysics Data System (ADS)

    Jayla Jones, Ayanna; Fabrycky, Daniel

    2018-01-01

    The Alpha Centauri system, our solar system's closest neighbor, has become a target in the search for habitable planets. The system is composed of three stars: Alpha Centauri A and Alpha Centauri B, stars forming an inner binary, and Proxima Centauri, an outer star that orbits around the inner binary. We computed 3-body models to follow the dynamics for the main-sequence lifetimes of the stars that are based on 100 realizations of the observed orbits. In the majority of cases, Proxima only modestly torques the A-B binary orbit, and so previous studies of planet formation and dynamics, which find the habitable zones to be stable, are somewhat justified in ignoring this effect. On the other hand, in ~16% of the observationally allowed orbits, fluctuations in the orbital eccentricity of the A-B orbit destabilize the middle of the habitable zone of both stars. This result calls for further theoretical work to quantify the effect of galactic tides, passing stars, and massive planets in the triple-system dynamics.

  19. The formation and gravitational-wave detection of massive stellar black hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belczynski, Krzysztof; Walczak, Marek; Buonanno, Alessandra

    2014-07-10

    If binaries consisting of two ∼100 M{sub ☉} black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by themore » recent discovery of several ≳ 150 M{sub ☉} stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.« less

  20. THE QUASI-ROCHE LOBE OVERFLOW STATE IN THE EVOLUTION OF CLOSE BINARY SYSTEMS CONTAINING A RADIO PULSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E., E-mail: adevito@fcaglp.unlp.edu.ar, E-mail: foton@iag.usp.br

    We study the evolution of close binary systems formed by a normal (solar composition), intermediate-mass-donor star together with a neutron star. We consider models including irradiation feedback and evaporation. These nonstandard ingredients deeply modify the mass-transfer stages of these binaries. While models that neglect irradiation feedback undergo continuous, long-standing mass-transfer episodes, models including these effects suffer a number of cycles of mass transfer and detachment. During mass transfer, the systems should reveal themselves as low-mass X-ray binaries (LMXBs), whereas when they are detached they behave as binary radio pulsars. We show that at these stages irradiated models are in amore » Roche lobe overflow (RLOF) state or in a quasi-RLOF state. Quasi-RLOF stars have radii slightly smaller than their Roche lobes. Remarkably, these conditions are attained for an orbital period as well as donor mass values in the range corresponding to a family of binary radio pulsars known as ''redbacks''. Thus, redback companions should be quasi-RLOF stars. We show that the characteristics of the redback system PSR J1723-2837 are accounted for by these models. In each mass-transfer cycle these systems should switch from LMXB to binary radio pulsar states with a timescale of approximately one million years. However, there is recent and fast growing evidence of systems switching on far shorter, human timescales. This should be related to instabilities in the accretion disk surrounding the neutron star and/or radio ejection, still to be included in the model having the quasi-RLOF state as a general condition.« less

  1. Detecting unresolved binary stars in Euclid VIS images

    NASA Astrophysics Data System (ADS)

    Kuntzer, T.; Courbin, F.

    2017-10-01

    Measuring a weak gravitational lensing signal to the level required by the next generation of space-based surveys demands exquisite reconstruction of the point-spread function (PSF). However, unresolved binary stars can significantly distort the PSF shape. In an effort to mitigate this bias, we aim at detecting unresolved binaries in realistic Euclid stellar populations. We tested methods in numerical experiments where (I) the PSF shape is known to Euclid requirements across the field of view; and (II) the PSF shape is unknown. We drew simulated catalogues of PSF shapes for this proof-of-concept paper. Following the Euclid survey plan, the objects were observed four times. We propose three methods to detect unresolved binary stars. The detection is based on the systematic and correlated biases between exposures of the same object. One method is a simple correlation analysis, while the two others use supervised machine-learning algorithms (random forest and artificial neural network). In both experiments, we demonstrate the ability of our methods to detect unresolved binary stars in simulated catalogues. The performance depends on the level of prior knowledge of the PSF shape and the shape measurement errors. Good detection performances are observed in both experiments. Full complexity, in terms of the images and the survey design, is not included, but key aspects of a more mature pipeline are discussed. Finding unresolved binaries in objects used for PSF reconstruction increases the quality of the PSF determination at arbitrary positions. We show, using different approaches, that we are able to detect at least binary stars that are most damaging for the PSF reconstruction process. The code corresponding to the algorithms used in this work and all scripts to reproduce the results are publicly available from a GitHub repository accessible via http://lastro.epfl.ch/software

  2. Substellar Companions to weak-line TTauri Stars

    NASA Astrophysics Data System (ADS)

    Brandner, W.; Alcala, J. M.; Covino, E.; Frink, S.

    1997-05-01

    Weak-line TTauri stars, contrary to classical TTauri stars, no longer possess massive circumstellar disks. In weak-line TTauri stars, the circumstellar matter was either accreted onto the TTauri star or has been redistributed. Disk instabilities in the outer disk might result in the formation of brown dwarfs and giant planets. Based on photometric and spectroscopic studies of ROSAT sources, we have selected an initial sample of 200 weak-line TTauri stars in the Chamaeleon T association and the Scorpius Centaurus OB association. In the course of follow-up observations we identified visual and spectroscopic binary stars and excluded them from our final list, as the complex dynamics and gravitational interaction in binary systems might aggravate or even completely inhibit the formation of planets (depending on physical separation of the binary components and their mass-ratio). The membership of individual stars to the associations was established from proper motion studies and radial velocity surveys. Our final sample consists of 70 single weak-line TTauri stars. We have initiated a program to spatially RESOLVE young brown dwarfs and young giant planets as companions to single weak-line TTauri stars using adaptive optics at the ESO 3.6m telescope and HST/NICMOS. In this poster we describe the observing strategy and present first results of our adaptive optics observations.

