Heber Binary Project. Binary Cycle Geothermal Demonstration Power Plant (RP1900-1)
NASA Astrophysics Data System (ADS)
Lacy, R. G.; Nelson, T. T.
1982-12-01
The Heber Binary Project (1) demonstrates the potential of moderate temperature (below 410 F) geothermal energy to produce economic electric power with binary cycle conversion technology; (2) allows the scaling up and evaluation of the performance of binary cycle technology in geothermal service; (3) establishes schedule, cost and equipment performance, reservoir performance, and the environmental acceptability of such plants; and (4) resolves uncertainties associated with the reservoir performance, plant operation, and economics.
Beaulieu, Jeremy M; O'Meara, Brian C; Donoghue, Michael J
2013-09-01
The growth of phylogenetic trees in scope and in size is promising from the standpoint of understanding a wide variety of evolutionary patterns and processes. With trees comprised of larger, older, and globally distributed clades, it is likely that the lability of a binary character will differ significantly among lineages, which could lead to errors in estimating transition rates and the associated inference of ancestral states. Here we develop and implement a new method for identifying different rates of evolution in a binary character along different branches of a phylogeny. We illustrate this approach by exploring the evolution of growth habit in Campanulidae, a flowering plant clade containing some 35,000 species. The distribution of woody versus herbaceous species calls into question the use of traditional models of binary character evolution. The recognition and accommodation of changes in the rate of growth form evolution in different lineages demonstrates, for the first time, a robust picture of growth form evolution across a very large, very old, and very widespread flowering plant clade.
Improving geothermal power plants with a binary cycle
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.
2015-12-01
The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.
Forage Production on Dry Rangelands of Binary Grass-Legume Mixtures at Four Plant Densities
USDA-ARS?s Scientific Manuscript database
Forage production on Western US rangelands can be increased with the right combination of plants. Our objective was to demonstrate the relative forage production advantage of including a legume on dry rangelands. A falcata and rhizomatous alfalfa (medicago sativa L.), alti wildrye [Leymus andustus...
Choice of optimal working fluid for binary power plants at extremely low temperature brine
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.
2016-12-01
The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.
Rao, I G; Singh, D K
2002-01-01
The toxic effect of single and binary treatments of synthetic and plant-derived molluscicides was studied against the harmful terrestrial snail Achatina fulica. In single treatments, among the synthetic molluscicides Snail Kill and cypermethrin were potent, whereas Cedrus deodara oil was more toxic among molluscicides of plant origin against A. fulica. In binary treatments, a combination of Cedrusdeodara + Alliumsativum was more toxic. The toxicities of these single and binary treatments of synthetic and plant-derived molluscicides were dose and time dependent. Copyright 2002 John Wiley & Sons, Ltd.
Thermodynamics Analysis of Binary Plant Generating Power from Low-Temperature Geothermal Resource
NASA Astrophysics Data System (ADS)
Maksuwan, A.
2018-05-01
The purpose in this research was to predict tendency of increase Carnot efficiency of the binary plant generating power from low-temperature geothermal resource. Low-temperature geothermal resources or less, are usually exploited by means of binary-type energy conversion systems. The maximum efficiency is analyzed for electricity production of the binary plant generating power from low-temperature geothermal resource becomes important. By using model of the heat exchanger equivalent to a power plant together with the calculation of the combined heat and power (CHP) generation. The CHP was solved in detail with appropriate boundary originating an idea from the effect of temperature of source fluid inlet-outlet and cooling fluid supply. The Carnot efficiency from the CHP calculation was compared between condition of increase temperature of source fluid inlet-outlet and decrease temperature of cooling fluid supply. Result in this research show that the Carnot efficiency for binary plant generating power from low-temperature geothermal resource has tendency increase by decrease temperature of cooling fluid supply.
Static-dynamic hybrid communication scheduling and control co-design for networked control systems.
Wen, Shixi; Guo, Ge
2017-11-01
In this paper, the static-dynamic hybrid communication scheduling and control co-design is proposed for the networked control systems (NCSs) to solve the capacity limitation of the wireless communication network. The analytical most regular binary sequences (MRBSs) are used as the communication scheduling function for NCSs. When the communication conflicts yielded in the binary sequence MRBSs, a dynamic scheduling strategy is proposed to on-line reallocate the medium access status for each plant. Under such static-dynamic hybrid scheduling policy, plants in NCSs are described as the non-uniform sampled-control systems, whose controller have a group of controller gains and switch according to the sampling interval yielded by the binary sequence. A useful communication scheduling and control co-design framework is proposed for the NCSs to simultaneously decide the controller gains and the parameters used to generate the communication sequences MRBS. Numerical example and realistic example are respectively given to demonstrate the effectiveness of the proposed co-design method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Chakraborti, Dipankar; Sarkar, Anindya; Mondal, Hossain A; Schuermann, David; Hohn, Barbara; Sarmah, Bidyut K; Das, Sampa
2008-10-01
A binary expression vector was constructed containing the insecticidal gene Allium sativum leaf agglutinin (ASAL), and a selectable nptII marker gene cassette, flanked by lox sites. Similarly, another binary vector was developed with the chimeric cre gene construct. Transformed tobacco plants were generated with these two independent vectors. Each of the T(0) lox plants was crossed with T(0) Cre plants. PCR analyses followed by the sequencing of the target T-DNA part of the hybrid T(1) plants demonstrated the excision of the nptII gene in highly precised manner in certain percentage of the T(1) hybrid lines. The frequency of such marker gene excision was calculated to be 19.2% in the hybrids. Marker free plants were able to express ASAL efficiently and reduce the survivability of Myzus persiceae, the deadly pest of tobacco significantly, compared to the control tobacco plants. Results of PCR and Southern blot analyses of some of the T(2) plants detected the absence of cre as well as nptII genes. Thus, the crossing strategy involving Cre/lox system for the excision of marker genes appears to be very effective and easy to execute. Documentation of such marker excision phenomenon in the transgenic plants expressing the important insecticidal protein for the first time has a great significance from agricultural and biotechnological points of view.
Design of synthetic bacterial communities for predictable plant phenotypes
Herrera Paredes, Sur; Gao, Tianxiang; Law, Theresa F.; Finkel, Omri M.; Mucyn, Tatiana; Teixeira, Paulo José Pereira Lima; Salas González, Isaí; Feltcher, Meghan E.; Powers, Matthew J.; Shank, Elizabeth A.; Jones, Corbin D.; Jojic, Vladimir; Dangl, Jeffery L.; Castrillo, Gabriel
2018-01-01
Specific members of complex microbiota can influence host phenotypes, depending on both the abiotic environment and the presence of other microorganisms. Therefore, it is challenging to define bacterial combinations that have predictable host phenotypic outputs. We demonstrate that plant–bacterium binary-association assays inform the design of small synthetic communities with predictable phenotypes in the host. Specifically, we constructed synthetic communities that modified phosphate accumulation in the shoot and induced phosphate starvation–responsive genes in a predictable fashion. We found that bacterial colonization of the plant is not a predictor of the plant phenotypes we analyzed. Finally, we demonstrated that characterizing a subset of all possible bacterial synthetic communities is sufficient to predict the outcome of untested bacterial consortia. Our results demonstrate that it is possible to infer causal relationships between microbiota membership and host phenotypes and to use these inferences to rationally design novel communities. PMID:29462153
Small-scale Geothermal Power Plants Using Hot Spring Water
NASA Astrophysics Data System (ADS)
Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.
