Sample records for binary collision scaling

  1. Suppression of hadrons with large transverse momentum in central Au+Au collisions at root square[s(NN)] = 130 GeV.

    PubMed

    Adcox, K; Adler, S S; Ajitanand, N N; Akiba, Y; Alexander, J; Aphecetche, L; Arai, Y; Aronson, S H; Averbeck, R; Awes, T C; Barish, K N; Barnes, P D; Barrette, J; Bassalleck, B; Bathe, S; Baublis, V; Bazilevsky, A; Belikov, S; Bellaiche, F G; Belyaev, S T; Bennett, M J; Berdnikov, Y; Botelho, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J; Butsyk, S; Carey, T A; Chand, P; Chang, J; Chang, W C; Chavez, L L; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choudhury, R K; Christ, T; Chujo, T; Chung, M S; Chung, P; Cianciolo, V; Cole, B A; D'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dinesh, B V; Drees, A; Durum, A; Dutta, D; Ebisu, K; Efremenko, Y V; El Chenawi, K; En'yo, H; Esumi, S; Ewell, L; Ferdousi, T; Fields, D E; Fokin, S L; Fraenkel, Z; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Godoi, A L; Goto, Y; Greene, S V; Grosse Perdekamp, M; Gupta, S K; Guryn, W; Gustafsson, H-A; Haggerty, J S; Hamagaki, H; Hansen, A G; Hara, H; Hartouni, E P; Hayano, R; Hayashi, N; He, X; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Ho, D S; Homma, K; Hong, B; Hoover, A; Ichihara, T; Imai, K; Ippolitov, M S; Ishihara, M; Jacak, B V; Jang, W Y; Jia, J; Johnson, B M; Johnson, S C; Joo, K S; Kametani, S; Kang, J H; Kann, M; Kapoor, S S; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D J; Kim, H J; Kim, S Y; Kim, Y G; Kinnison, W W; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Klinksiek, S; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kotchetkov, D; Kozlov, A; Kroon, P J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lauret, J; Lebedev, A; Lee, D M; Leitch, M J; Li, X H; Li, Z; Lim, D J; Liu, M X; Liu, X; Liu, Z; Maguire, C F; Mahon, J; Makdisi, Y I; Manko, V I; Mao, Y; Mark, S K; Markacs, S; Martinez, G; Marx, M D; Masaike, A; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Merschmeyer, M; Messer, F; Messer, M; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagasaka, Y; Nagle, J L; Nakada, Y; Nandi, B K; Newby, J; Nikkinen, L; Nilsson, P; Nishimura, S; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Ono, M; Onuchin, V; Oskarsson, A; Osterman, L; Otterlund, I; Oyama, K; Paffrath, L; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Pate, S F; Peitzmann, T; Petridis, A N; Pinkenburg, C; Pisani, R P; Pitukhin, P; Plasil, F; Pollack, M; Pope, K; Purschke, M L; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Rosati, M; Rose, A A; Ryu, S S; Saito, N; Sakaguchi, A; Sakaguchi, T; Sako, H; Sakuma, T; Samsonov, V; Sangster, T C; Santo, R; Sato, H D; Sato, S; Sawada, S; Schlei, B R; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shiina, T; Shin, Y H; Sibiriak, I G; Silvermyr, D; Sim, K S; Simon-Gillo, J; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sorensen, S; Stankus, P W; Starinsky, N; Steinberg, P; Stenlund, E; Ster, A; Stoll, S P; Sugioka, M; Sugitate, T; Sullivan, J P; Sumi, Y; Sun, Z; Suzuki, M; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Taniguchi, E; Tannenbaum, M J; Thomas, J; Thomas, J H; Thomas, T L; Tian, W; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tsvetkov, A A; Tuli, S K; Tydesjö, H; Tyurin, N; Ushiroda, T; van Hecke, H W; Velissaris, C; Velkovska, J; Velkovsky, M; Vinogradov, A A; Volkov, M A; Vorobyov, A; Vznuzdaev, E; Wang, H; Watanabe, Y; White, S N; Witzig, C; Wohn, F K; Woody, C L; Xie, W; Yagi, K; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, Z; Zhou, S

    2002-01-14

    Transverse momentum spectra for charged hadrons and for neutral pions in the range 1 GeV/c

  2. Charged hadron transverse momentum distributions in Au+Au collisions at √ SNN = 200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; van Nieuwenhuizen, Gerrit; PHOBOS Collaboration

    2003-04-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at √ SNN = 200 GeV. The evolution of the spectra for transverse momenta p T from 0.25 to 5 GeV/C is studied as a function of collision centrality. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. When comparing peripheral to central Au+Au collisions, we find that the yields at the highest p T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  3. Open charm yields in d+Au collisions at squareroot[sNN]=200 GeV.

    PubMed

    Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; de Moura, M M; Derevschikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fomenko, K; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Gaudichet, L; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grebenyuk, O; Grosnick, D; Guertin, S M; Guo, Y; Gupta, A; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Urkinbaev, A; Van Buren, G; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Vznuzdaev, M; Waggoner, W T; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Wells, R; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevsky, Y V; Zhang, H; Zhang, W M; Zhang, Z P; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N

    2005-02-18

    Midrapidity open charm spectra from direct reconstruction of D0(D0)-->K-/+pi+/- in d+Au collisions and indirect electron-positron measurements via charm semileptonic decays in p+p and d+Au collisions at squareroot[sNN]=200 GeV are reported. The D0(D0) spectrum covers a transverse momentum (pT) range of 0.1

  4. Charged hadron transverse momentum distributions in Au+Au collisions at S=200 GeV

    NASA Astrophysics Data System (ADS)

    Roland, Christof; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The evolution of the spectra for transverse momenta p_T from 0.25 to 5GeV/c is studied as a function of collision centrality over a range from 65 to 344 participating nucleons. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at the highest p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  5. Collision geometry scaling of Au+Au pseudorapidity density from √(sNN )=19.6 to 200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tonjes, M. B.; Tang, J.-L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2004-08-01

    The centrality dependence of the midrapidity charged particle multiplicity in Au+Au heavy-ion collisions at √(sNN )=19.6 and 200 GeV is presented. Within a simple model, the fraction of hard (scaling with number of binary collisions) to soft (scaling with number of participant pairs) interactions is consistent with a value of x=0.13±0.01 (stat) ±0.05 (syst) at both energies. The experimental results at both energies, scaled by inelastic p ( p¯ ) +p collision data, agree within systematic errors. The ratio of the data was found not to depend on centrality over the studied range and yields a simple linear scale factor of R200/19.6 =2.03±0.02 (stat) ±0.05 (syst) .

  6. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenke, Bjoern; Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, H3A 2T8; Jeon, Sangyong

    2011-04-15

    We present results from a hybrid description of Cu + Cu collisions using (3 + 1)-dimensional hydrodynamics (music) for the bulk evolution and a Monte Carlo simulation (martini) for the evolution of high-momentum partons in the hydrodynamical background. We explore the limits of this description by going to small system sizes and determine the dependence on different fractions of wounded nucleon and binary collisions scaling of the initial energy density. We find that Cu + Cu collisions are well described by the hybrid description at least up to 20% central collisions.

  7. Charged hadron transverse momentum distributions in Au+Au collisions at √sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Lee, J. W.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2004-01-01

    We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sNN=200 GeV. The spectra were measured for transverse momenta pT from 0.25 to 4.5 GeV/c in a pseudorapidity range of 0.2<η<1.4. The evolution of the spectra is studied as a function of collision centrality, from 65 to 344 participating nucleons. The results are compared to data from proton-antiproton collisions and Au+Au collisions at lower RHIC energies. We find a significant change of the spectral shape between proton-antiproton and semi-peripheral Au+Au collisions. Comparing semi-peripheral to central Au+Au collisions, we find that the yields at high pT exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.

  8. Open Charm Yields in d+Au Collisions at sqrt(sNN) = 200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.

    2005-01-07

    Mid-rapidity open charm spectra from direct reconstruction of D{sup 0}({bar D}{sup 0}) {yields} K{sup {-+}} {pi}{sup {+-}} in d+Au collisions and indirect electron/positron measurements via charm semileptonic decays in p+p and d+Au collisions at {radical}s{sub NN} = 200 GeV are reported. The D{sup 0}({bar D}{sup 0}) spectrum covers a transverse momentum (p{sub T}) range of 0.1 < p{sub T} < 3 GeV/c whereas the electron spectra cover a range of 1 < p{sub T} < 4 GeV/c. The electron spectra show approximate binary collision scaling between p+p and d+Au collisions. From these two independent analyses, the differential cross section permore » nucleon-nucleon binary interaction at mid-rapidity for open charm production from d+Au collisions at RHIC is d{sigma}{sub c{bar c}}{sup NN}/dy = 0.30 {+-} 0.04 (stat.) {+-} 0.09(syst.) mb. The results are compared to theoretical calculations. Implications for charmonium results in A+A collisions are discussed.« less

  9. Mesoscopic model for binary fluids

    NASA Astrophysics Data System (ADS)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  10. Evidence from d+Au measurements for final-state suppression of high-p(T) hadrons in Au+Au collisions at RHIC.

    PubMed

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Ganti, M S; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Rykov, V; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, H Y; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2003-08-15

    We report measurements of single-particle inclusive spectra and two-particle azimuthal distributions of charged hadrons at high transverse momentum (high p(T)) in minimum bias and central d+Au collisions at sqrt[s(NN)]=200 GeV. The inclusive yield is enhanced in d+Au collisions relative to binary-scaled p+p collisions, while the two-particle azimuthal distributions are very similar to those observed in p+p collisions. These results demonstrate that the strong suppression of the inclusive yield and back-to-back correlations at high p(T) previously observed in central Au+Au collisions are due to final-state interactions with the dense medium generated in such collisions.

  11. Numerical heating in Particle-In-Cell simulations with Monte Carlo binary collisions

    NASA Astrophysics Data System (ADS)

    Alves, E. Paulo; Mori, Warren; Fiuza, Frederico

    2017-10-01

    The binary Monte Carlo collision (BMCC) algorithm is a robust and popular method to include Coulomb collision effects in Particle-in-Cell (PIC) simulations of plasmas. While a number of works have focused on extending the validity of the model to different physical regimes of temperature and density, little attention has been given to the fundamental coupling between PIC and BMCC algorithms. Here, we show that the coupling between PIC and BMCC algorithms can give rise to (nonphysical) numerical heating of the system, that can be far greater than that observed when these algorithms operate independently. This deleterious numerical heating effect can significantly impact the evolution of the simulated system particularly for long simulation times. In this work, we describe the source of this numerical heating, and derive scaling laws for the numerical heating rates based on the numerical parameters of PIC-BMCC simulations. We compare our theoretical scalings with PIC-BMCC numerical experiments, and discuss strategies to minimize this parasitic effect. This work is supported by DOE FES under FWP 100237 and 100182.

  12. Observation of D 0 meson nuclear modifications in Au + Au collisions at s NN = 200 GeV

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2014-09-30

    We report the first measurement of charmed-hadron (D 0) production via the hadronic decay channel (D 0→K -+π +) in Au+Au collisions at √ sNN=200 GeV with the STAR experiment. The charm production cross section per nucleon-nucleon collision at midrapidity scales with the number of binary collisions, N bin, from p+p to central Au+Au collisions. The D 0 meson yields in central Au+Aucollisions are strongly suppressed compared to those in p+p scaled by N bin, for transverse momenta p T>3 GeV/c, demonstrating significant energy loss of charm quarks in the hot and dense medium. An enhancement at intermediate p Tmore » is also observed. Model calculations including strong charm-medium interactions and coalescence hadronization describe our measurements.« less

  13. A Hybrid Method for Accelerated Simulation of Coulomb Collisions in a Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caflisch, R; Wang, C; Dimarco, G

    2007-10-09

    If the collisional time scale for Coulomb collisions is comparable to the characteristic time scales for a plasma, then simulation of Coulomb collisions may be important for computation of kinetic plasma dynamics. This can be a computational bottleneck because of the large number of simulated particles and collisions (or phase-space resolution requirements in continuum algorithms), as well as the wide range of collision rates over the velocity distribution function. This paper considers Monte Carlo simulation of Coulomb collisions using the binary collision models of Takizuka & Abe and Nanbu. It presents a hybrid method for accelerating the computation of Coulombmore » collisions. The hybrid method represents the velocity distribution function as a combination of a thermal component (a Maxwellian distribution) and a kinetic component (a set of discrete particles). Collisions between particles from the thermal component preserve the Maxwellian; collisions between particles from the kinetic component are performed using the method of or Nanbu. Collisions between the kinetic and thermal components are performed by sampling a particle from the thermal component and selecting a particle from the kinetic component. Particles are also transferred between the two components according to thermalization and dethermalization probabilities, which are functions of phase space.« less

  14. Centrality dependence of charged jet production in p-Pb collisions at √{s_NN} = 5.02 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kostarakis, P.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lehner, S.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ruzza, B. D.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shahzad, M. I.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Souza, R. D. de; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; Haller, B. von; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yang, P.; Yano, S.; Yasin, Z.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-05-01

    Measurements of charged jet production as a function of centrality are presented for p-Pb collisions recorded at √{s_{NN}}= 5.02 TeV with the ALICE detector. Centrality classes are determined via the energy deposit in neutron calorimeters at zero degree, close to the beam direction, to minimise dynamical biases of the selection. The corresponding number of participants or binary nucleon-nucleon collisions is determined based on the particle production in the Pb-going rapidity region. Jets have been reconstructed in the central rapidity region from charged particles with the anti-k_{T} algorithm for resolution parameters R = 0.2 and R = 0.4 in the transverse momentum range 20 to 120 GeV/ c. The reconstructed jet momentum and yields have been corrected for detector effects and underlying-event background. In the five centrality bins considered, the charged jet production in p-Pb collisions is consistent with the production expected from binary scaling from pp collisions. The ratio of jet yields reconstructed with the two different resolution parameters is also independent of the centrality selection, demonstrating the absence of major modifications of the radial jet structure in the reported centrality classes.

  15. Multi-level Monte Carlo Methods for Efficient Simulation of Coulomb Collisions

    NASA Astrophysics Data System (ADS)

    Ricketson, Lee

    2013-10-01

    We discuss the use of multi-level Monte Carlo (MLMC) schemes--originally introduced by Giles for financial applications--for the efficient simulation of Coulomb collisions in the Fokker-Planck limit. The scheme is based on a Langevin treatment of collisions, and reduces the computational cost of achieving a RMS error scaling as ɛ from O (ɛ-3) --for standard Langevin methods and binary collision algorithms--to the theoretically optimal scaling O (ɛ-2) for the Milstein discretization, and to O (ɛ-2 (logɛ)2) with the simpler Euler-Maruyama discretization. In practice, this speeds up simulation by factors up to 100. We summarize standard MLMC schemes, describe some tricks for achieving the optimal scaling, present results from a test problem, and discuss the method's range of applicability. This work was performed under the auspices of the U.S. DOE by the University of California, Los Angeles, under grant DE-FG02-05ER25710, and by LLNL under contract DE-AC52-07NA27344.

  16. Rapid formation of supermassive black hole binaries in galaxy mergers with gas.

    PubMed

    Mayer, L; Kazantzidis, S; Madau, P; Colpi, M; Quinn, T; Wadsley, J

    2007-06-29

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that after the merger of two massive galaxies, a SMBH binary will form, shrink because of stellar or gas dynamical processes, and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas because of the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years after the collision between two spiral galaxies. A massive, turbulent, nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than 1 million years as a result of the gravitational drag from the gas rather than from the stars.

  17. Centrality dependence of charged particle multiplicity at midrapidity in Au+Au collisions at (sNN)=130 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Heintzelman, G. A.; Henderson, C.; Hołyński, R.; Hofman, D. J.; Holzman, B.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Stephans, G. S.; Steinberg, P.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-03-01

    We present a measurement of the pseudorapidity density of primary charged particles near midrapidity in Au+Au collisions at (sNN)=130 GeV as a function of the number of participating nucleons. The pseudorapidity density, dNch/dη\\|\\|η\\|<1/(1/2), rises from 2.87+/-0.21 in peripheral events (~83) to 3.45+/-0.18 in central events (~353), which is 53+/-8% higher than pp&; collisions at a similar center-of-mass energy. This is consistent with an additional contribution to charged particle production that scales with the number of binary nucleon-nucleon collisions (Ncoll).

  18. Particle-type dependence of azimuthal anisotropy and nuclear modification of particle production in Au+Au collisions at square root of sNN=200 GeV.

    PubMed

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2004-02-06

    We present STAR measurements of the azimuthal anisotropy parameter v(2) and the binary-collision scaled centrality ratio R(CP) for kaons and lambdas (Lambda+Lambda) at midrapidity in Au+Au collisions at square root of s(NN)=200 GeV. In combination, the v(2) and R(CP) particle-type dependencies contradict expectations from partonic energy loss followed by standard fragmentation in vacuum. We establish p(T) approximately 5 GeV/c as the value where the centrality dependent baryon enhancement ends. The K(0)(S) and Lambda+Lambda v(2) values are consistent with expectations of constituent-quark-number scaling from models of hadron formation by parton coalescence or recombination.

  19. Transverse momentum dependence of inclusive primary charged-particle production in p–Pb collisions at $$\\sqrt{s_\\mathrm{{NN}}}=5.02~\\text {TeV}$$ = 5.02 TeV

    DOE PAGES

    Abelev, B.; Adam, J.; Adamová, D.; ...

    2014-09-16

    The transverse momentum (p T) distribution of primary charged particles is measured at midrapidity in minimum-bias p–Pb collisions at √s NN = 5.02 TeV with the ALICE detector at the LHC in the range. The spectra are compared to the expectation based on binary collision scaling of particle production in pp collisions, leading to a nuclear modification factor consistent with unity for p T larger than 2 GeV/c, with a weak indication of a Cronin-like enhancement for p T around 4 GeV/c. The measurement is compared to theoretical calculations and to data in Pb–Pb collisions at √s NN = 2.76 TeV.

  20. System-size dependence of open-heavy-flavor production in nucleus-nucleus collisions at √sNN =200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Aoki, K.; Apadula, N.; Aphecetche, L.; Armendariz, R.; Aronson, S. H.; Asai, J.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Baksay, G.; Baksay, L.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Belikov, S.; Bennett, R.; Berdnikov, Y.; Bickley, A. A.; Boissevain, J. G.; Borel, H.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Chang, B. S.; Charvet, J.-L.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Chujo, T.; Chung, P.; Churyn, A.; Cianciolo, V.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Das, K.; David, G.; Deaton, M. B.; Dehmelt, K.; Delagrange, H.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dzhordzhadze, V.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Garishvili, I.; Glenn, A.; Gong, H.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hamagaki, H.; Han, R.; Harada, H.; Hartouni, E. P.; Haruna, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Ichihara, T.; Iinuma, H.; Imai, K.; Inaba, M.; Inoue, Y.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Jacak, B. V.; Jia, J.; Jin, J.; Jinnouchi, O.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kaneta, M.; Kang, J. H.; Kanou, H.; Kawall, D.; Kazantsev, A. V.; Khanzadeev, A.; Kikuchi, J.; Kim, D. H.; Kim, D. J.; Kim, E.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klay, J.; Klein-Boesing, C.; Kochenda, L.; Kochetkov, V.; Komkov, B.; Konno, M.; Kotchetkov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, M. K.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Lenzi, B.; Li, X.; Liška, T.; Litvinenko, A.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Malik, M. D.; Manko, V. I.; Mao, Y.; Mašek, L.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; Miake, Y.; Mikeš, P.; Miki, K.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Mukhopadhyay, D.; Murata, J.; Nagamiya, S.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nakagawa, I.; Nakamiya, Y.; Nakamura, T.; Nakano, K.; Newby, J.; Nguyen, M.; Norman, B. E.; Nouicer, R.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, J.; Park, W. J.; Pate, S. F.; Pei, H.; Peng, J.-C.; Pereira, H.; Peresedov, V.; Peressounko, D. Yu.; Pinkenburg, C.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Riabov, V.; Riabov, Y.; Roche, G.; Romana, A.; Rosati, M.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Rykov, V. L.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakata, H.; Samsonov, V.; Sato, S.; Sawada, S.; Seele, J.; Seidl, R.; Semenov, V.; Seto, R.; Sharma, D.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, C. P.; Singh, V.; Skutnik, S.; Slunečka, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Taranenko, A.; Tarján, P.; Thomas, T. L.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Torii, H.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, Y.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wysocki, M.; Xie, W.; Yamaguchi, Y. L.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.; Phenix Collaboration

    2014-09-01

    The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open-heavy-flavor production in Cu +Cu collisions at √sNN =200 GeV through the measurement of electrons at midrapidity that originate from semileptonic decays of charm and bottom hadrons. In peripheral Cu +Cu collisions an enhanced production of electrons is observed relative to p +p collisions scaled by the number of binary collisions. In the transverse momentum range from 1 to 5 GeV/c the nuclear modification factor is RAA˜1.4. As the system size increases to more central Cu +Cu collisions, the enhancement gradually disappears and turns into a suppression. For pT>3 GeV/c, the suppression reaches RAA˜0.8 in the most central collisions. The pT and centrality dependence of RAA in Cu +Cu collisions agree quantitatively with RAA in d +Au and Au +Au collisions, if compared at a similar number of participating nucleons .

  1. Centrality dependence of charged jet production in p-Pb collisions at [Formula: see text] = 5.02 TeV.

    PubMed

    Adam, J; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahmad, S; Ahn, S U; Aiola, S; Akindinov, A; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alexandre, D; Alfaro Molina, R; Alici, A; Alkin, A; Almaraz, J R M; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andronic, A; Anguelov, V; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Balasubramanian, S; Baldisseri, A; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartke, J; Bartsch, E; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batista Camejo, A; Batyunya, B; Batzing, P C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Belmont, R; Belmont-Moreno, E; Belyaev, V; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Bjelogrlic, S; Blair, J T; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Borri, M; Bossú, F; Botta, E; Bourjau, C; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Cai, X; Caines, H; Calero Diaz, L; Caliva, A; Calvo Villar, E; Camerini, P; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Cepila, J; Cerello, P; Cerkala, J; Chang, B; Chapeland, S; Chartier, M; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Chelnokov, V; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Choi, K; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; Deisting, A; Deloff, A; Dénes, E; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Drozhzhova, T; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erdemir, I; Erhardt, F; Espagnon, B; Estienne, M; Esumi, S; Eum, J; Evans, D; Evdokimov, S; Eyyubova, G; Fabbietti, L; Fabris, D; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Fleck, M G; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gallio, M; Gangadharan, D R; Ganoti, P; Gao, C; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Gasik, P; Gauger, E F; Germain, M; Gheata, M; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Grachov, O A; Graczykowski, L K; Graham, K L; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gronefeld, J M; Grosse-Oetringhaus, J F; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hamon, J C; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Hess, B A; Hetland, K F; Hillemanns, H; Hippolyte, B; Horak, D; Hosokawa, R; Hristov, P; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Ilkaev, R; Inaba, M; Incani, E; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Izucheev, V; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jahnke, C; Jakubowska, M J; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Mohisin Khan, M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D W; Kim, D J; Kim, D; Kim, H; Kim, J S; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Kopcik, M; Kostarakis, P; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Ladron de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lea, R; Leardini, L; Lee, G R; Lee, S; Lehas, F; Lehner, S; Lemmon, R C; Lenti, V; Leogrande, E; León Monzón, I; León Vargas, H; Leoncino, M; Lévai, P; Li, S; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Lunardon, M; Luparello, G; Lutz, T H; Maevskaya, A; Mager, M; Mahajan, S; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martin Blanco, J; Martinengo, P; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Mcdonald, D; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Miake, Y; Mieskolainen, M M; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, B; Molnar, L; Montaño Zetina, L; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Nedosekin, A; Nellen, L; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Ohlson, A; Okatan, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Pachmayer, Y; Pagano, D; Pagano, P; Paić, G; Pal, S K; Pan, J; Pandey, A K; Papikyan, V; Pappalardo, G S; Pareek, P; Park, W J; Parmar, S; Passfeld, A; Paticchio, V; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Porteboeuf-Houssais, S; Porter, J; Pospisil, J; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Read, K F; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reolon, A R; Reshetin, A; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rocco, E; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ruzza, B D; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Sahlmuller, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Šándor, L; Sandoval, A; Sano, M; Sarkar, D; Sarkar, N; Sarma, P; Scapparone, E; Scarlassara, F; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M; Schuchmann, S; Schukraft, J; Schulc, M; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sevcenco, A; Shabanov, A; Shabetai, A; Shadura, O; Shahoyan, R; Shahzad, M I; Shangaraev, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Song, Z; Soramel, F; Sorensen, S; Souza, R D de; Sozzi, F; Spacek, M; Spiriti, E; Sputowska, I; Spyropoulou-Stassinaki, M; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Szabo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thäder, J; Thakur, D; Thomas, D; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Trogolo, S; Trombetta, G; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Valencia Palomo, L; Vallero, S; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Veldhoen, M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Verweij, M; Vickovic, L; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Vislavicius, V; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; Haller, B von; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Wagner, B; Wagner, J; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Yang, P; Yano, S; Yasin, Z; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yurchenko, V; Zaborowska, A; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zaporozhets, S; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zinovjev, G; Zyzak, M

    2016-01-01

    Measurements of charged jet production as a function of centrality are presented for  p-Pb  collisions recorded at [Formula: see text] TeV with the ALICE detector. Centrality classes are determined via the energy deposit in neutron calorimeters at zero degree, close to the beam direction, to minimise dynamical biases of the selection. The corresponding number of participants or binary nucleon-nucleon collisions is determined based on the particle production in the Pb-going rapidity region. Jets have been reconstructed in the central rapidity region from charged particles with the anti-[Formula: see text] algorithm for resolution parameters [Formula: see text] and [Formula: see text] in the transverse momentum range 20 to 120 GeV/ c . The reconstructed jet momentum and yields have been corrected for detector effects and underlying-event background. In the five centrality bins considered, the charged jet production in  p-Pb   collisions is consistent with the production expected from binary scaling from pp collisions. The ratio of jet yields reconstructed with the two different resolution parameters is also independent of the centrality selection, demonstrating the absence of major modifications of the radial jet structure in the reported centrality classes.

  2. Centrality dependence of charged jet production in p–Pb collisions at $$\\sqrt{s_\\mathrm{NN}}$$ = 5.02 TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-05-17

    Measurements of charged jet production as a function of centrality are presented for p–Pb collisions recorded atmore » $$\\sqrt{s_\\mathrm{NN}}$$= 5.02 TeV with the ALICE detector. Centrality classes are determined via the energy deposit in neutron calorimeters at zero degree, close to the beam direction, to minimise dynamical biases of the selection. The corresponding number of participants or binary nucleon–nucleon collisions is determined based on the particle production in the Pb-going rapidity region. Jets have been reconstructed in the central rapidity region from charged particles with the anti-k T algorithm for resolution parameters R = 0.2 and R = 0.4 in the transverse momentum range 20 to 120 GeV/c. The reconstructed jet momentum and yields have been corrected for detector effects and underlying-event background. In the five centrality bins considered, the charged jet production in p–Pb collisions is consistent with the production expected from binary scaling from pp collisions. The ratio of jet yields reconstructed with the two different resolution parameters is also independent of the centrality selection, demonstrating the absence of major modifications of the radial jet structure in the reported centrality classes.« less

  3. Configuration-specific kinetic theory applied to an ideal binary gas mixture.

    PubMed

    Wiseman, Floyd L

    2006-10-05

    This paper is the second in a two-part series dealing with the configuration-specific analyses for molecular collision events of hard, spherical molecules at thermal equilibrium. The first paper analyzed a single-component system, and the reader is referred to it for the fundamental concepts. In this paper, the expressions for the configuration-specific collision frequencies and the average line-of-centers collision angles and speeds are derived for an ideal binary gas mixture. The analyses show that the average line-of-centers quantities are all dependent upon the ratio of the masses of the two components, but not upon molecular size. Of course, the configuration-specific collision frequencies do depend on molecular size. The expression for the overall binary collision frequency is a simple sum of the configuration-specific collision frequencies and is identical to the conventional expression.

  4. Υ production in U + U collisions at √{sN N}=193 GeV measured with the STAR experiment

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, T.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Y.; Li, C.; Li, X.; Li, W.; Li, X.; Lin, T.; Lisa, M. A.; Liu, F.; Liu, Y.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, G. L.; Ma, R.; Ma, L.; Ma, Y. G.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, A.; Sharma, B.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, J. S.; Wang, F.; Wang, Y.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, G.; Xie, W.; Xin, K.; Xu, Z.; Xu, H.; Xu, N.; Xu, J.; Xu, Y. F.; Xu, Q. H.; Yang, Y.; Yang, Y.; Yang, S.; Yang, Q.; Yang, Y.; Yang, C.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J.; Zhang, Z.; Zhang, J.; Zhang, S.; Zhang, X. P.; Zhang, J. B.; Zhang, Y.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-12-01

    We present a measurement of the inclusive production of Υ mesons in U+U collisions at √{sN N}=193 GeV at midrapidity (|y |<1 ). Previous studies in central Au+Au collisions at √{sN N}=200 GeV show a suppression of Υ (1S+2S+3S) production relative to expectations from the Υ yield in p+p collisions scaled by the number of binary nucleon-nucleon collisions (Ncoll), with an indication that the Υ (1S) state is also suppressed. The present measurement extends the number of participant nucleons in the collision (Npart) by 20% compared to Au+Au collisions, and allows us to study a system with higher energy density. We observe a suppression in both the Υ (1 S +2 S +3 S ) and Υ (1 S ) yields in central U+U data, which consolidates and extends the previously observed suppression trend in Au+Au collisions.

  5. Υ production in U + U collisions at s N N = 193 GeV measured with the STAR experiment

    DOE PAGES

    Adamczyk, L.

    2016-12-15

    We present a measurement of the inclusive production of ¡ mesons in U+U collisions at √sNN = 193 GeV at mid-rapidity (|y| < 1). Previous studies in central Au+Au collisions at √sNN = 200 GeV show a suppression of ¡(1S+2S+3S) production relative to expectations from the ¡ yield in p+p collisions scaled by the number of binary nucleon-nucleon collisions (N coll), with an indication that the ¡(1S) state is also suppressed. The present measurement extends the number of participant nucleons in the collision (N part) by 20% compared to Au+Au collisions, and allows us to study a system with highermore » energy density. We observe a suppression in both the ¡(1S+2S+3S) and ¡(1S) yields in central U+U data, which consolidates and extends the previously observed suppression trend in Au+Au collisions.« less

  6. Centrality and pseudorapidity dependence of charged hadron production at intermediate p{sub T} in Au+Au collisions at {radical}s{sub NN} = 130 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.

    2004-04-15

    We present STAR measurements of charged hadron production as a function of centrality in Au + Au collisions at {radical}s{sub NN} = 130 GeV. The measurements cover a phase space region of 0.2 < p{sub T} < 6.0 GeV/c in transverse momentum and -1 < {eta} < 1 in pseudorapidity. Inclusive transverse momentum distributions of charged hadrons in the pseudorapidity region 0.5 < |{eta}| < 1 are reported and compared to our previously published results for |{eta}| < 0.5. No significant difference is seen for inclusive p{sub T} distributions of charged hadrons in these two pseudorapidity bins. We measured dN/d{eta}more » distributions and truncated mean p{sub T} in a region of p{sub T} > p{sub T}{sup cut}, and studied the results in the framework of participant and binary scaling. No clear evidence is observed for participant scaling of charged hadron yield in the measured p{sub T} region. The relative importance of hard scattering process is investigated through binary scaling fraction of particle production.« less

  7. Centrality and pseudorapidity dependence of charged hadron production at intermediate p{sub t} in Au+Au collisions at {radical}s{sub NN} = 130 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.

    2004-04-15

    We present STAR measurements of charged hadron production as a function of centrality in Au + Au collisions at {radical}s{sub NN} = 130 GeV. The measurements cover a phase space region of 0.2 < p{sub T} < 6.0 GeV/c in transverse momentum and 11 < {eta} < 1 in pseudorapidity. Inclusive transverse momentum distributions of charged hadrons in the pseudorapidity region 0.5 < |{eta}| < 1 are reported and compared to our previously published results for |{eta}| < 0.5. No significant difference is seen for inclusive p{sub T} distributions of charged hadrons in these two pseudorapidity bins. We measured dN/d{eta}more » distributions and truncated mean p{sub T} in a region of p{sub T} > P{sub T}{sup cut}, and studied the results in the framework of participant and binary scaling. No clear evidence is observed for participant scaling of charged hadron yield in the measured pT region. The relative importance of hard scattering process is investigated through binary scaling fraction of particle production.« less

  8. Heat Source Characterization In A TREAT Fuel Particle Using Coupled Neutronics Binary Collision Monte-Carlo Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunert, Sebastian; Schwen, Daniel; Ghassemi, Pedram

    This work presents a multi-physics, multi-scale approach to modeling the Transient Test Reactor (TREAT) currently prepared for restart at the Idaho National Laboratory. TREAT fuel is made up of microscopic fuel grains (r ˜ 20µm) dispersed in a graphite matrix. The novelty of this work is in coupling a binary collision Monte-Carlo (BCMC) model to the Finite Element based code Moose for solving a microsopic heat-conduction problem whose driving source is provided by the BCMC model tracking fission fragment energy deposition. This microscopic model is driven by a transient, engineering scale neutronics model coupled to an adiabatic heating model. Themore » macroscopic model provides local power densities and neutron energy spectra to the microscpic model. Currently, no feedback from the microscopic to the macroscopic model is considered. TREAT transient 15 is used to exemplify the capabilities of the multi-physics, multi-scale model, and it is found that the average fuel grain temperature differs from the average graphite temperature by 80 K despite the low-power transient. The large temperature difference has strong implications on the Doppler feedback a potential LEU TREAT core would see, and it underpins the need for multi-physics, multi-scale modeling of a TREAT LEU core.« less

  9. Study of Z production in PbPb and pp collisions at TeV in the dimuon and dielectron decay channels

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Bagaturia, I.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Aldaya Martin, M.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Jafari, A.; Khakzad, M.; Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Galanti, M.; Gasparini, F.; Gasparini, U.; Giubilato, P.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Park, S.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Ali, M. A. B. Md; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Golutvin, I.; Karjavin, V.; Konoplyanikov, V.; Korenkov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Matveev, V.; Mitsyn, V. V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Tikhonenko, E.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Meister, D.; Mohr, N.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Millan Mejias, B.; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Richardson, C.; Rohlf, J.; Sperka, D.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Babb, J.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Vuosalo, C.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Lopes Pegna, D.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Woods, N.

    2015-03-01

    The production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 166 μb-1, while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 pb-1. The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number of inelastic nucleon-nucleon collisions, is found to be 1.06 ± 0.05 (stat) ± 0.08 (syst) in the dimuon channel and 1.02 ± 0.08 (stat) ± 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. This binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions. [Figure not available: see fulltext.

  10. Planet formation in binary systems: simulating coagulation using analytically determined collision velocities.

    NASA Astrophysics Data System (ADS)

    Silsbee, Kedron; Rafikov, Roman

    2017-06-01

    The existence of planets in tight binary systems presents an interesting puzzle. It is thought that cores of giant planets form via agglomeration of planetesimals in mutual collisions. However, in tight binary systems, one would naïvely expect the collision velocities between planetesimals to be so high that even 100 km bodies would be destroyed, rather than growing in mutual collisions. In these systems, planetesimals are perturbed by gravity from the companion star, and gravity and gas drag from a massive eccentric gas disk. There is a damaging secular resonance that occurs due to the combination of disk gravity and gravity from the binary companion, however the disk gravity can also create locations of low relative eccentricity between planetesimals of different sizes that would not exist if the disk gravity were ignored. Because the gas drag acts more strongly on smaller planetesimals, orbital eccentricity and apsidal angle depend on planetesimal size. Consequently, planetesimal collision velocities depend on the sizes of the collision partners. Same-size bodies collide at low velocity because their orbits are apsidally aligned. Therefore, often in a given environment some collisions will lead to planetesimal growth, and some to erosion or destruction. This variety of collisional outcomes makes it difficult to determine whether any planetesimals can grow to large sizes. We run a multi-annulus coagulation/fragmentation simulation that also includes the effect of size-dependent radial drift of planetesimals to determine the minimum size of initial planetesimal necessary for growth to large sizes in collisions. The minimum initial size of planetesimal necessary for growth depends greatly on the disk mass, eccentricity and the degree of apsidal alignment with the binary. We find that in a wide variety of situations, it is a reasonable approximation that growth occurs as long as there are no collisions capable of completely destroying a planetesimal, but erosion by moderately damaging collisions can also prevent growth from occurring.

  11. Measurement of the production of high-pT electrons from heavy-flavour hadron decays in Pb-Pb collisions at √{sNN} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Llope, W.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao de Oliveira, R. A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Alice Collaboration

    2017-08-01

    Electrons from heavy-flavour hadron decays (charm and beauty) were measured with the ALICE detector in Pb-Pb collisions at a centre-of-mass of energy √{sNN} = 2.76 TeV. The transverse momentum (pT) differential production yields at mid-rapidity were used to calculate the nuclear modification factor RAA in the interval 3

  12. Energy dependence of J/ψ production in Au + Au collisions at √{sNN} = 39 , 62.4 and 200GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fujita, J.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, T.; Huang, X.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Y.; Li, X.; Li, W.; Li, C.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, Y.; Liu, H.; Liu, F.; Liu, P.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, X.; Sun, Y.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-08-01

    The inclusive J / ψ transverse momentum spectra and nuclear modification factors are reported at mid-rapidity (| y | < 1.0) in Au + Au collisions at √{sNN} = 39, 62.4 and 200 GeV taken by the STAR experiment. A suppression of J / ψ production, with respect to the production in p + p scaled by the number of binary nucleon-nucleon collisions, is observed in central Au + Au collisions at these three energies. No significant energy dependence of nuclear modification factors is found within uncertainties. The measured nuclear modification factors can be described by model calculations that take into account both suppression of direct J / ψ production due to the color screening effect and J / ψ regeneration from recombination of uncorrelated charm-anticharm quark pairs.

  13. On the luminosity function, lifetimes, and origin of blue stragglers in globular clusters

    NASA Technical Reports Server (NTRS)

    Bailyn, Charles D.; Pinsonneault, Marc H.

    1995-01-01

    We compute theoretical evolutionary tracks of blue stragglers created by mergers. Two formation scenarios are considered: mergers of primordial binaries, and stellar collisions. These two scenarios predict strikingly different luminosity functions, which are potentially distinguishable observationally. Tabulated theoretical luminosity functions and lifetimes are presented for blue stragglers formed under a variety of input conditions. We compare our results with observations of the blue straggler sequences in 47 Tucanae and M3. In the case of 47 Tuc, the luminosity function and the formation rate are compatible with the hypothesis that the blue stragglers formed through the collision of single stars. Mergers of primordial binaries are only marginally cosistent with the data, and a significant enhancement of the collision cross section by binary-single-star encounters appears to be ruled out. In the case of M3, we find that the innermost blue stragglers have a luminosity function significantly different from that of the outer stragglers, thus confirming earlier suggestions that there are two distinct populations of blue stragglers in this cluster. The inner stragglers are preferentially brighter and bluer, as would be expected if they were made by collisions, but there are so many of them that the collision rate would need to be enhanced by interactions involving wide binaries. The luminosity function of the outer stragglers is almost identical to the predictions of mergers from primordial binaries and is inconsistent with the collision hypothesis.

  14. Study of Z production in PbPb and pp collisions at $$ \\sqrt{s_{\\mathrm{NN}}}=2.76 $$ TeV in the dimuon and dielectron decay channels

    DOE PAGES

    Chatrchyan, Serguei

    2015-03-04

    We found that the production of Z bosons is studied in the dimuon and dielectron decay channels in PbPb and pp collisions at √s NN=2.76 TeV, using data collected by the CMS experiment at the LHC. The PbPb data sample corresponds to an integrated luminosity of about 166 μb -1, while the pp data sample collected in 2013 at the same nucleon-nucleon centre-of-mass energy has an integrated luminosity of 5.4 pb -1. The Z boson yield is measured as a function of rapidity, transverse momentum, and collision centrality. The ratio of PbPb to pp yields, scaled by the number ofmore » inelastic nucleon-nucleon collisions, is found to be 1.06 ± 0.05 (stat) ± 0.08 (syst) in the dimuon channel and 1.02 ± 0.08 (stat) ± 0.15 (syst) in the dielectron channel, for centrality-integrated Z boson production. Finally, this binary collision scaling is seen to hold in the entire kinematic region studied, as expected for a colourless probe that is unaffected by the hot and dense QCD medium produced in heavy ion collisions.« less

  15. Energy dependence of J/ψ production in Au + Au collisions at s N N = 39 , 62.4  and  200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.

    The inclusive J/ψ transverse momentum spectra and nuclear modification factors are reported at mid-rapidity (|y|<1.0) in Au + Au collisions at √sNN = 39, 62.4 and 200 GeV taken by the STAR experiment. A suppression of J/ψ production, with respect to the production in p+p scaled by the number of binary nucleon–nucleon collisions, is observed in central Au + Au collisions at these three energies. No significant energy dependence of nuclear modification factors is found within uncertainties. The measured nuclear modification factors can be described by model calculations that take into account both suppression of direct J/ψ production due tomore » the color screening effect and J/ψ regeneration from recombination of uncorrelated charm–anticharm quark pairs.« less

  16. Energy dependence of J/ψ production in Au + Au collisions at s N N = 39 , 62.4  and  200 GeV

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2017-05-10

    The inclusive J/ψ transverse momentum spectra and nuclear modification factors are reported at mid-rapidity (|y|<1.0) in Au + Au collisions at √sNN = 39, 62.4 and 200 GeV taken by the STAR experiment. A suppression of J/ψ production, with respect to the production in p+p scaled by the number of binary nucleon–nucleon collisions, is observed in central Au + Au collisions at these three energies. No significant energy dependence of nuclear modification factors is found within uncertainties. The measured nuclear modification factors can be described by model calculations that take into account both suppression of direct J/ψ production due tomore » the color screening effect and J/ψ regeneration from recombination of uncorrelated charm–anticharm quark pairs.« less

  17. Topology of black hole binary-single interactions

    NASA Astrophysics Data System (ADS)

    Samsing, Johan; Ilan, Teva

    2018-05-01

    We present a study on how the outcomes of binary-single interactions involving three black holes (BHs) distribute as a function of the initial conditions; a distribution we refer to as the topology. Using a N-body code that includes BH finite sizes and gravitational wave (GW) emission in the equation of motion (EOM), we perform more than a million binary-single interactions to explore the topology of both the Newtonian limit and the limit at which general relativistic (GR) effects start to become important. From these interactions, we are able to describe exactly under which conditions BH collisions and eccentric GW capture mergers form, as well as how GR in general modifies the Newtonian topology. This study is performed on both large- and microtopological scales. We further describe how the inclusion of GW emission in the EOM naturally leads to scenarios where the binary-single system undergoes two successive GW mergers.

  18. Identified baryon and meson distributions at large transverse momenta from Au + Au collisions at square root sNN=200 GeV.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; Levine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, N S; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Subba, N L; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2006-10-13

    Transverse momentum spectra of pi+/-, p, and p up to 12 GeV/c at midrapidity in centrality selected Au + Au collisions at square root sNN=200 GeV are presented. In central Au + Au collisions, both pi +/- and p(p) show significant suppression with respect to binary scaling at pT approximately >4 GeV/c. Protons and antiprotons are less suppressed than pi+/-, in the range 1.5 approximately < pT approximately < 6 GeV/c. The pi-/pi+ and p/p ratios show at most a weak pT dependence and no significant centrality dependence. The p/pi ratios in central Au + Au collisions approach the values in p + p and d + Au collisions at pT approximately >5 GeV/c. The results at high pT indicate that the partonic sources of pi+/-, p, and p have similar energy loss when traversing the nuclear medium.

  19. B -meson production at forward and backward rapidity in p +p and Cu + Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Andrieux, V.; Aoki, K.; Apadula, N.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bagoly, A.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Boer, M.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butler, C.; Butsyk, S.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Dixit, D.; Do, J. H.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fukuda, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Ji, Z.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapukchyan, D.; Kapustinsky, J.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M.; Kim, M. H.; Kim, Y.-J.; Kim, Y. K.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kudo, S.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Leung, Y. H.; Lewis, B.; Lewis, N. A.; Li, X.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Loggins, V.-R.; Lökös, S.; Lovasz, K.; Lynch, D.; Maguire, C. F.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Metzger, W. J.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagai, K.; Nagamiya, S.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Qu, H.; Radzevich, P. V.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Richford, D.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Runchey, J.; Ryu, M. S.; Safonov, A. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skoby, M. J.; Skolnik, M.; Slunečka, M.; Smith, K. L.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Syed, S.; Sziklai, J.; Takahara, A.; Takeda, A.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vargyas, M.; Vazquez-Carson, S.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vukman, N.; Vznuzdaev, E.; Wang, X. R.; Wang, Z.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Wong, C. P.; Woody, C. L.; Wysocki, M.; Xia, B.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zhou, S.; Zou, L.; Phenix Collaboration

    2017-12-01

    The fraction of J /ψ mesons which come from B -meson decay, FB →J /ψ, is measured for J /ψ rapidity 1.2 <|y |<2.2 and pT>0 in p +p and Cu+Au collisions at √{sNN} = 200 GeV with the PHENIX detector. The extracted fraction is FB →J /ψ=0.025 ±0.006 (stat) ± 0.010(syst) for p +p collisions. For Cu+Au collisions, FB →J /ψ is 0.094 ± 0.028(stat) ± 0.037(syst) in the Au-going direction (-2.2

  20. Effect of intruder mass on collisions with hard binaries. II - Dependence on impact parameter and computations of the interaction cross sections

    NASA Astrophysics Data System (ADS)

    Hills, J. G.

    1992-06-01

    Over 125,000 encounters between a hard binary with equal mass, components and orbital eccentricity of 0, and intruders with solar masses ranging from 0.01 to 10,000 are simulated. Each encounter was followed up to a maximum of 5 x 10 exp 6 integration steps to allow long-term 'resonances', temporary trinary systems, to break into a binary and a single star. These simulations were done over a range of impact parameters to find the cross sections for various processes occurring in these encounters. A critical impact parameter found in these simulations is the one beyond which no exchange collisions can occur. The energy exchange between the binary and a massive intruder decreases greatly in collisions with Rmin of not less than Rc. The semimajor axes and orbital eccentricity of the surviving binary also drops rapidly at Rc in encounters with massive intruders. The formation of temporary trinary systems is important for all intruder masses.

  1. A Coulomb collision algorithm for weighted particle simulations

    NASA Technical Reports Server (NTRS)

    Miller, Ronald H.; Combi, Michael R.

    1994-01-01

    A binary Coulomb collision algorithm is developed for weighted particle simulations employing Monte Carlo techniques. Charged particles within a given spatial grid cell are pair-wise scattered, explicitly conserving momentum and implicitly conserving energy. A similar algorithm developed by Takizuka and Abe (1977) conserves momentum and energy provided the particles are unweighted (each particle representing equal fractions of the total particle density). If applied as is to simulations incorporating weighted particles, the plasma temperatures equilibrate to an incorrect temperature, as compared to theory. Using the appropriate pairing statistics, a Coulomb collision algorithm is developed for weighted particles. The algorithm conserves energy and momentum and produces the appropriate relaxation time scales as compared to theoretical predictions. Such an algorithm is necessary for future work studying self-consistent multi-species kinetic transport.

  2. Dynamics of quadruple systems composed of two binaries: stars, white dwarfs, and implications for Ia supernovae

    NASA Astrophysics Data System (ADS)

    Fang, Xiao; Thompson, Todd A.; Hirata, Christopher M.

    2018-05-01

    We investigate the long-term secular dynamics and Lidov-Kozai (LK) eccentricity oscillations of quadruple systems composed of two binaries at quadrupole and octupole orders in the perturbing Hamiltonian. We show that the fraction of systems reaching high eccentricities is enhanced relative to triple systems, over a broader range of parameter space. We show that this fraction grows with time, unlike triple systems evolved at quadrupole order. This is fundamentally because with their additional degrees of freedom, quadruple systems do not have a maximal set of commuting constants of the motion, even in secular theory at quadrupole order. We discuss these results in the context of star-star and white dwarf-white dwarf (WD) binaries, with emphasis on WD-WD mergers and collisions relevant to the Type Ia supernova problem. For star-star systems, we find that more than 30 per cent of systems reach high eccentricity within a Hubble time, potentially forming triple systems via stellar mergers or close binaries. For WD-WD systems, taking into account general relativistic and tidal precession and dissipation, we show that the merger rate is enhanced in quadruple systems relative to triple systems by a factor of 3.5-10, and that the long-term evolution of quadruple systems leads to a delay-time distribution ˜1/t for mergers and collisions. In gravitational wave-driven mergers of compact objects, we classify the mergers by their evolutionary patterns in phase space and identify a regime in about 8 per cent of orbital shrinking mergers, where eccentricity oscillations occur on the general relativistic precession time-scale, rather than the much longer LK time-scale. Finally, we generalize previous treatments of oscillations in the inner binary eccentricity (evection) to eccentric mutual orbits. We assess the merger rate in quadruple and triple systems and the implications for their viability as progenitors of stellar mergers and Type Ia supernovae.

  3. Research on plasma turbulence involving binary particle collisions and collective effects

    NASA Technical Reports Server (NTRS)

    Sandri, G.

    1972-01-01

    Plasmas in which binary collisions are important are studied by means of nonadiabatic methods. Two- and three-body correlations are calculated to determine the one-particle distribution for the ionization model. The general dispersion analysis is summarized, and examples of the ionization model and of the static fluctuations are discussed.

  4. Measurement of the production of high- p T electrons from heavy-flavour hadron decays in Pb–Pb collisions at s NN = 2.76  TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J.; Adamová, D.; Aggarwal, M. M.

    Electrons from heavy-flavour hadron decays (charm and beauty) were measured with the ALICE detector in Pb–Pb collisions at a centre-of-mass of energy √s NN =2.76 TeV. The transverse momentum (p T ) differential production yields at mid-rapidity were used to calculate the nuclear modification factor R AA in the interval 3 < p T <18 GeV/c. The R AA shows a strong suppression compared to binary scaling of pp collisions at the same energy (up to a factor of 4) in the 10% most central Pb–Pb collisions. There is a centrality trend of suppression, and a weaker suppression (down tomore » a factor of 2) in semi-peripheral (50–80%) collisions is observed. The suppression of electrons in this broad p T interval indicates that both charm and beauty quarks lose energy when they traverse the hot medium formed in Pb–Pb collisions at LHC.« less

  5. Measurement of the production of high- p T electrons from heavy-flavour hadron decays in Pb–Pb collisions at s NN = 2.76  TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2017-05-29

    Electrons from heavy-flavour hadron decays (charm and beauty) were measured with the ALICE detector in Pb–Pb collisions at a centre-of-mass of energy √s NN =2.76 TeV. The transverse momentum (p T ) differential production yields at mid-rapidity were used to calculate the nuclear modification factor R AA in the interval 3 < p T <18 GeV/c. The R AA shows a strong suppression compared to binary scaling of pp collisions at the same energy (up to a factor of 4) in the 10% most central Pb–Pb collisions. There is a centrality trend of suppression, and a weaker suppression (down tomore » a factor of 2) in semi-peripheral (50–80%) collisions is observed. The suppression of electrons in this broad p T interval indicates that both charm and beauty quarks lose energy when they traverse the hot medium formed in Pb–Pb collisions at LHC.« less

  6. Lifetime of binary asteroids versus gravitational encounters and collisions

    NASA Technical Reports Server (NTRS)

    Chauvineau, Bertrand; Farinella, Paolo; Mignard, F.

    1992-01-01

    We investigate the effect on the dynamics of a binary asteroid in the case of a near encounter with a third body. The dynamics of the binary is modeled as a two-body problem perturbed by an approaching body in the following ways: near encounters and collisions with a component of the system. In each case, the typical value of the two-body energy variation is estimated, and a random walk for the cumulative effect is assumed. Results are applied to some binary asteroid candidates. The main conclusion is that the collisional disruption is the dominant effect, giving lifetimes comparable to or larger than the age of the solar system.

  7. EVOLUTION OF A RING AROUND THE PLUTO–CHARON BINARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromley, Benjamin C.; Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu

    We consider the formation of satellites around the Pluto–Charon binary. An early collision between the two partners likely produced the binary and a narrow ring of debris, out of which arose the moons Styx, Nix, Kerberos, and Hydra. How the satellites emerged from the compact ring is uncertain. Here we show that a particle ring spreads from physical collisions and collective gravitational scattering, similar to migration. Around a binary, these processes take place in the reference frames of “most circular” orbits, akin to circular ones in a Keplerian potential. Ring particles damp to these orbits and avoid destructive collisions. Dampingmore » and diffusion also help particles survive dynamical instabilities driven by resonances with the binary. In some situations, particles become trapped near resonances that sweep outward with the tidal evolution of the Pluto–Charon binary. With simple models and numerical experiments, we show how the Pluto–Charon impact ring may have expanded into a broad disk, out of which grew the circumbinary moons. In some scenarios, the ring can spread well beyond the orbit of Hydra, the most distant moon, to form a handful of smaller satellites. If these small moons exist, New Horizons will find them.« less

  8. Measurement of prompt D -meson production in p – Pb collisions at s N N = 5.02 TeV

    DOE PAGES

    Abelev, B.; Adam, J.; Adamová, D.; ...

    2014-12-04

    The p T-differential production cross sections of the prompt charmed mesons D 0, D +, D *+, and D + s and their charge conjugate in the rapidity interval –0.96 < y cms < 0.04 were measured in p–Pb collisions at a center-of-mass energy √s NN = 5.02 TeV with the ALICE detector at the LHC. The nuclear modification factor R pPb, quantifying the D-meson yield in p–Pb collisions relative to the yield in pp collisions scaled by the number of binary nucleon-nucleon collisions, is compatible within the 15%–20% uncertainties with unity in the transverse momentum interval 1 < pmore » T < 24 GeV/c. No significant difference among the R pPb of the four D-meson species is observed. The results are described within uncertainties by theoretical calculations that include initial-state effects. In conclusion, the measurement adds experimental evidence that the modification of the momentum spectrum of D mesons observed in Pb-Pb collisions with respect to pp collisions is due to strong final-state effects induced by hot partonic matter.« less

  9. Measurement of prompt D-meson production in p-Pb collisions at √(s(NN))=5.02 TeV.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agostinelli, A; Agrawal, N; Ahammed, Z; Ahmad, N; Ahmed, I; Ahn, S U; Ahn, S A; Aimo, I; Aiola, S; Ajaz, M; Akindinov, A; Alam, S N; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altinpinar, S; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arcelli, S; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Augustinus, A; Averbeck, R; Awes, T C; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Belmont, R; Belyaev, V; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Berger, M E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhati, A K; Bhattacharjee, B; Bhom, J; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blau, D; Blume, C; Bock, F; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Böhmer, F V; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bossú, F; Botje, M; Botta, E; Böttger, S; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Calero Diaz, L; Caliva, A; Calvo Villar, E; Camerini, P; Carena, F; Carena, W; Castillo Castellanos, J; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Chelnokov, V; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Conesa Balbastre, G; Conesa Del Valle, Z; Connors, M E; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Crochet, P; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Das, D; Das, I; Das, K; Das, S; Dash, A; Dash, S; De, S; Delagrange, H; Deloff, A; Dénes, E; D'Erasmo, G; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; de Rooij, R; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Divià, R; Di Bari, D; Di Liberto, S; Di Mauro, A; Di Nezza, P; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Dørheim, S; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Hilden, T E; Ehlers, R J; Elia, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Esposito, M; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Feofilov, G; Ferencei, J; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Gomez Ramirez, A; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Graczykowski, L K; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gumbo, M; Gunji, T; Gupta, A; Gupta, R; Khan, K H; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Hanratty, L D; Hansen, A; Harris, J W; Hartmann, H; Harton, A; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Hess, B A; Hetland, K F; Hippolyte, B; Hladky, J; Hristov, P; Huang, M; Humanic, T J; Hussain, N; Hutter, D; Hwang, D S; Ilkaev, R; Ilkiv, I; Inaba, M; Innocenti, G M; Ionita, C; Ippolitov, M; Irfan, M; Ivanov, M; Ivanov, V; Jachołkowski, A; Jacobs, P M; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jena, S; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kadyshevskiy, V; Kalcher, S; Kalinak, P; Kalweit, A; Kamin, J; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Khan, M M; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, B; Kim, D W; Kim, D J; Kim, J S; Kim, M; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, J; Klein-Bösing, C; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Köhler, M K; Kollegger, T; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kravčáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kučera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; Ladron de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; Lara, C; Lardeux, A; Lattuca, A; La Pointe, S L; La Rocca, P; Lea, R; Leardini, L; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenti, V; Leogrande, E; Leoncino, M; León Monzón, I; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Lopez, X; López Torres, E; Lu, X-G; Luettig, P; Lunardon, M; Luparello, G; Luzzi, C; Ma, R; Maevskaya, A; Mager, M; Mahapatra, D P; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Marquard, M; Martashvili, I; Martin, N A; Martinengo, P; Martínez, M I; Martínez García, G; Martin Blanco, J; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mlynarz, J; Mohammadi, N; Mohanty, B; Molnar, L; Montaño Zetina, L; Montes, E; Morando, M; Moreira De Godoy, D A; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Musinsky, J; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, K; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Nilsen, B S; Noferini, F; Nomokonov, P; Nooren, G; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Oh, S; Oh, S K; Okatan, A; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Onderwaater, J; Oppedisano, C; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Ozdemir, M; Sahoo, P; Pachmayer, Y; Pachr, M; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palmeri, A; Pant, D; Papikyan, V; Pappalardo, G S; Pareek, P; Park, W J; Parmar, S; Passfeld, A; Patalakha, D I; Paticchio, V; Paul, B; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Pesci, A; Peskov, V; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Pohjoisaho, E H O; Polichtchouk, B; Poljak, N; Pop, A; Porteboeuf-Houssais, S; Porter, J; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Pujahari, P; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Raha, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Rauf, A W; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riabov, V; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rocco, E; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohni, S; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Ronflette, L; Rosnet, P; Rossi, A; Roukoutakis, F; Roy, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Ryabov, Y; Rybicki, A; Sadovsky, S; Šafařík, K; Sahlmuller, B; Sahoo, R; Sahu, P K; Saini, J; Sakai, S; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sánchez Rodríguez, F J; Šándor, L; Sandoval, A; Sano, M; Santagati, G; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schulc, M; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Segato, G; Seger, J E; Sekiguchi, Y; Selyuzhenkov, I; Seo, J; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Shangaraev, A; Sharma, N; Sharma, S; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Slupecki, M; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Song, J; Song, M; Soramel, F; Sorensen, S; Spacek, M; Spiriti, E; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Sultanov, R; Šumbera, M; Susa, T; Symons, T J M; Szabo, A; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymanski, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Toia, A; Trubnikov, V; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Uras, A; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; Vande Vyvre, P; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Velure, A; Venaruzzo, M; Vercellin, E; Vergara Limón, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, J; Wagner, V; Wang, M; Wang, Y; Watanabe, D; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Wilkinson, J; Williams, M C S; Windelband, B; Winn, M; Yaldo, C G; Yamaguchi, Y; Yang, H; Yang, P; Yang, S; Yano, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yushmanov, I; Zaccolo, V; Zach, C; Zaman, A; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zgura, I S; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhao, C; Zhigareva, N; Zhou, D; Zhou, F; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zhu, X; Zichichi, A; Zimmermann, A; Zimmermann, M B; Zinovjev, G; Zoccarato, Y; Zyzak, M

    2014-12-05

    The p_{T}-differential production cross sections of the prompt charmed mesons D^{0}, D^{+}, D^{*+}, and D_{s}^{+} and their charge conjugate in the rapidity interval -0.96

  10. ϕ meson production in d +Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Caringi, A.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Conesa Del Valle, Z.; Connors, M.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, D.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Dutta, D.; Edwards, S.; Efremenko, Y. V.; Ellinghaus, F.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ikeda, Y.; Imai, K.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ishihara, M.; Issah, M.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kamin, J.; Kanda, S.; Kang, J. H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, Y.-J.; Kimelman, B.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Komkov, B.; Konno, M.; Koster, J.; Kotov, D.; Král, A.; Kravitz, A.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leite, M. A. L.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miki, K.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Nattrass, C.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Oka, M.; Okada, K.; Onuki, Y.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rowan, Z.; Rubin, J. G.; Ružička, P.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakashita, K.; Sako, H.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Themann, H.; Thomas, D.; Thomas, T. L.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, A. S.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration

    2015-10-01

    The PHENIX Collaboration has measured ϕ meson production in d +Au collisions at √{sNN}=200 GeV using the dimuon and dielectron decay channels. The ϕ meson is measured in the forward (backward) d -going (Au-going) direction, 1.2

  11. Centrality dependence of the charged particle multiplicity near midrapidity in Au+Au collisions at (sNN)=130 and 200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Ballintijn, M.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bickley, A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-06-01

    The PHOBOS experiment has measured the charged particle multiplicity at midrapidity in Au+Au collisions at (sNN)=200 GeV as a function of the collision centrality. Results on dNch/dη\\|\\|η\\|<1 divided by the number of participating nucleon pairs /2 are presented as a function of . As was found from similar data at (sNN)=130 GeV, the data can be equally well described by parton saturation models and two-component fits, which include contributions that scale as Npart and the number of binary collisions Ncoll. We compare the data at the two energies by means of the ratio R200/130 of the charged particle multiplicity for the two different energies as a function of . For events with >100, we find that this ratio is consistent with a constant value of 1.14+/-0.01(stat)+/-0.05(syst).

  12. Two distinct sequences of blue straggler stars in the globular cluster M 30.

    PubMed

    Ferraro, F R; Beccari, G; Dalessandro, E; Lanzoni, B; Sills, A; Rood, R T; Pecci, F Fusi; Karakas, A I; Miocchi, P; Bovinelli, S

    2009-12-24

    Stars in globular clusters are generally believed to have all formed at the same time, early in the Galaxy's history. 'Blue stragglers' are stars massive enough that they should have evolved into white dwarfs long ago. Two possible mechanisms have been proposed for their formation: mass transfer between binary companions and stellar mergers resulting from direct collisions between two stars. Recently the binary explanation was claimed to be dominant. Here we report that there are two distinct parallel sequences of blue stragglers in M 30. This globular cluster is thought to have undergone 'core collapse', during which both the collision rate and the mass transfer activity in binary systems would have been enhanced. We suggest that the two observed sequences are a consequence of cluster core collapse, with the bluer population arising from direct stellar collisions and the redder one arising from the evolution of close binaries that are probably still experiencing an active phase of mass transfer.

  13. Outcome regimes of binary raindrop collisions

    NASA Astrophysics Data System (ADS)

    Testik, Firat Y.

    2009-11-01

    This study delineates the physical conditions that are responsible for the occurrence of main outcome regimes (i.e., bounce, coalescence, and breakup) for binary drop collisions with a precipitation microphysics perspective. Physical considerations based on the collision kinetic energy and the surface energies of the colliding drops lead to the development of a theoretical regime diagram for the drop/raindrop collision outcomes in the We- p plane ( We — Weber number, p — raindrop diameter ratio). This theoretical regime diagram is supported by laboratory experimental observations of drop collisions using high-speed imaging. Results of this fundamental study bring in new insights into the quantitative understanding of drop dynamics, applications of which extend beyond precipitation microphysics. In particular, results of this drop collision study are expected to give impetus to the physics-based dynamic modeling of the drop size distributions that is essential for various typical modern engineering applications, including numerical modeling of evolution of raindrop size distribution in rain shaft.

  14. Blue Stragglers and Other Stars of Mass Consumption in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Panurach, Teresa; Leigh, Nathan

    2018-01-01

    Simulations of globular clusters suggest that collisions between main-sequence (MS) stars happen frequently. Stellar evolution models show that these collision products can be photometrically identified, appearing off the MS locus. These collision products can appear brighter and bluer than the MS turnoff, called “blue stragglers,” or even less massive and redder than the MS. We use proper motion-cleaned photometry from the Hubble Space Telescope of 38 globular clusters to identify candidate collision products. We compare the spectral energy distributions of our candidates to theoretical templates for single and multiple star systems, to constrain the possible presence of a binary companion and test consistency with theoretical stellar evolution models for collision products. For the BSs, we also compare the observed velocities from the proper motion catalog along with mass estimates derived from isochrone-fitting to theoretical predictions for both the collision and binary mass transfer models and find better agreement with the former.

  15. B -meson production at forward and backward rapidity in p + p and Cu + Au collisions at s N N = 200 GeV

    DOE PAGES

    Aidala, C.; Ajitanand, N. N.; Akiba, Y.; ...

    2017-12-04

    The fraction of J/Ψ mesons which come from B-meson decay, F B→J/Ψ, is measured in this paper for J/Ψ rapidity 1.2 < |y| < 2.2 and p T > 0 in p + p and Cu+Au collisions at √ sNN = 200 GeV with the PHENIX detector. The extracted fraction is F B→J/Ψ = 0.025 ± 0.006 (stat) ± 0.010(syst) for p + p collisions. For Cu+Au collisions, F B→J/Ψ is 0.094 ± 0.028 (stat) ± 0.037(syst) in the Au-going direction (-2.2 < y < -1.2) and 0.089 ± 0.026(stat) ± 0.040(syst) in the Cu-going direction (1.2 < y

  16. B -meson production at forward and backward rapidity in p + p and Cu + Au collisions at s N N = 200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aidala, C.; Ajitanand, N. N.; Akiba, Y.

    The fraction of J/Ψ mesons which come from B-meson decay, F B→J/Ψ, is measured in this paper for J/Ψ rapidity 1.2 < |y| < 2.2 and p T > 0 in p + p and Cu+Au collisions at √ sNN = 200 GeV with the PHENIX detector. The extracted fraction is F B→J/Ψ = 0.025 ± 0.006 (stat) ± 0.010(syst) for p + p collisions. For Cu+Au collisions, F B→J/Ψ is 0.094 ± 0.028 (stat) ± 0.037(syst) in the Au-going direction (-2.2 < y < -1.2) and 0.089 ± 0.026(stat) ± 0.040(syst) in the Cu-going direction (1.2 < y

  17. Wind collisions in three massive stars of Cygnus OB2

    NASA Astrophysics Data System (ADS)

    Cazorla, Constantin; Nazé, Yaël; Rauw, Gregor

    2014-01-01

    Aims: We wish to study the origin of the X-ray emission of three massive stars in the Cyg OB2 association: Cyg OB2 #5, Cyg OB2 #8A, and Cyg OB2 #12. Methods: To this aim, dedicated X-ray observations from XMM-Newton and Swift are used, as well as archival ROSAT and Suzaku data. Results: Our results on Cyg OB2 #8A improve the phase coverage of the orbit and confirm previous studies: the signature of a wind-wind collision is conspicuous. In addition, signatures of a wind-wind collision are also detected in Cyg OB2 #5, but the X-ray emission appears to be associated with the collision between the inner binary and the tertiary component orbiting it with a 6.7 yr period, without a putative collision inside the binary. The X-ray properties strongly constrain the orbital parameters, notably allowing us to discard some proposed orbital solutions. To improve the knowledge of the orbit, we revisit the light curves and radial velocity of the inner binary, looking for reflex motion induced by the third star. Finally, the X-ray emission of Cyg OB2 #12 is also analyzed. It shows a marked decrease in recent years, compatible with either a wind-wind collision in a wide binary or the aftermath of a recent eruption. Based on observations collected at the Observatoire de Haute Provence (OHP) as well as with Swift and XMM-Newton.Tables 1-3 and 5 are available in electronic form at http://www.aanda.org

  18. Cold-nuclear-matter effects on heavy-quark production at forward and backward rapidity in d + Au collisions at √sNN = 200  GeV.

    PubMed

    Adare, A; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Al-Ta'ani, H; Alexander, J; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Appelt, E; Aramaki, Y; Armendariz, R; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Bannier, B; Barish, K N; Bassalleck, B; Basye, A T; Bathe, S; Baublis, V; Baumann, C; Bazilevsky, A; Belikov, S; Belmont, R; Ben-Benjamin, J; Bennett, R; Bhom, J H; Blau, D S; Bok, J S; Boyle, K; Brooks, M L; Broxmeyer, D; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Campbell, S; Caringi, A; Castera, P; Chen, C-H; Chi, C Y; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Chvala, O; Cianciolo, V; Citron, Z; Cole, B A; Conesa Del Valle, Z; Connors, M; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Das, K; Datta, A; David, G; Dayananda, M K; Denisov, A; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Donadelli, M; Drapier, O; Drees, A; Drees, K A; Durham, J M; Durum, A; Dutta, D; D'Orazio, L; Edwards, S; Efremenko, Y V; Ellinghaus, F; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Fadem, B; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gal, C; Garishvili, I; Glenn, A; Gong, H; Gong, X; Gonin, M; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gunji, T; Guo, L; Gustafsson, H-Å; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Han, R; Hanks, J; Harper, C; Hashimoto, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hill, J C; Hohlmann, M; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Inaba, M; Iordanova, A; Isenhower, D; Ishihara, M; Issah, M; Ivanischev, D; Iwanaga, Y; Jacak, B V; Jia, J; Jiang, X; Jin, J; John, D; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kamin, J; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, D J; Kim, E-J; Kim, Y-J; Kim, Y K; Kinney, E; Kiss, A; Kistenev, E; Kleinjan, D; Kline, P; Kochenda, L; Komkov, B; Konno, M; Koster, J; Kotov, D; Král, A; Kravitz, A; Kunde, G J; Kurita, K; Kurosawa, M; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, S H; Lee, S R; Leitch, M J; Leite, M A L; Li, X; Lichtenwalner, P; Liebing, P; Lim, S H; Linden Levy, L A; Liška, T; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Miki, K; Milov, A; Mitchell, J T; Miyachi, Y; Mohanty, A K; Moon, H J; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Murakami, T; Murata, J; Nagamiya, S; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Newby, J; Nguyen, M; Nihashi, M; Nouicer, R; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Oka, M; Okada, K; Onuki, Y; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, S K; Park, W J; Pate, S F; Patel, L; Pei, H; Peng, J-C; Pereira, H; Peressounko, D Yu; Petti, R; Pinkenburg, C; Pisani, R P; Proissl, M; Purschke, M L; Qu, H; Rak, J; Ravinovich, I; Read, K F; Rembeczki, S; Reygers, K; Riabov, V; Riabov, Y; Richardson, E; Roach, D; Roche, G; Rolnick, S D; Rosati, M; Rosen, C A; Rosendahl, S S E; Ružička, P; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakashita, K; Samsonov, V; Sano, S; Sarsour, M; Sato, T; Savastio, M; Sawada, S; Sedgwick, K; Seele, J; Seidl, R; Seto, R; Sharma, D; Shein, I; Shibata, T-A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Slunečka, M; Sodre, T; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Stankus, P W; Stenlund, E; Stoll, S P; Sugitate, T; Sukhanov, A; Sun, J; Sziklai, J; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tennant, E; Themann, H; Thomas, D; Thomas, T L; Togawa, M; Toia, A; Tomášek, L; Tomášek, M; Torii, H; Towell, R S; Tserruya, I; Tsuchimoto, Y; Utsunomiya, K; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Ying, J; Yokkaichi, S; Yoo, J S; You, Z; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zelenski, A; Zhou, S

    2014-06-27

    The PHENIX experiment has measured open heavy-flavor production via semileptonic decay over the transverse momentum range 1 < p(T) < 6  GeV/c at forward and backward rapidity (1.4 < |y| < 2.0) in d+Au and p + p collisions at √sNN = 200  GeV. In central d+Au collisions, relative to the yield in p + p collisions scaled by the number of binary nucleon-nucleon collisions, a suppression is observed at forward rapidity (in the d-going direction) and an enhancement at backward rapidity (in the Au-going direction). Predictions using nuclear-modified-parton-distribution functions, even with additional nuclear-p(T) broadening, cannot simultaneously reproduce the data at both rapidity ranges, which implies that these models are incomplete and suggests the possible importance of final-state interactions in the asymmetric d + Au collision system. These results can be used to probe cold-nuclear-matter effects, which may significantly affect heavy-quark production, in addition to helping constrain the magnitude of charmonia-breakup effects in nuclear matter.

  19. Stellar Collisions and Blue Straggler Stars in Dense Globular Clusters

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Rasio, Frederic A.; Sills, Alison; Glebbeek, Evert

    2013-11-01

    Blue straggler stars (BSSs) are abundantly observed in all Galactic globular clusters (GGCs) where data exist. However, observations alone cannot reveal the relative importance of various formation channels or the typical formation times for this well-studied population of anomalous stars. Using a state-of-the-art Hénon-type Monte Carlo code that includes all relevant physical processes, we create 128 models with properties typical of the observed GGCs. These models include realistic numbers of single and binary stars, use observationally motivated initial conditions, and span large ranges in central density, concentration, binary fraction, and mass. Their properties can be directly compared with those of observed GGCs. We can easily identify the BSSs in our models and determine their formation channels and birth times. We find that for central densities above ~103 M ⊙ pc-3, the dominant formation channel is stellar collisions, while for lower density clusters, mass transfer in binaries provides a significant contribution (up to 60% in our models). The majority of these collisions are binary-mediated, occurring during three-body and four-body interactions. As a result, a strong correlation between the specific frequency of BSSs and the binary fraction in a cluster can be seen in our models. We find that the number of BSSs in the core shows only a weak correlation with the collision rate estimator Γ traditionally used by observers, in agreement with the latest Hubble Space Telescope Advanced Camera for Surveys data. Using an idealized "full mixing" prescription for collision products, our models indicate that the BSSs observed today may have formed several Gyr ago. However, denser clusters tend to have younger (~1 Gyr) BSSs.

  20. A binary origin for 'blue stragglers' in globular clusters.

    PubMed

    Knigge, Christian; Leigh, Nathan; Sills, Alison

    2009-01-15

    Blue stragglers in globular clusters are abnormally massive stars that should have evolved off the stellar main sequence long ago. There are two known processes that can create these objects: direct stellar collisions and binary evolution. However, the relative importance of these processes has remained unclear. In particular, the total number of blue stragglers found in a given cluster does not seem to correlate with the predicted collision rate, providing indirect support for the binary-evolution model. Yet the radial distributions of blue stragglers in many clusters are bimodal, with a dominant central peak: this has been interpreted as an indication that collisions do dominate blue straggler production, at least in the high-density cluster cores. Here we report that there is a clear, but sublinear, correlation between the number of blue stragglers found in a cluster core and the total stellar mass contained within it. From this we conclude that most blue stragglers, even those found in cluster cores, come from binary systems. The parent binaries, however, may themselves have been affected by dynamical encounters. This may be the key to reconciling all of the seemingly conflicting results found to date.

  1. A diagrammatic formulation of the kinetic theory of fluctuations in equilibrium classical fluids. VI. Binary collision approximations for the memory function for self-correlation functions

    NASA Astrophysics Data System (ADS)

    Noah-Vanhoucke, Joyce E.; Andersen, Hans C.