  3. The Impact of Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Dupuy, Trent; Mann, Andrew; Huber, Daniel

    2018-01-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion. We now update these results with multi-epoch imaging to reject non-comoving background stars and securely identify even the least massive stellar companions, as well as tracing out the orbital motion of stellar companions. These results are beginning to reveal not just the fraction of binaries that do not host planets, but also potential explanations for planet survival even in some very close, dynamically active binary systems.

  4. Using White Dwarf Companions of Blue Stragglers to Constrain Mass Transfer Physics

    NASA Astrophysics Data System (ADS)

    Gosnell, Natalie M.; Leiner, Emily; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leigh, Nathan

    2018-06-01

    Complete membership studies of old open clusters reveal that 25% of the evolved stars follow pathways in stellar evolution that are impacted by binary evolution. Recent studies show that the majority of blue straggler stars, traditionally defined to be stars brighter and bluer than the corresponding main sequence turnoff, are formed through mass transfer from a giant star onto a main sequence companion, resulting in a white dwarf in a binary system with a blue straggler. We will present constraints on the histories and mass transfer efficiencies for two blue straggler-white dwarf binaries in open cluster NGC 188. The constraints are a result of measuring white dwarf cooling temperatures and surface gravities with HST COS far-ultraviolet spectroscopy. This information sets both the timeline for mass transfer and the stellar masses in the pre-mass transfer binary, allowing us to constrain aspects of the mass transfer physics. One system is formed through Case C mass transfer, leaving a CO-core white dwarf, and provides an interesting test case for mass transfer from an asymptotic giant branch star in an eccentric system. The other system formed through Case B mass transfer, leaving a He-core white dwarf, and challenges our current understanding of the expected regimes for stable mass transfer from red giant branch stars.

  5. Gravitational Conundrum? Dynamical Mass Segregation versus Disruption of Binary Stars in Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan; Zheng, Yong; Deng, Licai; Hu, Yi; Kouwenhoven, M. B. N.; Wicker, James E.

    2013-03-01

    Upon their formation, dynamically cool (collapsing) star clusters will, within only a few million years, achieve stellar mass segregation for stars down to a few solar masses, simply because of gravitational two-body encounters. Since binary systems are, on average, more massive than single stars, one would expect them to also rapidly mass segregate dynamically. Contrary to these expectations and based on high-resolution Hubble Space Telescope observations, we show that the compact, 15-30 Myr old Large Magellanic Cloud cluster NGC 1818 exhibits tantalizing hints at the >~ 2σ level of significance (>3σ if we assume a power-law secondary-to-primary mass-ratio distribution) of an increasing fraction of F-star binary systems (with combined masses of 1.3-1.6 M ⊙) with increasing distance from the cluster center, specifically between the inner 10''-20'' (approximately equivalent to the cluster's core and half-mass radii) and the outer 60''-80''. If confirmed, then this will offer support for the theoretically predicted but thus far unobserved dynamical disruption processes of the significant population of "soft" binary systems—with relatively low binding energies compared to the kinetic energy of their stellar members—in star clusters, which we have access to here by virtue of the cluster's unique combination of youth and high stellar density.

  6. Multiplicity At Early Stages Of Star Formation, Small Clusters. Observations Overview

    NASA Astrophysics Data System (ADS)

    Saito, Masao

    2017-07-01

    The SOLA (Soul of Lupus with ALMA) project is conducting comprehensive studies of the Lupus Molecular Clouds and their star formation processes covering 10-10^4 AU scale. Our goal is to exploit ALMA and other facilities over a wide wavelength range to establish a prototypical low-mass star forming scenario based on the Lupus region. In the presentation, we will focus on angular momentum in dense cores in a filament, molecular outflows from young stars, and Class 0/I binary survey in Lupus as well as overview of our projects. Our binary survey was conducted in ALMA cycle 2 and achieved at 0.2-0.3 arcsec resolution discovering new binary systems in Lupus. At the same time, we obtained EX Lup, EXor type burst source, data in ALMA Cycle 3.

  7. Multiplicity at Early Stages of Star Formation, Small Clusters. Observations Overview

    NASA Astrophysics Data System (ADS)

    Saito, Masao

    2017-06-01

    The SOLA (Soul of Lupus with ALMA) project is conducting comprehensive studies of the Lupus Molecular Clouds and their star formation processes covering 10-10^4 AU scale. Our goal is to exploit ALMA and other facilities over a wide wavelength range to establish a prototypical low-mass star forming scenario based on the Lupus region. In the presentation, we will focus on angular momentum in dense cores in a filament, molecular outflows from young stars, and Class 0/I binary survey in Lupus as well as overview of our projects. Our binary survey was conducted in ALMA cycle 2 and achieved at 0.2-0.3 arcsec resolution discovering new binary systems in Lupus. At the same time, we obtained EX Lup, EXor type burst source, data in ALMA Cycle 3.

  8. Double core evolution. 7: The infall of a neutron star through the envelope of its massive star companion

    NASA Technical Reports Server (NTRS)

    Terman, James L.; Taam, Ronald E.; Hernquist, Lars

    1995-01-01

    Binary systems with properties similar to those of high-mass X-ray binaries are evolved through the common envelope phase. Three-dimensional simulations show that the timescale of the infall phase of the neutron star depends upon the evolutionary state of its massive companion. We find that tidal torques more effectively accelerate common envelope evolution for companions in their late core helium-burning stage and that the infall phase is rapid (approximately several initial orbital periods). For less evolved companions the decay of the orbit is longer; however, once the neutron star is deeply embedded within the companion's envelope the timescale for orbital decay decreases rapidly. As the neutron star encounters the high-density region surrounding the helium core of its massive companion, the rate of energy loss from the orbit increases dramatically leading to either partial or nearly total envelope ejection. The outcome of the common envelope phase depends upon the structure of the evolved companion. In particular, it is found that the entire common envelope can be ejected by the interaction of the neutron star with a red supergiant companion in binaries with orbital periods similar to those of long-period Be X-ray binaries. For orbital periods greater than or approximately equal to 0.8-2 yr (for companions of mass 12-24 solar mass) it is likely that a binary will survive the common envelope phase. For these systems, the structure of the progenitor star is characterized by a steep density gradient above the helium core, and the common envelope phase ends with a spin up of the envelope to within 50%-60% of corotation and with a slow mass outflow. The efficiency of mass ejection is found to be approximately 30%-40%. For less evolved companions, there is insufficient energy in the orbit to unbind the common envelope and only a fraction of it is ejected. Since the timescale for orbital decay is always shorter than the mass-loss timescale from the common envelope, the two cores will likely merge to form a Thorne-Zytkow object. Implications for the origin of Cyg X-3, an X-ray source consisting of a Wolf-Rayet star and a compact companion, and for the fate of the remnant binary consisting of a helium star and a neutron star are briefly discussed.