2013-12-01
The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three units have been installed in Obama Hot Spring area, Nagasaki Prefecture, where about 15,000 tonnes of hot water are produced in a day and more than 35% of the hot water flow directly to the sea. Another demonstration experiments are also conducted in several hot spring areas. In this study we will review several examples to utilise low temperature hot springs in Japan. Binary Power Unit at Obama (Fujino, 2013)
Advanced binary geothermal power plants: Limits of performance
NASA Astrophysics Data System (ADS)
Bliem, C. J.; Mines, G. L.
1991-01-01
The Heat Cycle Research Program is investigating potential improvements to power cycles utilizing moderate temperature geothermal resources to produce electrical power. Investigations have specifically examined Rankine cycle binary power systems. Binary Rankine cycles are more efficient than the flash steam cycles at moderate resource temperature, achieving a higher net brine effectiveness. At resource conditions similar to those at the Heber binary plant, it has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating in a supercritical Rankine cycle gave improved performance over Rankine cycles with the pure working fluids executing single or dual boiling cycles or supercritical cycles. Recently, other types of cycles have been proposed for binary geothermal service. The feasible limits on efficiency of a plant given practical limits on equipment performance is explored and the methods used in these advanced concept plants to achieve the maximum possible efficiency are discussed. (Here feasible is intended to mean reasonably achievable and not cost effective.) No direct economic analysis was made because of the sensitivity of economic results to site specific input. The limit of performance of three advanced plants were considered. The performance predictions were taken from the developers of each concept. The advanced plants considered appear to be approaching the feasible limit of performance. Ultimately, the plant designer must weigh the advantages and disadvantages of the the different cycles to find the best plant for a given service. In addition, a standard is presented of comparison of the work which has been done in the Heat Cycle Research Program and in the industrial sector by Exergy, Inc. and Polythermal Technologies.
Dixie Valley Binary Cycle Production Data 2013 YTD
Lee, Vitaly
2013-10-18
Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013
Bitrián, Marta; Roodbarkelari, Farshad; Horváth, Mihály; Koncz, Csaba
2011-03-01
Recombineering, permitting precise modification of genes within bacterial artificial chromosomes (BACs) through homologous recombination mediated by lambda phage-encoded Red proteins, is a widely used powerful tool in mouse, Caenorhabditis and Drosophila genetics. As Agrobacterium-mediated transfer of large DNA inserts from binary BACs and TACs into plants occurs at low frequency, recombineering is so far seldom exploited in the analysis of plant gene functions. We have constructed binary plant transformation vectors, which are suitable for gap-repair cloning of genes from BACs using recombineering methods previously developed for other organisms. Here we show that recombineering facilitates PCR-based generation of precise translational fusions between coding sequences of fluorescent reporter and plant proteins using galK-based exchange recombination. The modified target genes alone or as part of a larger gene cluster can be transferred by high-frequency gap-repair into plant transformation vectors, stably maintained in Agrobacterium and transformed without alteration into plants. Versatile application of plant BAC-recombineering is illustrated by the analysis of developmental regulation and cellular localization of interacting AKIN10 catalytic and SNF4 activating subunits of Arabidopsis Snf1-related (SnRK1) protein kinase using in vivo imaging. To validate full functionality and in vivo interaction of tagged SnRK1 subunits, it is demonstrated that immunoprecipitated SNF4-YFP is bound to a kinase that phosphorylates SnRK1 candidate substrates, and that the GFP- and YFP-tagged kinase subunits co-immunoprecipitate with endogenous wild type AKIN10 and SNF4. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckers, Koenraad J; Young, Katherine R; Johnston, Henry
When conducting techno-economic analysis of geothermal systems, assumptions are typically necessary for reservoir and wellbore parameters such as producer/injector well ratio, production temperature drawdown, and production/injection temperature, pressure and flow rate. To decrease uncertainty of several of these parameters, we analyzed field data reported by operators in monthly production reports. This paper presents results of a statistical analysis conducted on monthly production reports at 19 power plants in California and Nevada covering 196 production wells and 175 injection wells. The average production temperature was 304 degrees F (151 degrees C) for binary plants and 310 degrees F (154 degrees C)more » for flash plants. The average injection temperature was 169 degrees F (76 degrees C) for binary plants and 173 degrees F (78 degrees C) for flash plants. The average production temperature drawdown was 0.5% per year for binary plants and 0.8% per year for flash plants. The average production well flow rate was 112 L/s for binary plant wells and 62 L/s for flash plant wells. For all 19 plants combined, the median injectivity index value was 3.8 L/s/bar, and the average producer/injector well ratio was 1.6. As an additional example of analysis using data from monthly production reports, a coupled reservoir-wellbore model was developed to derive productivity curves at various pump horsepower settings. The workflow and model were applied to two example production wells.« less
Investment and operating costs of binary cycle geothermal power plants
NASA Technical Reports Server (NTRS)
Holt, B.; Brugman, J.
1974-01-01
Typical investment and operating costs for geothermal power plants employing binary cycle technology and utilizing the heat energy in liquid-dominated reservoirs are discussed. These costs are developed as a function of reservoir temperature. The factors involved in optimizing plant design are discussed. A relationship between the value of electrical energy and the value of the heat energy in the reservoir is suggested.
Design and optimization of geothermal power generation, heating, and cooling
NASA Astrophysics Data System (ADS)
Kanoglu, Mehmet
Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the net power output by up to 31 percent, 35 percent, and 54 percent, respectively, at optimum operating conditions. An economic comparison of these designs appears to favor the combined flash/binary design, followed by the double-flash design.
Yamazaki, M; Son, L; Hayashi, T; Morita, N; Asamizu, T; Mourakoshi, I; Saito, K
1996-01-01
Transgenic herbicide-resistant Scoparia dulcis plants were obtained by using an Ri binary vector system. The chimeric bar gene encoding phosphinothricin acetyltransferase flanked by the promoter for cauliflower mosaic virus 35S RNA and the terminal sequence for nopaline synthase was introduced in the plant genome by Agrobacterium-mediated transformation by means of scratching young plants. Hairy roots resistant to bialaphos were selected and plantlets (R0) were regenerated. Progenies (S1) were obtained by self-fertilization. The transgenic state was confirmed by DNA-blot hybridization and assaying of neomycin phosphotransferase II. Expression of the bar gene in the transgenic R0 and S1 progenies was indicated by the activity of phosphinothricin acetyltransferase. Transgenic plants accumulated scopadulcic acid B, a specific secondary metabolite of S. dulcis, in amounts of 15-60% compared with that in normal plants. The transgenic plants and progenies showed resistant trait towards bialaphos and phosphinothricin. These results suggest that an Ri binary system is one of the useful tools for the transformation of medicinal plants for which a regeneration protocol has not been established.