    2007-08-01

    We use computer simulation results for a dense Lennard-Jones fluid for a range of temperatures to test the accuracy of various binary collision approximations for the memory function for density fluctuations in liquids. The approximations tested include the moderate density approximation of the generalized Boltzmann-Enskog memory function (MGBE) of Mazenko and Yip [Statistical Mechanics. Part B. Time-Dependent Processes, edited by B. J. Berne (Plenum, New York, 1977)], the binary collision approximation (BCA) and the short time approximation (STA) of Ranganathan and Andersen [J. Chem. Phys. 121, 1243 (2004); J. Phys. Chem. 109, 21437 (2005)] and various other approximations we derived by using diagrammatic methods. The tests are of two types. The first is a comparison of the correlation functions predicted by each approximate memory function with the simulation results, especially for the self-longitudinal current correlation (SLCC) function. The second is a direct comparison of each approximate memory function with a memory function numerically extracted from the correlation function data. The MGBE memory function is accurate at short times but decays to zero too slowly and gives a poor description of the correlation function at intermediate times. The BCA is exact at zero time, but it predicts a correlation function that diverges at long times. The STA gives a reasonable description of the SLCC but does not predict the correct temperature dependence of the negative dip in the function that is associated with caging at low temperatures. None of the other binary collision approximations is a systematic improvement on the STA. The extracted memory functions have a rapidly decaying short time part, much like the STA, and a much smaller, more slowly decaying part of the type predicted by a mode coupling theory. Theories that use mode coupling commonly include a binary collision term in the memory function but do not discuss in detail the nature of that term. It is clear from the present work that the short time part of the memory function has a behavior associated with brief binary repulsive collisions, such as those described by the STA. Collisions that include attractive as well as repulsive interactions, such as those of the MGBE, have a much longer duration, and theories that include them have memory functions that decay to zero much too slowly to provide a good first approximation of the correlation function. This leads us to speculate that the memory function for density fluctuations can be usefully regarded as a sum of at least three parts: a contribution from repulsive binary collisions (the STA or something similar to it), another short time part that is related to all the other interactions (but whose nature is not understood), and a longer time slowly decaying part that describes caging (of the type predicted by the mode coupling theory).

  2. Combined binary collision and continuum mechanics model applied to focused ion beam milling of a silicon membrane

    NASA Astrophysics Data System (ADS)

    Hobler, Gerhard

    2015-06-01

    Many experiments indicate the importance of stress and stress relaxation upon ion implantation. In this paper, a model is proposed that is capable of describing ballistic effects as well as stress relaxation by viscous flow. It combines atomistic binary collision simulation with continuum mechanics. The only parameters that enter the continuum model are the bulk modulus and the radiation-induced viscosity. The shear modulus can also be considered but shows only minor effects. A boundary-fitted grid is proposed that is usable both during the binary collision simulation and for the spatial discretization of the force balance equations. As an application, the milling of a slit into an amorphous silicon membrane with a 30 keV focused Ga beam is studied, which demonstrates the relevance of the new model compared to a more heuristic approach used in previous work.

  3. Centrality dependence of particle production in p - Pb collisions at s NN = 5.02 TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2015-06-08

    Here, we report measurements of the primary charged-particle pseudorapidity density and transverse momentum distributions in p–Pb collisions at √s NN = 5.02TeV and investigate their correlation with experimental observables sensitive to the centrality of the collision. Centrality classes are defined by using different event-activity estimators, i.e., charged-particle multiplicities measured in three different pseudorapidity regions as well as the energy measured at beam rapidity (zero degree). The procedures to determine the centrality, quantified by the number of participants (N part) or the number of nucleon-nucleon binary collisions (N coll) are described. We show that, in contrast to Pb-Pb collisions, in p–Pbmore » collisions large multiplicity fluctuations together with the small range of participants available generate a dynamical bias in centrality classes based on particle multiplicity. We propose to use the zero-degree energy, which we expect not to introduce a dynamical bias, as an alternative event-centrality estimator. Based on zero-degree energy-centrality classes, the N part dependence of particle production is studied. Under the assumption that the multiplicity measured in the Pb-going rapidity region scales with the number of Pb participants, an approximate independence of the multiplicity per participating nucleon measured at mid-rapidity of the number of participating nucleons is observed. Furthermore, at high-p T the p–Pb spectra are found to be consistent with the pp spectra scaled by N coll for all centrality classes. Our results represent valuable input for the study of the event-activity dependence of hard probes in p–Pb collisions and, hence, help to establish baselines for the interpretation of the Pb-Pb data.« less

  4. Kaon and lambda production at intermediate pT: Insights into the hadronization of the bulk partonic matter created in Au+Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Sorensen, Paul Richard

    2003-06-01

    Measurements of identified particles over a broad transverse momentum pT range may provide particularly strong evidence for the existence of a thermalized partonic state in heavy-ion collisions ( i.e. a quark-gluon plasma). Of particular interest are the centrality dependence and the azimuthal anisotropy in the yield of baryons and mesons at intermediate pT. The first measurements of v2---an event-by-event azimuthal anisotropy parameter---and the nuclear modification factor RCP for mid-rapidity K0S and Λ + L¯ production in Au+Au collisions at ultra-relativistic energy are presented. The K0S , Λ and L¯ candidates are selected based on characteristics of their decays in the STAR Time Projection Chamber (TPC). A statistical treatment is used to extract v2(pT) and RCP(pT) from their invariant mass distributions. These measurements establish the particle type dependence of v2 and RCP in the kinematic region 0.4 < pT < 6.0 and |y| < 1.0. In the low pT region (pT < 1.0 GeV/c) the v2 values for different particles are increasing with pT and follow a mass dependence similar to that expected from hydrodynamical models of Au+Au collisions---where, at a given pT, the particle with the larger mass will have a smaller v2. At higher p T however, v2 of the heavier Λ hyperon continues to increase while v2 of the lighter K0S meson saturates at v2 ˜ 0.13 for 2.0 < pT < 5.0 GeV/c. At intermediate pT the v2 of K0S and Λ + L¯ are shown to follow a number-of-constituent-quark scaling with vkaon2pT /22≈v lambda2pT/3 3 . The binary collision scaled centrality ratio RCP shows that Λ + L¯ production at intermediate pT increases more rapidly with system size than kaon production: This is consistent with a scenario where multi-parton dynamics play an important role in particle production. At pT ≈ 5.5 GeV/c Λ + L¯ , K0S , and charged hadron production are all suppressed by a similar amount: a factor of three below expectations from binary nucleon-nucleon collision scaling (i.e. RCP ≈ 0.33). This p T value establishes the extent to which the centrality dependent enhancement of baryon production persists. The particle-type dependence of v2 and RCP provides a stringent test for models of heavy-ion collisions. In particular the larger values of Λ + L¯ v2 compared to their smaller suppression manifested in RCP suggests that for p T < 4.0 GeV/c a particle production mechanism beyond the framework of energy loss and fragmentation exists in central Au+Au collisions. The particle- and pT-dependence of v 2, and RCP are consistent, however, with expectations based on the hadronization of a bulk partonic matter by coalescence or recombination. As such, the constituent-quark-number scaled v 2 reflects the anisotropy established in a partonic stage and provides strong evidence for the existence of a quark-gluon plasma in Au+Au collisions at RHIC.

  5. W and Z boson production in p-Pb collisions at √{s_{NN}}=5.02 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; An, M.; Andrei, C.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossù, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buitron, S. A. I.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovská, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Garg, P.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hladky, J.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Llope, W.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Mishra, T.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Witt, W. E.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.

    2017-02-01

    The W and Z boson production was measured via the muonic decay channel in proton-lead collisions at √{s_{NN}}=5.02 TeV at the Large Hadron Collider with the ALICE detector. The measurement covers backward (-4.46 < y cms < -2.96) and forward (2.03 < y cms < 3.53) rapidity regions, corresponding to Pb-going and p-going directions, respectively. The Z-boson production cross section, with dimuon invariant mass of 60 < m μμ < 120 GeV/ c 2 and muon transverse momentum ( p T μ ) larger than 20 GeV/ c, is measured. The production cross section and charge asymmetry of muons from W-boson decays with p T μ > 10 GeV/ c are determined. The results are compared to theoretical calculations both with and without including the nuclear modification of the parton distribution functions. The W-boson production is also studied as a function of the collision centrality: the cross section of muons from W-boson decays is found to scale with the average number of binary nucleon-nucleon collisions within uncertainties.

  6. Φ meson production in d+Au collisions at √s NN = 200 GeV

    DOE PAGES

    Adare, A.

    2015-10-19

    The PHENIX Collaboration has measured Φ meson production in d+Au collisions at √s NN=200 GeV using the dimuon and dielectron decay channels. The Φ meson is measured in the forward (backward) d-going (Au-going) direction, 1.2 < y < 2.2 (–2.2 < y < –1.2) in the transverse-momentum (p T) range from 1–7 GeV/c and at midrapidity |y|<0.35 in the p T range below 7 GeV/c. The Φ meson invariant yields and nuclear-modification factors as a function of p T, rapidity, and centrality are reported. An enhancement of Φ meson production is observed in the Au-going direction, while suppression is seenmore » in the d-going direction, and no modification is observed at midrapidity relative to the yield in p+p collisions scaled by the number of binary collisions. As a result, similar behavior was previously observed for inclusive charged hadrons and open heavy flavor, indicating similar cold-nuclear-matter effects.« less

  7. Forward J /ψ production in U + U collisions at √{sN N}=193 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration

    2016-03-01

    The invariant yields, d N /d y , for J /ψ production at forward rapidity (1.2 <|y |<2.2 ) in U +U collisions at √{sNN}=193 GeV have been measured as a function of collision centrality. The invariant yields and nuclear-modification factor RA A are presented and compared with those from Au +Au collisions in the same rapidity range. Additionally, the direct ratio of the invariant yields from U +U and Au +Au collisions within the same centrality class is presented, and used to investigate the role of c c ¯ coalescence. Two different parametrizations of the deformed Woods-Saxon distribution were used in Glauber calculations to determine the values of the number of nucleon-nucleon collisions in each centrality class, Ncoll, and these were found to give significantly different Ncoll values. Results using Ncoll values from both deformed Woods-Saxon distributions are presented. The measured ratios show that the J /ψ suppression, relative to binary collision scaling, is similar in U +U and Au +Au for peripheral and midcentral collisions, but that J /ψ show less suppression for the most central U +U collisions. The results are consistent with a picture in which, for central collisions, increase in the J /ψ yield due to c c ¯ coalescence becomes more important than the decrease in yield due to increased energy density. For midcentral collisions, the conclusions about the balance between c c ¯ coalescence and suppression depend on which deformed Woods-Saxon distribution is used to determine Ncoll.

  8. A multiphase ion-transport analysis of the electrostatic disjoining pressure: implications for binary droplet coalescence

    NASA Astrophysics Data System (ADS)

    Mason, Lachlan; Gebauer, Felix; Bart, Hans-Jörg; Stevens, Geoffrey; Harvie, Dalton

    2016-11-01

    Understanding the physics of emulsion coalescence is critical for the robust simulation of industrial solvent extraction processes, in which loaded organic and raffinate phases are separated via the coalescence of dispersed droplets. At the droplet scale, predictive collision-outcome models require an accurate description of the repulsive surface forces arising from electrical-double-layer interactions. The conventional disjoining-pressure treatment of double-layer forces, however, relies on assumptions which do not hold generally for deformable droplet collisions: namely, low interfacial curvature and negligible advection of ion species. This study investigates the validity bounds of the disjoining pressure approximation for low-inertia droplet interactions. A multiphase ion-transport model, based on a coupling of droplet-scale Nernst-Planck and Navier-Stokes equations, predicts ion-concentration fields that are consistent with the equilibrium Boltzmann distribution; indicating that the disjoining-pressure approach is valid for both static and dynamic interactions in low-Reynolds-number settings. The present findings support the development of coalescence kernels for application in macro-scale population balance modelling.

  9. Comparison of the binary logistic and skewed logistic (Scobit) models of injury severity in motor vehicle collisions.

    PubMed

    Tay, Richard

    2016-03-01

    The binary logistic model has been extensively used to analyze traffic collision and injury data where the outcome of interest has two categories. However, the assumption of a symmetric distribution may not be a desirable property in some cases, especially when there is a significant imbalance in the two categories of outcome. This study compares the standard binary logistic model with the skewed logistic model in two cases in which the symmetry assumption is violated in one but not the other case. The differences in the estimates, and thus the marginal effects obtained, are significant when the assumption of symmetry is violated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Possibility of exchange of a rectilinear three-body system with zero energy

    NASA Astrophysics Data System (ADS)

    Koda, Eiji

    The possibility of exchange for a rectilinear three-body system with zero energy is examined by introducing regularized coordinates which are closely related to McGehee's (1974) coordinates. It is shown that all of the HE(-)-HE(+) orbits are of exchange type in a critical system whose orbits of parabolic-parabolic escape type experience odd times of binary collision. No exchange occurs in critical systems whose orbits of parabolic-parabolic escape type experience even times of binary collision.

  11. Calculation of shear viscosity using Green-Kubo relations within a parton cascade

    NASA Astrophysics Data System (ADS)

    Wesp, C.; El, A.; Reining, F.; Xu, Z.; Bouras, I.; Greiner, C.

    2011-11-01

    The shear viscosity of a gluon gas is calculated using the Green-Kubo relation. Time correlations of the energy-momentum tensor in thermal equilibrium are extracted from microscopic simulations using a parton cascade solving various Boltzmann collision processes. We find that the perturbation-QCD- (pQCD-) based gluon bremsstrahlung described by Gunion-Bertsch processes significantly lowers the shear viscosity by a factor of 3 to 8 compared to elastic scatterings. The shear viscosity scales with the coupling as η˜1/[αs2log(1/αs)]. For constant αs the shear viscosity to entropy density ratio η/s has no dependence on temperature. Replacing the pQCD-based collision angle distribution of binary scatterings by an isotropic form decreases the shear viscosity by a factor of 3.

  12. Droplet-air collision dynamics: Evolution of the film thickness

    NASA Astrophysics Data System (ADS)

    Opfer, L.; Roisman, I. V.; Venzmer, J.; Klostermann, M.; Tropea, C.

    2014-01-01

    This study is devoted to the experimental and theoretical investigation of aerodynamic drop breakup phenomena. We show that the phenomena of drop impact onto a rigid wall, drop binary collisions, and aerodynamic drop deformation are similar if the correct scaling is applied. Then we use observations of the deforming drop to estimate the evolution of the film thickness of the bag, the value that determines the size of the fine child drops produced by bag breakup. This prediction of film thickness, based on film kinematics, is validated for the initial stage by direct drop thickness measurements and at the latest stage by the data obtained from the velocity of hole expansion in the film. It is shown that the film thickness correlates well with the dimensionless position of the bag apex.

  13. Before the Smashup Artist Concept

    NASA Image and Video Library

    2010-08-23

    This artist concept illustrates an imminent planetary collision around a pair of double stars. NASA Spitzer Space Telescope found evidence that such collisions could be common around a certain type of tight double, or binary, star system.

  14. Are There Frame-Distortion Contributions to Collision-Induced Absorption and Collision-Induced Light Scattering?

    NASA Astrophysics Data System (ADS)

    Hohm, Uwe

    2007-12-01

    Collision-induced spectroscopy, such as collision-induced absorption (CIA) and collision-induced light scattering (CILS), can give valuable information on permanent electric moments, polarizabilities and intermolecular-interaction potentials. In general the collision-induced spectra of the pure rare-gases and their binary mixtures are understood fairly well. However if at least one of the collision partners is a molecule then in some cases the spectra show features which can hardly be explained by current theories which deal with the case of undistorted molecules. Here we discuss the possibility of collision-induced frame distortion as an additional effect to be considered in collision-induced spectroscopy.

  15. Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale

    NASA Astrophysics Data System (ADS)

    Cardoso, Vitor; Hopper, Seth; Macedo, Caio F. B.; Palenzuela, Carlos; Pani, Paolo

    2016-10-01

    Gravitational waves from binary coalescences provide one of the cleanest signatures of the nature of compact objects. It has been recently argued that the postmerger ringdown waveform of exotic ultracompact objects is initially identical to that of a black hole, and that putative corrections at the horizon scale will appear as secondary pulses after the main burst of radiation. Here we extend this analysis in three important directions: (i) we show that this result applies to a large class of exotic compact objects with a photon sphere for generic orbits in the test-particle limit; (ii) we investigate the late-time ringdown in more detail, showing that it is universally characterized by a modulated and distorted train of "echoes"of the modes of vibration associated with the photon sphere; (iii) we study for the first time equal-mass, head-on collisions of two ultracompact boson stars and compare their gravitational-wave signal to that produced by a pair of black holes. If the initial objects are compact enough as to mimic a binary black-hole collision up to the merger, the final object exceeds the maximum mass for boson stars and collapses to a black hole. This suggests that—in some configurations—the coalescence of compact boson stars might be almost indistinguishable from that of black holes. On the other hand, generic configurations display peculiar signatures that can be searched for in gravitational-wave data as smoking guns of exotic compact objects.

  16. Forward J / ψ production in U + U collisions at s N N = 193 GeV

    DOE PAGES

    Adare, A.; Aidala, C.; Ajitanand, N. N.; ...

    2016-03-03

    We measured the invariant yields, dN/dy, for J/psi production at forward rapidity (1.2 < |y| < 2.2) in U + U collisions at √S NN = 193 GeV as a function of collision centrality. The invariant yields and nuclear-modification factor R-AA are presented and compared with those from Au + Au collisions in the same rapidity range. In addition, the direct ratio of the invariant yields from U + U and Au + Au collisions within the same centrality class is presented, and used to investigate the role of cmore » $$\\bar{c}$$ over bar coalescence. Two different parametrizations of the deformed Woods-Saxon distribution were used in Glauber calculations to determine the values of the number of nucleon-nucleon collisions in each centrality class, N-coll, and these were found to give significantly different N coll values. Our results, using N coll values from both deformed Woods-Saxon distributions are presented. The measured ratios show that the J/psi suppression, relative to binary collision scaling, is similar in U + U and Au + Au for peripheral and midcentral collisions, but that J/psi show less suppression for the most central U + U collisions. The results are consistent with a picture in which, for central collisions, increase in the J/psi yield due to c $$\\bar{c}$$) over bar coalescence becomes more important than the decrease in yield due to increased energy density. Finally, for midcentral collisions, the conclusions about the balance between c $$\\bar{c}$$ over bar coalescence and suppression depend on which deformed Woods-Saxon distribution is used to determine N coll.« less

  17. The influence of massive black hole binaries on the morphology of merger remnants

    NASA Astrophysics Data System (ADS)

    Bortolas, E.; Gualandris, A.; Dotti, M.; Read, J. I.

    2018-06-01

    Massive black hole (MBH) binaries, formed as a result of galaxy mergers, are expected to harden by dynamical friction and three-body stellar scatterings, until emission of gravitational waves (GWs) leads to their final coalescence. According to recent simulations, MBH binaries can efficiently harden via stellar encounters only when the host geometry is triaxial, even if only modestly, as angular momentum diffusion allows an efficient repopulation of the binary loss cone. In this paper, we carry out a suite of N-body simulations of equal-mass galaxy collisions, varying the initial orbits and density profiles for the merging galaxies and running simulations both with and without central MBHs. We find that the presence of an MBH binary in the remnant makes the system nearly oblate, aligned with the galaxy merger plane, within a radius enclosing 100 MBH masses. We never find binary hosts to be prolate on any scale. The decaying MBHs slightly enhance the tangential anisotropy in the centre of the remnant due to angular momentum injection and the slingshot ejection of stars on nearly radial orbits. This latter effect results in about 1 per cent of the remnant stars being expelled from the galactic nucleus. Finally, we do not find any strong connection between the remnant morphology and the binary hardening rate, which depends only on the inner density slope of the remnant galaxy. Our results suggest that MBH binaries are able to coalesce within a few Gyr, even if the binary is found to partially erase the merger-induced triaxiality from the remnant.

  18. SECULAR EVOLUTION OF BINARIES NEAR MASSIVE BLACK HOLES: FORMATION OF COMPACT BINARIES, MERGER/COLLISION PRODUCTS AND G2-LIKE OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Snezana; Antonini, Fabio; Perets, Hagai B., E-mail: sprodan@cita.utoronto.ca, E-mail: antonini@cita.utoronto.ca

    2015-02-01

    Here we discuss the evolution of binaries around massive black holes (MBHs) in nuclear stellar clusters. We focus on their secular evolution due to the perturbation by the MBHs, while simplistically accounting for their collisional evolution. Binaries with highly inclined orbits with respect to their orbits around MBHs are strongly affected by secular processes, which periodically change their eccentricities and inclinations (e.g., Kozai-Lidov cycles). During periapsis approach, dissipative processes such as tidal friction may become highly efficient, and may lead to shrinkage of a binary orbit and even to its merger. Binaries in this environment can therefore significantly change theirmore » orbital evolution due to the MBH third-body perturbative effects. Such orbital evolution may impinge on their later stellar evolution. Here we follow the secular dynamics of such binaries and its coupling to tidal evolution, as well as the stellar evolution of such binaries on longer timescales. We find that stellar binaries in the central parts of nuclear stellar clusters (NSCs) are highly likely to evolve into eccentric and/or short-period binaries, and become strongly interacting binaries either on the main sequence (at which point they may even merge), or through their later binary stellar evolution. The central parts of NSCs therefore catalyze the formation and evolution of strongly interacting binaries, and lead to the enhanced formation of blue stragglers, X-ray binaries, gravitational wave sources, and possible supernova progenitors. Induced mergers/collisions may also lead to the formation of G2-like cloud-like objects such as the one recently observed in the Galactic center.« less

  19. W and Z boson production in p-Pb collisions at $$ \\sqrt{s_{\\mathrm{NN}}}=5.02 $$ TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2017-02-15

    The W and Z boson production was measured via the muonic decay channel in proton-lead collisions at √ sNN = 5.02 TeV at the Large Hadron Collider with the ALICE detector. The measurement covers backward (–4.46 < y cms < –2.96) and forward (2.03 < y cms < 3.53) rapidity regions, corresponding to Pb-going and p-going directions, respectively. The Z-boson production cross section, with dimuon invariant mass of 60 < m μμ < 120 GeV/c 2 and muon transverse momentum (p T μ) larger than 20 GeV/c, is measured. The production cross section and charge asymmetry of muons from W-bosonmore » decays with p T μ > 10 GeV/c are determined. The results are compared to theoretical calculations both with and without including the nuclear modification of the parton distribution functions. The W-boson production is also studied as a function of the collision centrality: the cross section of muons from W-boson decays is found to scale with the average number of binary nucleon-nucleon collisions within uncertainties.« less

  20. Dynamical Processes Near the Super Massive Black Hole at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Antonini, Fabio

    2011-01-01

    Observations of the stellar environment near the Galactic center provide the strongest empirical evidence for the existence of massive black holes in the Universe. Theoretical models of the Milky Way nuclear star cluster fail to explain numerous properties of such environment, including the presence of very young stars close to the super massive black hole (SMBH) and the more recent discovery of a parsec-scale core in the central distribution of the bright late-type (old) stars. In this thesis we present a theoretical study of dynamical processes near the Galactic center, strongly related to these issues. Using different numerical techniques we explore the close environment of a SMBH as catalyst for stellar collisions and mergers. We study binary stars that remain bound for several revolutions around the SMBH, finding that in the case of highly inclined binaries the Kozai resonance can lead to large periodic oscillations in the internal binary eccentricity and inclination. Collisions and mergers of the binary elements are found to increase significantly for multiple orbits around the SMBH. In collisions involving a low-mass and a high-mass star, the merger product acquires a high core hydrogen abundance from the smaller star, effectively resetting the nuclear evolution clock to a younger age. This process could serve as an important source of young stars at the Galactic center. We then show that a core in the old stars can be naturally explained in a scenario in which the Milky Way nuclear star cluster (NSC) is formed via repeated inspiral of globular clusters into the Galactic center. We present results from a set of N -body simulations of this process, which show that the fundamental properties of the NSC, including its mass, outer density profile and velocity structure, are also reproduced. Chandrasekhar's dynamical friction formula predicts no frictional force on a test body in a low-density core, regardless of its density, due to the absence of stars moving more slowly than the local circular velocity. We have tested this prediction using large-scale N -body experiments. The rate of orbital decay never drops precisely to zero, because stars moving faster than the test body also contribute to the frictional force. When the contribution from the fast-moving stars is included in the expression for the dynamical friction force, and the changes induced by the massive body on the stellar distribution are taken into account, Chandrasekhar's theory is found to reproduce the rate of orbital decay remarkably well. However, this rate is still substantially smaller than the rate predicted by Chandrasekhar's formula in its most widely-used forms, implying longer time scales for inspiral. Motivated by recent observations that suggest a parsec-scale core around the Galactic center SMBH, we investigated the evolution of a population of stellar-mass black holes (BHs) as they spiral in to the center of the Galaxy. After ˜ 10 Gyr, we find that the density of BHs can remain substantially less than the density in stars at all radii; we conclude that it would be unjustified to assume that the spatial distribution of BHs at the Galactic center is well described by steady-state models.

  1. Extreme close approaches in hierarchical triple systems with comparable masses

    NASA Astrophysics Data System (ADS)

    Haim, Niv; Katz, Boaz

    2018-06-01

    We study close approaches in hierarchical triple systems with comparable masses using full N-body simulations, motivated by a recent model for type Ia supernovae involving direct collisions of white dwarfs (WDs). For stable hierarchical systems where the inner binary components have equal masses, we show that the ability of the inner binary to achieve very close approaches, where the separation between the components of the inner binary reaches values which are orders of magnitude smaller than the semi-major axis, can be analytically predicted from initial conditions. The rate of close approaches is found to be roughly linear with the mass of the tertiary. The rate increases in systems with unequal inner binaries by a marginal factor of ≲ 2 for mass ratios 0.5 ≤ m1/m2 ≤ 1 relevant for the inner white-dwarf binaries. For an average tertiary mass of ˜0.3M⊙ which is representative of typical M-dwarfs, the chance for clean collisions is ˜1% setting challenging constraints on the collisional model for type Ia's.

  2. Coincidence studies of diffraction structures in binary encounter electron spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, C.; Hagmann, S.; Richard, P.

    The authors have measured binary encounter electron (BEe) production in collisions of 0.3 MeV/u Cu{sup q+} (q=4,12) projectiles on H{sub 2} targets from 0 to 70 degrees with respect to the beam direction. Prominent features are the appearance of the BEe peak splitting and a very strong forward peaked angular distribution which are attributed to the diffractive scattering of the quasifree target electrons in the short range potential of the projectile. Using electron-projectile final charge state coincidence techniques, different collision reaction channels can be separated. Measurements of this type are being pursued.

  3. Observation of enhanced zero-degree binary encounter electron production with decreasing charge-state q in 30 MeV O{sup q+} + O{sub 2} collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zouros, T.J.M.; Wong, K.L.; Hidmi, H.I.

    We have measured binary encounter electron production in collisions of 30 MeV O{sup q+} projectiles (q=4-8) and O{sub 2} targets. Measured double differential BEe cross-sections are found to increase with decreasing charge-state q, in agreement with similar previously reported zero-degree investigations for H{sub 2} and He targets. However, measurements for the same system but at 25{degrees} shows the opposite trend, that BEe cross sections decrease slightly with decreasing charge state.

  4. Accelerated Monte Carlo Methods for Coulomb Collisions

    NASA Astrophysics Data System (ADS)

    Rosin, Mark; Ricketson, Lee; Dimits, Andris; Caflisch, Russel; Cohen, Bruce

    2014-03-01

    We present a new highly efficient multi-level Monte Carlo (MLMC) simulation algorithm for Coulomb collisions in a plasma. The scheme, initially developed and used successfully for applications in financial mathematics, is applied here to kinetic plasmas for the first time. The method is based on a Langevin treatment of the Landau-Fokker-Planck equation and has a rich history derived from the works of Einstein and Chandrasekhar. The MLMC scheme successfully reduces the computational cost of achieving an RMS error ɛ in the numerical solution to collisional plasma problems from (ɛ-3) - for the standard state-of-the-art Langevin and binary collision algorithms - to a theoretically optimal (ɛ-2) scaling, when used in conjunction with an underlying Milstein discretization to the Langevin equation. In the test case presented here, the method accelerates simulations by factors of up to 100. We summarize the scheme, present some tricks for improving its efficiency yet further, and discuss the method's range of applicability. Work performed for US DOE by LLNL under contract DE-AC52- 07NA27344 and by UCLA under grant DE-FG02-05ER25710.

  5. J/ψ production and nuclear effects in p-Pb collisions at $$ \\sqrt{{{{\\mathrm{s}}_{\\mathrm{NN}}}}} $$ = 5.02 TeV

    DOE PAGES

    Abelev, B.; Adam, J.; Adamová, D.; ...

    2014-02-18

    We studied inclusive J/ψ production with the ALICE detector in p-Pb collisions at the nucleon-nucleon center of mass energy √s NN = 5.02 TeV at the CERN LHC. The measurement is performed in the center of mass rapidity domains 2.03 < y cms < 3.53 and -4.46 < y cms < -2.96, down to zero transverse momentum, studying the μ + μ - decay mode. In this paper, the J/ψ production cross section and the nuclear modification factor R pPb for the rapidities under study are presented. Moreover, while at forward rapidity, corresponding to the proton direction, amore » suppression of the J/ψ yield with respect to binary-scaled pp collisions is observed, in the backward region no suppression is present. Finally, the ratio of the forward and backward yields is also measured differentially in rapidity and transverse momentum. Theoretical predictions based on nuclear shadowing, as well as on models including, in addition, a contribution from partonic energy loss, are in fair agreement with the experimental results.« less

  6. Measurement of D-meson production versus multiplicity in p-Pb collisions at √{{s}_{NN}}=5.02 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Benacek, P.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira Da Costa, H.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; de Souza, R. D.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-08-01

    The measurement of prompt D-meson production as a function of multiplicity in p-Pb collisions at √{s_{NN}}=5.02 TeV with the ALICE detector at the LHC is reported. D0, D+ and D∗+ mesons are reconstructed via their hadronic decay channels in the centre-of-mass rapidity range -0 .96 < y cms < 0 .04 and transverse momentum interval 1

  7. geant4 hadronic cascade models analysis of proton and charged pion transverse momentum spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Waged, Khaled; Benha University, Faculty of Science, Physics Department; Felemban, Nuha

    2011-07-15

    We describe how various hadronic cascade models, which are implemented in the geant4 toolkit, describe proton and charged pion transverse momentum spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c, recently measured in the hadron production (HARP) experiment at CERN. The Binary, ultrarelativistic quantum molecular dynamics (UrQMD) and modified FRITIOF (FTF) hadronic cascade models are chosen for investigation. The first two models are based on limited (Binary) and branched (UrQMD) binary scattering between cascade particles which can be either a baryon or meson, in the three-dimensional space of the nucleus, while the latter (FTF) considersmore » collective interactions between nucleons only, on the plane of impact parameter. It is found that the slow (p{sub T}{<=}0.3 GeV/c) proton spectra are quite sensitive to the different treatments of cascade pictures, while the fast (p{sub T}>0.3 GeV/c) proton spectra are not strongly affected by the differences between the FTF and UrQMD models. It is also shown that the UrQMD and FTF combined with Binary (FTFB) models could reproduce both proton and charged pion spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c with the same accuracy.« less

  8. Measurement of electrons from heavy-flavour hadron decays in p-Pb collisions at √{sNN} = 5.02TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-03-01

    The production of electrons from heavy-flavour hadron decays was measured as a function of transverse momentum (pT) in minimum-bias p-Pb collisions at √{sNN} = 5.02 TeV using the ALICE detector at the LHC. The measurement covers the pT interval 0.5

  9. Measurement of electrons from heavy-flavour hadron decays in p–Pb collisions at s NN = 5.02 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J.; Adamová, D.; Aggarwal, M. M.

    2015-12-31

    We measured the production of electrons from heavy-flavour hadron decays as a function of transverse momentum (p T) in minimum-bias p-Pb collisions at √s NN = 5.02 TeV using the ALICE detector at the LHC. Our measurement covers the p T interval 0.5 < p T < 12 GeV/c and the rapidity range -1.065 < y cms < 0.135 in the centre-of-mass reference frame. The contribution of electrons from background sources was subtracted using an invariant mass approach. The nuclear modification factor R-pPb was calculated by comparing the p T-differential invariant cross section in p-Pb collisions to a pp referencemore » at the same centre-of-mass energy, which was obtained by interpolating measurements at √s = 2.76 TeV and √= 7 TeV. The R pPb is consistent with unity within uncertainties of about 25%, which become larger for p T below 1 GeV/c. Furthermore, these measurements show that heavy-flavour production is consistent with binary scaling, so that a suppression in the high-p T yield in Pb-Pb collisions has to be attributed to effects induced by the hot medium produced in the final state. The data in p-Pb collisions are described by recent model calculations that include cold nuclear matter effects.« less

  10. Measurement of KS0 and K*0 in p +p ,d +Au , and Cu + Cu collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Black, D.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Caringi, A.; Chang, B. S.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Conesa Del Valle, Z.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deaton, M. B.; Deblasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Hoshino, T.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; Johnson, B. M.; Jones, T.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kaneta, M.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H.-J.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Kofarago, M.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S. H.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lenzi, B.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Mašek, L.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, A. J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Nattrass, C.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Norman, B. E.; Nouicer, R.; Novitzky, N.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Oskarsson, A.; Ouchida, M.; Ozaki, H.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skutnik, S.; Slunečka, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Themann, H.; Thomas, D.; Thomas, T. L.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.; Phenix Collaboration

    2014-11-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider has performed a systematic study of KS0 and K*0 meson production at midrapidity in p +p ,d +Au , and Cu +Cu collisions at √{s NN}=200 GeV. The KS0 and K*0 mesons are reconstructed via their KS0→π0(→γ γ ) π0(→γ γ ) and K*0→K±π∓ decay modes, respectively. The measured transverse-momentum spectra are used to determine the nuclear modification factor of KS0 and K*0 mesons in d +Au and Cu +Cu collisions at different centralities. In the d +Au collisions, the nuclear modification factor of KS0 and K*0 mesons is almost constant as a function of transverse momentum and is consistent with unity, showing that cold-nuclear-matter effects do not play a significant role in the measured kinematic range. In Cu +Cu collisions, within the uncertainties no nuclear modification is registered in peripheral collisions. In central collisions, both mesons show suppression relative to the expectations from the p +p yield scaled by the number of binary nucleon-nucleon collisions in the Cu +Cu system. In the pT range 2 - 5 GeV /c , the strange mesons (KS0,K*0) similarly to the ϕ meson with hidden strangeness, show an intermediate suppression between the more suppressed light quark mesons (π0) and the nonsuppressed baryons (p ,p ¯). At higher transverse momentum, pT>5 GeV /c , production of all particles is similarly suppressed by a factor of ≈2 .

  11. Measurement of K 0 S and K *0 in p+p, d+Au, and Cu+Cu collisions at sqrt S NN = 200 GeV

    DOE PAGES

    Adare, A.; Aidala, C.

    2014-11-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider has performed a systematic study of K 0 S and K *0 meson production at midrapidity in p+p, d+Au, and Cu+Cu collisions at sqrt S NN = 200 GeV. The K 0 S and K *0 mesons are reconstructed via their K 0 S and π 0(→γγ)π 0 (→γγ) and K *0 → K ± π ± decay modes, respectively. The measured transverse-momentum spectra are used to determine the nuclear modification factor of K 0 S and K *0 mesons in d+Au and Cu+Cu collisions at different centralities. In the d+Aumore » collisions, the nuclear modification factor of K 0 S and K *0 mesons is almost constant as a function of transverse momentum and is consistent with unity showing that cold-nuclear-matter effects do not play a significant role in the measured kinematic range. In Cu+Cu collisions, within the uncertainties no nuclear modification is registered in peripheral collisions. In central collisions, both mesons show suppression relative to the expectations from the p+p yield scaled by the number of binary nucleon-nucleon collisions in the Cu+Cu system. In the p T range 2–5 GeV/c, the strange mesons ( K 0 S, K *0) similarly to the Φ meson with hidden strangeness, show an intermediate suppression between the more suppressed light quark mesons (π 0) and the nonsuppressed baryons (p, p-bar). At higher transverse momentum, p T > 5 GeV/c, production of all particles is similarly suppressed by a factor of ≈2. (auth)« less

  12. Novel ID-based anti-collision approach for RFID

    NASA Astrophysics Data System (ADS)

    Zhang, De-Gan; Li, Wen-Bin

    2016-09-01

    Novel correlation ID-based (CID) anti-collision approach for RFID under the banner of the Internet of Things (IOT) has been presented in this paper. The key insights are as follows: according to the deterministic algorithms which are based on the binary search tree, we propose a method to increase the association between tags so that tags can initiatively send their own ID under certain trigger conditions, at the same time, we present a multi-tree search method for querying. When the number of tags is small, by replacing the actual ID with the temporary ID, it can greatly reduce the number of times that the reader reads and writes to tag's ID. Active tags send data to the reader by the way of modulation binary pulses. When applying this method to the uncertain ALOHA algorithms, the reader can determine the locations of the empty slots according to the position of the binary pulse, so it can avoid the decrease in efficiency which is caused by reading empty slots when reading slots. Theory and experiment show that this method can greatly improve the recognition efficiency of the system when applied to either the search tree or the ALOHA anti-collision algorithms.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pe’er, Asaf; Long, Killian; Casella, Piergiorgio

    Internal shocks between propagating plasma shells, originally ejected at different times with different velocities, are believed to play a major role in dissipating the kinetic energy, thereby explaining the observed light curves and spectra in a large range of transient objects. Even if initially the colliding plasmas are cold, following the first collision, the plasma shells are substantially heated, implying that in a scenario of multiple collisions, most collisions take place between plasmas of non-zero temperatures. Here, we calculate the dynamical properties of plasmas resulting from a collision between arbitrarily hot plasma shells, moving at arbitrary speeds. We provide simplemore » analytical expressions valid for both ultrarelativistic and Newtonian velocities for both hot and cold plasmas. We derive the minimum criteria required for the formation of the two-shock wave system, and show that in the relativistic limit, the minimum Lorentz factor is proportional to the square root of the ratio of the initial plasmas enthalpies. We provide basic scaling laws of synchrotron emission from both the forward and reverse-shock waves, and show how these can be used to deduce the properties of the colliding shells. Finally, we discuss the implications of these results in the study of several astronomical transients, such as X-ray binaries, radio-loud quasars, and gamma-ray bursts.« less

  14. Asteroid Systems: Binaries, Triples, and Pairs

    NASA Astrophysics Data System (ADS)

    Margot, J.-L.; Pravec, P.; Taylor, P.; Carry, B.; Jacobson, S.

    In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main-belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main-belt binaries have been identified. The current observational evidence confirms that small (≲20 km) binaries form by rotational fission and establishes that the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect powers the spin-up process. A unifying paradigm based on rotational fission and post-fission dynamics can explain the formation of small binaries, triples, and pairs. Large (>~20 km) binaries with small satellites are most likely created during large collisions.

  15. Binary-encounter electrons observed at 0 degree in collisions of 1--2-MeV/amu H sup + , C sup 6+ , N sup 7+ , O sup 8+ , and F sup 9+ ions with H sub 2 and He targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.H.; Richard, P.; Zouros, T.J.M.

    The energy distribution of binary-encounter electrons (BEE) produced in collisions of 1--2 MeV/amu H{sup +} and bare C, N, O, and F ions with H{sub 2} and He gas targets is reported at 0{degree} with respect to the beam direction. These electrons result from ionization of the target due to hard collisions with the projectile and can thus be considered to be produced in a process analogous to elastic scattering of a free electron from a highly charged ion. An impulse-approximation (IA) model has been developed to describe this process in which quasifree'' target electrons undergo 180{degree} Rutherford scattering inmore » the projectile frame. The measured BEE double-differential production cross sections for bare ions were well described by this model and were found to scale with {ital Z}{sub {ital p}}{sup 2} and {ital E}{sub {ital p}}{sup {minus}({similar to}2.6--2.7)} where {ital Z}{sub {ital p}} and {ital E}{sub {ital p}} are the charge and energy of the projectile, respectively. An energy shift of the BEE below 4{ital t}, where {ital t} is the cusp electron energy, is observed and is also predicted by the IA treatment. A plane-wave Born approximation (PWBA) calculation for BEE production is also found to be in overall agreement with our data. However, the energy shift of the BEE peak could not be fully accounted for within this PWBA calculation.« less

  16. INTERRUPTED STELLAR ENCOUNTERS IN STAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geller, Aaron M.; Leigh, Nathan W. C., E-mail: a-geller@northwestern.edu, E-mail: nleigh@amnh.org

    Strong encounters between single stars and binaries play a pivotal role in the evolution of star clusters. Such encounters can also dramatically modify the orbital parameters of binaries, exchange partners in and out of binaries, and are a primary contributor to the rate of physical stellar collisions in star clusters. Often, these encounters are studied under the approximation that they happen quickly enough and within a small enough volume to be considered isolated from the rest of the cluster. In this paper, we study the validity of this assumption through the analysis of a large grid of single–binary and binary–binarymore » scattering experiments. For each encounter we evaluate the encounter duration, and compare this with the expected time until another single or binary star will join the encounter. We find that for lower-mass clusters, similar to typical open clusters in our Galaxy, the percent of encounters that will be “interrupted” by an interloping star or binary may be 20%–40% (or higher) in the core, though for typical globular clusters we expect ≲1% of encounters to be interrupted. Thus, the assumption that strong encounters occur in relative isolation breaks down for certain clusters. Instead, many strong encounters develop into more complex “mini-clusters,” which must be accounted for in studying, for example, the internal dynamics of star clusters, and the physical stellar collision rate.« less

  17. Centrality dependence of inclusive J/ ψ production in p-Pb collisions at √{s_{NN}}=5.02 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Chunhui, Z.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadlovska, S.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Luz, P. H. F. N. D.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Masui, H.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2015-11-01

    We present a measurement of inclusive J/ ψ production in p-Pb collisions at √{s_{NN}}=5.02 TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. The measurement is performed with the ALICE detector down to zero transverse momentum, p T, in the backward (-4 .46 < y cms < -2 .96) and forward (2 .03 < y cms < 3 .53) rapidity intervals in the dimuon decay channel and in the mid-rapidity region (-1 .37 < y cms < 0 .43) in the dielectron decay channel. The backward and forward rapidity intervals correspond to the Pb-going and p-going direction, respectively. The p T-differential J /ψ production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average p T and p T2 values. The nuclear modification factor is presented as a function of centrality for the three rapidity intervals, and as a function of p T for several centrality classes at backward and forward rapidity. At mid- and forward rapidity, the J /ψ yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. The degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing p T of the J /ψ. At backward rapidity, the nuclear modification factor is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions. [Figure not available: see fulltext.

  18. Parameter estimates in binary black hole collisions using neural networks

    NASA Astrophysics Data System (ADS)

    Carrillo, M.; Gracia-Linares, M.; González, J. A.; Guzmán, F. S.

    2016-10-01

    We present an algorithm based on artificial neural networks (ANNs), that estimates the mass ratio in a binary black hole collision out of given gravitational wave (GW) strains. In this analysis, the ANN is trained with a sample of GW signals generated with numerical simulations. The effectiveness of the algorithm is evaluated with GWs generated also with simulations for given mass ratios unknown to the ANN. We measure the accuracy of the algorithm in the interpolation and extrapolation regimes. We present the results for noise free signals and signals contaminated with Gaussian noise, in order to foresee the dependence of the method accuracy in terms of the signal to noise ratio.

  19. Binary collision rates of relativistic thermal plasmas. I Theoretical framework

    NASA Technical Reports Server (NTRS)

    Dermer, C. D.

    1985-01-01

    Binary collision rates for arbitrary scattering cross sections are derived in the case of a beam of particles interacting with a Maxwell-Boltzmann (MB) plasma, or in the case of two MB plasmas interacting at generally different temperatures. The expressions are valid for all beam energies and plasma temperatures, from the nonrelativistic to the extreme relativistic limits. The calculated quantities include the reaction rate, the energy exchange rate, and the average rate of change of the squared transverse momentum component of a monoenergetic particle beam as a result of scatterings with particles of a MB plasma. Results are specialized to elastic scattering processes, two-temperature reaction rates, or the cold plasma limit, reproducing previous work.

  20. The Geomorphology of Comet Churymov-Gerasimenko As Revealed By Rosetta/Osiris: Implicationsfor Past Collisional Evolution

    NASA Astrophysics Data System (ADS)

    Marchi, S.; A'Hearn, M. F.; Barbieri, C.; Barucci, M. A.; Besse, S.; Cremonese, G.; Ip, W. H.; Keller, H. U.; Koschny, D.; Kuhrt, E.; Lamy, P. L.; Marzari, F.; Massironi, M.; Pajola, M.; Rickman, H.; Rodrigo, R.; Sierks, H.; Snodgrass, C.; Thomas, N.; Vincent, J. B.

    2014-12-01

    In this paper we present the major geomorphological features of comet Churymov-Gerasimenko (C-G), with emphasis on those that may have formed through collisional processes. The C-G nucleus has been imaged with the Rosetta/OSIRIS camera system at varying spatial resolution. At the moment of this writing the maximum spatial resolution achieved is ~20 meter per pixel, and it will improve to reach the unprecedented centimeter-scale in November 2014. This resolution should allow us to identify and characterize pits, lineaments and blocks that could be the result of collisional evolution. Indeed, C-G has spent some 1000 years on orbits crossing the main asteroid belt, and a much longer time in the outer solar system. Collisions may have, therefore, shaped the morphology of the nucleus in various ways. Previously imaged Jupiter Family Comets (e.g., Tempel 1) show significant numbers of pits and lineaments, some of which could be due to collisions. Additional proposed formation mechanisms are related to cometary activity processes, such as volatile outgassing.In addition to small scale features, the overall shape of C-G could also provide insights into the role of collisional processes. A striking feature is that C-G's shape is that of a contact binary. Similar shapes have been observed on rocky asteroids (e.g., Itokawa) and are generally interpreted as an indication of their rubble pile nature. A possibility is that C-G underwent similar processes, and therefore it may be constituted by reaccumulated fragments ejected from a larger precursor. An alternative view is that the current shape is the result of inhomogeneous outgassing activity, which may have dug a ~1-km deep trench responsible for the apparent contact binary shape.The role of the various proposed formation mechanisms (collisional vs outgassing) for both small scale and global features will be investigated and their implications for the evolution of C-G will be discussed.

  1. Using the orbiting companion to trace WR wind structures in the 29d WC8d + O8-9IV binary CV Ser

    NASA Astrophysics Data System (ADS)

    David-Uraz, Alexandre; Moffat, Anthony F. J.

    2011-07-01

    We have used continuous, high-precision, broadband visible photometry from the MOST satellite to trace wind structures in the WR component of CV Ser over more than a full orbit. Most of the small-scale light-curve variations are likely due to extinction by clumps along the line of sight to the O companion as it orbits and shines through varying columns of the WR wind. Parallel optical spectroscopy from the Mont Megantic Observatory is used to refine the orbital and wind-collision parameters, as well as to reveal line emission from clumps.

  2. Tracing WR wind structures by using the orbiting companion in the 29d WC8d + O8-9IV binary CV Ser

    NASA Astrophysics Data System (ADS)

    David-Uraz, Alexandre; Moffat, Anthony F. J.; Chené, André Nicolas; Lange, Nicholas

    2011-01-01

    We have obtained continuous, high-precision, broadband visible photometry from the MOST satellite of CV Ser over more than a full orbit in order to link the small-scale light-curve variations to extinction due to wind structures in the WR component, thus permitting us to trace these structures. The light-curve presented unexpected characteristics, in particular eclipses with a varying depth. Parallel optical spectroscopy from the Mont Megantic Observatory and Dominion Astrophysical Observatory was obtained to refine the orbital and wind-collision parameters, as well as to reveal line emission from clumps.

  3. Performance Analysis of Different Backoff Algorithms for WBAN-Based Emerging Sensor Networks

    PubMed Central

    Khan, Pervez; Ullah, Niamat; Ali, Farman; Ullah, Sana; Hong, Youn-Sik; Lee, Ki-Young; Kim, Hoon

    2017-01-01

    The Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) procedure of IEEE 802.15.6 Medium Access Control (MAC) protocols for the Wireless Body Area Network (WBAN) use an Alternative Binary Exponential Backoff (ABEB) procedure. The backoff algorithm plays an important role to avoid collision in wireless networks. The Binary Exponential Backoff (BEB) algorithm used in different standards does not obtain the optimum performance due to enormous Contention Window (CW) gaps induced from packet collisions. Therefore, The IEEE 802.15.6 CSMA/CA has developed the ABEB procedure to avoid the large CW gaps upon each collision. However, the ABEB algorithm may lead to a high collision rate (as the CW size is incremented on every alternative collision) and poor utilization of the channel due to the gap between the subsequent CW. To minimize the gap between subsequent CW sizes, we adopted the Prioritized Fibonacci Backoff (PFB) procedure. This procedure leads to a smooth and gradual increase in the CW size, after each collision, which eventually decreases the waiting time, and the contending node can access the channel promptly with little delay; while ABEB leads to irregular and fluctuated CW values, which eventually increase collision and waiting time before a re-transmission attempt. We analytically approach this problem by employing a Markov chain to design the PFB scheme for the CSMA/CA procedure of the IEEE 80.15.6 standard. The performance of the PFB algorithm is compared against the ABEB function of WBAN CSMA/CA. The results show that the PFB procedure adopted for IEEE 802.15.6 CSMA/CA outperforms the ABEB procedure. PMID:28257112

  4. Azimuthal Anisotropy in U +U and Au +Au Collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, W.; Li, Y.; Li, C.; Li, Z. M.; Li, X.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, R.; Ma, Y. G.; Ma, G. L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X.; Sun, X. M.; Sun, Z.; Sun, Y.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, Y.; Wang, H.; Wang, J. S.; Wang, Y.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, Y. F.; Xu, N.; Xu, Z.; Xu, Q. H.; Xu, H.; Yang, Y.; Yang, Y.; Yang, C.; Yang, S.; Yang, Q.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, J. B.; Zhang, J.; Zhang, Z.; Zhang, S.; Zhang, Y.; Zhang, J. L.; Zhao, F.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-11-01

    Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v2{2 } and v2{4 }, for charged hadrons from U +U collisions at √{sNN }=193 GeV and Au +Au collisions at √{sNN}=200 GeV . Nearly fully overlapping collisions are selected based on the energy deposited by spectators in zero degree calorimeters (ZDCs). Within this sample, the observed dependence of v2{2 } on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U +U collisions. We also show that v2 vs multiplicity can be better described by models, such as gluon saturation or quark participant models, that eliminate the dependence of the multiplicity on the number of binary nucleon-nucleon collisions.

  5. Azimuthal anisotophy in U + U and Au + Au collisions at RHIC

    DOE PAGES

    Adamczyk, L.

    2015-11-24

    Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v 2{2} and v 2{4}, for charged hadrons from U+U collisions at √ SNN = 193 GeV and Au+Au collisions at √ SNN = 200 GeV. Nearly fully overlapping collisions are selected based on the energy deposited by spectators in zero degree calorimeters (ZDCs). Within this sample, the observed dependence of v 2{2} on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions.more » As a result, we also show that v 2 vs multiplicity can be better described by models, such as gluon saturation or quark participant models, that eliminate the dependence of the multiplicity on the number of binary nucleon-nucleon collisions.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkin, E. R.; Sim, S. A., E-mail: parkin@mso.anu.edu.au, E-mail: s.sim@qub.ac.uk

    In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shocks on the radiative driving of the stellar winds using steady-state models that include a parameterized line force with X-ray ionization dependence. Our primary result is that X-ray radiation from the shocks inhibits wind acceleration and can lead to a lower pre-shock velocity, and a correspondingly lower shocked plasma temperature, yet the intrinsic X-ray luminosity of the shocks, L{sub X}, remains largely unaltered,more » with the exception of a modest increase at small binary separations. Due to the feedback loop between the ionizing X-rays from the shocks and the wind driving, we term this scenario as self-regulated shocks. This effect is found to greatly increase the range of binary separations at which a wind-photosphere collision is likely to occur in systems where the momenta of the two winds are significantly different. Furthermore, the excessive levels of X-ray ionization close to the shocks completely suppress the line force, and we suggest that this may render radiative braking less effective. Comparisons of model results against observations reveal reasonable agreement in terms of log (L{sub X}/L{sub bol}). The inclusion of self-regulated shocks improves the match for kT values in roughly equal wind momenta systems, but there is a systematic offset for systems with unequal wind momenta (if considered to be a wind-photosphere collision).« less

  7. Hadronic model for the non-thermal radiation from the binary system AR Scorpii

    NASA Astrophysics Data System (ADS)

    Bednarek, W.

    2018-05-01

    AR Scorpii is a close binary system containing a rotation powered white dwarf and a low-mass M type companion star. This system shows non-thermal emission extending up to the X-ray energy range. We consider hybrid (lepto-hadronic) and pure hadronic models for the high energy non-thermal processes in this binary system. Relativistic electrons and hadrons are assumed to be accelerated in a strongly magnetised, turbulent region formed in collision of a rotating white dwarf magnetosphere and a magnetosphere/dense atmosphere of the M-dwarf star. We propose that the non-thermal X-ray emission is produced either by the primary electrons or the secondary e± pairs from decay of charged pions created in collisions of hadrons with the companion star atmosphere. We show that the accompanying γ-ray emission from decay of neutral pions, which are produced by these same protons, is expected to be on the detectability level of the present and/or the future satellite and Cherenkov telescopes. The γ-ray observations of the binary system AR Sco should allow us to constrain the efficiency of hadron and electron acceleration and also the details of the radiation processes.

  8. Planet Formation in Stellar Binaries: How Disk Gravity Can Lower theFragmentation Barrier

    NASA Astrophysics Data System (ADS)

    Silsbee, Kedron; Rafikov, Roman R.

    2014-11-01

    Binary star systems present a challenge to current theories of planet formation. Perturbations from the companion star dynamically excite the protoplanetary disk, which can lead to destructive collisions between planetesimals, and prevent growth from 1 km to 100 km sized planetesimals. Despite this apparent barrier to coagulation, planets have been discovered within several small-separation (<20 AU), eccentric (eb 0.4) binaries, such as alpha Cen and gamma Cep. We address this problem by analytically exploring planetesimal dynamics under the simultaneous action of (1) binary perturbation, (2) gas drag (which tends to align planetesimal orbits), and (3), the gravity of an eccentric protoplanetary disk. We then use our dynamical solutions to assess the outcomes of planetesimal collisions (growth, destruction, erosion) for a variety of disk models. We find that planets in small-separation binaries can form at their present locations if the primordial protoplanetary disks were massive (>0.01M⊙) and not very eccentric (eccentricity of order several per cent at the location of planet). This constraint on the disk mass is compatible with the high masses of the giant planets in known gamma Cep-like binaries, which require a large mass reservoir for their formation. We show that for these massive disks, disk gravity is dominant over the gravity of the binary companion at the location of the observed planets. Therefore, planetesimal growth is highly sensitive to disk properties. The requirement of low disk eccentricity is in line with the recent hydrodynamic simulations that tend to show gaseous disks in eccentric binaries developing very low eccentricity, at the level of a few percent. A massive purely axisymmetric disk makes for a friendlier environment for planetesimal growth by driving rapid apsidal precession of planetesimals, and averaging out the eccentricity excitation from the binary companion. When the protoplanetary disk is eccentric we find that the most favorable conditions for planetesimal growth emerge when the disk is non-precessing and is apsidally aligned with the orbit of the binary.

  9. Computations of Drop Collision and Coalescence

    NASA Technical Reports Server (NTRS)

    Tryggvason, Gretar; Juric, Damir; Nas, Selman; Mortazavi, Saeed

    1996-01-01

    Computations of drops collisions, coalescence, and other problems involving drops are presented. The computations are made possible by a finite difference/front tracking technique that allows direct solutions of the Navier-Stokes equations for a multi-fluid system with complex, unsteady internal boundaries. This method has been used to examine the various collision modes for binary collisions of drops of equal size, mixing of two drops of unequal size, behavior of a suspension of drops in linear and parabolic shear flows, and the thermal migration of several drops. The key results from these simulations are reviewed. Extensions of the method to phase change problems and preliminary results for boiling are also shown.

  10. Centrality dependence of inclusive J/ψ production in p-Pb collisions at $$ \\sqrt{s_{\\mathrm{NN}}}=5.02 $$ TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2015-11-19

    Here, we present a measurement of inclusive J/Ψ production in p-Pb collisions at √S NN = 5.02 TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. We also performed this measurement with the ALICE detector down to zero transverse momentum, p T, in the backward (-4.46 < y cms < -2.96) and forward (2.03 < y cms< 3.53) rapidity intervals in the dimuon decay channel and in the mid-rapidity region (-1.37 < y cms < 0.43) in the dielectron decay channel. The backward and forward rapidity intervals correspondmore » to the Pb-going and p-going direction, respectively. The p T-differential J/Ψ production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average p T and p T2 values. The nuclear modification factor is presented as a function of centrality for the three rapidity intervals, and as a function of p T for several centrality classes at backward and forward rapidity. At mid-and forward rapidity, the J/Ψ yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. Furthermore, the degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing p T of the J/Ψ. At backward rapidity, the nuclear modification factor is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions.« less

  11. Selected bibliography on atomic collisions: Data collections, bibliographies, review articles, books, and papers of particular tutorial value

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDaniel, E.W.; Flannery, M.R.; Thomas, E.W.

    This bibliography deals mainly with binary and ternary collisions involving electrons, photons, and heavy particles (i.e., atoms, molecules, and ions). The energy range covered for each kind of collision is such that the interactions might be described as electronic, atomic, or chemical--higher-energy collisions involving nuclear forces are not treated. Also covered are particle and photon impact on surfaces, the passage of particles and radiation through bulk matter, and transport phenomena in gases. Practically all of the references cited are data compilations, other bibliographies, review articles, or books. The main objective is to provide easy access to atomic collision data, althoughmore » some references are included principally for their tutorial value.« less

  12. {phi} meson production in Au + Au and p + p collisions at {radical}s{sub NN}=200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.; Adler, C.; Aggarwal, M.M.

    2004-06-01

    We report the STAR measurement of {psi} meson production in Au + Au and p + p collisions at {radical}s{sub NN} = 200 GeV. Using the event mixing technique, the {psi} spectra and yields are obtained at midrapidity for five centrality bins in Au+Au collisions and for non-singly-diffractive p+p collisions. It is found that the {psi} transverse momentum distributions from Au+Au collisions are better fitted with a single-exponential while the p+p spectrum is better described by a double-exponential distribution. The measured nuclear modification factors indicate that {psi} production in central Au+Au collisions is suppressed relative to peripheral collisions when scaledmore » by the number of binary collisions (). The systematics of versus centrality and the constant {psi}/K{sup -} ratio versus beam species, centrality, and collision energy rule out kaon coalescence as the dominant mechanism for {psi} production.« less

  13. Covariant relativistic hydrodynamics of multispecies plasma and generalized Ohm's law

    NASA Astrophysics Data System (ADS)

    Gedalin, Michael

    1996-04-01

    Fully covariant hydrodynamical equations for a multispecies relativistic plasma in an external electromagnetic field are derived. The derived multifluid description takes into account binary Coulomb collisions, annihilation, and interaction with the photon background in terms of the invariant collision cross sections. A generalized Ohm's law is derived in a manifestly covariant form. Particular attention is devoted to the relativistic electron-positron plasma.

  14. The 2.35 year itch of Cygnus OB2 #9. I. Optical and X-ray monitoring

    NASA Astrophysics Data System (ADS)

    Nazé, Y.; Mahy, L.; Damerdji, Y.; Kobulnicky, H. A.; Pittard, J. M.; Parkin, E. R.; Absil, O.; Blomme, R.

    2012-10-01

    Context. Nonthermal radio emission in massive stars is expected to arise in wind-wind collisions occurring inside a binary system. One such case, the O-type star Cyg OB2 #9, was proven to be a binary only four years ago, but the orbital parameters remained uncertain. The periastron passage of 2011 was the first one to be observable under good conditions since the discovery of binarity. Aims: In this context, we have organized a large monitoring campaign to refine the orbital solution and to study the wind-wind collision. Methods: This paper presents the analysis of optical spectroscopic data, as well as of a dedicated X-ray monitoring performed with Swift and XMM-Newton. Results: In light of our refined orbital solution, Cyg OB2 #9 appears as a massive O+O binary with a long period and high eccentricity; its components (O5-5.5I for the primary and O3-4III for the secondary) have similar masses and similar luminosities. The new data also provide the first evidence that a wind-wind collision is present in the system. In the optical domain, the broad Hα line varies, displaying enhanced absorption and emission components at periastron. X-ray observations yield the unambiguous signature of an adiabatic collision, because as the stars approach periastron, the X-ray luminosity closely follows the 1/D variation expected in that case. The X-ray spectrum appears, however, slightly softer at periastron, which is probably related to winds colliding at slightly lower speeds at that time. Conclusions: It is the first time that such a variation has been detected in O+O systems, and the first case where the wind-wind collision is found to remain adiabatic even at periastron passage. Based on observations collected at OHP, with Swift, and with XMM-Newton.Tables 1 and 2 are available in electronic form at http://www.aanda.org

  15. Modelling droplet collision outcomes for different substances and viscosities

    NASA Astrophysics Data System (ADS)

    Sommerfeld, Martin; Kuschel, Matthias

    2016-12-01

    The main objective of the present study is the derivation of models describing the outcome of binary droplet collisions for a wide range of dynamic viscosities in the well-known collision maps (i.e. normalised lateral droplet displacement at collision, called impact parameter, versus collision Weber number). Previous studies by Kuschel and Sommerfeld (Exp Fluids 54:1440, 2013) for different solution droplets having a range of solids contents and hence dynamic viscosities (here between 1 and 60 mPa s) revealed that the locations of the triple point (i.e. coincidence of bouncing, stretching separation and coalescence) and the critical Weber number (i.e. condition for the transition from coalescence to separation for head-on collisions) show a clear dependence on dynamic viscosity. In order to extend these findings also to pure liquids and to provide a broader data basis for modelling the viscosity effect, additional binary collision experiments were conducted for different alcohols (viscosity range 1.2-15.9 mPa s) and the FVA1 reference oil at different temperatures (viscosity range 3.0-28.2 mPa s). The droplet size for the series of alcohols was around 365 and 385 µm for the FVA1 reference oil, in each case with fixed diameter ratio at Δ= 1. The relative velocity between the droplets was varied in the range 0.5-3.5 m/s, yielding maximum Weber numbers of around 180. Individual binary droplet collisions with defined conditions were generated by two droplet chains each produced by vibrating orifice droplet generators. For recording droplet motion and the binary collision process with good spatial and temporal resolution high-speed shadow imaging was employed. The results for varied relative velocity and impact angle were assembled in impact parameter-Weber number maps. With increasing dynamic viscosity a characteristic displacement of the regimes for the different collision scenarios was also observed for pure liquids similar to that observed for solutions. This displacement could be described on a physical basis using the similarity number and structure parameter K which was obtained through flow process evaluation and optimal proportioning of momentum and energy by Naue and Bärwolff (Transportprozesse in Fluiden. Deutscher Verlag für Grundstoffindustrie GmbH, Leipzig 1992). Two correlations including the structure parameter K could be derived which describe the location of the triple point and the critical We number. All fluids considered, pure liquids and solutions, are very well fitted by these physically based correlations. The boundary model of Jiang et al. (J Fluid Mech 234:171-190, 1992) for distinguishing between coalescence and stretching separation could be adapted to go through the triple point by the two involved model parameters C a and C b, which were correlated with the relaxation velocity u_{{relax}} = {σ/μ}. Based on the predicted critical Weber number, denoting the onset of reflexive separation, the model of Ashgriz and Poo (J Fluid Mech 221:183-204, 1990) was adapted accordingly. The proper performance of the new generalised models was validated based on the present and previous measurements for a wide range of dynamic viscosities (i.e. 1-60 mPa s) and liquid properties. Although the model for the lower boundary of bouncing (Estrade et al. in J Heat Fluid Flow 20:486-491, 1999) could be adapted through the shape factor, it was found not suitable for the entire range of Weber numbers and viscosities.

  16. Concluding Remarks: Connecting Relativistic Heavy Ion Collisions and Neutron Star Mergers by the Equation of State of Dense Hadron- and Quark Matter as signalled by Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Hanauske, Matthias; Steinheimer, Jan; Bovard, Luke; Mukherjee, Ayon; Schramm, Stefan; Takami, Kentaro; Papenfort, Jens; Wechselberger, Natascha; Rezzolla, Luciano; Stöcker, Horst

    2017-07-01

    The underlying open questions in the fields of general relativistic astrophysics and elementary particle and nuclear physics are strongly connected and their results are interdependent. Although the physical systems are quite different, the 4D-simulation of a merger of a binary system of two neutron stars and the properties of the hot and dense matter created in high energy heavy ion collisions, strongly depend on the equation of state of fundamental elementary matter. Neutron star mergers represent optimal astrophysical laboratories to investigate the QCD phase structure using a spectrogram of the post-merger phase of the emitted gravitational waves. These studies can be supplemented by observations from heavy ion collisions to possibly reach a conclusive picture on the QCD phase structure at high density and temperature. As gravitational waves (GWs) emitted from merging neutron star binaries are on the verge of their first detection, it is important to understand the main characteristics of the underlying merging system in order to predict the expected GW signal. Based on numerical-relativity simulations of merging neutron star binaries, the emitted GW and the interior structure of the generated hypermassive neutron stars (HMNS) have been analyzed in detail. This article will focus on the internal and rotational HMNS properties and their connection with the emitted GW signal. Especially, the appearance of the hadon-quark phase transition in the interior region of the HMNS and its conjunction with the spectral properties of the emitted GW will be addressed and confronted with the simulation results of high energy heavy ion collisions.

  17. Parallel Fokker–Planck-DSMC algorithm for rarefied gas flow simulation in complex domains at all Knudsen numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Küchlin, Stephan, E-mail: kuechlin@ifd.mavt.ethz.ch; Jenny, Patrick

    2017-01-01

    A major challenge for the conventional Direct Simulation Monte Carlo (DSMC) technique lies in the fact that its computational cost becomes prohibitive in the near continuum regime, where the Knudsen number (Kn)—characterizing the degree of rarefaction—becomes small. In contrast, the Fokker–Planck (FP) based particle Monte Carlo scheme allows for computationally efficient simulations of rarefied gas flows in the low and intermediate Kn regime. The Fokker–Planck collision operator—instead of performing binary collisions employed by the DSMC method—integrates continuous stochastic processes for the phase space evolution in time. This allows for time step and grid cell sizes larger than the respective collisionalmore » scales required by DSMC. Dynamically switching between the FP and the DSMC collision operators in each computational cell is the basis of the combined FP-DSMC method, which has been proven successful in simulating flows covering the whole Kn range. Until recently, this algorithm had only been applied to two-dimensional test cases. In this contribution, we present the first general purpose implementation of the combined FP-DSMC method. Utilizing both shared- and distributed-memory parallelization, this implementation provides the capability for simulations involving many particles and complex geometries by exploiting state of the art computer cluster technologies.« less

  18. Defined polymer shells on nanoparticles via a continuous aerosol-based process

    NASA Astrophysics Data System (ADS)

    Sigmund, Stephanie; Akgün, Ertan; Meyer, Jörg; Hubbuch, Jürgen; Wörner, Michael; Kasper, Gerhard

    2014-08-01

    A continuous aerosol-based process is described for the encapsulation of nanoparticles with a thin polymer shell. The process is essentially based on directed binary collisions between gas-borne core particles and liquid monomer droplets carrying opposite electrical charges, followed by photo-initiated polymerization. Once the two streams are mixed together, the process runs to completion on a time scale of about 2 min or less, required for coagulation and polymerization. Gold, silica, and sodium chloride nanoparticles were successfully coated by this technique with PHDDA [poly(hexanediol diacrylate)] and/or crosslinked PMMA [poly(methyl methacrylate)]. It was found that all core materials as well as agglomerates were wettable at room temperature and that the spreading kinetics of the monomer were fast enough to cover the core particles uniformly within the time scale provided for coagulation. The shell thickness depends on the volume ratio between core particles and monomer droplets. This was demonstrated for a combination of monodisperse silica spheres ( d = 241 nm) and polydisperse methyl methacrylate droplets, resulting in a theoretical shell thickness of 18 nm. There was very good agreement between measurements by TEM and electrical mobility spectroscopy. The results revealed that about 90 % or more of the core-shell structures were formed from 1:1 collisions between a core particle and a single monomer droplet.

  19. The multi-messenger approach to particle acceleration by massive stars: a science case for optical, radio and X-ray observatories

    NASA Astrophysics Data System (ADS)

    De Becker, Michaël

    2018-04-01

    Massive stars are extreme stellar objects whose properties allow for the study of some interesting physical processes, including particle acceleration up to relativistic velocities. In particular, the collisions of massive star winds in binary systems lead notably to acceleration of electrons involved in synchrotron emission, hence their identification as non-thermal radio emitters. This has been demonstrated for about 40 objects so far. The relativistic electrons are also expected to produce non-thermal high-energy radiation through inverse Compton scattering. This class of objects permits thus to investigate non-thermal physics through observations in the radio and high energy spectral domains. However, the binary nature of these sources introduces some stringent requirements to adequately interpret their behavior and model non-thermal processes. In particular, these objects are well-established variable stellar sources on the orbital time-scale. The stellar and orbital parameters need to be determined, and this is notably achieved through studies in the optical domain. The combination of observations in the visible domain (including e.g. 3.6-m DOT) with radio measurements using notably GMRT and X-ray observations constitutes thus a promising strategy to investigate particle-accelerating colliding-wind binaries in the forthcoming decade.

  20. A mass transfer origin for blue stragglers in NGC 188 as revealed by half-solar-mass companions.

    PubMed

    Geller, Aaron M; Mathieu, Robert D

    2011-10-19

    In open star clusters, where all members formed at about the same time, blue straggler stars are typically observed to be brighter and bluer than hydrogen-burning main-sequence stars, and therefore should already have evolved into giant stars and stellar remnants. Correlations between blue straggler frequency and cluster binary star fraction, core mass and radial position suggest that mass transfer or mergers in binary stars dominates the production of blue stragglers in open clusters. Analytic models, detailed observations and sophisticated N-body simulations, however, argue in favour of stellar collisions. Here we report that the blue stragglers in long-period binaries in the old (7 × 10(9)-year) open cluster NGC 188 have companions with masses of about half a solar mass, with a surprisingly narrow mass distribution. This conclusively rules out a collisional origin, as the collision hypothesis predicts a companion mass distribution with significantly higher masses. Mergers in hierarchical triple stars are marginally permitted by the data, but the observations do not favour this hypothesis. The data are highly consistent with a mass transfer origin for the long-period blue straggler binaries in NGC 188, in which the companions would be white dwarfs of about half a solar mass.

  1. Binary collision approximations for the memory function for density fluctuations in equilibrium atomic liquids

    NASA Astrophysics Data System (ADS)

    Noah, Joyce E.

    Time correlation functions of density fluctuations of liquids at equilibrium can be used to relate the microscopic dynamics of a liquid to its macroscopic transport properties. Time correlation functions are especially useful since they can be generated in a variety of ways, from scattering experiments to computer simulation to analytic theory. The kinetic theory of fluctuations in equilibrium liquids is an analytic theory for calculating correlation functions using memory functions. In this work, we use a diagrammatic formulation of the kinetic theory to develop a series of binary collision approximations for the collisional part of the memory function. We define binary collisions as collisions between two distinct density fluctuations whose identities are fixed during the duration of a collsion. R approximations are for the short time part of the memory function, and build upon the work of Ranganathan and Andersen. These approximations have purely repulsive interactions between the fluctuations. The second type of approximation, RA approximations, is for the longer time part of the memory function, where the density fluctuations now interact via repulsive and attractive forces. Although RA approximations are a natural extension of R approximations, they permit two density fluctuations to become trapped in the wells of the interaction potential, leading to long-lived oscillatory behavior, which is unphysical. Therefore we consider S approximations which describe binary particles which experience the random effect of the surroundings while interacting via repulsive or repulsive and attractive interactions. For each of these approximations for the memory function we numerically solve the kinetic equation to generate correlation functions. These results are compared to molecular dynamics results for the correlation functions. Comparing the successes and failures of the different approximations, we conclude that R approximations give more accurate intermediate and long time results while RA and S approximations do particularly well at predicting the short time behavior. Lastly, we also develop a series of non-graphically derived approximations and use an optimization procedure to determine the underlying memory function from the simulation data. These approaches provide valuable information about the memory function that will be used in the development of future kinetic theories.

  2. Kinetic theory of binary particles with unequal mean velocities and non-equipartition energies

    NASA Astrophysics Data System (ADS)

    Chen, Yanpei; Mei, Yifeng; Wang, Wei

    2017-03-01

    The hydrodynamic conservation equations and constitutive relations for a binary granular mixture composed of smooth, nearly elastic spheres with non-equipartition energies and different mean velocities are derived. This research is aimed to build three-dimensional kinetic theory to characterize the behaviors of two species of particles suffering different forces. The standard Enskog method is employed assuming a Maxwell velocity distribution for each species of particles. The collision components of the stress tensor and the other parameters are calculated from the zeroth- and first-order approximation. Our results demonstrate that three factors, namely the differences between two granular masses, temperatures and mean velocities all play important roles in the stress-strain relation of the binary mixture, indicating that the assumption of energy equipartition and the same mean velocity may not be acceptable. The collision frequency and the solid viscosity increase monotonously with each granular temperature. The zeroth-order approximation to the energy dissipation varies greatly with the mean velocities of both species of spheres, reaching its peak value at the maximum of their relative velocity.

  3. Toward a Physical Characterization of Raindrop Collision Outcome Regimes

    NASA Technical Reports Server (NTRS)

    Testik, F. Y.; Barros, Ana P.; Bilven, Francis L.

    2011-01-01

    A comprehensive raindrop collision outcome regime diagram that delineates the physical conditions associated with the outcome regimes (i.e., bounce, coalescence, and different breakup types) of binary raindrop collisions is proposed. The proposed diagram builds on a theoretical regime diagram defined in the phase space of collision Weber numbers We and the drop diameter ratio p by including critical angle of impact considerations. In this study, the theoretical regime diagram is first evaluated against a comprehensive dataset for drop collision experiments representative of raindrop collisions in nature. Subsequently, the theoretical regime diagram is modified to explicitly describe the dominant regimes of raindrop interactions in (We, p) by delineating the physical conditions necessary for the occurrence of distinct types of collision-induced breakup (neck/filament, sheet, disk, and crown breakups) based on critical angle of impact consideration. Crown breakup is a subtype of disk breakup for lower collision kinetic energy that presents distinctive morphology. Finally, the experimental results are analyzed in the context of the comprehensive collision regime diagram, and conditional probabilities that can be used in the parameterization of breakup kernels in stochastic models of raindrop dynamics are provided.