  9. A connection between long-term luminosity variations and orbital period changes in chromospherically active binaries

    NASA Technical Reports Server (NTRS)

    Hall, Douglas S.

    1991-01-01

    The eclipsing binary CG Cyg provides observational confirmation of three predictions made by Applegate's (1991) improvement on the theory that magnetic cycles cause the quasi-periodic orbital period changes in binaries containing a convective star. The mean brightness outside eclipse and the period vary with the same cycle length of about 50 yr. The light curve and O - C curve are in phase, with maximum light and period increase occurring in early 1980. The chromospherically active star becomes bluer in phase with the brightening. Because a period increase occurs at maximum brightness, the sense of the star's differential rotation is specified: outside rotating faster.

  10. Study of Pulsations in the Atmosphere of the roAp star HD 137949

    NASA Astrophysics Data System (ADS)

    Sachkov, M.; Hareter, M.; Ryabchikova, T.; Wade, G.; Kochukhov, O.; Weiss, W. W.

    The roAp star HD 137949 (33 Lib) shows the most complex pulsational behaviour among all roAp stars. Mkrtichian et al. (2003) found nearly anti-phase pulsations of Nd II and Nd III lines, which they attribute to the presence of a pulsation node high in the atmosphere of HD 137949. This was confirmed by Kurtz at al. (2005), who also find that in some REE lines the main frequency, corresponding to 8.27 min, and its harmonic have almost equal RV amplitudes. Based on high accuracy observations Ryabchikova et al. (2007a) studied pulsational characteristics of the HD 137949 atmosphere in detail. In general, spectroscopy provides 3D resolution of modes and allows to search for the photometrically undetectable frequencies. The high-accuracy space photometry provides very high-precision measurements of detected pulsation frequencies and enables an accurate phasing of multi-site spectroscopic data. A combination of simultaneous spectroscopy and photometry represents the most sophisticated asteroseismic dataset for any roAp star. In 2009 the star HD 137949 became a target of an intense observing campaign that combined ground-based spectroscopy with space photometry, obtained with the MOST satellite. We collected 780 spectra using the ESPaDOnS spectrograph mounted on the 3.6 m CFHT telescope; 374 spectra were obtained with the FIES spectrograph mounted on the 2.56-m NOT to perform the time-resolved spectroscopy of HD 137949. In addition, we used 111 UVES spectra (2004) from the ESO archive to check the mode stability. The frequency analysis of the new radial velocity (RV) measurements confirmed the previously reported frequency pattern (two frequencies and the first harmonic of the main frequency), and revealed an additional frequency at 1.991 mHz. The new frequency solution fits perfectly the RV variations from the 2004 and 2009 observational sets providing a strong support for the p-mode stability in the roAp star HD 137949 for at least 5 years.

  11. Autonomous star tracker based on active pixel sensors (APS)

    NASA Astrophysics Data System (ADS)

    Schmidt, U.

    2017-11-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  12. Accretion dynamics in pre-main sequence binaries

    NASA Astrophysics Data System (ADS)

    Tofflemire, B.; Mathieu, R.; Herczeg, G.; Ardila, D.; Akeson, R.; Ciardi, D.; Johns-Krull, C.

    Binary stars are a common outcome of star formation. Orbital resonances, especially in short-period systems, are capable of reshaping the distribution and flows of circumstellar material. Simulations of the binary-disk interaction predict a dynamically cleared gap around the central binary, accompanied by periodic ``pulsed'' accretion events that are driven by orbital motion. To place observational constraints on the binary-disk interaction, we have conducted a long-term monitoring program tracing the time-variable accretion behavior of 9 short-period binaries. In this proceeding we present two results from our campaign: 1) the detection of periodic pulsed accretion events in DQ Tau and TWA 3A, and 2) evidence that the TWA 3A primary is the dominant accretor in the system.

  13. Measuring Close Binary Stars with Speckle Interferometry

    DTIC Science & Technology

    2014-09-01

    extra effort to be measured. One method of observing such binary star systems is to use adaptive optics to correct the atmospheric blur in real-time...simplicity, and with no loss in generalization, this analysis will be reduced to one dimension . From equation (4), it can be seen that the frequency (u...the binary pair are systematically too large , due to the displacement of the minima of the fringes by the atmospheric OTF, when left uncorrected

  14. A Photometric Study of the Eclipsing Binary Star PY Boötis

    NASA Astrophysics Data System (ADS)

    Michaels, E. J.

    2016-12-01

    Presented here are the first precision multi-band CCD photometry of the eclipsing binary star PY Boötis. Best-fit stellar models were determined by analyzing the light curves with the Wilson-Devinney program. Asymmetries in the light curves were interpreted as resulting from magnetic activity which required spots to be included in the model. The resulting model is consistent with a W-type contact eclipsing binary having total eclipses.

  15. MULTIWAVELENGTH OBSERVATIONS OF THE RUNAWAY BINARY HD 15137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McSwain, M. Virginia; Aragona, Christina; Marsh, Amber N.