Entropy production and optimization of geothermal power plants
NASA Astrophysics Data System (ADS)
Michaelides, Efstathios E.
2012-09-01
Geothermal power plants are currently producing reliable and low-cost, base load electricity. Three basic types of geothermal power plants are currently in operation: single-flashing, dual-flashing, and binary power plants. Typically, the single-flashing and dual-flashing geothermal power plants utilize geothermal water (brine) at temperatures in the range of 550-430 K. Binary units utilize geothermal resources at lower temperatures, typically 450-380 K. The entropy production in the various components of the three types of geothermal power plants determines the efficiency of the plants. It is axiomatic that a lower entropy production would improve significantly the energy utilization factor of the corresponding power plant. For this reason, the entropy production in the major components of the three types of geothermal power plants has been calculated. It was observed that binary power plants generate the lowest amount of entropy and, thus, convert the highest rate of geothermal energy into mechanical energy. The single-flashing units generate the highest amount of entropy, primarily because they re-inject fluid at relatively high temperature. The calculations for entropy production provide information on the equipment where the highest irreversibilities occur, and may be used to optimize the design of geothermal processes in future geothermal power plants and thermal cycles used for the harnessing of geothermal energy.
The Lawrence Berkeley Laboratory geothermal program in northern Nevada
NASA Technical Reports Server (NTRS)
Mirk, K. F.; Wollenberg, H. A.
1974-01-01
The Lawrence Berkeley Laboratory's geothermal program began with consideration of regions where fluids in the temperature range of 150 to 230 C may be economically accessible. Three valleys, located in an area of high regional heat flow in north central Nevada, were selected for geological, geophysical, and geochemical field studies. The objective of these ongoing field activities is to select a site for a 10-MW demonstration plant. Field activities (which started in September 1973) are described. A parallel effort has been directed toward the conceptual design of a 10-MW isobutane binary plant which is planned for construction at the selected site. Design details of the plant are described. Project schedule with milestones is shown together with a cost summary of the project.
Mapping quantitative trait loci for binary trait in the F2:3 design.
Zhu, Chengsong; Zhang, Yuan-Ming; Guo, Zhigang
2008-12-01
In the analysis of inheritance of quantitative traits with low heritability, an F(2:3) design that genotypes plants in F(2) and phenotypes plants in F(2:3) progeny is often used in plant genetics. Although statistical approaches for mapping quantitative trait loci (QTL) in the F(2:3) design have been well developed, those for binary traits of biological interest and economic importance are seldom addressed. In this study, an attempt was made to map binary trait loci (BTL) in the F(2:3) design. The fundamental idea was: the F(2) plants were genotyped, all phenotypic values of each F(2:3) progeny were measured for binary trait, and these binary trait values and the marker genotype informations were used to detect BTL under the penetrance and liability models. The proposed method was verified by a series of Monte-Carlo simulation experiments. These results showed that maximum likelihood approaches under the penetrance and liability models provide accurate estimates for the effects and the locations of BTL with high statistical power, even under of low heritability. Moreover, the penetrance model is as efficient as the liability model, and the F(2:3) design is more efficient than classical F(2) design, even though only a single progeny is collected from each F(2:3) family. With the maximum likelihood approaches under the penetrance and the liability models developed in this study, we can map binary traits as we can do for quantitative trait in the F(2:3) design.
Rao, I G; Singh, Amrita; Singh, V K; Singh, D K
2003-01-01
Effect of single and binary treatments of plant-derived molluscicides on different enzymes--acetylcholinesterase (AChE), lactic dehydrogenase (LDH) and acid/alkaline phosphatase (ACP/ALP)--in the nervous tissue of the harmful terrestrial snail Achatina fulica were studied. Sublethal in vivo 24-h exposure to 40% and 80% LC(50) of Azadirachta indica oil, Cedrus deodara oil, Allium sativum bulb powder, Nerium indicum bark powder and binary combinations of A. sativum (AS) + C. deodara (CD) and CD + A. indica (AI) oils significantly altered the activity of these enzymes in the nervous tissue of Achatina fulica. The binary treatment of AS + CD was more effective against AChE, LDH, and ALP than the single ones. However, binary treatment of AI + CD was more effective against ALP. Copyright 2003 John Wiley & Sons, Ltd.
How plants connect pollination and herbivory networks and their contribution to community stability.
Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin
2016-04-01
Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.
Investigation of waste heat recovery of binary geothermal plants using single component refrigerants
NASA Astrophysics Data System (ADS)
Unverdi, M.
2017-08-01
In this study, the availability of waste heat in a power generating capacity of 47.4 MW in Germencik Geothermal Power Plant has been investigated via binary geothermal power plant. Refrigerant fluids of 7 different single components such as R-134a, R-152a, R-227ea, R-236fa, R-600, R-143m and R-161 have been selected. The binary cycle has been modeled using the waste heat equaling to mass flow rate of 100 kg/s geothermal fluid. While the inlet temperature of the geothermal fluid into the counter flow heat exchanger has been accepted as 110°C, the outlet temperature has been accepted as 70°C. The inlet conditions have been determined for the refrigerants to be used in the binary cycle. Finally, the mass flow rate of refrigerant fluid and of cooling water and pump power consumption and power generated in the turbine have been calculated for each inlet condition of the refrigerant. Additionally, in the binary cycle, energy and exergy efficiencies have been calculated for 7 refrigerants in the availability of waste heat. In the binary geothermal cycle, it has been found out that the highest exergy destruction for all refrigerants occurs in the heat exchanger. And the highest and lowest first and second law efficiencies has been obtained for R-600 and R-161 refrigerants, respectively.
2010-01-01
Research in plant molecular biology involves DNA purification on a daily basis. Although different commercial kits enable convenient extraction of high-quality DNA from E. coli cells, PCR and agarose gel samples as well as plant tissues, each kit is designed for a particular type of DNA extraction work, and the cost of purchasing these kits over a long run can be considerable. Furthermore, a simple method for the isolation of binary plasmid from Agrobacterium tumefaciens cells with satisfactory yield is lacking. Here we describe an easy protocol using homemade silicon dioxide matrix and seven simple solutions for DNA extraction from E. coli and A. tumefaciens cells, PCR and restriction digests, agarose gel slices, and plant tissues. Compared with the commercial kits, this protocol allows rapid DNA purification from diverse sources with comparable yield and purity at negligible cost. Following this protocol, we have demonstrated: (1) DNA fragments as small as a MYC-epitope tag coding sequence can be successfully recovered from an agarose gel slice; (2) Miniprep DNA from E. coli can be eluted with as little as 5 μl water, leading to high DNA concentrations (>1 μg/μl) for efficient biolistic bombardment of Arabidopsis seedlings, polyethylene glycol (PEG)-mediated Arabidopsis protoplast transfection and maize protoplast electroporation; (3) Binary plasmid DNA prepared from A. tumefaciens is suitable for verification by restriction analysis without the need for large scale propagation; (4) High-quality genomic DNA is readily isolated from several plant species including Arabidopsis, tobacco and maize. Thus, the silicon dioxide matrix-based DNA purification protocol offers an easy, efficient and economical way to extract DNA for various purposes in plant research. PMID:20180960
A simple and reliable multi-gene transformation method for switchgrass.