  4. Total Born approximation cross sections for single electron loss by atoms and ions colliding with atoms

    NASA Technical Reports Server (NTRS)

    Rule, D. W.

    1977-01-01

    The first born approximation (FBA) is applied to the calculation of single electron loss cross sections for various ions and atoms containing from one to seven electrons. Screened hydrogenic wave functions were used for the states of the electron ejected from the projectile, and Hartree-Fock elastic and incoherent scattering factors were used to describe the target. The effect of the target atom on the scaling of projectile ionization cross sections with respect to the projectile nuclear charge was explored in the case of hydrogen-like ions. Scaling of the cross section with respect to the target nuclear charge for electron loss by Fe (+25) in collision with neutral atoms ranging from H to Fe is also examined. These results were compared to those of the binary encounter approximation and to the FBA for the case of ionization by completely stripped target ions.

  5. Understanding the X-ray Flaring from Eta Carinae

    NASA Technical Reports Server (NTRS)

    Moffat, A.F.J.; Corcoran, Michael F.

    2009-01-01

    We quantify the rapid variations in X-ray brightness ("flares") from the extremely massive colliding wind binary Eta Carinae seen during the past three orbital cycles by RXTE. The observed flares tend to be shorter in duration and more frequent as periastron is approached, although the largest ones tend to be roughly constant in strength at all phases. Plausible scenarios include (1) the largest of multi-scale stochastic wind clumps from the LBV component entering and compressing the hard X-ray emitting wind-wind collision (WWC) zone, (2) large-scale corotating interacting regions in the LBV wind sweeping across the WWC zone, or (3) instabilities intrinsic to the WWC zone. The first one appears to be most consistent with the observations, requiring homologously expanding clumps as they propagate outward in the LBV wind and a turbulence-like powerlaw distribution of clumps, decreasing in number towards larger sizes, as seen in Wolf-Rayet winds.

  6. The topology of the regularized integral surfaces of the 3-body problem

    NASA Technical Reports Server (NTRS)

    Easton, R.

    1971-01-01

    Momentum, angular momentum, and energy of integral surfaces in the planar three-body problem are considered. The end points of orbits which cross an isolating block are identified. It is shown that this identification has a unique extension to an identification which pairs the end points of orbits entering the block and which end in a binary collision with the end points of orbits leaving the block and which come from a binary collision. The problem of regularization is that of showing that the identification of the end points of crossing orbits has a continuous, unique extension. The regularized phase space for the three-body problem was obtained, as were regularized integral surfaces for the problem on which the three-body equations of motion induce flows. Finally the topology of these surfaces is described.

  7. Electron Emission in Highly Charged Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Liao, Chunlei

    1995-01-01

    This dissertation addresses the problem of electron emission in highly charged ion-atom collisions. The study is carried out by measuring doubly differential cross sections (DDCS) of emitted electrons for projectiles ranging from fluorine up to gold at ejection angles (theta _{L}) from 0^circ to 70^circ with respect to the beam direction. Prominent features are a very strong forward peaked angular distribution of emitted electrons and the appearance of strong diffraction structures in the binary encounter electron (BEe) region for projectiles heavier than chlorine. This is in clear contradiction to the results found with fluorine projectiles, where the BEe production increases slightly with increasing theta_{L} and no structure is observed in the BEe region. Both can be understood in the impulse approximation as elastic scattering of quasi free target electrons in the projectile potential. Our measurements also show that the violation of q ^2 scaling of the DDCS previously established for 0^circ electron spectra persists for all emission angles and almost all electron energies. In ion-atom collisions, besides electrons from target, electrons from projectile ionization are also presented in the emitted electron spectra. Using electron-projectile coincidence technique, different collision channels can be separated. In order to eliminate the speculations of contributions from projectile related capture and loss channels, coincidence studies of diffraction structures are initiated. In the 0^circ electron spectrum of 0.3 MeV/u I^{6+} impacting on H_2, strong autoionization peaks are observed on the shoulders of the cusp peak. The energies of these autoionization lines in the projectile rest frame are determined by high-resolution electron spectroscopy, and collision mechanism is probed by electron-charge state selected projectile coincidence technique.

  8. The NASA Neutron Star Grand Challenge: The coalescences of Neutron Star Binary System

    NASA Astrophysics Data System (ADS)

    Suen, Wai-Mo

    1998-04-01

    NASA funded a Grand Challenge Project (9/1996-1999) for the development of a multi-purpose numerical treatment for relativistic astrophysics and gravitational wave astronomy. The coalescence of binary neutron stars is chosen as the model problem for the code development. The institutes involved in it are the Argonne Lab, Livermore lab, Max-Planck Institute at Potsdam, StonyBrook, U of Illinois and Washington U. We have recently succeeded in constructing a highly optimized parallel code which is capable of solving the full Einstein equations coupled with relativistic hydrodynamics, running at over 50 GFLOPS on a T3E (the second milestone point of the project). We are presently working on the head-on collisions of two neutron stars, and the inclusion of realistic equations of state into the code. The code will be released to the relativity and astrophysics community in April of 1998. With the full dynamics of the spacetime, relativistic hydro and microphysics all combined into a unified 3D code for the first time, many interesting large scale calculations in general relativistic astrophysics can now be carried out on massively parallel computers.

  9. The Double Asteroid Redirection Test (DART)

    NASA Astrophysics Data System (ADS)

    Rivkin, A.; Cheng, A. F.; Stickle, A. M.; Richardson, D. C.; Barnouin, O. S.; Thomas, C.; Fahnestock, E.

    2017-12-01

    The Double Asteroid Redirection Test (DART) will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. DART is currently in Preliminary Design Phase ("Phase B"), and is part of the Asteroid Impact and Deflection Assessment (AIDA), a joint ESA-NASA cooperative project. The AIDA target is the near-Earth binary asteroid 65803 Didymos, an S-class system that will make a close approach to Earth in fall 2022. The DART spacecraft is designed to impact the Didymos secondary at 6 km/s and demonstrate the ability to modify its trajectory through momentum transfer. The primary goals of AIDA are (1) perform a full-scale demonstration of the spacecraft kinetic impact technique for deflection of an asteroid; (2) measure the resulting asteroid deflection, by targeting the secondary member of a binary NEO and measuring the resulting changes of the binary orbit; and (3) study hyper-velocity collision effects on an asteroid, validating models for momentum transfer in asteroid impacts. The DART impact on the Didymos secondary will change the orbital period of the binary by several minutes, which can be measured by Earth-based optical and radar observations. The baseline DART mission launches in late 2020 to impact the Didymos secondary in 2022 near the time of its close pass of Earth, which enables an array of ground- and space-based observatories to participate in gathering data. The AIDA project will provide the first measurements of momentum transfer efficiency from hyper-velocity kinetic impact at full scale on an asteroid, where the impact conditions of the projectile are known, and physical properties and internal structures of the target asteroid are characterized or constrained. The DART kinetic impact is predicted to make a crater of 6 to 17 meters diameter, depending on target physical properties, but will also release a large volume of particulate ejecta that may be directly observable from Earth or even resolvable as a coma or an ejecta tail by ground-based telescopes.

  10. Accretion and Magnetic Reconnection in the Pre-Main Sequence Binary DQ Tau as Revealed through High-Cadence Optical Photometry

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Herczeg, Gregory; Johns-Krull, Christopher M.; Vodniza, Alberto

    2016-01-01

    Protostellar disks are integral to the formation and evolution of low-mass stars and planets. A paradigm for the star-disk interaction has been extensively developed through theory and observation in the case of single stars. Most stars, however, form in binaries or higher order systems where the distribution of disk material and mass flows are more complex. Pre-main sequence (PMS) binary stars can have up to three accretion disks: two circumstellar disks and a circumbinary disk separated by a dynamically cleared gap. Theory suggests that mass may periodically flow in an accretion stream from a circumbinary disk across the gap onto circumstellar disks or stellar surfaces.The archetype for this theory is the eccentric, PMS binary DQ Tau. Moderate-cadence broadband photometry (~10 observations per orbital period) has shown pulsed brightening events near most periastron passages, just as numerical simulations would predict for a binary of similar orbital parameters. While this observed behavior supports the accretion stream theory, it is not exclusive to variable accretion rates. Magnetic reconnection events (flares) during the collision of stellar magnetospheres at periastron (when separated by 8 stellar radii) could produce the same periodic, broadband behavior when observed at a one-day cadence. Further evidence for magnetic activity comes from gyrosynchrotron, radio flares (typical of stellar flares) observed near multiple periastron passages. To reveal the physical mechanism seen in DQ Tau's moderate-cadence observations, we have obtained continuous, moderate-cadence, multi-band photometry over 10 orbital periods (LCOGT 1m network), supplemented with 32 nights of minute-cadence photometry centered on 4 separate periastron passages (WIYN 0.9m; APO ARCSAT). With detailed lightcurve morphologies we distinguish between the gradual rise and fall on multi-day time-scales predicted by the accretion stream theory and the hour time-scale, rapid-rise and exponential-decay typical of flares. While both are present, accretion dominates the observed variability providing evidence for the accretion stream theory and detailed mass accretion rates for comparison with numerical simulations.

  11. The dynamics of milk droplet-droplet collisions

    NASA Astrophysics Data System (ADS)

    Finotello, Giulia; Kooiman, Roeland F.; Padding, Johan T.; Buist, Kay A.; Jongsma, Alfred; Innings, Fredrik; Kuipers, J. A. M.

    2018-01-01

    Spray drying is an important industrial process to produce powdered milk, in which concentrated milk is atomized into small droplets and dried with hot gas. The characteristics of the produced milk powder are largely affected by agglomeration, combination of dry and partially dry particles, which in turn depends on the outcome of a collision between droplets. The high total solids (TS) content and the presence of milk proteins cause a relatively high viscosity of the fed milk concentrates, which is expected to largely influence the collision outcomes of drops inside the spray. It is therefore of paramount importance to predict and control the outcomes of binary droplet collisions. Only a few studies report on droplet collisions of high viscous liquids and no work is available on droplet collisions of milk concentrates. The current study therefore aims to obtain insight into the effect of viscosity on the outcome of binary collisions between droplets of milk concentrates. To cover a wide range of viscosity values, three milk concentrates (20, 30 and 46% TS content) are investigated. An experimental set-up is used to generate two colliding droplet streams with consistent droplet size and spacing. A high-speed camera is used to record the trajectories of the droplets. The recordings are processed by Droplet Image Analysis in MATLAB to determine the relative velocities and the impact geometries for each individual collision. The collision outcomes are presented in a regime map dependent on the dimensionless impact parameter and Weber ( We) number. The Ohnesorge ( Oh) number is introduced to describe the effect of viscosity from one liquid to another and is maintained constant for each regime map by using a constant droplet diameter ( d ˜ 700 μ m). In this work, a phenomenological model is proposed to describe the boundaries demarcating the coalescence-separation regimes. The collision dynamics and outcome of milk concentrates are compared with aqueous glycerol solutions experiments. While milk concentrates have complex chemical composition and rheology, glycerol solutions are Newtonian fluids and therefore easy to characterize. The collision morphologies of glycerol solutions and milk concentrates are similar, and the regime maps can be described by the same phenomenological model developed in this work. The regime of bouncing, however, was not observed for any of the milk concentrates.

  12. Anisotropic mechanoresponse of energetic crystallites: a quantum molecular dynamics study of nano-collision

    NASA Astrophysics Data System (ADS)

    Li, Ying; Kalia, Rajiv K.; Misawa, Masaaki; Nakano, Aiichiro; Nomura, Ken-Ichi; Shimamura, Kohei; Shimojo, Fuyuki; Vashishta, Priya

    2016-05-01

    At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials.At the nanoscale, chemistry can happen quite differently due to mechanical forces selectively breaking the chemical bonds of materials. The interaction between chemistry and mechanical forces can be classified as mechanochemistry. An example of archetypal mechanochemistry occurs at the nanoscale in anisotropic detonating of a broad class of layered energetic molecular crystals bonded by inter-layer van der Waals (vdW) interactions. Here, we introduce an ab initio study of the collision, in which quantum molecular dynamic simulations of binary collisions between energetic vdW crystallites, TATB molecules, reveal atomistic mechanisms of anisotropic shock sensitivity. The highly sensitive lateral collision was found to originate from the twisting and bending to breaking of nitro-groups mediated by strong intra-layer hydrogen bonds. This causes the closing of the electronic energy gap due to an inverse Jahn-Teller effect. On the other hand, the insensitive collisions normal to multilayers are accomplished by more delocalized molecular deformations mediated by inter-layer interactions. Our nano-collision studies provide a much needed atomistic understanding for the rational design of insensitive energetic nanomaterials and the detonation synthesis of novel nanomaterials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08769d

  13. Validity of Binary Collision Theory in Ion-Surface Interactions at 50-500 eV

    NASA Astrophysics Data System (ADS)

    Gordon, Michael; Giapis, Kostas

    2003-10-01

    Ion-surface interactions in the 50-500 eV regime have become increasingly important in plasma processing. Concerns exist in literature about the validity of the binary collision approximation (BCA) at low impact energies because peculiarities are frequently seen in the scattered ion energy distribution. Sub-surface processes, multiple bouncing, and super-elastic phenomena have all been hypothesized. This talk will explore the usefulness of BCA theory in predicting energy transfer during ion-surface collisions in the 50-500 eV energy range. Well-defined beams of rare gas ions (Ne, Ar, Kr) were scattered off semiconductor (Si, Ge) and metal surfaces (Ag, Au, Ni, Nb) to measure energy loss upon impact. The ion beams were produced from a floating ICP reactor coupled to a small accelerator beamline for transport and mass filtering. Exit channel energies were measured using a 90 gegree electrostatic sector coupled to a quadrupole mass filter with single ion detection capability. Although the BCA presents an over-simplified picture of the collision process, our results demonstrate that it is remarkably accurate in the low energy range for a variety of projectile-target combinations. In addition, reactive ion scattering of O2+ and O+ on inert and reactive surfaces (Au vs. Ag, Pt) suggests there may be rather high energy threshold processes which determine exit channel selectivity.

  14. Both size-frequency distribution and sub-populations of the main-belt asteroid population are consistent with YORP-induced rotational fission

    NASA Astrophysics Data System (ADS)

    Jacobson, S.; Scheeres, D.; Rossi, A.; Marzari, F.; Davis, D.

    2014-07-01

    From the results of a comprehensive asteroid-population-evolution model, we conclude that the YORP-induced rotational-fission hypothesis has strong repercussions for the small size end of the main-belt asteroid size-frequency distribution and is consistent with observed asteroid-population statistics and with the observed sub-populations of binary asteroids, asteroid pairs and contact binaries. The foundation of this model is the asteroid-rotation model of Marzari et al. (2011) and Rossi et al. (2009), which incorporates both the YORP effect and collisional evolution. This work adds to that model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur; Scheeres 2007) and binary-asteroid evolution (Jacobson & Scheeres, 2011). The YORP-effect timescale for large asteroids with diameters D > ˜ 6 km is longer than the collision timescale in the main belt, thus the frequency of large asteroids is determined by a collisional equilibrium (e.g. Bottke 2005), but for small asteroids with diameters D < ˜ 6 km, the asteroid-population evolution model confirms that YORP-induced rotational fission destroys small asteroids more frequently than collisions. Therefore, the frequency of these small asteroids is determined by an equilibrium between the creation of new asteroids out of the impact debris of larger asteroids and the destruction of these asteroids by YORP-induced rotational fission. By introducing a new source of destruction that varies strongly with size, YORP-induced rotational fission alters the slope of the size-frequency distribution. Using the outputs of the asteroid-population evolution model and a 1-D collision evolution model, we can generate this new size-frequency distribution and it matches the change in slope observed by the SKADS survey (Gladman 2009). This agreement is achieved with both an accretional power-law or a truncated ''Asteroids were Born Big'' size-frequency distribution (Weidenschilling 2010, Morbidelli 2009). The binary-asteroid evolution model is highly constrained by the modeling done in Jacobson & Scheeres, and therefore the asteroid-population evolution model has only two significant free parameters: the ratio of low-to-high-mass-ratio binaries formed after rotational fission events and the mean strength of the binary YORP (BYORP) effect. Using this model, we successfully reproduce the observed small-asteroid sub-populations, which orthogonally constrain the two free parameters. We find the outcome of rotational fission most likely produces an initial mass-ratio fraction that is four to eight times as likely to produce high-mass-ratio systems as low-mass-ratio systems, which is consistent with rotational fission creating binary systems in a flat distribution with respect to mass ratio. We also find that the mean of the log-normal BYORP coefficient distribution B ≈ 10^{-2}.

  15. Implementation of collisions on GPU architecture in the Vorpal code

    NASA Astrophysics Data System (ADS)

    Leddy, Jarrod; Averkin, Sergey; Cowan, Ben; Sides, Scott; Werner, Greg; Cary, John

    2017-10-01

    The Vorpal code contains a variety of collision operators allowing for the simulation of plasmas containing multiple charge species interacting with neutrals, background gas, and EM fields. These existing algorithms have been improved and reimplemented to take advantage of the massive parallelization allowed by GPU architecture. The use of GPUs is most effective when algorithms are single-instruction multiple-data, so particle collisions are an ideal candidate for this parallelization technique due to their nature as a series of independent processes with the same underlying operation. This refactoring required data memory reorganization and careful consideration of device/host data allocation to minimize memory access and data communication per operation. Successful implementation has resulted in an order of magnitude increase in simulation speed for a test-case involving multiple binary collisions using the null collision method. Work supported by DARPA under contract W31P4Q-16-C-0009.

  16. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.

    PubMed

    Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A

    2016-02-01

    To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  17. Computer simulation of radiation damage in gallium arsenide

    NASA Technical Reports Server (NTRS)

    Stith, John J.; Davenport, James C.; Copeland, Randolph L.

    1989-01-01

    A version of the binary-collision simulation code MARLOWE was used to study the spatial characteristics of radiation damage in proton and electron irradiated gallium arsenide. Comparisons made with the experimental results proved to be encouraging.

  18. An Unexpected Detection of Bifurcated Blue Straggler Sequences in the Young Globular Cluster NGC 2173

    NASA Astrophysics Data System (ADS)

    Li, Chengyuan; Deng, Licai; de Grijs, Richard; Jiang, Dengkai; Xin, Yu

    2018-03-01

    The bifurcated patterns in the color–magnitude diagrams of blue straggler stars (BSSs) have attracted significant attention. This type of special (but rare) pattern of two distinct blue straggler sequences is commonly interpreted as evidence that cluster core-collapse-driven stellar collisions are an efficient formation mechanism. Here, we report the detection of a bifurcated blue straggler distribution in a young Large Magellanic Cloud cluster, NGC 2173. Because of the cluster’s low central stellar number density and its young age, dynamical analysis shows that stellar collisions alone cannot explain the observed BSSs. Therefore, binary evolution is instead the most viable explanation of the origin of these BSSs. However, the reason why binary evolution would render the color–magnitude distribution of BSSs bifurcated remains unclear. C. Li, L. Deng, and R. de Grijs jointly designed this project.

  19. Collisional redistribution of radiation. II - The effects of degeneracy on the equations of motion for the density matrix. III - The equation of motion for the correlation function and the scattered spectrum

    NASA Technical Reports Server (NTRS)

    Burnett, K.; Cooper, J.

    1980-01-01

    The effect of correlations between an absorber atom and perturbers in the binary-collision approximation are applied to degenerate atomic systems. A generalized absorption profile which specifies the final state of the atom after an absorption event is related to the total intensities of Rayleigh scattering and fluorescence from the atom. It is suggested that additional dynamical information to that obtainable from ordinary absorption experiments is required in order to describe redistributed atomic radiation. The scattering of monochromatic radiation by a degenerate atom is computed in a binary-collision approximation; an equation of motion is derived for the correlation function which is valid outside the quantum-regression regime. Solutions are given for the weak-field conditions in terms of generalized absorption and emission profiles that depend on the indices of the atomic multipoles.

  20. Solitary waves in dimer binary collision model

    NASA Astrophysics Data System (ADS)

    Ahsan, Zaid; Jayaprakash, K. R.

    2017-01-01

    Solitary wave propagation in nonlinear diatomic (dimer) chains is a very interesting topic of research in the study of nonlinear lattices. Such waves were recently found to be supported by the essentially nonlinear granular lattice and Toda lattice. An interesting aspect of this discovery is attributed to the realization of a spectrum of the mass ratio (the only system parameter governing the dynamics) that supports the propagation of such waves corresponding to the considered interaction potential. The objective of this exposition is to explore solitary wave propagation in the dimer binary collision (BC) model. Interestingly, the dimer BC model supports solitary wave propagation at a discrete spectrum of mass ratios similar to those observed in granular and Toda dimers. Further, we report a qualitative and one-to-one correspondence between the spectrum of the mass ratio corresponding to the dimer BC model and those corresponding to granular and Toda dimer chains.

  1. Collisional Time Scales in the Kuiper Disk and Their Implications

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1995-01-01

    We explore the rate of collisions among bodies in the present-day Kuiper Disk as a function of the total mass and population size structure of the disk. We find that collisional evolution is an important evolutionary process in the disk as a whole, and indeed, that it is likely the dominant evolutionary process beyond approx. 42 AU, where dynamical instability time scales exceed the age of the solar system. Two key findings we report from this modeling work are: that unless the disk's population structure is sharply truncated for radii smaller than approx. 1-2 km, collisions between comets and smaller debris are occurring so frequently in the disk, and with high enough velocities, that the small body (i.e., KM-class object) population in the disk has probably developed into a collisional cascade, thereby implying that the Kuiper Disk comets may not all be primordial, and that the rate of collisions of smaller bodies with larger 100 less R less 400 km objects (like 1992QB(sub 1) and its cohorts) is so low that there appears to be a dilemma in explaining how QB(sub 1)s could have grown by binary accretion in the disk as we know it. Given these findings, it appears that either the present-day paradigm for the formation of Kuiper Disk is failed in some fundamental respect, or that the present-day disk is no longer representative of the ancient structure from which it evolved. This in turn suggests the intriguing possibility that the present-day Kuiper Disk evolved through a more erosional stage reminiscent of the disks around the stars Beta Pictorus, alpha PsA, and alpha Lyr.

  2. Transverse momentum dependence of D-meson production in Pb-Pb collisions at $$ \\sqrt{{\\mathrm{s}}_{\\mathrm{NN}}}=2.76 $$ TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-03-14

    The production of prompt charmed mesons D 0, D + and D* +, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the centre-of-mass energy per nucleon pair, √ sNN, of 2.76 TeV. The production yields for rapidity |y| < 0.5 are presented as a function of transverse momentum, p T, in the interval 1–36 GeV/c for the centrality class 0–10% and in the interval 1–16 GeV/c for the centrality class 30–50%. The nuclear modification factor R AA was computed using a proton-proton reference at √s = 2.76 TeV, based on measurements at √s = 7more » TeV and on theoretical calculations. A maximum suppression by a factor of 5-6 with respect to binary-scaled pp yields is observed for the most central collisions at p T of about 10 GeV/c. A suppression by a factor of about 2-3 persists at the highest p T covered by the measurements. At low pT (1-3 GeV/c), the R AA has large uncertainties that span the range 0.35 (factor of about 3 suppression) to 1 (no suppression). In all p T intervals, the R AA is larger in the 30-50% centrality class compared to central collisions. Furthermore, the D-meson R AA is also compared with that of charged pions and, at large p T, charged hadrons, and with model calculations.« less

  3. Transverse momentum dependence of D-meson production in Pb-Pb collisions at sqrt{{s}_{NN}}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pal, S. K.; Pan, J.; Pandey, A. K.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yasar, C.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-03-01

    The production of prompt charmed mesons D0, D+ and D∗+, and their antiparticles, was measured with the ALICE detector in Pb-Pb collisions at the centre-of-mass energy per nucleon pair, sqrt{s_{NN}} , of 2 .76 TeV. The production yields for rapidity | y| < 0 .5 are presented as a function of transverse momentum, p T, in the interval 1-36 GeV /c for the centrality class 0-10% and in the interval 1-16 GeV /c for the centrality class 30-50%. The nuclear modification factor R AA was computed using a proton-proton reference at sqrt{s}=2.76 TeV, based on measurements at sqrt{s}=7 TeV and on theoretical calculations. A maximum suppression by a factor of 5-6 with respect to binary-scaled pp yields is observed for the most central collisions at p T of about 10 GeV /c. A suppression by a factor of about 2-3 persists at the highest p T covered by the measurements. At low p T (1-3 GeV /c), the R AA has large uncertainties that span the range 0.35 (factor of about 3 suppression) to 1 (no suppression). In all p T intervals, the R AA is larger in the 30-50% centrality class compared to central collisions. The D-meson R AA is also compared with that of charged pions and, at large p T, charged hadrons, and with model calculations. [Figure not available: see fulltext.

  4. N-dark-dark solitons for the coupled higher-order nonlinear Schrödinger equations in optical fibers

    NASA Astrophysics Data System (ADS)

    Zhang, Hai-Qiang; Wang, Yue

    2017-11-01

    In this paper, we construct the binary Darboux transformation on the coupled higher-order dispersive nonlinear Schrödinger equations in optical fibers. We present the N-fold iterative transformation in terms of the determinants. By the limit technique, we derive the N-dark-dark soliton solutions from the non-vanishing background. Based on the obtained solutions, we find that the collision mechanisms of dark vector solitons exhibit the standard elastic collisions in both two components.

  5. Development of a fluidized bed agglomeration modeling methodology to include particle-level heterogeneities in ash chemistry and granular physics

    NASA Astrophysics Data System (ADS)

    Khadilkar, Aditi B.

    The utility of fluidized bed reactors for combustion and gasification can be enhanced if operational issues such as agglomeration are mitigated. The monetary and efficiency losses could be avoided through a mechanistic understanding of the agglomeration process and prediction of operational conditions that promote agglomeration. Pilot-scale experimentation prior to operation for each specific condition can be cumbersome and expensive. So the development of a mathematical model would aid predictions. With this motivation, the study comprised of the following model development stages- 1) development of an agglomeration modeling methodology based on binary particle collisions, 2) study of heterogeneities in ash chemical composition and gaseous atmosphere, 3) computation of a distribution of particle collision frequencies based on granular physics for a poly-disperse particle size distribution, 4) combining the ash chemistry and granular physics inputs to obtain agglomerate growth probabilities and 5) validation of the modeling methodology. The modeling methodology comprised of testing every binary particle collision in the system for sticking, based on the extent of dissipation of the particles' kinetic energy through viscous dissipation by slag-liquid (molten ash) covering the particles. In the modeling methodology developed in this study, thermodynamic equilibrium calculations are used to estimate the amount of slag-liquid in the system, and the changes in particle collision frequencies are accounted for by continuously tracking the number density of the various particle sizes. In this study, the heterogeneities in chemical composition of fuel ash were studied by separating the bulk fuel into particle classes that are rich in specific minerals. FactSage simulations were performed on two bituminous coals and an anthracite to understand the effect of particle-level heterogeneities on agglomeration. The mineral matter behavior of these constituent classes was studied. Each particle class undergoes distinct transformations of mineral matter at fluidized bed operating temperatures, as determined by using high temperature X-ray diffraction, thermo-mechanical analysis and scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). For the incorporation of a particle size distribution, bottom ash from an operating plant was divided into four size intervals and the system granular temperatures and dynamic bed height were computed using MFIX, a CFD simulation software. The kinetic theory of granular flow was used to obtain a distribution of binary collision frequencies for the entire particle size distribution. With this distribution of collision frequencies, which is computed based on hydrodynamics and granular physics of the poly-disperse system, as the particles grow, defluidize and decrease in number, the collision frequency also decreases. Under the conditions studied, the growth rate in the latter half of the run decreased to almost 1/5th the initial rate, with this decrease in collision frequency. This interdependent effect of chemistry and physics-based parameters, at the particle-level, was used to predict the agglomerate growth probabilities of Pittsburgh No. 8, Illinois No. 6 and Skidmore anthracite coals in this study, to illustrate the utility of the modeling methodology. The study also showed that agglomerate growth probability significantly increased above 15 to 20 wt. % slag. It was limited by ash chemistry at levels below this amount. Ash agglomerates were generated in a laboratory-scale fluidized bed combustor at Penn State to support the proposed agglomerate growth mechanism. This study also attempted to gain a mechanistic understanding of agglomerate growth with particle-level initiation occurring at the relatively low operating temperatures of about 950 °C, found in some fluidized beds. The results of this study indicated that, for the materials examined, agglomerate growth in fluidized bed combustors and gasifiers is initiated at the particle-level by low-melting components rich in iron- and calcium-based minerals. Although the bulk ash chemical composition does not indicate potential for agglomeration, study of particle-level heterogeneities revealed that agglomeration can begin at lower temperatures than the fluidized bed operating temperatures of 850 °C. After initiation at the particle-level, more slag is observed to form from alumino-silicate components at about 50 to 100 °C higher temperatures caused by changes in the system, and agglomerate growth propagates in the bed. A post-mortem study of ash agglomerates using SEM-EDX helped to identify stages of agglomerate growth. Additionally, the modeling methodology developed was used to simulate agglomerate growth in a laboratory-scale fluidized bed combustor firing palm shells (biomass), reported in the literature. A comparison of the defluidization time obtained by simulations to the experimental values reported in the case-study was made for the different operating conditions studied. This indicated that although the simulation results were comparable to those reported in the case study, modifications such as inclusion of heat transfer calculations to determine particle temperature resulting from carbon conversion would improve the predictive capabilities. (Abstract shortened by ProQuest.).

  6. Water radiolysis by low-energy carbon projectiles from first-principles molecular dynamics

    PubMed Central

    Kohanoff, Jorge

    2017-01-01

    Water radiolysis by low-energy carbon projectiles is studied by first-principles molecular dynamics. Carbon projectiles of kinetic energies between 175 eV and 2.8 keV are shot across liquid water. Apart from translational, rotational and vibrational excitation, they produce water dissociation. The most abundant products are H and OH fragments. We find that the maximum spatial production of radiolysis products, not only occurs at low velocities, but also well below the maximum of energy deposition, reaching one H every 5 Å at the lowest speed studied (1 Bohr/fs), dissociative collisions being more significant at low velocity while the amount of energy required to dissociate water is constant and much smaller than the projectile’s energy. A substantial fraction of the energy transferred to fragments, especially for high velocity projectiles, is in the form of kinetic energy, such fragments becoming secondary projectiles themselves. High velocity projectiles give rise to well-defined binary collisions, which should be amenable to binary approximations. This is not the case for lower velocities, where multiple collision events are observed. H secondary projectiles tend to move as radicals at high velocity, as cations when slower. We observe the generation of new species such as hydrogen peroxide and formic acid. The former occurs when an O radical created in the collision process attacks a water molecule at the O site. The latter when the C projectile is completely stopped and reacts with two water molecules. PMID:28267804

  7. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    PubMed

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  8. The fate of close encounters between binary stars and binary supermassive black holes

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Han; Leigh, Nathan; Yuan, Ye-Fei; Perna, Rosalba

    2018-04-01

    The evolution of main-sequence binaries that reside in the Galactic Centre can be heavily influenced by the central supermassive black hole (SMBH). Due to these perturbative effects, the stellar binaries in dense environments are likely to experience mergers, collisions, or ejections through secular and/or non-secular interactions. More direct interactions with the central SMBH are thought to produce hypervelocity stars (HVSs) and tidal disruption events (TDEs). In this paper, we use N-body simulations to study the dynamics of stellar binaries orbiting a central SMBH primary with an outer SMBH secondary orbiting this inner triple. The effects of the secondary SMBH on the event rates of HVSs, TDEs, and stellar mergers are investigated, as a function of the SMBH-SMBH binary mass ratio. Our numerical experiments reveal that, relative to the isolated SMBH case, the TDE and HVS rates are enhanced for, respectively, the smallest and largest mass ratio SMBH-SMBH binaries. This suggests that the observed event rates of TDEs and HVSs have the potential to serve as a diagnostic of the mass ratio of a central SMBH-SMBH binary. The presence of a secondary SMBH also allows for the creation of hypervelocity binaries. Observations of these systems could thus constrain the presence of a secondary SMBH in the Galactic Centre.

  9. Towards a Fundamental Understanding of Short Period Eclipsing Binary Systems Using Kepler Data

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej

    Kepler's ultra-high precision photometry is revolutionizing stellar astrophysics. We are seeing intrinsic phenomena on an unprecedented scale, and interpreting them is both a challenge and an exciting privilege. Eclipsing binary stars are of particular significance for stellar astrophysics because precise modeling leads to fundamental parameters of the orbiting components: masses, radii, temperatures and luminosities to better than 1-2%. On top of that, eclipsing binaries are ideal physical laboratories for studying other physical phenomena, such as asteroseismic properties, chromospheric activity, proximity effects, mass transfer in close binaries, etc. Because of the eclipses, the basic geometry is well constrained, but a follow-up spectroscopy is required to get the dynamical masses and the absolute scale of the system. A conjunction of Kepler photometry and ground- based spectroscopy is a treasure trove for eclipsing binary star astrophysics. This proposal focuses on a carefully selected set of 100 short period eclipsing binary stars. The fundamental goal of the project is to study the intrinsic astrophysical effects typical of short period binaries in great detail, utilizing Kepler photometry and follow-up spectroscopy to devise a robust and consistent set of modeling results. The complementing spectroscopy is being secured from 3 approved and fully funded programs: the NOAO 4-m echelle spectroscopy at Kitt Peak (30 nights; PI Prsa), the 10- m Hobby-Eberly Telescope high-resolution spectroscopy (PI Mahadevan), and the 2.5-m Sloan Digital Sky Survey III spectroscopy (PI Mahadevan). The targets are prioritized by the projected scientific yield. Short period detached binaries host low-mass (K- and M- type) components for which the mass-radius relationship is sparsely populated and still poorly understood, as the radii appear up to 20% larger than predicted by the population models. We demonstrate the spectroscopic detection viability in the secondary-to-primary light ratio regime of ~1-2% for the circumbinary host system Kepler-16. Semi-detached binaries are ideal targets to study the dynamical processes such as mass flow and accretion, and the associated thermal processes such as intensity variation due to distortion of the lobe-filling component and material inflow collisions with accretion disks. Overcontact binaries are very abundant, yet their evolution and radiative properties are poorly understood and conflicting theories exist to explain their population frequency and structure. In addition, we will measure eclipse timing variations for all program binaries that attest to the presence of perturbing third bodies (stellar and substellar!) or dynamical interaction between the components. By a dedicated, detailed, manual modeling of these sets of targets, we will be able to use Kepler's ultra-high precision photometry to a rewarding scientific end. Thanks to the unprecedented quality of Kepler data, this will be a highly focused effort that maximizes the scientific yield and the reliability of the results. Our team has ample experience dealing with Kepler data (PI Prsa serves as chair of the Eclipsing Binary Working Group in the Kepler Science Team), spectroscopic follow-up (Co-Is Mahadevan and Bender both have experience with radial velocity instrumentation and large spectroscopic surveys), and eclipsing binary modeling (PI Prsa and Co-I Devinney both have a long record of theoretical and computational development of modeling tools). The bulk of funding we are requesting is for two postdoctoral research fellows to conduct this work at 0.5 FTE/year each, for the total of 2 years.

  10. Feeding supermassive black holes by collisional cascades

    NASA Astrophysics Data System (ADS)

    Faber, Christian; Dehnen, Walter

    2018-05-01

    The processes driving gas accretion on to supermassive black holes (SMBHs) are still poorly understood. Angular momentum conservation prevents gas within ˜10 pc of the black hole from reaching radii ˜10-3 pc where viscous accretion becomes efficient. Here we present simulations of the collapse of a clumpy shell of swept-up isothermal gas, which is assumed to have formed as a result of feedback from a previous episode of AGN activity. The gas falls towards the SMBH forming clumps and streams, which intersect, collide, and often form a disc. These collisions promote partial cancellations of angular momenta, resulting in further infall and more collisions. This continued collisional cascade generates a tail of gas with sufficiently small angular momenta and provides a viable route for gas inflow to sub-parsec scales. The efficiency of this process hardly depends on details, such as gas temperature, initial virial ratio and power spectrum of the gas distribution, as long as it is not strongly rotating. Adding star formation to this picture might explain the near-simultaneous formation of the S-stars (from tidally disrupted binaries formed in plunging gas streams) and the sub-parsec young stellar disc around Sgr A⋆.

  11. Feeding supermassive black holes by collisional cascades

    NASA Astrophysics Data System (ADS)

    Faber, Christian; Dehnen, Walter

    2018-07-01

    The processes driving gas accretion on to supermassive black holes (SMBHs) are still poorly understood. Angular momentum conservation prevents gas within ˜10 pc of the black hole from reaching radii ˜10-3pc where viscous accretion becomes efficient. Here we present simulations of the collapse of a clumpy shell of swept-up isothermal gas, which is assumed to have formed as a result of feedback from a previous episode of AGN activity. The gas falls towards the SMBH forming clumps and streams, which intersect, collide and often form a disc. These collisions promote partial cancellations of angular momenta, resulting in further infall and more collisions. This continued collisional cascade generates a tail of gas with sufficiently small angular momenta and provides a viable route for gas inflow to sub-parsec scales. The efficiency of this process hardly depends on details, such as gas temperature, initial virial ratio and power spectrum of the gas distribution, as long as it is not strongly rotating. Adding star formation to this picture might explain the near-simultaneous formation of the S-stars (from tidally disrupted binaries formed in plunging gas streams) and the sub-parsec young stellar disc around Sgr A⋆.

  12. Production of inclusive Υ(1S) and Υ(2S) in p–Pb collisions at s NN = 5.02 TeV

    DOE PAGES

    Abelev, B.

    2014-11-22

    We report on the production of inclusive Υ(1S) and Υ(2S) in p–Pb collisions at √ SNN = 5.02 TeV at the LHC. The measurement is performed with the ALICE detector at backward (-4.46 < y cms < -2.96) and forward (2.03 < y cms < 3.53) rapidity down to zero transverse momentum. The production cross sections of the Υ(1S) and Υ(2S) are presented, as well as the nuclear modification factor and the ratio of the forward to backward yields of Υ(1S). A suppression of the inclusive Υ(1S) yield in p–Pb collisions with respect to the yield from pp collisions scaledmore » by the number of binary nucleon–nucleon collisions is observed at forward rapidity but not at backward rapidity. Finally, the results are compared to theoretical model calculations including nuclear shadowing or partonic energy loss effects.« less

  13. Discrete Velocity Models for Polyatomic Molecules Without Nonphysical Collision Invariants

    NASA Astrophysics Data System (ADS)

    Bernhoff, Niclas

    2018-05-01

    An important aspect of constructing discrete velocity models (DVMs) for the Boltzmann equation is to obtain the right number of collision invariants. Unlike for the Boltzmann equation, for DVMs there can appear extra collision invariants, so called spurious collision invariants, in plus to the physical ones. A DVM with only physical collision invariants, and hence, without spurious ones, is called normal. The construction of such normal DVMs has been studied a lot in the literature for single species, but also for binary mixtures and recently extensively for multicomponent mixtures. In this paper, we address ways of constructing normal DVMs for polyatomic molecules (here represented by that each molecule has an internal energy, to account for non-translational energies, which can change during collisions), under the assumption that the set of allowed internal energies are finite. We present general algorithms for constructing such models, but we also give concrete examples of such constructions. This approach can also be combined with similar constructions of multicomponent mixtures to obtain multicomponent mixtures with polyatomic molecules, which is also briefly outlined. Then also, chemical reactions can be added.

  14. Binary star formation: gravitational fragmentation followed by capture

    NASA Astrophysics Data System (ADS)

    Turner, J. A.; Chapman, S. J.; Bhattal, A. S.; Disney, M. J.; Pongracic, H.; Whitworth, A. P.

    1995-11-01

    We describe in detail one of a sequence of numerical simulations which realize the mechanism of binary star formation proposed by Pringle. In these simulations, collisions between stable molecular cloud clumps produce dense shocked layers, which cool radiatively and fragment gravitationally. The resulting fragments then condense to form protostellar discs, which at the same time fall together and, as a result of tidal and viscous interactions, capture one another to form binary systems. We refer to this mechanism as shock-induced gravitational fragmentation followed by capture, or SGF+C. When the initial clumps are sufficiently massive and/or the Mach number of the collision is sufficiently high, a large number (>~10) of protostellar discs is produced; under these circumstances, the layer fragments first into filaments, and then into beads along the filaments. The marriage of two protostellar discs in this way is `arranged' in the sense that the protostellar discs involved do not form independently. First, they both condense out of the same layer, and probably also out of the same filament within this layer; this significantly increases the likelihood of them interacting dynamically. Secondly, there tends to be alignment between the orbital and spin angular momenta of the interacting protostellar discs, reflecting the fact that these angular momenta derive mainly from the systematic global angular momentum of the off-axis collision which produced the layer; this alignment of the various angular momenta pre-disposes the discs to very dissipative interactions, thereby increasing the probability of producing a strongly bound, long-lasting union. It is a marriage because the binary orbit stabilizes itself rather quickly. Any subsequent orbit evolution, as the protostellar discs `mop up' the surrounding residual gas and interact tidally, tends to harden the orbit. Therefore, as long as a third body does not intervene, the union is binding. Even if a third body does intervene, provided the binary components are well matched (i.e. of comparable mass) and the third body is not too massive, such interventions will - more often than not - harden the orbit further. In two appendices we describe the code used in the simulations presented in this and the companion paper, and the tests performed to demonstrate the code's ability to handle the physical processes involved.

  15. CLOSE BINARIES WITH INFRARED EXCESS: DESTROYERS OF WORLDS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matranga, M.; Drake, J. J.; Kashyap, V. L.

    2010-09-10

    We present the results of a Spitzer photometric investigation into the IR excesses of close binary systems. In a sample of 10 objects, excesses in Infrared Array Camera and MIPS24 bands implying the presence of warm dust are found for 3. For two objects, we do not find excesses reported in earlier IRAS studies. We discuss the results in the context of the scenario suggested by Rhee and co-workers, in which warm dust is continuously created by destructive collisions between planetary bodies. A simple numerical model for the steady-state distribution of dust in one IR excess system shows a centralmore » clearing of radius 0.22 AU caused by dynamical perturbations from the binary star. This is consistent with the size of the central clearing derived from the Spitzer spectral energy distribution. We conclude that close binaries could be efficient 'destroyers of worlds' and lead to destabilization of the orbits of their planetary progeny by magnetically driven angular momentum loss and secular shrinkage of the binary separation.« less

  16. On the stability and collisions in triple stellar systems

    NASA Astrophysics Data System (ADS)

    He, Matthias Y.; Petrovich, Cristobal

    2018-02-01

    A significant fraction of main-sequence (MS) stars are part of a triple system. We study the long-term stability and dynamical outcomes of triple stellar systems using a large number of long-term direct N-body integrations with relativistic precession. We find that the previously proposed stability criteria by Eggleton & Kiseleva and Mardling & Aarseth predict the stability against ejections reasonably well for a wide range of parameters. Assuming that the triple stellar systems follow orbital and mass distributions from FGK binary stars in the field, we find that ˜ 1 per cent and ˜ 0.5 per cent of the triple systems lead to a direct head-on collision (impact velocity ˜ escape velocity) between MS stars and between a MS star and a stellar-mass compact object, respectively. We conclude that triple interactions are the dominant channel for direct collisions involving a MS star in the field with a rate of one event every ˜100 years in the Milky Way. We estimate that the fraction of triple systems that form short-period binaries is up to ˜ 23 per cent with only up to ˜ 13 per cent being the result of three-body interactions with tidal dissipation, which is consistent with previous work using a secular code.

  17. Transport equations for partially ionized reactive plasma in magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-06-08

    Transport equations for partially ionized reactive plasma in magnetic field taking into account the internal degrees of freedom and electronic excitation of plasma particles are derived. As a starting point of analysis the kinetic equation with a binary collision operator written in the Wang-Chang and Uhlenbeck form and with a reactive collision integral allowing for arbitrary chemical reactions is used. The linearized variant of Grad’s moment method is applied to deduce the systems of moment equations for plasma and also full and reduced transport equations for plasma species nonequilibrium parameters.

  18. Hans A. Bethe Prize: Cosmic Collisions Online - Compact Binary Mergers, Gravitational Waves and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Shapiro, Stuart

    2017-01-01

    Hans A. Bethe elucidated our understanding of the fundamental forces of Nature by exploring and explaining countless phenomena occurring in nuclear laboratories and in stars. With the dawn of gravitational wave astronomy we now can probe compact binary mergers - Nature's cosmic collision experiments - to deepen our understanding, especially where strong-field gravitation is involved. In addition to gravitational waves, some mergers are likely to generate observable electromagnetic and/or neutrino radiation, heralding a new era of multimessenger astronomy. Robust numerical algorithms now allow us to simulate these events in full general relativity on supercomputers. We will describe some recent magnetohydrodynamic simulations that show how binary black hole-neutron star and neutron star-neutron star mergers can launch jets, lending support to the idea that such mergers could be the engines that power short gamma-ray bursts. We will also show how the magnetorotational collapse of very massive stars to spinning black holes immersed in magnetized accretion disks can launch jets as well, reinforcing the belief that such ``collapsars'' are the progenitors of long gamma-ray bursts. Computer-generated movies highlighting some of these simulations will be shown. We gratefully acknowledge support from NSF Grants 1300903 and 1602536 and NASA Grant NNX13AH44G.

  19. Density waves at the interface of a binary complex plasma

    NASA Astrophysics Data System (ADS)

    Yang, Li; Schwabe, Mierk; Zhdanov, Sergey; Thomas, Hubertus M.; Lipaev, Andrey M.; Molotkov, Vladimir I.; Fortov, Vladimir E.; Zhang, Jing; Du, Cheng-Ran

    2017-01-01

    Density waves were studied in a phase-separated binary complex plasma under microgravity conditions. For the big particles, waves were self-excited by the two-stream instability, while for small particles, they were excited by heartbeat instability with the presence of reversed propagating pulses of a different frequency. By studying the dynamics of wave crests at the interface, we recognize a “collision zone” and a “merger zone” before and after the interface, respectively. The results provide a generic picture of wave-wave interaction at the interface between two “mediums”.

  20. Collisional and radiative processes in high-pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  1. Molecular dynamics simulation of a needle-sphere binary mixture

    NASA Astrophysics Data System (ADS)

    Raghavan, Karthik

    This paper investigates the dynamic behaviour of a hard needle-sphere binary system using a novel numerical technique called the Newton homotopy continuation (NHC) method. This mixture is representative of a polymer melt where both long chain molecules and monomers coexist. Since the intermolecular forces are generated from hard body interactions, the consequence of missed collisions or incorrect collision sequences have a significant bearing on the dynamic properties of the fluid. To overcome this problem, in earlier work NHC was chosen over traditional Newton-Raphson methods to solve the hard body dynamics of a needle fluid in random media composed of overlapping spheres. Furthermore, the simplicity of interactions and dynamics allows us to focus our research directly on the effects of particle shape and density on the transport behaviour of the mixture. These studies are also compared with earlier works that examined molecular chains in porous media primarily to understand the differences in molecular transport in the bulk versus porous systems.

  2. Projectile-charge-state dependence of 0[degree] binary-encounter electron production in 30-MeV O[sup [ital q]+]+O[sub 2] collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zouros, T.J.M.; Richard, P.; Wong, K.L.

    Double-differential cross sections (DDCS's) for the production of binary-encounter electrons (BEE's) are reported for 30-MeV O[sup [ital q]+]+O[sub 2] collisions. The BEE DDCS's were measured at [theta]=0[degree] with respect to the beam direction for projectile charge states [ital q]=4--8. The measured BEE DDCS's were found to increase with decreasing charge state in agreement with other recent BEE results employing simpler H[sub 2] and He targets. Impulse-approximation calculations of BEE production for [theta]=0[degree]--45[degree] are also presented, in which it is assumed that target electrons undergo elastic scattering in the screened Coulomb field of the projectile ion. These calculations are shown tomore » be in agreement with our data at [theta]=0[degree] where only 2[ital s] and 2[ital p] target electrons are considered.« less

  3. The Binary Collision-Induced Second Overtone Band of Gaseous Hydrogen: Modelling and Laboratory Measurements

    NASA Technical Reports Server (NTRS)

    Brodbeck, C.; Bouanich, J.-P.; Nguyen, Van Thanh; Borysow, Aleksandra

    1999-01-01

    Collision-induced absorption (CIA) is the major source of the infrared opacity of dense planetary atmospheres which are composed of nonpolar molecules. Knowledge of CIA absorption spectra of H2-H2 pairs is important for modelling the atmospheres of planets and cold stars that are mainly composed of hydrogen. The spectra of hydrogen in the region of the second overtone at 0.8 microns have been recorded at temperatures of 298 and 77.5 K for gas densities ranging from 100 to 800 amagats. By extrapolation to zero density of the absorption coefficient measured every 10 cm(exp -1) in the spectral range from 11100 to 13800 cm(exp -1), we have determined the binary absorption coefficient. These extrapolated measurements are compared with calculations based on a model that was obtained by using simple computer codes and lineshape profiles. In view of the very weak absorption of the second overtone band, we find the agreement between results of the model and experiment to be reasonable.

  4. Exploring X-ray Emission from Winds in Two Early B-type Binary Systems

    NASA Astrophysics Data System (ADS)

    Rotter, John P.; Hole, Tabetha; Ignace, Richard; Oskinova, Lida

    2017-01-01

    The winds of the most massive (O-type) stars have been well studied, but less is known about the winds of early-type B stars, especially in binaries. Extending O-star wind theory to these smaller stars, we would expect them to emit X-rays, and when in a B-star binary system, the wind collision should emit additional X-rays. This combined X-ray flux from nearby B-star binary systems should be detectable with current telescopes. Yet X-ray observations of two such systems with the Chandra Observatory not only show far less emission than predicted, but also vary significantly from each other despite having very similar observed characteristics. We will present these observations, and our work applying the classic Castor, Abbott, and Klein (CAK) wind theory, combined with more recent analytical wind-shock models, attempting to reproduce this unexpected range of observations.

  5. Critical phenomena at the threshold of immediate merger in binary black hole systems: The extreme mass ratio case

    NASA Astrophysics Data System (ADS)

    Gundlach, Carsten; Akcay, Sarp; Barack, Leor; Nagar, Alessandro

    2012-10-01

    In numerical simulations of black hole binaries, Pretorius and Khurana [Classical Quantum Gravity 24, S83 (2007)CQGRDG0264-938110.1088/0264-9381/24/12/S07] have observed critical behavior at the threshold between scattering and immediate merger. The number of orbits scales as n≃-γln⁡|p-p*| along any one-parameter family of initial data such that the threshold is at p=p*. Hence, they conjecture that in ultrarelativistic collisions almost all the kinetic energy can be converted into gravitational waves if the impact parameter is fine-tuned to the threshold. As a toy model for the binary, they consider the geodesic motion of a test particle in a Kerr black hole spacetime, where the unstable circular geodesics play the role of critical solutions, and calculate the critical exponent γ. Here, we incorporate radiation reaction into this model using the self-force approximation. The critical solution now evolves adiabatically along a sequence of unstable circular geodesic orbits under the effect of the self-force. We confirm that almost all the initial energy and angular momentum are radiated on the critical solution. Our calculation suggests that, even for infinite initial energy, this happens over a finite number of orbits given by n∞≃0.41/η, where η is the (small) mass ratio. We derive expressions for the time spent on the critical solution, number of orbits and radiated energy as functions of the initial energy and impact parameter.

  6. Periodic Accretion-powered Flares from Colliding EMRIs as TDE Imposters

    NASA Astrophysics Data System (ADS)

    Metzger, Brian D.; Stone, Nicholas C.

    2017-07-01

    When a main-sequence star undergoes Roche lobe overflow onto a supermassive black hole (SMBH) in a circular extreme mass ratio inspiral (EMRI), a phase of steady mass transfer ensues. Over millions of years, the binary evolves to a period minimum before reversing course and migrating outward as a brown dwarf. Because the time interval between consecutive EMRIs is comparable to the mass-transfer timescale, the semimajor axes of two consecutive mass-transferring EMRIs will cross on a radial scale of less than a few au. We show that such EMRI crossing events are inevitably accompanied by a series of mildly relativistic, grazing physical collisions between the stars. Each collision strips a small quantity of mass, primarily from the more massive star, which generally increases their radial separation to set up the next collision after a delay of decades to centuries (or longer) set by further gravitational radiation. Depending on the mass of the SMBH, this interaction can result in {N}{{c}}˜ 1{--}{10}4 gas production events of mass ˜ {M}⊙ /{N}{{c}}, thus powering a quasi-periodic sequence of SMBH accretion-powered flares over a total duration of thousands of years or longer. Although the EMRI rate is 2-3 orders of magnitude lower than the rate of tidal disruption events (TDEs), the ability of a single interacting EMRI pair to produce a large number of luminous flares—and to make more judicious use of the available stellar fuel—could make their observed rate competitive with the TDE rate, enabling them to masquerade as “TDE imposters.” Gas produced by EMRI collisions is easier to circularize than the highly eccentric debris streams produced in TDEs. We predict flares with bolometric luminosities that decay both as power laws shallower than {t}-5/3 and as decaying exponentials in time. Viscous spreading of the gaseous disks produced by the accumulation of previous mass-stripping events will place a substantial mass of gas on radial scales ≳ 10{--}100 {au} at the time of a given flare, providing a possible explanation for the “reprocessing blanket” required to explain the unexpectedly high optical luminosities of some candidate TDE flares.

  7. The Influence of Orbital Resonances on the Water Transport to Objects in the Circumprimary Habitable Zone of Binary Star Systems

    NASA Astrophysics Data System (ADS)

    Bancelin, David; Pilat-Lohinger, Elke; Maindl, Thomas I.; Ragossnig, Florian; Schäfer, Christoph

    2017-06-01

    We investigate the role of secular and mean motion resonances on the water transport from a belt of icy asteroids onto planets or embryos orbiting inside the circumprimary habitable zone (HZ) of a binary star system. In addition, the host-star has an accompanying gas giant planet. For a comparison, we perform two case studies where a secular resonance (SR) is located either inside the HZ close to 1.0 au (causing eccentric motion of a planet or embryos therein) or in the asteroid belt, beyond the snow line. In the latter case, a higher flux of icy objects moving toward the HZ is expected. Collisions between asteroids and objects in the HZ are treated analytically. Our purely dynamical study shows that the SR in the HZ boosts the water transport however, collisions can occur at very high impact speeds. In this paper, we treat for the first time, realistic collisions using a GPU 3D-SPH code to assess the water loss in the projectile. Including the water loss into the dynamical results, we get more realistic values for the water mass fraction of the asteroid during an impact. We highlight that collisions occurring at high velocities greatly reduce the water content of the projectile and thus the amount of water transported to planets or embryos orbiting inside the HZ. Moreover, we discuss other effects that could modify our results, namely the asteroid’s surface rate recession due to ice sublimation and the atmospheric drag contribution on the asteroids’ mass loss.

  8. Am stars and the influence of binarity on infall

    NASA Astrophysics Data System (ADS)

    Cowley, Charles R.

    2016-01-01

    We explore an old idea for the origin of Am star anomalies, possibly related to observations of pollution in white dwarfs (Jura & Young, ARAA, 42, 45, 2014; Gansicke, et al., Arxiv:1505.03142). It must be noted that infall of an earthlike body can explain some, but not all of the abundance anomalies of Am stars.The ingestion of earthlike material by an a star should have observable effects that are larger than for solar-type stars. We follow dynamical arguments discussed, e.g. by Debes, et al. ApJ., 747, 148, 2012), and postulate that gravitational interactions will produce an infalling stream of low angularmomentum bodies.Note that most if not all Am stars are binary. Here we investigate only whether there is an increased frequency of collisions with a close binary relative to a single star.We make quantitative estimates, using analytical 2-body solutions and restricted 3-body calculations with parameters similar to those of the eclipsing Am pair Beta Aur,or WW Aur. We use initial values for the binary similar to those which would lead to a certain collision on a (4M_sun) single star for a parabolic trajectory. All calculations begin with a distance from the center of mass along the axis of a paraboloid of revolution at 3 or 5 AU and such that a marginal collision occurs with a single star. The perpendicular area of this figure is a cross section for a collision. We sample trajectories starting within and near this cross section, for double starsystems. Based on many trials we find it about equally likely-- relative to a single star--that an incoming body will be ejected from the system than that it will collide with one of the stars. Although we have sampled only a fraction of possible parameter space, we find no basis to expect that the binarity of the Am systems makes them more likely to have ingested planetary material.Infall should probably still be considered, along with the generally accepted diffusion scenario, but it does not appear that the binarity of Am stars makes infall significantly more relevant.

  9. Large-scale model-based assessment of deer-vehicle collision risk.

    PubMed

    Hothorn, Torsten; Brandl, Roland; Müller, Jörg

    2012-01-01

    Ungulates, in particular the Central European roe deer Capreolus capreolus and the North American white-tailed deer Odocoileus virginianus, are economically and ecologically important. The two species are risk factors for deer-vehicle collisions and as browsers of palatable trees have implications for forest regeneration. However, no large-scale management systems for ungulates have been implemented, mainly because of the high efforts and costs associated with attempts to estimate population sizes of free-living ungulates living in a complex landscape. Attempts to directly estimate population sizes of deer are problematic owing to poor data quality and lack of spatial representation on larger scales. We used data on >74,000 deer-vehicle collisions observed in 2006 and 2009 in Bavaria, Germany, to model the local risk of deer-vehicle collisions and to investigate the relationship between deer-vehicle collisions and both environmental conditions and browsing intensities. An innovative modelling approach for the number of deer-vehicle collisions, which allows nonlinear environment-deer relationships and assessment of spatial heterogeneity, was the basis for estimating the local risk of collisions for specific road types on the scale of Bavarian municipalities. Based on this risk model, we propose a new "deer-vehicle collision index" for deer management. We show that the risk of deer-vehicle collisions is positively correlated to browsing intensity and to harvest numbers. Overall, our results demonstrate that the number of deer-vehicle collisions can be predicted with high precision on the scale of municipalities. In the densely populated and intensively used landscapes of Central Europe and North America, a model-based risk assessment for deer-vehicle collisions provides a cost-efficient instrument for deer management on the landscape scale. The measures derived from our model provide valuable information for planning road protection and defining hunting quota. Open-source software implementing the model can be used to transfer our modelling approach to wildlife-vehicle collisions elsewhere.

  10. Large-Scale Model-Based Assessment of Deer-Vehicle Collision Risk

    PubMed Central

    Hothorn, Torsten; Brandl, Roland; Müller, Jörg

    2012-01-01

    Ungulates, in particular the Central European roe deer Capreolus capreolus and the North American white-tailed deer Odocoileus virginianus, are economically and ecologically important. The two species are risk factors for deer–vehicle collisions and as browsers of palatable trees have implications for forest regeneration. However, no large-scale management systems for ungulates have been implemented, mainly because of the high efforts and costs associated with attempts to estimate population sizes of free-living ungulates living in a complex landscape. Attempts to directly estimate population sizes of deer are problematic owing to poor data quality and lack of spatial representation on larger scales. We used data on 74,000 deer–vehicle collisions observed in 2006 and 2009 in Bavaria, Germany, to model the local risk of deer–vehicle collisions and to investigate the relationship between deer–vehicle collisions and both environmental conditions and browsing intensities. An innovative modelling approach for the number of deer–vehicle collisions, which allows nonlinear environment–deer relationships and assessment of spatial heterogeneity, was the basis for estimating the local risk of collisions for specific road types on the scale of Bavarian municipalities. Based on this risk model, we propose a new “deer–vehicle collision index” for deer management. We show that the risk of deer–vehicle collisions is positively correlated to browsing intensity and to harvest numbers. Overall, our results demonstrate that the number of deer–vehicle collisions can be predicted with high precision on the scale of municipalities. In the densely populated and intensively used landscapes of Central Europe and North America, a model-based risk assessment for deer–vehicle collisions provides a cost-efficient instrument for deer management on the landscape scale. The measures derived from our model provide valuable information for planning road protection and defining hunting quota. Open-source software implementing the model can be used to transfer our modelling approach to wildlife–vehicle collisions elsewhere. PMID:22359535

  11. Heavy ion track-structure calculations for radial dose in arbitrary materials

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Dubey, Rajendra R.

    1995-01-01

    The delta-ray theory of track structure is compared with experimental data for the radial dose from heavy ion irradiation. The effects of electron transmission and the angular dependence of secondary electron ejection are included in the calculations. Several empirical formulas for electron range and energy are compared in a wide variety of materials in order to extend the application of the track-structure theory. The model of Rudd for the secondary electron-spectrum in proton collisions, which is based on a modified classical kinematics binary encounter model at high energies and a molecular promotion model at low energies, is employed. For heavier projectiles, the secondary electron spectrum is found by scaling the effective charge. Radial dose calculations for carbon, water, silicon, and gold are discussed. The theoretical data agreed well with the experimental data.

  12. Wide- and contact-binary formation in substructured young stellar clusters

    NASA Astrophysics Data System (ADS)

    Dorval, J.; Boily, C. M.; Moraux, E.; Roos, O.

    2017-02-01

    We explore with collisional gravitational N-body models the evolution of binary stars in initially fragmented and globally subvirial clusters of stars. Binaries are inserted in the (initially) clumpy configurations so as to match the observed distributions of the field-binary-stars' semimajor axes a and binary fraction versus primary mass. The dissolution rate of wide binaries is very high at the start of the simulations, and is much reduced once the clumps are eroded by the global infall. The transition between the two regimes is sharper as the number of stars N is increased, from N = 1.5 k up to 80 k. The fraction of dissolved binary stars increases only mildly with N, from ≈15 per cent to ≈25 per cent for the same range in N. We repeated the calculation for two initial system mean number densities of 6 per pc3 (low) and 400 per pc3 (high). We found that the longer free-fall time of the low-density runs allows for prolonged binary-binary interactions inside clumps and the formation of very tight (a ≈ 0.01 au) binaries by exchange collisions. This is an indication that the statistics of such compact binaries bear a direct link to their environment at birth. We also explore the formation of wide (a ≳ 5 × 104 au) binaries and find a low (≈0.01 per cent) fraction mildly bound to the central star cluster. The high-precision astrometric mission Gaia could identify them as outflowing shells or streams.

  13. Forward neutral pion production in p + p and d + Au collisions at square root sNN=200 GeV.

    PubMed

    Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Blyth, S-L; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Sánchez, M Calderón de la Barca; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Choi, H A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Mazumdar, M R Dutta; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fornazier, K S F; Fox, B D; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D; Guertin, S M; Guo, Y; Gupta, A; Gupta, N; Gutierrez, T D; Hallman, T J; Hamed, A; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R Kh; Kuznetsov, A A; Lamb, R; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; Levine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mioduszewski, S; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Reinnarth, J; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; de Toledo, A Szanto; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Buren, G Van; van der Kolk, N; van Leeuwen, M; Molen, A M Vander; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Xu, Z Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zborovsky, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2006-10-13

    Measurements of the production of forward pi0 mesons from p + p and d + Au collisions at square root sNN=200 GeV are reported. The p + p yield generally agrees with next-to-leading order perturbative QCD calculations. The d + Au yield per binary collision is suppressed as eta increases, decreasing to approximately 30% of the p + p yield at eta =4.00, well below shadowing expectations. Exploratory measurements of azimuthal correlations of the forward pi0 with charged hadrons at eta approximately 0 show a recoil peak in p + p that is suppressed in d + Au at low pion energy. These observations are qualitatively consistent with a saturation picture of the low-x gluon structure of heavy nuclei.

  14. Recommended direct simulation Monte Carlo collision model parameters for modeling ionized air transport processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu

    2016-02-15

    A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less

  15. Collision Models for Particle Orbit Code on SSX

    NASA Astrophysics Data System (ADS)

    Fisher, M. W.; Dandurand, D.; Gray, T.; Brown, M. R.; Lukin, V. S.

    2011-10-01

    Coulomb collision models are being developed and incorporated into the Hamiltonian particle pushing code (PPC) for applications to the Swarthmore Spheromak eXperiment (SSX). A Monte Carlo model based on that of Takizuka and Abe [JCP 25, 205 (1977)] performs binary collisions between test particles and thermal plasma field particles randomly drawn from a stationary Maxwellian distribution. A field-based electrostatic fluctuation model scatters particles from a spatially uniform random distribution of positive and negative spherical potentials generated throughout the plasma volume. The number, radii, and amplitude of these potentials are chosen to mimic the correct particle diffusion statistics without the use of random particle draws or collision frequencies. An electromagnetic fluctuating field model will be presented, if available. These numerical collision models will be benchmarked against known analytical solutions, including beam diffusion rates and Spitzer resistivity, as well as each other. The resulting collisional particle orbit models will be used to simulate particle collection with electrostatic probes in the SSX wind tunnel, as well as particle confinement in typical SSX fields. This work has been supported by US DOE, NSF and ONR.

  16. Gamma-rays from the binary system containing PSR J2032+4127 during its periastron passage

    NASA Astrophysics Data System (ADS)

    Bednarek, Włodek; Banasiński, Piotr; Sitarek, Julian

    2018-01-01

    The energetic pulsar, PSR J2032+4127, has recently been discovered in the direction of the unidentified HEGRA TeV γ-ray source (TeV J2032+4130). It is proposed that this pulsar forms a binary system with the Be type star, MT91 213, expected to reach periastron late in 2017. We performed detailed calculations of the γ-ray emission produced close to the binary system’s periastron passage by applying a simple geometrical model. Electrons accelerated at the collision region of pulsar and stellar winds initiate anisotropic inverse Compton {e}+/- pair cascades by scattering soft radiation from the massive companion. The γ-ray spectra, from such a comptonization process, are compared with the measurements of the extended TeV γ-ray emission from the HEGRA TeV γ-ray source. We discuss conditions within the binary system, at the periastron passage of the pulsar, for which the γ-ray emission from the binary can overcome the extended, steady TeV γ-ray emission from the HEGRA TeV γ-ray source.

  17. Cross-indexing of binary SIFT codes for large-scale image search.

    PubMed

    Liu, Zhen; Li, Houqiang; Zhang, Liyan; Zhou, Wengang; Tian, Qi

    2014-05-01

    In recent years, there has been growing interest in mapping visual features into compact binary codes for applications on large-scale image collections. Encoding high-dimensional data as compact binary codes reduces the memory cost for storage. Besides, it benefits the computational efficiency since the computation of similarity can be efficiently measured by Hamming distance. In this paper, we propose a novel flexible scale invariant feature transform (SIFT) binarization (FSB) algorithm for large-scale image search. The FSB algorithm explores the magnitude patterns of SIFT descriptor. It is unsupervised and the generated binary codes are demonstrated to be dispreserving. Besides, we propose a new searching strategy to find target features based on the cross-indexing in the binary SIFT space and original SIFT space. We evaluate our approach on two publicly released data sets. The experiments on large-scale partial duplicate image retrieval system demonstrate the effectiveness and efficiency of the proposed algorithm.

  18. Testing the Merger Paradigm: X-ray Observations of Radio-Selected Sub-Galactic-Scale Binary AGNs

    NASA Astrophysics Data System (ADS)

    Fu, Hai

    2016-09-01

    Interactions play an important role in galaxy evolution. Strong gas inflows are expected in the process of gas-rich mergers, which may fuel intense black hole accretion and star formation. Sub-galactic-scale binary/dual AGNs thus offer elegant laboratories to study the merger-driven co-evolution phase. However, previous samples of kpc-scale binaries are small and heterogeneous. We have identified a flux-limited sample of kpc-scale binary AGNs uniformly from a wide-area high-resolution radio survey conducted by the VLA. Here we propose Chandra X-ray characterization of a subset of four radio-confirmed binary AGNs at z 0.1. Our goal is to compare their X-ray properties with those of matched control samples to test the merger-driven co-evolution paradigm.

  19. Ultra-relativistic Au+Au and d+Au collisions:

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    In this talk I will review PHOBOS data on charged particle multiplicities, obtained in Au+Au and d+Au collisions at RHIC. The general features of the Au+Au pseudorapidity distributions results will be discussed and compared to those of /line{p}p collisions. The total charged particle multiplicity, scaled by the number of participant pairs, is observed to be about 40% higher in Au+Au collisions than in /line{p}p and d+Au systems, but, surprisingly at the same level of e+e- collisions. Limiting fragmentation scaling is seen to be obeyed in Au+Au collisions.

  20. Ionization Cross Sections and Dissociation Channels of DNA Bases by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    Free secondary electrons are the most abundant secondary species in ionizing radiation. Their role in DNA damage, both direct and indirect, is an active area of research. While indirect damage by free radicals, particularly by the hydroxyl radical generated by electron collision with water. is relatively well studied, damage by direct electron collision with DNA is less well understood. Only recently Boudaiffa et al. demonstrated that electrons at energies well below ionization thresholds can induce substantial yields of single- and double-strand breaks in DNA by a resonant, dissociative attachment process. This study attracted renewed interest in electron collisions with DNA, especially in the low energy region. At higher energies ionization becomes important. While Monte Carlo track simulations of radiation damage always include ionization, the probability of dissociative ionization, i.e., simultaneous ionization and dissociation, is ignored. Just like dissociative attachment, dissociative ionization may be an important contributor to double-strand breaks since the radicals and ions produced by dissociative ionization, located in the vicinity of the DNA coil, can readily interact with other parts of the DNA. Using the improved binary-encounter dipole (iBED) formulation, we calculated the ionization cross sections of the four DNA bases, adenine, cytosine, guanine, and thymine, by electrons at energies from threshold to 1 KeV. The present calculation gives cross sections approximately 20% lower than the results by Bemhardt and Paretzke using the Deutsch-Mark and Binary-Encounter-Bethe (BEB) formalisms. The difference is most likely due to the lack of a shielding term in the dipole potential used in the Deutsch-Mark and BEB formalisms. The dissociation channels of ionization for the bases are currently being studied.

  1. Cuckoo in the Nest: The Fate of the Original Moons of Neptune

    NASA Astrophysics Data System (ADS)

    Cuk, Matija; Hamilton, Douglas P.

    2016-10-01

    Neptune's moon Triton is the largest captured satellite in the solar system, as indicated by its inclined retrograde orbit. The most likely mechanism for its capture is binary disruption, which ejected its former binary companion and placed Triton on a large, eccentric orbit around Neptune (Agnor and Hamilton 2006). While the tides would in principle circularize Triton's orbit (Goldreich et al. 1989), Triton's early orbit would have evolved much faster through interactions with preexisting moons of Neptune (Cuk and Gladman 2005). Assuming that the pre-existing moons of Neptune were similar to those of Uranus, analytical estimates are unclear on which outcome is most likely during moon-moon scattering. Cuk and Gladman (2005) suggested that collisions among the regular moons happen first, while Nogueira et al. (2011) find that collisions between Triton and an old moon, or an ejection should happen first. Here we use the general purpose (T+U) symplectic integrator to explore this short-lived epoch of orbit crossing in the Neptunian system. Our preliminary results indicate that Triton might have collided with one of the preexisting moons of Neptune before the regular satellites could have been destroyed in mutual collisions. Goldreich et al. (1989) claimed that a collision with a moon larger than Miranda would destroy Triton and therefore could be ruled out. However, using modern collisional disruption estimated from Stewart and Leinhardt (2012), we find that Triton could have accreted a 1000-km moon at relevant velocities without being disrupted. The product of this merger would have a much tighter orbit as the accreted moon would not have been retrograde like Triton. At the meeting we will present a more detailed exploration of possible post-capture configurations, and report quantitative probabilities for different outcomes of this exciting and violent episode of Triton's history.

  2. The exotic remnants of compact object binary mergers

    NASA Astrophysics Data System (ADS)

    Duez, Matthew

    2017-01-01

    The collision and merger of a neutron star with a black hole or another neutron star is a strong source of gravitational waves and a promising setup for the creation of bright infrared (kilonova) and gamma ray (gamma ray burst) transients. These violent events can be modeled by numerical simulations incorporating general relativity, fluid dynamics, and nuclear physics. In this talk, I will explain the findings of some of these simulations. Depending on the properties of the binary, the merger leaves a black hole, a black hole accreting matter from a torus at an incredible rate, or a massive spinning neutron star. The latter two cases are characterized by the importance of differential rotation, magnetohydrodynamic processes, and neutrino radiation. To understand these systems, I will focus on what we know of their dynamical and thermal equilibrium structure, what we know of the dynamical instabilities to which they might be prone, and what we can tentatively say about their subsequent secular evolution from outflow, magnetic, radiative, and other effects. Computer simulations are becoming ever more impressive but remain unequal to the problem at hand, so I will address the challenges still posed by small-scale magnetohydrodynamic effects and by radiation transport. The author is a member of the SXS Collaboration and acknowledges support from NSF.

  3. Numerical integration of the N-body ring problem by recurrent power series

    NASA Astrophysics Data System (ADS)

    Navarro, Juan F.

    2018-02-01

    The aim of this article is to present a method for the integration of the equations of motion of the N-body ring problem by means of recurrent power series. We prove that the solution is convergent for any set of initial conditions, excluding those corresponding to binary collisions.

  4. The Explosive Counterparts of Gravitational Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Astronomy collaborations like the Dark Energy Survey, which Fermilab leads, can track down the visible sources of gravitational waves caused by binary neutron stars. This animation takes you through the collision of two neutron stars, and shows you the explosion of light and energy seen by the Dark Energy Camera on August 17, 2017.

  5. Simple model of surface roughness for binary collision sputtering simulations

    NASA Astrophysics Data System (ADS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-02-01

    It has been shown that surface roughness can strongly influence the sputtering yield - especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the "density gradient model") which imitates surface roughness effects. In the model, the target's atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient - leading to increased sputtering yields, similar in effect to surface roughness.

  6. Multiwavelength monitoring and X-ray brightening of Be X-ray binary PSR J2032+4127/MT91 213 on its approach to periastron

    DOE PAGES

    Ho, Wynn C. G.; Ng, C. -Y.; Lyne, Andrew G.; ...

    2016-09-22

    The radio and gamma-ray pulsar PSR J2032+4127 was recently found to be in a decades-long orbit with the Be star MT91 213, with the pulsar moving rapidly towards periastron. This binary shares many similar characteristics with the previously unique binary system PSR B1259-63/LS 2883. Here in this paper, we describe radio, X-ray, and optical monitoring of PSR J2032+4127/MT91 213. Our extended orbital phase coverage in radio, supplemented with Fermi LAT gamma-ray data, allows us to update and refine the orbital period to 45–50 yr and time of periastron passage to 2017 November. We analyse archival and recent Chandra and Swiftmore » observations and show that PSR J2032+4127/MT91 213 is now brighter in X-rays by a factor of ~70 since 2002 and ~20 since 2010. While the pulsar is still far from periastron, this increase in X-rays is possibly due to collisions between pulsar and Be star winds. Optical observations of the Hα emission line of the Be star suggest that the size of its circumstellar disc may be varying by ~2 over time-scales as short as 1–2 months. In conclusion, multiwavelength monitoring of PSR J2032+4127/MT91 213 will continue through periastron passage, and the system should present an interesting test case and comparison to PSR B1259-63/LS 2883.« less

  7. Full-scale locomotive dynamic collision testing and correlations : offset collisions between a locomotive and a covered hopper car (test 4).