    2010-03-15

    HD 15137 is an intriguing runaway O-type binary system that offers a rare opportunity to explore the mechanism by which it was ejected from the open cluster of its birth. Here, we present recent blue optical spectra of HD 15137 and derive a new orbital solution for the spectroscopic binary and physical parameters of the O star primary. We also present the first XMM-Newton observations of the system. Fits of the EPIC spectra indicate soft, thermal X-ray emission consistent with an isolated O star. Upper limits on the undetected hard X-ray emission place limits on the emission from a proposedmore » compact companion in the system, and we rule out a quiescent neutron star (NS) in the propeller regime or a weakly accreting NS. An unevolved secondary companion is also not detected in our optical spectra of the binary, and it is difficult to conclude that a gravitational interaction could have ejected this runaway binary with a low mass optical star. HD 15137 may contain an elusive NS in the ejector regime or a quiescent black hole with conditions unfavorable for accretion at the time of our observations.« less

  16. On the period determination of ASAS eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Mayangsari, L.; Priyatikanto, R.; Putra, M.

    2014-03-01

    Variable stars, or particularly eclipsing binaries, are very essential astronomical occurrence. Surveys are the backbone of astronomy, and many discoveries of variable stars are the results of surveys. All-Sky Automated Survey (ASAS) is one of the observing projects whose ultimate goal is photometric monitoring of variable stars. Since its first light in 1997, ASAS has collected 50,099 variable stars, with 11,076 eclipsing binaries among them. In the present work we focus on the period determination of the eclipsing binaries. Since the number of data points in each ASAS eclipsing binary light curve is sparse, period determination of any system is a not straightforward process. For 30 samples of such systems we compare the implementation of Lomb-Scargle algorithm which is an Fast Fourier Transform (FFT) basis and Phase Dispersion Minimization (PDM) method which is non-FFT basis to determine their period. It is demonstrated that PDM gives better performance at handling eclipsing detached (ED) systems whose variability are non-sinusoidal. More over, using semi-automatic recipes, we get better period solution and satisfactorily improve 53% of the selected object's light curves, but failed against another 7% of selected objects. In addition, we also highlight 4 interesting objects for further investigation.

  17. Efficient common-envelope ejection through dust-driven winds

    NASA Astrophysics Data System (ADS)

    Glanz, Hila; Perets, Hagai B.

    2018-04-01

    Common-envelope evolution (CEE) is the short-lived phase in the life of an interacting binary-system during which two stars orbit inside a single shared envelope. Such evolution is thought to lead to the inspiral of the binary, the ejection of the extended envelope and the formation of a remnant short-period binary. However, detailed hydrodynamical models of CEE encounter major difficulties. They show that following the inspiral most of the envelope is not ejected; though it expands to larger separations, it remains bound to the binary. Here we propose that dust-driven winds can be produced following the CEE. These can evaporate the envelope following similar processes operating in the ejection of the envelopes of AGB stars. Pulsations in an AGB-star drives the expansion of its envelope, allowing the material to cool down to low temperatures thus enabling dust condensation. Radiation pressure on the dust accelerates it, and through its coupling to the gas it drives winds which eventually completely erode the envelope. We show that the inspiral phase in CE-binaries can effectively replace the role of stellar pulsation and drive the CE expansion to scales comparable with those of AGB stars, and give rise to efficient mass-loss through dust-driven winds.

  18. The Clusters AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster NGC 6362

    NASA Astrophysics Data System (ADS)

    Kaluzny, J.; Thompson, I. B.; Rozyczka, M.; Pych, W.; Narloch, W.

    2014-12-01

    The field of the globular cluster NGC 6362 was monitored between 1995 and 2009 in a search for variable stars. BV light curves were obtained for 69 periodic variable stars including 34 known RR Lyr stars, 10 known objects of other types and 25 newly detected variable stars. Among the latter we identified 18 proper-motion members of the cluster: seven detached eclipsing binaries (DEBs), six SX Phe stars, two W UMa binaries, two spotted red giants, and a very interesting eclipsing binary composed of two red giants - the first example of such a system found in a globular cluster. Five of the DEBs are located at the turnoff region, and the remaining two are redward of the lower main sequence. Eighty-four objects from the central 9×9 arcmin2 of the cluster were found in the region of cluster blue stragglers. Of these 70 are proper motion (PM) members of NGC 6362 (including all SX Phe and two W UMa stars), and five are field stars. The remaining nine objects lacking PM information are located at the very core of the cluster, and as such they are likely genuine blue stragglers.

  19. Infrared Detection of Very Low Mass Stars.

    NASA Astrophysics Data System (ADS)

    Probst, Ronald George

    We present in this thesis a review of very-low -mass ((TURN)0.1 M(,0)) star research, and results of two observational programs directed at the photometric detection of low mass binary companions in the infrared. Present theoretical desiderata are model atmospheres for very cool dwarf stars and determination of the minimum protostellar mass with all relevant physics included. Luminosities for these stars are well determined, but the effective temperature scale is uncertain and abundance analyses are lacking. Masses are known for very few, and with large relative errors. The luminosity function for M(,v) > 13 is very uncertain. Astrometric methods provide at present the only means of detecting very low mass objects in significant numbers. Completion of the near-star parallax catalogue and measurement of additional low-mass binaries are important observational programs. The potential of photometric selection of red dwarf binaries is explored in Chapter II. Separation of binaries from single stars by color anomalies alone is found impractical. Detection by overluminosity in the HR diagram is hampered by the intrinsic spread of the field star population. However, we find that application of both kinematic and photometric criteria allows binaries to be detected with only moderate contamination by single stars; we discuss several binary suspects selected in this way. Our approach uses an infrared bandpass to provide temperature resolution in the color baseline, and we present JHK photometry for 60 stars, including recent parallax stars with M(,v)>14. We examine the status of the least luminous stars; there is no conclusive evidence that they are not hydrogen-burning objects. Chapter III presents a survey of (TURN)100 white dwarfs at 2 (mu) for infrared excess indicative of low -luminosity cool companions. White dwarf-red dwarf composites are detectable by infared color anomalies down to M(,v)(TURN)21 for the red dwarf component, and our survey is complete to absolute magnitudes on this level. Candidates for astrometric mass determination are suggested. Several stars are found to be composites containing an accretion disk or a hot subdwarf + dK secondary. We find very few new low-luminosity companions to normal white dwarfs. This does not appear to be a selection effect, nor is there reason to believe that all parent systems have been altered or destroyed in the mass loss phase. Our strongly negative result constrains the luminosity function for red dwarf companions to decline steeply past M(,v) (DBLTURN) 13. This may reflect a general decline in the initial mass function for star formation, or a failure of systems with large mass ratios to form or remain bound in the parent star-forming regions.