Ogawa, Yoichi; Shirakawa, Makoto; Koumoto, Yasuko; Honda, Masaho; Asami, Yuki; Kondo, Yasuhiro; Hara-Nishimura, Ikuko
2014-07-01
A simple and reliable Agrobacterium -mediated transformation method was developed for switchgrass. Using this method, many transgenic plants carrying multiple genes-of-interest could be produced without untransformed escape. Switchgrass (Panicum virgatum L.) is a promising biomass crop for bioenergy. To obtain transgenic switchgrass plants carrying a multi-gene trait in a simple manner, an Agrobacterium-mediated transformation method was established by constructing a Gateway-based binary vector, optimizing transformation conditions and developing a novel selection method. A MultiRound Gateway-compatible destination binary vector carrying the bar selectable marker gene, pHKGB110, was constructed to introduce multiple genes of interest in a single transformation. Two reporter gene expression cassettes, GUSPlus and gfp, were constructed independently on two entry vectors and then introduced into a single T-DNA region of pHKGB110 via sequential LR reactions. Agrobacterium tumefaciens EHA101 carrying the resultant binary vector pHKGB112 and caryopsis-derived compact embryogenic calli were used for transformation experiments. Prolonged cocultivation for 7 days followed by cultivation on media containing meropenem improved transformation efficiency without overgrowth of Agrobacterium, which was, however, not inhibited by cefotaxime or Timentin. In addition, untransformed escape shoots were completely eliminated during the rooting stage by direct dipping the putatively transformed shoots into the herbicide Basta solution for a few seconds, designated as the 'herbicide dipping method'. It was also demonstrated that more than 90 % of the bar-positive transformants carried both reporters delivered from pHKGB112. This simple and reliable transformation method, which incorporates a new selection technique and the use of a MultiRound Gateway-based binary vector, would be suitable for producing a large number of transgenic lines carrying multiple genes.
Alternative Geothermal Power Production Scenarios
Sullivan, John
2014-03-14
The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.
Ron, Mily; Kajala, Kaisa; Pauluzzi, Germain; Wang, Dongxue; Reynoso, Mauricio A.; Zumstein, Kristina; Garcha, Jasmine; Winte, Sonja; Masson, Helen; Inagaki, Soichi; Federici, Fernán; Sinha, Neelima; Deal, Roger B.; Bailey-Serres, Julia; Brady, Siobhan M.
2014-01-01
Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato. PMID:24868032
Li, Jian-Feng; Bush, Jenifer; Xiong, Yan; Li, Lei; McCormack, Matthew
2011-01-01
Protein-protein interactions (PPIs) constitute the regulatory network that coordinates diverse cellular functions. There are growing needs in plant research for creating protein interaction maps behind complex cellular processes and at a systems biology level. However, only a few approaches have been successfully used for large-scale surveys of PPIs in plants, each having advantages and disadvantages. Here we present split firefly luciferase complementation (SFLC) as a highly sensitive and noninvasive technique for in planta PPI investigation. In this assay, the separate halves of a firefly luciferase can come into close proximity and transiently restore its catalytic activity only when their fusion partners, namely the two proteins of interest, interact with each other. This assay was conferred with quantitativeness and high throughput potential when the Arabidopsis mesophyll protoplast system and a microplate luminometer were employed for protein expression and luciferase measurement, respectively. Using the SFLC assay, we could monitor the dynamics of rapamycin-induced and ascomycin-disrupted interaction between Arabidopsis FRB and human FKBP proteins in a near real-time manner. As a proof of concept for large-scale PPI survey, we further applied the SFLC assay to testing 132 binary PPIs among 8 auxin response factors (ARFs) and 12 Aux/IAA proteins from Arabidopsis. Our results demonstrated that the SFLC assay is ideal for in vivo quantitative PPI analysis in plant cells and is particularly powerful for large-scale binary PPI screens.
Application of succulent plant leaves for Agrobacterium infiltration-mediated protein production
USDA-ARS?s Scientific Manuscript database
Infiltration of tobacco leaves with a suspension of Agrobacterium tumefaciens harboring a binary plant expression plasmid provides a convenient method for laboratory scale protein production. When expressing plant cell wall degrading enzymes in the widely used tobacco (Nicotiana benthamiana), diffic...
Forage production of grass-legume binary mixtures on Intermountain Western USA irrigated pastures
USDA-ARS?s Scientific Manuscript database
A well-managed irrigated pasture is optimized for forage production with the use of N fertilizer which incurs extra expense. The objective was to determine which binary grass-legume mixture and mixture planting ratio of tall fescue (Festuca arundinacea Schreb.) (TF), meadow brome (Bromus bieberstei...
Comments Regarding the Binary Power Law for Heterogeneity of Disease Incidence
USDA-ARS?s Scientific Manuscript database
The binary power law (BPL) has been successfully used to characterize heterogeneity (over dispersion or small-scale aggregation) of disease incidence for many plant pathosystems. With the BPL, the log of the observed variance is a linear function of the log of the theoretical variance for a binomial...
Transformation of Lesquerella fendleri with the new binary vector pGPro4-35S
USDA-ARS?s Scientific Manuscript database
Crop genetic engineering requires the use of various promoters to control the expression of introduced transgenes. Some of the binary vectors currently available for promoter characterization in dicotyledonous plants have pitfalls due to their construction, such as containing a selectable marker ca...
de Oliveira, Bruna Maria S; Melo, Carlisson R; Alves, Péricles B; Santos, Abraão A; Santos, Ane Caroline C; Santana, Alisson da S; Araújo, Ana Paula A; Nascimento, Pedro E S; Blank, Arie F; Bacci, Leandro
2017-02-25
Plants of the genus Aristolochia have been frequently reported as important medicinal plants. Despite their high bioactive potential, to date, there are no reports of their effects on leaf-cutting ants. Therefore, the present study aimed to evaluate the insecticidal activity of the essential oil of Aristolochia trilobata and its major components on Atta sexdens and Acromyrmex balzani , two species of leaf-cutting ants. The bioassays were performed regarding routes of exposure, acute toxicity, binary mixtures of the major components and behavioral effects. Twenty-five components were identified in the essential oil of A. trilobata using a gas chromatographic system equipped with a mass spectrometer and a flame ionization detector. The components found in higher proportions were sulcatyl acetate, limonene, p -cymene and linalool. The essential oil of A. trilobata and its individual major components were efficient against A. balzani and A. sexdens workers when applied by fumigation. These components showed fast and efficient insecticidal activity on ants. The components acted synergistically and additively on A. balzani and A. sexdens , respectively, and caused a strong repellency/irritability in the ants. Thus, our results demonstrate the great potential of the essential oil of A. trilobata and its major components for the development of new insecticides.