    DOT National Transportation Integrated Search

    2011-09-01

    This report presents the test results and finite element correlations of a full-scale dynamic collision test with rail vehicles as part of the Federal Railroad Administrations research program on improved crashworthiness of locomotive structures. ...

  8. Transverse-velocity scaling of femtoscopy in \\sqrt{s}=7\\,{TeV} proton–proton collisions

    NASA Astrophysics Data System (ADS)

    Humanic, T. J.

    2018-05-01

    Although transverse-mass scaling of femtoscopic radii is found to hold to a good approximation in heavy-ion collision experiments, it is seen to fail for high-energy proton–proton collisions. It is shown that if invariant radius parameters are plotted versus the transverse velocity instead, scaling with the transverse velocity is seen in \\sqrt{s}=7 TeV proton–proton experiments. A simple semi-classical model is shown to qualitatively reproduce this transverse velocity scaling.

  9. First known terrestrial impact of a binary asteroid from a main belt breakup event.

    PubMed

    Ormö, Jens; Sturkell, Erik; Alwmark, Carl; Melosh, Jay

    2014-10-23

    Approximately 470 million years ago one of the largest cosmic catastrophes occurred in our solar system since the accretion of the planets. A 200-km large asteroid was disrupted by a collision in the Main Asteroid Belt, which spawned fragments into Earth crossing orbits. This had tremendous consequences for the meteorite production and cratering rate during several millions of years following the event. The 7.5-km wide Lockne crater, central Sweden, is known to be a member of this family. We here provide evidence that Lockne and its nearby companion, the 0.7-km diameter, contemporaneous, Målingen crater, formed by the impact of a binary, presumably 'rubble pile' asteroid. This newly discovered crater doublet provides a unique reference for impacts by combined, and poorly consolidated projectiles, as well as for the development of binary asteroids.

  10. Scaling of charged particle production in d+Au collisions at √(sNN)=200GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wysłouch, B.; Zhang, J.

    2005-09-01

    The measured pseudorapidity distributions of primary charged particles over a wide pseudorapidity range of |η|≤5.4 and integrated charged particle multiplicities in d+Au collisions at √(sNN)=200GeV are presented as a function of collision centrality. The longitudinal features of d+Au collisions at √(sNN)=200GeV are found to be very similar to those seen in p+A collisions at lower energies. The total multiplicity of charged particles is found to scale with the total number of participants according to NdAuch=1/2Nppch, and the energy dependence of the density of charged particles produced in the fragmentation region exhibits extended longitudinal scaling.

  11. Energy independent scaling of the ridge and final state description of high multiplicity p +p collisions at √{s }=7 and 13 TeV

    NASA Astrophysics Data System (ADS)

    Sarkar, Debojit

    2018-02-01

    An energy independent scaling of the near-side ridge yield at a given multiplicity has been observed by the ATLAS and the CMS collaborations in p +p collisions at √{s }=7 and 13 TeV. Such a striking feature of the data can be successfully explained by approaches based on initial state momentum space correlation generated due to gluon saturation. In this paper, we try to examine if such a scaling is also an inherent feature of the approaches that employ strong final state interaction in p +p collisions. We find that hydrodynamical modeling of p +p collisions using EPOS 3 shows a violation of such scaling. The current study can, therefore, provide important new insights on the origin of long-range azimuthal correlations in high multiplicity p +p collisions at the LHC energies.

  12. Toward Broadband Source Modeling for the Himalayan Collision Zone

    NASA Astrophysics Data System (ADS)

    Miyake, H.; Koketsu, K.; Kobayashi, H.; Sharma, B.; Mishra, O. P.; Yokoi, T.; Hayashida, T.; Bhattarai, M.; Sapkota, S. N.

    2017-12-01

    The Himalayan collision zone is characterized by the significant tectonic setting. There are earthquakes with low-angle thrust faulting as well as continental outerrise earthquakes. Recently several historical earthquakes have been identified by active fault surveys [e.g., Sapkota et al., 2013]. We here investigate source scaling for the Himalayan collision zone as a fundamental factor to construct source models toward seismic hazard assessment. As for the source scaling for collision zones, Yen and Ma [2011] reported the subduction-zone source scaling in Taiwan, and pointed out the non-self-similar scaling due to the finite crustal thickness. On the other hand, current global analyses of stress drop do not show abnormal values for the continental collision zones [e.g., Allmann and Shearer, 2009]. Based on the compile profiling of finite thickness of the curst and dip angle variations, we discuss whether the bending exists for the Himalayan source scaling and implications on stress drop that will control strong ground motions. Due to quite low-angle dip faulting, recent earthquakes in the Himalayan collision zone showed the upper bound of the current source scaling of rupture area vs. seismic moment (< Mw 8.0), and does not show significant bending of the source scaling. Toward broadband source modeling for ground motion prediction, we perform empirical Green's function simulations for the 2009 Butan and 2015 Gorkha earthquake sequence to quantify both long- and short-period source spectral levels.

  13. COLLISIONS BETWEEN GRAVITY-DOMINATED BODIES. I. OUTCOME REGIMES AND SCALING LAWS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leinhardt, Zoee M.; Stewart, Sarah T., E-mail: Zoe.Leinhardt@bristol.ac.uk, E-mail: sstewart@eps.harvard.edu

    2012-01-20

    Collisions are the core agent of planet formation. In this work, we derive an analytic description of the dynamical outcome for any collision between gravity-dominated bodies. We conduct high-resolution simulations of collisions between planetesimals; the results are used to isolate the effects of different impact parameters on collision outcome. During growth from planetesimals to planets, collision outcomes span multiple regimes: cratering, merging, disruption, super-catastrophic disruption, and hit-and-run events. We derive equations (scaling laws) to demarcate the transition between collision regimes and to describe the size and velocity distributions of the post-collision bodies. The scaling laws are used to calculate mapsmore » of collision outcomes as a function of mass ratio, impact angle, and impact velocity, and we discuss the implications of the probability of each collision regime during planet formation. Collision outcomes are described in terms of the impact conditions and the catastrophic disruption criteria, Q*{sub RD}-the specific energy required to disperse half the total colliding mass. All planet formation and collisional evolution studies have assumed that catastrophic disruption follows pure energy scaling; however, we find that catastrophic disruption follows nearly pure momentum scaling. As a result, Q*{sub RD} is strongly dependent on the impact velocity and projectile-to-target mass ratio in addition to the total mass and impact angle. To account for the impact angle, we derive the interacting mass fraction of the projectile; the outcome of a collision is dependent on the kinetic energy of the interacting mass rather than the kinetic energy of the total mass. We also introduce a new material parameter, c*, that defines the catastrophic disruption criteria between equal-mass bodies in units of the specific gravitational binding energy. For a diverse range of planetesimal compositions and internal structures, c* has a value of 5 {+-} 2; whereas for strengthless planets, we find c* = 1.9 {+-} 0.3. We refer to the catastrophic disruption criteria for equal-mass bodies as the principal disruption curve, which is used as the reference value in the calculation of Q*{sub RD} for any collision scenario. The analytic collision model presented in this work will significantly improve the physics of collisions in numerical simulations of planet formation and collisional evolution.« less

  14. Head-on collisions of unequal mass black holes in D=5 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witek, Helvi; Cardoso, Vitor; Department of Physics and Astronomy, University of Mississippi, University, Mississippi 38677

    We study head-on collisions of unequal mass black hole binaries in D=5 spacetime dimensions, with mass ratios between 1:1 and 1:4. Information about gravitational radiation is extracted by using the Kodama-Ishibashi gauge-invariant formalism and details of the apparent horizon of the final black hole. We present waveforms, total integrated energy and momentum for this process. Our results show surprisingly good agreement, within 5% or less, with those extrapolated from linearized, point-particle calculations. Our results also show that consistency with the area theorem bound requires that the same process in a large number of spacetime dimensions must display new features.

  15. Obstacle detection by recognizing binary expansion patterns

    NASA Technical Reports Server (NTRS)

    Baram, Yoram; Barniv, Yair

    1993-01-01

    This paper describes a technique for obstacle detection, based on the expansion of the image-plane projection of a textured object, as its distance from the sensor decreases. Information is conveyed by vectors whose components represent first-order temporal and spatial derivatives of the image intensity, which are related to the time to collision through the local divergence. Such vectors may be characterized as patterns corresponding to 'safe' or 'dangerous' situations. We show that essential information is conveyed by single-bit vector components, representing the signs of the relevant derivatives. We use two recently developed, high capacity classifiers, employing neural learning techniques, to recognize the imminence of collision from such patterns.

  16. Effect of Particle Size and Impact Velocity on Collision Behaviors Between Nano-Scale TiN Particles: MD Simulation.

    PubMed

    Yao, Hai-Long; Hu, Xiao-Zhen; Yang, Guan-Jun

    2018-06-01

    Inter-particle bonding formation which determines qualities of nano-scale ceramic coatings is influenced by particle collision behaviors during high velocity collision processes. In this study, collision behaviors between nano-scale TiN particles with different diameters were illuminated by using Molecular Dynamics simulation through controlling impact velocities. Results show that nano-scale TiN particles exhibit three states depending on particle sizes and impact velocities, i.e., bonding, bonding with localized fracturing, and rebounding. These TiN particles states are summarized into a parameter selection map providing an overview of the conditions in terms of particle sizes and velocities. Microstructure results show that localized atoms displacement and partial fracture around the impact region are main reasons for bonding formation of nano-scale ceramic particles, which shows differences from conventional particles refining and amorphization. A relationship between the adhesion energy and the rebound energy is established to understand bonding formation mechanism for nano-scale TiN particle collision. Results show that the energy relationship is depended on the particle sizes and impact velocities, and nano-scale ceramic particles can be bonded together as the adhesion energy being higher than the rebound energy.

  17. The Explosive Counterparts of Gravitational Waves (Silent Animation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Astronomy collaborations like the Dark Energy Survey, which Fermilab leads, can track down the visible sources of gravitational waves caused by binary neutron stars. This animation, presented here without sound, takes you through the collision of two neutron stars, and shows you the explosion of light and energy seen by the Dark Energy Camera on August 17, 2017.

  18. The Galactic Centre source G2 was unlikely born in any of the known massive binaries

    NASA Astrophysics Data System (ADS)

    Calderón, D.; Cuadra, J.; Schartmann, M.; Burkert, A.; Plewa, P.; Eisenhauer, F.; Habibi, M.

    2018-05-01

    The source G2 has already completed its pericentre passage around Sgr A*, the super-massive black hole in the centre of our Galaxy. Although it has been monitored for 15 years, its astrophysical nature and origin still remain unknown. In this work, we aim to test the hypothesis of G2 being the result of a stellar wind collision. To do so, we study the motion and final fate of gas clumps formed as a result of collisions of stellar winds in massive binaries. Our approach is based on a test-particle model in order to describe the trajectories of such clumps. The model takes into account the gravitational field of Sgr A*, the interaction of the clumps with the interstellar medium as well as their finite lifetimes. Our analysis allows us to reject the hypothesis based on four arguments: i) if G2 has followed a purely Keplerian orbit since its formation, it cannot have been produced in any of the known massive binaries since their motions are not consistent; ii) in general, gas clumps are evaporated through thermal conduction on very short timescale (<100 yr) before getting close enough to Sgr A*; iii) IRS 16SW, the best candidate for the origin of G2, cannot generate clumps as massive as G2; and iv) clumps ejected from IRS 16SW describe trajectories significantly different to the observed motion of G2.

  19. Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit

    NASA Technical Reports Server (NTRS)

    Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.

    2010-01-01

    The extremely massive (> 90 Solar Mass) and luminous (= 5 x 10(exp 6) Solar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the galaxy. However, many of its underlying physical parameters remain a mystery. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision in Eta Car, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of i approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-1) space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.

  20. Constraining the Properties of the Eta Carinae System via 3-D SPH Models of Space-Based Observations: The Absolute Orientation of the Binary Orbit

    NASA Technical Reports Server (NTRS)

    Madura, Thomas I.; Gull, Theodore R.; Owocki, Stanley P.; Okazaki, Atsuo T.; Russell, Christopher M. P.

    2011-01-01

    The extremely massive (> 90 Stellar Mass) and luminous (= 5 x 10(exp 6) Stellar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the Galaxy. However, many of its underlying physical parameters remain unknown. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to tightly constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-D space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.

  1. Kinetic theory of Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Leegwater, Jan A.

    1991-12-01

    A kinetic theory that describes the time evolution of a fluid consisting of Lennard-Jones particles at all densities is proposed. The kinetic equation assumes binary collisions, but takes into account the finite time duration of a collision. Furthermore, it is an extension of a kinetic equation for the square well fluid as well as the hard sphere Enskog theory. In the low density limit, the Boltzmann theory is obtained. It is shown that the proposed theory obeys all the conservation laws. The exchange of potential and kinetic energies is studied and it is shown that at high density this is a fast process. The dominant mechanism for energy exchange is found to be collisions at the strongly repulsive part of the potential that are disturbed by third particles. The kinetic equation is also used to calculate the Green-Kubo integrands for shear viscosity and heat conductivity. The major structures found in molecular dynamics simulations are reproduced at intermediate densities quantitatively and at high density semiquantitatively. It is found that at high density, not only correlated collisions have to be taken into account, but that even the concept of collisions in the sense of sudden changes in the velocity is no longer useful.

  2. Simulation of unsteady flows by the DSMC macroscopic chemistry method

    NASA Astrophysics Data System (ADS)

    Goldsworthy, Mark; Macrossan, Michael; Abdel-jawad, Madhat

    2009-03-01

    In the Direct Simulation Monte-Carlo (DSMC) method, a combination of statistical and deterministic procedures applied to a finite number of 'simulator' particles are used to model rarefied gas-kinetic processes. In the macroscopic chemistry method (MCM) for DSMC, chemical reactions are decoupled from the specific particle pairs selected for collisions. Information from all of the particles within a cell, not just those selected for collisions, is used to determine a reaction rate coefficient for that cell. Unlike collision-based methods, MCM can be used with any viscosity or non-reacting collision models and any non-reacting energy exchange models. It can be used to implement any reaction rate formulations, whether these be from experimental or theoretical studies. MCM has been previously validated for steady flow DSMC simulations. Here we show how MCM can be used to model chemical kinetics in DSMC simulations of unsteady flow. Results are compared with a collision-based chemistry procedure for two binary reactions in a 1-D unsteady shock-expansion tube simulation. Close agreement is demonstrated between the two methods for instantaneous, ensemble-averaged profiles of temperature, density and species mole fractions, as well as for the accumulated number of net reactions per cell.

  3. COLLISIONAL EVOLUTION OF ULTRA-WIDE TRANS-NEPTUNIAN BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Alex H.; Kavelaars, J. J., E-mail: alexhp@uvic.ca

    2012-01-10

    The widely separated, near-equal mass binaries hosted by the cold classical Kuiper Belt are delicately bound and subject to disruption by many perturbing processes. We use analytical arguments and numerical simulations to determine their collisional lifetimes given various impactor size distributions and include the effects of mass loss and multiple impacts over the lifetime of each system. These collisional lifetimes constrain the population of small (R {approx}> 1 km) objects currently residing in the Kuiper Belt and confirm that the size distribution slope at small size cannot be excessively steep-likely q {approx}< 3.5. We track mutual semimajor axis, inclination, andmore » eccentricity evolution through our simulations and show that it is unlikely that the wide binary population represents an evolved tail of the primordially tight binary population. We find that if the wide binaries are a collisionally eroded population, their primordial mutual orbit planes must have preferred to lie in the plane of the solar system. Finally, we find that current limits on the size distribution at small radii remain high enough that the prospect of detecting dust-producing collisions in real time in the Kuiper Belt with future optical surveys is feasible.« less

  4. MODELING FLOWS AROUND MERGING BLACK HOLE BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Meter, James R.; Centrella, Joan; Baker, John G.

    2010-03-10

    Coalescing massive black hole binaries are produced by the mergers of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne Laser Interferometer Space Antenna. In cases where the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a step toward solving this problem by mapping the flow ofmore » pressureless matter in the dynamic, three-dimensional general relativistic spacetime around the merging black holes. We find qualitative differences in collision and outflow speeds, including a signature of the merger when the net angular momentum of the matter is low, between the results from single and binary black holes, and between nonrotating and rotating holes in binaries. If future magnetohydrodynamic results confirm these differences, it may allow assessment of the properties of the binaries as well as yielding an identifiable electromagnetic counterpart to the attendant gravitational wave signal.« less

  5. Modeling and Observations of Massive Binaries with the B[e] Phenomenon

    NASA Astrophysics Data System (ADS)

    Lobel, A.; Martayan, C.; Mehner, A.; Groh, J. H.

    2017-02-01

    We report a long-term high-resolution spectroscopic monitoring program of LBVs and candidate LBVs with Mercator-HERMES. Based on 7 years of data, we recently showed that supergiant MWC 314 is a (Galactic) semi-detached eccentric binary with stationary permitted and forbidden emission lines in the optical and near-IR region. MWC 314 is a luminous and massive probable LBV star showing a strongly orbitally-modulated wind variability. We observe discrete absorption components in P Cyg He I lines signaling large-scale wind structures. In 2014 XMM observed X-rays indicating strong wind-wind collision in the close binary system (a ≃1 AU). A VLT-NACO imaging survey recently revealed that MWC 314 is a triple hierarchical system. We present a 3-D non-LTE radiative transfer model of the extended asymmetric wind structure around the primary B0 supergiant for modeling the orbital variability of P Cyg absorption (v∞˜1200 km s-1) in He I lines. An analysis of the HERMES monitoring spectra of the Galactic LBV star MWC 930 however does not show clear indications of a spectroscopic binary. The detailed long-term spectroscopic variability of this massive B[e] star is very similar to the spectroscopic variability of the prototypical blue hypergiant S Dor in the LMC. We observe prominent P Cyg line shapes in MWC 930 that temporarily transform into split absorption line cores during variability phases of its S Dor cycle over the past decade with a brightening in V of ˜ 1.2 mag. The line splitting phenomenon is very similar to the split metal line cores observed in pulsating Yellow Hypergiants ρ Cas (F-K Ia+) and HR 8752 (A-K Ia+) with [Ca II] and [N II] emission lines. We propose the line core splitting in MWC 930 is due to optically thick central line emission produced in the inner ionized wind region becoming mechanically shock-excited with the increase of R* and decrease of Teff of the LBV.

  6. Close Encounters of the Stellar Kind

    NASA Astrophysics Data System (ADS)

    2003-07-01

    NASA's Chandra X-ray Observatory has confirmed that close encounters between stars form X-ray emitting, double-star systems in dense globular star clusters. These X-ray binaries have a different birth process than their cousins outside globular clusters, and should have a profound influence on the cluster's evolution. A team of scientists led by David Pooley of the Massachusetts Institute of Technology in Cambridge took advantage of Chandra's unique ability to precisely locate and resolve individual sources to determine the number of X-ray sources in 12 globular clusters in our Galaxy. Most of the sources are binary systems containing a collapsed star such as a neutron star or a white dwarf star that is pulling matter off a normal, Sun-like companion star. "We found that the number of X-ray binaries is closely correlated with the rate of encounters between stars in the clusters," said Pooley. "Our conclusion is that the binaries are formed as a consequence of these encounters. It is a case of nurture not nature." A similar study led by Craig Heinke of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. confirmed this conclusion, and showed that roughly 10 percent of these X-ray binary systems contain neutron stars. Most of these neutron stars are usually quiet, spending less than 10% of their time actively feeding from their companion. NGC 7099 NGC 7099 A globular cluster is a spherical collection of hundreds of thousands or even millions of stars buzzing around each other in a gravitationally-bound stellar beehive that is about a hundred light years in diameter. The stars in a globular cluster are often only about a tenth of a light year apart. For comparison, the nearest star to the Sun, Proxima Centauri, is 4.2 light years away. With so many stars moving so close together, interactions between stars occur frequently in globular clusters. The stars, while rarely colliding, do get close enough to form binary star systems or cause binary stars to exchange partners in intricate dances. The data suggest that X-ray binary systems are formed in dense clusters known as globular clusters about once a day somewhere in the universe. Observations by NASA's Uhuru X-ray satellite in the 1970's showed that globular clusters seemed to contain a disproportionately large number of X-ray binary sources compared to the Galaxy as a whole. Normally only one in a billion stars is a member of an X-ray binary system containing a neutron star, whereas in globular clusters, the fraction is more like one in a million. The present research confirms earlier suggestions that the chance of forming an X-ray binary system is dramatically increased by the congestion in a globular cluster. Under these conditions two processes, known as three-star exchange collisions, and tidal captures, can lead to a thousandfold increase in the number of X-ray sources in globular clusters. 47 Tucanae 47 Tucanae In an exchange collision, a lone neutron star encounters a pair of ordinary stars. The intense gravity of the neutron star can induce the most massive ordinary star to "change partners," and pair up with the neutron star while ejecting the lighter star. A neutron star could also make a grazing collision with a single normal star, and the intense gravity of the neutron star could distort the gravity of the normal star in the process. The energy lost in the distortion, could prevent the normal star from escaping from the neutron star, leading to what is called tidal capture. "In addition to solving a long-standing mystery, Chandra data offer an opportunity for a deeper understanding of globular cluster evolution," said Heinke. "For example, the energy released in the formation of close binary systems could keep the central parts of the cluster from collapsing to form a massive black hole." NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. The image and additional information are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  7. Interface-Resolving Simulation of Collision Efficiency of Cloud Droplets

    NASA Astrophysics Data System (ADS)

    Wang, Lian-Ping; Peng, Cheng; Rosa, Bodgan; Onishi, Ryo

    2017-11-01

    Small-scale air turbulence could enhance the geometric collision rate of cloud droplets while large-scale air turbulence could augment the diffusional growth of cloud droplets. Air turbulence could also enhance the collision efficiency of cloud droplets. Accurate simulation of collision efficiency, however, requires capture of the multi-scale droplet-turbulence and droplet-droplet interactions, which has only been partially achieved in the recent past using the hybrid direct numerical simulation (HDNS) approach. % where Stokes disturbance flow is assumed. The HDNS approach has two major drawbacks: (1) the short-range droplet-droplet interaction is not treated rigorously; (2) the finite-Reynolds number correction to the collision efficiency is not included. In this talk, using two independent numerical methods, we will develop an interface-resolved simulation approach in which the disturbance flows are directly resolved numerically, combined with a rigorous lubrication correction model for near-field droplet-droplet interaction. This multi-scale approach is first used to study the effect of finite flow Reynolds numbers on the droplet collision efficiency in still air. Our simulation results show a significant finite-Re effect on collision efficiency when the droplets are of similar sizes. Preliminary results on integrating this approach in a turbulent flow laden with droplets will also be presented. This work is partially supported by the National Science Foundation.

  8. First known Terrestrial Impact of a Binary Asteroid from a Main Belt Breakup Event

    PubMed Central

    Ormö, Jens; Sturkell, Erik; Alwmark, Carl; Melosh, Jay

    2014-01-01

    Approximately 470 million years ago one of the largest cosmic catastrophes occurred in our solar system since the accretion of the planets. A 200-km large asteroid was disrupted by a collision in the Main Asteroid Belt, which spawned fragments into Earth crossing orbits. This had tremendous consequences for the meteorite production and cratering rate during several millions of years following the event. The 7.5-km wide Lockne crater, central Sweden, is known to be a member of this family. We here provide evidence that Lockne and its nearby companion, the 0.7-km diameter, contemporaneous, Målingen crater, formed by the impact of a binary, presumably ‘rubble pile’ asteroid. This newly discovered crater doublet provides a unique reference for impacts by combined, and poorly consolidated projectiles, as well as for the development of binary asteroids. PMID:25340551

  9. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochiai, H.; Nagasawa, M.; Ida, S., E-mail: nagasawa.m.ad@m.titech.ac.jp

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajormore » axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.« less

  10. Intermittency in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Murray, Michael; HELIOS Collaboration

    1991-04-01

    This paper describes a study of multiplicity and transverse energy fluctuations using factorial moments for sulphur collisions with silver — bromide emulsion and platinium targets at 200 GeV/A. The data were taken with the HELIOS experiment at CERN. Bialas and Peschanski [1] predicted a power law dependence of the moments on the rapidity bin size if the fluctuations are invariant over a range of scales. This pattern is known as intermittency in the theory of turbulence, and indicates a fractal structure. Fluctuations were studied for a range of pseudorapidity scales using scaled factorial moments. Correlated fluctuations were studied using correlated scaled factorial moments. For peripheral collisions the data are weakly intermittent and consistent with a simple cascading mechanism, the a model. For central collisions no clear signal of intermittency was seen.

  11. Intermittency in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    1991-04-01

    This paper describes a study of multiplicity and transverse energy fluctuations using factorial moments for sulphur collisions with silver - bromide emulsion and platinium targets at 200 GeV/A. The data were taken with the HELIOS experiment at CERN. Bialas and Peschanski [1] predicted a power law dependence of the moments on the rapidity bin size if the fluctuations are invariant over a range of scales. This pattern is known as intermittency in the theory of turbulence, and indicates a fractal structure. Fluctuations were studied for a range of pseudorapidity scales using scaled factorial moments. Correlated fluctuations were studied using correlated scaled factorial moments. For peripheral collisions the data are weakly intermittent and consistent with a simple cascading mechanism, the a model. For central collisions no clear signal of intermittency was seen.

  12. Learning Short Binary Codes for Large-scale Image Retrieval.

    PubMed

    Liu, Li; Yu, Mengyang; Shao, Ling

    2017-03-01

    Large-scale visual information retrieval has become an active research area in this big data era. Recently, hashing/binary coding algorithms prove to be effective for scalable retrieval applications. Most existing hashing methods require relatively long binary codes (i.e., over hundreds of bits, sometimes even thousands of bits) to achieve reasonable retrieval accuracies. However, for some realistic and unique applications, such as on wearable or mobile devices, only short binary codes can be used for efficient image retrieval due to the limitation of computational resources or bandwidth on these devices. In this paper, we propose a novel unsupervised hashing approach called min-cost ranking (MCR) specifically for learning powerful short binary codes (i.e., usually the code length shorter than 100 b) for scalable image retrieval tasks. By exploring the discriminative ability of each dimension of data, MCR can generate one bit binary code for each dimension and simultaneously rank the discriminative separability of each bit according to the proposed cost function. Only top-ranked bits with minimum cost-values are then selected and grouped together to compose the final salient binary codes. Extensive experimental results on large-scale retrieval demonstrate that MCR can achieve comparative performance as the state-of-the-art hashing algorithms but with significantly shorter codes, leading to much faster large-scale retrieval.

  13. A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds

    DOE PAGES

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2017-03-21

    We present a collision model for phase-resolved Direct Numerical Simulations of sediment transport that couple the fluid and particles by the Immersed Boundary Method. Typically, a contact model for these types of simulations comprises a lubrication force for particles in close proximity to another solid object, a normal contact force to prevent particles from overlapping, and a tangential contact force to account for friction. Our model extends the work of previous authors to improve upon the time integration scheme to obtain consistent results for particle-wall collisions. Furthermore, we account for polydisperse spherical particles and introduce new criteria to account formore » enduring contact, which occurs in many sediment transport situations. This is done without using arbitrary values for physically-defined parameters and by maintaining the full momentum balance of a particle in enduring contact. Lastly, we validate our model against several test cases for binary particle-wall collisions as well as the collective motion of a sediment bed sheared by a viscous flow, yielding satisfactory agreement with experimental data by various authors.« less

  14. Multilevel Monte Carlo simulation of Coulomb collisions

    DOE PAGES

    Rosin, M. S.; Ricketson, L. F.; Dimits, A. M.; ...

    2014-05-29

    We present a new, for plasma physics, highly efficient multilevel Monte Carlo numerical method for simulating Coulomb collisions. The method separates and optimally minimizes the finite-timestep and finite-sampling errors inherent in the Langevin representation of the Landau–Fokker–Planck equation. It does so by combining multiple solutions to the underlying equations with varying numbers of timesteps. For a desired level of accuracy ε , the computational cost of the method is O(ε –2) or (ε –2(lnε) 2), depending on the underlying discretization, Milstein or Euler–Maruyama respectively. This is to be contrasted with a cost of O(ε –3) for direct simulation Monte Carlomore » or binary collision methods. We successfully demonstrate the method with a classic beam diffusion test case in 2D, making use of the Lévy area approximation for the correlated Milstein cross terms, and generating a computational saving of a factor of 100 for ε=10 –5. Lastly, we discuss the importance of the method for problems in which collisions constitute the computational rate limiting step, and its limitations.« less

  15. Effect of collisional elasticity on the Bagnold rheology of sheared frictionless two-dimensional disks

    NASA Astrophysics Data System (ADS)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2017-01-01

    We carry out constant volume simulations of steady-state, shear-driven flow in a simple model of athermal, bidisperse, soft-core, frictionless disks in two dimensions, using a dissipation law that gives rise to Bagnoldian rheology. Focusing on the small strain rate limit, we map out the rheological behavior as a function of particle packing fraction ϕ and a parameter Q that measures the elasticity of binary particle collisions. We find a Q*(ϕ ) that marks the clear crossover from a region characteristic of strongly inelastic collisions, Q Q* , and give evidence that Q*(ϕ ) diverges as ϕ →ϕJ , the shear-driven jamming transition. We thus conclude that the jamming transition at any value of Q behaves the same as the strongly inelastic case, provided one is sufficiently close to ϕJ. We further characterize the differing nature of collisions in the strongly inelastic vs weakly inelastic regions, and recast our results into the constitutive equation form commonly used in discussions of hard granular matter.

  16. A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds

    NASA Astrophysics Data System (ADS)

    Biegert, Edward; Vowinckel, Bernhard; Meiburg, Eckart

    2017-07-01

    We present a collision model for phase-resolved Direct Numerical Simulations of sediment transport that couple the fluid and particles by the Immersed Boundary Method. Typically, a contact model for these types of simulations comprises a lubrication force for particles in close proximity to another solid object, a normal contact force to prevent particles from overlapping, and a tangential contact force to account for friction. Our model extends the work of previous authors to improve upon the time integration scheme to obtain consistent results for particle-wall collisions. Furthermore, we account for polydisperse spherical particles and introduce new criteria to account for enduring contact, which occurs in many sediment transport situations. This is done without using arbitrary values for physically-defined parameters and by maintaining the full momentum balance of a particle in enduring contact. We validate our model against several test cases for binary particle-wall collisions as well as the collective motion of a sediment bed sheared by a viscous flow, yielding satisfactory agreement with experimental data by various authors.

  17. Significance of the Fragmentation Region in Ultrarelativistic Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-08-01

    We present measurements of the pseudorapidity distribution of primary charged particles produced in Au+Au collisions at three energies, (sNN)=19.6, 130, and 200GeV, for a range of collision centrali­ties. The distribution narrows for more central collisions and excess particles are produced at high pseudorapidity in peripheral collisions. For a given centrality, however, the distributions are found to scale with energy according to the “limiting fragmentation” hypothesis. The universal fragmentation region described by this scaling grows in pseudorapidity with increasing collision energy, extending well away from the beam rapidity and covering more than half of the pseudorapidity range over which particles are produced. This approach to a universal limiting curve appears to be a dominant feature of the pseudorapidity distribution and therefore of the total particle production in these collisions.

  18. Models of Interacting Stellar Winds

    NASA Astrophysics Data System (ADS)

    Wilkin, Francis Patrick

    Stars drive supersonic winds which interact violently with their surroundings. Analytic and numerical models of hypersonic, interacting circumstellar flows are presented for several important astrophysical problems. A new solution method for steady-state, axisymmetric, wind collision problems is applied to radiative bow shocks from moving stars and to the collision of two spherical winds in a binary star system. The solutions obtained describe the shape of the geometrically thin, shocked shell of matter, as well as its mass surface density and the tangential velocity within it. Analytic solutions are also obtained for non-axisymmetric bow shocks, where the asymmetry arises due to either a transverse gradient in the ambient medium, or a misaligned, axisymmetric stellar wind. While the solutions are all easily scaled in terms of their relevant dimensional parameters, the important assumption of radiative shocks implies that the models are most applicable towards systems with dense environments and low preshock velocities. The bow shock model has previously been applied to cometary, ultracompact HII regions by Van Buren et al. (1990), who discussed extensively the applicability of the thin shell approximation. I next model the collision between a protostellar wind and supersonic infall from a rotating cloud, employing a quasi-steady, thin-shell formulation. The spherical wind is initially crushed to the protostellar surface by nearly spherical infall. The centrifugal distortion of infalling matter eventually permits a wind-supported, trapped bubble to slowly expand on an evolutionary (~ 105 yr) time. The shell becomes progressively more extended along the rotational axis, due to the asymmetry of the infall. When the quasi-steady assumption breaks down, the shell has become a needle-like, bipolar configuration that may represent a precursor to protostellar jets. I stress, however, the likelihood of instability for the shell, and the possibility of oscillatory behavior in a fully time-dependent model.

  19. Systematic study of azimuthal anisotropy in Cu + Cu and Au + Au collisions at √{sNN}=62.4 and 200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Al-Jamel, A.; Alexander, J.; Aoki, K.; Aphecetche, L.; Armendariz, R.; Aronson, S. H.; Asai, J.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Baksay, G.; Baksay, L.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Bathe, S.; Batsouli, S.; Baublis, V.; Bauer, F.; Bazilevsky, A.; Belikov, S.; Bennett, R.; Berdnikov, Y.; Bickley, A. A.; Bjorndal, M. T.; Boissevain, J. G.; Borel, H.; Boyle, K.; Brooks, M. L.; Brown, D. S.; Bucher, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Burward-Hoy, J. M.; Butsyk, S.; Campbell, S.; Chai, J.-S.; Chang, B. S.; Charvet, J.-L.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Chujo, T.; Chung, P.; Churyn, A.; Cianciolo, V.; Cleven, C. R.; Cobigo, Y.; Cole, B. A.; Comets, M. P.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Das, K.; David, G.; Deaton, M. B.; Dehmelt, K.; Delagrange, H.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drachenberg, J. L.; Drapier, O.; Drees, A.; Dubey, A. K.; Durum, A.; Dzhordzhadze, V.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Enokizono, A.; En'yo, H.; Espagnon, B.; Esumi, S.; Eyser, K. O.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Forestier, B.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fung, S.-Y.; Fusayasu, T.; Gadrat, S.; Garishvili, I.; Gastineau, F.; Germain, M.; Glenn, A.; Gong, H.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hagiwara, M. N.; Hamagaki, H.; Han, R.; Harada, H.; Hartouni, E. P.; Haruna, K.; Harvey, M.; Haslum, E.; Hasuko, K.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Heuser, J. M.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Holmes, M.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Huang, S.; Hur, M. G.; Ichihara, T.; Iinuma, H.; Imai, K.; Inaba, M.; Inoue, Y.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Jacak, B. V.; Jia, J.; Jin, J.; Jinnouchi, O.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kaneta, M.; Kang, J. H.; Kanou, H.; Kawagishi, T.; Kawall, D.; Kazantsev, A. V.; Kelly, S.; Khanzadeev, A.; Kikuchi, J.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, Y.-S.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klay, J.; Klein-Boesing, C.; Kochenda, L.; Kochetkov, V.; Komkov, B.; Konno, M.; Kotchetkov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kroon, P. J.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Le Bornec, Y.; Leckey, S.; Lee, D. M.; Lee, M. K.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Lenzi, B.; Li, X.; Li, X. H.; Lim, H.; Liška, T.; Litvinenko, A.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Malik, M. D.; Manko, V. I.; Mao, Y.; Mašek, L.; Masui, H.; Matathias, F.; McCain, M. C.; McCumber, M.; McGaughey, P. L.; Miake, Y.; Mikeš, P.; Miki, K.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, G. C.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Morreale, A.; Morrison, D. P.; Moss, J. M.; Moukhanova, T. V.; Mukhopadhyay, D.; Murata, J.; Nagamiya, S.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nakagawa, I.; Nakamiya, Y.; Nakamura, T.; Nakano, K.; Newby, J.; Nguyen, M.; Norman, B. E.; Nouicer, R.; Nyanin, A. S.; Nystrand, J.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Ojha, I. D.; Oka, M.; Okada, K.; Omiwade, O. O.; Oskarsson, A.; Otterlund, I.; Ouchida, M.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, J.; Park, W. J.; Pate, S. F.; Pei, H.; Peng, J.-C.; Pereira, H.; Peresedov, V.; Peressounko, D. Yu.; Pinkenburg, C.; Pisani, R. P.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Riabov, V.; Riabov, Y.; Roche, G.; Romana, A.; Rosati, M.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Rykov, V. L.; Ryu, S. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakata, H.; Samsonov, V.; Sato, H. D.; Sato, S.; Sawada, S.; Seele, J.; Seidl, R.; Semenov, V.; Seto, R.; Sharma, D.; Shea, T. K.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shohjoh, T.; Shoji, K.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, C. P.; Singh, V.; Skutnik, S.; Slunečka, M.; Smith, W. C.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sullivan, J. P.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Taketani, A.; Tanaka, K. H.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Taranenko, A.; Tarján, P.; Thomas, T. L.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Torii, H.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tuli, S. K.; Tydesjö, H.; Tyurin, N.; Vale, C.; Valle, H.; van Hecke, H. W.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, Y.; Wessels, J.; White, S. N.; Willis, N.; Winter, D.; Woody, C. L.; Wysocki, M.; Xie, W.; Yamaguchi, Y. L.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.; Phenix Collaboration

    2015-09-01

    We have studied the dependence of azimuthal anisotropy v2 for inclusive and identified charged hadrons in Au +Au and Cu +Cu collisions on collision energy, species, and centrality. The values of v2 as a function of transverse momentum pT and centrality in Au +Au collisions at √{s NN}=200 and 62.4 GeV are the same within uncertainties. However, in Cu +Cu collisions we observe a decrease in v2 values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au +Au and Cu +Cu collisions we find that v2 depends both on eccentricity and the number of participants, Npart. We observe that v2 divided by eccentricity (ɛ ) monotonically increases with Npart and scales as Npart1 /3. The Cu +Cu data at 62.4 GeV falls below the other scaled v2 data. For identified hadrons, v2 divided by the number of constituent quarks nq is independent of hadron species as a function of transverse kinetic energy K ET=mT-m between 0.1

  20. YORP and collisional shaping of the sub-populations, rotation rate and size-frequency distributions in the main-belt

    NASA Astrophysics Data System (ADS)

    Rossi, A.; Marzari, F.; Scheeres, D.; Jacobson, S.; Davis, D.

    In the last several years a comprehensive asteroid-population-evolution model was developed incorporating both the YORP effect and collisional evolution \\citep{rossi_2009}, \\citep{marz_2011}, \\citep{jac_mnras}. From the results of this model we were able to match the observed main belt rotation rate distribution and to give a first plausible explanation of the observed excess of slow rotators, through a random walk-like evolution of the spin, induced by repeated collisions with small projectiles. Moreover, adding to the model the rotational fission hypothesis (i.e. when the rotation rate exceeds a critical value, erosion and binary formation occur; \\citealt{sch_2007}) and binary-asteroid evolution \\citep{jac_sch}, we first showed that the YORP-induced rotational-fission hypothesis has strong repercussions for the small size end of the main-belt asteroid size-frequency distribution. We also concluded that this hypothesis is consistent with observed asteroid-population statistics and with the observed sub-populations of binary asteroids, asteroid pairs and contact binaries. An overview of the results obtained, the modelling uncertainties and the ongoing work will be given.

  1. An X-ray spectral study of colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko

    2012-03-01

    We present results of spectral studies of two Wolf-Rayet colliding wind binaries (WR 140 and WR 30a), using the data obtained by the Suzaku and XMM-Newton satellites. WR 140 is one of the best known examples of a Wolf-Rayet star. We executed the Suzaku X-ray observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. We detected hard X-ray excess in the HXD band (> 10 keV) for the first time from a W-R binary. The emission measure of the dominant, high temperature component is not inversely proportional to the distance between the two stars. WR 30a is the rare WO-type W-R binary. We executed XMM-Newton observations and detected X-ray emission for the first time. The broad-band spectrum was well-fitted with double-absorption model. The hard X-ray emission was heavily absorbed. This can be interpreted that the hard X-ray emitting plasma exist near WO star.

  2. Collisional redistribution of radiation. III - The equation of motion for the correlation function and the scattered spectrum

    NASA Technical Reports Server (NTRS)

    Burnett, K.; Cooper, J.

    1980-01-01

    Computations were made of the scattering of monochromatic radiation by a degenerate atom in the binary-collision approximation for field strengths whose products of the Rabi frequency for atomic transition and the duration of a strong collision are much less than 1. An expression of motion for the correlation function is derived which does not exclude the region where thermal correlations may be neglected; the equation is valid outside the quantum-regression regime, and has a straightforward solution for practical cases. Solutions for the weak-field linear response regime are presented in terms of generalized absorption and emission profiles which depend on the indices of the atomic multipoles.

  3. Gravity Chromatic Imaging of the Eta Car's Core

    NASA Astrophysics Data System (ADS)

    Sanchez-Bermudez, Joel

    2018-04-01

    Eta Car is one of the most massive, and intriguing, Luminous Blue Variables known. In its core resides a binary with a 5.54 years orbital period. Visible, infrared, and X-raobservations suggest that the primary star exhibits a very dense wind with a terminal velocity of about 420 km/s, while the secondary shows a much faster and less dense wind with a terminal velocity of 3000 km/s. The wind-wind collision zone at the core of Eta Car is thus a complex region that deserves a detailed study to understand the effect of the binary interaction in the evolution of the system. Here, we will present a unique imaging campaign with GRAVITY/VLTI of the Eta Car's core. The superb quality of our interferometric data, together with state-of-the-art image reconstruction techniques, allowed us to obtain, with milliarcsecond resolution, continuum and chromatic images cross the BrG and HeI lines in the Eta Car K-band spectrum (R 4000). These new data together with models of the primary wind of Eta Car has letting us to characterize the spatial distribution of the dust and gas in the inner 40 AU wind-wind collision zone of the target.

  4. THE K2 M67 STUDY: AN EVOLVED BLUE STRAGGLER IN M67 FROM K2 MISSION ASTEROSEISMOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leiner, Emily; Mathieu, Robert D.; Stello, Dennis

    Yellow straggler stars (YSSs) fall above the subgiant branch in optical color–magnitude diagrams (CMDs), between the blue stragglers and the red giants. YSSs may represent a population of evolved blue stragglers, but none have the direct and precise mass and radius measurements needed to determine their evolutionary states and formation histories. Here we report the first asteroseismic mass and radius measurements of such a star, the yellow straggler S1237 in the open cluster M67. We apply asteroseismic scaling relations to a frequency analysis of the Kepler K2 light curve and find a mass of 2.9 ± 0.2 M {sub ⊙}more » and a radius of 9.2 ± 0.2 R{sub ⊙}. This is more than twice the mass of the main-sequence turnoff in M67, suggesting that S1237 is indeed an evolved blue straggler. S1237 is the primary in a spectroscopic binary. We update the binary orbital solution and use spectral energy distribution fitting to constrain the CMD location of the secondary star. We find that the secondary is likely an upper main-sequence star near the turnoff, but a slightly hotter blue straggler companion is also possible. We then compare the asteroseismic mass of the primary to its mass from CMD fitting, finding that the photometry implies a mass and radius more than 2 σ below the asteroseismic measurement. Finally, we consider formation mechanisms for this star and suggest that S1237 may have formed from dynamical encounters resulting in stellar collisions or a binary merger.« less

  5. Numerical simulation of three-component multiphase flows at high density and viscosity ratios using lattice Boltzmann methods

    NASA Astrophysics Data System (ADS)

    Haghani Hassan Abadi, Reza; Fakhari, Abbas; Rahimian, Mohammad Hassan

    2018-03-01

    In this paper, we propose a multiphase lattice Boltzmann model for numerical simulation of ternary flows at high density and viscosity ratios free from spurious velocities. The proposed scheme, which is based on the phase-field modeling, employs the Cahn-Hilliard theory to track the interfaces among three different fluid components. Several benchmarks, such as the spreading of a liquid lens, binary droplets, and head-on collision of two droplets in binary- and ternary-fluid systems, are conducted to assess the reliability and accuracy of the model. The proposed model can successfully simulate both partial and total spreadings while reducing the parasitic currents to the machine precision.

  6. VLTI-AMBER Velocity-Resolved Aperture-Synthesis Imaging of Eta Carinae with a Spectral Resolution of 12 000: Studies of the Primary Star Wind and Innermost Wind-Wind Collision Zone

    NASA Technical Reports Server (NTRS)

    Weigelt, G.; Hofmann, K.-H.; Schertl, D.; Clementel, N.; Corcoran, M. F.; Damineli, A.; de Wit, W.-J.; Grellmann, R.; Groh, J.; Guieu, S.; hide

    2016-01-01

    The mass loss from massive stars is not understood well. Eta Carinae is a unique object for studying the massive stellar wind during the luminous blue variable phase. It is also an eccentric binary with a period of 5.54 yr. The nature of both stars is uncertain, although we know from X-ray studies that there is a wind-wind collision whose properties change with orbital phase. Aims. We want to investigate the structure and kinematics of Car's primary star wind and wind-wind collision zone with a high spatial resolution of approx.6 mas (approx.14 au) and high spectral resolution of R = 12 000. Methods. Observations of Car were carried out with the ESO Very Large Telescope Interferometer (VLTI) and the AMBER instrument between approximately five and seven months before the August 2014 periastron passage. Velocity-resolved aperture-synthesis images were reconstructed from the spectrally dispersed interferograms. Interferometric studies can provide information on the binary orbit, the primary wind, and the wind collision. Results. We present velocity-resolved aperture-synthesis images reconstructed in more than 100 di erent spectral channels distributed across the Br(gamma) 2.166 micron emission line. The intensity distribution of the images strongly depends on wavelength. At wavelengths corresponding to radial velocities of approximately -140 to -376 km/s measured relative to line center, the intensity distribution has a fan-shaped structure. At the velocity of -277 km/s, the position angle of the symmetry axis of the fan is 126. The fan-shaped structure extends approximately 8.0 mas (approx.18:8 au) to the southeast and 5.8 mas (approx.13:6 au) to the northwest, measured along the symmetry axis at the 16% intensity contour. The shape of the intensity distributions suggests that the obtained images are the first direct images of the innermost wind-wind collision zone. Therefore, the observations provide velocity-dependent image structures that can be used to test three-dimensional hydrodynamical, radiative transfer models of the massive interacting winds of Eta Car.

  7. Outcomes of Grazing Impacts between Sub-Neptunes in Kepler  Multis

    NASA Astrophysics Data System (ADS)

    Hwang, Jason; Chatterjee, Sourav; Lombardi, James, Jr.; Steffen, Jason H.; Rasio, Frederic

    2018-01-01

    Studies of high-multiplicity, tightly packed planetary systems suggest that dynamical instabilities are common and affect both the orbits and planet structures, where the compact orbits and typically low densities make physical collisions likely outcomes. Since the structure of many of these planets is such that the mass is dominated by a rocky core, but the volume is dominated by a tenuous gas envelope, the sticky-sphere approximation, used in dynamical integrators, may be a poor model for these collisions. We perform five sets of collision calculations, including detailed hydrodynamics, sampling mass ratios, and core mass fractions typical in Kepler Multis. In our primary set of calculations, we use Kepler-36 as a nominal remnant system, as the two planets have a small dynamical separation and an extreme density ratio. We use an N-body code, Mercury 6.2, to integrate initially unstable systems and study the resultant collisions in detail. We use these collisions, focusing on grazing collisions, in combination with realistic planet models created using gas profiles from Modules for Experiments in Stellar Astrophysics and core profiles using equations of state from Seager et al. to perform hydrodynamic calculations, finding scatterings, mergers, and even a potential planet–planet binary. We dynamically integrate the remnant systems, examine the stability, and estimate the final densities, finding that the remnant densities are sensitive to the core masses, and collisions result in generally more stable systems. We provide prescriptions for predicting the outcomes and modeling the changes in mass and orbits following collisions for general use in dynamical integrators.

  8. Asteroid Satellites

    NASA Astrophysics Data System (ADS)

    Merline, W. J.

    2001-11-01

    Discovery and study of small satellites of asteroids or double asteroids can yield valuable information about the intrinsic properties of asteroids themselves and about their history and evolution. Determination of the orbits of these moons can provide precise masses of the primaries, and hence reliable estimates of the fundamental property of bulk density. This reveals much about the composition and structure of the primary and will allow us to make comparisons between, for example, asteroid taxonomic type and our inventory of meteorites. The nature and prevalence of these systems will also give clues as to the collisional environment in which they formed, and have further implications for the role of collisions in shaping our solar system. A decade ago, binary asteroids were more of a theoretical curiosity. In 1993, the Galileo spacecraft allowed the first undeniable detection of an asteroid moon, with the discovery of Dactyl, a small moon of Ida. Since that time, and particularly in the last year, the number of known binaries has risen dramatically. Previously odd-shaped and lobate near-Earth asteroids, observed by radar, have given way to signatures indicating, almost certainly, that at least four NEAs are binary systems. The tell-tale lightcurves of several other NEAs reveal a high likelihood of being double. Indications are that among the NEAs, there may be a binary frequency of several tens of percent. Among the main-belt asteroids, we now know of 6 confirmed binary systems, although their overall frequency is likely to be low, perhaps a few percent. The detections have largely come about because of significant advances in adaptive optics systems on large telescopes, which can now reduce the blurring of the Earth's atmosphere to compete with the spatial resolution of space-based imaging (which itself, via HST, is now contributing valuable observations). Most of these binary systems have similarities, but there are important exceptions. Searches among other dynamical populations such as the Trojans and KBOs are also proving fruitful. Similarities and differences among the detected systems are thus revealing important clues about the possible formation mechanisms. There are several theories seeking to explain the origin of these binary systems, all of them involving collisions of one type or another, either physical or gravitational. It is likely that several of the mechanisms will be required to explain the observations. Now that we have reliable techniques for detection, we have been rewarded with many examples of systems for study. This has in turn spurred new theoretical thinking and numerical simulations, the techniques for which have also improved substantially in recent years.

  9. The environment of the wind-wind collision region of η Carinae

    NASA Astrophysics Data System (ADS)

    Panagiotou, C.; Walter, R.

    2018-02-01

    Context. η Carinae is a colliding wind binary hosting two of the most massive stars and featuring the strongest wind collision mechanical luminosity. The wind collision region of this system is detected in X-rays and γ-rays and offers a unique laboratory for the study of particle acceleration and wind magneto-hydrodynamics. Aim. Our main goal is to use X-ray observations of η Carinae around periastron to constrain the wind collision zone geometry and understand the reasons for its variability. Methods: We analysed 10 Nuclear Spectroscopic Telescope Array (NuSTAR) observations, which were obtained around the 2014 periastron. The NuSTAR array monitored the source from 3 to 30 keV, which allowed us to grasp the continuum and absorption parameters with very good accuracy. We were able to identify several physical components and probe their variability. Results: The X-ray flux varied in a similar way as observed during previous periastrons and largely as expected if generated in the wind collision region. The flux detected within 10 days of periastron is lower than expected, suggesting a partial disruption of the central region of the wind collision zone. The Fe Kα line is likely broadened by the electrons heated along the complex shock fronts. The variability of its equivalent width indicates that the fluorescence region has a complex geometry and that the source obscuration varies quickly with the line of sight.

  10. Photometric investigation of the totally eclipsing contact binary V12 in the intermediate-age open cluster NGC 7789

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, S.-B.; Wang, J.-J.; Liu, L.

    2015-02-01

    NGC 7789 is an intermediate-age open cluster with an age similar to the mean age of contact binary stars. V12 is a bright W UMa-type binary star with an orbital period of 0.3917 days. The first complete light curves of V12 in the V, R, and I bands are presented and analyzed with the Wilson–Devinney (W-D) method. The results show that V12 is an intermediate-contact binary (f=43.0(±2.2)%) with a mass ratio of 3.848, and it is a W-type contact binary where the less massive component is slightly hotter than the more massive one. The asymmetry of the light curves ismore » explained by the presence of a dark spot on the more massive component. The derived orbital inclination (i=83{sub .}{sup ∘}6) indicates that it is a totally eclipsing binary, which suggests that the determined parameters are reliable. The orbital period may show a long-term increase at a rate of P-dot =+2.48(±0.17)×10{sup −6} days yr{sup −1} that reveals a rapid mass transfer from the less massive component to the more massive one. However, more observations are needed to confirm this conclusion. The presence of an intermediate-contact binary in an intermediate-age open cluster may suggest that some contact binaries have a very short pre-contact timescale. The presence of a third body and/or stellar collision may help to shorten the pre-contact evolution.« less

  11. Differential Rollover Risk in Vehicle-to-Traffic Barrier Collisions

    PubMed Central

    Gabauer, Douglas J.; Gabler, Hampton C.

    2009-01-01

    In the roadside safety community, there has been debate over the influence of vehicle and barrier type on rollover rates in traffic barrier crashes. This study investigated rollover rates between sport utility vehicles (SUVs), pickup trucks, and cars in vehicle-traffic barrier crashes and has examined the effect of barrier type on rollover risk for concrete barrier and metal barrier impacts. The analysis included 955 barrier impact cases that were selected from 11-years of in-depth crash data available through the National Automotive Sampling System (NASS) / Crashworthiness Data System (CDS). In real world tow-away level longitudinal barrier collisions, the most important predictors of vehicle rollover were found to be vehicle type and whether the vehicle was tracking prior to barrier impact. Based on binary logistic regression, SUVs were found to have 8 times the risk of rollover as cars in barrier impacts. Although pickups were found to have an increased risk of rollover compared to cars, the risk was not as pronounced as that found for SUVs. This finding has direct implications for the full scale crash testing of longitudinal barriers as the testing procedures have been predicated on the assumption that the pickup truck provides a critical or worst case impact scenario. In towaway crashes, our study does not support the notion that concrete barriers have a higher risk of vehicle rollover than metal beam barriers. PMID:20184839

  12. The X-ray Lightcurve of Eta Carinae, 1996-2014

    NASA Astrophysics Data System (ADS)

    Corcoran, Michael F.; Hamaguchi, Kenji; Liburd, Jamar; Gull, Theodore R.; Madura, Thomas; Teodoro, Mairan; Moffat, Anthony F. J.; Richardson, Noel; Russell, Christopher Michael Post; Pollock, A.; Owocki, Stanley P.

    2015-01-01

    Eta Carinae is the nearest example of a supermassive, superluminous, unstable star. Mass loss from the system is important in shaping its circumstellar medium and in determining the ultimate fate of the star. Eta Car loses mass via a dense, slow stellar wind and possesses one of the largest mass loss rates known. It is prone to episodes of extreme mass ejection via eruptions from some as-yet unspecified cause; the best examples of this are the large-scale eruptions which occurred in the mid-19th century, and then again about 50 years later. Eta Car is a colliding wind binary in which strong variations in X-ray emission and in other wavebands are driven by the violent collision of the wind of Eta Car and the fast, less dense wind of an otherwise hidden companion star. X-ray variations are the simplest diagnostic we have to study the wind-wind collision and allow us to measure the state of the stellar mass loss from both stars. We present the X-ray lightcurve over the last 20 years from monitoring observations with the Rossi X-ray Timing Explorer and the X-ray Telescope on the Swift satellite, and compare and contrast the behavior of the X-ray emission from the system over that timespan, including surprising variations during the 2014 X-ray minimum.

  13. Role of Surface Chemistry in Grain Adhesion and Dissipation during Collisions of Silica Nanograins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quadery, Abrar H.; Tucker, William C.; Dove, Adrienne R.

    2017-08-01

    The accretion of dust grains to form larger objects, including planetesimals, is a central problem in planetary science. It is generally thought that weak van der Waals interactions play a role in accretion at small scales where gravitational attraction is negligible. However, it is likely that in many instances, chemical reactions also play an important role, and the particular chemical environment on the surface could determine the outcomes of dust grain collisions. Using atomic-scale simulations of collisional aggregation of nanometer-sized silica (SiO{sub 2}) grains, we demonstrate that surface hydroxylation can act to weaken adhesive forces and reduce the ability ofmore » mineral grains to dissipate kinetic energy during collisions. The results suggest that surface passivation of dangling bonds, which generally is quite complete in an Earth environment, should tend to render mineral grains less likely to adhere during collisions. It is shown that during collisions, interactions scale with interparticle distance in a manner consistent with the formation of strong chemical bonds. Finally, it is demonstrated that in the case of collisions of nanometer-scale grains with no angular momentum, adhesion can occur even for relative velocities of several kilometers per second. These results have significant implications for early planet formation processes, potentially expanding the range of collision velocities over which larger dust grains can form.« less

  14. Polarized light curves illuminate wind geometries in Wolf-Rayet binary stars

    NASA Astrophysics Data System (ADS)

    Hoffman, Jennifer L.; Fullard, Andrew G.; Nordsieck, Kenneth H.

    2018-01-01

    Although the majority of massive stars are affected by a companion during the course of their evolution, the role of binary systems in creating supernova and GRB progenitors is not well understood. Binaries containing Wolf-Rayet stars are particularly interesting because they may provide a mechanism for producing the rapid rotation necessary for GRB formation. However, constraining the evolutionary fate of a Wolf-Rayet binary system requires characterizing its mass loss and mass transfer, a difficult prospect in systems whose colliding winds obscure the stars and produce complicated spectral signatures.The technique of spectropolarimetry is ideally suited to studying WR binary systems because it can disentangle spectral components that take different scattering paths through a complex distribution of circumstellar material. In particular, comparing the polarization behavior as a function of orbital phase of the continuum (which arises from the stars) with that of the emission lines (which arise from the interaction region) can provide a detailed view of the wind structures in a WR+O binary and constrain the system’s mass loss and mass transfer properties.We present new continuum and line polarization curves for three WR+O binaries (WR 30, WR 47, and WR 113) obtained with the RSS spectropolarimeter at the Southern African Large Telescope. We use radiative transfer simulations to analyze the polarization curves, and discuss our interpretations in light of current models for V444 Cygni, a well-studied related binary system. Accurately characterizing the structures of the wind collision regions in these massive binaries is key to understanding their evolution and properly accounting for their contribution to the supernova (and possible GRB) progenitor population.

  15. Microstructure evolution of a dissimilar junction interface between an Al sheet and a Ni-coated Cu sheet joined by magnetic pulse welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoi, Takaomi, E-mail: itoi@faculty.chiba-u.jp

    An Al sheet and a Ni-coated Cu sheet were lap joined by using magnetic pulse welding (MPW). Tensile tests were performed on the joined sheets, and a good lap joint was achieved at a discharge energy of > 0.9 kJ. The weld interface exhibited a wavy morphology and an intermediate layer along the weld interface. Microstructure observations of the intermediate layer revealed that the Ni coating region consisted of a Ni–Al binary amorphous alloy and that the Al sheet region contained very fine Al nanograins. Ni fragments indicative of unmelted residual Ni from the coating were also observed in partsmore » of the intermediate layer. Formation of these features can be attributed to localize melting and a subsequent high rate cooling of molten Al and Ni confined to the interface during the MPW process. In the absence of an oxide film, atomic-scale bonding was also achieved between the intermediate layer and the sheet surfaces after the collision. MPW utilises impact energy, which affects the sheet surfaces. From the obtained results, good lap joint is attributed to an increased contact area, the anchor effect, work hardening, the absence of an oxide film, and suppressed formation of intermetallic compounds at the interface. - Highlights: •Good lap joint of an Al sheet and a Ni-coated Cu sheet was achieved by using magnetic pulse welding. •A Ni–Al binary amorphous alloy was formed as an intermediate layer at weld interface. •Atomic-scale bonding was achieved between the intermediate layer and the sheet surfaces.« less

  16. Participant and spectator scaling of spectator fragments in Au + Au and Cu + Cu collisions at s N N = 19.6 and 22.4 GeV

    DOE PAGES

    Alver, B.; Back, B. B.; Baker, M. D.; ...

    2016-08-02

    Specmore » tator fragments resulting from relativistic heavy ion collisions, consisting of single protons and neutrons along with groups of stable nuclear fragments up to nitrogen (Z = 7), are measured in PHOBOS. These fragments are observed in Au+Au ( s N N = 19.6 GeV) and Cu+Cu (22.4 GeV) collisions at high pseudorapidity (η). The dominant multiply-charged fragment is the tightly bound helium (α), with lithium, beryllium, and boron all clearly seen as a function of collision centrality and pseudorapidity. In this paper, we observe that in Cu+Cu collisions, it becomes much more favorable for the α fragments to be released than lithium. The yields of fragments approximately scale with the number of spectator nucleons, independent of the colliding ion. The shapes of the pseudorapidity distributions of fragments indicate that the average deflection of the fragments away from the beam direction increases for more central collisions. Finally, a detailed comparison of the shapes for α and lithium fragments indicates that the centrality dependence of the deflections favors a scaling with the number of participants in the collision.« less

  17. Participant and spectator scaling of spectator fragments in Au + Au and Cu + Cu collisions at √{sN N}=19.6 and 22.4 GeV

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Richardson, E.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wyngaardt, S.; Wysłouch, B.; Phobos Collaboration

    2016-08-01

    Spectator fragments resulting from relativistic heavy ion collisions, consisting of single protons and neutrons along with groups of stable nuclear fragments up to nitrogen (Z =7 ), are measured in PHOBOS. These fragments are observed in Au+Au (√{sNN}=19.6 GeV ) and Cu+Cu (22.4 GeV) collisions at high pseudorapidity (η ). The dominant multiply-charged fragment is the tightly bound helium (α ), with lithium, beryllium, and boron all clearly seen as a function of collision centrality and pseudorapidity. We observe that in Cu+Cu collisions, it becomes much more favorable for the α fragments to be released than lithium. The yields of fragments approximately scale with the number of spectator nucleons, independent of the colliding ion. The shapes of the pseudorapidity distributions of fragments indicate that the average deflection of the fragments away from the beam direction increases for more central collisions. A detailed comparison of the shapes for α and lithium fragments indicates that the centrality dependence of the deflections favors a scaling with the number of participants in the collision.

  18. How do quarks and gluons lose energy in the QGP?

    DOE PAGES

    Tannenbaum, M. J.

    2015-03-10

    RHIC introduced the method of hard scattering of partons as an in-situ probe of the the medium produced in A+A collisions. A suppression, R AA ≈ 0.2 relative to binary-scaling, was discovered for π⁰ production in the range 5 < ρ T < 20 GeV/c in central Au+Au collisions at √s NN = 200 GeV, and surprisingly also for single-electrons from the decay of heavy quarks. Both these results have been confirmed in Pb+Pb collisions at the LHC at √s NN = 2.76 TeV. Interestingly, in this ρ T range the LHC results for pions nearly overlap the RHIC results.more » Thus, due to the flatter spectrum, the energy loss in the medium at LHC in this ρ T range must be ~ 40% larger than at RHIC. Unique at the LHC are the beautiful measurements of the fractional transverse momentum imbalance 1 – (ρ-carot T2/ρ-carot T1) of di-jets in Pb+Pb collisions. At the Utrecht meeting in 2011, I corrected for the fractional imbalance of di-jets with the same cuts in p-p collisions and showed that the relative fractional jet imbalance in Pb+Pb/p-p is ≈ 15% for jets with 120 < ρ-carot T1 < 360 GeV/c. CMS later confirmed this much smaller imbalance compared to the same quantity derived from two-particle correlations of di-jet fragments at RHIC corresponding to ρ-carot T jet ≈ 10 – 20 GeV/c, which appear to show a much larger fractional jet imbalance ≈ 45% in this lower ρ-carot T range. The variation of apparent energy loss in the medium as a function of both ρ T and √s NN is striking and presents a challenge to both theory and experiment for improved understanding. There are many other such unresolved issues, for instance, the absence of evidence for a q-carot effect, due to momentum transferred to the medium by outgoing partons, which would widen the away-side di-jet and di-hadron correlations in a similar fashion as the k T-effect. Another issue well known from experiments at the CERN ISR, SpS and SpS collider is that parton-parton hard-collisions make negligible contribution to multiplicity or transverse energy production in p-p collisions–soft particles, with ρ T < 2 GeV/c, predominate. Thus an apparent hard scattering component for A+A multiplicity distributions based on a popular formula, dN AA ch/dη = [(1 - x) (N part)dN pp ch/dη2 + x (N colldN pp ch/dη], seems to be an unphysical way to understand the deviation from N part scaling. Based on recent p-p and d+A measurements, a more physical way is presented along with several other stimulating results and ideas from recent d+Au (p+Pb) measurements.« less

  19. X-RAY EMISSION FROM THE DOUBLE-BINARY OB-STAR SYSTEM QZ CAR (HD 93206)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parkin, E. R.; Naze, Y.; Rauw, G.

    X-ray observations of the double-binary OB-star system QZ Car (HD 93206) obtained with the Chandra X-ray Observatory over a period of roughly 2 years are presented. The respective orbits of systems A (O9.7 I+b2 v, P{sub A} = 21 days) and B (O8 III+o9 v, P{sub B} = 6 days) are reasonably well sampled by the observations, allowing the origin of the X-ray emission to be examined in detail. The X-ray spectra can be well fitted by an attenuated three-temperature thermal plasma model, characterized by cool, moderate, and hot plasma components at kT {approx_equal} 0.2, 0.7, and 2 keV, respectively,more » and a circumstellar absorption of {approx_equal}0.2 x 10{sup 22} cm{sup -2}. Although the hot plasma component could be indicating the presence of wind-wind collision shocks in the system, the model fluxes calculated from spectral fits, with an average value of {approx_equal}7 x 10{sup -13} erg s{sup -1} cm{sup -2}, do not show a clear correlation with the orbits of the two constituent binaries. A semi-analytical model of QZ Car reveals that a stable momentum balance may not be established in either system A or B. Yet, despite this, system B is expected to produce an observed X-ray flux well in excess of the observations. If one considers the wind of the O8 III star to be disrupted by mass transfer, the model and observations are in far better agreement, which lends support to the previous suggestion of mass transfer in the O8 III + o9 v binary. We conclude that the X-ray emission from QZ Car can be reasonably well accounted for by a combination of contributions mainly from the single stars and the mutual wind-wind collision between systems A and B.« less

  20. Systematic study of azimuthal anisotropy in Cu + Cu and Au + Au collisions at √s NN = 62.4 and 200 GeV

    DOE PAGES

    Adare, A.

    2015-09-23

    We have studied the dependence of azimuthal anisotropy v 2 for inclusive and identified charged hadrons in Au+Au and Cu+Cu collisions on collision energy, species, and centrality. The values of v 2 as a function of transverse momentum pT and centrality in Au+Au collisions at √s NN=200 and 62.4 GeV are the same within uncertainties. However, in Cu+Cu collisions we observe a decrease in v 2 values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au+Au and Cu+Cu collisions we find that v 2 dependsmore » both on eccentricity and the number of participants, N part. We observe that v 2 divided by eccentricity (ε) monotonically increases with N part and scales as N 1/3 part. Thus, the Cu+Cu data at 62.4 GeV falls below the other scaled v 2 data. For identified hadrons, v 2 divided by the number of constituent quarks nq is independent of hadron species as a function of transverse kinetic energy KE T=m T–m between 0.1T/n q<1 GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu+Cu data at 62.4 GeV, of v 2/(n q∙ε∙N 1/3 part) vs KE T/n q for all measured particles.« less

  1. The role of the attractive and the repulsive interactions in the nonpolar solvation dynamics in simple fluids from the gas-like to the liquid-like densities

    NASA Astrophysics Data System (ADS)

    Yamaguchi, T.; Kimura, Y.; Hirota, N.

    1999-09-01

    We have performed molecular dynamics (MD) simulations of the nonpolar solvation dynamics in simple fluids composed of particles interacting through the Lennard-Jones (LJ) 12-6 potential or its repulsive part. The attractive or the repulsive part of the solute-solvent interaction is assumed to change on the excitation of a solute. We have followed the transition energy fluctuation of the solute by the equilibrium simulation. The division of the LJ potential followed the method of WCA [J. W. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971)]. We have surveyed over a wide solvent density region from gas-like to liquid-like densities at the constant temperature. When the attractive part changes, the relaxation becomes faster with an increase of the solvent density. This result contradicts with previous theories that treat the nonpolar solvation dynamics in terms of the diffusion of solvent particles. The time scale of the initial part of the relaxation is well correlated with the static fluctuation divided by the static average, which suggests the importance of the curvature of the free energy surface in the initial part of the solvation. When the repulsive part changes, the initial part of the relaxation is almost density independent, determined by the binary motion between solute and solvent. It is consistent with the result that the static fluctuation is almost proportional to the static average, which indicates the absence of the static correlation between solvent particles. On the other hand, the solvation correlation function shows rather complicated density dependence at the longer time scale. In the case of the binary mixture solvent, the relaxation time is inversely proportional to the diffusion coefficient. On the basis of the nonpolar solvation dynamics, the validity of the isolated binary collision model for the vibrational energy relaxation is also discussed, and the recent hydrodynamic theory on the vibrational energy relaxation [B. J. Cherayil and M. D. Feyer, J. Chem. Phys. 107, 7642 (1997)] is critically examined.

  2. Finale of a Quartet: Hints on Supernova Formation

    NASA Astrophysics Data System (ADS)

    Fang, Xiao; Thompson, Todd A.; Hirata, Christopher M.

    2018-01-01

    The origin of Type Ia Supernovae (SNe) is not well understood. Two most popular hypotheses are the single-degenerate scenario, where one white dwarf (WD) accretes matter from its giant companion until the Chandrasekhar limit is reached, and the double-degenerate scenario, where two WDs merge and explode. We focus on the second scenario. It has long been realized that binary WD systems normally take extremely long time to merge via gravitational waves and it is still unclear whether WD mergers can fully account for the observed SN Ia rate. Recent effort has been devoted to the effects of introducing a distant tertiary to the binary system. The standard “Kozai-Lidov” mechanism can lead to high eccentricities of the binary WDs, which could lead to direct collisions or much efficient energy dissipation. Alternatively, we investigate the long-term evolution of the hierarchical quadruple systems, i.e. WD binary with a binary companion, which are basically unexplored, yet they should be numerous. We explore their interesting dynamics and find that the fraction of reaching high eccentricities is largely enhanced, which hints on a higher WD merger rate than predicted from triple systems with the same set of secular and non-secular effects considered. Considering the population of quadruple stellar systems, the quadruple scenario might contribute significantly to the overall rate of Ia SNe.

  3. AIDA: the Asteroid Impact & Deflection Assessment mission

    NASA Astrophysics Data System (ADS)

    Vincent, Jean-Baptiste

    2016-07-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to assess the possibility of deflecting an asteroid trajectory by using a kinetic impactor. The European Asteroid Impact Mission (AIM) is under Phase A/B1 study at ESA from March 2015 until summer 2016. AIM is set to rendez-vous with the asteroid system a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft to fully characterize the smaller of the two binary components. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions: AIM will release a set of CubeSats in deep space and a lander on the surface of the smaller asteroid and for the first time, deep-space inter-satellite linking will be demonstrated between the main spacecraft, the CubeSats, and the lander, and data will also be transmitted from interplanetary space to Earth by a laser communication system. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Small asteroids are believed to result from collisions and other processes (e.g., spinup, shaking) that made them what they are now. Having direct information on their surface and internal properties will allow us to understand how these processes work and transform these small bodies as well as, for this particular case, how a binary system forms. So far, our understanding of the collisional process and the validation of numerical simulations of the impact process rely on impact experiments at laboratory scales. With DART, thanks to the characterization of the target by AIM, the mission will be the first fully documented impact experiment at asteroid scale, which will include the characterization of the target's properties and the outcome of the impact. By comparing our in situ measurements with ground-based data from telescopes, we can calibrate better the remote observations and improve our data interpretation of other systems. Therefore, AIDA offers a unique opportunity to test and refine our understanding and models at the actual scale of an asteroid. This will allow feeding small-body collisional evolution models with more realistic parameters to draw a more reliable story of the Solar System formation and evolution. Moreover, it will offer a first check of the validity of the kinetic impactor concept to deflect a small body trajectory and lead to improved efficiency for future kinetic impactor designs.

  4. Featured Image: Stars from Broken Clouds and Disks

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-04-01

    This still from a simulation captures binary star formation in action. Researchers have long speculated on the processes that lead to clouds of gas and dust breaking up into smaller pieces to form multiple-star systems but these take place over a large range of scales, making them difficult to simulate. In a new study led by Leonardo Sigalotti (UAM Azcapotzalco, Mexico), researchers have used a smoothed-particle hydrodynamics code to model binary star formation on scales of thousands of AU down to scales as small as 0.1 AU. In the scene shown above, a collapsing cloud of gas and dust has recently fragmented into two pieces, forming a pair of disks separated by around 200 AU. In addition, we can see that smaller-scale fragmentation is just starting in one of these disks, Disk B. Here, one of the disks spiral arms has become unstable and is beginning to condense; it will eventually form another star, producing a hierarchical system: a close binary within the larger-scale binary. Check out the broaderprocessin the four panels below (which show the system as it evolves over time), or visitthe paper linked below for more information about what the authors learned.Evolution of a collapsed cloud after large-scale fragmentation into a binary protostar: (a) 44.14 kyr, (b) 44.39 kyr, (c) 44.43 kyr, and (d) 44.68 kyr. The insets show magnifications of the binary cores. [Adapted from Sigalotti et al. 2018]CitationLeonardo Di G. Sigalotti et al 2018 ApJ 857 40. doi:10.3847/1538-4357/aab619

  5. Probing subnucleon scale fluctuations in ultraperipheral heavy ion collisions

    DOE PAGES

    Mantysaari, Heikki; Schenke, Bjorn

    2017-08-02

    We show that introducing subnucleon scale fluctuations constrained by HERA diffractive J/Ψ production data significantly affects the incoherent diffractive J/Ψ production cross section in ul-traperipheral heavy ion collisions. We find that the inclusion of the additional fluctuations increases the ratio of the incoherent to the coherent cross section approximately by a factor of 2, and modifies the transverse momentum spectra of the produced J/Ψ at momenta larger than the scale that corresponds to the distance scale of the subnucleonic fluctuations. We present predictions for J/Ψ production in ultraperipheral heavy ion collisions at √sNN = 5.02 TeV at the LHC andmore » 200 GeV at RHIC.« less

  6. On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Huenemoerder, D. P.; Hamann, W.-R.; Shenar, T.; Sander, A. A. C.; Ignace, R.; Todt, H.; Hainich, R.

    2017-08-01

    The blue hypergiant Cyg OB2 12 (B3Ia+) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xiv and Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.