  20. Hot Subluminous Stars

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2016-08-01

    Hot subluminous stars of spectral type B and O are core helium-burning stars at the blue end of the horizontal branch or have evolved even beyond that stage. Most hot subdwarf stars are chemically highly peculiar and provide a laboratory to study diffusion processes that cause these anomalies. The most obvious anomaly lies with helium, which may be a trace element in the atmosphere of some stars (sdB, sdO) while it may be the dominant species in others (He-sdB, He-sdO). Strikingly, the distribution in the Hertzsprung-Russell diagram of He-rich versus He-poor hot subdwarf stars of the globular clusters ω Cen and NGC 2808 differ from that of their field counterparts. The metal-abundance patterns of hot subdwarfs are typically characterized by strong deficiencies of some lighter elements as well as large enrichments of heavy elements. A large fraction of sdB stars are found in close binaries with white dwarf or very low-mass main sequence companions, which must have gone through a common-envelope (CE) phase of evolution. Because the binaries are detached they provide a clean-cut laboratory to study this important but yet poorly understood phase of stellar evolution. Hot subdwarf binaries with sufficiently massive white dwarf companions are viable candidate progenitors of type Ia supernovae both in the double degenerate as well as in the single degenerate scenario as helium donors for double detonation supernovae. The hyper-velocity He-sdO star US 708 may be the surviving donor of such a double detonation supernova. Substellar companions to sdB stars have also been found. For HW Vir systems the companion mass distribution extends from the stellar into the brown dwarf regime. A giant planet to the acoustic-mode pulsator V391 Peg was the first discovery of a planet that survived the red giant evolution of its host star. Evidence for Earth-size planets to two pulsating sdB stars have been reported and circumbinary giant planets or brown dwarfs have been found around HW Vir systems from eclipse timings. The high incidence of circumbinary substellar objects suggests that most of the planets are formed from the remaining CE material (second generation planets). Several types of pulsating star have been discovered among hot subdwarf stars, the most common are the gravity-mode sdB pulsators (V1093 Her) and their hotter siblings, the p-mode pulsating V361 Hya stars. Another class of multi-periodic pulsating hot subdwarfs has been found in the globular cluster ω Cen that is unmatched by any field star. Asteroseismology has advanced enormously thanks to the high-precision Kepler photometry and allowed stellar rotation rates to be determined, the interior structure of gravity-mode pulsators to be probed and stellar ages to be estimated. Rotation rates turned out to be unexpectedly slow calling for very efficient angular momentum loss on the red giant branch or during the helium core flash. The convective cores were found to be larger than predicted by standard stellar evolution models requiring very efficient angular momentum transport on the red giant branch. The masses of hot subdwarf stars, both single or in binaries, are the key to understand the stars’ evolution. A few pulsating sdB stars in eclipsing binaries have been found that allow both techniques to be applied for mass determination. The results, though few, are in good agreement with predictions from binary population synthesis calculations. New classes of binaries, hosting so-called extremely low mass (ELM) white dwarfs (M < 0.3 M ⊙), have recently been discovered, filling a gap in the mosaic of binary stellar evolution. Like most sdB stars the ELM white dwarfs are the stripped cores of red giants, the known companions are either white dwarfs, neutron stars (pulsars) or F- or A-type main sequence stars (“EL CVn” stars). In the near future, the Gaia mission will provide high-precision astrometry for a large sample of subdwarf stars to disentangle the different stellar populations in the field and to compare the field subdwarf population with the globular clusters’ hot subdwarfs. New fast-moving subdwarfs will allow the mass of the Galactic dark matter halo to be constrained and additional unbound hyper-velocity stars may be discovered. Subdwarf O/B stars and extremely low mass white dwarfs: atmospheric parameters and abundances, formation and evolution, binaries, planetary companions, pulsation, and kinematics.

  1. Constraints on the Progenitor System of SN 2016gkg from a Comprehensive Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Sravan, Niharika; Marchant, Pablo; Kalogera, Vassiliki; Margutti, Raffaella

    2018-01-01

    Type IIb supernovae (SNe) present a unique opportunity for understanding the progenitors of stripped-envelope SNe because the stellar progenitor of several SNe IIb have been identified in pre-explosion images. In this paper, we use Bayesian inference and a large grid of non-rotating solar-metallicity single and binary stellar models to derive the associated probability distributions of single and binary progenitors of the SN IIb 2016gkg using existing observational constraints. We find that potential binary star progenitors have smaller pre-SN hydrogen-envelope and helium-core masses than potential single-star progenitors typically by 0.1 M ⊙ and 2 M ⊙, respectively. We find that, a binary companion, if present, is a main-sequence or red-giant star. Apart from this, we do not find strong constraints on the nature of the companion star. We demonstrate that the range of progenitor helium-core mass inferred from observations could help improve constraints on the progenitor. We find that the probability that the progenitor of SN 2016gkg was a binary is 22% when we use constraints only on the progenitor luminosity and effective temperature. Imposing the range of pre-SN progenitor hydrogen-envelope mass and radius inferred from SN light curves, the probability that the progenitor is a binary increases to 44%. However, there is no clear preference for a binary progenitor. This is in contrast to binaries being the currently favored formation channel for SNe IIb. Our analysis demonstrates the importance of statistical inference methods to constrain progenitor channels.