NASA Astrophysics Data System (ADS)
Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Taylor, G.; Ng, M.; Greis, S. M. L.; Bray, J. C.
2017-11-01
The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.
Systematic Review of Life Cycle Greenhouse Gas Emissions from Geothermal Electricity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberle, Annika; Heath, Garvin A.; Carpenter Petri, Alberta C.
The primary goal of this work was to assess the magnitude and variability of published life cycle greenhouse gas (GHG) emission estimates for three types of geothermal electricity generation technologies: enhanced geothermal systems (EGS) binary, hydrothermal (HT) flash, and HT binary. These technologies were chosen to align the results of this report with technologies modeled in National Renewable Energy Laboratory's (NREL's) Regional Energy Deployment Systems (ReEDs) model. Although we did gather and screen life cycle assessment (LCA) literature on hybrid systems, dry steam, and two geothermal heating technologies, we did not analyze published GHG emission estimates for these technologies. Inmore » our systematic literature review of the LCA literature, we screened studies in two stages based on a variety of criteria adapted from NREL's Life Cycle Assessment (LCA) Harmonization study (Heath and Mann 2012). Of the more than 180 geothermal studies identified, only 29 successfully passed both screening stages and only 26 of these included estimates of life cycle GHG emissions. We found that the median estimate of life cycle GHG emissions (in grams of carbon dioxide equivalent per kilowatt-hour generated [g CO2eq/kWh]) reported by these studies are 32.0, 47.0, and 11.3 for EGS binary, HT flash, and HT binary, respectively (Figure ES-1). We also found that the total life cycle GHG emissions are dominated by different stages of the life cycle for different technologies. For example, the GHG emissions from HT flash plants are dominated by the operations phase owing to the flash cycle being open loop whereby carbon dioxide entrained in the geothermal fluids is released to the atmosphere. This is in contrast to binary plants (using either EGS or HT resources), whose GHG emissions predominantly originate in the construction phase, owing to its closed-loop process design. Finally, by comparing this review's literature-derived range of HT flash GHG emissions to data from currently operating geothermal plants, we found that emissions from operational plants exhibit more variability and the median of emissions from operational plants is twice the median of operational emissions reported by LCAs. Further investigation is warranted to better understand the cause of differences between published LCAs and estimates from operational plants and to develop LCA analytical approaches that can yield estimates closer to actual emissions.« less
Downwell pump reliability: Geothermal experience update: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, P.F.
1988-01-01
Geothermal resources with temperatures between 250/sup 0/ and 360/sup 0/F (121/sup 0/C and 182/sup 0/C) are prime candidates for binary-cycle power generation, and constitute about 80% of the power-capable resources in the United States. The successful exploitation of these resources requires reliable high-capacity downwell brine production pumps, but earlier experience showed that high-capacity, high-temperature geothermal production pumps had many problems which resulted in a mean time-to-failure (MTTF) of less than 1000 h. However, steady progress has been made since 1981, and a large body of experience has been acquired by three geothermal binary plants. This survey of high-temperature geothermal downwellmore » pump users and manufacturers updates a prior survey (AP-3572) completed in early 1983. This survey traces the development of lineshaft pump technology from the late 1970s to the present (mid-1987), detailing the advances in design, materials selection, and operating practices. Case histories of 72 lineshaft pumps installed at three geothermal binary plants since late 1981 are documented, including some detailed cause of failure reports. In the recent past, pump lives in excess of 7000 h have become common, but a high continuing rate of premature failures resulted in a mean time-to-failure (MTTF) of about 5000 h. Based on recent advances which appear likely to eliminate most premature failures, the estimated near-term MTTF will be on the order of 8000 h. The survey found almost no development of high-temperature geothermal electric submersible pumps (ESP's) or close-coupled downwell hydraulic turbopumps, and concluded that considerable development and demonstration will be needed before these technologies are able to compete with existing high-temperature geothermal lineshaft pump technology. 36 refs., 10 figs., 25 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohutskyi, Pavlo; Kucek, Leo A.; Hill, Eric
Metabolic flexibility and robustness of phototroph- heterotroph co-cultures provide a flexible binary engineering platform for a variety of biotechnological and environmental applications. Here, we metabolically coupled a heterotrophic bacterium Bacillus subtilis with astaxanthin producing alga Haematococcus pluvialis and successfully applied this binary co-culture for conversion of the starch-rich waste stream into valuable astaxanthin-rich biomass. Importantly, the implemented system required less mass transfer of CO2 and O2 due to in-situ exchange between heterotroph and phototroph, which can contribute to reduction in energy consumption for wastewater treatment. In addition, the maximum reduction in chemical oxygen demand, total nitrogen and phosphorus reached 65%,more » 55% and 30%, respectively. The preliminary economic analysis indicated that realization of produced biomass with 0.8% astaxanthin content may generate annual revenues of $3.2M (baseline scenario) from treatment of wastewater (1,090 m3/day) from a potato processing plant. Moreover, the revenues may be increased up to $18.2M for optimized scenario with astaxanthin content in algae of 2%. This work demonstrates a successful proof-of-principle for conversion of waste carbon and nutrients into targeted value-added products through metabolic connection of heterotrophic and phototrophic organisms. Utilization of heterotrophic-algal binary cultures opens new perspectives for designing highly-efficient production processes for feedstock biomass production as well as allows utilization of variety of organic agricultural, chemical, or municipal wastes.« less
Pan, Li; Zhang, Yongguang; Wang, Yonglu; Wang, Baoqin; Wang, Wenxiu; Fang, Yuzhen; Jiang, Shoutian; Lv, Jianliang; Wang, Wei; Sun, Yuan; Xie, Qingge
2008-01-15
The expression of recombinant antigens in transgenic plants is increasingly used as an alternative method of producing experimental immunogens. In this report, we describe the production of transgenic tomato plants that express the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease (FMDV). P1-2A3C was inserted into the plant binary vector, pBin438, and transformed into tomato plants using Agrobacterium tumefaciens strain, GV3101. The presence of P1-2A3C was confirmed by PCR, transcription was verified by RT-PCR, and recombinant protein expression was confirmed by sandwich-ELISA and Western blot analyses. Guinea pigs immunized intramuscularly with foliar extracts from P1-2A3C-transgenic tomato plants were found to develop a virus-specific antibody response against FMDV. Vaccinated guinea pigs were fully protected against a challenge infection, while guinea pigs injected with untransformed plant extracts failed to elicit an antibody response and were not protected against challenge. These results demonstrate that transgenic tomato plants expressing the FMDV structural polyprotein, P1-2A, and the protease, 3C, can be used as a source of recombinant antigen for vaccine production.