  7. On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oskinova, L. M.; Hamann, W.-R.; Shenar, T.

    The blue hypergiant Cyg OB2 12 (B3Ia{sup +}) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xiv and Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only atmore » the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.« less

  8. The concept of collision strength and its applications

    NASA Astrophysics Data System (ADS)

    Chang, Yongbin

    Collision strength, the measure of strength for a binary collision, hasn't been defined clearly. In practice, many physical arguments have been employed for the purpose and taken for granted. A scattering angle has been widely and intensively used as a measure of collision strength in plasma physics for years. The result of this is complication and unnecessary approximation in deriving some of the basic kinetic equations and in calculating some of the basic physical terms. The Boltzmann equation has a five-fold integral collision term that is complicated. Chandrasekhar and Spitzer's approaches to the linear Fokker-Planck coefficients have several approximations. An effective variable-change technique has been developed in this dissertation as an alternative to scattering angle as the measure of collision strength. By introducing the square of the reduced impulse or its equivalencies as a collision strength variable, many plasma calculations have been simplified. The five-fold linear Boltzmann collision integral and linearized Boltzmann collision integral are simplified to three-fold integrals. The arbitrary order linear Fokker-Planck coefficients are calculated and expressed in a uniform expression. The new theory provides a simple and exact method for describing the equilibrium plasma collision rate, and a precise calculation of the equilibrium relaxation time. It generalizes bimolecular collision reaction rate theory to a reaction rate theory for plasmas. A simple formula of high precision with wide temperature range has been developed for electron impact ionization rates for carbon atoms and ions. The universality of the concept of collision strength is emphasized. This dissertation will show how Arrhenius' chemical reaction rate theory and Thomson's ionization theory can be unified as one single theory under the concept of collision strength, and how many important physical terms in different disciplines, such as activation energy in chemical reaction theory, ionization energy in Thomson's ionization theory, and the Coulomb logarithm in plasma physics, can be unified into a single one---the threshold value of collision strength. The collision strength, which is a measure of a transfer of momentum in units of energy, can be used to reconcile the differences between Descartes' opinion and Leibnitz's opinion about the "true" measure of a force. Like Newton's second law, which provides an instantaneous measure of a force, collision strength, as a cumulative measure of a force, can be regarded as part of a law of force in general.

  9. Collision-Induced Spectra: AN Avenue to Investigate Microscopic-Scale Diffusion in Fluids

    NASA Astrophysics Data System (ADS)

    Herrebout, Wouter A.; van der Veken, Benjamin J.; Kouzov, Alexander

    2014-06-01

    New data on the IR spectra induced by intermolecular interactions in liquid cryogenic mixtures at T=89 K (O2 in LAr and LN2 and binary O2-Ar solutions in LN2) are reported. The induced fundamental bands appear as diffuse pedestals (with FWHH≈100 cm-1) on which weak, paradoxically sharp lines (FWHH≈2 cm-1) develop at the 2326 and 1552 cm-1 frequencies of the free-molecule vibrational transitions in N2 and O2, respectively. In LAr and LN2 these lines were carefully separated and studied at varied O2 concentrations up to c=0.23 mole fractions (mf). While the 1552 cm-1 line scales as c[O2]2 and thus is induced by the O2-O2 interactions in a bulk of cryosolvent (Ar, N2), the 2326 cm-1 feature varies linearly with c[O2] and hence is caused by interaction of a guest (O2) with a vibrating host (N_2). The impurity induction mechanism was further supported by our data on the binary O2-Ar solutions in LN2 %for which the spectra were recorded at the fixed c[O2] (0.03 and 0.06 mf) and the varied c% [Ar]≤0.2 mf. Both series revealed the same (linear) enhancement of the sharp N2 line by argon, in an accord with our previous studies of the Ar-LN2 system. The results suggest that the resonance 2326 cm-1 feature is primarily due to the local distortion of the first coordination sphere around a vibrating N_2 by a guest molecule. We also notice that the resonance lines should be due to the dispersion- and overlap-induced dipole moments independent on the rotational degrees of freedom. As our previous studies of the H2-LNe system showed, the unusual line sharpness is a conspicuous manifestation of the relative solvent-solute and solute-solute translations dramatically retarded in a liquid by a fast velocity relaxation, an effect directly related to the microscopic-scale diffusion. The collision-induced spectra thus open up new vistas for studies of microscopic liquid dynamics. W.A. Herrebout, A.A. Stolov, E.J. Sluyts, and B.J. van der Veken, Chem. Phys. Lett. 295, 223 (1998) J.E. Bohr and K.L.C. Hunt, J. Chem. Phys. 86, 5441 (1987) W. A. Herrebout, B. J. van der Veken, and A. P. Kouzov, Phys.Rev. Lett. 101, 093001 (2008) W. A. Herrebout, B. J. van der Veken, and A. P. Kouzov, J. Chem. Phys. 137, 084509 (2012)

  10. Electron- and positron-impact atomic scattering calculations using propagating exterior complex scaling

    NASA Astrophysics Data System (ADS)

    Bartlett, P. L.; Stelbovics, A. T.; Rescigno, T. N.; McCurdy, C. W.

    2007-11-01

    Calculations are reported for four-body electron-helium collisions and positron-hydrogen collisions, in the S-wave model, using the time-independent propagating exterior complex scaling (PECS) method. The PECS S-wave calculations for three-body processes in electron-helium collisions compare favourably with previous convergent close-coupling (CCC) and time-dependent exterior complex scaling (ECS) calculations, and exhibit smooth cross section profiles. The PECS four-body double-excitation cross sections are significantly different from CCC calculations and highlight the need for an accurate representation of the resonant helium final-state wave functions when undertaking these calculations. Results are also presented for positron-hydrogen collisions in an S-wave model using an electron-positron potential of V12 = - (8 + (r1 - r2)2)-1/2. This model is representative of the full problem, and the results demonstrate that ECS-based methods can accurately calculate scattering, ionization and positronium formation cross sections in this three-body rearrangement collision.

  11. Recall of patterns using binary and gray-scale autoassociative morphological memories

    NASA Astrophysics Data System (ADS)

    Sussner, Peter

    2005-08-01

    Morphological associative memories (MAM's) belong to a class of artificial neural networks that perform the operations erosion or dilation of mathematical morphology at each node. Therefore we speak of morphological neural networks. Alternatively, the total input effect on a morphological neuron can be expressed in terms of lattice induced matrix operations in the mathematical theory of minimax algebra. Neural models of associative memories are usually concerned with the storage and the retrieval of binary or bipolar patterns. Thus far, the emphasis in research on morphological associative memory systems has been on binary models, although a number of notable features of autoassociative morphological memories (AMM's) such as optimal absolute storage capacity and one-step convergence have been shown to hold in the general, gray-scale setting. In previous papers, we gained valuable insight into the storage and recall phases of AMM's by analyzing their fixed points and basins of attraction. We have shown in particular that the fixed points of binary AMM's correspond to the lattice polynomials in the original patterns. This paper extends these results in the following ways. In the first place, we provide an exact characterization of the fixed points of gray-scale AMM's in terms of combinations of the original patterns. Secondly, we present an exact expression for the fixed point attractor that represents the output of either a binary or a gray-scale AMM upon presentation of a certain input. The results of this paper are confirmed in several experiments using binary patterns and gray-scale images.

  12. Colliding winds from early-type stars in binary systems

    NASA Technical Reports Server (NTRS)

    Stevens, Ian R.; Blondin, John M.; Pollock, A. M. T.

    1992-01-01

    The dynamics of the wind and shock structure formed by the wind collision in early-type binary systems is examined by means of a 2D hydrodynamics code, which self-consistently accounts for radiative cooling, and represents a significant improvement over previous attempts to model these systems. The X-ray luminosity and spectra of the shock-heated region, accounting for wind attenuation and the influence of different abundances on the resultant level and spectra of X-ray emission are calculated. A variety of dynamical instabilities that are found to dominate the intershock region is examined. These instabilities are found to be particularly important when postshock material is able to cool. These instabilities disrupt the postshock flow and add a time variability of order 10 percent to the X-ray luminosity. The X-ray spectrum of these systems is found to vary with the nuclear abundances of winds. These theoretical models are used to study several massive binary systems, in particular V444 Cyg and HD 193793.

  13. Recoiling from a Kick in the Head-On Case

    NASA Technical Reports Server (NTRS)

    Choi, Dae-Il; Kelly, Bernard J.; Boggs, William D.; Baker, John G.; Centrella, Joan; Van Meter, James

    2007-01-01

    Recoil "kicks" induced by gravitational radiation are expected in the inspiral and merger of black holes. Recently the numerical relativity community has begun to measure the significant kicks found when both unequal masses and spins are considered. Because understanding the cause and magnitude of each component of this kick may be complicated in inspiral simulations, we consider these effects in the context of a simple test problem. We study recoils from collisions of binaries with initially head-on trajectories, starting with the simplest case of equal masses with no spin; adding spin and varying the mass ratio, both separately and jointly. We find spin-induced recoils to be significant even in head-on configurations. Additionally, it appears that the scaling of transverse kicks with spins is consistent with post-Newtonian (PN) theory, even though the kick is generated in the nonlinear merger interaction, where PN theory should not apply. This suggests that a simple heuristic description might be effective in the estimation of spin-kicks.

  14. Industrial ion source technology

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.

    1978-01-01

    An analytical model was developed to describe the development of a coned surface texture with ion bombardment and simultaneous deposition of an impurity. A mathematical model of sputter deposition rate from a beveled target was developed in conjuction with the texturing models to provide an important input to that model. The establishment of a general procedure that will allow the treatment of manay different sputtering configurations is outlined. Calculation of cross sections for energetic binary collisions was extened to Ar, Kr.. and Xe with total cross sections for viscosity and diffusion calculated for the interaction energy range from leV to 1000eV. Physical sputtering and reactive ion etching experiments provided experimental data on the operating limits of a broad beam ion source using CF4 as a working gas to produce reactive species in a sputtering beam. Magnetic clustering effects are observed when Al is seeded with Fe and sputtered with Ar(?) ions. Silicon was textured at a micron scale by using a substrate temperature of 600 C.

  15. Rear-end vision-based collision detection system for motorcyclists

    NASA Astrophysics Data System (ADS)

    Muzammel, Muhammad; Yusoff, Mohd Zuki; Meriaudeau, Fabrice

    2017-05-01

    In many countries, the motorcyclist fatality rate is much higher than that of other vehicle drivers. Among many other factors, motorcycle rear-end collisions are also contributing to these biker fatalities. To increase the safety of motorcyclists and minimize their road fatalities, this paper introduces a vision-based rear-end collision detection system. The binary road detection scheme contributes significantly to reduce the negative false detections and helps to achieve reliable results even though shadows and different lane markers are present on the road. The methodology is based on Harris corner detection and Hough transform. To validate this methodology, two types of dataset are used: (1) self-recorded datasets (obtained by placing a camera at the rear end of a motorcycle) and (2) online datasets (recorded by placing a camera at the front of a car). This method achieved 95.1% accuracy for the self-recorded dataset and gives reliable results for the rear-end vehicle detections under different road scenarios. This technique also performs better for the online car datasets. The proposed technique's high detection accuracy using a monocular vision camera coupled with its low computational complexity makes it a suitable candidate for a motorbike rear-end collision detection system.

  16. Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers.

    PubMed

    Lycett-Brown, Daniel; Luo, Kai H

    2016-11-01

    A recently developed forcing scheme has allowed the pseudopotential multiphase lattice Boltzmann method to correctly reproduce coexistence curves, while expanding its range to lower surface tensions and arbitrarily high density ratios [Lycett-Brown and Luo, Phys. Rev. E 91, 023305 (2015)PLEEE81539-375510.1103/PhysRevE.91.023305]. Here, a third-order Chapman-Enskog analysis is used to extend this result from the single-relaxation-time collision operator, to a multiple-relaxation-time cascaded collision operator, whose additional relaxation rates allow a significant increase in stability. Numerical results confirm that the proposed scheme enables almost independent control of density ratio, surface tension, interface width, viscosity, and the additional relaxation rates of the cascaded collision operator. This allows simulation of large density ratio flows at simultaneously high Reynolds and Weber numbers, which is demonstrated through binary collisions of water droplets in air (with density ratio up to 1000, Reynolds number 6200 and Weber number 440). This model represents a significant improvement in multiphase flow simulation by the pseudopotential lattice Boltzmann method in which real-world parameters are finally achievable.

  17. Collisions in Compact Star Clusters.

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S. F.

    The high stellar densities in young compact star clusters, such as the star cluster R136 in the 30 Doradus region, may lead to a large number of stellar collisions. Such collisions were recently found to be much more frequent than previous estimates. The number of collisions scales with the number of stars for clusters with the same initial relaxation time. These collisions take place in a few million years. The collision products may finally collapse into massive black holes. The fraction of the total mass in the star cluster which ends up in a single massive object scales with the total mass of the cluster and its relaxation time. This mass fraction is rather constant, within a factor two or so. Wild extrapolation from the relatively small masses of the studied systems to the cores of galactic nuclei may indicate that the massive black holes in these systems have formed in a similar way.

  18. A 3D dynamical model of the colliding winds in binary systems

    NASA Astrophysics Data System (ADS)

    Parkin, E. R.; Pittard, J. M.

    2008-08-01

    We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind-wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called `pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf-Rayet stars. As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray.

  19. The X-ray monitoring of the long-period colliding wind binaries

    NASA Astrophysics Data System (ADS)

    Sugawara, Y.; Maeda, Y.; Tsuboi, Y.

    2017-10-01

    We present the first results from XMM-Newton and Swift observations of two long-period colliding wind binaries WR19 and WR125 around periastron passages. Mass-loss is one of the most important and uncertain parameters in the evolution of a massive star. The X-ray spectrum off the colliding wind binary is the best measure of conditions in the hot postshock gas. By monitoring the changing of the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars. It is known that WR19 (WC5+O9; P=10.1 yr) and WR125 (WC7+O9; P> 24.3 yr) are the dust-making binaries. Each periastron is expected to come in 2016-2017. Since 2016, we carry out on-going monitoring campaigns of WR19 and WR125 with XMM-Newton and Swift. On these observations, the X-rays from WR19 and WR125 were detected for the first time. In the case of WR19, as periastron approached, the column density increased, which indicates that the emission from the wind-wind collision plasma was absorbed by the dense Wolf-Rayet wind.

  20. The Vlasov-Poisson-Boltzmann System for a Disparate Mass Binary Mixture

    NASA Astrophysics Data System (ADS)

    Duan, Renjun; Liu, Shuangqian

    2017-11-01

    The Vlasov-Poisson-Boltzmann system is often used to govern the motion of plasmas consisting of electrons and ions with disparate masses when collisions of charged particles are described by the two-component Boltzmann collision operator. The perturbation theory of the system around global Maxwellians recently has been well established in Guo (Commun Pure Appl Math 55:1104-1135, 2002). It should be more interesting to further study the existence and stability of nontrivial large time asymptotic profiles for the system even with slab symmetry in space, particularly understanding the effect of the self-consistent potential on the non-trivial long-term dynamics of the binary system. In this paper, we consider the problem in the setting of rarefaction waves. The analytical tool is based on the macro-micro decomposition introduced in Liu et al. (Physica D 188(3-4):178-192, 2004) that we have been able to develop for the case of the two-component Boltzmann equations around local bi-Maxwellians. Our focus is to explore how the disparate masses and charges of particles play a role in the analysis of the approach of the complex coupling system time-asymptotically toward a non-constant equilibrium state whose macroscopic quantities satisfy the quasineutral nonisentropic Euler system.

  1. Rail passenger equipment collision tests : analysis of occupant protection measurements

    DOT National Transportation Integrated Search

    2000-01-01

    The Federal Railroad Administration has been conducting research : on occupant protection in train collisions. As part of this research, : computer simulations have been performed, passenger seats have been sled tested, and two full-scale collision t...

  2. Intrinsic fluctuations of the proton saturation momentum scale in high multiplicity p+p collisions

    DOE PAGES

    McLerran, Larry; Tribedy, Prithwish

    2015-11-02

    High multiplicity events in p+p collisions are studied using the theory of the Color Glass Condensate. Here, we show that intrinsic fluctuations of the proton saturation momentum scale are needed in addition to the sub-nucleonic color charge fluctuations to explain the very high multiplicity tail of distributions in p+p collisions. It is presumed that the origin of such intrinsic fluctuations is non-perturbative in nature. Classical Yang Mills simulations using the IP-Glasma model are performed to make quantitative estimations. Furthermore, we find that fluctuations as large as O(1) of the average values of the saturation momentum scale can lead to raremore » high multiplicity events seen in p+p data at RHIC and LHC energies. Using the available data on multiplicity distributions we try to constrain the distribution of the proton saturation momentum scale and make predictions for the multiplicity distribution in 13 TeV p+p collisions.« less

  3. The evolution of a binary in a retrograde circular orbit embedded in an accretion disk

    NASA Astrophysics Data System (ADS)

    Ivanov, P. B.; Papaloizou, J. C. B.; Paardekooper, S.-J.; Polnarev, A. G.

    2015-04-01

    Aims: Supermassive black hole binaries may form as a consequence of galaxy mergers. Both prograde and retrograde orbits have been proposed. We study a binary with a small mass ratio, q, in a retrograde orbit immersed in and interacting with a gaseous accretion disk in order to estimate the time scales for inward migration that leads to coalescence and the accretion rate to the secondary component. Methods: We employed both semi-analytic methods and two-dimensional numerical simulations, focusing on the case where the binary mass ratio is small but large enough to significantly perturb the disk. Results: We develop the theory of type I migration in this case and go on to determine the conditions for gap formation. We find that when this happens inward migration occurs on a time scale equal to the time required for one half of the secondary mass to be accreted through the unperturbed accretion disk. The accretion rate onto the secondary itself is found to only play a minor role in the orbital evolution as it is of the order of q1/3 of that to the primary. We obtain good general agreement between the semi-analytic and fully numerical approaches and note that the former can be applied to disks with a wide dynamic range on long time scales. Conclusions: We conclude that inward migration induced by interaction with the disk can enable the binary to migrate inwards, alleviating the so-called final parsec problem. When q is sufficiently small, there is no well-pronounced cavity inside the binary orbit, unlike the prograde case. The accretion rate to the secondary does not influence the binary orbital evolution much, but can lead to some interesting observational consequences, provided the accretion efficiency is sufficiently large. In this case the binary may be detected as, for example, two sources of radiation rotating around each other. However, the study should be extended to consider orbits with significant eccentricity and the effects of gravitational radiation at small length scales. Also, torques acting between a circumbinary accretion disk, which has a non-zero inclination with respect to a retrograde binary orbit at large distances, may cause the inclination to increase on a time scale that can be similar to, or smaller than, the time scale of orbital evolution, depending on the disk parameters and binary mass ratio. This is also an aspect for future study. The movies are available in electronic form at http://www.aanda.org

  4. Planetary Formation and Dynamics in Binary Systems

    NASA Astrophysics Data System (ADS)

    Xie, J. W.

    2013-01-01

    As of today, over 500 exoplanets have been detected since the first exoplanet was discovered around a solar-like star in 1995. The planets in binaries could be common as stars are usually born in binary or multiple star systems. Although current observations show that the planet host rate in multiple star systems is around 17%, this fraction should be considered as a lower limit because of noticeable selection effects against binaries in planet searches. Most of the current known planet-bearing binary systems are S-types, meaning the companion star acts as a distant satellite, typically orbiting the inner star-planet system over 100 AU away. Nevertheless, there are four systems with a smaller separation of 20 AU, including the Gamma Cephei, GJ 86, HD 41004, and HD 196885. In addition to the planets in circumprimary (S-type) orbits discussed above, planets in circumbinary (P-type) orbits have been found in only two systems. In this thesis, we mainly study the planet formation in the S-type binary systems. In chapter 1, we first summarize current observational facts of exoplanets both in single-star and binary systems, then review the theoretical models of planet formation, with special attention to the application in binary systems. Perturbative effects from stellar companions render the planet formation process in binary systems even more complex than that in single-star systems. The perturbations from a binary companion can excite planetesimal orbits, and increase their mutual impact velocities to the values that might exceed their escape velocity or even the critical velocity for the onset of eroding collisions. The intermediate stage of the formation process---from planetesimals to planetary embryos---is thus the most problematic. In the following chapters, we investigate whether and how the planet formation goes through such a problematic stage. In chapter 2, we study the effects of gas dissipation on the planetesimals' mutual accretion. We find that in a dissipating gas disk, all the planetesimals eventually converge toward the same forced orbits regardless of their size, leading to the much lower impact velocities. This process progressively increases the net mass accretion and can even trigger the runaway growth for large planetesimals. In chapter 3, for the first time, we adopt a 3-dimensional approach to investigate the planetesimals' mutual accretion in binary systems. We find that the inclusion of a small inclination between the binary orbital plane and the circumstellar disk plane leads to the realization of the differential orbital phasing in 3-dimensional space. In such a case, impacts mainly occur between similar-sized bodies with the impact velocities being significantly reduced, and thus the planetesimal accretion is more favored. In chapter 4, we investigate the planet formation in a specific system, the habitable zone of Alpha Centauri B. For the first time, we develop a scaling method to estimate the planetesimal collisional timescale in binary systems. We find that the accretion-favorable conditions satisfied at 1˜2 AU from Alpha Centauri B after the first 10^5 years. However, the planetesimal accretion is significantly less efficient as compared to the single star case. Our results suggest that the formation of Earth-like planets through the accretion of km-sized planetesimals is possible in Alpha Centauri B, while the formation of gaseous giant planets is not favorable. In chapter 5, we outline a new concept, which we call the ``snowball'' growth mode. In this snowball phase, the isolated planetesimals move in the Keplerian orbits, and grow solely via the direct accretion of subcentimeter-sized dust entrained with the gas in the protoplanetary disk. Using a simplified model in which the planetesimals are progressively produced from the dust, we find that the snowball growth phase can be the dominant mode to transfer mass from the dust to planetesimals. The snowball growth mode could provide an alternative explanation for the turnover point in the size distribution of the present-day asteroid belt. For the specific case of close binaries such as Alpha Centauri, the snowball growth mode provides a safe way for the bodies to grow through the problematic range with a size of 1˜50 km. In chapter 6, we investigate the intermediate stages of the planet formation in highly inclined cases. We find that the gas drag plays a crucial role in the evolution of the planetesimals' semi-major axis, and the results can be generally divided into two categories, i.e., the Kozai-on regime and the Kozai-off regime. For both regimes, a robust outcome over a wide range of parameters is that, the planetesimals migrate/jump inwards and pile up, leading to a severely truncated and dense planetesimal disk around the primary. In this compact and dense disk, the collision rates are high but the relative velocities are low, providing conditions which are favorable for the planetesimal growth, and potentially allow for the subsequent formation of planets. Finally, we summarize this thesis in chapter 7. Many open questions still remain in current research field of planet formation in binary systems, and the current Kepler project provides an unprecedented opportunity for such researches. A comprehensive understanding of planets in binaries requires placing them in a bigger context to include the formation and evolution of stars and/or clusters.

  5. Multiplicity fluctuations and collective flow in small colliding systems

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Koji; Murase, Koichi; Hirano, Tetsufumi

    2017-11-01

    Recent observation of collective-flow-like behaviours in small colliding systems attracts significant theoretical and experimental interests. In large colliding systems, large collective flow has been interpreted as manifestation of almost-perfect fluidity of the quark gluon plasma (QGP). So it is quite intriguing to explore how small the QGP can be as a fluid. Multiplicity fluctuations play a crucial role in centrality definition of the events in small colliding systems since the fluctuations are, in general, more important as the system size is getting smaller. To consider the correct multiplicity fluctuations, we employ PYTHIA which naturally describes multiplicity distribution in p+p collisions. We superpose p+p collisions by taking into account the number of participants and that of binary collisions from Monte-Carlo version of Glauber model and evaluate initial entropy density distributions which contain not only multiplicity fluctuations but also fluctuations of longitudinal profiles. Solving hydrodynamic equations followed by the hadronic afterburner, we calculate transverse momentum spectra, elliptic and triangular flow parameters in p+Au, d+Au and 3He+Au collisions at the RHIC energy and p+Pb collisions at the LHC energy. Although a large fraction of final anisotropic flow parameters comes from the fluid-dynamical stage, the effects of hadronic rescatterings turn out to be also important as well in understanding of the flow data in small colliding systems.

  6. A binary main-belt comet.

    PubMed

    Agarwal, Jessica; Jewitt, David; Mutchler, Max; Weaver, Harold; Larson, Stephen

    2017-09-20

    Asteroids are primitive Solar System bodies that evolve both collisionally and through disruptions arising from rapid rotation. These processes can lead to the formation of binary asteroids and to the release of dust, both directly and, in some cases, through uncovering frozen volatiles. In a subset of the asteroids called main-belt comets, the sublimation of excavated volatiles causes transient comet-like activity. Torques exerted by sublimation measurably influence the spin rates of active comets and might lead to the splitting of bilobate comet nuclei. The kilometre-sized main-belt asteroid 288P (300163) showed activity for several months around its perihelion 2011 (ref. 11), suspected to be sustained by the sublimation of water ice and supported by rapid rotation, while at least one component rotates slowly with a period of 16 hours (ref. 14). The object 288P is part of a young family of at least 11 asteroids that formed from a precursor about 10 kilometres in diameter during a shattering collision 7.5 million years ago. Here we report that 288P is a binary main-belt comet. It is different from the known asteroid binaries in its combination of wide separation, near-equal component size, high eccentricity and comet-like activity. The observations also provide strong support for sublimation as the driver of activity in 288P and show that sublimation torques may play an important part in binary orbit evolution.

  7. Atomic theory of viscoelastic response and memory effects in metallic glasses

    NASA Astrophysics Data System (ADS)

    Cui, Bingyu; Yang, Jie; Qiao, Jichao; Jiang, Minqiang; Dai, Lanhong; Wang, Yun-Jiang; Zaccone, Alessio

    2017-09-01

    An atomic-scale theory of the viscoelastic response of metallic glasses is derived from first principles, using a Zwanzig-Caldeira-Leggett system-bath Hamiltonian as a starting point within the framework of nonaffine linear response to mechanical deformation. This approach provides a generalized Langevin equation (GLE) as the average equation of motion for an atom or ion in the material, from which non-Markovian nonaffine viscoelastic moduli are extracted. These can be evaluated using the vibrational density of states (DOS) as input, where the boson peak plays a prominent role in the mechanics. To compare with experimental data for binary ZrCu alloys, a numerical DOS was obtained from simulations of this system, which also take electronic degrees of freedom into account via the embedded-atom method for the interatomic potential. It is shown that the viscoelastic α -relaxation, including the α -wing asymmetry in the loss modulus, can be very well described by the theory if the memory kernel (the non-Markovian friction) in the GLE is taken to be a stretched-exponential decaying function of time. This finding directly implies strong memory effects in the atomic-scale dynamics and suggests that the α -relaxation time is related to the characteristic time scale over which atoms retain memory of their previous collision history. This memory time grows dramatically below the glass transition.

  8. The Torino Impact Hazard Scale

    NASA Astrophysics Data System (ADS)

    Binzel, Richard P.

    2000-04-01

    Newly discovered asteroids and comets have inherent uncertainties in their orbit determinations owing to the natural limits of positional measurement precision and the finite lengths of orbital arcs over which determinations are made. For some objects making predictable future close approaches to the Earth, orbital uncertainties may be such that a collision with the Earth cannot be ruled out. Careful and responsible communication between astronomers and the public is required for reporting these predictions and a 0-10 point hazard scale, reported inseparably with the date of close encounter, is recommended as a simple and efficient tool for this purpose. The goal of this scale, endorsed as the Torino Impact Hazard Scale, is to place into context the level of public concern that is warranted for any close encounter event within the next century. Concomitant reporting of the close encounter date further conveys the sense of urgency that is warranted. The Torino Scale value for a close approach event is based upon both collision probability and the estimated kinetic energy (collision consequence), where the scale value can change as probability and energy estimates are refined by further data. On the scale, Category 1 corresponds to collision probabilities that are comparable to the current annual chance for any given size impactor. Categories 8-10 correspond to certain (probability >99%) collisions having increasingly dire consequences. While close approaches falling Category 0 may be no cause for noteworthy public concern, there remains a professional responsibility to further refine orbital parameters for such objects and a figure of merit is suggested for evaluating such objects. Because impact predictions represent a multi-dimensional problem, there is no unique or perfect translation into a one-dimensional system such as the Torino Scale. These limitations are discussed.

  9. Nonlinear energy transfer and current sheet development in localized Alfvén wavepacket collisions in the strong turbulence limit

    NASA Astrophysics Data System (ADS)

    Verniero, J. L.; Howes, G. G.; Klein, K. G.

    2018-02-01

    In space and astrophysical plasmas, turbulence is responsible for transferring energy from large scales driven by violent events or instabilities, to smaller scales where turbulent energy is ultimately converted into plasma heat by dissipative mechanisms. The nonlinear interaction between counterpropagating Alfvén waves, denoted Alfvén wave collisions, drives this turbulent energy cascade, as recognized by early work with incompressible magnetohydrodynamic (MHD) equations. Recent work employing analytical calculations and nonlinear gyrokinetic simulations of Alfvén wave collisions in an idealized periodic initial state have demonstrated the key properties that strong Alfvén wave collisions mediate effectively the transfer of energy to smaller perpendicular scales and self-consistently generate current sheets. For the more realistic case of the collision between two initially separated Alfvén wavepackets, we use a nonlinear gyrokinetic simulation to show here that these key properties persist: strong Alfvén wavepacket collisions indeed facilitate the perpendicular cascade of energy and give rise to current sheets. Furthermore, the evolution shows that nonlinear interactions occur only while the wavepackets overlap, followed by a clean separation of the wavepackets with straight uniform magnetic fields and the cessation of nonlinear evolution in between collisions, even in the gyrokinetic simulation presented here which resolves dispersive and kinetic effects beyond the reach of the MHD theory.

  10. MO-FG-CAMPUS-TeP1-03: Pre-Treatment Surface Imaging Based Collision Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiant, D; Maurer, J; Liu, H

    2016-06-15

    Purpose: Modern radiotherapy increasingly employs large immobilization devices, gantry attachments, and couch rotations for treatments. All of which raise the risk of collisions between the patient and the gantry / couch. Collision detection is often achieved by manually checking each couch position in the treatment room and sometimes results in extraneous imaging if collisions are detected after image based setup has begun. In the interest of improving efficiency and avoiding extra imaging, we explore the use of a surface imaging based collision detection model. Methods: Surfaces acquired from AlignRT (VisionRT, London, UK) were transferred in wavefront format to a custommore » Matlab (Mathworks, Natick, MA) software package (CCHECK). Computed tomography (CT) scans acquired at the same time were sent to CCHECK in DICOM format. In CCHECK, binary maps of the surfaces were created and overlaid on the CT images based on the fixed relationship of the AlignRT and CT coordinate systems. Isocenters were added through a graphical user interface (GUI). CCHECK then compares the inputted surfaces to a model of the linear accelerator (linac) to check for collisions at defined gantry and couch positions. Note, CCHECK may be used with or without a CT. Results: The nominal surface image field of view is 650 mm × 900 mm, with variance based on patient position and size. The accuracy of collision detections is primarily based on the linac model and the surface mapping process. The current linac model and mapping process yield detection accuracies on the order of 5 mm, assuming no change in patient posture between surface acquisition and treatment. Conclusions: CCHECK provides a non-ionizing method to check for collisions without the patient in the treatment room. Collision detection accuracy may be improved with more robust linac modeling. Additional gantry attachments (e.g. conical collimators) can be easily added to the model.« less

  11. Probing Planckian Corrections at the Horizon Scale with LISA Binaries

    NASA Astrophysics Data System (ADS)

    Maselli, Andrea; Pani, Paolo; Cardoso, Vitor; Abdelsalhin, Tiziano; Gualtieri, Leonardo; Ferrari, Valeria

    2018-02-01

    Several quantum-gravity models of compact objects predict microscopic or even Planckian corrections at the horizon scale. We explore the possibility of measuring two model-independent, smoking-gun effects of these corrections in the gravitational waveform of a compact binary, namely, the absence of tidal heating and the presence of tidal deformability. For events detectable by the future space-based interferometer LISA, we show that the effect of tidal heating dominates and allows one to constrain putative corrections down to the Planck scale. The measurement of the tidal Love numbers with LISA is more challenging but, in optimistic scenarios, it allows us to constrain the compactness of a supermassive exotic compact object down to the Planck scale. Our analysis suggests that highly spinning, supermassive binaries at 1-20 Gpc provide unparalleled tests of quantum-gravity effects at the horizon scale.

  12. Probing Planckian Corrections at the Horizon Scale with LISA Binaries.

    PubMed

    Maselli, Andrea; Pani, Paolo; Cardoso, Vitor; Abdelsalhin, Tiziano; Gualtieri, Leonardo; Ferrari, Valeria

    2018-02-23

    Several quantum-gravity models of compact objects predict microscopic or even Planckian corrections at the horizon scale. We explore the possibility of measuring two model-independent, smoking-gun effects of these corrections in the gravitational waveform of a compact binary, namely, the absence of tidal heating and the presence of tidal deformability. For events detectable by the future space-based interferometer LISA, we show that the effect of tidal heating dominates and allows one to constrain putative corrections down to the Planck scale. The measurement of the tidal Love numbers with LISA is more challenging but, in optimistic scenarios, it allows us to constrain the compactness of a supermassive exotic compact object down to the Planck scale. Our analysis suggests that highly spinning, supermassive binaries at 1-20 Gpc provide unparalleled tests of quantum-gravity effects at the horizon scale.

  13. Measurement of Z boson production in Pb-Pb collisions at sqrt[s(NN)]=2.76  TeV with the ATLAS detector.

    PubMed

    Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdelalim, A A; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Agustoni, M; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Allbrooke, B M M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Altheimer, A; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amor Dos Santos, S P; Amorim, A; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Andrieux, M-L; Anduaga, X S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aoun, S; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnault, C; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Ask, S; Åsman, B; Asquith, L; Assamagan, K; Astbury, A; Atkinson, M; Aubert, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Avramidou, R; Axen, D; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Backus Mayes, J; Badescu, E; Bagnaia, P; Bahinipati, S; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Balek, P; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barbaro Galtieri, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Barrillon, P; Bartoldus, R; Barton, A E; Bartsch, V; Basye, A; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, A K; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Begel, M; Behar Harpaz, S; Behera, P K; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellomo, M; Belloni, A; Beloborodova, O; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertella, C; Bertin, A; Bertolucci, F; Besana, M I; Besjes, G J; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bittner, B; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blazek, T; Bloch, I; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V B; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boelaert, N; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borri, M; Borroni, S; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandenburg, G W; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Bremer, J; Brendlinger, K; Brenner, R; Bressler, S; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brown, G; Brown, H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bundock, A C; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Caminal Armadans, R; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carquin, E; Carrillo Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernandez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chang, P; Chapleau, B; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, X; Chen, Y; Cheng, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Cheung, S L; Chevalier, L; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocca, C; Ciocio, A; Cirilli, M; Cirkovic, P; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Cogan, J G; Coggeshall, J; Cogneras, E; Colas, J; Cole, S; Colijn, A P; Collins, N J; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Compostella, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Côté, D; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Crescioli, F; Cristinziani, M; Crosetti, G; Crépé-Renaudin, S; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cuthbert, C; Cwetanski, P; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallapiccola, C; Dam, M; Dameri, M; Damiani, D S; Danielsson, H O; Dao, V; Darbo, G; Darlea, G L; Dassoulas, J A; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; de Mora, L; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Papa, C; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Devetak, E; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dinut, F; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobinson, R; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A D; Doyle, A T; Dressnandt, N; Dris, M; Dubbert, J; Dube, S; Duchovni, E; Duckeck, G; Duda, D; Dudarev, A; Dudziak, F; Dührssen, M; Duerdoth, I P; Duflot, L; Dufour, M-A; Duguid, L; Dunford, M; Duran Yildiz, H; Duxfield, R; Dwuznik, M; Dydak, F; Düren, M; Ebenstein, W L; Ebke, J; Eckweiler, S; Edmonds, K; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Fazio, S; Febbraro, R; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Fellmann, D; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fowler, A J; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Frank, T; Franklin, M; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Gan, K K; Gao, Y S; Gaponenko, A; Garberson, F; Garcia-Sciveres, M; García, C; García Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giunta, M; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glitza, K W; Glonti, G L; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Goldfarb, S; Golling, T; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Gosdzik, B; Goshaw, A T; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Gramstad, E; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grinstein, S; Gris, Ph; Grishkevich, Y V; Grivaz, J-F; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guest, D; Guicheney, C; Guindon, S; Gul, U; Gunther, J; Guo, B; Guo, J; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haefner, P; Hahn, F; Haider, S; Hajduk, Z; Hakobyan, H; Hall, D; Hamacher, K; Hamal, P; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hayakawa, T; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Henß, T; Hernandez, C M; Hernández Jiménez, Y; Herrberg, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holder, M; Holmgren, S O; Holy, T; Holzbauer, J L; Hong, T M; Hooft van Huysduynen, L; Horner, S; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hu, D; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hurwitz, M; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Iliadis, D; Ilic, N; Ince, T; Inigo-Golfin, J; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jamin, D O; Jana, D K; Jansen, E; Jansen, H; Jantsch, A; Janus, M; Jarlskog, G; Jeanty, L; Jen-La Plante, I; Jennens, D; Jenni, P; Loevschall-Jensen, A E; Jež, P; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Joram, C; Jorge, P M; Joshi, K D; Jovicevic, J; Jovin, T; Ju, X; Jung, C A; Jungst, R M; Juranek, V; Jussel, P; Juste Rozas, A; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Kar, D; Karagounis, M; Karakostas, K; Karnevskiy, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kazama, S; Kazanin, V A; Kazarinov, M Y; Keeler, R; Keener, P T; Kehoe, R; Keil, M; Kekelidze, G D; Keller, J S; Kenyon, M; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kiuchi, K; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Kneringer, E; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Köneke, K; König, A C; Koenig, S; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kolachev, G M; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Komar, A A; Komori, Y; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Korcyl, K; Kordas, K; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kreiss, S; Krejci, F; Kretzschmar, J; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Labbe, J; Lablak, S; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lamanna, M; Lambourne, L; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leontsinis, S; Lepold, F; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, L; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lo Sterzo, F; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luijckx, G; Lukas, W; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundberg, O; Lundquist, J; Lungwitz, M; Lynn, D; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Maddocks, H J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magnoni, L; Magradze, E; Mahboubi, K; Mahlstedt, J; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V; Malyukov, S; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Manfredini, A; Mangeard, P S; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marroquim, F; Marshall, Z; Martens, F K; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin dit Latour, B; Martin-Haugh, S; Martinez, M; Martinez Outschoorn, V; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massaro, G; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matricon, P; Matsunaga, H; Matsushita, T; Mattravers, C; Maurer, J; Maxfield, S J; Mayne, A; Mazini, R; Mazur, M; Mazzaferro, L; Mazzanti, M; Mc Donald, J; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; Mclaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Meng, Z; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Meyer, T C; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mönig, K; Möser, N; Mohapatra, S; Mohr, W; Moles-Valls, R; Molfetas, A; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moorhead, G F; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Mueller, T; Muenstermann, D; Munwes, Y; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nackenhorst, O; Nadal, J; Nagai, K; Nagai, R; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newcomer, F M; Newman, P R; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Niedercorn, F; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Norton, P R; Novakova, J; Nozaki, M; Nozka, L; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okamura, W; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onderwaater, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orlov, I; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Osuna, C; Otero y Garzon, G; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Panduro Vazquez, J G; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadelis, A; Papadopoulou, Th D; Paramonov, A; Paredes Hernandez, D; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N; Pater, J R; Patricelli, S; Pauly, T; Pecsy, M; Pedraza Lopez, S; Pedraza Morales, M I; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Peshekhonov, V D; Peters, K; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pinto, B; Pizio, C; Plamondon, M; Pleier, M-A; Plotnikova, E; Poblaguev, A; Poddar, S; Podlyski, F; Poggioli, L; Pohl, D; Pohl, M; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radeka, V; Radescu, V; Radloff, P; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Randrianarivony, K; Rauscher, F; Rave, T C; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Roe, A; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Rompotis, N; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosenbaum, G A; Rosenberg, E I; Rosendahl, P L; Rosenthal, O; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, G; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Rutherfoord, J P; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchez, A; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Santos, H; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schäfer, U; Schaelicke, A; Schaepe, S; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, M; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schultens, M J; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwegler, Ph; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciolla, G; Scott, W G; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Seuster, R; Severini, H; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherman, D; Sherwood, P; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smestad, L; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snyder, S; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soukharev, A; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Staude, A; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Soh, D A; Su, D; Subramania, Hs; Subramaniam, R; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Suzuki, Y; Svatos, M; Swedish, S; Sykora, I; Sykora, T; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teischinger, F A; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timoshenko, S; Tiouchichine, E; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomoto, M; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torchiani, I; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Urquijo, P; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valentinetti, S; Valero, A; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Berg, R; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Poel, E; van der Ster, D; van Eldik, N; van Gemmeren, P; van Vulpen, I; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vari, R; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Vegni, G; Veillet, J J; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virchaux, M; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Wagner, W; Wagner, P; Wahlen, H; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, R; Wang, S M; Wang, T; Warburton, A; Ward, C P; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M S; Weber, P; Webster, J S; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Wetter, J; Weydert, C; Whalen, K; Wheeler-Ellis, S J; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wynne, B M; Xella, S; Xiao, M; Xie, S; Xu, C; Xu, D; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yanush, S; Yao, L; Yao, Y; Yasu, Y; Ybeles Smit, G V; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J; Youssef, S; Yu, D; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zanello, L; Zanzi, D; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zendler, C; Zenin, O; Ženiš, T; Zinonos, Z; Zenz, S; Zerwas, D; Zevi della Porta, G; Zhang, D; Zhang, H; Zhang, J; Zhang, X; Zhang, Z; Zhao, L; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhuravlov, V; Zieminska, D; Zimin, N I; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Živković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; zur Nedden, M; Zutshi, V; Zwalinski, L

    2013-01-11

    The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0.15  nb(-1) of integrated luminosity obtained in the 2011 LHC Pb+Pb run at sqrt[s(NN)]=2.76  TeV. The Z bosons are reconstructed via dielectron and dimuon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.

  14. 35-GHz radar sensor for automotive collision avoidance

    NASA Astrophysics Data System (ADS)

    Zhang, Jun

    1999-07-01

    This paper describes the development of a radar sensor system used for automotive collision avoidance. Because the heavy truck may have great larger radar cross section than a motorcyclist has, the radar receiver may have a large dynamic range. And multi-targets at different speed may confuse the echo spectrum causing the ambiguity between range and speed of target. To get more information about target and background and to adapt to the large dynamic range and multi-targets, a frequency modulated and pseudo- random binary sequences phase modulated continuous wave radar system is described. The analysis of this double- modulation system is given. A high-speed signal processing and data processing component are used to process and combine the data and information from echo at different direction and at every moment.

  15. Acyclic High-Energy Variability in Eta Carinae and WR 140

    NASA Technical Reports Server (NTRS)

    Corcoran, Michael F.

    2012-01-01

    Eta Carinae and WR 140 are similar long-period colliding wind binaries in which X-ray emission is produced by a strong shock due to the collision of the powerful stellar winds. The change in the orientation and density of this shock as the stars revolve in their orbits influences the X-ray flux and spectrum in a phase dependent way. Monitoring observations with RXTE and other X-ray satellite observatories since the 1990s have detailed this variability but have also shown significant deviations from strict phase dependence (short-term brightness changes or "flares", and cyc1e-to-cyc1e average flux differences). We examine these acylic variations in Eta Car and WR 140 and discuss what they tell us about the stability of the wind-wind collision shock.

  16. On the rates of type Ia supernovae originating from white dwarf collisions in quadruple star systems

    NASA Astrophysics Data System (ADS)

    Hamers, Adrian S.

    2018-04-01

    We consider the evolution of stellar hierarchical quadruple systems in the 2+2 (two binaries orbiting each other's barycentre) and 3+1 (triple orbited by a fourth star) configurations. In our simulations, we take into account the effects of secular dynamical evolution, stellar evolution, tidal evolution and encounters with passing stars. We focus on type Ia supernovae (SNe Ia) driven by collisions of carbon-oxygen (CO) white dwarfs (WDs). Such collisions can arise from several channels: (1) collisions due to extremely high eccentricities induced by secular evolution, (2) collisions following a dynamical instability of the system, and (3) collisions driven by semisecular evolution. The systems considered here have initially wide inner orbits, with initial semilatus recti larger than 12 {au}, implying no interaction if the orbits were isolated. However, taking into account dynamical evolution, we find that ≈0.4 (≈0.6) of 2+2 (3+1) systems interact. In particular, Roche Lobe overflow can be triggered possibly in highly eccentric orbits, dynamical instability can ensue due to mass-loss-driven orbital expansion or secular evolution, or a semisecular regime can be entered. We compute the delay-time distributions (DTDs) of collision-induced SNe Ia, and find that they are flatter compared to the observed DTD. Moreover, our combined SNe Ia rates are (3.7± 0.7) × 10^{-6} M_⊙^{-1} and (1.3± 0.2) × 10^{-6} M_⊙^{-1} for 2+2 and 3+1 systems, respectively, three orders of magnitude lower compared to the observed rate, of order 10^{-3} M_⊙^{-1}. The low rates can be ascribed to interactions before the stars evolve to CO WDs. However, our results are lower limits given that we considered a subset of quadruple systems.

  17. On the rates of Type Ia supernovae originating from white dwarf collisions in quadruple star systems

    NASA Astrophysics Data System (ADS)

    Hamers, Adrian S.

    2018-07-01

    We consider the evolution of stellar hierarchical quadruple systems in the 2+2 (two binaries orbiting each other's barycentre) and 3+1 (triple orbited by a fourth star) configurations. In our simulations, we take into account the effects of secular dynamical evolution, stellar evolution, tidal evolution, and encounters with passing stars. We focus on Type Ia supernovae (SNe Ia) driven by collisions of carbon-oxygen (CO) white dwarfs (WDs). Such collisions can arise from several channels: (1) collisions due to extremely high eccentricities induced by secular evolution, (2) collisions following a dynamical instability of the system, and (3) collisions driven by semisecular evolution. The systems considered here have initially wide inner orbits, with initial semilatus recti larger than 12 au, implying no interaction if the orbits were isolated. However, taking into account dynamical evolution, we find that ≈0.4 (≈0.6) of 2+2 (3+1) systems interact. In particular, Roche lobe overflow can be triggered possibly in highly eccentric orbits, dynamical instability can ensue due to mass-loss-driven orbital expansion or secular evolution, or a semisecular regime can be entered. We compute the delay-time distributions (DTDs) of collision-induced SNe Ia, and find that they are flatter compared to the observed DTD. Moreover, our combined SNe Ia rates are (3.7± 0.7) × 10^{-6} M_{⊙}^{-1} and (1.3± 0.2) × 10^{-6} M_{⊙}^{-1} for 2+2 and 3+1 systems, respectively, three orders of magnitude lower compared to the observed rate, of the order of 10^{-3} M_{⊙}^{-1}. The low rates can be ascribed to interactions before the stars evolve to CO WDs. However, our results are lower limits given that we considered a subset of quadruple systems.

  18. One parameter binary black hole inverse problem using a sparse training set

    NASA Astrophysics Data System (ADS)

    Carrillo, M.; Gracia-Linares, M.; González, J. A.; Guzmán, F. S.

    In this paper, we use Artificial Neural Networks (ANNs) to estimate the mass ratio q in a binary black hole collision out of the gravitational wave (GW) strain. We assume the strain is a time series (TS) that contains a part of the orbital phase and the ring-down of the final black hole. We apply the method to the strain itself in the time domain and also in the frequency domain. We present the accuracy in the prediction of the ANNs trained with various values of signal-to-noise ratio (SNR). The core of our results is that the estimate of the mass ratio is obtained with a small sample of training signals and resulting in predictions with errors of the order of 1% for our best ANN configurations.

  19. Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at s N N = 2.76 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.

    Tmore » he anisotropy of the azimuthal distributions of charged particles produced in s N N = 2.76 eV PbPb collisions is studied with the CMS experiment at the LHC. he elliptic anisotropy parameter, v 2, defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee-Yang zeros. he anisotropy is presented as a function of transverse momentum (p), pseudorapidity (η) over a broad kinematic range, 0.3<20 GeV/c, |η|<2.4, and in 12 classes of collision centrality from 0 to 80%. he results are compared to those obtained at lower center-of-mass energies, and various scaling behaviors are examined. When scaled by the geometric eccentricity of the collision zone, the elliptic anisotropy is found to obey a universal scaling with the transverse particle density for different collision systems and center-of-mass energies.« less

  20. Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at s N N = 2.76 TeV

    DOE PAGES

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; ...

    2013-01-07

    Tmore » he anisotropy of the azimuthal distributions of charged particles produced in s N N = 2.76 eV PbPb collisions is studied with the CMS experiment at the LHC. he elliptic anisotropy parameter, v 2, defined as the second coefficient in a Fourier expansion of the particle invariant yields, is extracted using the event-plane method, two- and four-particle cumulants, and Lee-Yang zeros. he anisotropy is presented as a function of transverse momentum (p), pseudorapidity (η) over a broad kinematic range, 0.3<20 GeV/c, |η|<2.4, and in 12 classes of collision centrality from 0 to 80%. he results are compared to those obtained at lower center-of-mass energies, and various scaling behaviors are examined. When scaled by the geometric eccentricity of the collision zone, the elliptic anisotropy is found to obey a universal scaling with the transverse particle density for different collision systems and center-of-mass energies.« less

  1. Bose-Einstein correlations in pp and PbPb collisions with ALICE at the LHC

    ScienceCinema

    Kisiel, Adam

    2018-05-14

    We report on the results of identical pion femtoscopy at the LHC. The Bose-Einstein correlation analysis was performed on the large-statistics ALICE p+p at sqrt{s}= 0.9 TeV and 7 TeV datasets collected during 2010 LHC running and the first Pb+Pb dataset at sqrt{s_NN}= 2.76 TeV. Detailed pion femtoscopy studies in heavy-ion collisions have shown that emission region sizes ("HBT radii") decrease with increasing pair momentum, which is understood as a manifestation of the collective behavior of matter. 3D radii were also found to universally scale with event multiplicity. In p+p collisions at 7 TeV one measures multiplicities which are comparable with those registered in peripheral AuAu and CuCu collisions at RHIC, so direct comparisons and tests of scaling laws are now possible. We show the results of double-differential 3D pion HBT analysis, as a function of multiplicity and pair momentum. The results for two collision energies are compared to results obtained in the heavy-ion collisions at similar multiplicity and p+p collisions at lower energy. We identify the relevant scaling variables for the femtoscopic radii and discuss the similarities and differences to results from heavy-ions. The observed trends give insight into the soft particle production mechanism in p+p collisions and suggest that a self-interacting collective system may be created in sufficiently high multiplicity events. First results for the central Pb+Pb collisions are also shown. A significant increase of the reaction zone volume and lifetime in comparison to RHIC is observed. Signatures of collective hydrodynamics-like behavior of the system are also apparent, and are compared to model predictions.

  2. Scaling properties of fractional momentum loss of high-pT hadrons in nucleus-nucleus collisions at √{sN N} from 62.4 GeV to 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Al-Ta'Ani, H.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bickley, A. A.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Castera, P.; Chang, B. S.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, T. W.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Deaton, M. B.; Deblasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, G. W.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nishimura, S.; Norman, B. E.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, J. S.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skutnik, S.; Slunečka, M.; Snowball, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Sparks, N. A.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, T. L.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Wood, J. P.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimamyi, J.; Zolin, L.; Zou, L.; Phenix Collaboration

    2016-02-01

    Measurements of the fractional momentum loss (Sloss≡δ pT/pT ) of high-transverse-momentum-identified hadrons in heavy-ion collisions are presented. Using π0 in Au +Au and Cu +Cu collisions at √{sNN}=62.4 and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb +Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of Sloss as a function of a number of variables: the number of participants, Npart, the number of quark participants, Nqp, the charged-particle density, d Nch/d η , and the Bjorken energy density times the equilibration time, ɛBjτ0 . We find that the pT, where Sloss has its maximum, varies both with centrality and collision energy. Above the maximum, Sloss tends to follow a power-law function with all four scaling variables. The data at √{sNN}=200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of Sloss with d Nch/d η and ɛBjτ0 , lending insight into the physics of parton energy loss.

  3. Binary optical filters for scale invariant pattern recognition

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Downie, John D.; Hine, Butler P.

    1992-01-01

    Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.

  4. Collision safety comparison of conventional and crash energy management passenger rail car designs

    DOT National Transportation Integrated Search

    2003-04-22

    In conjunction with full-scale equipment tests, collision dynamics models of passenger rail cars have been developed to investigate the benefits provided by incorporating energy-absorbing crush zones at the ends of the cars. In a collision, the major...

  5. Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosa, B., E-mail: bogdan.rosa@imgw.pl; Parishani, H.; Department of Earth System Science, University of California, Irvine, California 92697-3100

    2015-01-15

    In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynoldsmore » number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate.« less

  6. The Double Asteroid Redirection Test in the AIDA Mission

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew; Reed, Cheryl; Rivkin, Andrew

    2016-07-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. AIDA is a joint ESA-NASA cooperative project, consisting of the ESA Asteroid Impact Mission (AIM) rendezvous mission and the NASA Double Asteroid Redirection Test (DART) mission. The AIDA target is the near-Earth binary asteroid 65803 Didymos, which will make an unusually close approach to Earth in October, 2022. The DART spacecraft is designed to impact the Didymos secondary at 7 km/s and demonstrate the ability to modify its trajectory through momentum transfer. DART and AIM are currently Phase A studies supported by NASA and ESA respectively. The primary goals of AIDA are (1) perform a full-scale demonstration of the spacecraft kinetic impact technique for deflection of an asteroid; (2) measure the resulting asteroid deflection, by targeting the secondary member of a binary NEO and measuring the resulting changes of the binary orbit; and (3) study hyper-velocity collision effects on an asteroid, validating models for momentum transfer in asteroid impacts based on measured physical properties of the asteroid surface and sub-surface, and including long-term dynamics of impact ejecta. The primary DART objectives are to demonstrate a hyper-velocity impact on the Didymos moon and to determine the resulting deflection from ground-based observations. The DART impact on the Didymos secondary will change the orbital period of the binary which can be measured by supporting Earth-based optical and radar observations. The baseline DART mission launches in December, 2020 to impact the Didymos secondary in September,2022. There are multiple launch opportunities for DART leading to impact around the 2022 Didymos close approach to Earth. The AIM spacecraft will be launched in Dec. 2020 and arrive at Didymos in spring, 2022, several months before the DART impact. AIM will characterize the Didymos binary system by means of remote sensing and in-situ instruments both before and after the DART impact. The asteroid deflection will be measured to higher accuracy, and additional results of the DART impact, like the impact crater, will be studied in detail by the AIM mission. The combined DART and AIM missions will provide the first measurements of momentum transfer efficiency from hyper-velocity kinetic impact at full scale on an asteroid, where the impact conditions of the projectile are known, and physical properties and internal structures of the target asteroid are also characterized. The DART impact on the Didymos secondary is predicted to cause a 4.4 minute change in the binary orbit period, assuming unit momentum transfer efficiency. The predicted transfer efficiency would be in the range 1.1 to 1.3 for a porous target material based on a variety of numerical and analytical methods, but may be much larger if the target is non-porous. The DART kinetic impact is predicted to make a crater of 6 to 17 meters diameter, depending on target physical properties, but will also release a large volume of particulate ejecta that may be directly observable from Earth or even resolvable as a coma or an ejecta tail by ground-based telescopes.

  7. Collision recognition and direction changes for small scale fish robots by acceleration sensors

    NASA Astrophysics Data System (ADS)

    Na, Seung Y.; Shin, Daejung; Kim, Jin Y.; Lee, Bae-Ho

    2005-05-01

    Typical obstacles are walls, rocks, water plants and other nearby robots for a group of small scale fish robots and submersibles that have been constructed in our lab. Sonar sensors are not employed to make the robot structure simple enough. All of circuits, sensors and processor cards are contained in a box of 9 x 7 x 4 cm dimension except motors, fins and external covers. Therefore, image processing results are applied to avoid collisions. However, it is useful only when the obstacles are located far enough to give images processing time for detecting them. Otherwise, acceleration sensors are used to detect collision immediately after it happens. Two of 2-axes acceleration sensors are employed to measure the three components of collision angles, collision magnitudes, and the angles of robot propulsion. These data are integrated to calculate the amount of propulsion direction change. The angle of a collision incident upon an obstacle is the fundamental value to obtain a direction change needed to design a following path. But there is a significant amount of noise due to a caudal fin motor. Because caudal fin provides the main propulsion for a fish robot, there is a periodic swinging noise at the head of a robot. This noise provides a random acceleration effect on the measured acceleration data at the collision. We propose an algorithm which shows that the MEMS-type accelerometers are very effective to provide information for direction changes in spite of the intrinsic noise after the small scale fish robots have made obstacle collision.

  8. Ultracold collisions between Rb atoms and a Sr+ ion

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2015-05-01

    In last decade, a novel field emerged, in which ultracold atoms and ions in overlapping traps are brought into interaction. In contrast to the short ranged atom-atom interaction which scales as r-6, atom-ion potential persists for hundreds of μm's due to its lower power-law scaling - r-4. Inelastic collisions between the consistuents lead to spin and charge transfer and also to molecule formation. Elastic collisions control the energy transfer between the ion and the atoms. The study of collisions at the μK range has thus far been impeded by the effect of the ion's micromotion which limited collision energy to mK scale. Unraveling this limit will allow to investigate few partial wave and even S-wave collisions. Our system is capable of trapping Sr+ ions and Rb and Sr atoms and cooling them to their quantum ground state. Atoms and ions are trapped and cooled in separate chambers. Then, the atoms are transported using an optical conveyer belt to overlap the ions. In contrast to other experiments in this field where the atoms are used to sympathetic cool the ion, our system is also capable of ground state cooling the ion before immersing it into the atom cloud. By this method, we would be able to explore heating and cooling dynamics in the ultracold regime.

  9. Bondi-Hoyle-Lyttleton Accretion onto Binaries

    NASA Astrophysics Data System (ADS)

    Antoni, Andrea; MacLeod, Morgan; Ramírez-Ruiz, Enrico

    2018-01-01

    Binary stars are not rare. While only close binary stars will eventually interact with one another, even the widest binary systems interact with their gaseous surroundings. The rates of accretion and the gaseous drag forces arising in these interactions are the key to understanding how these systems evolve. This poster examines accretion flows around a binary system moving supersonically through a background gas. We perform three-dimensional hydrodynamic simulations of Bondi-Hoyle-Lyttleton accretion using the adaptive mesh refinement code FLASH. We simulate a range of values of semi-major axis of the orbit relative to the gravitational focusing impact parameter of the pair. On large scales, gas is gravitationally focused by the center-of-mass of the binary, leading to dynamical friction drag and to the accretion of mass and momentum. On smaller scales, the orbital motion imprints itself on the gas. Notably, the magnitude and direction of the forces acting on the binary inherit this orbital dependence. The long-term evolution of the binary is determined by the timescales for accretion, slow down of the center-of-mass, and decay of the orbit. We use our simulations to measure these timescales and to establish a hierarchy between them. In general, our simulations indicate that binaries moving through gaseous media will slow down before the orbit decays.

  10. Prognostic indicators of poor short-term outcome of physiotherapy intervention in women with stress urinary incontinence.

    PubMed

    Hendriks, Erik J M; Kessels, Alfons G H; de Vet, Henrica C W; Bernards, Arnold T M; de Bie, Rob A

    2010-03-01

    To identify prognostic indicators independently associated with poor outcome of physiotherapy intervention in women with primary or recurrent stress urinary incontinence (stress UI). A prospective cohort study was performed in physiotherapy practices in primary care to identify prognostic indicators 12 weeks after initiation of physiotherapy intervention. Patients were referred by general practitioners or urogynecologists. Risk factors for stress UI were examined as potential prognostic indicators of poor outcome. The primary outcomes were defined as poor outcome on the binary Leakage Severity scale (LS scale) and the binary global perceived effectiveness (GPE) score. Two hundred sixty-seven women, with a mean age of 47.7 (SD = 8.3), with stress UI for at least 6 months were included. At 12 weeks, 43% and 59% of the women were considered recovered on the binary LS scale and the binary GPE score, respectively. Prognostic indicators associated with poor outcome included 11 indicators based on the binary LS scale and 8 based on the binary GPE score. The prognostic indicators shared by both models show that poor recovery was associated with women with severe stress UI, POP-Q stage > II, poor outcome of physiotherapy intervention for a previous UI episode, prolonged second stage of labor, BMI > 30, high psychological distress, and poor physical health. This study provides robust evidence of clinically meaningful prognostic indicators of poor short-term outcome. These findings need to be confirmed by replication studies. (c) 2009 Wiley-Liss, Inc.

  11. Heber Binary Project. Binary Cycle Geothermal Demonstration Power Plant (RP1900-1)

    NASA Astrophysics Data System (ADS)

    Lacy, R. G.; Nelson, T. T.

    1982-12-01

    The Heber Binary Project (1) demonstrates the potential of moderate temperature (below 410 F) geothermal energy to produce economic electric power with binary cycle conversion technology; (2) allows the scaling up and evaluation of the performance of binary cycle technology in geothermal service; (3) establishes schedule, cost and equipment performance, reservoir performance, and the environmental acceptability of such plants; and (4) resolves uncertainties associated with the reservoir performance, plant operation, and economics.

  12. Probing Cold Dark Matter Substructure with Wide Binaries in Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Chaname, Julio

    2013-10-01

    The mass function of dark matter {DM} halos is a central piece in the current framework of hierarchical structure formation. Although a wealth of information is available on the properties of DM halos with M>1e8 solar masses {Msun}, lower-mass halos remain virtually inaccessible. In particular, we do not know whether there is substructure on scales below dwarf spheroidal {dSph} galaxies, nor whether the DM power spectrum cuts off at some low-mass value. Here we propose an experiment that, using resolved binary systems as gravitational test particles, will probe these unexplored regimes for the first time. We will measure the stellar 2-point correlation function in 370 square arcmin of the Ursa Minor dSph down to separations of 40 mas, corresponding to 3000 AU. If there is no DM substructure on small scales, we will detect a 6-sigma excess due to "wide" binaries at the smallest separations. On the other hand, if DM substructure exists on scales of 1e4 Msun at even 10% of the level predicted by standard theory, then these binaries will have been destroyed and there will be no excess at small separations. Because the wide-binary separation function is identical in the Milky Way disk and halo {despite being radically different dynamical environments}, it is almost certain that dSphs were originally endowed with the same wide-binary distribution. Moreover, the interpretation of the resulting data is free from ambiguities, as there are no known mechanisms for destroying these binaries within dSph environments, other than DM subhalos. Thus this is, to the best of our knowledge, the only current experiment that could detect or rule out DM clustering on M=1e4 Msun scales.

  13. Accretion and Magnetic Reconnection in the Classical T Tauri Binary DQ Tau

    NASA Astrophysics Data System (ADS)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.; Akeson, Rachel L.; Ciardi, David R.; Johns-Krull, Christopher; Herczeg, Gregory J.; Quijano-Vodniza, Alberto

    2017-01-01

    The theory of binary star formation predicts that close binaries (a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (˜daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres near periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.

  14. The evolution of photoevaporating viscous discs in binaries

    NASA Astrophysics Data System (ADS)

    Rosotti, Giovanni P.; Clarke, Cathie J.

    2018-02-01

    A large fraction of stars are in binary systems, yet the evolution of protoplanetary discs in binaries has been little explored from the theoretical side. In this paper, we investigate the evolution of the discs surrounding the primary and secondary components of binary systems on the assumption that this is driven by photoevaporation induced by X-rays from the respective star. We show how for close enough separations (20-30 au for average X-ray luminosities) the tidal torque of the companion changes the qualitative behaviour of disc dispersal from inside out to outside in. Fewer transition discs created by photoevaporation are thus expected in binaries. We also demonstrate that in close binaries the reduction in viscous time leads to accelerated disc clearing around both components, consistent with unresolved observations. When looking at the differential disc evolution around the two components, in close binaries discs around the secondary clear first due to the shorter viscous time-scale associated with the smaller outer radius. In wide binaries instead the difference in photoevaporation rate makes the secondaries longer lived, though this is somewhat dependent on the assumed scaling of viscosity with stellar mass. We find that our models are broadly compatible with the growing sample of resolved observations of discs in binaries. We also predict that binaries have higher accretion rates than single stars for the same disc mass. Thus, binaries probably contribute to the observed scatter in the relationship between disc mass and accretion rate in young stars.

  15. Research on the Orbital Period of Massive Binaries

    NASA Astrophysics Data System (ADS)

    Zhao, E.; Qain, S.

    2011-12-01

    Massive binary is the kind of binary, whose spectral type is earlier than B5. Research on massive binary plays an important role in the mass and angular momentum transfer or loss between the components, and the evolution of binary. Some massive binaries are observed and analyzed, including O-type binary LY Aur, B-type contact binary RZ Pyx and B-type semi-detached binary AI Cru. It is found that all of their periods have a long-term increasing, which indicates that the system is undergoing a Case A slow mass transfer stage on the nuclear time-scale of the secondary. Moreover, analysis show a cyclic change of orbital period, which can be explained by the light-travel effect time of the third body.

  16. Azimuthal anisotropy of strange hadrons in U+U collisions at √SNN = 193 GeV at RHIC

    NASA Astrophysics Data System (ADS)

    Bairathi, Vipul

    2018-02-01

    We present the measurement of the azimuthal anisotropy of strange hadrons (K0s, ϕ and Λ) at mid-rapidity (|y| < 1.0) in U+U collisions at = 193 GeV using the STAR detector at RHIC. We present the centrality and transverse momentum dependence of flow coefficients υn for n = 2, 3, 4. A strong centrality dependence of υ2 is observed for the particles K0s, ϕ and Λ in U+U collisions at = 193 GeV similar to Au+Au collisions at = 200 GeV. We studied the number of constituent quark scaling (NCQ) of the flow coefficients. The NCQ scaling of the flow coefficients holds within uncertainties for the particles studied in the U+U collisions. We also present the comparison of the results to the AMPT transport model.

  17. Electron-Atom Ionization Calculations using Propagating Exterior Complex Scaling

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip

    2007-10-01

    The exterior complex scaling method (Science 286 (1999) 2474), pioneered by Rescigno, McCurdy and coworkers, provided highly accurate ab initio solutions for electron-hydrogen collisions by directly solving the time-independent Schr"odinger equation in coordinate space. An extension of this method, propagating exterior complex scaling (PECS), was developed by Bartlett and Stelbovics (J. Phys. B 37 (2004) L69, J. Phys. B 39 (2006) R379) and has been demonstrated to provide computationally efficient and accurate calculations of ionization and scattering cross sections over a large range of energies below, above and near the ionization threshold. An overview of the PECS method for three-body collisions and the computational advantages of its propagation and iterative coupling techniques will be presented along with results of: (1) near-threshold ionization of electron-hydrogen collisions and the Wannier threshold laws, (2) scattering cross section resonances below the ionization threshold, and (3) total and differential cross sections for electron collisions with excited targets and hydrogenic ions from low through to high energies. Recently, the PECS method has been extended to solve four-body collisions using time-independent methods in coordinate space and has initially been applied to the s-wave model for electron-helium collisions. A description of the extensions made to the PECS method to facilitate these significantly more computationally demanding calculations will be given, and results will be presented for elastic, single-excitation, double-excitation, single-ionization and double-ionization collisions.

  18. Scaling properties of hyperon production in Au+Au collisions at square root [sNN]=200 GeV.

    PubMed

    Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Bezverkhny, B I; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, C O; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Choi, H A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; de Moura, M M; Dedovich, T G; DePhillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Guo, Y; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; Levine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2007-02-09

    We present the scaling properties of Lambda, Xi, and Omega in midrapidity Au+Au collisions at the Brookhaven National Laboratory Relativistic Heavy Ion Collider at sqrt[s_{NN}]=200 GeV. The yield of multistrange baryons per participant nucleon increases from peripheral to central collisions more rapidly than that of Lambda, indicating an increase of the strange-quark density of the matter produced. The strange phase-space occupancy factor gamma_{s} approaches unity for the most central collisions. Moreover, the nuclear modification factors of p, Lambda, and Xi are consistent with each other for 2

  19. Evaluation of Scale Reliability with Binary Measures Using Latent Variable Modeling

    ERIC Educational Resources Information Center

    Raykov, Tenko; Dimitrov, Dimiter M.; Asparouhov, Tihomir

    2010-01-01

    A method for interval estimation of scale reliability with discrete data is outlined. The approach is applicable with multi-item instruments consisting of binary measures, and is developed within the latent variable modeling methodology. The procedure is useful for evaluation of consistency of single measures and of sum scores from item sets…

  20. Development of collision dynamics models to estimate the results of full-scale rail vehicle impact tests : Tufts University Master's Thesis

    DOT National Transportation Integrated Search

    2000-11-01

    In an effort to study occupant survivability in train collisions, analyses and tests were conducted to understand and improve the crashworthiness of rail vehicles. A collision dynamics model was developed in order to estimate the rigid body motion of...

  1. Strange hadron production at low transverse momenta

    NASA Astrophysics Data System (ADS)

    Veres, Gábor I.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Becker, B.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Harrington, A. S.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lee, J. W.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Noell, A.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Roland, C.; Roland, G.; Sagerer, J.; Sarin, P.; Sawicki, P.; Sedykh, I.; Skulski, W.; Smith, C. E.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Teng, R.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wyslouch, B.; Zhang, J.

    2004-01-01

    Some of the latest results of the PHOBOS experiment from the \\sqrt{s_{NN}}= 200\\ GeV Au+Au data are discussed. Those relevant to strangeness production are emphasized. These observations relate to the nature of the matter created when heavy ions collide at the highest achieved energy. The invariant yields of strange and non-strange charged hadrons at very low transverse momentum have been measured, and used to differentiate between different dynamical scenarios. In the intermediate transverse momentum range, the measured ratios of strange and anti-strange kaons approach one, while the antibaryon to baryon ratio is still significantly less, independent of collision centrality and transverse momentum. At high transverse momenta, we find that central and peripheral Au+Au collisions produce similar numbers of charged hadrons per participant nucleon pair, rather than per binary nucleon-nucleon collision. Finally, we describe the upgrades of PHOBOS completed for the 2003 d+Au and p+p run, which extend the transverse momentum range over which particle identification is possible and, at the same time, implement a trigger system selective for high-pT particles.

  2. Re-accumulation of Asteroids to Equilibrium Figures

    NASA Astrophysics Data System (ADS)

    Hestroffer, D.; Tanga, P.; Richardson, D. C.; Berthier, J.; Cellino, A.; Durech, J.; Michel, P.

    2008-09-01

    Since their formation, asteroids since their formation have experienced little physical, geological or thermal evolution. Like comets they are thought to be among the most pristine remnants of the early solar system. One physical process, however, has played a major role since the ancient times: collisions. Dynamical families were produced by catastrophic collisions involving large enough energy to break the parent body. Other lines of evidence suggest that catastrophic collisions can also produce rubble-piles, i.e., loosely bound of post-collisional aggregates that re-accumulate to form a single body, and are kept together by gravity. The main objective of this work is to understand if—and under what conditions—Jacobi ellipsoids or other equilibrium figures can be obtained naturally by this way. This is done by performing numerical experiments simulating the re-accumulation process, and by performing high-angular resolution observations in order to better constrain the shape and density of the targets. It is shown that the outcomes of reaccumulation events tend to produce a rather narrow variety of possible shapes, and in some cases also binary systems.

  3. Improved Monte Carlo Glauber predictions at present and future nuclear colliders

    NASA Astrophysics Data System (ADS)

    Loizides, Constantin; Kamin, Jason; d'Enterria, David

    2018-05-01

    We present the results of an improved Monte Carlo Glauber (MCG) model of relevance for collisions involving nuclei at center-of-mass energies of the BNL Relativistic Heavy Ion Collider (√{sNN}=0.2 TeV), CERN Large Hadron Collider (LHC) (√{sNN}=2.76 -8.8 TeV ), and proposed future hadron colliders (√{sNN}≈10 -63 TeV). The inelastic p p cross sections as a function of √{sNN} are obtained from a precise data-driven parametrization that exploits the many available measurements at LHC collision energies. We describe the nuclear density of a lead nucleus with two separated two-parameter Fermi distributions for protons and neutrons to account for their different densities close to the nuclear periphery. Furthermore, we model the nucleon degrees of freedom inside the nucleus through a lattice with a minimum nodal separation, combined with a "recentering and reweighting" procedure, that overcomes some limitations of previous MCG approaches. The nuclear overlap function, number of participant nucleons and binary nucleon-nucleon collisions, participant eccentricity and triangularity, overlap area, and average path length are presented in intervals of percentile centrality for lead-lead (PbPb) and proton-lead (p Pb ) collisions at all collision energies. We demonstrate for collisions at √{sNN}=5.02 TeV that the central values of the Glauber quantities change by up to 7% in a few bins of reaction centrality, due to the improvements implemented, though typically they remain within the previously assigned systematic uncertainties, while their new associated uncertainties are generally smaller (mostly below 5%) at all centralities than for earlier calculations. Tables for all quantities versus centrality at present and foreseen collision energies involving Pb nuclei, as well as for collisions of XeXe at √{sNN}=5.44 TeV , and AuAu and CuCu at √{sNN}=0.2 TeV , are provided. The source code for the improved Monte Carlo Glauber model is made publicly available.

  4. Signals of dynamical and statistical process from IMF-IMF correlation function

    NASA Astrophysics Data System (ADS)

    Pagano, E. V.; Acosta, L.; Auditore, L.; Baran, V.; Cap, T.; Cardella, G.; Colonna, M.; De Luca, S.; De Filippo, E.; Dell'Aquila, D.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Martorana, N. S.; Norella, S.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Rosato, E.; Russotto, P.; Siwek-Wilczyńska, K.; Trifiro, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wilczyńsky, J.

    2017-11-01

    In this paper we briefly discuss about a novel application of the IMF-IMF correlation function to the physical case of binary massive projectile-like (PLF) splitting for dynamical and statistical breakup/fission in heavy ion collisions at Fermi energy. Theoretical simulations are also shown for comparisons with the data. These preliminary results have been obtained for the reverse kinematics reaction 124Sn + 64Ni at 35 AMeV that was studied using the forward part of CHIMERA detector. In that reaction a strong competition between a dynamical and a statistical components and its evolution with the charge asymmetry of the binary break up was already shown. In this work we show that the IMF-IMF correlation function can be used to pin down the timescale of the fragments production in binary fission-like phenomena. We also made simulations with the CoMDII model in order to compare to the experimental IMF-IMF correlation function. In future we plan to extend these studies to different reaction mechanisms and nuclear systems and to compare with different theoretical transport simulations.

  5. WNL Stars - the Most Massive Stars in the Universe?

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier; Moffat, Anthony F. J.; St-Louis, Nicole; Skalkowski, Gwenael; Niemela, Virpi; Shara, Michael M.

    2001-08-01

    We propose to carry out an intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.

  6. WNLh Stars - The Most Massive Stars in the Universe?

    NASA Astrophysics Data System (ADS)

    Schnurr, Olivier; St-Louis, Nicole; Moffat, Anthony F. J.; Foellmi, Cedric

    2002-08-01

    We propose to conclude our intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.