  2. Wide binaries in Tycho-Gaia II: metallicities, abundances and prospects for chemical tagging

    NASA Astrophysics Data System (ADS)

    Andrews, Jeff J.; Chanamé, Julio; Agüeros, Marcel A.

    2018-02-01

    From our recent catalogue based on the first Gaia data release (TGAS), we select wide binaries in which both stars have been observed by the Radial Velocity Experiment (RAVE) or the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Using RAVE and LAMOST metallicities and RAVE Mg, Al, Si, Ti and Fe abundances, we find that the differences in the metallicities and elemental abundances of components of wide binaries are consistent with being due to observational uncertainties, in agreement with previous results for smaller and more restricted samples. The metallicity and elemental abundance consistency between wide binary components presented in this work confirms their common origin and bolsters the status of wide binaries as 'mini-open clusters'. Furthermore, this is evident that wide binaries are effectively co-eval and co-chemical, supporting their use for, e.g. constraining age-activity-rotation relations, the initial-final mass relation for white dwarfs and M-dwarf metallicity indicators. Additionally, we demonstrate that the common proper motion, common parallax pairs in TGAS with the most extreme separations (s ≳ 0.1 pc) typically have inconsistent metallicities, radial velocities or both and are therefore likely to be predominantly comprised of random alignments of unassociated stars with similar astrometry, in agreement with our previous results. Finally, we propose that wide binaries form an ideal data set with which we can test chemical tagging as a method to identify stars of common origin, particularly because the stars in wide binaries span a wide range of metallicities, much wider than that spanned by nearby open clusters.

  3. CHARACTERIZING THE BROWN DWARF FORMATION CHANNELS FROM THE INITIAL MASS FUNCTION AND BINARY-STAR DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thies, Ingo; Pflamm-Altenburg, Jan; Kroupa, Pavel

    2015-02-10

    The stellar initial mass function (IMF) is a key property of stellar populations. There is growing evidence that the classical star-formation mechanism by the direct cloud fragmentation process has difficulties reproducing the observed abundance and binary properties of brown dwarfs and very-low-mass stars. In particular, recent analytical derivations of the stellar IMF exhibit a deficit of brown dwarfs compared to observational data. Here we derive the residual mass function of brown dwarfs as an empirical measure of the brown dwarf deficiency in recent star-formation models with respect to observations and show that it is compatible with the substellar part ofmore » the Thies-Kroupa IMF and the mass function obtained by numerical simulations. We conclude that the existing models may be further improved by including a substellar correction term that accounts for additional formation channels like disk or filament fragmentation. The term ''peripheral fragmentation'' is introduced here for such additional formation channels. In addition, we present an updated analytical model of stellar and substellar binarity. The resulting binary fraction and the dynamically evolved companion mass-ratio distribution are in good agreement with observational data on stellar and very-low-mass binaries in the Galactic field, in clusters, and in dynamically unprocessed groups of stars if all stars form as binaries with stellar companions. Cautionary notes are given on the proper analysis of mass functions and the companion mass-ratio distribution and the interpretation of the results. The existence of accretion disks around young brown dwarfs does not imply that these form just like stars in direct fragmentation.« less

  4. HD 66051: the first eclipsing binary hosting an early-type magnetic star

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.

    2018-05-01

    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.

  5. Spectral Line Polarisation Atlases for 53 Cam (A4p) and alpha 2 CVn (A0p)

    NASA Astrophysics Data System (ADS)

    Wade, G. A.

    2002-08-01

    Wade, Donati & Landstreet (2000) presented a atlas of the R=35,000 Stokes IQUV spectrum of the cool magnetic Ap star beta CrB in the spectral range 450-660 nm. In this report we present analogous atlases for the well-studied magnetic Ap stars 53 Cam (HD 65339, A4p) and alpha 2 CVn (HD 112413, A0p).

  6. Constraining Accreting Binary Populations in Normal Galaxies

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret; Hornschemeier, A.; Basu-Zych, A.; Fragos, T.; Jenkins, L.; Kalogera, V.; Ptak, A.; Tzanavaris, P.; Zezas, A.

    2011-01-01

    X-ray emission from accreting binary systems (X-ray binaries) uniquely probe the binary phase of stellar evolution and the formation of compact objects such as neutron stars and black holes. A detailed understanding of X-ray binary systems is needed to provide physical insight into the formation and evolution of the stars involved, as well as the demographics of interesting binary remnants, such as millisecond pulsars and gravitational wave sources. Our program makes wide use of Chandra observations and complementary multiwavelength data sets (through, e.g., the Spitzer Infrared Nearby Galaxies Survey [SINGS] and the Great Observatories Origins Deep Survey [GOODS]), as well as super-computing facilities, to provide: (1) improved calibrations for correlations between X-ray binary emission and physical properties (e.g., star-formation rate and stellar mass) for galaxies in the local Universe; (2) new physical constraints on accreting binary processes (e.g., common-envelope phase and mass transfer) through the fitting of X-ray binary synthesis models to observed local galaxy X-ray binary luminosity functions; (3) observational and model constraints on the X-ray evolution of normal galaxies over the last 90% of cosmic history (since z 4) from the Chandra Deep Field surveys and accreting binary synthesis models; and (4) predictions for deeper observations from forthcoming generations of X-ray telesopes (e.g., IXO, WFXT, and Gen-X) to provide a science driver for these missions. In this talk, we highlight the details of our program and discuss recent results.

  7. Galaxy Rotation and Rapid Supermassive Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-09-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  8. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood, E-mail: k.holley@vanderbilt.edu

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolutionmore » in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.« less

  9. Searching Ultra-compact Pulsar Binaries with Abnormal Timing Behavior

    NASA Astrophysics Data System (ADS)

    Gong, B. P.; Li, Y. P.; Yuan, J. P.; Tian, J.; Zhang, Y. Y.; Li, D.; Jiang, B.; Li, X. D.; Wang, H. G.; Zou, Y. C.; Shao, L. J.