Use of limited data to construct Bayesian networks for probabilistic risk assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groth, Katrina M.; Swiler, Laura Painton
2013-03-01
Probabilistic Risk Assessment (PRA) is a fundamental part of safety/quality assurance for nuclear power and nuclear weapons. Traditional PRA very effectively models complex hardware system risks using binary probabilistic models. However, traditional PRA models are not flexible enough to accommodate non-binary soft-causal factors, such as digital instrumentation&control, passive components, aging, common cause failure, and human errors. Bayesian Networks offer the opportunity to incorporate these risks into the PRA framework. This report describes the results of an early career LDRD project titled %E2%80%9CUse of Limited Data to Construct Bayesian Networks for Probabilistic Risk Assessment%E2%80%9D. The goal of the work was tomore » establish the capability to develop Bayesian Networks from sparse data, and to demonstrate this capability by producing a data-informed Bayesian Network for use in Human Reliability Analysis (HRA) as part of nuclear power plant Probabilistic Risk Assessment (PRA). This report summarizes the research goal and major products of the research.« less
NASA Astrophysics Data System (ADS)
Wu, Zhisheng; Tao, Ou; Cheng, Wei; Yu, Lu; Shi, Xinyuan; Qiao, Yanjiang
2012-02-01
This study demonstrated that near-infrared chemical imaging (NIR-CI) was a promising technology for visualizing the spatial distribution and homogeneity of Compound Liquorice Tablets. The starch distribution (indirectly, plant extraction) could be spatially determined using basic analysis of correlation between analytes (BACRA) method. The correlation coefficients between starch spectrum and spectrum of each sample were greater than 0.95. Depending on the accurate determination of starch distribution, a method to determine homogeneous distribution was proposed by histogram graph. The result demonstrated that starch distribution in sample 3 was relatively heterogeneous according to four statistical parameters. Furthermore, the agglomerates domain in each tablet was detected using score image layers of principal component analysis (PCA) method. Finally, a novel method named Standard Deviation of Macropixel Texture (SDMT) was introduced to detect agglomerates and heterogeneity based on binary image. Every binary image was divided into different sizes length of macropixel and the number of zero values in each macropixel was counted to calculate standard deviation. Additionally, a curve fitting graph was plotted on the relationship between standard deviation and the size length of macropixel. The result demonstrated the inter-tablet heterogeneity of both starch and total compounds distribution, simultaneously, the similarity of starch distribution and the inconsistency of total compounds distribution among intra-tablet were signified according to the value of slope and intercept parameters in the curve.
Chiban, Mohamed; Soudani, Amina; Sinan, Fouad; Persin, Michel
2011-02-01
A low-cost adsorbent and environmentally friendly adsorbent from Carpobrotus edulis plant was used for the removal of NO(3)(-), H(2)PO(4)(-), Pb(2+) and Cd(2+) ions from single, binary and multi-component systems. The efficiency of the adsorbent was studied using batch adsorption technique under different experimental conditions by varying parameters such as pH, initial concentration and contact time. In single component systems, the dried C. edulis has the highest affinity for Pb(2+), followed by NO(3)(-), Cd(2+) and H(2)PO(4)(-), with adsorption capacities of 175mg/g, 125mg/g, 28mg/g and 26mg/g, respectively. These results showed that the adsorption of NO(3)(-) and H(2)PO(4)(-) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. Freundlich adsorption model, showed the best fit to the single and binary experimental adsorption data. These results also indicated that the adsorption yield of Pb(2+) ion was reduced by the presence of Cd(2+) ion in binary metal mixture. The competitive adsorption of NO(3)(-), H(2)PO(4)(-), Pb(2+) and Cd(2+) ions on dried C. edulis plant shows that NO(3)(-) and H(2)PO(4)(-) anions are able to adsorb on different free binding sites and Pb(2+) and Cd(2+) cations are able to adsorb on the same active sites of C. edulis particles. The dried C. edulis was found to be efficient in removing nitrate, phosphate, cadmium and lead from aqueous solution as compared to other adsorbents already used for the removal of these ions. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Alkhasov, A. B.; Alkhasova, D. A.
2018-02-01
The article substantiates the possibility of efficiently harnessing the geothermal resources available in the North Caucasian region through constructing binary geothermal power plants (GeoTPPs) using idle petroleum and gas wells. The power capacities of GeoTPPs are evaluated, and the basic characteristics of these power plants in case of constructing them in the promising areas are determined. The overall useful GeoTPP capacity equal to approximately 330 MW can be obtained from using the entire fleet of idle wells available in these areas. Diagrams confirming the possibility of reaching the optimal flowrate of geothermal heat carrier circulating in the geothermal circulation system loop are presented. This flowrate corresponds to a binary GeoTPP's maximal useful power output. The article shows, taking the Ternair geothermal field as an example, that it is inefficient to use medium-enthalpy thermal waters for generating energy at a binary GeoTPP involving reinjection of a spent heat carrier. It is shown that good prospects can be expected from applying a hybrid geothermal and combined-cycle technology, by means of which it is possible to use lowenthalpy (80-100°C) thermal waters for generating electricity in a highly efficient manner. In accordance with such technology, geothermal heat is used in the binary GeoTPP cycle for heating low-boiling working fluid to its evaporation temperature. The working fluid is evaporated and superheated by using the heat of exhaust gases from a gas turbine power unit. Owing to combined use of the thermal water heat potential and the heat of exhaust gases from a gas turbine power plant in a hybrid process system, it becomes possible to obtain high power performance indicators of hybrid geothermal and combined-cycle power plants. This conclusion is confirmed by the results from numerical evaluations carried out as applied to the Ternair geothermal field. With the fully harnessed resource potential of the Ternair field, the total capacity of hybrid geothermal and combined-cycle power plants may reach 60 MW, a level that would make it possible to relieve a significant part of energy, environmental, economic, and social problems faced by the city of Makhachkala.
USDA-ARS?s Scientific Manuscript database
A common problem when poultry litter is applied to pastures in the southeastern USA is the buildup of soil P because of the difference in N-P-K ratio of the litter and plant requirements. This 2-yr study tested the theory that if the N requirement of a tall fescue-bermudagrass binary mixture is only...
Binary similarity measures for fingerprint analysis of qualitative metabolomic profiles.
Rácz, Anita; Andrić, Filip; Bajusz, Dávid; Héberger, Károly
2018-01-01
Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semiquantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, demonstrates great potential in the field of metabolomic profiling and fingerprint analysis. The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns among samples of different botanical origin and various metabolomic profiles. Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates. Baroni-Urbani-Buser (BUB) and Hawkins-Dotson (HD) similarity coefficients were selected as the best measures by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis. Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.
Geothermal Electricity Production Basics | NREL
. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Photo of a California. Dry Steam Dry steam power plants draw from underground resources of steam. The steam is piped . Since Yellowstone is protected from development, the only dry steam plants in the country are at The
Yadav, Ram P.; Singh, Ajay
2014-01-01
The effect of sub-lethal doses (40% and 80% of LC50/24h) of plant derived molluscicides of singly, binary (1:1) and tertiary (1:1:1) combinations of the Rutin, Ellagic acid, Betulin and taraxerol with J. gossypifolia latex, leaf and stem bark powder extracts and their active component on the reproduction of freshwater snail Lymnaea acuminata have been studied. It was observed that the J. gossypifolia latex, stem bark, individual leaf and their combinations with other plant derived active molluscicidal components caused a significant reduction in fecundity, hatchability and survival of young snails. It is believed that sub-lethal exposure of these molluscicides on snail reproduction is a complex process involving more than one factor in reducing the reproductive capacity. PMID:25229223
Self-association of plant wax components: a thermodynamic analysis.