  7. Suzaku monitoring of the Wolf-Rayet binary WR140

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko; Hamaguchi, Kenji

    2010-07-01

    We report the preliminary results of the Suzaku observations of the W-R binary WR 140 (WC7+O5I). We executed the observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. The total exposure was 210 ksec. We detected hard X-ray excess in the HXD band (>10 keV) for the first time from a W-R binary. Another notable discovery was a soft component which is not absorbed even by the dense wind. The spectra can be fitted by three different components; one is for the stationary cool component with kT ~0.1 keV, one for a dominant high temperature component with kT ~3 keV, and one for the hardest power-low component with Γ~2. The column density at periastron is 30 times higher than that at pre-periastron, which can be explained as self-absorption by the W-R wind. The emission measure of the dominant, high temperature component is not inversely proportional to the distance between the two stars.

  8. Transverse energy production and charged-particle multiplicity at midrapidity in various systems from √{sN N}=7.7 to 200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Al-Jamel, A.; Al-Ta'Ani, H.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Bauer, F.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Bjorndal, M. T.; Black, D.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Brown, D. S.; Bryslawskyj, J.; Bucher, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Burward-Hoy, J. M.; Butsyk, S.; Campbell, S.; Caringi, A.; Castera, P.; Chai, J.-S.; Chang, B. S.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cobigo, Y.; Cole, B. A.; Comets, M. P.; Conesa Del Valle, Z.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, T. W.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deaton, M. B.; Deblasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drachenberg, J. L.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Espagnon, B.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Forestier, B.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fung, S.-Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Gastineau, F.; Ge, H.; Germain, M.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hagiwara, M. N.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Hartouni, E. P.; Haruna, K.; Harvey, M.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hasuko, K.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Heuser, J. M.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holmes, M.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Hur, M. G.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawagishi, T.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kelly, S.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, G. W.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kim, Y.-S.; Kimelman, B.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Kofarago, M.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kroon, P. J.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Le Bornec, Y.; Leckey, S.; Lee, B.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lenzi, B.; Lewis, B.; Li, X.; Li, X. H.; Lichtenwalner, P.; Liebing, P.; Lim, H.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Maruyama, T.; Mašek, L.; Masui, H.; Masumoto, S.; Matathias, F.; McCain, M. C.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, G. C.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Moskowitz, M.; Moss, J. M.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Nattrass, C.; Nederlof, A.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nishimura, S.; Norman, B. E.; Nouicer, R.; Novák, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Nystrand, J.; Oakley, C.; Obayashi, H.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oide, H.; Ojha, I. D.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Otterlund, I.; Ouchida, M.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, J. S.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Ryu, M. S.; Ryu, S. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, M.; Sano, S.; Sarsour, M.; Sato, H. D.; Sato, S.; Sato, T.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shea, T. K.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shohjoh, T.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Skutnik, S.; Slunečka, M.; Smith, W. C.; Snowball, M.; Solano, S.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sullivan, J. P.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, K. H.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, D.; Thomas, T. L.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Tuli, S. K.; Tydesjö, H.; Tyurin, N.; Vale, C.; Valle, H.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Voas, B.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; Whitaker, S.; White, A. S.; White, S. N.; Willis, N.; Winter, D.; Wolin, S.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimamyi, J.; Zolin, L.; Zou, L.; Phenix Collaboration

    2016-02-01

    Measurements of midrapidity charged-particle multiplicity distributions, d Nch/d η , and midrapidity transverse-energy distributions, d ET/d η , are presented for a variety of collision systems and energies. Included are distributions for Au +Au collisions at √{sNN}=200 , 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu +Cu collisions at √{sNN}=200 and 62.4 GeV, Cu +Au collisions at √{sNN}=200 GeV, U +U collisions at √{sNN}=193 GeV, d +Au collisions at √{sNN}=200 GeV, 3He+Au collisions at √{sNN}=200 GeV, and p +p collisions at √{sNN}=200 GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, Npart, and the number of constituent quark participants, Nqp. For all A +A collisions down to √{sNN}=7.7 GeV, it is observed that the midrapidity data are better described by scaling with Nqp than scaling with Npart. Also presented are estimates of the Bjorken energy density, ɛBJ, and the ratio of d ET/d η to d Nch/d η , the latter of which is seen to be constant as a function of centrality for all systems.

  9. Improving Efficiency of Passive RFID Tag Anti-Collision Protocol Using Dynamic Frame Adjustment and Optimal Splitting.

    PubMed

    Memon, Muhammad Qasim; He, Jingsha; Yasir, Mirza Ammar; Memon, Aasma

    2018-04-12

    Radio frequency identification is a wireless communication technology, which enables data gathering and identifies recognition from any tagged object. The number of collisions produced during wireless communication would lead to a variety of problems including unwanted number of iterations and reader-induced idle slots, computational complexity in terms of estimation as well as recognition of the number of tags. In this work, dynamic frame adjustment and optimal splitting are employed together in the proposed algorithm. In the dynamic frame adjustment method, the length of frames is based on the quantity of tags to yield optimal efficiency. The optimal splitting method is conceived with smaller duration of idle slots using an optimal value for splitting level M o p t , where (M > 2), to vary slot sizes to get the minimal identification time for the idle slots. The application of the proposed algorithm offers the advantages of not going for the cumbersome estimation of the quantity of tags incurred and the size (number) of tags has no effect on its performance efficiency. Our experiment results show that using the proposed algorithm, the efficiency curve remains constant as the number of tags varies from 50 to 450, resulting in an overall theoretical gain in the efficiency of 0.032 compared to system efficiency of 0.441 and thus outperforming both dynamic binary tree slotted ALOHA (DBTSA) and binary splitting protocols.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sills, Alison; Glebbeek, Evert; Chatterjee, Sourav

    We created artificial color-magnitude diagrams of Monte Carlo dynamical models of globular clusters and then used observational methods to determine the number of blue stragglers in those clusters. We compared these blue stragglers to various cluster properties, mimicking work that has been done for blue stragglers in Milky Way globular clusters to determine the dominant formation mechanism(s) of this unusual stellar population. We find that a mass-based prescription for selecting blue stragglers will select approximately twice as many blue stragglers than a selection criterion that was developed for observations of real clusters. However, the two numbers of blue stragglers aremore » well-correlated, so either selection criterion can be used to characterize the blue straggler population of a cluster. We confirm previous results that the simplified prescription for the evolution of a collision or merger product in the BSE code overestimates their lifetimes. We show that our model blue stragglers follow similar trends with cluster properties (core mass, binary fraction, total mass, collision rate) as the true Milky Way blue stragglers as long as we restrict ourselves to model clusters with an initial binary fraction higher than 5%. We also show that, in contrast to earlier work, the number of blue stragglers in the cluster core does have a weak dependence on the collisional parameter Γ in both our models and in Milky Way globular clusters.« less

  11. Evaluation of interatomic potentials for rainbow scattering under axial channeling at KCl(0 0 1) surface by three-dimensional computer simulations based on binary collision approximation

    NASA Astrophysics Data System (ADS)

    Takeuchi, Wataru

    2017-05-01

    The rainbow angles corresponding to prominent peaks in the angular distributions of scattered projectiles with small angle, attributed to rainbow scattering (RS), under axial surface channeling conditions are strongly influenced by the interatomic potentials between projectiles and target atoms. The dependence of rainbow angles on normal energy of projectile energy to the target surface, being experimentally obtained by Specht et al. for RS of He, N, Ne and Ar atoms under <1 0 0> and <1 1 0> axial channeling conditions at a KCl(0 0 1) surface with projectile energies of 1-60 keV, was evaluated by the three-dimensional computer simulations using the ACOCT code based on the binary collision approximation with interatomic pair potentials. Good agreement between the ACOCT results using the ZBL pair potential and the individual pair potentials calculated from Hartree-Fock (HF) wave functions and the experimental ones was found for RS of He, N and Ne atoms from the atomic rows along <1 0 0> direction. For <1 1 0> direction, the ACOCT results employing the Moliere pair potential with adjustable screening length of O'Connor-Biersack (OB) formula, the ZBL pair potential and the individual HF pair potentials except for Ar → KCl using the OB pair potential are nearly in agreement with the experimental ones.

  12. Scale-dependence of transverse momentum correlations in PbAu collisions at 158A GeV/c

    NASA Astrophysics Data System (ADS)

    Ceres Collaboration; Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielcikova, S.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Holeczek, J.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petráček, V.; Pfeiffer, A.; Płoskoń, M.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.

    2008-10-01

    We present results on transverse momentum correlations of charged particle pairs produced in PbAu collisions at 158A GeV/c at the Super Proton Synchrotron. The transverse momentum correlations have been studied as a function of collision centrality, angular separation of the particle pairs, transverse momentum and charge sign. We demonstrate that the results are in agreement with previous findings in scale-independent analyses at the same beam energy. Employing the two-particle momentum correlator <Δp,Δp> and the cumulative p variable x(p), we identify, using the scale-dependent approach presented in this paper, different sources contributing to the measured correlations, such as quantum and Coulomb correlations, elliptic flow and mini-jet fragmentation.

  13. Scaling properties of fractional momentum loss of high- p T hadrons in nucleus-nucleus collisions at s N N from 62.4 GeV to 2.76 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Afanasiev, S.; Aidala, C.

    2016-02-22

    We present measurements of the fractional momentum loss (S loss = delta pT / pT) of high-transverse-momentum-identified hadrons in heavy-ion collisions. Using pi 0 in Au + Au and Cu + Cu collisions at √s NN = 62.4 and 200 GeV measured by the PHENIX experiment at the Relativistic Heavy Ion Collider and and charged hadrons in Pb + Pb collisions measured by the ALICE experiment at the Large Hadron Collider, we studied the scaling properties of S loss as a function of a number of variables: the number of participants, N part, the number of quark participants, N qp,more » the charged-particle density, dN ch/d η, and the Bjorken energy density times the equilibration time, epsilon Bjτ 0. We also find that the p T, where S loss has its maximum, varies both with centrality and collision energy. Above the maximum, S loss tends to follow a power-law function with all four scaling variables. Finally, the data at √s NN = 200 GeV and 2.76 TeV, for sufficiently high particle densities, have a common scaling of S loss with dN ch/d η and ε Bjτ 0, lending insight into the physics of parton energy loss.« less

  14. Hydrodynamic flow of ions and atoms in partially ionized plasmas.

    PubMed

    Nemirovsky, R A; Fredkin, D R; Ron, A

    2002-12-01

    We have derived the hydrodynamic equations of motion for a partially ionized plasma, when the ionized component and the neutral components have different flow velocities and kinetic temperatures. Starting from the kinetic equations for a gas of ions and a gas of atoms we have considered various processes of encounters between the two species: self-collisions, interspecies collisions, ionization, recombination, and charge exchange. Our results were obtained by developing a general approach for the hydrodynamics of a gas in a binary mixture, in particular when the components drift with respect to each other. This was applied to a partially ionized plasma, when the neutral-species gas and the charged-species gas have separate velocities. We have further suggested a generalized version of the relaxation time approximation and obtained the contributions of the interspecies encounters to the transport equations.

  15. Characteristic electron variations across simple high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.

    1978-01-01

    The paper deals with electron variations across simple high-speed streams. Comprehensive scans of the shapes of electron distributions measured at the highest bulk speeds confirm the results of Rosenbauer et al. (1976, 1977) and show that the electron velocity distributions can be broken down into a low-energy or core component and a high-energy strongly beamed component. The low-energy component displays many characteristics expected from a fluid: the internal particle coupling necessary to maintain this state must result from both binary Coulomb collisions and wave-particle interactions. The high-energy or halo component displays many characteristics expected to develop in the absence of collisions beyond a certain base radius. These electrons appear to evolve under the primary influence of static interplanetary magnetic and electric fields and, therefore, develop very anisotropic velocity distributions.

  16. High-Mass Stars in the Centers of Young Dense Clusters: Mass Segregation, Binary Mergers and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Zinnecker, H.

    We start by discussing dense, young star-clusters, particularly the 30 Doradus cluster with its core R136. The question of mass segregation and core collapse of the massive stars is addressed. Analytical estimates of relaxation times and collision times predict that the central N=10 subsystem of massive stars in the R136 core will evolve dynamically in such a way and fast enough (i.e. within their main-sequence lifetime of a few Myr) that a dominant massive binary system is formed whose orbit will shrink to a point where merging of the components appears inevitable. The merger product will be spinning rapidly, and we put forward the idea that this rare and very massive object might be the perfect precursor of a gamma-ray burst (collapsar).

  17. Reducing junk radiation and eccentricity in binary-black-hole initial data

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Pfeiffer, Harald; Brown, Duncan; Lindblom, Lee; Scheel, Mark; Kidder, Lawrence

    2007-04-01

    Numerical simulations of binary-black-hole (BBH) collisions require initial data that satisfy the Einstein constraint equations. Several well-known methods generate constraint-satisfying BBH data, but the commonly-used simplifying assumptions lead to undesirable effects. BBH data typically assume a conformally flat spatial metric; this leads to an initial pulse of unphysical ``junk'' gravitational radiation. Also, the initial radial velocity of the holes is often neglected; this can lead to significant eccentricity in the holes' trajectories. This talk will discuss efforts to reduce these effects by constructing and evolving generalizations of the BBH initial data of Cook and Pfeiffer (2004). By giving the holes a small radial velocity, the eccentricity can be greatly reduced (although the emitted waves are largely unaffected). The junk radiation for flat and non-flat conformal metrics will also be compared.

  18. Impact Forces from Tsunami-Driven Debris

    NASA Astrophysics Data System (ADS)

    Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.

    2012-12-01

    Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The tsunami was modeled as a transient pulse command signal to the wavemaker to provide a low amplitude long wave. Results are expected to show the effect of the water on the debris collision by comparing water tests with the in-air tests. It is anticipated that the water will provide some combination of added mass and cushioning of the collision. Results will be compared with proposed equations for the new ASCE-7 standard and with numerical models at the University of Hawaii.

  19. The Alfvénic nature of energy transfer mediation in localized, strongly nonlinear Alfvén wavepacket collisions

    NASA Astrophysics Data System (ADS)

    Verniero, J. L.; Howes, G. G.

    2018-02-01

    In space and astrophysical plasmas, violent events or instabilities inject energy into turbulent motions at large scales. Nonlinear interactions among the turbulent fluctuations drive a cascade of energy to small perpendicular scales at which the energy is ultimately converted into plasma heat. Previous work with the incompressible magnetohydrodynamic (MHD) equations has shown that this turbulent energy cascade is driven by the nonlinear interaction between counterpropagating Alfvén waves - also known as Alfvén wave collisions. Direct numerical simulations of weakly collisional plasma turbulence enables deeper insight into the nature of the nonlinear interactions underlying the turbulent cascade of energy. In this paper, we directly compare four cases: both periodic and localized Alfvén wave collisions in the weakly and strongly nonlinear limits. Our results reveal that in the more realistic case of localized Alfvén wave collisions (rather than the periodic case), all nonlinearly generated fluctuations are Alfvén waves, which mediates nonlinear energy transfer to smaller perpendicular scales.

  20. Learning Discriminative Binary Codes for Large-scale Cross-modal Retrieval.

    PubMed

    Xu, Xing; Shen, Fumin; Yang, Yang; Shen, Heng Tao; Li, Xuelong

    2017-05-01

    Hashing based methods have attracted considerable attention for efficient cross-modal retrieval on large-scale multimedia data. The core problem of cross-modal hashing is how to learn compact binary codes that construct the underlying correlations between heterogeneous features from different modalities. A majority of recent approaches aim at learning hash functions to preserve the pairwise similarities defined by given class labels. However, these methods fail to explicitly explore the discriminative property of class labels during hash function learning. In addition, they usually discard the discrete constraints imposed on the to-be-learned binary codes, and compromise to solve a relaxed problem with quantization to obtain the approximate binary solution. Therefore, the binary codes generated by these methods are suboptimal and less discriminative to different classes. To overcome these drawbacks, we propose a novel cross-modal hashing method, termed discrete cross-modal hashing (DCH), which directly learns discriminative binary codes while retaining the discrete constraints. Specifically, DCH learns modality-specific hash functions for generating unified binary codes, and these binary codes are viewed as representative features for discriminative classification with class labels. An effective discrete optimization algorithm is developed for DCH to jointly learn the modality-specific hash function and the unified binary codes. Extensive experiments on three benchmark data sets highlight the superiority of DCH under various cross-modal scenarios and show its state-of-the-art performance.

  1. Multi-Scale Distributed Representation for Deep Learning and its Application to b-Jet Tagging

    NASA Astrophysics Data System (ADS)

    Lee, Jason Sang Hun; Park, Inkyu; Park, Sangnam

    2018-06-01

    Recently machine learning algorithms based on deep layered artificial neural networks (DNNs) have been applied to a wide variety of high energy physics problems such as jet tagging or event classification. We explore a simple but effective preprocessing step which transforms each realvalued observational quantity or input feature into a binary number with a fixed number of digits. Each binary digit represents the quantity or magnitude in different scales. We have shown that this approach improves the performance of DNNs significantly for some specific tasks without any further complication in feature engineering. We apply this multi-scale distributed binary representation to deep learning on b-jet tagging using daughter particles' momenta and vertex information.

  2. How do binary separations depend on cloud initial conditions?

    NASA Astrophysics Data System (ADS)

    Sterzik, M. F.; Durisen, R. H.; Zinnecker, H.

    2003-11-01

    We explore the consequences of a star formation scenario in which the isothermal collapse of a rotating, star-forming core is followed by prompt fragmentation into a cluster containing a small number (N <~ 10) of protostars and/or substellar objects. The subsequent evolution of the cluster is assumed to be dominated by dynamical interactions among cluster members, and this establishes the final properties of the binary and multiple systems. The characteristic scale of the fragmenting core is determined by the cloud initial conditions (such as temperature, angular momentum and mass), and we are able to relate the separation distributions of the final binary population to the properties of the star-forming core. Because the fragmentation scale immediately after the isothermal collapse is typically a factor of 3-10 too large, we conjecture that fragmentation into small clusters followed by dynamical evolution is required to account for the observed binary separation distributions. Differences in the environmental properties of the cores are expected to imprint differences on the characteristic dimensions of the binary systems they form. Recent observations of hierarchical systems, differences in binary characteristics among star forming regions and systematic variations in binary properties with primary mass can be interpreted in the context of this scenario.

  3. Collision loads on bridge piers : phase 2, report of guidelines for designing bridge piers and abutments for vehicle collisions

    DOT National Transportation Integrated Search

    2011-03-01

    An instrumented, simulated bridge pier was constructed, and two full-scale collisions with an : 80,000-lb van-type tractor-trailer were performed on it. The trailer was ballasted with bags of sand on : pallets. The simulated pier was 36 inches in dia...

  4. CHANDRA X-RAY AND HUBBLE SPACE TELESCOPE IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. II. HOST GALAXY MORPHOLOGY AND AGN ACTIVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shangguan, Jinyi; Ho, Luis C.; Liu, Xin

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W ( U -band) and F105W ( Y -band) images taken by the Wide Fieldmore » Camera 3 on board the Hubble Space Telescope . Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U − Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers.« less

  5. Testing Collisional Scaling Laws: Comparing with Observables

    NASA Astrophysics Data System (ADS)

    Davis, D. R.; Marzari, F.; Farinella, P.

    1999-09-01

    How large bodies break up in response to energetic collisions is a problem that has attracted considerable attention in recent years. Ever more sophisticated computation methods have also been developed; prominent among these are hydrocode simulations of collisional disruption by Benz and Asphaug (1999, Icarus, in press), Love and Ahrens (1996, LPSC XXVII, 777-778), and Melosh and Ryan (1997, Icarus 129, 562-564). Durda et al. (1998, Icarus 135, 431-440) used the observed asteroid size distribution to infer a scaling algorithm. The present situation is that there are several proposed scaling laws that differ by as much as two orders of magnitude at particular sizes. We have expanded upon the work of Davis et al. (1994, Goutelas Proceedings) and tested the suite of proposed scaling algorithms against observations of the main-belt asteroids. The effects of collisions among the asteroids produce the following observables: (a) the size distribution has been significantly shaped by collisions, (b) collisions have produced about 25 well recognized asteroid families, and (c) the basaltic crust of Vesta has been largely preserved in the face of about 4.5 Byr of impacts. We will present results from a numerical simulation of asteroid collisional evolution over the age of the solar system using proposed scaling laws and a range of hypothetical initial populations.

  6. Heavy-quark production and elliptic flow in Au+Au collisions at √s NN=62.4 GeV

    DOE PAGES

    Adare, A.

    2015-04-28

    In this study, we present measurements of electrons and positrons from the semileptonic decays of heavy-flavor hadrons at midrapidity (|y|< 0.35) in Au+Au collisions at √s NN = 62.4 GeV. The data were collected in 2010 by the PHENIX experiment that included the new hadron-blind detector. The invariant yield of electrons from heavy-flavor decays is measured as a function of transverse momentum in the range 1 < p e T < 5 GeV/c. The invariant yield per binary collision is slightly enhanced above the p+p reference in Au+Au 0%–20%, 20%–40%, and 40%–60% centralities at a comparable level. At this lowmore » beam energy this may be a result of the interplay between initial-state Cronin effects, final-state flow, and energy loss in medium. The v₂ of electrons from heavy-flavor decays is nonzero when averaged between 1.3 < p e T < 2.5 GeV/c for 0%–40% centrality collisions at √s NN = 62.4 GeV. For 20%–40% centrality collisions, the v₂ at √s NN = 62.4 GeV is smaller than that for heavy-flavor decays at √s NN = 200 GeV. The v₂ of the electrons from heavy-flavor decay at the lower beam energy is also smaller than v₂ for pions. Both results indicate that the heavy-quarks interact with the medium formed in these collisions, but they may not be at the same level of thermalization with the medium as observed at √s NN = 200 GeV.« less

  7. Heavy-quark production and elliptic flow in Au + Au collisions at √{sN N}=62.4 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Ta'Ani, H.; Alexander, J.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Bing, X.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Csanád, M.; Csörgő, T.; Dairaku, S.; Datta, A.; Daugherity, M. S.; David, G.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Garishvili, A.; Garishvili, I.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hanks, J.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Issah, M.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, H. J.; Kim, K.-B.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Komatsu, Y.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Král, A.; Krizek, F.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Love, B.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masumoto, S.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyachi, Y.; Miyasaka, S.; Mohanty, A. K.; Moon, H. J.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Nihashi, M.; Nouicer, R.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Okada, K.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, S. K.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Samsonov, V.; Sano, M.; Sarsour, M.; Sawada, S.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Todoroki, T.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Yamaguchi, Y. L.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Phenix Collaboration

    2015-04-01

    We present measurements of electrons and positrons from the semileptonic decays of heavy-flavor hadrons at midrapidity (|y |< 0.35) in Au +Au collisions at √{sN N}=62.4 GeV. The data were collected in 2010 by the PHENIX experiment that included the new hadron-blind detector. The invariant yield of electrons from heavy-flavor decays is measured as a function of transverse momentum in the range 1

  8. Global observations from PHOBOS

    NASA Astrophysics Data System (ADS)

    Phobos Collaboration; Baker, Mark D.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Bal, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwon, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kan, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stodulski, G. S. T. M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    Particle production in Au+Au collisions has been measured in the PHOBOS experiment at RHIC for a range of collision energies. Three empirical observations have emerged from this dataset which require theoretical examination. First, there is clear evidence of limiting fragmentation. Namely, particle production in central Au+Au collisions, when expressed as $dN/d\\eta'$ ($\\eta' \\equiv \\eta-y_{beam}$), becomes energy independent at high energy for a broad region of $\\eta'$ around $\\eta'=0$. This energy-independent region grows with energy, allowing only a limited region (if any) of longitudinal boost-invariance. Second, there is a striking similarity between particle production in e+e- and Au+Au collisions (scaled by the number of participating nucleon pairs). Both the total number of produced particles and the longitudinal distribution of produced particles are approximately the same in e+e- and in scaled Au+Au. This observation was not predicted and has not been explained. Finally, particle production has been found to scale approximately with the number of participating nucleon pairs for $N_{part}>65$. This scaling occurs both for the total multiplicity and for high $\\pT$ particles (3 $<\\pT<$ 4.5 GeV/c).

  9. CHARACTERIZATION OF SEVEN ULTRA-WIDE TRANS-NEPTUNIAN BINARIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Alex H.; Kavelaars, J. J.; Petit, Jean-Marc

    2011-12-10

    The low-inclination component of the Classical Kuiper Belt is host to a population of extremely widely separated binaries. These systems are similar to other trans-Neptunian binaries (TNBs) in that the primary and secondary components of each system are of roughly equal size. We have performed an astrometric monitoring campaign of a sample of seven wide-separation, long-period TNBs and present the first-ever well-characterized mutual orbits for each system. The sample contains the most eccentric (2006 CH{sub 69}, e{sub m} = 0.9) and the most widely separated, weakly bound (2001 QW{sub 322}, a/R{sub H} {approx_equal} 0.22) binary minor planets known, and alsomore » contains the system with lowest-measured mass of any TNB (2000 CF{sub 105}, M{sub sys} {approx_equal} 1.85 Multiplication-Sign 10{sup 17} kg). Four systems orbit in a prograde sense, and three in a retrograde sense. They have a different mutual inclination distribution compared to all other TNBs, preferring low mutual-inclination orbits. These systems have geometric r-band albedos in the range of 0.09-0.3, consistent with radiometric albedo estimates for larger solitary low-inclination Classical Kuiper Belt objects, and we limit the plausible distribution of albedos in this region of the Kuiper Belt. We find that gravitational collapse binary formation models produce an orbital distribution similar to that currently observed, which along with a confluence of other factors supports formation of the cold Classical Kuiper Belt in situ through relatively rapid gravitational collapse rather than slow hierarchical accretion. We show that these binary systems are sensitive to disruption via collisions, and their existence suggests that the size distribution of TNOs at small sizes remains relatively shallow.« less

  10. Transverse energy production and charged-particle multiplicity at midrapidity in various systems from s N N = 7.7 to 200 GeV

    DOE PAGES

    Adare, A.; Afanasiev, S.; Aidala, C.; ...

    2016-02-03

    Measurements of midrapidity charged-particle multiplicity distributions, dN ch/dη, and midrapidity transverse-energy distributions, dE T/dη, are presented for a variety of collision systems and energies. Included are distributions for Au+Au collisions at √s NN=200, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu+Cu collisions at √s NN=200 and 62.4 GeV, Cu+Au collisions at √s NN=200 GeV, U+U collisions at√s NN=193 GeV, d+Au collisions at √s NN=200 GeV, He3+Au collisions at √s NN=200 GeV, and p+p collisions at √s NN=200 GeV. We present centrality-dependent distributions at midrapidity in terms of the number of nucleon participants, N part, and the number ofmore » constituent quark participants, N qp. For all A+A collisions down to √s NN=7.7 GeV, we observed that the midrapidity data are better described by scaling with N qp than scaling with N part. Finally, our estimates of the Bjorken energy density, ε BJ, and the ratio of dE T/dη to dN ch/dη are presented, the latter of which is seen to be constant as a function of centrality for all systems.« less

  11. Learning to assign binary weights to binary descriptor

    NASA Astrophysics Data System (ADS)

    Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun

    2016-10-01

    Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.

  12. Neuropsychological performance in solvent-exposed vehicle collision repair workers in New Zealand.

    PubMed

    Keer, Samuel; Glass, Bill; McLean, Dave; Harding, Elizabeth; Babbage, Duncan; Leathem, Janet; Brinkmann, Yanis; Prezant, Bradley; Pearce, Neil; Douwes, Jeroen

    2017-01-01

    To assess whether contemporary solvent exposures in the vehicle collision repair industry are associated with objectively measured neuropsychological performance in collision repair workers. The RBANS battery and additional tests were administered to 47 vehicle collision repair and 51 comparison workers randomly selected from a previous questionnaire study. Collision repair workers performed lower on tests of attention (digit span backwards: -1.5, 95% CI -2.4, -0.5; digit span total: -1.7, CI -3.3, -0.0; coding: -6.1, CI -9.9, -2.8; total attention scale: -9.3, CI -15.9, -2.8) and the RBANS total scale (-5.1, CI -9.1, -1.2). Additional tests also showed deficits in visual attention and reaction time (Trails B: -11.5, CI -22.4, -0.5) and motor speed/dexterity (coin rotation dominant hand & non-dominant: -2.9, CI -5.3, -0.4 and -3.1, CI -5.6, -0.7 respectively). The strongest associations were observed in panel beaters. Applying dichotomised RBANS outcomes based on the lowest percentile scores of a normative comparison group showed strongly increased risks for attention (5th percentile: OR 20.1, 95% CI 1.5, 263.3; 10th percentile: 8.8, CI 1.7, 46.2; and 20th percentile: 5.1, CI 1.5, 17.6, respectively). Those employed in the industry for ≤ 17 years (the median work duration) generally had lower scores in the attention domain scale and RBANS total scale compared to those employed >17 years suggesting a healthy worker survivor bias, but trends were inconsistent for other domains. This study has found significant deficits in cognitive performance in collision repair workers despite low current airborne exposures in New Zealand.

  13. Scale-dependence of transverse momentum correlations in Pb sbnd Au collisions at 158A GeV/c

    NASA Astrophysics Data System (ADS)

    Adamová, D.; Agakichiev, G.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielcikova, S.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Holeczek, J.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Milov, A.; Miśkowiec, D.; Panebrattsev, Yu.; Petchenova, O.; Petráček, V.; Pfeiffer, A.; Płoskoń, M.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Xie, W.; Yurevich, S.; Yurevich, V.; Ceres Collaboration

    2008-10-01

    We present results on transverse momentum correlations of charged particle pairs produced in Pb sbnd Au collisions at 158A GeV/c at the Super Proton Synchrotron. The transverse momentum correlations have been studied as a function of collision centrality, angular separation of the particle pairs, transverse momentum and charge sign. We demonstrate that the results are in agreement with previous findings in scale-independent analyses at the same beam energy. Employing the two-particle momentum correlator <Δp,Δp> and the cumulative p variable x(p), we identify, using the scale-dependent approach presented in this paper, different sources contributing to the measured correlations, such as quantum and Coulomb correlations, elliptic flow and mini-jet fragmentation.

  14. Nonlinear properties of small amplitude dust ion acoustic solitary waves

    NASA Astrophysics Data System (ADS)

    Ghosh, Samiran; Sarkar, S.; Khan, Manoranjan; Gupta, M. R.

    2000-09-01

    In this paper some nonlinear characteristics of small amplitude dust ion acoustic solitary wave in three component dusty plasma consisting of electrons, ions, and dust grains have been studied. Simultaneously, the charge fluctuation dynamics of the dust grains under the assumption that the dust charging time scale is much smaller than the dust hydrodynamic time scale has been considered here. The ion dust collision has also been incorporated. It has been seen that a damped Korteweg-de Vries (KdV) equation governs the nonlinear dust ion acoustic wave. The damping arises due to ion dust collision, under the assumption that the ion hydrodynamical time scale is much smaller than that of the ion dust collision. Numerical investigations reveal that the dust ion acoustic wave admits only a positive potential, i.e., compressive soliton.

  15. Magnitude and correlates of bird collisions at glass bus shelters in an urban landscape.

    PubMed

    Barton, Christine M; Riding, Corey S; Loss, Scott R

    2017-01-01

    Wildlife residing in urban landscapes face many human-related threats to their survival. For birds, collision with glass on manmade structures has been identified as a major hazard, causing hundreds of millions of avian fatalities in North America every year. Although research has investigated factors associated with bird-glass collision mortality at buildings, no prior studies have focused on bird fatalities at glass-walled bus shelters. Our objectives in this study were to describe the magnitude of bird-bus shelter collisions in the city of Stillwater, Oklahoma and assess potential predictors of collision risk, including characteristics of shelters (glass area) and surrounding land cover (e.g., vegetative features). We surveyed for bird carcasses and indirect collision evidence at 18 bus shelters over a five-month period. Linear regression and model selection results revealed that the amount of glass on shelters and the area of lawn within 50 m of shelters were both positively related to fatal bird collisions; glass area was also positively associated with observations of collision evidence on glass surfaces. After accounting for scavenger removal of carcasses, we estimate that a minimum of 34 birds are killed each year between May and September by collision with the 36 bus shelters in the city of Stillwater. While our study provides an initial look at bird fatalities at bus shelters, additional research is needed to generate a large-scale estimate of collision mortality and to assess species composition of fatalities at a national scale. Designing new bus shelters to include less glass and retrofitting existing shelters to increase visibility of glass to birds will likely reduce fatal bird collisions at bus shelters and thus reduce the cumulative magnitude of anthropogenic impacts to birds in cities.

  16. Impact erosion model for gravity-dominated planetesimals

    NASA Astrophysics Data System (ADS)

    Genda, Hidenori; Fujita, Tomoaki; Kobayashi, Hiroshi; Tanaka, Hidekazu; Suetsugu, Ryo; Abe, Yutaka

    2017-09-01

    Disruptive collisions have been regarded as an important process for planet formation, while non-disruptive, small-scale collisions (hereafter called erosive collisions) have been underestimated or neglected by many studies. However, recent studies have suggested that erosive collisions are also important to the growth of planets, because they are much more frequent than disruptive collisions. Although the thresholds of the specific impact energy for disruptive collisions (QRD*) have been investigated well, there is no reliable model for erosive collisions. In this study, we systematically carried out impact simulations of gravity-dominated planetesimals for a wide range of specific impact energy (QR) from disruptive collisions (QR ∼ QRD*) to erosive ones (QR << QRD*) using the smoothed particle hydrodynamics method. We found that the ejected mass normalized by the total mass (Mej/Mtot) depends on the numerical resolution, the target radius (Rtar) and the impact velocity (vimp), as well as on QR, but that it can be nicely scaled by QRD* for the parameter ranges investigated (Rtar = 30-300 km, vimp = 2-5 km/s). This means that Mej/Mtot depends only on QR/QRD* in these parameter ranges. We confirmed that the collision outcomes for much less erosive collisions (QR < 0.01 QRD*) converge to the results of an impact onto a planar target for various impact angles (θ) and that Mej/Mtot ∝ QR/QRD* holds. For disruptive collisions (QR ∼ QRD*), the curvature of the target has a significant effect on Mej/Mtot. We also examined the angle-averaged value of Mej/Mtot and found that the numerically obtained relation between angle-averaged Mej/Mtot and QR/QRD* is very similar to the cases for θ = 45° impacts. We proposed a new erosion model based on our numerical simulations for future research on planet formation with collisional erosion.

  17. The Earth-Moon system as a typical binary in the Solar System

    NASA Astrophysics Data System (ADS)

    Ipatov, S.

    2014-07-01

    In recent years new arguments in favor of the formation of solid planetesimals by contraction of rarefied preplanetesimals (RPPs) have been found. It is often considered that masses of some RPPs can correspond to masses of solid bodies of diameter about 1000 km. [1] showed that in the vortices launched by the Rossby wave instability in the borders of the dead zone, the solids quickly achieve critical densities and undergo gravitational collapse into protoplanetary embryos in the mass range 0.1-0.6M_E (where M_E is the mass of the Earth). [2] and [3] supposed that transneptunian binaries were formed from RPPs. It was shown in [2] that the angular momenta acquired at collisions of RPPs moving in circular heliocentric orbits could have the same values as the angular momenta of discovered transneptunian and asteroid binaries. [4] obtained that the angular momenta used in [3] as initial data in calculations of the contraction of RPPs leading to formation of transneptunian binaries could be acquired at collisions of two RPPs moving in circular heliocentric orbits. I supposed that the fraction of RPPs collided with other RPPs during their contraction can be about the fraction of small bodies of diameter d>100 km with satellites (among all such small bodies), i.e., it can be about 0.3 for objects formed in the transneptunian belt. The model of collisions of RPPs explains negative angular momenta of some observed binaries, as about 20 percent of collisions of RPPs moving in circular heliocentric orbits lead to retrograde rotation. Note that if all RPPs got their angular momenta at their formation without mutual collisions, then the angular momenta of small bodies without satellites and those with satellites could be similar (but actually they differ considerably). Most of rarefied preasteroids could turn into solid asteroids before they collided with other preasteroids. Some present asteroids can be debris of larger solid bodies, and the formation of many binaries with primaries with d<100 km can be explained by other models (not by contraction of RPPs). [5] noted that the giant impact concept, which is a popular model of the Moon formation, has several weaknesses. In particular, they calculated formation of the Earth-Moon system from a rarefied protoplanet which mass equaled to the mass of the Earth-Moon system. Using the formulas presented in [2], we obtained that the ratio r_K=K_{EM}/K_{s2} of the angular momentum K_{EM} of the Earth-Moon system to the angular momentum K_{s2} at a typical collision of two identical RPPs - Hill spheres, which masses m_2 are equal to 0.5\\cdot1.0123M_E and heliocentric orbits are circular, is about 0.0335. As K_{s2} ∝ (m_2)^{3/5} [2], then K_{s2}=K_{EM} at 2 m_2=0.0335^{3/5}\\cdot 1.0123M_E=0.13M_E. For circular heliocentric orbits, the maximum value of K_{s2} is greater by a factor of 0.6^{-1} than the above typical value. In this case, r_K=0.02 and 0.02^{3/5}=0.096. Therefore, the angular momentum of the Earth-Moon system can be acquired at a collision of two RPPs with a total mass not smaller than the mass of Mars. We suppose that solid proto-Earth and proto-Moon (with masses m_{Eo} and m_{Mo}) could be formed from a RPP (e.g., according to the models of contraction of a RPP [3,5]). Let us consider the model of the growth of proto-Earth and proto-Moon to the present masses of the Earth and the Moon (M_E and 0.0123M_E, respectively) by accumulation of smaller planetesimals for the case when the effective radii of proto-Earth and proto-Moon are proportional to r (where r is a radius of a considered object). Such proportionality can be considered for large enough eccentricities of planetesimals. In this case, r_{Mo}=m_{Mo}/M_E = [ (0.0123)^{-2/3} - k + k \\cdot (m_{Eo}/M_E)^{-2/3})]^{-3/2}, where k=(k_d)^{-2/3}, and k_d is the ratio of the density of the growing Moon to that of the growing Earth (k_d=0.6 for the present Earth and Moon). For r_{Eo}=m_{Eo}/M_E=0.1, we have r_{Mo}=0.0094 at k=1 and r_{Mo}=0.0086 at k=0.6^{-2/3}. At these values of r_{Mo}, the ratio f_M=(0.0123-r_{Mo})/0.0123 of the mass of planetesimals that were accreted by the Moon at the stage of the solid body accumulation to the present mass of the Moon is 0.24 and 0.30, respectively. If we consider that effective radii of the objects are proportional to r^2 (the case of relatively small relative velocities of planetesimals), then at r_{Eo}=0.1 for k_d equal 1 and 0.6, we obtain f_M equal to 0.04 and 0.05, respectively. In the above model, the Moon could acquire up to 1/3 of its mass at the stage of accumulation of solid bodies, while the mass of the growing Earth increased by a factor of ten, but probably the initial mass of a solid proto-Earth exceeded 0.1M_E. Probably, the RPPs that contracted and formed the embryos of other terrestrial planets did not collide with massive RPPs, and therefore they did not get large enough angular momentum needed to form massive satellites.

  18. The Nonlinear Dynamical and Shock Mitigation Properties of Tapered Chains

    DTIC Science & Technology

    2008-06-01

    many interesting people. Several of them have steered my career in some way and I’d like to recognize them — hopefully in chronological order. To Mr...20, it is useful to look at single and binary systems confined between fixed, but compressible walls. It is also pedagogical to observe the changes in...422–443. 53. Landau, L., and Lifshitz, E. Theory of Elasticity. Pergamon Press, Oxford, 1970. 54. Leroy, B. Collision between two balls accompanied by

  19. Material removal in magnetorheological finishing of optics.

    PubMed

    Kordonski, William; Gorodkin, Sergei

    2011-05-10

    A concept of material removal based on the principle of conservation of particles momentum in a binary suspension is applied to analyze material removal in magnetorheological finishing and magnetorheological jet processes widely used in precision optics fabrication. According to this concept, a load for surface indentation by abrasive particles is provided at their interaction near the wall with heavier basic (magnetic) particles, which fluctuate (due to collision) in the shear flow of concentrated suspension. The model is in good qualitative and quantitative agreement with experimental results.

  20. Transport coefficients of gaseous ions in an electric field

    NASA Technical Reports Server (NTRS)

    Whealton, J. H.; Mason, E. A.

    1974-01-01

    A general theory of ion mobility formulated by Kihara (1953) is extended to ion diffusion and to mixtures of neutral gases. The theory assumes that only binary collisions between ions and neutral particles need to be taken into account and that the velocity distribution function of the neutral particles is Maxwellian. These assumptions make it possible to use a linearized Boltzmann equation. Questions of mobility are considered along with aspects of diffusion and deviations from Fick's law of diffusion.

  1. Injury risk functions for frontal oblique collisions.

    PubMed

    Andricevic, Nino; Junge, Mirko; Krampe, Jonas

    2018-03-09

    The objective of this article was the construction of injury risk functions (IRFs) for front row occupants in oblique frontal crashes and a comparison to IRF of nonoblique frontal crashes from the same data set. Crashes of modern vehicles from GIDAS (German In-Depth Accident Study) were used as the basis for the construction of a logistic injury risk model. Static deformation, measured via displaced voxels on the postcrash vehicles, was used to calculate the energy dissipated in the crash. This measure of accident severity was termed objective equivalent speed (oEES) because it does not depend on the accident reconstruction and thus eliminates reconstruction biases like impact direction and vehicle model year. Imputation from property damage cases was used to describe underrepresented low-severity crashes-a known shortcoming of GIDAS. Binary logistic regression was used to relate the stimuli (oEES) to the binary outcome variable (injured or not injured). IRFs for the oblique frontal impact and nonoblique frontal impact were computed for the Maximum Abbreviated Injury Scale (MAIS) 2+ and 3+ levels for adults (18-64 years). For a given stimulus, the probability of injury for a belted driver was higher in oblique crashes than in nonoblique frontal crashes. For the 25% injury risk at MAIS 2+ level, the corresponding stimulus for oblique crashes was 40 km/h but it was 64 km/h for nonoblique frontal crashes. The risk of obtaining MAIS 2+ injuries is significantly higher in oblique crashes than in nonoblique crashes. In the real world, most MAIS 2+ injuries occur in an oEES range from 30 to 60 km/h.

  2. Radiative Reverse Shock Laser Experiments Relevant to Accretion Processes in Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Krauland, Christine

    2012-10-01

    We present results from experiments that explore radiative reverse shock waves and their contribution to the evolving dynamics of the cataclysmic variable (CV) system in which they reside. CVs are close binary star systems containing a white dwarf (WD) that accretes matter from its late-type main sequence companion star. In the process of accretion, a reverse shock forms when the supersonic infalling plasma is impeded. It provides the main source of radiation in the binary systems. In the case of a non-magnetic CV, the impact on an accretion disk produces this ``hot spot,'' where the flow obliquely strikes the rotating accretion disk. This collision region has many ambiguities as a radiation hydrodynamic system, but shock development in the infalling flow can be modeled [1]. We discuss the production of radiative reverse shocks in experiments at the Omega-60 laser facility. The ability of this high-intensity laser to create large energy densities in targets having millimeter-scale volumes makes it feasible to create supersonic plasma flows. Obtaining a radiative reverse shock in the laboratory requires a sufficiently fast flow (> 60 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. We will show the radiographic and emission data from three campaigns on Omega-60 with accompanying CRASH [2] simulations, and will discuss the implications in the context of the CV system. [4pt] [1] Armitage, P. J. and Livio, M., ApJ, 493, 898 (1998).[0pt] [2] van der Holst, B., Toth, G., Sokolov, I.V., et al., ApJS, 194, 23 (2011).

  3. DEM study of the size-induced segregation dynamics of a ternary-size granular mixture in the rolling-regime rotating drum

    NASA Astrophysics Data System (ADS)

    Yang, Shiliang; Zhang, Liangqi; Luo, Kun; Chew, Jia Wei

    2017-12-01

    Segregation induced by size, shape, or density difference of the granular material is inevitable in both natural and industrial processes; unfortunately, the underlying mechanism is still not fully understood. In view of the ubiquitous continuous particle size distributions, this study builds on the considerable knowledge gained so far from binary-size mixtures and extends it to a ternary-size mixture to understand the impact of the presence of a third particle size in the three-dimensional rotating drum operating in the rolling flow regime. The discrete element method is employed. The evolution of segregation, the active-passive interface, and the dynamical response of the particle-scale characteristics of the different particle types in the two regions are investigated. The results reveal that the medium particles are spatially sandwiched in between the large and small particles in both the radial and axial directions and therefore exhibit behaviors intermediate to the other two particle types. Compared to the binary-size mixture, the presence of the medium particles leads to (i) higher purity of small particles in the innermost of the radial core, causing a decrease of the translational velocity of small particles; (ii) decrease and increase of the collision forces exerted on, respectively, the large and small particles in both regions; and (iii) increase in the relative ratio of the active-passive exchange rates of small to large particles. The results obtained in the current study therefore provide valuable insights regarding the size-segregation dynamics of granular mixtures with constituents of different sizes.

  4. Iterative quantization: a Procrustean approach to learning binary codes for large-scale image retrieval.

    PubMed

    Gong, Yunchao; Lazebnik, Svetlana; Gordo, Albert; Perronnin, Florent

    2013-12-01

    This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections to multiclass spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ to learning binary attributes or "classemes" on the ImageNet data set.

  5. Scaling Properties of Proton and Antiproton Production in (sNN)=200 GeV Au+Au Collisions

    NASA Astrophysics Data System (ADS)

    Adler, S. S.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Alexander, J.; Amirikas, R.; Aphecetche, L.; Aronson, S. H.; Averbeck, R.; Awes, T. C.; Azmoun, R.; Babintsev, V.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Bathe, S.; Batsouli, S.; Baublis, V.; Bazilevsky, A.; Belikov, S.; Berdnikov, Y.; Bhagavatula, S.; Boissevain, J. G.; Borel, H.; Borenstein, S.; Brooks, M. L.; Brown, D. S.; Bruner, N.; Bucher, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Burward-Hoy, J. M.; Butsyk, S.; Camard, X.; Chai, J.-S.; Chand, P.; Chang, W. C.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J.; Choudhury, R. K.; Chujo, T.; Cianciolo, V.; Cobigo, Y.; Cole, B. A.; Constantin, P.; D'Enterria, D. G.; David, G.; Delagrange, H.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Drapier, O.; Drees, A.; Du Rietz, R.; Durum, A.; Dutta, D.; Efremenko, Y. V.; El Chenawi, K.; Enokizono, A.; En'yo, H.; Esumi, S.; Ewell, L.; Fields, D. E.; Fleuret, F.; Fokin, S. L.; Fox, B. D.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fung, S.-Y.; Garpman, S.; Ghosh, T. K.; Glenn, A.; Gogiberidze, G.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, G.; Guryn, W.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hamagaki, H.; Hansen, A. G.; Hartouni, E. P.; Harvey, M.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Heuser, J. M.; Hibino, M.; Hill, J. C.; Holzmann, W.; Homma, K.; Hong, B.; Hoover, A.; Ichihara, T.; Ikonnikov, V. V.; Imai, K.; Isenhower, L. D.; Ishihara, M.; Issah, M.; Isupov, A.; Jacak, B. V.; Jang, W. Y.; Jeong, Y.; Jia, J.; Jinnouchi, O.; Johnson, B. M.; Johnson, S. C.; Joo, K. S.; Jouan, D.; Kametani, S.; Kamihara, N.; Kang, J. H.; Kapoor, S. S.; Katou, K.; Kelly, S.; Khachaturov, B.; Khanzadeev, A.; Kikuchi, J.; Kim, D. H.; Kim, D. J.; Kim, D. W.; Kim, E.; Kim, G.-B.; Kim, H. J.; Kistenev, E.; Kiyomichi, A.; Kiyoyama, K.; Klein-Boesing, C.; Kobayashi, H.; Kochenda, L.; Kochetkov, V.; Koehler, D.; Kohama, T.; Kopytine, M.; Kotchetkov, D.; Kozlov, A.; Kroon, P. J.; Kuberg, C. H.; Kurita, K.; Kuroki, Y.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Ladygin, V.; Lajoie, J. G.; Lebedev, A.; Leckey, S.; Lee, D. M.; Lee, S.; Leitch, M. J.; Li, X. H.; Lim, H.; Litvinenko, A.; Liu, M. X.; Liu, Y.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Manko, V. I.; Mao, Y.; Martinez, G.; Marx, M. D.; Masui, H.; Matathias, F.; Matsumoto, T.; McGaughey, P. L.; Melnikov, E.; Messer, F.; Miake, Y.; Milan, J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mischke, R. E.; Mishra, G. C.; Mitchell, J. T.; Mohanty, A. K.; Morrison, D. P.; Moss, J. M.; Mühlbacher, F.; Mukhopadhyay, D.; Muniruzzaman, M.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Nakamura, T.; Nandi, B. K.; Nara, M.; Newby, J.; Nilsson, P.; Nyanin, A. S.; Nystrand, J.; O'Brien, E.; Ogilvie, C. A.; Ohnishi, H.; Ojha, I. D.; Okada, K.; Ono, M.; Onuchin, V.; Oskarsson, A.; Otterlund, I.; Oyama, K.; Ozawa, K.; Pal, D.; Palounek, A. P.; Pantuev, V. S.; Papavassiliou, V.; Park, J.; Parmar, A.; Pate, S. F.; Peitzmann, T.; Peng, J.-C.; Peresedov, V.; Pinkenburg, C.; Pisani, R. P.; Plasil, F.; Purschke, M. L.; Purwar, A.; Rak, J.; Ravinovich, I.; Read, K. F.; Reuter, M.; Reygers, K.; Riabov, V.; Riabov, Y.; Roche, G.; Romana, A.; Rosati, M.; Rosnet, P.; Ryu, S. S.; Sadler, M. E.; Saito, N.; Sakaguchi, T.; Sakai, M.; Sakai, S.; Samsonov, V.; Sanfratello, L.; Santo, R.; Sato, H. D.; Sato, S.; Sawada, S.; Schutz, Y.; Semenov, V.; Seto, R.; Shaw, M. R.; Shea, T. K.; Shibata, T.-A.; Shigaki, K.; Shiina, T.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, C. P.; Singh, V.; Sivertz, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sullivan, J. P.; Takagui, E. M.; Taketani, A.; Tamai, M.; Tanaka, K. H.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarján, P.; Tepe, J. D.; Thomas, T. L.; Tojo, J.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuruoka, H.; Tuli, S. K.; Tydesjö, H.; Tyurin, N.; van Hecke, H. W.; Velkovska, J.; Velkovsky, M.; Villatte, L.; Vinogradov, A. A.; Volkov, M. A.; Vznuzdaev, E.; Wang, X. R.; Watanabe, Y.; White, S. N.; Wohn, F. K.; Woody, C. L.; Xie, W.; Yang, Y.; Yanovich, A.; Yokkaichi, S.; Young, G. R.; Yushmanov, I. E.; Zajc, W. A.; Zhang, C.; Zhou, S.; Zolin, L.

    2003-10-01

    We report on the yield of protons and antiprotons, as a function of centrality and transverse momentum, in Au+Au collisions at (sNN)=200 GeV measured at midrapidity by the PHENIX experiment at the BNL Relativistic Heavy Ion Collider. In central collisions at intermediate transverse momenta (1.5

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopeliovich, B. Z.; Institut fuer Theoretische Physik der Universitaet, Philosophenweg 19, D-69120 Heidelberg; Potashnikova, I. K.

    Two novel QCD effects, double-color filtering and mutual boosting of the saturation scales in colliding nuclei, affect the transparency of the nuclei for quark dipoles in comparison with proton-nucleus collisions. The former effect increases the survival probability of the dipoles, since color filtering in one nucleus makes the other one more transparent. The second effect acts in the opposite direction and is stronger; it makes the colliding nuclei more opaque than in the case of pA collisions. As a result of parton saturation in nuclei the effective scale is shifted upward, which leads to an increase of the gluon densitymore » at small x. This in turn leads to a stronger transverse momentum broadening in AA compared with pA collisions, i.e., to an additional growth of the saturation momentum. Such a mutual boosting leads to a system of reciprocity equations, which result in a saturation scale, a few times higher in AA than in pA collisions at the energies of the large hadron collider (LHC). Since the dipole cross section is proportional to the saturation momentum squared, the nuclei become much more opaque for dipoles in AA than in pA collisions. For the same reason gluon shadowing turns out to be boosted to a larger magnitude compared with the product of the gluon shadowing factors in each of the colliding nuclei. All these effects make it more difficult to establish a baseline for anomalous J/{Psi} suppression in heavy ion collisions at high energies.« less

  7. The Double Asteroid Redirection Test in the AIDA Project

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew; Rivkin, Andrew; Michel, Patrick

    2016-04-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. AIDA is a joint ESA-NASA cooperative project, that includes the ESA Asteroid Impact Mission (AIM) rendezvous mission and the NASA Double Asteroid Redirection Test (DART) mission. The AIDA target is the near-Earth binary asteroid 65803 Didymos, which will make an unusually close approach to Earth in October, 2022. The ~300-kg DART spacecraft is designed to impact the Didymos secondary at 7 km/s and demonstrate the ability to modify its trajectory through momentum transfer. DART and AIM are currently Phase A studies supported by NASA and ESA respectively. The primary goals of AIDA are (1) perform a full-scale demonstration of the spacecraft kinetic impact technique for deflection of an asteroid, by targeting an object larger than ~100 m and large enough to qualify as a Potentially Hazardous Asteroid; (2) measure the resulting asteroid deflection, by targeting the secondary member of a binary NEO and measuring the period change of the binary orbit; (3) understand the hyper-velocity collision effects on an asteroid, including the long-term dynamics of impact ejecta; and validate models for momentum transfer in asteroid impacts, based on measured physical properties of the asteroid surface and sub-surface. The primary DART objectives are to demonstrate a hyper-velocity impact on the Didymos moon and to determine the resulting deflection from ground-based observatories. The DART impact on the Didymos secondary will cause a measurable change in the orbital period of the binary. Supporting Earth-based optical and radar observations and numerical simulation studies are an integral part of the DART mission. The baseline DART mission launches in December, 2020 to impact the Didymos secondary in September, 2022. There are multiple launch opportunities for DART leading to impact around the 2022 Didymos close approach to Earth. The AIM spacecraft will be launched in Dec. 2020 and arrive at Didymos in spring, 2022, several months before the DART impact. AIM will characterize the Didymos binary system by means of remote sensing and in-situ instruments both before and after the DART impact. The asteroid deflection will be measured to higher accuracy, and additional results of the DART impact, like the impact crater, will be studied in great detail by the AIM mission. The combined DART and AIM missions will provide the first measurements of momentum transfer efficiency β from hyper-velocity kinetic impact at full scale on an asteroid, where the impact conditions of the projectile are known, and physical properties and internal structures of the target asteroid are also characterized. The DART impact on the Didymos secondary is predicted to cause a ~4.4 minute change in the binary orbit period, assuming β=1, and is expected to be observable within a few days. The predicted β would be in the range 1.1 to 1.3 for a porous target material based on a variety of numerical and analytical methods, but may be much larger if the target is non-porous. The DART kinetic impact is predicted to make a crater of ~6 to ~17 meters diameter, depending on target physical properties, but will also release a large volume of particulate ejecta that may be directly observable from Earth or even resolvable as a coma or an ejecta tail by ground-based telescopes.

  8. The risk of pedestrian injury and fatality in collisions with motor vehicles, a social ecological study of state routes and city streets in King County, Washington.

    PubMed

    Moudon, Anne Vernez; Lin, Lin; Jiao, Junfeng; Hurvitz, Philip; Reeves, Paula

    2011-01-01

    This study examined the correlates of injury severity using police records of pedestrian-motor-vehicle collisions on state routes and city streets in King County, Washington. Levels of influence on collision outcome considered (1) the characteristics of individual pedestrians and drivers and their actions; (2) the road environment; and (3) the neighborhood environment. Binary logistic regressions served to estimate the risk of a pedestrian being severely injured or dying versus suffering minor or no injury. Significant individual-level influences on injury severity were confirmed for both types of roads: pedestrians being older or younger; the vehicle moving straight on the roadway. New variables associated with increased risk of severe injury or death included: having more than two pedestrians involved in a collision; and on city streets, the driver being inebriated. Road intersection design was significant only in the state route models, with pedestrians crossing at intersections without signals increasing the risk of being injured or dying. Adjusting for pedestrians' and drivers' characteristics and actions, neighborhood medium home values and higher residential densities increased the risk of injury or death. No other road or neighborhood environment variable remained significant, suggesting that pedestrians were not safer in areas with high pedestrian activity. Copyright © 2009 Elsevier Ltd. All rights reserved.

  9. 0{degree} binary encounter electron production in 30-MeV O{ital {sup q}}{sup +}+H{sub 2}, He, O{sub 2}, Ne, and Ar collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zouros, T.J.; Wong, K.L.; Grabbe, S.

    Double-differential cross sections (DDCS{close_quote}s) for the production of binary encounter electrons (BEE{close_quote}s) were measured for collisions of 30-MeV O{sup {ital q}+} projectiles with H{sub 2}, He, O{sub 2}, Ne, and Ar targets with {ital q}=4{endash}8 and an electron ejection angle of {theta}=0{degree} with respect to the beam direction. Particular interest focused on (a) the evaluation of the contributions of the different electron subshells of the multielectron targets, O{sub 2}, Ne, and Ar; (b) the study of the well-known enhancement of the BEE DDCS{close_quote}s with decreasing projectile charge-state {ital q}; here this dependence was tested for higher collision energies and newmore » targets; (c) the study of the dependence of the BEE {ital peak} {ital energy} on the particular target and projectile charge state. Results were analyzed in terms of the impulse approximation, in which target electrons in the projectile frame undergo 180{degree} elastic scattering in the field of the projectile ion. The electron scattering calculations were performed in a partial-wave treatment using the Hartree-Fock model. Good agreement with the data was found for the H{sub 2} and He targets, while for the multielectron targets O{sub 2}, Ne, and Ar only electrons whose velocity was lower than the projectile velocity needed to be included for good agreement. All measured BEE DDCS{close_quote}s were found to increase with decreasing projectile charge state, in agreement with other recent BEE results. The BEE peak energies were found to be independent of the projectile charge state for all targets utilized. {copyright} {ital 1996 The American Physical Society.}« less

  10. Monotonic entropy growth for a nonlinear model of random exchanges.

    PubMed

    Apenko, S M

    2013-02-01

    We present a proof of the monotonic entropy growth for a nonlinear discrete-time model of a random market. This model, based on binary collisions, also may be viewed as a particular case of Ulam's redistribution of energy problem. We represent each step of this dynamics as a combination of two processes. The first one is a linear energy-conserving evolution of the two-particle distribution, for which the entropy growth can be easily verified. The original nonlinear process is actually a result of a specific "coarse graining" of this linear evolution, when after the collision one variable is integrated away. This coarse graining is of the same type as the real space renormalization group transformation and leads to an additional entropy growth. The combination of these two factors produces the required result which is obtained only by means of information theory inequalities.

  11. Binary collision model for neon Auger spectra from neon ion bombardment of the aluminum surface

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1986-01-01

    A model is developed to account for the angle-resolved Auger spectra from neon ion bombardment of the aluminum surface recently obtained by Pepper and Aron. The neon is assumed to be excited in a single asymmetric neon-aluminum-collision and scattered back into the vacuum where it emits an Auger electron. The velocity of the Auger electron acquires a Doppler shift by virtue of the emission from a moving source. The dependence of the Auger peak shape and energy on the incident ion energy, angle of incidence and on the angle of Auger electron emission with respect to the surface is presented. Satisfactory agreement with the angle resolved experimental observations is obtained. The dependence of the angle-integrated Auger yield on the incident ion energy and angle of incidence is also obtained and shown to be in satisfactory agreement with available experimental evidence.

  12. Monotonic entropy growth for a nonlinear model of random exchanges

    NASA Astrophysics Data System (ADS)

    Apenko, S. M.

    2013-02-01

    We present a proof of the monotonic entropy growth for a nonlinear discrete-time model of a random market. This model, based on binary collisions, also may be viewed as a particular case of Ulam's redistribution of energy problem. We represent each step of this dynamics as a combination of two processes. The first one is a linear energy-conserving evolution of the two-particle distribution, for which the entropy growth can be easily verified. The original nonlinear process is actually a result of a specific “coarse graining” of this linear evolution, when after the collision one variable is integrated away. This coarse graining is of the same type as the real space renormalization group transformation and leads to an additional entropy growth. The combination of these two factors produces the required result which is obtained only by means of information theory inequalities.

  13. 129Xe nuclear magnetic resonance study of pitch-based activated carbon modified by air oxidation/pyrolysis cycles: a new approach to probe the micropore size.

    PubMed

    Romanenko, Konstantin V; Py, Xavier; d'Espinose de Lacaillerie, Jean-Baptiste; Lapina, Olga B; Fraissard, Jacques

    2006-02-23

    (129)Xe NMR has been used to study a series of homologous activated carbons obtained from a KOH-activated pitch-based carbon molecular sieve modified by air oxidation/pyrolysis cycles. A clear correlation between the pore size of microporous carbons and the (129)Xe NMR of adsorbed xenon is proposed for the first time. The virial coefficient delta(Xe)(-)(Xe) arising from binary xenon collisions varied linearly with the micropore size and appeared to be a better probe of the microporosity than the chemical shift extrapolated to zero pressure. This correlation was explained by the fact that the xenon collision frequency increases with increasing micropore size. The chemical shift has been shown to vary very little with temperature (less than 9 ppm) for xenon trapped inside narrow and wide micropores. This is indicative of a smooth xenon-surface interaction potential.

  14. Radial Velocities of 41 Kepler Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Matson, Rachel A.; Gies, Douglas R.; Guo, Zhao; Williams, Stephen J.

    2017-12-01

    Eclipsing binaries are vital for directly determining stellar parameters without reliance on models or scaling relations. Spectroscopically derived parameters of detached and semi-detached binaries allow us to determine component masses that can inform theories of stellar and binary evolution. Here we present moderate resolution ground-based spectra of stars in close binary systems with and without (detected) tertiary companions observed by NASA’s Kepler mission and analyzed for eclipse timing variations. We obtain radial velocities and spectroscopic orbits for five single-lined and 35 double-lined systems, and confirm one false positive eclipsing binary. For the double-lined spectroscopic binaries, we also determine individual component masses and examine the mass ratio {M}2/{M}1 distribution, which is dominated by binaries with like-mass pairs and semi-detached classical Algol systems that have undergone mass transfer. Finally, we constrain the mass of the tertiary component for five double-lined binaries with previously detected companions.

  15. Formation Constraints Indicate a Black Hole Accretor in 47 Tuc X9

    NASA Astrophysics Data System (ADS)

    Church, Ross P.; Strader, Jay; Davies, Melvyn B.; Bobrick, Alexey

    2017-12-01

    The luminous X-ray binary 47 Tuc X9 shows radio and X-ray emission consistent with a stellar-mass black hole (BH) accreting from a carbon-oxygen white dwarf. Its location, in the core of the massive globular cluster 47 Tuc, hints at a dynamical origin. We assess the stability of mass transfer from a carbon-oxygen white dwarf onto compact objects of various masses, and conclude that for mass transfer to proceed stably, the accretor must, in fact, be a BH. Such systems can form dynamically by the collision of a stellar-mass BH with a giant star. Tidal dissipation of energy in the giant’s envelope leads to a bound binary with a pericenter separation less than the radius of the giant. An episode of common-envelope evolution follows, which ejects the giant’s envelope. We find that the most likely target is a horizontal-branch star, and that a realistic quantity of subsequent dynamical hardening is required for the resulting binary to merge via gravitational wave emission. Observing one binary like 47 Tuc X9 in the Milky Way globular cluster system is consistent with the expected formation rate. The observed 6.8-day periodicity in the X-ray emission may be driven by eccentricity induced in the ultra-compact X-ray binary’s orbit by a perturbing companion.

  16. Vibrational relaxation of I2 in complexing solvents: The role of solvent-solute attractive forces

    NASA Astrophysics Data System (ADS)

    Shiang, Joseph J.; Liu, Hongjun; Sension, Roseanne J.

    1998-12-01

    Femtosecond transient absorption studies of I2-arene complexes, with arene=hexamethylbenzene (HMB), mesitylene (MST), or m-xylene (mX), are used to investigate the effect of solvent-solute attractive forces upon the rate of vibrational relaxation in solution. Comparison of measurements on I2-MST complexes in neat mesitylene and I2-MST complexes diluted in carbontetrachloride demonstrate that binary solvent-solute attractive forces control the rate of vibrational relaxation in this prototypical model of diatomic vibrational relaxation. The data obtained for different arenes demonstrate that the rate of I2 relaxation increases with the magnitude of the I2-arene attractive interaction. I2-HMB relaxes much faster than I2 in MST or mX. The results of these experiments are discussed in terms of both isolated binary collision and instantaneous normal mode models for vibrational relaxation.

  17. Recurrent X-ray Emission Variations of Eta Carinae and the Binary Hypothesis

    NASA Technical Reports Server (NTRS)

    Ishibashi, K.; Corcoran, M. F.; Davidson, K.; Swank, J. H.; Petre, R.; Drake, S. A.; Damineki, A.; White, S.

    1998-01-01

    Recent studies suggest that, the super-massive star eta Carinae may have a massive stellar companion (Damineli, Conti, and Lopes 1997), although the dense ejecta surrounding the star make this claim hard to test using conventional methods. Settling this question is critical for determining the current evolutionary state and future evolution of the star. We address this problem by an unconventional method: If eta Carinae is a binary, X-ray emission should be produced in shock waves generated by wind-wind collisions in the region between eta Carinae and its companion. Detailed X-ray monitoring of eta Carinae for more that) 2 years shows that the observed emission generally resembles colliding-wind X-ray emission, but with some significant discrepancies. Furthermore, periodic X-ray "flaring" may provide an additional clue to determine the presence of a companion star and for atmospheric pulsation in eta Carinae.

  18. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions.

    PubMed

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-04-14

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.

  19. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-04-01

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.

  20. Measurements of azimuthal anisotropy and charged-particle multiplicity in d + Au collisions at s NN = 200 , 62.4, 39, and 19.6 GeV

    DOE PAGES

    Aidala, C.; Akiba, Y.; Alfred, M.; ...

    2017-12-26

    Here, we present measurements of the elliptic flow ( v 2 ) as a function of transverse momentum ( p T ), pseudorapidity ( η ), and centrality in d + Au collisions at √ s NN = 200 , 62.4, 39, and 19.6 GeV. The beam-energy scan of d + Au collisions provides a testing ground for the onset of flow signatures in small collision systems. We measure a nonzero v 2 signal at all four collision energies, which, at midrapidity and low p T , is consistent with predictions from viscous hydrodynamic models. Comparisons with calculations from partonmore » transport models (based on the ampt Monte Carlo generator) show good agreement with the data at midrapidity to forward ( d -going) rapidities and low p T . At backward (Au-going) rapidities and p T > 1.5 GeV / c , the data diverges from ampt calculations of v 2 relative to the initial geometry, indicating the possible dominance of nongeometry related correlations, referred to as nonflow. We also present measurements of the charged-particle multiplicity ( d N ch / d η ) as a function of η in central d + Au collisions at the same energies. We find that in d + Au collisions at √ s NN = 200 GeV the v 2 scales with d N ch / d η over all η in the PHENIX acceptance. At √ s NN = 62.4 , and 39 GeV, v 2 scales with d N ch / d η at midrapidity and forward rapidity, but falls off at backward rapidity. This is thus a departure from the d N ch / d η scaling may be a further indication of nonflow effects dominating at backward rapidity.« less

  1. Measurements of azimuthal anisotropy and charged-particle multiplicity in d + Au collisions at s NN = 200 , 62.4, 39, and 19.6 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aidala, C.; Akiba, Y.; Alfred, M.

    Here, we present measurements of the elliptic flow ( v 2 ) as a function of transverse momentum ( p T ), pseudorapidity ( η ), and centrality in d + Au collisions at √ s NN = 200 , 62.4, 39, and 19.6 GeV. The beam-energy scan of d + Au collisions provides a testing ground for the onset of flow signatures in small collision systems. We measure a nonzero v 2 signal at all four collision energies, which, at midrapidity and low p T , is consistent with predictions from viscous hydrodynamic models. Comparisons with calculations from partonmore » transport models (based on the ampt Monte Carlo generator) show good agreement with the data at midrapidity to forward ( d -going) rapidities and low p T . At backward (Au-going) rapidities and p T > 1.5 GeV / c , the data diverges from ampt calculations of v 2 relative to the initial geometry, indicating the possible dominance of nongeometry related correlations, referred to as nonflow. We also present measurements of the charged-particle multiplicity ( d N ch / d η ) as a function of η in central d + Au collisions at the same energies. We find that in d + Au collisions at √ s NN = 200 GeV the v 2 scales with d N ch / d η over all η in the PHENIX acceptance. At √ s NN = 62.4 , and 39 GeV, v 2 scales with d N ch / d η at midrapidity and forward rapidity, but falls off at backward rapidity. This is thus a departure from the d N ch / d η scaling may be a further indication of nonflow effects dominating at backward rapidity.« less

  2. Measurements of azimuthal anisotropy and charged-particle multiplicity in d + Au collisions at √{sNN}=200 , 62.4, 39, and 19.6 GeV

    NASA Astrophysics Data System (ADS)

    Aidala, C.; Akiba, Y.; Alfred, M.; Aoki, K.; Apadula, N.; Ayuso, C.; Babintsev, V.; Bagoly, A.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Blau, D. S.; Boer, M.; Bok, J. S.; Brooks, M. L.; Bryslawskyj, J.; Bumazhnov, V.; Butler, C.; Campbell, S.; Canoa Roman, V.; Chi, C. Y.; Chiu, M.; Connors, M.; Csanád, M.; Csörgő, T.; Danley, T. W.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Do, J. H.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Enokizono, A.; Esumi, S.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukuda, Y.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Goto, Y.; Grau, N.; Greene, S. V.; Gunji, T.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Han, S. Y.; Hasegawa, S.; Haseler, T. O. S.; He, X.; Hemmick, T. K.; Hill, K.; Hodges, A.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Imrek, J.; Inaba, M.; Isenhower, D.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Ji, Z.; Johnson, B. M.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kang, J. H.; Kapukchyan, D.; Karthas, S.; Kazantsev, A. V.; Khachatryan, V.; Khanzadeev, A.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M.; Kim, M. H.; Kincses, D.; Kistenev, E.; Koblesky, T.; Kotov, D.; Kudo, S.; Kurita, K.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, S. H.; Leitch, M. J.; Leung, Y. H.; Lewis, N. A.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Lökös, S.; Lynch, D.; Majoros, T.; Makek, M.; Malaev, M.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGlinchey, D.; Metzger, W. J.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Murakami, T.; Murata, J.; Nagai, K.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, M.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Perezlara, C. E.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pun, A.; Purschke, M. L.; Radzevich, P. V.; Read, K. F.; Riabov, V.; Riabov, Y.; Richford, D.; Rinn, T.; Rosati, M.; Rowan, Z.; Runchey, J.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Schaefer, B.; Schmoll, B. K.; Seidl, R.; Sen, A.; Seto, R.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Silva, C. L.; Silvermyr, D.; Skoby, M. J.; Slunečka, M.; Smith, K. L.; Soltz, R. A.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Syed, S.; Takeda, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tieulent, R.; Timilsina, A.; Tomášek, M.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vazquez-Carson, S.; Velkovska, J.; Virius, M.; Vrba, V.; Wang, X. R.; Wang, Z.; Watanabe, Y.; Wong, C. P.; Xu, C.; Xu, Q.; Yamaguchi, Y. L.; Yanovich, A.; Yin, P.; Yoo, J. H.; Yoon, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zharko, S.; Zou, L.; Phenix Collaboration

    2017-12-01

    We present measurements of the elliptic flow (v2) as a function of transverse momentum (pT), pseudorapidity (η ), and centrality in d +Au collisions at √{sNN}=200 , 62.4, 39, and 19.6 GeV. The beam-energy scan of d +Au collisions provides a testing ground for the onset of flow signatures in small collision systems. We measure a nonzero v2 signal at all four collision energies, which, at midrapidity and low pT, is consistent with predictions from viscous hydrodynamic models. Comparisons with calculations from parton transport models (based on the ampt Monte Carlo generator) show good agreement with the data at midrapidity to forward (d -going) rapidities and low pT. At backward (Au-going) rapidities and pT>1.5 GeV /c , the data diverges from ampt calculations of v2 relative to the initial geometry, indicating the possible dominance of nongeometry related correlations, referred to as nonflow. We also present measurements of the charged-particle multiplicity (d Nch/d η ) as a function of η in central d +Au collisions at the same energies. We find that in d +Au collisions at √{sNN}=200 GeV the v2 scales with d Nch/d η over all η in the PHENIX acceptance. At √{sNN}=62.4 , and 39 GeV, v2 scales with d Nch/d η at midrapidity and forward rapidity, but falls off at backward rapidity. This departure from the d Nch/d η scaling may be a further indication of nonflow effects dominating at backward rapidity.

  3. Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Xiao, Heng; Sun, Honglei

    2018-01-01

    The settling of cohesive sediment is ubiquitous in aquatic environments, and the study of the settling process is important for both engineering and environmental reasons. In the settling process, the silt particles show behaviors that are different from non-cohesive particles due to the influence of inter-particle cohesive force. For instance, the flocs formed in the settling process of cohesive silt can loosen the packing, and thus the structural densities of cohesive silt beds are much smaller than that of non-cohesive sand beds. While there is a consensus that cohesive behaviors depend on the characteristics of sediment particles (e.g., Bond number, particle size distribution), little is known about the exact influence of these characteristics on the cohesive behaviors. In addition, since the cohesive behaviors of the silt are caused by the inter-particle cohesive forces, the motions of and the contacts among silt particles should be resolved to study these cohesive behaviors in the settling process. However, studies of the cohesive behaviors of silt particles in the settling process based on particle-resolving approach are still lacking. In the present work, three-dimensional settling process is investigated numerically by using CFD-DEM (Computational Fluid Dynamics-Discrete Element Method). The inter-particle collision force, the van der Waals force, and the fluid-particle interaction forces are considered. The numerical model is used to simulate the hindered settling process of silt based on the experimental setup in the literature. The results obtained in the simulations, including the structural densities of the beds, the characteristic lines, and the particle terminal velocity, are in good agreement with the experimental observations in the literature. To the authors' knowledge, this is the first time that the influences of non-dimensional Bond number and particle polydispersity on the structural densities of silt beds have been investigated separately. The results demonstrate that the cohesive behavior of silt in the settling process is attributed to both the cohesion among silt particles themselves and the particle polydispersity. To guide to the macro-scale modeling of cohesive silt sedimentation, the collision frequency functions obtained in the numerical simulations are also presented based on the micromechanics of particles. The results obtained by using CFD-DEM indicate that the binary collision theory over-estimated the particle collision frequency in the flocculation process at high solid volume fraction.

  4. Collisional Cascades Following Triton's Capture

    NASA Astrophysics Data System (ADS)

    Cuk, Matija; Hamilton, Douglas P.; Stewart-Mukhopadhyay, Sarah T.