    2018-03-01

    Ultra-compact pulsar binaries are both ideal sources of gravitational radiation for gravitational wave detectors and laboratories for fundamental physics. However, the shortest orbital period of all radio pulsar binaries is currently 1.6 hr. The absence of pulsar binaries with a shorter orbital period is most likely due to technique limit. This paper points out that a tidal effect occurring on pulsar binaries with a short orbital period can perturb the orbital elements and result in a significant change in orbital modulation, which dramatically reduces the sensitivity of the acceleration searching that is widely used. Here a new search is proposed. The abnormal timing residual exhibited in a single pulse observation is simulated by a tidal effect occurring on an ultra-compact binary. The reproduction of the main features represented by the sharp peaks displayed in the abnormal timing behavior suggests that pulsars like PSR B0919+06 could be a candidate for an ultra-compact binary of an orbital period of ∼10 minutes and a companion star of a white dwarf star. The binary nature of such a candidate is further tested by (1) comparing the predicted long-term binary effect with decades of timing noise observed and (2) observing the optical counterpart of the expected companion star. Test (1) likely supports our model, while more observations are needed in test (2). Some interesting ultra-compact binaries could be found in the near future by applying such a new approach to other binary candidates.

  10. The Maui International Double Star Conference

    NASA Astrophysics Data System (ADS)

    Genet, Russell

    2013-04-01

    A three-day double star conference in February, 2013, covered double star observations from simple eyepiece astrometry of wide binaries, with orbital periods of centuries, to amplitude interferometry of binaries with periods measured in days or even hours. A wide range of participants, from students and amateurs to professionals shared their perspectives in panel discussions. This was the first conference of the newly-formed International Association of Double Star Observers (IADSO). PDFs of 22 of the talks and YouTube links to 23 of the talks and panels are available at www.IADSO.org.

  11. A Search for Variable Stars in Ruprecht 134 (Abstract)

    NASA Astrophysics Data System (ADS)

    El Hamri, R.; Blake, M.

    2018-06-01

    (Abstract only) Contact binary stars have been found in many old open clusters. These stars are useful for obtaining the distances to these star clusters and for understanding the stellar populations and evolution of the old clusters. Ruprecht 134 is a relatively neglected, old open cluster with an age of about 1 Gyr. We have obtained observations of Ruprecht 134 using the 1-meter telescope at Cerro Tololo Interamerican Observatory for the purpose of identifying candidate contact binaries. We present the preliminary results of this search and discuss future observations.

  12. A white dwarf companion to the main-sequence star 4 Omicron(1) Orionis and the binary hypothesis for the origin of peculiar red giants

    NASA Technical Reports Server (NTRS)

    Ake, Thomas B.; Johnson, Hollis R.

    1988-01-01

    Ultraviolet spectra of the peculiar red giants (PRGs) called MS stars are investigated, and the discovery of a white dwarf (WD) companion to the MS star 4 Omicron(1) Orionis is reported. The observations and data analysis are discussed and compared with those for field WDs in order to derive parameters for the WD and the luminosity of the primary. Detection limits for the other MS stars investigated are derived, and the binary hypothesis for PRGs is reviewed.

  13. Eclipsing Binaries in Open Clusters

    NASA Astrophysics Data System (ADS)

    Southworth, John; Clausen, Jens Viggo

    2006-08-01

    The study of detached eclipsing binaries in open clusters can provide stringent tests of theoretical stellar evolutionary models, which must simultaneously fit the masses, radii, and luminosities of the eclipsing stars and the radiative properties of every other star in the cluster. We review recent progress in such studies and discuss two unusually interesting objects currently under analysis. GV Carinae is an A0 m + A8 m binary in the Southern open cluster NGC 3532; its eclipse depths have changed by 0.1 mag between 1990 and 2001, suggesting that its orbit is being perturbed by a relatively close third body. DW Carinae is a high-mass unevolved B1 V + B1 V binary in the very young open cluster Collinder 228, and displays double-peaked emission in the centre of the Hα line which is characteristic of Be stars. We conclude by pointing out that the great promise of eclipsing binaries in open clusters can only be satisfied when both the binaries and their parent clusters are well-observed, a situation which is less common than we would like.

  14. Discovery of a 3.6-hr Eclipsing Luminous X-Ray Binary in the Galaxy NGC 4214

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Rappaport, Saul; Tennant, Allyn F.; Swartz, Douglas A.; Pooley, David; Madhusudhan, N.

    2006-01-01

    We report the discovery of an eclipsing X-ray binary with a 3.62-hr period within 24 arcsec of the center of the dwarf starburst galaxy NGC 4214. The orbital period places interesting constraints on the nature of the binary, and allows for a few very different interpretations. The most likely possibility is that the source lies within NGC 4214 and has an X-ray luminosity of up to 7e38. In this case the binary may well be comprised of a naked He-burning donor star with a neutron-star accretor, though a stellar-mass black-hole accretor cannot be completely excluded. There is no obvious evidence for a strong stellar wind in the X-ray orbital light curve that would be expected from a massive He star; thus, the mass of the He star should be <3-4 solar masses. If correct, this would represent a new class of very luminous X-ray binary----perhaps related to Cyg X-3. Other less likely possibilities include a conventional low-mass X-ray binary that somehow manages to produce such a high X-ray luminosity and is apparently persistent over an interval of years; or a foreground AM Her binary of much lower luminosity that fortuitously lies in the direction of NGC 4214. Any model for this system must accommodate the lack of an optical counterpart down to a limiting magnitude of 22.6 in the visible.

  15. Gravitational interactions of stars with supermassive black hole binaries. I. Tidal disruption events

    NASA Astrophysics Data System (ADS)

    Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot

    2018-04-01

    Stars approaching supermassive black holes (SMBHs) in the centers of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the "frozen-in" approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2 - 7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the "frozen-in" model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly ˜18 - 40% of disruptions will have short rise times (trise ˜ 1 - 10 d) and highly super-Eddington peak return rates (\\dot{M}_{peak} / \\dot{M}_{Edd} ˜ 2 × 10^2 - 3 × 10^3).