Casado, C G; Heredia, A
2001-01-01
Excess specific heat, C(p)()(E), of binary mixtures of selected components of plant cuticular waxes has been determined. This thermodynamic parameter gives an explanation of the special molecular arrangement in crystalline and amorphous zones of plant waxes. C(p)()(E) values indicate that hydrogen bonding between chains results in the formation of amorphous zones. Conclusions on the self-asembly process of plant waxes have been also made.
NASA Technical Reports Server (NTRS)
Reid, Max B.; Ma, Paul W.; Downie, John D.
1990-01-01
An optical correlation-based system is demonstrated which recognizes an object and determines its angular orientation by traversing a hierarchical data base of binary filters. The data-base architecture is made possible by the development of binary synthetic discriminant function filters.
Challenges in Implementing a Multi-Partnership Geothermal Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnold, Will; Mann, Michael; Salehfar, Hossein
The UND-CLR binary geothermal power plant project is a piggyback operation on a secondary-recovery water-flood project in the Cedar Hills oil field in the Williston Basin. Two open-hole horizontal wells at 2,300 m and 2,400 m depths with lateral lengths of 1,290 m and 860 m produce water at a combined flow of 51 l s -1 from the Lodgepole formation (Miss.) for injection into the Red River formation (Ordovician). The hydrostatic head for the Lodgepole is at ground surface and the pumps, which are set at 650 m depth, have run continuously since 2009. Water temperature at the wellheadmore » is 103 °C and CLR passes the water through two large air-cooled heat exchangers prior to injection. In all aspects, the CLR water flood project is ideal for demonstration of electrical power production from a low-temperature geothermal resource. However, implementation of the project from concept to power production was analogous to breaking trail in deep snow in an old growth forest. There were many hidden bumps, detours, and in some instances immoveable barriers. Problems with investors, cost share, contracts with CLR, resistance from local industry, cost of installation, delays by the ORC supplier, and the North Dakota climate all caused delays and setbacks. Determination and problem solving by the UND team eventually overcame most setbacks, and in April 2016, the site began generating power. Figure 1: Schematic of the water supply well at the UND CLR binary geothermal power plant REFERENCES Williams, Snyder, and Gosnold, 2016, Low Temperature Projects Evaluation and Lesson Learned, GRC Transactions, Vol. 40, 203-210 Gosnold, LeFever, Klenner, Mann, Salehfar, and Johnson, 2010, Geothermal Power from Coproduced Fluids in the Williston Basin, GRC Transactions, Vol. 34, 557-560« less
Knežević, Varja; Tunić, Tanja; Gajić, Pero; Marjan, Patricija; Savić, Danko; Tenji, Dina; Teodorović, Ivana
2016-11-01
Recovery after exposure to herbicides-atrazine, isoproturon, and trifluralin-their binary and ternary mixtures, was studied under laboratory conditions using a slightly adapted standard protocol for Lemna minor. The objectives of the present study were (1) to compare empirical to predicted toxicity of selected herbicide mixtures; (2) to assess L. minor recovery potential after exposure to selected individual herbicides and their mixtures; and (3) to suggest an appropriate recovery potential assessment approach and endpoint in a modified laboratory growth inhibition test. The deviation of empirical from predicted toxicity was highest in binary mixtures of dissimilarly acting herbicides. The concentration addition model slightly underestimated mixture effects, indicating potential synergistic interactions between photosynthetic inhibitors (atrazine and isoproturon) and a cell mitosis inhibitor (trifluralin). Recovery after exposure to the binary mixture of atrazine and isoproturon was fast and concentration-independent: no significant differences between relative growth rates (RGRs) in any of the mixtures (IC10 Mix , 25 Mix , and 50 Mix ) versus control level were recorded in the last interval of the recovery phase. The recovery of the plants exposed to binary and ternary mixtures of dissimilarly acting herbicides was strictly concentration-dependent. Only plants exposed to IC10 Mix , regardless of the herbicides, recovered RGRs close to control level in the last interval of the recovery phase. The inhibition of the RGRs in the last interval of the recovery phase compared with the control level is a proposed endpoint that could inform on reversibility of the effects and indicate possible mixture effects on plant population recovery potential.
Evidence for network evolution in an arabidopsis interactome map
USDA-ARS?s Scientific Manuscript database
Plants have unique features that evolved in response to their environments and ecosystems. A full account of the complex cellular networks that underlie plant-specific functions is still missing. We describe a proteome-wide binary protein-protein interaction map for the interactome network of the pl...
Cross-indexing of binary SIFT codes for large-scale image search.
Liu, Zhen; Li, Houqiang; Zhang, Liyan; Zhou, Wengang; Tian, Qi
2014-05-01
In recent years, there has been growing interest in mapping visual features into compact binary codes for applications on large-scale image collections. Encoding high-dimensional data as compact binary codes reduces the memory cost for storage. Besides, it benefits the computational efficiency since the computation of similarity can be efficiently measured by Hamming distance. In this paper, we propose a novel flexible scale invariant feature transform (SIFT) binarization (FSB) algorithm for large-scale image search. The FSB algorithm explores the magnitude patterns of SIFT descriptor. It is unsupervised and the generated binary codes are demonstrated to be dispreserving. Besides, we propose a new searching strategy to find target features based on the cross-indexing in the binary SIFT space and original SIFT space. We evaluate our approach on two publicly released data sets. The experiments on large-scale partial duplicate image retrieval system demonstrate the effectiveness and efficiency of the proposed algorithm.
Learning to assign binary weights to binary descriptor
NASA Astrophysics Data System (ADS)
Huang, Zhoudi; Wei, Zhenzhong; Zhang, Guangjun
2016-10-01
Constructing robust binary local feature descriptors are receiving increasing interest due to their binary nature, which can enable fast processing while requiring significantly less memory than their floating-point competitors. To bridge the performance gap between the binary and floating-point descriptors without increasing the computational cost of computing and matching, optimal binary weights are learning to assign to binary descriptor for considering each bit might contribute differently to the distinctiveness and robustness. Technically, a large-scale regularized optimization method is applied to learn float weights for each bit of the binary descriptor. Furthermore, binary approximation for the float weights is performed by utilizing an efficient alternatively greedy strategy, which can significantly improve the discriminative power while preserve fast matching advantage. Extensive experimental results on two challenging datasets (Brown dataset and Oxford dataset) demonstrate the effectiveness and efficiency of the proposed method.
Improving children's affective decision making in the Children's Gambling Task.