    2017-10-01

    Neptune's moon Triton is widely thought to have been captured from heliocentric orbit, most likely through binary dissociation (Agnor and Hamilton, 2006). Triton's original eccentric orbit must have been subsequently circularized by satellite tides (Goldreich et al. 1989). Cuk and Gladman (2005) found that Kozai oscillations make early tidal evolution inefficient, and have proposed that collisions between Triton and debris from pre-existing satellites was the dominant mechanism of shrinking Triton's large post-capture orbit. However, Cuk and Hamilton (DPS 2016), using numerical simulations and results of Stewart and Leinhardt (2012), have found that collisions between regular satellites are unlikely to be destructive, while collisions between prograde moons and Triton are certainly erosive if not catastrophic. An obvious outcome would be pre-existing moon material gradually grinding down Triton and making it reaccrete in the local Laplace plane, in conflict with Triton's large current inclination. We propose that the crucial ingredient for understanding the early evolution of the Neptunian system are the collisions between the moons and the prograde and retrograde debris originating from the pre-existing moons and Triton. In particular, we expect early erosive impact(s) on Triton to generate debris that will, in subsequent collisions, disrupt the regular satellites. If the retrograde material were to dominate at some planetocentric distances, the end result may be a large cloud or disk of retrograde debris that would be accreted by Triton, shrinking Triton's orbit. Some of the prograde debris could survive in a compact disk interior to Triton's pericenter, eventually forming the inner moons of Neptune. We will present results of numerical modeling of these complex dynamical processes at the meeting.

  5. Odds of observing the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlen, A.

    2010-03-15

    Eternal inflation predicts that our observable universe lies within a bubble (or pocket universe) embedded in a volume of inflating space. The interior of the bubble undergoes inflation and standard cosmology, while the bubble walls expand outward and collide with other neighboring bubbles. The collisions provide either an opportunity to make a direct observation of the multiverse or, if they produce unacceptable anisotropy, a threat to inflationary theory. The probability of an observer in our bubble detecting the effects of collisions has an absolute upper bound set by the odds of being in the part of our bubble that liesmore » in the forward light cone of a collision; in the case of collisions with bubbles of identical vacua, this bound is given by the bubble nucleation rate times (H{sub O}/H{sub I}){sup 2}, where H{sub O} is the Hubble scale outside the bubbles and H{sub I} is the scale of the second round of inflation that occurs inside our bubble. Similar results were obtained by Freigovel et al. using a different method for the case of collisions with bubbles of much larger cosmological constant; here, it is shown to hold in the case of collisions with identical bubbles as well.« less

  6. Dynamical fate of wide binaries in the solar neighborhood

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, M.D.; Shapiro, S.L.; Wasserman, I.

    1987-01-01

    An analytical model is presented for the evolution of wide binaries in the Galaxy. The study is pertinent to the postulated solar companion, Nemesis, which may disturb the Oort cloud and cause catastrophic comet showers to strike the earth every 26 Myr. Distant gravitational encounters are modeled by Fokker-Planck coefficients for advection and diffusion of the orbital binding energy. It is shown that encounters with passing stars cause a diffusive evolution of the binding energy and semimajor axis. Encounters with subclumps in giant molecular clouds disrupt orbits to a degree dependent on the cumulative number of stellar encounters. The timemore » scales of the vents and the limitations of scaling laws used are discussed. Results are provided from calculations of galactic distribution of wide binaries and the evolution of wide binary orbits. 38 references.« less

  7. Multimodal Discriminative Binary Embedding for Large-Scale Cross-Modal Retrieval.

    PubMed

    Wang, Di; Gao, Xinbo; Wang, Xiumei; He, Lihuo; Yuan, Bo

    2016-10-01

    Multimodal hashing, which conducts effective and efficient nearest neighbor search across heterogeneous data on large-scale multimedia databases, has been attracting increasing interest, given the explosive growth of multimedia content on the Internet. Recent multimodal hashing research mainly aims at learning the compact binary codes to preserve semantic information given by labels. The overwhelming majority of these methods are similarity preserving approaches which approximate pairwise similarity matrix with Hamming distances between the to-be-learnt binary hash codes. However, these methods ignore the discriminative property in hash learning process, which results in hash codes from different classes undistinguished, and therefore reduces the accuracy and robustness for the nearest neighbor search. To this end, we present a novel multimodal hashing method, named multimodal discriminative binary embedding (MDBE), which focuses on learning discriminative hash codes. First, the proposed method formulates the hash function learning in terms of classification, where the binary codes generated by the learned hash functions are expected to be discriminative. And then, it exploits the label information to discover the shared structures inside heterogeneous data. Finally, the learned structures are preserved for hash codes to produce similar binary codes in the same class. Hence, the proposed MDBE can preserve both discriminability and similarity for hash codes, and will enhance retrieval accuracy. Thorough experiments on benchmark data sets demonstrate that the proposed method achieves excellent accuracy and competitive computational efficiency compared with the state-of-the-art methods for large-scale cross-modal retrieval task.

  8. Stellar Vampires Unmasked

    NASA Astrophysics Data System (ADS)

    2006-10-01

    Astronomers have found possible proofs of stellar vampirism in the globular cluster 47 Tucanae. Using ESO's Very Large Telescope, they found that some hot, bright, and apparently young stars in the cluster present less carbon and oxygen than the majority of their sisters. This indicates that these few stars likely formed by taking their material from another star. "This is the first detection of a chemical signature clearly pointing to a specific scenario to form so-called 'Blue straggler stars' in a globular cluster", said Francesco Ferraro, from the Astronomy Department of Bologna University (Italy) and lead-author of the paper presenting the results. Blue stragglers are unexpectedly young-looking stars found in stellar aggregates, such as globular clusters, which are known to be made up of old stars. These enigmatic objects are thought to be created in either direct stellar collisions or through the evolution and coalescence of a binary star system in which one star 'sucks' material off the other, rejuvenating itself. As such, they provide interesting constraints on both binary stellar evolution and star cluster dynamics. To date, the unambiguous signatures of either stellar traffic accidents or stellar vampirism have not been observed, and the formation mechanisms of Blue stragglers are still a mystery. The astronomers used ESO's Very Large Telescope to measure the abundance of chemical elements at the surface of 43 Blue straggler stars in the globular cluster 47 Tucanae [1]. They discovered that six of these Blue straggler stars contain less carbon and oxygen than the majority of these peculiar objects. Such an anomaly indicates that the material at the surface of the blue stragglers comes from the deep interiors of a parent star [2]. Such deep material can reach the surface of the blue straggler only during the mass transfer process occurring between two stars in a binary system. Numerical simulations indeed show that the coalescence of stars should not result in anomalous abundances. ESO PR Photo 37/06 ESO PR Photo 37/06 Abundances in Blue Straggler Stars In the core of a globular cluster, stars are packed extremely close to each other: more than 4000 stars are found in the innermost light-year-sized cube of 47 Tucanae. Thus, stellar collisions are thought to be very frequent and the collision channel for the formation of blue stragglers should be extremely efficient. The chemical signature detected by these observations demonstrates that also the binary mass-transfer scenario is fully active even in a high-density cluster like 47 Tuc. "Our discovery is therefore a fundamental step toward the solution of the long-standing mystery of blue straggler formation in globular clusters," said Ferraro. Measurements of so many faint stars are only possible since the advent of 8-m class telescopes equipped with multiplexing capability spectrographs. In this case, the astronomers used the FLAMES/Giraffe instrument that allows the simultaneous observation of up to 130 targets at a time, making it ideally suited for surveying individual stars in closely populated fields.

  9. NuSTAR Hard X-Ray Observation of the Gamma-Ray Binary Candidate HESS J1832-093

    NASA Astrophysics Data System (ADS)

    Mori, Kaya; Gotthelf, E. V.; Hailey, Charles J.; Hord, Ben J.; de Oña Wilhelmi, Emma; Rahoui, Farid; Tomsick, John A.; Zhang, Shuo; Hong, Jaesub; Garvin, Amani M.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2017-10-01

    We present a hard X-ray observation of the TeV gamma-ray binary candidate HESS J1832-093, which is coincident with the supernova remnant G22.7-0.2, using the Nuclear Spectroscopic Telescope Array. Non-thermal X-ray emission from XMMU J183245-0921539, the X-ray source associated with HESS J1832-093, is detected up to ˜30 keV and is well-described by an absorbed power-law model with a best-fit photon index {{Γ }}=1.5+/- 0.1. A re-analysis of archival Chandra and XMM-Newton data finds that the long-term X-ray flux increase of XMMU J183245-0921539 is {50}-20+40 % (90% C.L.), much less than previously reported. A search for a pulsar spin period or binary orbit modulation yields no significant signal to a pulse fraction limit of {f}p< 19 % in the range 4 ms < P< 40 ks. No red noise is detected in the FFT power spectrum to suggest active accretion from a binary system. While further evidence is required, we argue that the X-ray and gamma-ray properties of XMMU J183245-0921539 are most consistent with a non-accreting binary generating synchrotron X-rays from particle acceleration in the shock formed as a result of the pulsar and stellar wind collision. We also report on three nearby hard X-ray sources, one of which may be associated with diffuse emission from a fast-moving supernova fragment interacting with a dense molecular cloud.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tofflemire, Benjamin M.; Mathieu, Robert D.; Ardila, David R.

    The theory of binary star formation predicts that close binaries ( a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres nearmore » periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.« less

  11. Creation of an anti-imaging system using binary optics.

    PubMed

    Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H P; Gan, Fuxi; Zhuang, Songlin

    2016-09-13

    We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element.

  12. Creation of an anti-imaging system using binary optics

    PubMed Central

    Wang, Haifeng; Lin, Jian; Zhang, Dawei; Wang, Yang; Gu, Min; Urbach, H. P.; Gan, Fuxi; Zhuang, Songlin

    2016-01-01

    We present a concealing method in which an anti-point spread function (APSF) is generated using binary optics, which produces a large-scale dark area in the focal region that can hide any object located within it. This result is achieved by generating two identical PSFs of opposite signs, one consisting of positive electromagnetic waves from the zero-phase region of the binary optical element and the other consisting of negative electromagnetic waves from the pi-phase region of the binary optical element. PMID:27620068

  13. TESTING THE ASTEROSEISMIC SCALING RELATIONS FOR RED GIANTS WITH ECLIPSING BINARIES OBSERVED BY KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaulme, P.; McKeever, J.; Jackiewicz, J.

    2016-12-01

    Given the potential of ensemble asteroseismology for understanding fundamental properties of large numbers of stars, it is critical to determine the accuracy of the scaling relations on which these measurements are based. From several powerful validation techniques, all indications so far show that stellar radius estimates from the asteroseismic scaling relations are accurate to within a few percent. Eclipsing binary systems hosting at least one star with detectable solar-like oscillations constitute the ideal test objects for validating asteroseismic radius and mass inferences. By combining radial velocity (RV) measurements and photometric time series of eclipses, it is possible to determine themore » masses and radii of each component of a double-lined spectroscopic binary. We report the results of a four-year RV survey performed with the échelle spectrometer of the Astrophysical Research Consortium’s 3.5 m telescope and the APOGEE spectrometer at Apache Point Observatory. We compare the masses and radii of 10 red giants (RGs) obtained by combining radial velocities and eclipse photometry with the estimates from the asteroseismic scaling relations. We find that the asteroseismic scaling relations overestimate RG radii by about 5% on average and masses by about 15% for stars at various stages of RG evolution. Systematic overestimation of mass leads to underestimation of stellar age, which can have important implications for ensemble asteroseismology used for Galactic studies. As part of a second objective, where asteroseismology is used for understanding binary systems, we confirm that oscillations of RGs in close binaries can be suppressed enough to be undetectable, a hypothesis that was proposed in a previous work.« less

  14. Abstract ID: 240 A probabilistic-based nuclear reaction model for Monte Carlo ion transport in particle therapy.

    PubMed

    Maria Jose, Gonzalez Torres; Jürgen, Henniger

    2018-01-01

    In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.

  15. The variable X-ray spectrum of the Wolf-Rayet binary WR140 with Suzaku

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko; Hamaguchi, Kenji; Corcoran, Michael; Pollock, Andy; Moffat, Anthony; Williams, Peredur; Dougherty, Sean; Pittard, Julian

    2011-01-01

    We report the preliminary results of the Suzaku observations of the W-R binary WR 140 (WC7+O5I). We executed the observations at four different epochs around periastron passage in Jan. 2009 to understand the W-R stellar wind as well as the wind-wind collision shocks. The total exposure was 210 ks. We detected hard X-ray excess in the HXD band (> 10 keV) for the first time from a W-R binary. Another notable discovery was a soft component which is less absorbed even by the dense wind. The spectra can be fitted by three different components; one is for the cool component with kT=0.1--0.6 keV, one for a dominant high-temperature component with kT ˜3 keV, and one for the hardest power-law component with the photon index of ˜2. As periastron approached, the column density of the high-temperature component increased, which can be explained as self-absorption by the W-R wind. The emission measure of the dominant, high-temperature component is not inversely proportional to the distance between the two stars.

  16. Full Ionisation In Binary-Binary Encounters With Small Positive Energies

    NASA Astrophysics Data System (ADS)

    Sweatman, W. L.

    2006-08-01

    Interactions between binary stars and single stars and binary stars and other binary stars play a key role in the dynamics of a dense stellar system. Energy can be transferred between the internal dynamics of a binary and the larger scale dynamics of the interacting objects. Binaries can be destroyed and created by the interaction. In a binary-binary encounter, full ionisation occurs when both of the binary stars are destroyed in the interaction to create four single stars. This is only possible when the total energy of the system is positive. For very small energies the probability of this occurring is very low and it tends towards zero as the total energy tends towards zero. Here the case is considered for which all the stars have equal masses. An asymptotic power law is predicted relating the probability of full ionisation with the total energy when this latter quantity is small. The exponent, which is approximately 2.31, is compared with the results from numerical scattering experiments. The theoretical approach taken is similar to one used previously in the three-body problem. It makes use of the fact that the most dramatic changes in scale and energies of a few-body system occur when its components pass near to a central configuration. The position, and number, of these configurations is not known for the general four-body problem, however, with equal masses there are known to be exactly five different cases. Separate consideration and comparison of the properties of orbits close to each of these five central configurations enables the prediction of the form of the cross-section for full ionisation for the case of small positive total energy. This is the relation between total energy and the probability of total ionisation described above.

  17. Effect of collisions on neutrino flavor inhomogeneity in a dense neutrino gas

    DOE PAGES

    Cirigliano, Vincenzo; Paris, Mark W.; Shalgar, Shashank

    2017-09-25

    We investigate the stability, with respect to spatial inhomogeneity, of a two-dimensional dense neutrino gas. The system exhibits growth of seed inhomogeneity due to nonlinear coherent neutrino self-interactions. In the absence of incoherent collisional effects, we also observe a dependence of this instability growth rate on the neutrino mass spectrum: the normal neutrino mass hierarchy exhibits spatial instability over a larger range of neutrino number density compared to that of the inverted case. Furthermore, we consider the effect of elastic incoherent collisions of the neutrinos with a static background of heavy, nucleon-like scatterers. At small scales, the growth of flavormore » instability can be suppressed by collisions. At large length scales we find, perhaps surprisingly, that for inverted neutrino mass hierarchy incoherent collisions fail to suppress flavor instabilities, independent of the coupling strength.« less

  18. Chandra X-Ray and Hubble Space Telescope Imaging of Optically Selected Kiloparsec-scale Binary Active Galactic Nuclei. II. Host Galaxy Morphology and AGN Activity

    NASA Astrophysics Data System (ADS)

    Shangguan, Jinyi; Liu, Xin; Ho, Luis C.; Shen, Yue; Peng, Chien Y.; Greene, Jenny E.; Strauss, Michael A.

    2016-05-01

    Binary active galactic nuclei (AGNs) provide clues to how gas-rich mergers trigger and fuel AGNs and how supermassive black hole (SMBH) pairs evolve in a gas-rich environment. While significant effort has been invested in their identification, the detailed properties of binary AGNs and their host galaxies are still poorly constrained. In a companion paper, we examined the nature of ionizing sources in the double nuclei of four kiloparsec-scale binary AGNs with redshifts between 0.1 and 0.2. Here, we present their host galaxy morphology based on F336W (U-band) and F105W (Y-band) images taken by the Wide Field Camera 3 on board the Hubble Space Telescope. Our targets have double-peaked narrow emission lines and were confirmed to host binary AGNs with follow-up observations. We find that kiloparsec-scale binary AGNs occur in galaxy mergers with diverse morphological types. There are three major mergers with intermediate morphologies and a minor merger with a dominant disk component. We estimate the masses of the SMBHs from their host bulge stellar masses and obtain Eddington ratios for each AGN. Compared with a representative control sample drawn at the same redshift and stellar mass, the AGN luminosities and Eddington ratios of our binary AGNs are similar to those of single AGNs. The U - Y color maps indicate that clumpy star-forming regions could significantly affect the X-ray detection of binary AGNs, e.g., the hardness ratio. Considering the weak X-ray emission in AGNs triggered in merger systems, we suggest that samples of X-ray-selected AGNs may be biased against gas-rich mergers. Based, in part, on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program number GO 12363.

  19. Holography and hydrodynamics in small systems

    NASA Astrophysics Data System (ADS)

    Chesler, Paul M.

    2016-12-01

    Using holographic duality, we present results for the off-center collision of Gaussian wave packets in strongly coupled N = 4 supersymmetric Yang-Mills theory. The wave packets are thin along the collision axis and superficially at least resemble Lorentz contracted colliding protons. The collision results in the formation of a droplet of liquid of size R ∼ 1 /Teff where Teff is the effective temperature, which is the characteristic microscopic scale in strongly coupled plasma. These results demonstrate the applicability of hydrodynamics to microscopically small systems and bolster the notion that hydrodynamics can be applied to heavy-light ion collisions as well as proton-proton collisions.

  20. The Tarantula Massive Binary Monitoring. II. First SB2 orbital and spectroscopic analysis for the Wolf-Rayet binary R145

    NASA Astrophysics Data System (ADS)

    Shenar, T.; Richardson, N. D.; Sablowski, D. P.; Hainich, R.; Sana, H.; Moffat, A. F. J.; Todt, H.; Hamann, W.-R.; Oskinova, L. M.; Sander, A.; Tramper, F.; Langer, N.; Bonanos, A. Z.; de Mink, S. E.; Gräfener, G.; Crowther, P. A.; Vink, J. S.; Almeida, L. A.; de Koter, A.; Barbá, R.; Herrero, A.; Ulaczyk, K.

    2017-02-01

    We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159 d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300 M⊙, making it a candidate for being the most massive star known to date. While the primary is a known late-type, H-rich Wolf-Rayet star (WN6h), the secondary has so far not been unambiguously detected. Using moderate-resolution spectra, we are able to derive accurate radial velocities for both components. By performing simultaneous orbital and polarimetric analyses, we derive the complete set of orbital parameters, including the inclination. The spectra are disentangled and spectroscopically analyzed, and an analysis of the wind-wind collision zone is conducted. The disentangled spectra and our models are consistent with a WN6h type for the primary and suggest that the secondary is an O3.5 If*/WN7 type star. We derive a high eccentricity of e = 0.78 and minimum masses of M1sin3I ≈ M2sin3I = 13 ± 2 M⊙, with q = M2/M1 = 1.01 ± 0.07. An analysis of emission excess stemming from a wind-wind collision yields an inclination similar to that obtained from polarimetry (I = 39 ± 6°). Our analysis thus implies and , excluding M1 > 300 M⊙. A detailed comparison with evolution tracks calculated for single and binary stars together with the high eccentricity suggests that the components of the system underwent quasi-homogeneous evolution and avoided mass-transfer. This scenario would suggest current masses of ≈ 80 M⊙ and initial masses of MI,1 ≈ 105 and MI,2 ≈ 90 M⊙, consistent with the upper limits of our derived orbital masses, and would imply an age of ≈ 2.2 Myr. A copy of the disentangled spectra, as either FITS files or tables are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A85

  1. Using Blue Stragglers to Predict Retained Black Hole Population in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Hermanek, Keith; Chatterjee, Sourav; Rasio, Frederic

    2018-01-01

    Large numbers of black holes (BHs) are expected to form in massive star clusters typical of the globular clusters (GCs). Sophisticated theoretical models suggest that many of these BHs can be retained in present-day GCs. Observations have also identified several BH candidates in Galactic and extragalactic GCs (e.g., Macarone et al. 2007; Irwin et al. 2010; Strader et al. 2012; Chomiuk et al. 2013; Miller-Jones et al. 2014). It has also been shown that high-mass and high-density clusters such as GCs are efficient factories of merging binary BHs similar to those observed by the LIGO observatories (Abbott et al. 2016a,b,c,d,e; Rodriguez et al. 2016). Understanding the formation rate and properties of binary BHs are dependent on a detailed understanding of how the BHs dynamically evolve within GCs. Nevertheless, directly detecting BHs in GCs is extremely challenging; BHs only in binaries with limited configurations can be directly detected by the detection of gravitational wave, X-ray, or radio emissions. We propose an indirect of inferring the number of undetected retained BHs in a GC by investigating the dynamical effects of a large number of BHs on the production of other tracer populations such as Blue Straggler Stars (BSS). Using a large grid of detailed GC models we show that there is a clear anti-correlation between the number of BSS in a cluster and the number of retained BHs. Being the most massive species, large numbers of retained BHs will dominate the core of the cluster as a result of mass-segregation driving away other low-mass species such as main-sequence stars from central high-density regions. BSS are expected to form from physical collisions between main-sequence (MS) stars mediated by binary encounters (e.g., Chatterjee et al. 2013) in cores of GCs. Production of BSS by collisions or mass transfer channels are suppressed if a large number of retained BHs in a cluster restrict the number of MS stars in the core. Extensive observational data exist on the number and radial distribution of BSS in GCs. Thus, this anti-correlation between the number of retained BHs and the number of BSS, once carefully calibrated by theoretical models, can be used to infer the population of undetected BHs in GCs.

  2. Edge-SIFT: discriminative binary descriptor for scalable partial-duplicate mobile search.

    PubMed

    Zhang, Shiliang; Tian, Qi; Lu, Ke; Huang, Qingming; Gao, Wen

    2013-07-01

    As the basis of large-scale partial duplicate visual search on mobile devices, image local descriptor is expected to be discriminative, efficient, and compact. Our study shows that the popularly used histogram-based descriptors, such as scale invariant feature transform (SIFT) are not optimal for this task. This is mainly because histogram representation is relatively expensive to compute on mobile platforms and loses significant spatial clues, which are important for improving discriminative power and matching near-duplicate image patches. To address these issues, we propose to extract a novel binary local descriptor named Edge-SIFT from the binary edge maps of scale- and orientation-normalized image patches. By preserving both locations and orientations of edges and compressing the sparse binary edge maps with a boosting strategy, the final Edge-SIFT shows strong discriminative power with compact representation. Furthermore, we propose a fast similarity measurement and an indexing framework with flexible online verification. Hence, the Edge-SIFT allows an accurate and efficient image search and is ideal for computation sensitive scenarios such as a mobile image search. Experiments on a large-scale dataset manifest that the Edge-SIFT shows superior retrieval accuracy to Oriented BRIEF (ORB) and is superior to SIFT in the aspects of retrieval precision, efficiency, compactness, and transmission cost.

  3. The recent breakup of an asteroid in the main-belt region.

    PubMed

    Nesvorný, David; Bottke, William F; Dones, Luke; Levison, Harold F

    2002-06-13

    The present population of asteroids in the main belt is largely the result of many past collisions. Ideally, the asteroid fragments resulting from each impact event could help us understand the large-scale collisions that shaped the planets during early epochs. Most known asteroid fragment families, however, are very old and have therefore undergone significant collisional and dynamical evolution since their formation. This evolution has masked the properties of the original collisions. Here we report the discovery of a family of asteroids that formed in a disruption event only 5.8 +/- 0.2 million years ago, and which has subsequently undergone little dynamical and collisional evolution. We identified 39 fragments, two of which are large and comparable in size (diameters of approximately 19 and approximately 14 km), with the remainder exhibiting a continuum of sizes in the range 2-7 km. The low measured ejection velocities suggest that gravitational re-accumulation after a collision may be a common feature of asteroid evolution. Moreover, these data can be used to check numerical models of larger-scale collisions.

  4. Onset of radial flow in p + p collisions

    DOE PAGES

    Jiang, Kun; Zhu, Yinying; Liu, Weitao; ...

    2015-02-23

    It has been debated for decades whether hadrons emerging from p+p collisions exhibit collective expansion. The signal of the collective motion in p+p collisions is not as clear as in heavy-ion collisions because of the low multiplicity and large fluctuation in p+p collisions. Tsallis Blast-Wave (TBW) model is a thermodynamic approach, introduced to handle the overwhelming correlation and fluctuation in the hadronic processes. We have systematically studied the identified particle spectra in p+p collisions from RHIC to LHC using TBW and found no appreciable radial flow in p+p collisions below √s = 900 GeV. At LHC higher energy of 7more » TeV in p+p collisions, the radial flow velocity achieves an average of (β) = 0.320 ± 0.005. This flow velocity is comparable to that in peripheral (40-60%) Au+Au collisions at RHIC. In addition, breaking of the identified particle spectra m T scaling was also observed at LHC from a model independent test.« less

  5. Calculating Gravitational Wave Signature from Binary Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2003-01-01

    Calculations of the final merger stage of binary black hole evolution can only be carried out using full scale numerical relativity simulations. We review the status of these calculations, highlighting recent progress and current challenges.

  6. Effects of turbulence on the collision rate of cloud droplets

    NASA Astrophysics Data System (ADS)

    Ayala, Orlando

    This dissertation concerns effects of air turbulence on the collision rate of atmospheric cloud droplets. This research was motivated by the speculation that air turbulence could enhance the collision rate thereby help transform cloud droplets to rain droplets in a short time as observed in nature. The air turbulence within clouds is assumed to be homogeneous and isotropic, and its small-scale motion (1 mm to 10 cm scales) is computationally generated by direct numerical integration of the full Navier-Stokes equations. Typical droplet and turbulence parameters of convective warm clouds are used to determine the Stokes numbers (St) and the nondimensional terminal velocities (Sv) which characterize droplet relative inertia and gravitational settling, respectively. A novel and efficient methodology for conducting direct numerical simulations (DNS) of hydrodynamically-interacting droplets in the context of cloud microphysics has been developed. This numerical approach solves the turbulent flow by the pseudo-spectral method with a large-scale forcing, and utilizes an improved superposition method to embed analytically the local, small-scale (10 mum to 1 mm) disturbance flows induced by the droplets. This hybrid representation of background turbulent air motion and the induced disturbance flows is then used to study the combined effects of hydrodynamic interactions and airflow turbulence on the motion and collisions of cloud droplets. Hybrid DNS results show that turbulence can increase the geometric collision kernel relative to the gravitational geometric kernel by as much as 42% due to enhanced radial relative motion and preferential concentration of droplets. The exact level of enhancements depends on the Taylor-microscale Reynolds number, turbulent dissipation rate, and droplet pair size ratio. One important finding is that turbulence has a relatively dominant effect on the collision process between droplets close in size as the gravitational collision mechanism diminishes. A theory was developed to predict the radial relative velocity between droplets at contact. The theory agrees with our DNS results to within 5% for cloud droplets with strong settling. In addition, an empirical model is developed to quantify the radial distribution function. (Abstract shortened by UMI.)

  7. Context-Aware Local Binary Feature Learning for Face Recognition.

    PubMed

    Duan, Yueqi; Lu, Jiwen; Feng, Jianjiang; Zhou, Jie

    2018-05-01

    In this paper, we propose a context-aware local binary feature learning (CA-LBFL) method for face recognition. Unlike existing learning-based local face descriptors such as discriminant face descriptor (DFD) and compact binary face descriptor (CBFD) which learn each feature code individually, our CA-LBFL exploits the contextual information of adjacent bits by constraining the number of shifts from different binary bits, so that more robust information can be exploited for face representation. Given a face image, we first extract pixel difference vectors (PDV) in local patches, and learn a discriminative mapping in an unsupervised manner to project each pixel difference vector into a context-aware binary vector. Then, we perform clustering on the learned binary codes to construct a codebook, and extract a histogram feature for each face image with the learned codebook as the final representation. In order to exploit local information from different scales, we propose a context-aware local binary multi-scale feature learning (CA-LBMFL) method to jointly learn multiple projection matrices for face representation. To make the proposed methods applicable for heterogeneous face recognition, we present a coupled CA-LBFL (C-CA-LBFL) method and a coupled CA-LBMFL (C-CA-LBMFL) method to reduce the modality gap of corresponding heterogeneous faces in the feature level, respectively. Extensive experimental results on four widely used face datasets clearly show that our methods outperform most state-of-the-art face descriptors.

  8. Electromagnetic signature of supermassive black hole binaries that enter their gravitational-wave induced inspiral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loeb, Abraham

    2010-02-15

    Mergers of gas-rich galaxies lead to black hole binaries that coalesce as a result of dynamical friction on the ambient gas. Once the binary tightens to < or approx. 10{sup 3} Schwarzschild radii, its merger is driven by the emission of gravitational waves (GWs). We show that this transition occurs generically at orbital periods of {approx}1-10 years and an orbital velocity v of a few thousand km s{sup -1}, with a very weak dependence on the supply rate of gas (v{proportional_to}M{sup 1/8}). Therefore, as binaries enter their GW-dominated inspiral, they inevitably induce large periodic shifts in the broad emission linesmore » of any associated quasar(s). The probability of finding a binary in tighter configurations scales as v{sup -8} owing to their much shorter lifetimes. Narrow-band monitoring of the broad emission lines of quasars on time scales of months to decades can set a lower limit on the expected rate of GW sources for the Laser Interferometer Space Antenna.« less

  9. Post-Newtonian Dynamical Modeling of Supermassive Black Holes in Galactic-scale Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rantala, Antti; Pihajoki, Pauli; Johansson, Peter H.

    We present KETJU, a new extension of the widely used smoothed particle hydrodynamics simulation code GADGET-3. The key feature of the code is the inclusion of algorithmically regularized regions around every supermassive black hole (SMBH). This allows for simultaneously following global galactic-scale dynamical and astrophysical processes, while solving the dynamics of SMBHs, SMBH binaries, and surrounding stellar systems at subparsec scales. The KETJU code includes post-Newtonian terms in the equations of motions of the SMBHs, which enables a new SMBH merger criterion based on the gravitational wave coalescence timescale, pushing the merger separation of SMBHs down to ∼0.005 pc. Wemore » test the performance of our code by comparison to NBODY7 and rVINE. We set up dynamically stable multicomponent merger progenitor galaxies to study the SMBH binary evolution during galaxy mergers. In our simulation sample the SMBH binaries do not suffer from the final-parsec problem, which we attribute to the nonspherical shape of the merger remnants. For bulge-only models, the hardening rate decreases with increasing resolution, whereas for models that in addition include massive dark matter halos, the SMBH binary hardening rate becomes practically independent of the mass resolution of the stellar bulge. The SMBHs coalesce on average 200 Myr after the formation of the SMBH binary. However, small differences in the initial SMBH binary eccentricities can result in large differences in the SMBH coalescence times. Finally, we discuss the future prospects of KETJU, which allows for a straightforward inclusion of gas physics in the simulations.« less

  10. The influence of sub-grid scale motions on particle collision in homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Xiong, Yan; Li, Jing; Liu, Zhaohui; Zheng, Chuguang

    2018-02-01

    The absence of sub-grid scale (SGS) motions leads to severe errors in particle pair dynamics, which represents a great challenge to the large eddy simulation of particle-laden turbulent flow. In order to address this issue, data from direct numerical simulation (DNS) of homogenous isotropic turbulence coupled with Lagrangian particle tracking are used as a benchmark to evaluate the corresponding results of filtered DNS (FDNS). It is found that the filtering process in FDNS will lead to a non-monotonic variation of the particle collision statistics, including radial distribution function, radial relative velocity, and the collision kernel. The peak of radial distribution function shifts to the large-inertia region due to the lack of SGS motions, and the analysis of the local flowstructure characteristic variable at particle position indicates that the most effective interaction scale between particles and fluid eddies is increased in FDNS. Moreover, this scale shifting has an obvious effect on the odd-order moments of the probability density function of radial relative velocity, i.e. the skewness, which exhibits a strong correlation to the variance of radial distribution function in FDNS. As a whole, the radial distribution function, together with radial relative velocity, can compensate the SGS effects for the collision kernel in FDNS when the Stokes number based on the Kolmogorov time scale is greater than 3.0. However, it still leaves considerable errors for { St}_k <3.0.

  11. Defining acute aortic syndrome after trauma: Are Abbreviated Injury Scale codes a useful surrogate descriptor?

    PubMed

    Leach, R; McNally, Donal; Bashir, Mohamad; Sastry, Priya; Cuerden, Richard; Richens, David; Field, Mark

    2012-10-01

    The severity and location of injuries resulting from vehicular collisions are normally recorded in Abbreviated Injury Scale (AIS) code; we propose a system to link AIS code to a description of acute aortic syndrome (AAS), thus allowing the hypothesis that aortic injury is progressive with collision kinematics to be tested. Standard AIS codes were matched with a clinical description of AAS. A total of 199 collisions that resulted in aortic injury were extracted from a national automotive collision database and the outcomes mapped onto AAS descriptions. The severity of aortic injury (AIS severity score) and stage of AAS progression were compared with collision kinematics and occupant demographics. Post hoc power analyses were used to estimate maximum effect size. The general demographic distribution of the sample represented that of the UK population in regard to sex and age. No significant relationship was observed between estimated test speed, collision direction, occupant location or seat belt use and clinical progression of aortic injury (once initiated). Power analysis confirmed that a suitable sample size was used to observe a medium effect in most of the cases. Similarly, no association was observed between injury severity and collision kinematics. There is sufficient information on AIS severity and location codes to map onto the clinical AAS spectrum. It was not possible, with this data set, to consider the influence of collision kinematics on aortic injury initiation. However, it was demonstrated that after initiation, further progression along the AAS pathway was not influenced by collision kinematics. This might be because the injury is not progressive, because the vehicle kinematics studied do not fully represent the kinematics of the occupants, or because an unknown factor, such as stage of cardiac cycle, dominates. Epidemiologic/prognostic study, level IV.

  12. Disks around merging binary black holes: From GW150914 to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Khan, Abid; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.

    2018-02-01

    We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning black hole binaries with mass ratio q =29 /36 . We survey different disk models which differ in their scale height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model. Scaling our simulations to LIGO GW150914 we find that such systems could explain possible gravitational wave and electromagnetic counterparts such as the Fermi GBM hard x-ray signal reported 0.4 s after GW150915 ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties such as accretion rate periodicities, the emergence of jets throughout inspiral, merger and postmerger, disk temperatures, thermal frequencies, and the time delay between merger and the boost in jet outflows that we reported in earlier studies display only modest dependence on the initial disk model we consider here.

  13. Evolution of Large-Scale Magnetic Fields and State Transitions in Black Hole X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Wang, Ding-Xiong; Huang, Chang-Yin; Wang, Jiu-Zhou

    2010-04-01

    The state transitions of black hole (BH) X-ray binaries are discussed based on the evolution of large-scale magnetic fields, in which the combination of three energy mechanisms are involved: (1) the Blandford-Znajek (BZ) process related to the open field lines connecting a rotating BH with remote astrophysical loads, (2) the magnetic coupling (MC) process related to the closed field lines connecting the BH with its surrounding accretion disk, and (3) the Blandford-Payne (BP) process related to the open field lines connecting the disk with remote astrophysical loads. It turns out that each spectral state of the BH binaries corresponds to each configuration of magnetic field in BH magnetosphere, and the main characteristics of low/hard (LH) state, hard intermediate (HIM) state and steep power law (SPL) state are roughly fitted based on the evolution of large-scale magnetic fields associated with disk accretion.

  14. Sub-Selective Quantization for Learning Binary Codes in Large-Scale Image Search.

    PubMed

    Li, Yeqing; Liu, Wei; Huang, Junzhou

    2018-06-01

    Recently with the explosive growth of visual content on the Internet, large-scale image search has attracted intensive attention. It has been shown that mapping high-dimensional image descriptors to compact binary codes can lead to considerable efficiency gains in both storage and performing similarity computation of images. However, most existing methods still suffer from expensive training devoted to large-scale binary code learning. To address this issue, we propose a sub-selection based matrix manipulation algorithm, which can significantly reduce the computational cost of code learning. As case studies, we apply the sub-selection algorithm to several popular quantization techniques including cases using linear and nonlinear mappings. Crucially, we can justify the resulting sub-selective quantization by proving its theoretic properties. Extensive experiments are carried out on three image benchmarks with up to one million samples, corroborating the efficacy of the sub-selective quantization method in terms of image retrieval.

  15. A far wing line shape theory and its application to the water continuum absorption in the infrared region. I

    NASA Technical Reports Server (NTRS)

    Ma, Q.; Tipping, R. H.

    1991-01-01

    The present theory for the continuous absorption that is due to the far-wing contribution of allowed lines is based on the quasistatic approximation for the far wing limit and the binary collision approximation of one absorber molecule and one bath molecule. The validity of the theory is discussed, and numerical results of the water-continuum absorption in the IR region are presented for comparison with experimental data. Good agreement is obtained for both the magnitude and temperature dependence of the absorption coefficients.

  16. Rail passenger equipment collision tests : analysis of structural measurements

    DOT National Transportation Integrated Search

    2000-11-01

    A two-car full-scale collision test was conducted on April 4, 2000. Two coupled rail passenger cars impacted a rigid wall at 26 mph. The cars were instrumented with strain gauges, accelerometers, and string potentiometers, to measure the deformation ...

  17. Human Factors: Tenerife Revisited

    DOT National Transportation Integrated Search

    1998-01-01

    A collision between two 747 jumbo jets occurred at the Los Rodeos airport in Tenerife, on the Canary Islands cost the lives of 583 people. This case study of that collision shows how large scale disasters result from errors made by people in crucial ...

  18. Interface collisions

    NASA Astrophysics Data System (ADS)

    Aarão Reis, F. D. A.; Pierre-Louis, O.

    2018-04-01

    We provide a theoretical framework to analyze the properties of frontal collisions of two growing interfaces considering different short-range interactions between them. Due to their roughness, the collision events spread in time and form rough domain boundaries, which defines collision interfaces in time and space. We show that statistical properties of such interfaces depend on the kinetics of the growing interfaces before collision, but are independent of the details of their interaction and of their fluctuations during the collision. Those properties exhibit dynamic scaling with exponents related to the growth kinetics, but their distributions may be nonuniversal. Our results are supported by simulations of lattice models with irreversible dynamics and local interactions. Relations to first passage processes are discussed and a possible application to grain-boundary formation in two-dimensional materials is suggested.

  19. Probing parton dynamics of QCD matter with Ω and ϕ production

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, H.; Xu, Z.; Xu, J.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, Z.; Zhang, J. B.; Zhao, F.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-02-01

    We present measurements of Ω and ϕ production at midrapidity from Au+Au collisions at nucleon-nucleon center-of-mass energies √{sN N}=7.7 , 11.5 , 19.6 , 27, and 39 GeV by the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). Motivated by the coalescence formation mechanism for these strange hadrons, we study the ratios of N (Ω-+Ω¯+) /[2 N (ϕ ) ] . These ratios as a function of transverse momentum pT fall on a consistent trend at high collision energies, but start to show deviations in peripheral collisions at √{sN N}=19.6 , 27, and 39 GeV, and in central collisions at 11.5 GeV in the intermediate pT region of 2.4 -3.6 GeV/c . We further evaluate empirically the strange quark pT distributions at hadronization by studying the Ω /ϕ ratios scaled by the number of constituent quarks (NCQ). The NCQ-scaled Ω /ϕ ratios show a suppression of strange quark production in central collisions at 11.5 GeV compared to √{sN N}≥19.6 GeV. The shapes of the presumably thermal strange quark distributions in 0-60% most central collisions at 7.7 GeV show significant deviations from those in 0-10% most central collisions at higher energies. These features suggest that there is likely a change of the underlying strange quark dynamics in the transition from quark matter to hadronic matter at collision energies below 19.6 GeV.

  20. Probing parton dynamics of QCD matter with Ω and Φ production

    DOE PAGES

    Adamczyk, L.

    2016-02-24

    In this paper, we present measurements of Ω and Φ production at midrapidity from Au+Au collisions at nucleon-nucleon center-of-mass energies √sNN = 7.7, 11.5, 19.6 , 27, and 39 GeV by the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). Motivated by the coalescence formation mechanism for these strange hadrons, we study the ratios of N(Ω - +more » $$\\overline{Ω}$$ +) / [2N (Φ)] . These ratios as a function of transverse momentum p T fall on a consistent trend at high collision energies, but start to show deviations in peripheral collisions at √sNN = 19.6, 27, and 39 GeV, and in central collisions at 11.5 GeV in the intermediate p T region of 2.4 - 3.6 GeV/ . We further evaluate empirically the strange quark p T distributions at hadronization by studying the Ω/Φ ratios scaled by the number of constituent quarks (NCQ). The NCQ-scaled Ω/Φ ratios show a suppression of strange quark production in central collisions at 11.5 GeV compared to √sNN ≥ 19.6 GeV. The shapes of the presumably thermal strange quark distributions in 0–60% most central collisions at 7.7 GeV show significant deviations from those in 0–10% most central collisions at higher energies. Lastly, these features suggest that there is likely a change of the underlying strange quark dynamics in the transition from quark matter to hadronic matter at collision energies below 19.6 GeV.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    A bootstrap equation for self-quenched gluon shadowing leads to a reduced magnitude of broadening for partons propagating through a nucleus. Saturation of small-x gluons in a nucleus, which has the form of transverse momentum broadening of projectile gluons in pA collisions in the nuclear rest frame, leads to a modification of the parton distribution functions in the beam compared with pp collisions. In nucleus-nucleus collisions all participating nucleons acquire enhanced gluon density at small x, which boosts further the saturation scale. Solution of the reciprocity equations for central collisions of two heavy nuclei demonstrate a significant, up to several times,more » enhancement of Q{sub sA}{sup 2}, in AA compared with pA collisions.« less

  2. Collision frequency of artificial satellites - The creation of a debris belt

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Cour-Palais, B. G.

    1978-01-01

    The probability of satellite collisions increases with the number of satellites. In the present paper, possible time scales for the growth of a debris belt from collision fragments are determined, and possible consequences of continued unrestrained launch activities are examined. Use is made of techniques formerly developed for studying the evolution (growth) of the asteroid belt. A model describing the flux from the known earth-orbiting satellites is developed, and the results from this model are extrapolated in time to predict the collision frequency between satellites. Hypervelocity impact phenomena are then examined to predict the debris flux resulting from collisions. The results are applied to design requirements for three types of future space missions.

  3. PHOBOS Overview

    NASA Astrophysics Data System (ADS)

    Hofman, David J.; Phobos Collaboration; Bbback; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Kwoźniak; Wysłouch, B.

    2006-11-01

    A brief overview of the current results and conclusions from the PHOBOS experiment at the Relativistic Heavy Ion Collider (RHIC) is given. No evidence is found for non-monotonic behavior of observables measured by PHOBOS in the RHIC energy region. Convincing evidence is found that we have created a state of matter with high energy-density, that is nearly net-baryon free and is strongly interacting. The data are found to exhibit "simple" scaling behaviors, which include extended longitudinal scaling and scaling with the number of participating nucleons. The Au+Au collision charged particle data also exhibit a remarkable factorization of collision energy and geometry.

  4. Collisions of Ir Oxide Nanoparticles with Carbon Nanopipettes: Experiments with One Nanoparticle.

    PubMed

    Zhou, Min; Yu, Yun; Hu, Keke; Xin, Huolin L; Mirkin, Michael V

    2017-03-07

    Investigating the collisions of individual metal nanoparticles (NPs) with electrodes can provide new insights into their electrocatalytic behavior, mass transport, and interactions with surfaces. Here we report a new experimental setup for studying NP collisions based on the use of carbon nanopipettes to enable monitoring multiple collision events involving the same NP captured inside the pipet cavity. A patch clamp amplifier capable of measuring pA-range currents on the microsecond time scale with a very low noise and stable background was used to record the collision transients. The analysis of current transients produced by oxidation of hydrogen peroxide at one IrO x NP provided information about the origins of deactivation of catalytic NPs and the effects of various experimental conditions on the collision dynamics. High-resolution TEM of carbon pipettes was used to attain better understanding of the NP capture and collisions.

  5. Collisions of Ir oxide nanoparticles with carbon nanopipettes: Experiments with one nanoparticle

    DOE PAGES

    Zhou, Min; Yu, Yun; Hu, Keke; ...

    2017-02-03

    Investigating the collisions of individual metal nanoparticles (NPs) with electrodes can provide new insights into their electrocatalytic behavior, mass transport, and interactions with surfaces. Here we report a new experimental setup for studying NP collisions based on the use of carbon nanopipettes to enable monitoring multiple collision events involving the same NP captured inside the pipet cavity. A patch clamp amplifier capable of measuring pA-range currents on the microsecond time scale with a very low noise and stable background was used to record the collision transients. The analysis of current transients produced by oxidation of hydrogen peroxide at one IrOxmore » NP provided information about the origins of deactivation of catalytic NPs and the effects of various experimental conditions on the collision dynamics. Lastly, high-resolution TEM of carbon pipettes was used to attain better understanding of the NP capture and collisions.« less

  6. Universal behavior of charged particle production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  7. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    NASA Astrophysics Data System (ADS)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Phobos Collaboration

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √ SNN = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/ overlinepp and e +e - data. < Nch>/< Npart/2> in nuclear collisions at high energy scales with √ s in a similar way as Nch in e +e - collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  8. Heat Transfer Measurements of the First Experimental Layer of the Fire II Reentry Vehicle in Expansion Tubes

    NASA Astrophysics Data System (ADS)

    Capra, B. R.; Morgan, R. G.; Leyland, P.

    2005-02-01

    The present study focused on simulating a trajectory point towards the end of the first experimental heatshield of the FIRE II vehicle, at a total flight time of 1639.53s. Scale replicas were sized according to binary scaling and instrumented with thermocouples for testing in the X1 expansion tube, located at The University of Queensland. Correlation of flight to experimental data was achieved through the separation, and independent treatment of the heat modes. Preliminary investigation indicates that the absolute value of radiant surface flux is conserved between two binary scaled models, whereas convective heat transfer increases with the length scale. This difference in the scaling techniques result in the overall contribution of radiative heat transfer diminishing to less than 1% in expansion tubes from a flight value of approximately 9-17%. From empirical correlation's it has been shown that the St √ Re number decreases, under special circumstances, in expansion tubes by the percentage radiation present on the flight vehicle. Results obtained in this study give a strong indication that the relative radiative heat transfer contribution in the expansion tube tests is less than that in flight, supporting the analysis that the absolute value remains constant with binary scaling. Key words: Heat Transfer, Fire II Flight Vehicle, Expansion Tubes, Binary Scaling. NOMENCLATURE dA elemental surface area, m2 H0 stagnation enthalpy, MJ/kg L arbitrary length, m ls scale factor equal to Lf /Le M Mach Number ˙m mass flow rate, kg/s p pressure, kPa ˙q heat transfer rate, W/m2 ¯q averaged heat transfer rate W/m2 RN nose radius m Re Reynolds number, equal to ρURN µ s/RD radial distance from symmetry axis St Stanton number, equal to ˙q ρUH0 St √ Re = ˙qR 1/2 N (ρU)1/2 µ1/2H0 over radius of forebody (D/2) T temperature, K U velocity, m/s Ue equivalent velocity m/s, equal to √ 2H0 U1 primary shock speed m/s U2 secondary shock speed m/s ρ density, kg/m3 ρL binary scaling parameter, kg/m2 subscripts c convective exp experiment f flight r radiative s post shock T total ∞ freestream

  9. Chandra Discovery of a Binary Active Galactic Nucleus in Mrk 739

    NASA Astrophysics Data System (ADS)

    Koss, Michael; Mushotzky, Richard; Treister, Ezequiel; Veilleux, Sylvain; Vasudevan, Ranjan; Miller, Neal; Sanders, D. B.; Schawinski, Kevin; Trippe, Margaret

    2011-07-01

    We have discovered a binary active galactic nucleus (AGN) in the galaxy Mrk 739 using Chandra and Swift BAT. We find two luminous (L 2-10 keV = 1.1 × 1043 and 1.0 × 1042 erg s-1), unresolved nuclei with a projected separation of 3.4 kpc (5farcs8 ± 0farcs1) coincident with two bulge components in the optical image. The western X-ray source (Mrk 739W) is highly variable (× 2.5) during the 4 hr Chandra observation and has a very hard spectrum consistent with an AGN. While the eastern component was already known to be an AGN based on the presence of broad optical recombination lines, Mrk 739W shows no evidence of being an AGN in optical, UV, and radio observations, suggesting the critical importance of high spatial resolution hard X-ray observations (>2 keV) in finding these binary AGNs. A high level of star formation combined with a very low L [O III]/L 2-10 keV ratio cause the AGN to be missed in optical observations. 12CO observations of the (3-2) and (2-1) lines indicate large amounts of molecular gas in the system that could be driven toward the black holes during the violent galaxy collision and be key to fueling the binary AGN. Mrk 739E has a high Eddington ratio of 0.71 and a small black hole (log M BH = 7.05 ± 0.3) consistent with an efficiently accreting AGN. Other than NGC 6240, this stands as the nearest case of a binary AGN discovered to date.

  10. A Coordinated X-Ray and Optical Campaign of the Nearest Massive Eclipsing Binary, Delta Orionis Aa. II. X-Ray Variability

    NASA Technical Reports Server (NTRS)

    Nichols, J.; Huenemoerder, D. P.; Corcoran, M. F.; Waldron, W.; Naze, Y.; Pollock, A. M. T.; Moffat, A. F. J.; Lauer, J.; Shenar, T.; Russell, C. M. P.; hide

    2015-01-01

    We present time-resolved and phase-resolved variability studies of an extensive X-ray high-resolution spectral data set of the delta Ori Aa binary system. The four observations, obtained with Chandra ACIS (Advanced CCD Imaging Spectrometer) HETGS (High Energy Transmission Grating), have a total exposure time approximately equal to 479 kiloseconds and provide nearly complete binary phase coverage. Variability of the total X-ray flux in the range of 5-25 angstroms is confirmed, with a maximum amplitude of about plus or minus15 percent within a single approximately equal to125 kiloseconds observation. Periods of 4.76 and 2.04 days are found in the total X-ray flux, as well as an apparent overall increase in the flux level throughout the nine-day observational campaign. Using 40 kiloseconds contiguous spectra derived from the original observations, we investigate the variability of emission line parameters and ratios. Several emission lines are shown to be variable, including S (sub XV), Si (sub XIII), and Ne (sub IX). For the first time, variations of the X-ray emission line widths as a function of the binary phase are found in a binary system, with the smallest widths at phi = 0.0 when the secondary delta Ori Aa2 is at the inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds, we relate the emission line width variability to the presence of a wind cavity created by a wind-wind collision, which is effectively void of embedded wind shocks and is carved out of the X-ray-producing primary wind, thus producing phase-locked X-ray variability.

  11. A radar survey of M- and X-class asteroids. III. Insights into their composition, hydration state, & structure

    NASA Astrophysics Data System (ADS)

    Shepard, Michael K.; Taylor, Patrick A.; Nolan, Michael C.; Howell, Ellen S.; Springmann, Alessondra; Giorgini, Jon D.; Warner, Brian D.; Harris, Alan W.; Stephens, Robert; Merline, William J.; Rivkin, Andrew; Benner, Lance A. M.; Coley, Dan; Clark, Beth Ellen; Ockert-Bell, Maureen; Magri, Christopher

    2015-01-01

    Using the S-band radar at Arecibo Observatory, we observed thirteen X/M-class asteroids; nine were previously undetected and four were re-observed, bringing the total number of Tholen X/M-class asteroids observed with radar to 29. Of these 29M-class asteroids, 13 are also W-class, defined as M-class objects that also display a 3-μm absorption feature which is often interpreted as the signature of hydrated minerals (Jones, T.D., Lebofsky, L.A., Lewis, J.S., Marley, M.S. [1990]. Icarus 88, 172-192; Rivkin, A.S., Howell, E.S., Britt, D.T., Lebofsky, L.A., Nolan, M.C., Branston, D.D. [1995]. Icarus 117, 90-100; Rivkin, A.S., Howell, E.S., Lebofsky, L.A., Clark, B.E., Britt, D.T. [2000]. Icarus 145, 351-368). Consistent with our previous work (Shepard, M.K. et al. [2008]. Icarus 195, 184-205; Shepard, M.K., Harris, A.W., Taylor, P.A., Clark, B.E., Ockert-Bell, M., Nolan, M.C., Howell, E.S., Magri, C., Giorgini, J.D., Benner, L.A.M. [2011]. Icarus 215, 547-551), we find that 38% of our sample (11 of 29) have radar albedos consistent with metal-dominated compositions. With the exception of 83 Beatrix and 572 Rebekka, the remaining objects have radar albedos significantly higher than the mean S- or C-class asteroid (Magri, C., Nolan, M.C., Ostro, S.J., Giorgini, J.D. [2007]. Icarus 186, 126-151). Seven of the eleven high-radar-albedo asteroids, or 64%, also display a 3-μm absorption feature (W-class) which is thought to be inconsistent with the formation of a metal dominated asteroid. We suggest that the hydration absorption could be a secondary feature caused by low-velocity collisions with hydrated asteroids, such as CI or CM analogs, and subsequent implantation of the hydrated minerals into the upper regolith. There is recent evidence for this process on Vesta (Reddy, V. et al. [2012]. Icarus 221, 544-559; McCord, T.B. et al. [2012]. Nature 491, 83-86; Prettyman, T.H. et al. [2012]. Science 338, 242-246; Denevi, B.W. et al. [2012]. Science 338, 246-249). Eleven members of our sample show bifurcated radar echoes at some rotation phases; eight of these are high radar albedo targets. One interpretation of a bifurcated echo is a contact binary, like 216 Kleopatra, and several of our sample are contact binary candidates. However, evidence for other targets indicates they are not contact binaries. Instead, we hypothesize that these asteroids may have large-scale variations in surface bulk density, i.e. isolated patches of metal-rich and silicate-rich regions at the near-surface, possibly the result of collisions between metal and silicate-rich asteroids.

  12. Large-scale Exploration of Neuronal Morphologies Using Deep Learning and Augmented Reality.

    PubMed

    Li, Zhongyu; Butler, Erik; Li, Kang; Lu, Aidong; Ji, Shuiwang; Zhang, Shaoting

    2018-02-12

    Recently released large-scale neuron morphological data has greatly facilitated the research in neuroinformatics. However, the sheer volume and complexity of these data pose significant challenges for efficient and accurate neuron exploration. In this paper, we propose an effective retrieval framework to address these problems, based on frontier techniques of deep learning and binary coding. For the first time, we develop a deep learning based feature representation method for the neuron morphological data, where the 3D neurons are first projected into binary images and then learned features using an unsupervised deep neural network, i.e., stacked convolutional autoencoders (SCAEs). The deep features are subsequently fused with the hand-crafted features for more accurate representation. Considering the exhaustive search is usually very time-consuming in large-scale databases, we employ a novel binary coding method to compress feature vectors into short binary codes. Our framework is validated on a public data set including 58,000 neurons, showing promising retrieval precision and efficiency compared with state-of-the-art methods. In addition, we develop a novel neuron visualization program based on the techniques of augmented reality (AR), which can help users take a deep exploration of neuron morphologies in an interactive and immersive manner.

  13. Improved Strength and Damage Modeling of Geologic Materials

    NASA Astrophysics Data System (ADS)

    Stewart, Sarah; Senft, Laurel

    2007-06-01

    Collisions and impact cratering events are important processes in the evolution of planetary bodies. The time and length scales of planetary collisions, however, are inaccessible in the laboratory and require the use of shock physics codes. We present the results from a new rheological model for geological materials implemented in the CTH code [1]. The `ROCK' model includes pressure, temperature, and damage effects on strength, as well as acoustic fluidization during impact crater collapse. We demonstrate that the model accurately reproduces final crater shapes, tensile cracking, and damaged zones from laboratory to planetary scales. The strength model requires basic material properties; hence, the input parameters may be benchmarked to laboratory results and extended to planetary collision events. We show the effects of varying material strength parameters, which are dependent on both scale and strain rate, and discuss choosing appropriate parameters for laboratory and planetary situations. The results are a significant improvement in models of continuum rock deformation during large scale impact events. [1] Senft, L. E., Stewart, S. T. Modeling Impact Cratering in Layered Surfaces, J. Geophys. Res., submitted.

  14. CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern

    NASA Astrophysics Data System (ADS)

    Gong, Qian; Qu, Zhiyi; Hao, Kun

    2017-07-01

    Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.

  15. Shapes and binary fractions of Jovian Trojans and Hildas through NEOWISE

    NASA Astrophysics Data System (ADS)

    Sonnett, S.; Mainzer, A.; Grav, T.; Bauer, J.; Masiero, J.; Stevenson, R.; Nugent, C.

    2014-07-01

    Jovian Trojans (hereafter, Trojans) and Hildas are indicative of planetary migration patterns since their capture and physical state must be explained by dynamical evolution models. Early models of minimal planetary migration necessitate that Trojans were dynamically captured from the giant planet region (e.g., Marzari & Scholl 1998). The Nice model instead suggests that Trojans were injected from the outer solar system during a period of significant giant planet migration (e.g., Morbidelli et al. 2005). A more recent version of the Nice model suggests that asymmetric scatterings and collisions would have taken place, producing dissimilar L4 and L5 clouds (Nesvorny et al. 2013). Each of these formation scenarios predicts a different origin and/or collisional evolution for Trojans, which can be inferred from rotation properties. Namely, the physical shape as a function of size helps determine the degree of collisional processing (Farinella et al. 1992). Also, the binary fraction as a function of separation between the two components can be used to determine the dominant binary formation mechanism and thus helps characterize the dynamical environment (e.g., Kern & Elliot 2006). Rotational variation usually corresponds to elongated shapes, but high amplitudes (> 0.9 magnitudes; Sheppard & Jewitt 2004) can only be explained by close or contact binaries. Therefore, rotational lightcurves can be used to infer both shape and the presence of a close companion. Motivated by the need for more observational constraints on solar system formation models and a poor understanding of the rotation properties and binary fraction of Trojans and Hildas, we are studying their rotational lightcurve amplitudes using infrared photometry from NEOWISE (Mainzer et al. 2011; Grav et al. 2011) in order to determine debiased rotational lightcurve amplitude distributions for various Trojan subpopulations and for Trojans compared to Hildas. Preliminary amplitude distributions show a large fraction of potential close or contact binaries (having Δ m > 0.9). These distributions can be used to constrain the collisional and dynamical history of solar system formation models.

  16. Mathematical modeling of alignment dynamics in active motor-filament systems

    NASA Astrophysics Data System (ADS)

    Swaminathan, Sumanth

    The formation of the cytoskeleton, via motor-mediated microtubule self-organization, is an important subject of study in the biological sciences as well as in nonequilibrium, soft matter physics. Accurate modeling of the dynamics is a formidable task as it involves intrinsic nonlinearities, structural anisotropies, nonequilibrium processes, and a broad window of time scales, length scales, and densities. In this thesis, we study the ordering dynamics and pattern formations arising from motor-mediated microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model in which microtubules interact through motor induced, inelastic binary collisions. This model shows that initially disordered filament solutions exhibit an ordering transition resulting in the emergence of well aligned rod bundles. We study the existence and dynamic interaction of microtubule bundles analytically and numerically. Our results show a long term attraction and coalescing of bundles indicating a clear coarsening in the system; microtubule bundles concentrate into fewer orientations on a slow logarithmic time scale. In the semi-dilute case, multiple motors can bind a filament to several others and, for a critical motor density, induce a transition to an ordered state with a nonzero mean orientation. We develop a spatially homogeneous, mean-field theory that explicitly accounts for motor forcing and thermal fluctuations which enter into the model as multiplicative and additive noises respectively. Our model further incorporates a force-dependent detachment rate of motors, which in turn affects the mean and the fluctuations of the net force acting on a filament. We demonstrate that the transition to the oriented state changes from second order to first order when the force-dependent detachment becomes important. In our final analysis, we add complex spatial inhomogeneities to our mean field theory. The revised model consists of a system of stochastic differential equations governing the time evolution of the orientation and center of mass of each filament; microtubules translate and rotate under the influence of motor forces and intrinsic thermal fluctuations. We show through a molecular dynamics type stochastic simulation that initially disordered systems of microtubules exhibit an ordering transition resulting in the formation of bundles and vortices. This finding is compared with previous binary interaction and hydrodynamic models and shown to be consistent with in vitro experiments on motor-mediated self-organization of microtubules and actin filaments.

  17. Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect

    NASA Astrophysics Data System (ADS)

    Zhang, Pengjie; Johnson, Matthew C.

    2015-06-01

    Perhaps the most controversial idea in modern cosmology is that our observable universe is contained within one bubble among many, all inhabiting the eternally inflating multiverse. One of the few way to test this idea is to look for evidence of the relic inhomogeneities left by the collisions between other bubbles and our own. Such relic inhomogeneities will induce a coherent bulk flow over Gpc scales. Therefore, bubble collisions leave unique imprints in the cosmic microwave background (CMB) through the kinetic Sunyaev Zel'dovich (kSZ) effect, temperature anisotropies induced by the scattering of photons from coherently moving free electrons in the diffuse intergalactic medium. The kSZ signature produced by bubble collisions has a unique directional dependence and is tightly correlated with the galaxy distribution; it can therefore be distinguished from other contributions to the CMB anisotropies. An important advantage of the kSZ signature is that it peaks on arcminute angular scales, where the limiting factors in making a detection are instrumental noise and foreground subtraction. This is in contrast to the collision signature in the primary CMB, which peaks on angular scales much larger than one degree, and whose detection is therefore limited by cosmic variance. In this paper, we examine the prospects for probing the inhomogeneities left by bubble collisions using the kSZ effect. We provide a forecast for detection using cross-correlations between CMB and galaxy surveys, finding that the detectability using the kSZ effect can be competitive with constraints from CMB temperature and polarization data.

  18. Tertiary evolution of the Shimanto belt (Japan): A large-scale collision in Early Miocene

    NASA Astrophysics Data System (ADS)

    Raimbourg, Hugues; Famin, Vincent; Palazzin, Giulia; Yamaguchi, Asuka; Augier, Romain

    2017-07-01

    To decipher the Miocene evolution of the Shimanto belt of southwestern Japan, structural and paleothermal studies were carried out in the western area of Shikoku Island. All units constituting the belt, both in its Cretaceous and Tertiary domains, are in average strongly dipping to the NW or SE, while shortening directions deduced from fault kinematics are consistently orientated NNW-SSE. Peak paleotemperatures estimated with Raman spectra of organic matter increase strongly across the southern, Tertiary portion of the belt, in tandem with the development of a steeply dipping metamorphic cleavage. Near the southern tip of Ashizuri Peninsula, the unconformity between accreted strata and fore-arc basin, present along the whole belt, corresponds to a large paleotemperature gap, supporting the occurrence of a major collision in Early Miocene. This tectonic event occurred before the magmatic event that affected the whole belt at 15 Ma. The associated shortening was accommodated in two opposite modes, either localized on regional-scale faults such as the Nobeoka Tectonic Line in Kyushu or distributed through the whole belt as in Shikoku. The reappraisal of this collision leads to reinterpret large-scale seismic refraction profiles of the margins, where the unit underlying the modern accretionary prism is now attributed to an older package of deformed and accreted sedimentary units belonging to the Shimanto belt. When integrated into reconstructions of Philippine Sea Plate motion, the collision corresponds to the oblique collision of a paleo Izu-Bonin-Mariana Arc with Japan in Early Miocene.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Min; Yu, Yun; Hu, Keke

    Investigating the collisions of individual metal nanoparticles (NPs) with electrodes can provide new insights into their electrocatalytic behavior, mass transport, and interactions with surfaces. Here we report a new experimental setup for studying NP collisions based on the use of carbon nanopipettes to enable monitoring multiple collision events involving the same NP captured inside the pipet cavity. A patch clamp amplifier capable of measuring pA-range currents on the microsecond time scale with a very low noise and stable background was used to record the collision transients. The analysis of current transients produced by oxidation of hydrogen peroxide at one IrOxmore » NP provided information about the origins of deactivation of catalytic NPs and the effects of various experimental conditions on the collision dynamics. Lastly, high-resolution TEM of carbon pipettes was used to attain better understanding of the NP capture and collisions.« less

  20. Eccentricity Fluctuations Make Flow Measurable in High Multiplicity p-p Collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casalderrey-Solana, Jorge; Wiedemann, Urs Achim

    2010-03-12

    Elliptic flow is a hallmark of collectivity in hadronic collisions. Its measurement relies on analysis techniques which require high event multiplicity and so far can only be applied to heavy ion collisions. Here, we delineate the conditions under which elliptic flow becomes measurable in the samples of high-multiplicity (dN{sub ch}/dy>=50) p-p collisions, which will soon be collected at the LHC. We observe that fluctuations in the p-p interaction region can result in a sizable spatial eccentricity even for the most central p-p collisions. Under relatively mild assumptions on the nature of such fluctuations and on the eccentricity scaling of ellipticmore » flow, we find that the resulting elliptic flow signal in high-multiplicity p-p collisions at the LHC becomes measurable with standard techniques.« less

  1. Determination of recombination radius in Si for binary collision approximation codes

    DOE PAGES

    Vizkelethy, Gyorgy; Foiles, Stephen M.

    2015-09-11

    Displacement damage caused by ions or neutrons in microelectronic devices can have significant effect on the performance of these devices. Therefore, it is important to predict not only the displacement damage profile, but also its magnitude precisely. Analytical methods and binary collision approximation codes working with amorphous targets use the concept of displacement energy, the energy that a lattice atom has to receive to create a permanent replacement. It was found that this “displacement energy” is direction dependent; it can range from 12 to 32 eV in silicon. Obviously, this model fails in BCA codes that work with crystalline targets,more » such as Marlowe. Marlowe does not use displacement energy; instead, it uses lattice binding energy only and then pairs the interstitial atoms with vacancies. Then based on the configuration of the Frenkel pairs it classifies them as close, near, or distant pairs, and considers the distant pairs the permanent replacements. Unfortunately, this separation is an ad hoc assumption, and the results do not agree with molecular dynamics calculations. After irradiation, there is a prompt recombination of interstitials and vacancies if they are nearby, within a recombination radius. In order to implement this recombination radius in Marlowe, we used the comparison of MD and Marlowe calculation in a range of ion energies in single crystal silicon target. As a result, the calculations showed that a single recombination radius of ~7.4 Å in Marlowe for a range of ion energies gives an excellent agreement with MD.« less

  2. The Fate of Unstable Circumbinary Planets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    What happens to Tattooine-like planets that are instead in unstable orbits around their binary star system? A new study examines whether such planets will crash into a host star, get ejected from the system, or become captured into orbit around one of their hosts.Orbit Around a DuoAt this point we have unambiguously detected multiple circumbinary planets, raising questions about these planets formation and evolution. Current models suggest that it is unlikely that circumbinary planets would be able to form in the perturbed environment close their host stars. Instead, its thought that the planets formed at a distance and then migrated inwards.One danger such planets face when migrating is encountering ranges of radii where their orbits become unstable. Two scientists at the University of Chicago, Adam Sutherland and Daniel Fabrycky, have studied what happens when circumbinary planets migrate into such a region and develop unstable orbits.Producing Rogue PlanetsTime for planets to either be ejected or collide with one of the two stars, as a function of the planets starting distance (in AU) from the binary barycenter. Colors represent different planetary eccentricities. [Sutherland Fabrycky 2016]Sutherland and Fabrycky used N-body simulations to determine the fates of planets orbiting around a star system consisting of two stars a primary like our Sun and a secondary roughly a tenth of its size that are separated by 1 AU.The authors find that the most common fate for a circumbinary planet with an unstable orbit is ejection from the system; over 80% of unstable planets were ejected. This has interesting implications: if the formation of circumbinary planets is common, this mechanism could be filling the Milky Way with a population of free-floating, rogue planets that no longer are associated with their host star.The next most common outcome for unstable planets is collision with one of their host stars (most often the secondary), resulting inaccretion of the planet onto the star. Only rarely do unstable planets make it through the 10,000-yr integration without being removed from the system via ejection or collision.Tidal EffectsAs a final experiment, the authors also added the effects of tidal stripping, which occurs when the stars of the binary tear away some of the planets mass during close encounters. They found that this alters the orbit of the planets that have close encounters with one of the stars, making it slightly more likely that they can be captured around a star.How can we test these models? When a star tidally strips a planet or accretes a planet in a collision, this process leaves its mark on the star in the form of stellar pollution. By comparing the amount of planetary material in the two stars of a binary, it may be possible to confirm the rates predicted here thereby answering the question of what happens to unstable Tattooines.CitationAdam P. Sutherland and Daniel C. Fabrycky 2016 ApJ 818 6. doi:10.3847/0004-637X/818/1/6

  3. Bi-lobed Shape of Comet 67P from a Collapsed Binary

    NASA Astrophysics Data System (ADS)

    Nesvorný, David; Parker, Joel; Vokrouhlický, David

    2018-06-01

    The Rosetta spacecraft observations revealed that the nucleus of comet 67P/Churyumov–Gerasimenko consists of two similarly sized lobes connected by a narrow neck. Here, we evaluate the possibility that 67P is a collapsed binary. We assume that the progenitor of 67P was a binary and consider various physical mechanisms that could have brought the binary components together, including small-scale impacts and gravitational encounters with planets. We find that 67P could be a primordial body (i.e., not a collisional fragment) if the outer planetesimal disk lasted ≲10 Myr before it was dispersed by migrating Neptune. The probability of binary collapse by impact is ≃30% for tightly bound binaries. Most km-class binaries become collisionally dissolved. Roughly 10% of the surviving binaries later evolve to become contact binaries during the disk dispersal, when bodies suffer gravitational encounters with Neptune. Overall, the processes described in this work do not seem to be efficient enough to explain the large fraction (∼67%) of bi-lobed cometary nuclei inferred from spacecraft imaging.

  4. Elliptic Flow, Initial Eccentricity and Elliptic Flow Fluctuations in Heavy Ion Collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Nouicer, Rachid; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holzman, B.; Iordanova, A.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2008-12-01

    We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.

  5. Semi-empirical scaling for ion-atom single charge exchange cross sections in the intermediate velocity regime

    NASA Astrophysics Data System (ADS)

    Friedman, B.; DuCharme, G.

    2017-06-01

    We present a semi-empirical scaling law for non-resonant ion-atom single charge exchange cross sections for collisions with velocities from {10}7 {{t}}{{o}} {10}9 {cm} {{{s}}}-1 and ions with positive charge q< 8. Non-resonant cross sections tend to have a velocity peak at collision velocities v≲ 1 {{a}}{{u}} with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, {{Δ }}E, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters {v}{{m}},{I}{{T}},{Z}{{T}},{and} {Z}{{P}}, where the {Z}{{T},{{P}}} are the target and projectile atomic numbers. For the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.

  6. Modeling of driver's collision avoidance maneuver based on controller switching model.

    PubMed

    Kim, Jong-Hae; Hayakawa, Soichiro; Suzuki, Tatsuya; Hayashi, Koji; Okuma, Shigeru; Tsuchida, Nuio; Shimizu, Masayuki; Kido, Shigeyuki

    2005-12-01

    This paper presents a modeling strategy of human driving behavior based on the controller switching model focusing on the driver's collision avoidance maneuver. The driving data are collected by using the three-dimensional (3-D) driving simulator based on the CAVE Automatic Virtual Environment (CAVE), which provides stereoscopic immersive virtual environment. In our modeling, the control scenario of the human driver, that is, the mapping from the driver's sensory information to the operation of the driver such as acceleration, braking, and steering, is expressed by Piecewise Polynomial (PWP) model. Since the PWP model includes both continuous behaviors given by polynomials and discrete logical conditions, it can be regarded as a class of Hybrid Dynamical System (HDS). The identification problem for the PWP model is formulated as the Mixed Integer Linear Programming (MILP) by transforming the switching conditions into binary variables. From the obtained results, it is found that the driver appropriately switches the "control law" according to the sensory information. In addition, the driving characteristics of the beginner driver and the expert driver are compared and discussed. These results enable us to capture not only the physical meaning of the driving skill but the decision-making aspect (switching conditions) in the driver's collision avoidance maneuver as well.

  7. Transport coefficients of a hot QCD medium and their relative significance in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Mitra, Sukanya; Chandra, Vinod

    2017-11-01

    The main focus of this article is to obtain various transport coefficients for a hot QCD medium that is likely to be produced while colliding two heavy nuclei ultra-relativistically. The technical approach adopted here is the semiclassical transport theory. The away-from-equilibrium linearized transport equation has been set up by employing the Chapman-Enskog technique from the kinetic theory of a many-particle system with a collision term that includes the binary collisions of quarks/antiquarks and gluons. In order to include the effects of a strongly interacting, thermal medium, a quasi-particle description of a realistic hot QCD equation of state has been employed through the equilibrium modeling of the momentum distributions of gluons and quarks with nontrivial dispersion relations while extending the model for finite but small quark chemical potential. The effective coupling for strong interaction has been redefined following the charge renormalization under the scheme of the quasi-particle model. The consolidated effects on transport coefficients are seen to have a significant impact on their temperature dependence. Finally, the relative significances of momentum and heat transfer, as well as the charge diffusion processes in hot QCD, have been investigated by studying the ratios of the respective transport coefficients indicating different physical laws.

  8. A New Quantum Gray-Scale Image Encoding Scheme

    NASA Astrophysics Data System (ADS)

    Naseri, Mosayeb; Abdolmaleky, Mona; Parandin, Fariborz; Fatahi, Negin; Farouk, Ahmed; Nazari, Reza

    2018-02-01

    In this paper, a new quantum images encoding scheme is proposed. The proposed scheme mainly consists of four different encoding algorithms. The idea behind of the scheme is a binary key generated randomly for each pixel of the original image. Afterwards, the employed encoding algorithm is selected corresponding to the qubit pair of the generated randomized binary key. The security analysis of the proposed scheme proved its enhancement through both randomization of the generated binary image key and altering the gray-scale value of the image pixels using the qubits of randomized binary key. The simulation of the proposed scheme assures that the final encoded image could not be recognized visually. Moreover, the histogram diagram of encoded image is flatter than the original one. The Shannon entropies of the final encoded images are significantly higher than the original one, which indicates that the attacker can not gain any information about the encoded images. Supported by Kermanshah Branch, Islamic Azad University, Kermanshah, IRAN

  9. The birth of a supermassive black hole binary

    NASA Astrophysics Data System (ADS)

    Pfister, Hugo; Lupi, Alessandro; Capelo, Pedro R.; Volonteri, Marta; Bellovary, Jillian M.; Dotti, Massimo

    2017-11-01

    We study the dynamical evolution of supermassive black holes, in the late stage of galaxy mergers, from kpc to pc scales. In particular, we capture the formation of the binary, a necessary step before the final coalescence, and trace back the main processes causing the decay of the orbit. We use hydrodynamical simulations of galaxy mergers with different resolutions, from 20 pc down to 1 pc, in order to study the effects of the resolution on our results, remove numerical effects, and assess that resolving the influence radius of the orbiting black hole is a minimum condition to fully capture the formation of the binary. Our simulations include the relevant physical processes, namely star formation, supernova feedback, accretion on to the black holes and the ensuing feedback. We find that, in these mergers, dynamical friction from the smooth stellar component of the nucleus is the main process that drives black holes from kpc to pc scales. Gas does not play a crucial role and even clumps do not induce scattering or perturb the orbits. We compare the time needed for the formation of the binary to analytical predictions and suggest how to apply such analytical formalism to obtain estimates of binary formation times in lower resolution simulations.