  16. Orbital Characteristics of the Subdwarf-B and F V Star Binary EC 20117-4014 (=V4640 Sgr)

    NASA Astrophysics Data System (ADS)

    Otani, T.; Oswalt, T. D.; Lynas-Gray, A. E.; Kilkenny, D.; Koen, C.; Amaral, M.; Jordan, R.

    2018-06-01

    Among the competing evolution theories for subdwarf-B (sdB) stars is the binary evolution scenario. EC 20117-4014 (=V4640 Sgr) is a spectroscopic binary system consisting of a pulsating sdB star and a late F main-sequence companion; however, the period and the orbit semimajor axes have not been precisely determined. This paper presents orbital characteristics of the EC 20117-4014 binary system using 20 years of photometric data. Periodic observed minus calculated (O–C) variations were detected in the two highest-amplitude pulsations identified in the EC 20117-4014 power spectrum, indicating the binary system’s precise orbital period (P = 792.3 days) and the light-travel-time amplitude (A = 468.9 s). This binary shows no significant orbital eccentricity, and the upper limit of the eccentricity is 0.025 (using 3σ as an upper limit). This upper limit of the eccentricity is the lowest among all wide sdB binaries with known orbital parameters. This analysis indicated that the sdB is likely to have lost its hydrogen envelope through stable Roche lobe overflow, thus supporting hypotheses for the origin of sdB stars. In addition to those results, the underlying pulsation period change obtained from the photometric data was \\dot{P} = 5.4 (±0.7) × 10‑14 d d‑1, which shows that the sdB is just before the end of the core helium-burning phase.

  17. The massive star binary fraction in young open clusters - II. NGC6611 (Eagle Nebula)

    NASA Astrophysics Data System (ADS)

    Sana, H.; Gosset, E.; Evans, C. J.

    2009-12-01

    Based on a set of over 100 medium- to high-resolution optical spectra collected from 2003 to 2009, we investigate the properties of the O-type star population in NGC6611 in the core of the Eagle Nebula (M16). Using a much more extended data set than previously available, we revise the spectral classification and multiplicity status of the nine O-type stars in our sample. We confirm two suspected binaries and derive the first SB2 orbital solutions for two systems. We further report that two other objects are displaying a composite spectrum, suggesting possible long-period binaries. Our analysis is supported by a set of Monte Carlo simulations, allowing us to estimate the detection biases of our campaign and showing that the latter do not affect our conclusions. The absolute minimal binary fraction in our sample is fmin = 0.44 but could be as high as 0.67 if all the binary candidates are confirmed. As in NGC6231 (see Paper I), up to 75 per cent of the O star population in NGC6611 are found in an O+OB system, thus implicitly excluding random pairing from a classical IMF as a process to describe the companion association in massive binaries. No statistical difference could be further identified in the binary fraction, mass-ratio and period distributions between NGC6231 and NGC 6611, despite the difference in age and environment of the two clusters.

  18. Gravitational interactions of stars with supermassive black hole binaries - I. Tidal disruption events

    NASA Astrophysics Data System (ADS)

    Darbha, Siva; Coughlin, Eric R.; Kasen, Daniel; Quataert, Eliot

    2018-07-01

    Stars approaching supermassive black holes (SMBHs) in the centres of galaxies can be torn apart by strong tidal forces. We study the physics of tidal disruption by a circular, binary SMBH as a function of the binary mass ratio q = M2/M1 and separation a, exploring a large set of points in the parameter range q ∈ [0.01, 1] and a/rt1 ∈ [10, 1000]. We simulate encounters in which field stars approach the binary from the loss cone on parabolic, low angular momentum orbits. We present the rate of disruption and the orbital properties of the disrupted stars, and examine the fallback dynamics of the post-disruption debris in the `frozen-in' approximation. We conclude by calculating the time-dependent disruption rate over the lifetime of the binary. Throughout, we use a primary mass M1 = 106 M⊙ as our central example. We find that the tidal disruption rate is a factor of ˜2-7 times larger than the rate for an isolated BH, and is independent of q for q ≳ 0.2. In the `frozen-in' model, disruptions from close, nearly equal mass binaries can produce intense tidal fallbacks: for binaries with q ≳ 0.2 and a/rt1 ˜ 100, roughly {˜ } 18-40 per cent of disruptions will have short rise times (trise ˜ 1-10 d) and highly super-Eddington peak return rates (\\dot{M}_peak / \\dot{M}_Edd ˜ 2 × 10^2-3 × 10^3).

  19. A 3D dynamical model of the colliding winds in binary systems

    NASA Astrophysics Data System (ADS)

    Parkin, E. R.; Pittard, J. M.

    2008-08-01

    We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called `pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray.

  20. The binary nature of PSR J2032+4127

    DOE PAGES

    Lyne, A. G.; Stappers, B. W.; Keith, M. J.; ...

    2015-05-22

    PSR J2032+4127 is a γ-ray and radio-emitting pulsar which has been regarded as a young luminous isolated neutron star. However, its recent spin-down rate has extraordinarily increased by a factor of 2. Here we present evidence that this is due to its motion as a member of a highly-eccentric binary system with an ~15–M⊙ Be star, MT91 213. Timing observations show that, not only are the positions of the two stars coincident within 0.4 arcsec, but timing models of binary motion of the pulsar fit the data much better than a model of a young isolated pulsar. MT91 213, andmore » hence the pulsar, lie in the Cyg OB2 stellar association, which is at a distance of only 1.4–1.7 kpc. The pulsar is currently on the near side of, and accelerating towards, the Be star, with an orbital period of 20–30 yr. Finally, the next periastron is well constrained to occur in early 2018, providing an opportunity to observe enhanced high-energy emission as seen in other Be-star binary systems.« less

Top