  10. Far-field phase contrast from orbiting objects: Characterizing progenitors of binary mergers

    NASA Astrophysics Data System (ADS)

    Matthias, P.; Hofmann, R.

    2018-05-01

    We propose an idea to determine the size of a binary, composed of two compact stars or black holes, its diffractive power, the distance between components, and the distance to an observer, in exploiting the emergence of intensity contrast by free-space propagation when the phase of coherent light from a very distant background source is affected by diffraction. We assume that this effect can be characterized by the projected real part of an effective refractive index n . Here we model the according two-dimensional exit phase-map by a superposition of two Gaussians. In the extreme far field, phase information is captured by scaling functions which are analyzed here. Both spatial and temporal scanning of the intensity contrast are discussed. While the former mode can be used, e.g., to determine the distance to the observer, the latter allows, e.g., one to measure the overall diffractive power of the binary in terms of the particular dependence of a scaling curve on the projected spatial separation between the binary's components. Both modes of observation may be of relevance in monitoring the progenitor dynamics of binary collapse using radio telescopes.

  11. Colliding Winds in Symbiotic Binary Systems. I. Analytic and Numerical Solutions

    NASA Astrophysics Data System (ADS)

    Kenny, H. T.; Taylor, A. R.

    2005-01-01

    We present new formulations of binary colliding wind models appropriate to symbiotic star systems. The derived models differ from previous formulations in assuming mixing of the shocked material from both incoming streams, rather than postulating a self-sustaining contact discontinuity. The CWb model (colliding winds, binary) extends the work of Girard and Willson by the derivation of an adiabatic temperature, the consideration of radiative cooling, the inclusion of thermal pressures in the incoming winds, and the treatment of interaction shells of finite thickness and density. The finite thickness of the interaction shell allows for calculation of its radiative intensity distribution. The CWc model (colliding winds, concentric) is a similar extension of the model of Kwok, Purton, and Fitzgerald. It is derived in a manner parallel to that of the CWb model, thereby facilitating a unification of the two models. A unified model is desired since wind collisions in symbiotic systems should include aspects of both CWb and CWc interactions. Two examples of model applications are presented: a comparison of the flux densities arising from colliding winds (CWb model) with those arising from the ionization of the surrounding medium (STB model) in the galactic population of symbiotic stars, and model imaging of the symbiotic nova HM Sge.

  12. Autonomous vision-based navigation for proximity operations around binary asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-02-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  13. Blue straggler formation at core collapse

    NASA Astrophysics Data System (ADS)

    Banerjee, Sambaran

    Among the most striking feature of blue straggler stars (BSS) in globular clusters is the presence of multiple sequences of BSSs in the colour-magnitude diagrams (CMDs) of several globular clusters. It is often envisaged that such a multiple BSS sequence would arise due a recent core collapse of the host cluster, triggering a number of stellar collisions and binary mass transfers simultaneously over a brief episode of time. Here we examine this scenario using direct N-body computations of moderately-massive star clusters (of order 104 {M⊙). As a preliminary attempt, these models are initiated with ≈8-10 Gyr old stellar population and King profiles of high concentrations, being ``tuned'' to undergo core collapse quickly. BSSs are indeed found to form in a ``burst'' at the onset of the core collapse and several of such BS-bursts occur during the post-core-collapse phase. In those models that include a few percent primordial binaries, both collisional and binary BSSs form after the onset of the (near) core-collapse. However, there is as such no clear discrimination between the two types of BSSs in the corresponding computed CMDs. We note that this may be due to the less number of BSSs formed in these less massive models than that in actual globular clusters.

  14. Autonomous vision-based navigation for proximity operations around binary asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-06-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  15. Calculation of far wing of allowed spectra: The water continuum

    NASA Technical Reports Server (NTRS)

    Tipping, R. H.; Ma, Q.

    1995-01-01

    A far-wing line shape theory based on the binary collision and quasistatic approximations that is applicable for both the low- and high-frequency wings of allowed vibrational-rotational lines has been developed. This theory has been applied in order to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000 cm(exp -1) for pure H2O and for H2O-N2 mixtures. The calculations are made assuming an interaction potential consisting of an isotropic Lennard-Jones part and the leading long-range anisotropic part, and utilizing the measured line strengths and transition frequencies. The results compare well with existing data, both in magnitude and in temperature dependence. This leads us to the conclusion that although dimer and collision-induced absorptions are present, the primary mechanism responsible for the observed water continuum is the far-wing absorption of allowed lines. Recent progress on near-wing corrections to the theory and validations with recent laboratory measurements are discussed briefly.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Atwani, O.; Norris, S. A.; Ludwig, K.

    In this study, several proposed mechanisms and theoretical models exist concerning nanostructure evolution on III-V semiconductors (particularly GaSb) via ion beam irradiation. However, making quantitative contact between experiment on the one hand and model-parameter dependent predictions from different theories on the other is usually difficult. In this study, we take a different approach and provide an experimental investigation with a range of targets (GaSb, GaAs, GaP) and ion species (Ne, Ar, Kr, Xe) to determine new parametric trends regarding nanostructure evolution. Concurrently, atomistic simulations using binary collision approximation over the same ion/target combinations were performed to determine parametric trends onmore » several quantities related to existing model. A comparison of experimental and numerical trends reveals that the two are broadly consistent under the assumption that instabilities are driven by chemical instability based on phase separation. Furthermore, the atomistic simulations and a survey of material thermodynamic properties suggest that a plausible microscopic mechanism for this process is an ion-enhanced mobility associated with energy deposition by collision cascades.« less

  17. Ionization Cross Sections and Dissociation Channels of the DNA Sugar-Phosphate Backbone by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher; Huo, Winifred M.; Fletcher, Graham D.

    2004-01-01

    It has been suggested that the genotoxic effects of ionizing radiation in living cells are not caused by the highly energetic incident radiation, but rather are induced by less energetic secondary species generated, the most abundant of which are free electrons.' The secondary electrons will further react to cause DNA damage via indirect and direct mechanisms. Detailed knowledge of these mechanisms is ultimately important for the development of global models of cellular radiation damage. We are studying one possible mechanism for the formation cf DNA strand breaks involving dissociative ionization of the DNA sugar-phosphate backbone induced by secondary electron co!lisions. We will present ionization cross sections at electron collision energies between threshold and 10 KeV using the improved binary encounter dipole (iBED) formulation' Preliminary results of the possible dissociative ionization pathways will be presented. It is speculated that radical fragments produced from the dissociative ionization can further react, providing a possible mechanism for double strand breaks and base damage.

  18. Multi-soliton solutions and Bäcklund transformation for a two-mode KdV equation in a fluid

    NASA Astrophysics Data System (ADS)

    Xiao, Zi-Jian; Tian, Bo; Zhen, Hui-Ling; Chai, Jun; Wu, Xiao-Yu

    2017-01-01

    In this paper, we investigate a two-mode Korteweg-de Vries equation, which describes the one-dimensional propagation of shallow water waves with two modes in a weakly nonlinear and dispersive fluid system. With the binary Bell polynomial and an auxiliary variable, bilinear forms, multi-soliton solutions in the two-wave modes and Bell polynomial-type Bäcklund transformation for such an equation are obtained through the symbolic computation. Soliton propagation and collisions between the two solitons are presented. Based on the graphic analysis, it is shown that the increase in s can lead to the increase in the soliton velocities under the condition of ?, but the soliton amplitudes remain unchanged when s changes, where s means the difference between the phase velocities of two-mode waves, ? and ? are the nonlinearity parameter and dispersion parameter respectively. Elastic collisions between the two solitons in both two modes are analyzed with the help of graphic analysis.

  19. Analysis of Compression Algorithm in Ground Collision Avoidance Systems (Auto-GCAS)

    NASA Technical Reports Server (NTRS)

    Schmalz, Tyler; Ryan, Jack

    2011-01-01

    Automatic Ground Collision Avoidance Systems (Auto-GCAS) utilizes Digital Terrain Elevation Data (DTED) stored onboard a plane to determine potential recovery maneuvers. Because of the current limitations of computer hardware on military airplanes such as the F-22 and F-35, the DTED must be compressed through a lossy technique called binary-tree tip-tilt. The purpose of this study is to determine the accuracy of the compressed data with respect to the original DTED. This study is mainly interested in the magnitude of the error between the two as well as the overall distribution of the errors throughout the DTED. By understanding how the errors of the compression technique are affected by various factors (topography, density of sampling points, sub-sampling techniques, etc.), modifications can be made to the compression technique resulting in better accuracy. This, in turn, would minimize unnecessary activation of A-GCAS during flight as well as maximizing its contribution to fighter safety.

  20. Delayed fission and multifragmentation in sub-keV C60 - Au(0 0 1) collisions via molecular dynamics simulations: Mass distributions and activated statistical decay

    NASA Astrophysics Data System (ADS)

    Bernstein, V.; Kolodney, E.

    2017-10-01

    We have recently observed, both experimentally and computationally, the phenomenon of postcollision multifragmentation in sub-keV surface collisions of a C60 projectile. Namely, delayed multiparticle breakup of a strongly impact deformed and vibrationally excited large cluster collider into several large fragments, after leaving the surface. Molecular dynamics simulations with extensive statistics revealed a nearly simultaneous event, within a sub-psec time window. Here we study, computationally, additional essential aspects of this new delayed collisional fragmentation which were not addressed before. Specifically, we study here the delayed (binary) fission channel for different impact energies both by calculating mass distributions over all fission events and by calculating and analyzing lifetime distributions of the scattered projectile. We observe an asymmetric fission resulting in a most probable fission channel and we find an activated exponential (statistical) decay. Finally, we also calculate and discuss the fragment mass distribution in (triple) multifragmentation over different time windows, in terms of most abundant fragments.

  1. Kinetic model for binary homogeneous nucleation in the H2O-H2SO4 system: comparison with experiments and classical theory of nucleation.

    PubMed

    Sorokin, A; Vancassel, X; Mirabel, P

    2005-12-22

    A kinetic model to predict nucleation rates in the sulfuric acid-water system is presented. It allows calculating steady-state nucleation rates and the corresponding time lag, using a direct solution of a system of kinetic equations that describe the populations of sub- and near-critical clusters. This kinetic model takes into account cluster-cluster collisions and decay of clusters into smaller clusters. The model results are compared with some predictions obtained with the classical nucleation theory (CNT) and also with available measurement data obtained in smog chambers or flow tubes. It is shown that in the case of slow nucleation processes, the kinetic model and the CNT as used by Shugard et al. [J. Chem. Phys. 75, 5298 (1974)] give the same results. However, in the case of intensive nucleation, a large part of the nucleation flux is due to cluster-cluster collisions and the CNT underestimates the nucleation rates.

  2. Fragmentation scaling of percolation clusters in two and three dimensions: Large-cell Monte Carlo RG approach

    NASA Astrophysics Data System (ADS)

    Cheon, M.; Chang, I.

    1999-04-01

    The scaling behavior for a binary fragmentation of critical percolation clusters is investigated by a large-cell Monte Carlo real-space renormalization group method in two and three dimensions. We obtain accurate values of critical exponents λ and phi describing the scaling of fragmentation rate and the distribution of fragments' masses produced by a binary fragmentation. Our results for λ and phi show that the fragmentation rate is proportional to the size of mother cluster, and the scaling relation σ = 1 + λ - phi conjectured by Edwards et al. to be valid for all dimensions is satisfied in two and three dimensions, where σ is the crossover exponent of the average cluster number in percolation theory, which excludes the other scaling relations.

  3. Tidal torques on infrequently colliding particle disks in binary systems and the truncation of the asteroid belt

    NASA Technical Reports Server (NTRS)

    Franklin, F. A.; Lecar, M.; Lin, D. N. C.; Papaloizou, J.

    1980-01-01

    Conditions leading to the truncation, at the 2:1 resonance, of a disk of infrequently colliding particles surrounding the primary of a binary system are studied numerically and analytically. Attention is given to the case in which the mass ratio, q, is sufficiently small (less than about 0.1) and the radius of the disk centered on the primary allowably larger, so that first-order orbit-orbit resonances between ring material and the secondary can lie within it. Collisions are found to be less frequent than q to the -2/3 power orbital periods (the period of the forced eccentricity at the 2:1 resonance), and truncation occurs and Kirkwood gaps are produced only if the particle eccentricity is less than some critical value, estimated to be of order q to the 5/9 power, or approximately 0.02 for the sun-Jupiter case having q equal to 10 to the -3rd power.

  4. System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.

    2007-06-01

    This Letter presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.

  5. On the resonant detonation of sub-Chandrasekhar mass white dwarfs during binary inspiral

    NASA Astrophysics Data System (ADS)

    McKernan, B.; Ford, K. E. S.

    2016-12-01

    White dwarfs (WDs) are believed to detonate via explosive Carbon-fusion in a Type Ia supernova (SN) when their temperature and/or density reach the point where Carbon is ignited in a runaway reaction. Observations of the Type Ia SN rate imply that all WD binaries that merge through the emission of gravitational radiation within a Hubble time should result in SNe, regardless of total mass. Here we investigate the conditions under which a single WD in a binary system might extract energy from its orbit, depositing enough energy into a resonant mode such that it detonates before merger. We show that, ignoring non-linear effects in a WD binary in tidal lock at small binary separations, the sustained tidal forcing of a low-order quadrupolar g mode or a harmonic of a low-order quadrupolar p mode could, in principle, drive the average temperature of Carbon nuclei in the mode over the runaway fusion threshold. If growing mode energy is thermalized at a core/atmosphere boundary, rapid Helium burning and inwards-travelling p-waves may result in core detonation. Thermalization at a boundary in the core can also result in detonation. If energy can be efficiently transferred from the orbit to modes as the WD binary passes through resonances, the WD merger time-scale will be shortened by Myr-Gyr compared to expected time-scales from gravitational wave (GW)-emission alone and GW detectors will observe deviations from predicted chirp profiles in resolved WD binaries. Future work in this area should focus on whether tidal locking in WD binaries is naturally driven towards low-order mode frequencies.

  6. Dynamic Test of a Collision Post of a State-of-the-Art End Frame Design

    DOT National Transportation Integrated Search

    2008-09-24

    In support of the Federal Railroad Administration's (FRA) : Railroad Equipment Safety Program, a full-scale dynamic test : of a collision post of a state-of-the-art (SOA) end frame was : conducted on April 16, 2008. The purpose of the test was to : e...

  7. Threshold collision-induced dissociation of diatomic molecules: a case study of the energetics and dynamics of O2- collisions with Ar and Xe.

    PubMed

    Ahu Akin, F; Ree, Jongbaik; Ervin, Kent M; Kyu Shin, Hyung

    2005-08-08

    The energetics and dynamics of collision-induced dissociation of O2- with Ar and Xe targets are studied experimentally using guided ion-beam tandem mass spectrometry. The cross sections and the collision dynamics are modeled theoretically by classical trajectory calculations. Experimental apparent threshold energies are 2.1 and 1.1 eV in excess of the thermochemical O2- bond dissociation energy for argon and xenon, respectively. Classical trajectory calculations confirm the observed threshold behavior and the dependence of cross sections on the relative kinetic energy. Representative trajectories reveal that the bond dissociation takes place on a short time scale of about 50 fs in strong direct collisions. Collision-induced dissociation is found to be remarkably restricted to the perpendicular approach of ArXe to the molecular axis of O2-, while collinear collisions do not result in dissociation. The higher collisional energy-transfer efficiency of xenon compared with argon is attributed to both mass and polarizability effects.

  8. Fast large-scale object retrieval with binary quantization

    NASA Astrophysics Data System (ADS)

    Zhou, Shifu; Zeng, Dan; Shen, Wei; Zhang, Zhijiang; Tian, Qi

    2015-11-01

    The objective of large-scale object retrieval systems is to search for images that contain the target object in an image database. Where state-of-the-art approaches rely on global image representations to conduct searches, we consider many boxes per image as candidates to search locally in a picture. In this paper, a feature quantization algorithm called binary quantization is proposed. In binary quantization, a scale-invariant feature transform (SIFT) feature is quantized into a descriptive and discriminative bit-vector, which allows itself to adapt to the classic inverted file structure for box indexing. The inverted file, which stores the bit-vector and box ID where the SIFT feature is located inside, is compact and can be loaded into the main memory for efficient box indexing. We evaluate our approach on available object retrieval datasets. Experimental results demonstrate that the proposed approach is fast and achieves excellent search quality. Therefore, the proposed approach is an improvement over state-of-the-art approaches for object retrieval.

  9. Nanodust released in interplanetary collisions

    NASA Astrophysics Data System (ADS)

    Lai, H. R.; Russell, C. T.

    2018-07-01

    The lifecycle of near-Earth objects (NEOs) involves a collisional cascade that produces ever smaller debris ending with nanoscale particles which are removed from the solar system by radiation pressure and electromagnetic effects. It has been proposed that the nanodust clouds released in collisions perturb the background interplanetary magnetic field and create the interplanetary field enhancements (IFEs). Assuming that this IFE formation scenario is actually operating, we calculate the interplanetary collision rate, estimate the total debris mass carried by nanodust, and compare the collision rate with the IFE rate. We find that to release the same amount of nanodust, the collision rate is comparable to the observed IFE rate. Besides quantitatively testing the association between the collisions evolving large objects and giant solar wind structures, such a study can be extended to ranges of smaller scales and to investigate the source of moderate and small solar wind perturbations.

  10. The Structure of the Narcissistic Personality Inventory With Binary and Rating Scale Items.

    PubMed

    Boldero, Jennifer M; Bell, Richard C; Davies, Richard C

    2015-01-01

    Narcissistic Personality Inventory (NPI) items typically have a forced-choice format, comprising a narcissistic and a nonnarcissistic statement. Recently, some have presented the narcissistic statements and asked individuals to either indicate whether they agree or disagree that the statements are self-descriptive (i.e., a binary response format) or to rate the extent to which they agree or disagree that these statements are self-descriptive on a Likert scale (i.e., a rating response format). The current research demonstrates that when NPI items have a binary or a rating response format, the scale has a bifactor structure (i.e., the items load on a general factor and on 6 specific group factors). Indexes of factor strength suggest that the data are unidimensional enough for the NPI's general factor to be considered a measure of a narcissism latent trait. However, the rating item general factor assessed more narcissism components than the binary item one. The positive correlations of the NPI's general factor, assessed when items have a rating response format, were moderate with self-esteem, strong with a measure of narcissistic grandiosity, and weak with 2 measures of narcissistic vulnerability. Together, the results suggest that using a rating format for items enhances the information provided by the NPI.

  11. Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions

    NASA Astrophysics Data System (ADS)

    Giacalone, Giuliano; Noronha-Hostler, Jacquelyn; Luzum, Matthew; Ollitrault, Jean-Yves

    2018-03-01

    We argue that relativistic hydrodynamics is able to make robust predictions for soft particle production in Xe+Xe collisions at the CERN Large Hadron Collider (LHC). The change of system size from Pb+Pb to Xe+Xe provides a unique opportunity to test the scaling laws inherent to fluid dynamics. Using event-by-event hydrodynamic simulations, we make quantitative predictions for several observables: mean transverse momentum, anisotropic flow coefficients, and their fluctuations. Results are shown as a function of collision centrality.

  12. Adiabatic Mass Loss Model in Binary Stars

    NASA Astrophysics Data System (ADS)

    Ge, H. W.

    2012-07-01

    Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical time scale mass transfer; if the ratio of donor to accretor masses exceeds this critical value, the dynamical time scale mass transfer ensues. The grid of criterion for all stars can be used to be the basic input as the binary population synthetic method, which will be improved absolutely. In common envelope evolution, the dissipation of orbital energy of the binary provides the energy to eject the common envelope; the energy budget for this process essentially consists of the initial orbital energy of the binary and the initial binding energies of the binary components. We emphasize that, because stellar core and envelope contribute mutually to each other's gravitational potential energy, proper evaluation of the total energy of a star requires integration over the entire stellar interior, not the ejected envelope alone as commonly assumed. We show that the change in total energy of the donor star, as a function of its remaining mass along an adiabatic mass-loss sequence, can be calculated. This change in total energy of the donor star, combined with the requirement that both remnant donor and its companion star fit within their respective Roche lobes, then circumscribes energetically possible survivors of common envelope evolution. It is the first time that we can calculate the accurate total energy of the donor star in common envelope evolution, while the results with the old method are inconsistent with observations.

  13. Collision-induced line parameters for the (2 ← 0) overtone band of HCl (1.76 μm) in binary mixtures with H2 and CH4

    NASA Astrophysics Data System (ADS)

    Domanskaya, Alexandra V.; Li, Gang; Tran, Ha; Gisi, Michael; Ebert, Volker

    2017-09-01

    We present experimental results on pressure broadening and shift coefficients in the first vibrational overtone band of HCl in gaseous mixtures with H2 and CH4 at room temperature. The whole set of collisional parameters for HCl-CH4 is novel. Most of the data for HCl-H2 system is also published for the first time. Our results have a precision of about 2% or better for shifts and below 1% for broadening in the band center.

  14. Connecting Numerical Relativity and Data Analysis of Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Shoemaker, Deirdre; Jani, Karan; London, Lionel; Pekowsky, Larne

    Gravitational waves deliver information in exquisite detail about astrophysical phenomena, among them the collision of two black holes, a system completely invisible to the eyes of electromagnetic telescopes. Models that predict gravitational wave signals from likely sources are crucial for the success of this endeavor. Modeling binary black hole sources of gravitational radiation requires solving the Einstein equations of General Relativity using powerful computer hardware and sophisticated numerical algorithms. This proceeding presents where we are in understanding ground-based gravitational waves resulting from the merger of black holes and the implications of these sources for the advent of gravitational-wave astronomy.

  15. First Detection of Phase-dependent Colliding Wind X-ray Emission outside the Milky Way

    NASA Technical Reports Server (NTRS)

    Naze, Yael; Koenigsberger, Gloria; Moffat, Anthony F. J.

    2007-01-01

    After having reported the detection of X-rays emitted by the peculiar system HD 5980, we assess here the origin of this high-energy emission from additional X-ray observations obtained with XMM-Newton. This research provides the first detection of apparently periodic X-ray emission from hot gas produced by the collision of winds in an evolved massive binary outside the Milky Way. It also provides the first X-ray monitoring of a Luminous Blue Variable only years after its eruption and shows that the source of the X-rays is not associated with the ejecta.

  16. Signatures for strongly coupled Quark-Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Shuryak, Edward

    2006-11-01

    Dramatic changes had occurred with our understanding of Quark-Gluon Plasma, which is now believed to be rather strongly coupled, sQGP for short. Hydrodynamical behavior is seen experimentally, even for rather small systems (rather peripheral collisions). From elliptic flow the interest is shifting to even more sophysticated observable, the conical flow, created by quenched jets. The exact structure of sQGP remains unknown, at the moment the best picture seem to be a liquid made partly of binary bound states. As we discuss at the end, those can be possibly seen in the dilepton spectra, as "new vector mesons" above Tc.

  17. Comments Regarding the Binary Power Law for Heterogeneity of Disease Incidence

    USDA-ARS?s Scientific Manuscript database

    The binary power law (BPL) has been successfully used to characterize heterogeneity (over dispersion or small-scale aggregation) of disease incidence for many plant pathosystems. With the BPL, the log of the observed variance is a linear function of the log of the theoretical variance for a binomial...

  18. Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengjie; Johnson, Matthew C., E-mail: zhangpj@sjtu.edu.cn, E-mail: mjohnson@perimeterinstitute.ca

    2015-06-01

    Perhaps the most controversial idea in modern cosmology is that our observable universe is contained within one bubble among many, all inhabiting the eternally inflating multiverse. One of the few way to test this idea is to look for evidence of the relic inhomogeneities left by the collisions between other bubbles and our own. Such relic inhomogeneities will induce a coherent bulk flow over Gpc scales. Therefore, bubble collisions leave unique imprints in the cosmic microwave background (CMB) through the kinetic Sunyaev Zel'dovich (kSZ) effect, temperature anisotropies induced by the scattering of photons from coherently moving free electrons in themore » diffuse intergalactic medium. The kSZ signature produced by bubble collisions has a unique directional dependence and is tightly correlated with the galaxy distribution; it can therefore be distinguished from other contributions to the CMB anisotropies. An important advantage of the kSZ signature is that it peaks on arcminute angular scales, where the limiting factors in making a detection are instrumental noise and foreground subtraction. This is in contrast to the collision signature in the primary CMB, which peaks on angular scales much larger than one degree, and whose detection is therefore limited by cosmic variance. In this paper, we examine the prospects for probing the inhomogeneities left by bubble collisions using the kSZ effect. We provide a forecast for detection using cross-correlations between CMB and galaxy surveys, finding that the detectability using the kSZ effect can be competitive with constraints from CMB temperature and polarization data.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedman, B.; DuCharme, G.

    We present a semi-empirical scaling law for non-resonant ion–atom single charge exchange cross sections for collisions with velocities frommore » $${10}^{7}\\,{\\rm{t}}{\\rm{o}}\\,{10}^{9}\\,\\mathrm{cm}\\,{{\\rm{s}}}^{-1}$$ and ions with positive charge $$q\\lt 8$$. Non-resonant cross sections tend to have a velocity peak at collision velocities $$v\\lesssim 1\\ {\\rm{a}}{\\rm{u}}$$ with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, $${\\rm{\\Delta }}E$$, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters $${v}_{{\\rm{m}}},{I}_{{\\rm{T}}},{Z}_{{\\rm{T}}},\\mathrm{and}\\ {Z}_{{\\rm{P}}}$$, where the $${Z}_{{\\rm{T}},{\\rm{P}}}$$ are the target and projectile atomic numbers. In conclusion, for the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.« less

  20. Capturing the Large Scale Behavior of Many Particle Systems Through Coarse-Graining

    NASA Astrophysics Data System (ADS)

    Punshon-Smith, Samuel

    This dissertation is concerned with two areas of investigation: the first is understanding the mathematical structures behind the emergence of macroscopic laws and the effects of small scales fluctuations, the second involves the rigorous mathematical study of such laws and related questions of well-posedness. To address these areas of investigation the dissertation involves two parts: Part I concerns the theory of coarse-graining of many particle systems. We first investigate the mathematical structure behind the Mori-Zwanzig (projection operator) formalism by introducing two perturbative approaches to coarse-graining of systems that have an explicit scale separation. One concerns systems with little dissipation, while the other concerns systems with strong dissipation. In both settings we obtain an asymptotic series of `corrections' to the limiting description which are small with respect to the scaling parameter, these corrections represent the effects of small scales. We determine that only certain approximations give rise to dissipative effects in the resulting evolution. Next we apply this framework to the problem of coarse-graining the locally conserved quantities of a classical Hamiltonian system. By lumping conserved quantities into a collection of mesoscopic cells, we obtain, through a series of approximations, a stochastic particle system that resembles a discretization of the non-linear equations of fluctuating hydrodynamics. We study this system in the case that the transport coefficients are constant and prove well-posedness of the stochastic dynamics. Part II concerns the mathematical description of models where the underlying characteristics are stochastic. Such equations can model, for instance, the dynamics of a passive scalar in a random (turbulent) velocity field or the statistical behavior of a collection of particles subject to random environmental forces. First, we study general well-posedness properties of stochastic transport equation with rough diffusion coefficients. Our main result is strong existence and uniqueness under certain regularity conditions on the coefficients, and uses the theory of renormalized solutions of transport equations adapted to the stochastic setting. Next, in a work undertaken with collaborator Scott-Smith we study the Boltzmann equation with a stochastic forcing. The noise describing the forcing is white in time and colored in space and describes the effects of random environmental forces on a rarefied gas undergoing instantaneous, binary collisions. Under a cut-off assumption on the collision kernel and a coloring hypothesis for the noise coefficients, we prove the global existence of renormalized (DiPerna/Lions) martingale solutions to the Boltzmann equation for large initial data with finite mass, energy, and entropy. Our analysis includes a detailed study of weak martingale solutions to a class of linear stochastic kinetic equations. Tightness of the appropriate quantities is proved by an extension of the Skorohod theorem to non-metric spaces.

  1. Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsing, Johan; MacLeod, Morgan; Ramirez-Ruiz, Enrico

    We perform the first systematic study of how dynamical stellar tides and general relativistic (GR) effects affect the dynamics and outcomes of binary-single interactions. For this, we have constructed an N -body code that includes tides in the affine approximation, where stars are modeled as self-similar ellipsoidal polytropes, and GR corrections using the commonly used post-Newtonian formalism. Using this numerical formalism, we are able resolve the leading effect from tides and GR across several orders of magnitude in both stellar radius and initial target binary separation. We find that the main effect from tides is the formation of two-body tidalmore » captures that form during the chaotic and resonant evolution of the triple system. The two stars undergoing the capture spiral in and merge. The inclusion of tides can thus lead to an increase in the stellar coalescence rate. We also develop an analytical framework for calculating the cross section of tidal inspirals between any pair of objects with similar mass. From our analytical and numerical estimates, we find that the rate of tidal inspirals relative to collisions increases as the initial semimajor axis of the target binary increases and the radius of the interacting tidal objects decreases. The largest effect is therefore found for triple systems hosting white dwarfs and neutron stars (NSs). In this case, we find the rate of highly eccentric white dwarf—NS mergers to likely be dominated by tidal inspirals. While tidal inspirals occur rarely, we note that they can give rise to a plethora of thermonuclear transients, such as Ca-rich transients.« less

  2. Template protection and its implementation in 3D face recognition systems

    NASA Astrophysics Data System (ADS)

    Zhou, Xuebing

    2007-04-01

    As biometric recognition systems are widely applied in various application areas, security and privacy risks have recently attracted the attention of the biometric community. Template protection techniques prevent stored reference data from revealing private biometric information and enhance the security of biometrics systems against attacks such as identity theft and cross matching. This paper concentrates on a template protection algorithm that merges methods from cryptography, error correction coding and biometrics. The key component of the algorithm is to convert biometric templates into binary vectors. It is shown that the binary vectors should be robust, uniformly distributed, statistically independent and collision-free so that authentication performance can be optimized and information leakage can be avoided. Depending on statistical character of the biometric template, different approaches for transforming biometric templates into compact binary vectors are presented. The proposed methods are integrated into a 3D face recognition system and tested on the 3D facial images of the FRGC database. It is shown that the resulting binary vectors provide an authentication performance that is similar to the original 3D face templates. A high security level is achieved with reasonable false acceptance and false rejection rates of the system, based on an efficient statistical analysis. The algorithm estimates the statistical character of biometric templates from a number of biometric samples in the enrollment database. For the FRGC 3D face database, the small distinction of robustness and discriminative power between the classification results under the assumption of uniquely distributed templates and the ones under the assumption of Gaussian distributed templates is shown in our tests.

  3. 4-D Imaging and Modeling of Eta Carinae's Inner Fossil Wind Structures

    NASA Astrophysics Data System (ADS)

    Madura, Thomas I.; Gull, Theodore; Teodoro, Mairan; Clementel, Nicola; Corcoran, Michael; Damineli, Augusto; Groh, Jose; Hamaguchi, Kenji; Hillier, D. John; Moffat, Anthony; Richardson, Noel; Weigelt, Gerd; Lindler, Don; Feggans, Keith

    2017-11-01

    Eta Carinae is the most massive active binary within 10,000 light-years and is famous for the largest non-terminal stellar explosion ever recorded. Observations reveal that the supermassive (~120 M⊙) binary, consisting of an LBV and either a WR or extreme O star, undergoes dramatic changes every 5.54 years due to the stars' very eccentric orbits (e ~ 0.9). Many of these changes are caused by a dynamic wind-wind collision region (WWCR) between the stars, plus expanding fossil WWCRs formed one, two, and three 5.54-year cycles ago. The fossil WWCRs can be spatially and spectrally resolved by the Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS). Starting in June 2009, we used the HST/STIS to spatially map Eta Carinae's fossil WWCRs across one full orbit, following temporal changes in several forbidden emission lines (e.g. [Feiii] 4659 Å, [Feii] 4815 Å), creating detailed data cubes at multiple epochs. Multiple wind structures were imaged, revealing details about the binary's orbital motion, photoionization properties, and recent (~5 - 15 year) mass-loss history. These observations allow us to test 3-D hydrodynamical and radiative-transfer models of the interacting winds. Our observations and models strongly suggest that the wind and photoionization properties of Eta Carinae's binary have not changed substantially over the past several orbital cycles. They also provide a baseline for following future changes in Eta Carinae, essential for understanding the late-stage evolution of this nearby supernova progenitor. For more details, see Gull et al. (2016) and references therein.

  4. Accuracy of the energy-corrected sudden (ECS) scaling procedure for rotational excitation of CO by collisions with Ar

    NASA Technical Reports Server (NTRS)

    Green, S.; Cochrane, D. L.; Truhlar, D. G.

    1986-01-01

    The utility of the energy-corrected sudden (ECS) scaling method is evaluated on the basis of how accurately it predicts the entire matrix of state-to-state rate constants, when the fundamental rate constants are independently known. It is shown for the case of Ar-CO collisions at 500 K that when a critical impact parameter is about 1.75-2.0 A, the ECS method yields excellent excited state rates on the average and has an rms error of less than 20 percent.

  5. Experiments and scaling laws for catastrophic collisions. [of asteroids

    NASA Technical Reports Server (NTRS)

    Fujiwara, A.; Cerroni, P.; Davis, D.; Ryan, E.; Di Martino, M.

    1989-01-01

    The existing data on shattering impacts are reviewed using natural silicate, ice, and cement-mortar targets. A comprehensive data base containing the most important parameters describing these experiments was prepared. The collisional energy needed to shatter consolidated homogeneous targets and the ensuing fragment size distributions have been well studied experimentally. However, major gaps exist in the data on fragment velocity and rotational distributions, as well as collisional energy partitioning for these targets. Current scaling laws lead to predicted outcomes of asteroid collisions that are inconsistent with interpretations of astronomical data.

  6. Scales and kinetics of granular flows.

    PubMed

    Goldhirsch, I.

    1999-09-01

    When a granular material experiences strong forcing, as may be the case, e.g., for coal or gravel flowing down a chute or snow (or rocks) avalanching down a mountain slope, the individual grains interact by nearly instantaneous collisions, much like in the classical model of a gas. The dissipative nature of the particle collisions renders this analogy incomplete and is the source of a number of phenomena which are peculiar to "granular gases," such as clustering and collapse. In addition, the inelasticity of the collisions is the reason that granular gases, unlike atomic ones, lack temporal and spatial scale separation, a fact manifested by macroscopic mean free paths, scale dependent stresses, "macroscopic measurability" of "microscopic fluctuations" and observability of the effects of the Burnett and super-Burnett "corrections." The latter features may also exist in atomic fluids but they are observable there only under extreme conditions. Clustering, collapse and a kinetic theory for rapid flows of dilute granular systems, including a derivation of boundary conditions, are described alongside the mesoscopic properties of these systems with emphasis on the effects, theoretical conclusions and restrictions imposed by the lack of scale separation. (c) 1999 American Institute of Physics.

  7. Strange hadron (neutral kaon(short), lambda baryon and Xi baryon) production in deuteron+gold collisions at center of mass energy = 200 GeV at RHIC

    NASA Astrophysics Data System (ADS)

    Jiang, Hai

    The study of identified particles from deuteron(d)+gold(Au) collisions provide a crucial reference to investigate nuclear effects observed in Au+Au collisions where a thermalized partonic state - Quark Gluon Plasma (QGP) - is thought to have been created. The measurements of transverse mass (mT) and momentum (pT) spectra at mid-rapidity (| y| < 1) for the identified strange hadrons: K0S , Λ + Λ and xi- + xi+ from d+Au collisions are presented. The measured pT covers 0.4 < p T < 6.0 GeV/c for K0S and Λ + Λ and 0.6 < pT < 5.0 GeV/c for xi- + xi+. These particles were reconstructed from the topological characteristics of their weak decays in the STAR Time Projection Chamber (TPC). The mT spectra of these particles are well described by a double exponential function which can be understood by two component models: soft (thermal) hadron production at low mT and hard hadron production at high mT. The integrated yields (dN/dy) and mean pT (< pT >) of these particles are calculated from the fit functions for different centralities. The dN/dy normalized to the number of participants (Npart) increase with Npart. The Λ(Λ ) dN/dy values at the mid-rapidity and forward rapidity regions agree with the EPOS model calculations. The measured Λ/ K0S ratios show the greatest baryon enhancement at pT ˜ 2 GeV/c in d+Au collisions. The strangeness enhancement going from d+Au to Au+Au collisions grows with the number of strange quark in a hadron. The magnitude of the enhancement is in the same order as the SPS measurement. The nuclear modification factors RCP normalized to binary collisions indicate that the Cronin effect in d+Au collisions has a distinct particle type dependence. The RCP ratios show a distinct baryon versus meson dependence: the RCP for xi- + xi+ follows that for Λ + Λ while the R CP for the φ is close to that for the K0S . The mechanism based on initial hadron or parton multiple scattering is not sufficient to explain this particle type dependence. Hadronization processes through multi-parton dynamics such as coalescence and recombination models are likely to be important for explaining baryon enhancement and the Cronin effect in high-energy d+Au collisions.

  8. Synthetic Survey of the Kepler Field

    NASA Astrophysics Data System (ADS)

    Wells, Mark; Prša, Andrej

    2018-01-01

    In the era of large scale surveys, including LSST and Gaia, binary population studies will flourish due to the large influx of data. In addition to probing binary populations as a function of galactic latitude, under-sampled groups such as low mass binaries will be observed at an unprecedented rate. To prepare for these missions, binary population simulations need to be carried out at high fidelity. These simulations will enable the creation of simulated data and, through comparison with real data, will allow the underlying binary parameter distributions to be explored. In order for the simulations to be considered robust, they should reproduce observed distributions accurately. To this end we have developed a simulator which takes input models and creates a synthetic population of eclipsing binaries. Starting from a galactic single star model, implemented using Galaxia, a code by Sharma et al. (2011), and applying observed multiplicity, mass-ratio, period, and eccentricity distributions, as reported by Raghavan et al. (2010), Duchêne & Kraus (2013), and Moe & Di Stefano (2017), we are able to generate synthetic binary surveys that correspond to any survey cadences. In order to calibrate our input models we compare the results of our synthesized eclipsing binary survey to the Kepler Eclipsing Binary catalog.

  9. Semi-empirical scaling for ion–atom single charge exchange cross sections in the intermediate velocity regime

    DOE PAGES

    Friedman, B.; DuCharme, G.

    2017-05-11

    We present a semi-empirical scaling law for non-resonant ion–atom single charge exchange cross sections for collisions with velocities frommore » $${10}^{7}\\,{\\rm{t}}{\\rm{o}}\\,{10}^{9}\\,\\mathrm{cm}\\,{{\\rm{s}}}^{-1}$$ and ions with positive charge $$q\\lt 8$$. Non-resonant cross sections tend to have a velocity peak at collision velocities $$v\\lesssim 1\\ {\\rm{a}}{\\rm{u}}$$ with exponential decay around this peak. We construct a scaling formula for the location of this peak then choose a functional form for the cross section curve and scale it. The velocity at which the cross section peaks, v m, is proportional to the energy defect of the collision, $${\\rm{\\Delta }}E$$, which we predict with the decay approximation. The value of the cross section maximum is proportional to the charge state q, inversely proportional to the target ionization energy I T, and inversely proportional to v m. For the shape of the cross section curve, we use a function that decays exponentially asymptotically at high and low velocities. We scale this function with parameters $${v}_{{\\rm{m}}},{I}_{{\\rm{T}}},{Z}_{{\\rm{T}}},\\mathrm{and}\\ {Z}_{{\\rm{P}}}$$, where the $${Z}_{{\\rm{T}},{\\rm{P}}}$$ are the target and projectile atomic numbers. In conclusion, for the more than 100 cross section curves that we use to find the scaling rules, the scaling law predicts cross sections within a little over a factor of 2 on average.« less

  10. Statistics of initial density perturbations in heavy ion collisions and their fluid dynamic response

    NASA Astrophysics Data System (ADS)

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2014-08-01

    An interesting opportunity to determine thermodynamic and transport properties in more detail is to identify generic statistical properties of initial density perturbations. Here we study event-by-event fluctuations in terms of correlation functions for two models that can be solved analytically. The first assumes Gaussian fluctuations around a distribution that is fixed by the collision geometry but leads to non-Gaussian features after averaging over the reaction plane orientation at non-zero impact parameter. In this context, we derive a three-parameter extension of the commonly used Bessel-Gaussian event-by-event distribution of harmonic flow coefficients. Secondly, we study a model of N independent point sources for which connected n-point correlation functions of initial perturbations scale like 1 /N n-1. This scaling is violated for non-central collisions in a way that can be characterized by its impact parameter dependence. We discuss to what extent these are generic properties that can be expected to hold for any model of initial conditions, and how this can improve the fluid dynamical analysis of heavy ion collisions.

  11. Pathways for diffusion in the potential energy landscape of the network glass former SiO2

    NASA Astrophysics Data System (ADS)

    Niblett, S. P.; Biedermann, M.; Wales, D. J.; de Souza, V. K.

    2017-10-01

    We study the dynamical behaviour of a computer model for viscous silica, the archetypal strong glass former, and compare its diffusion mechanism with earlier studies of a fragile binary Lennard-Jones liquid. Three different methods of analysis are employed. First, the temperature and time scale dependence of the diffusion constant is analysed. Negative correlation of particle displacements influences transport properties in silica as well as in fragile liquids. We suggest that the difference between Arrhenius and super-Arrhenius diffusive behaviour results from competition between the correlation time scale and the caging time scale. Second, we analyse the dynamics using a geometrical definition of cage-breaking transitions that was proposed previously for fragile glass formers. We find that this definition accurately captures the bond rearrangement mechanisms that control transport in open network liquids, and reproduces the diffusion constants accurately at low temperatures. As the same method is applicable to both strong and fragile glass formers, we can compare correlation time scales in these two types of systems. We compare the time spent in chains of correlated cage breaks with the characteristic caging time and find that correlations in the fragile binary Lennard-Jones system persist for an order of magnitude longer than those in the strong silica system. We investigate the origin of the correlation behaviour by sampling the potential energy landscape for silica and comparing it with the binary Lennard-Jones model. We find no qualitative difference between the landscapes, but several metrics suggest that the landscape of the fragile liquid is rougher and more frustrated. Metabasins in silica are smaller than those in binary Lennard-Jones and contain fewer high-barrier processes. This difference probably leads to the observed separation of correlation and caging time scales.

  12. Radio crickets: chirping jets from black hole binaries entering their gravitational wave inspiral

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Loeb, Abraham

    2016-03-01

    We study a novel electromagnetic signature of supermassive black hole (BH) binaries whose inspiral starts being dominated by gravitational wave (GW) emission. Recent simulations suggest that the binary's member BHs can continue to accrete gas from the circumbinary accretion disc in this phase of the binary's evolution, all the way until coalescence. If one of the binary members produces a radio jet as a result of accretion, the jet precesses along a biconical surface due to the binary's orbital motion. When the binary enters the GW phase of its evolution, the opening angle widens, the jet exhibits milliarcsecond-scale wiggles, and the conical surface of jet precession is twisted due to apparent superluminal motion. The rapidly increasing orbital velocity of the binary gives the jet an appearance of a `chirp'. This helical chirping morphology of the jet can be used to infer the binary parameters. For binaries with mass 107-1010 M⊙ at redshifts z < 0.5, monitoring these features in current and archival data will place a lower limit on sources that could be detected by Evolved Laser Interferometer Space Antenna and Pulsar Timing Arrays. In the future, microarcsecond interferometry with the Square Kilometre Array will increase the potential usefulness of this technique.

  13. r-Process Nucleosynthesis in the Early Universe Through Fast Mergers of Compact Binaries in Triple Systems

    NASA Astrophysics Data System (ADS)

    Bonetti, Matteo; Perego, Albino; Capelo, Pedro R.; Dotti, Massimo; Miller, M. Coleman

    2018-05-01

    Surface abundance observations of halo stars hint at the occurrence of r-process nucleosynthesis at low metallicity ([Fe/H] < -3), possibly within the first 108 yr after the formation of the first stars. Possible loci of early-Universe r-process nucleosynthesis are the ejecta of either black hole-neutron star or neutron star-neutron star binary mergers. Here, we study the effect of the inclination-eccentricity oscillations raised by a tertiary (e.g. a star) on the coalescence time-scale of the inner compact object binaries. Our results are highly sensitive to the assumed initial distribution of the inner binary semi-major axes. Distributions with mostly wide compact object binaries are most affected by the third object, resulting in a strong increase (by more than a factor of 2) in the fraction of fast coalescences. If instead the distribution preferentially populates very close compact binaries, general relativistic precession prevents the third body from increasing the inner binary eccentricity to very high values. In this last case, the fraction of coalescing binaries is increased much less by tertiaries, but the fraction of binaries that would coalesce within 108 yr even without a third object is already high. Our results provide additional support to the compact-binary merger scenario for r-process nucleosynthesis.

  14. Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search.

    PubMed

    Xianglong Liu; Zhujin Li; Cheng Deng; Dacheng Tao

    2017-11-01

    Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.

  15. No difference in variability of unique hue selections and binary hue selections.

    PubMed

    Bosten, J M; Lawrance-Owen, A J

    2014-04-01

    If unique hues have special status in phenomenological experience as perceptually pure, it seems reasonable to assume that they are represented more precisely by the visual system than are other colors. Following the method of Malkoc et al. (J. Opt. Soc. Am. A22, 2154 [2005]), we gathered unique and binary hue selections from 50 subjects. For these subjects we repeated the measurements in two separate sessions, allowing us to measure test-retest reliabilities (0.52≤ρ≤0.78; p≪0.01). We quantified the within-individual variability for selections of each hue. Adjusting for the differences in variability intrinsic to different regions of chromaticity space, we compared the within-individual variability for unique hues to that for binary hues. Surprisingly, we found that selections of unique hues did not show consistently lower variability than selections of binary hues. We repeated hue measurements in a single session for an independent sample of 58 subjects, using a different relative scaling of the cardinal axes of MacLeod-Boynton chromaticity space. Again, we found no consistent difference in adjusted within-individual variability for selections of unique and binary hues. Our finding does not depend on the particular scaling chosen for the Y axis of MacLeod-Boynton chromaticity space.

  16. Multiplicity and pseudorapidity distributions of photons in Au+Au collisions at square root of (S(NN)) = 62.4 GeV.

    PubMed

    Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Blyth, S; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; de la Barca Sánchez, M Calderón; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; de Moura, M M; Dedovich, T G; Derevschikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Mazumdar, M R Dutta; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fornazier, K S F; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D; Guertin, S M; Guo, Y; Gupta, A; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; Levine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Reinnarth, J; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; de Toledo, A Szanto; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Buren, G Van; van Leeuwen, M; Molen, A M Vander; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zborovsky, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N

    2005-08-05

    We present the first measurement of pseudorapidity distribution of photons in the region 2.3 < or = eta < or = 3.7 for different centralities in Au+Au collisions at square root of (S(NN)) = 62.4 GeV. We find that the photon yield scales with the number of participating nucleons at all collision centralities studied. The pseudorapidity distribution of photons, dominated by pi0 decays, has been compared to those of charged pions, photons, and inclusive charged particles from heavy-ion and nucleon-nucleon collisions at various energies. The photon production has been shown to be consistent with the energy and centrality independent limiting fragmentation scenario.

  17. How big are the smallest drops of quark-gluon plasma?

    NASA Astrophysics Data System (ADS)

    Chesler, Paul M.

    2016-03-01

    Using holographic duality, we present results for both head-on and off-center collisions of Gaussian shock waves in strongly coupled {N}=4 supersymmetric Yang-Mills theory. The shock waves superficially resemble Lorentz contracted colliding protons. The collisions results in the formation of a plasma whose evolution is well described by viscous hydrodynamics. The size of the produced droplet is R ˜ 1 /T eff where T eff is the effective temperature, which is the characteristic microscopic scale in strongly coupled plasma. These results demonstrate the applicability of hydrodynamics to microscopically small systems and bolster the notion that hydrodynamics can be applied to heavy-light ion collisions as well as some proton-proton collisions.

  18. Binary culture of microalgae as an integrated approach for enhanced biomass and metabolites productivity, wastewater treatment, and bioflocculation.

    PubMed

    Rashid, Naim; Park, Won-Kun; Selvaratnam, Thinesh

    2018-03-01

    Ecological studies of microalgae have revealed their potential to co-exist in the natural environment. It provides an evidence of the symbiotic relationship of microalgae with other microorganisms. The symbiosis potential of microalgae is inherited with distinct advantages, providing a venue for their scale-up applications. The deployment of large-scale microalgae applications is limited due to the technical challenges such as slow growth rate, low metabolites yield, and high risk of biomass contamination by unwanted bacteria. However, these challenges can be overcome by exploring symbiotic potential of microalgae. In a symbiotic system, photosynthetic microalgae co-exist with bacteria, fungi, as well as heterotrophic microalgae. In this consortium, they can exchange nutrients and metabolites, transfer gene, and interact with each other through complex metabolic mechanism. Microalgae in this system, termed as a binary culture, are reported to exhibit high growth rate, enhanced bio-flocculation, and biochemical productivity without experiencing contamination. Binary culture also offers interesting applications in other biotechnological processes including bioremediation, wastewater treatment, and production of high-value metabolites. The focus of the study is to provide a perspective to enhance the understanding about microalgae binary culture. In this review, the mechanism of binary culture, its potential, and limitations are briefly discussed. A number of queries are evolved through this study, which needs to be answered by executing future research to assess the real potential of binary culture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Interactive Exploration for Continuously Expanding Neuron Databases.

    PubMed

    Li, Zhongyu; Metaxas, Dimitris N; Lu, Aidong; Zhang, Shaoting

    2017-02-15

    This paper proposes a novel framework to help biologists explore and analyze neurons based on retrieval of data from neuron morphological databases. In recent years, the continuously expanding neuron databases provide a rich source of information to associate neuronal morphologies with their functional properties. We design a coarse-to-fine framework for efficient and effective data retrieval from large-scale neuron databases. In the coarse-level, for efficiency in large-scale, we employ a binary coding method to compress morphological features into binary codes of tens of bits. Short binary codes allow for real-time similarity searching in Hamming space. Because the neuron databases are continuously expanding, it is inefficient to re-train the binary coding model from scratch when adding new neurons. To solve this problem, we extend binary coding with online updating schemes, which only considers the newly added neurons and update the model on-the-fly, without accessing the whole neuron databases. In the fine-grained level, we introduce domain experts/users in the framework, which can give relevance feedback for the binary coding based retrieval results. This interactive strategy can improve the retrieval performance through re-ranking the above coarse results, where we design a new similarity measure and take the feedback into account. Our framework is validated on more than 17,000 neuron cells, showing promising retrieval accuracy and efficiency. Moreover, we demonstrate its use case in assisting biologists to identify and explore unknown neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Coupled binary embedding for large-scale image retrieval.

    PubMed

    Zheng, Liang; Wang, Shengjin; Tian, Qi

    2014-08-01

    Visual matching is a crucial step in image retrieval based on the bag-of-words (BoW) model. In the baseline method, two keypoints are considered as a matching pair if their SIFT descriptors are quantized to the same visual word. However, the SIFT visual word has two limitations. First, it loses most of its discriminative power during quantization. Second, SIFT only describes the local texture feature. Both drawbacks impair the discriminative power of the BoW model and lead to false positive matches. To tackle this problem, this paper proposes to embed multiple binary features at indexing level. To model correlation between features, a multi-IDF scheme is introduced, through which different binary features are coupled into the inverted file. We show that matching verification methods based on binary features, such as Hamming embedding, can be effectively incorporated in our framework. As an extension, we explore the fusion of binary color feature into image retrieval. The joint integration of the SIFT visual word and binary features greatly enhances the precision of visual matching, reducing the impact of false positive matches. Our method is evaluated through extensive experiments on four benchmark datasets (Ukbench, Holidays, DupImage, and MIR Flickr 1M). We show that our method significantly improves the baseline approach. In addition, large-scale experiments indicate that the proposed method requires acceptable memory usage and query time compared with other approaches. Further, when global color feature is integrated, our method yields competitive performance with the state-of-the-arts.

  1. The Ruinous Influence of Close Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.

    2017-01-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34 +0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.

  2. The Ruinous Influence of Close Binary Companions on Planetary Systems

    NASA Astrophysics Data System (ADS)

    Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.

    2017-06-01

    The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34+0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.

  3. Multistrange Baryon elliptic flow in Au+Au collisions at square root of sNN=200 GeV.

    PubMed

    Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Blyth, S L; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; de Moura, M M; Dedovich, T G; DePhillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fornazier, K S F; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D; Guertin, S M; Guo, Y; Gupta, A; Gupta, N; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Reinnarth, J; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zborovsky, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2005-09-16

    We report on the first measurement of elliptic flow v2(pT) of multistrange baryons Xi- +Xi+ and Omega- + Omega+ in heavy-ion collisions. In minimum-bias Au+Au collisions at square root of s(NN)=200 GeV, a significant amount of elliptic flow, comparable to other nonstrange baryons, is observed for multistrange baryons which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion collisions. The pT dependence of v2 of the multistrange baryons confirms the number of constituent quark scaling previously observed for lighter hadrons. These results support the idea that a substantial fraction of the observed collective motion is developed at the early partonic stage in ultrarelativistic nuclear collisions at the Relativistic Heavy Ion Collider.

  4. Kinematic responses and injuries of pedestrian in car-pedestrian collisions

    NASA Astrophysics Data System (ADS)

    Teng, T. L.; Liang, C. C.; Hsu, C. Y.; Tai, S. F.

    2017-10-01

    How to protect pedestrians and reduce the collision injury has gradually become the new field of automotive safety research and focus in the world. Many engineering studies have appeared and their purpose is trying to reduce the pedestrian injuries caused by traffic accident. The physical model involving impactor model and full scale pedestrian model are costly when taking the impact test. This study constructs a vehicle-pedestrian collision model by using the MADYMO. To verify the accuracy of the proposed vehicle-pedestrian collision model, the experimental data are used in the pedestrian model test. The proposed model also will be applied to analyze the kinematic responses and injuries of pedestrian in collisions in this study. The modeled results can help assess the pedestrian friendliness of vehicles and assist in the future development of pedestrian friendliness vehicle technologies.

  5. Cumulative Damage in Strength-Dominated Collisions of Rocky Asteroids: Rubble Piles and Brick Piles

    NASA Technical Reports Server (NTRS)

    Housen, Kevin

    2009-01-01

    Laboratory impact experiments were performed to investigate the conditions that produce large-scale damage in rock targets. Aluminum cylinders (6.3 mm diameter) impacted basalt cylinders (69 mm diameter) at speeds ranging from 0.7 to 2.0 km/s. Diagnostics included measurements of the largest fragment mass, velocities of the largest remnant and large fragments ejected from the periphery of the target, and X-ray computed tomography imaging to inspect some of the impacted targets for internal damage. Significant damage to the target occurred when the kinetic energy per unit target mass exceeded roughly 1/4 of the energy required for catastrophic shattering (where the target is reduced to one-half its original mass). Scaling laws based on a rate-dependent strength were developed that provide a basis for extrapolating the results to larger strength-dominated collisions. The threshold specific energy for widespread damage was found to scale with event size in the same manner as that for catastrophic shattering. Therefore, the factor of four difference between the two thresholds observed in the lab also applies to larger collisions. The scaling laws showed that for a sequence of collisions that are similar in that they produce the same ratio of largest fragment mass to original target mass, the fragment velocities decrease with increasing event size. As a result, rocky asteroids a couple hundred meters in diameter should retain their large ejecta fragments in a jumbled rubble-pile state. For somewhat larger bodies, the ejection velocities are sufficiently low that large fragments are essentially retained in place, possibly forming ordered "brick-pile" structures.

  6. Reliable binary cell-fate decisions based on oscillations

    NASA Astrophysics Data System (ADS)

    Pfeuty, B.; Kaneko, K.

    2014-02-01

    Biological systems have often to perform binary decisions under highly dynamic and noisy environments, such as during cell-fate determination. These decisions can be implemented by two main bifurcation mechanisms based on the transitions from either monostability or oscillation to bistability. We compare these two mechanisms by using stochastic models with time-varying fields and by establishing asymptotic formulas for the choice probabilities. Different scaling laws for decision sensitivity with respect to noise strength and signal timescale are obtained, supporting a role for oscillatory dynamics in performing noise-robust and temporally tunable binary decision-making. This result provides a rationale for recent experimental evidences showing that oscillatory expression of proteins often precedes binary cell-fate decisions.

  7. Measurements of mass-dependent azimuthal anisotropy in central p + Au, d + Au, and He 3 + Au collisions at s N N = 200 GeV

    DOE PAGES

    Adare, A.; Aidala, C.; Ajitanand, N. N.; ...

    2018-06-11

    Here, we present measurements of the transverse-momentum dependence of elliptic flow v 2 for identified pions and (anti)protons at midrapidity (|η| < 0.35), in 0%–5% central p+Au and 3He+Au collisions at √ s NN = 200 GeV. When taken together with previously published measurements in d + Au collisions at √ s NN = 200 GeV, the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of v 2(p T) in d + Au and 3He + Au collisions, just as in large nucleus-nucleus (A + A) collisions, and a smallermore » splitting in p + Au collisions. Both hydrodynamic and transport model calculations successfully describe the data at low p T (< 1.5GeV/c), but fail to describe various features at higher p T. In all systems, the v 2 values follow an approximate quark-number scaling as a function of the hadron transverse kinetic energy per constituent quark (KE T/n q), which was also seen previously in A + A collisions.« less

  8. Measurements of mass-dependent azimuthal anisotropy in central p + Au, d + Au, and 3He + Au collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Alfred, M.; Andrieux, V.; Apadula, N.; Asano, H.; Azmoun, B.; Babintsev, V.; Bagoly, A.; Bai, M.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Blau, D. S.; Boer, M.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Bumazhnov, V.; Campbell, S.; Canoa Roman, V.; Cervantes, R.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Chujo, T.; Citron, Z.; Connors, M.; Cronin, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dion, A.; Diss, P. B.; Dixit, D.; Do, J. H.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Enokizono, A.; En'yo, H.; Esumi, S.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukuda, Y.; Gal, C.; Gallus, P.; Garg, P.; Ge, H.; Giordano, F.; Glenn, A.; Goto, Y.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; He, X.; Hemmick, T. K.; Hill, J. C.; Hill, K.; Hodges, A.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Imai, K.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Ivanishchev, D.; Jacak, B. V.; Jezghani, M.; Ji, Z.; Jia, J.; Jiang, X.; Johnson, B. M.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kanda, S.; Kang, J. H.; Kapukchyan, D.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, M. H.; Kimelman, B.; Kincses, D.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Komkov, B.; Kotov, D.; Kudo, S.; Kurgyis, B.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lajoie, J. G.; Lebedev, A.; Lee, S.; Lee, S. H.; Leitch, M. J.; Leung, Y. H.; Lewis, N. A.; Li, X.; Li, X.; Lim, S. H.; Liu, M. X.; Loggins, V.-R.; Lökös, S.; Lovasz, K.; Lynch, D.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Metzger, W. J.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morrison, D. P.; Morrow, S. I.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagai, K.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ottino, G. J.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, J. S.; Park, S.; Pate, S. F.; Patel, M.; Peng, J.-C.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Radzevich, P. V.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richford, D.; Rinn, T.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Runchey, J.; Safonov, A. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shioya, T.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skoby, M. J.; Slunečka, M.; Snowball, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Stepanov, M.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takeda, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Towell, C. L.; Towell, R.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vazquez-Carson, S.; Velkovska, J.; Virius, M.; Vrba, V.; Vukman, N.; Wang, X. R.; Wang, Z.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; White, A. S.; Wong, C. P.; Woody, C. L.; Wysocki, M.; Xia, B.; Xu, C.; Xu, Q.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamamoto, H.; Yanovich, A.; Yin, P.; Yoo, J. H.; Yoon, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zhou, S.; Zou, L.; Phenix Collaboration

    2018-06-01

    We present measurements of the transverse-momentum dependence of elliptic flow v2 for identified pions and (anti)protons at midrapidity (|η |<0.35 ), in 0%-5% central p +Au and 3He+Au collisions at √{sNN}=200 GeV. When taken together with previously published measurements in d +Au collisions at √{sNN}=200 GeV, the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of v2(pT) in d +Au and 3He+Au collisions, just as in large nucleus-nucleus (A +A ) collisions, and a smaller splitting in p +Au collisions. Both hydrodynamic and transport model calculations successfully describe the data at low pT (<1.5 GeV /c ), but fail to describe various features at higher pT. In all systems, the v2 values follow an approximate quark-number scaling as a function of the hadron transverse kinetic energy per constituent quark (K ET/nq ), which was also seen previously in A +A collisions.

  9. Measurements of mass-dependent azimuthal anisotropy in central p + Au, d + Au, and He 3 + Au collisions at s N N = 200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adare, A.; Aidala, C.; Ajitanand, N. N.

    Here, we present measurements of the transverse-momentum dependence of elliptic flow v 2 for identified pions and (anti)protons at midrapidity (|η| < 0.35), in 0%–5% central p+Au and 3He+Au collisions at √ s NN = 200 GeV. When taken together with previously published measurements in d + Au collisions at √ s NN = 200 GeV, the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of v 2(p T) in d + Au and 3He + Au collisions, just as in large nucleus-nucleus (A + A) collisions, and a smallermore » splitting in p + Au collisions. Both hydrodynamic and transport model calculations successfully describe the data at low p T (< 1.5GeV/c), but fail to describe various features at higher p T. In all systems, the v 2 values follow an approximate quark-number scaling as a function of the hadron transverse kinetic energy per constituent quark (KE T/n q), which was also seen previously in A + A collisions.« less

  10. Rapidity and centrality dependence of particle production for identified hadrons in Cu + Cu collisions at s NN = 200 GeV

    DOE PAGES

    Arsene, I. C.

    2016-07-20

    Tmore » he BRAHMS collaboration has measured transverse momentum spectra of pions, kaons, protons, and antiprotons at rapidities 0 and 3 for Cu+Cu collisions at s NN = 200 GeV. As the collisions become more central the collective radial flow increases while the temperature of kinetic freeze-out decreases. he temperature is lower and the radial flow weaker at forward rapidity. Pion and kaon yields with transverse momenta between 1.5 and 2.5 GeV/c are suppressed for central collisions relative to scaled p + p collisions. his suppression, which increases as the collisions become more central, is consistent with jet quenching models and is also present with comparable magnitude at forward rapidity. At such rapidities, initial state effects may also be present and persistence of the meson suppression to high rapidity may reflect a combination of jet quenching and nuclear shadowing. In conclusion, the ratio of protons to mesons increases as the collisions become more central and is largest at forward rapidities.« less

  11. Theory and modeling of atmospheric turbulence, part 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The cascade transfer which is the only function to describe the mode coupling as the result of the nonlinear hydrodynamic state of turbulence is discussed. A kinetic theory combined with a scaling procedure was developed. The transfer function governs the non-linear mode coupling in strong turbulence. The master equation is consistent with the hydrodynamical system that describes the microdynamic state of turbulence and has the advantages to be homogeneous and have fewer nonlinear terms. The modes are scaled into groups to decipher the governing transport processes and statistical characteristics. An equation of vorticity transport describes the microdynamic state of two dimensional, isotropic and homogeneous, geostrophic turbulence. The equation of evolution of the macrovorticity is derived from group scaling in the form of the Fokker-Planck equation with memory. The microdynamic state of turbulence is transformed into the Liouville equation to derive the kinetic equation of the singlet distribution in turbulence. The collision integral contains a memory, which is analyzed with pair collision and the multiple collision. Two other kinetic equations are developed in parallel for the propagator and the transition probability for the interaction among the groups.

  12. Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center d

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Scaled Composites' Proteus aircraft and an F/A-18 Hornet from NASA's Dryden Flight Research Center during a low-level flyby at Las Cruces Airport in New Mexico. The unique Proteus aircraft served as a test bed for NASA-sponsored flight tests designed to validate collision-avoidance technologies proposed for uninhabited aircraft. The tests, flown over southern New Mexico in March, 2002, used the Proteus as a surrogate uninhabited aerial vehicle (UAV) while three other aircraft flew toward the Proteus from various angles on simulated collision courses. Radio-based 'detect, see and avoid' equipment on the Proteus successfully detected the other aircraft and relayed that information to a remote pilot on the ground at Las Cruces Airport. The pilot then transmitted commands to the Proteus to maneuver it away from the potential collisions. The flight demonstration, sponsored by NASA Dryden Flight Research Center, New Mexico State University, Scaled Composites, the U.S. Navy and Modern Technology Solutions, Inc., were intended to demonstrate that UAVs can be flown safely and compatibly in the same skies as piloted aircraft.

  13. Bridging the condensation-collision size gap: a direct numerical simulation of continuous droplet growth in turbulent clouds

    NASA Astrophysics Data System (ADS)

    Chen, Sisi; Yau, Man-Kong; Bartello, Peter; Xue, Lulin

    2018-05-01

    In most previous direct numerical simulation (DNS) studies on droplet growth in turbulence, condensational growth and collisional growth were treated separately. Studies in recent decades have postulated that small-scale turbulence may accelerate droplet collisions when droplets are still small when condensational growth is effective. This implies that both processes should be considered simultaneously to unveil the full history of droplet growth and rain formation. This paper introduces the first direct numerical simulation approach to explicitly study the continuous droplet growth by condensation and collisions inside an adiabatic ascending cloud parcel. Results from the condensation-only, collision-only, and condensation-collision experiments are compared to examine the contribution to the broadening of droplet size distribution (DSD) by the individual process and by the combined processes. Simulations of different turbulent intensities are conducted to investigate the impact of turbulence on each process and on the condensation-induced collisions. The results show that the condensational process promotes the collisions in a turbulent environment and reduces the collisions when in still air, indicating a positive impact of condensation on turbulent collisions. This work suggests the necessity of including both processes simultaneously when studying droplet-turbulence interaction to quantify the turbulence effect on the evolution of cloud droplet spectrum and rain formation.

  14. Mechanisms of cell damage in agitated microcarrier tissue culture reactors

    NASA Technical Reports Server (NTRS)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1986-01-01

    Cells growing on microcarriers may be damaged by collisions of the microcarrier against another microcarrier or the reactor agitator. Bead-bead collisions are caused by small-scale turbulence, which can also cause high local shear stress on the cells. The cells are also exposed to 10-20 Hz cyclic shear stress by bead rotation.

  15. X-Ray modeling of η Carinae & WR 140 from SPH simulations

    NASA Astrophysics Data System (ADS)

    Russell, Christopher M. P.; Corcoran, Michael F.; Okazaki, Atsuo T.; Madura, Thomas I.; Owocki, Stanley P.

    2011-07-01

    The colliding wind binary (CWB) systems η Carinae and WR140 provide unique laboratories for X-ray astrophysics. Their wind-wind collisions produce hard X-rays that have been monitored extensively by several X-ray telescopes, including RXTE. To interpret these RXTE X-ray light curves, we apply 3D hydrodynamic simulations of the wind-wind collision using smoothed particle hydrodynamics (SPH). We find adiabatic simulations that account for the absorption of X-rays from an assumed point source of X-ray emission at the apex of the wind-collision shock cone can closely match the RXTE light curves of both η Car and WR140. This point-source model can also explain the early recovery of η Car's X-ray light curve from the 2009.0 minimum by a factor of 2-4 reduction in the mass loss rate of η Car. Our more recent models account for the extended emission and absorption along the full wind-wind interaction shock front. For WR140, the computed X-ray light curves again match the RXTE observations quite well. But for η Car, a hot, post-periastron bubble leads to an emission level that does not match the extended X-ray minimum observed by RXTE. Initial results from incorporating radiative cooling and radiative forces via an anti-gravity approach into the SPH code are also discussed.

  16. X-ray Modeling of η Carinae & WR140 from SPH Simulations

    NASA Astrophysics Data System (ADS)

    Russell, Christopher M. P.; Corcoran, Michael F.; Okazaki, Atsuo T.; Madura, Thomas I.; Owocki, Stanley P.

    2011-01-01

    The colliding wind binary (CWB) systems η Carinae and WR140 provide unique laboratories for X-ray astrophysics. Their wind-wind collisions produce hard X-rays that have been monitored extensively by several X-ray telescopes, including RXTE. To interpret these RXTE X-ray light curves, we model the wind-wind collision using 3D smoothed particle hydrodynamics (SPH) simulations. Adiabatic simulations that account for the emission and absorption of X-rays from an assumed point source at the apex of the wind-collision shock cone by the distorted winds can closely match the observed 2-10keV RXTE light curves of both η Car and WR140. This point-source model can also explain the early recovery of η Car's X-ray light curve from the 2009.0 minimum by a factor of 2-4 reduction in the mass loss rate of η Car. Our more recent models relax the point-source approximation and account for the spatially extended emission along the wind-wind interaction shock front. For WR140, the computed X-ray light curve again matches the RXTE observations quite well. But for η Car, a hot, post-periastron bubble leads to an emission level that does not match the extended X-ray minimum observed by RXTE. Initial results from incorporating radiative cooling and radiatively-driven wind acceleration via a new anti-gravity approach into the SPH code are also discussed.

  17. The graviton luminosity of the sun and other stars

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1985-01-01

    Graviton production in electron-electron (e-e) and electron-ion (e-z) scattering is evaluated in the Born approximation. The calculation is compared with that for photon production, that is, Coulomb quadrupole bremsstrahlung, and a number of results are taken over from that problem. Application is made to the sun, and it is found that for the solar plasma the main contribution to the graviton luminosity comes from the central core at r/R approximately 0.1. The total luminosity (Lg) in gravitons is about 7.9 x 10 to the 14th ergs/s, close to an earlier estimate by Weinberg (1965, 1972); about 33 percent of the total results from e-e collisions with the rest from e-z collisions (mainly e-p and e-alpha). Approximate corrections to Born formulas are evaluated, and this Lg includes the associated (approximately + or - 10 percent, respectively) modification. The quantum-mechanical aspects of the solar Lg problem are discussed, and it is shown why a previous classical calculation overestimated Lg by about an order of magnitude. Production of gravitons in binary collisions in other types of stars is discussed briefly. It is found that Lg varies very little along the main sequence. White dwarfs have a typical graviton luminosity LWD approximately 10 to the 19th ergs/s, while neutron stars have LNS approximately 10 to the 25th ergs/s; these estimates are very rough.

  18. New Caledonia a classic example of an arc continent collision

    NASA Astrophysics Data System (ADS)

    Aitchison, J.

    2011-12-01

    The SW Pacific island of New Caledonia presents a classic example of an arc-continent collision. This event occurred in the Late Eocene when elements of an intra-oceanic island arc system, the Loyalty-D'Entrecasteaux arc, which stretched SSE from near Papua New Guinea east of New Caledonia to offshore New Zealand, collided with micro-continental fragments that had rifted off eastern Gondwana (Australia) in the late Cretaceous. Intervening Late Cretaceous to Paleogene oceanic crust of the South Loyalty Basin was eliminated through eastward subduction beneath this west-facing intra-oceanic island arc. As with many arc-continent collisions elsewhere collision was accompanied by ophiolite emplacement. The erosional remnants of which are extensive in New Caledonia. Collision led to subduction flip, followed by extensive rollback in front of the newly established east-facing Vitiaz arc. Post-collisional magmatism occurred after slab break-off and is represented by small-scale granitoid intrusions. Additional important features of New Caledonia include the presence of a regionally extensive UHP metamorphic terrain consisting of blueschists and eclogites that formed during the subduction process and were rapidly exhumed as a result of the collision Not only was collision and associated orogeny short-lived this collision system has not been overprinted by any major subsequent collision. New Caledonia thus provides an exceptional location for the study of processes related to arc-continent collision in general.

  19. Proof of Concept of Automated Collision Detection Technology in Rugby Sevens.

    PubMed

    Clarke, Anthea C; Anson, Judith M; Pyne, David B

    2017-04-01

    Clarke, AC, Anson, JM, and Pyne, DB. Proof of concept of automated collision detection technology in rugby sevens. J Strength Cond Res 31(4): 1116-1120, 2017-Developments in microsensor technology allow for automated detection of collisions in various codes of football, removing the need for time-consuming postprocessing of video footage. However, little research is available on the ability of microsensor technology to be used across various sports or genders. Game video footage was matched with microsensor-detected collisions (GPSports) in one men's (n = 12 players) and one women's (n = 12) rugby sevens match. True-positive, false-positive, and false-negative events between video and microsensor-detected collisions were used to calculate recall (ability to detect a collision) and precision (accurately identify a collision). The precision was similar between the men's and women's rugby sevens game (∼0.72; scale 0.00-1.00); however, the recall in the women's game (0.45) was less than that for the men's game (0.69). This resulted in 45% of collisions for men and 62% of collisions for women being incorrectly labeled. Currently, the automated collision detection system in GPSports microtechnology units has only modest utility in rugby sevens, and it seems that a rugby sevens-specific algorithm is needed. Differences in measures between the men's and women's game may be a result of physical size, and strength, and physicality, as well as technical and tactical factors.

  20. Bird and bat species' global vulnerability to collision mortality at wind farms revealed through a trait-based assessment.

    PubMed

    Thaxter, Chris B; Buchanan, Graeme M; Carr, Jamie; Butchart, Stuart H M; Newbold, Tim; Green, Rhys E; Tobias, Joseph A; Foden, Wendy B; O'Brien, Sue; Pearce-Higgins, James W

    2017-09-13

    Mitigation of anthropogenic climate change involves deployments of renewable energy worldwide, including wind farms, which can pose a significant collision risk to volant animals. Most studies into the collision risk between species and wind turbines, however, have taken place in industrialized countries. Potential effects for many locations and species therefore remain unclear. To redress this gap, we conducted a systematic literature review of recorded collisions between birds and bats and wind turbines within developed countries. We related collision rate to species-level traits and turbine characteristics to quantify the potential vulnerability of 9538 bird and 888 bat species globally. Avian collision rate was affected by migratory strategy, dispersal distance and habitat associations, and bat collision rates were influenced by dispersal distance. For birds and bats, larger turbine capacity (megawatts) increased collision rates; however, deploying a smaller number of large turbines with greater energy output reduced total collision risk per unit energy output, although bat mortality increased again with the largest turbines. Areas with high concentrations of vulnerable species were also identified, including migration corridors. Our results can therefore guide wind farm design and location to reduce the risk of large-scale animal mortality. This is the first quantitative global assessment of the relative collision vulnerability of species groups with wind turbines, providing valuable guidance for minimizing potentially serious negative impacts on biodiversity. © 2017 The Author(s).

Top