Andrews, Glenda; Moussaumai, Jennifer
2015-11-01
Affective decision making was examined in 108 children (3-, 4-, and 5-year-olds) using the Children's Gambling Task (CGT). Children completed the CGT and then responded to awareness questions. Children in the binary_experience and binary_experience+awareness (not control) conditions first completed two simpler versions. Children in the binary_experience+awareness condition also responded to questions about relational components of the simpler versions. Experience with simpler versions facilitated decision making in 4- and 5-year-olds, but 3-year-olds' advantageous choices declined across trial blocks in the binary_experience and control conditions. Responding to questions about relational components further benefited the 4- and 5-year-olds. The 3-year-olds' advantageous choices on the final block were at chance level in the binary_experience+awareness condition but were below chance level in the other conditions. Awareness following the CGT was strongly correlated with advantageous choices and with age. Awareness was demonstrated by 5-year-olds (all conditions) and 4-year-olds (binary_experience and binary_experience+awareness) but not by 3-year-olds. The findings demonstrate the importance of complexity and conscious awareness in cognitive development. Copyright © 2015 Elsevier Inc. All rights reserved.
Electric Power Generation from Low to Intermediate Temperature Resourcces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosnold, William; Mann, Michael; Salehfar, Hossein
The UND-CLR Binary Geothermal Power Plant was a collaborative effort of the U.S. Department of Energy (DOE), Continental Resources, Inc. (CRL), Slope Electric Cooperative (SEC), Access Energy, LLC (AE), Basin Electric Cooperative (BEC), Olson Construction, the North Dakota Industrial Commission Renewable Energy Council (NDIC-REC), the North Dakota Department of Commerce Centers of Excellence Program (NDDC-COE), and the University of North Dakota (UND). The primary objective of project was to demonstrate/test the technical and economic feasibility of generating electricity from non-conventional, low-temperature (90 ºC to 150 °C) geothermal resources using binary technology. CLR provided the access to 98 ºC water flowingmore » at 51 l s-1 at the Davis Water Injection Plan in Bowman County, ND. Funding for the project was from DOE –GTO, NDIC-REC, NDD-COE, and BEC. Logistics, on-site construction, and power grid access were facilitated by Slope Electric Cooperative and Olson Construction. Access Energy supplied prototype organic Rankine Cycle engines for the project. The potential power output from this project is 250 kW at a cost of $3,400 per kW. A key factor in the economics of this project is a significant advance in binary power technology by Access Energy, LLC. Other commercially available ORC engines have efficiencies 8 to 10 percent and produce 50 to 250 kW per unit. The AE ORC units are designed to generate 125 kW with efficiencies up to 14 percent and they can be installed in arrays of tens of units to produce several MW of power where geothermal waters are available. This demonstration project is small but the potential for large-scale development in deeper, hotter formations is promising. The UND team’s analysis of the entire Williston Basin using data on porosity, formation thicknesses, and fluid temperatures reveals that 4.0 x 1019 Joules of energy is available and that 1.36 x 109 MWh of power could be produced using ORC binary power plants. Much of the infrastructure necessary to develop extensive geothermal power in the Williston Basin exists as abandoned oil and gas wells. Re-completing wells for water production could provide local power throughout the basin thus reducing power loss through transmission over long distances. Water production in normal oil and gas operations is relatively low by design, but it could be one to two orders of magnitude greater in wells completed and pumped for water production. A promising method for geothermal power production recognized in this project is drilling horizontal open-hole wells in the permeable carbonate aquifers. Horizontal drilling in the aquifers increases borehole exposure to the resource and consequently increases the capacity for fluid production by up to an order of magnitude.« less
The Dynamics of Flow and Three-dimensional Motion Around a Morphologically Complex Aquatic Plant
NASA Astrophysics Data System (ADS)
Boothroyd, R.; Hardy, R. J.; Warburton, J.; Marjoribanks, T.
2016-12-01
Aquatic vegetation has a significant impact on the hydraulic functioning of river systems. The morphology of an individual plant can influence the mean and turbulent properties of the flow, and the plant posture reconfigures to minimise drag. We report findings from a flume and numerical experiment investigating the dynamics of motion and three-dimensional flow around an isolated Hebe odora plant over a range of flow conditions. In the flume experiment, a high definition video camera recorded plant motion dynamics and three-dimensional velocity profiles were measured using an acoustic Doppler velocimeter. By producing a binary image of the plant in each frame, the plant dynamics can be quantified. Zones of greatest plant motion are on the upper and leeward sides of the plant. With increasing flow the plant is compressed and deflected downwards by up to 18% of the unstressed height. Plant tip motions are tracked and shown to lengthen with increasing flow, transitioning from horizontally dominated to vertically dominated motion. The plant acts as a porous blockage to flow, producing spatially heterogeneous downstream velocity fields with the measured wake length decreasing by 20% with increasing flow. These measurements are then used as boundary conditions and to validate a computational fluid dynamics (CFD) model. By explicitly accounting for the time-averaged plant posture, good agreement is found between flume measurements and model predictions. The flow structures demonstrate characteristics of a junction vortex system, with plant shear layer turbulence dominated by Kelvin-Helmholtz and Görtler-type vortices generated through shear instability. With increasing flow, drag coefficients decrease by up to 8%, from 1.45 to 1.34. This is equivalent to a change in the Manning's n term from 0.086 to 0.078.
Delbianco, Alice; Lanzoni, Chiara; Klein, Elodie; Rubies Autonell, Concepcion; Gilmer, David; Ratti, Claudio
2013-05-01
Agroinoculation is a quick and easy method for the infection of plants with viruses. This method involves the infiltration of tissue with a suspension of Agrobacterium tumefaciens carrying binary plasmids harbouring full-length cDNA copies of viral genome components. When transferred into host cells, transcription of the cDNA produces RNA copies of the viral genome that initiate infection. We produced full-length cDNA corresponding to Beet necrotic yellow vein virus (BNYVV) RNAs and derived replicon vectors expressing viral and fluorescent proteins in pJL89 binary plasmid under the control of the Cauliflower mosaic virus 35S promoter. We infected Nicotiana benthamiana and Beta macrocarpa plants with BNYVV by leaf agroinfiltration of combinations of agrobacteria carrying full-length cDNA clones of BNYVV RNAs. We validated the ability of agroclones to reproduce a complete viral cycle, from replication to cell-to-cell and systemic movement and, finally, plant-to-plant transmission by its plasmodiophorid vector. We also showed successful root agroinfection of B. vulgaris, a new tool for the assay of resistance to rhizomania, the sugar beet disease caused by BNYVV. © 2013 BSPP AND BLACKWELL PUBLISHING LTD.
Frame, Bronwyn; Warnberg, Katey; Main, Marcy; Wang, Kan
2015-01-01
Agrobacterium tumefaciens-mediated transformation is an effective method for introducing genes into maize. In this chapter, we describe a detailed protocol for genetic transformation of the maize genotype Hi II. Our starting plant material is immature embryos cocultivated with an Agrobacterium strain carrying a standard binary vector. In addition to step-by-step laboratory transformation procedures, we include extensive details in growing donor plants and caring for transgenic plants in the greenhouse.
Beck, John J; Alborn, Hans; Block, Anna; Christensen, Shawn A; Hunter, Charles T; Rering, Caitlin C; Seidl-Adams, Irmgard; Stuhl, Charles; Torto, Baldwyn; Tumlinson, James H
2018-06-12
The last two decades have witnessed a sustained increase in the study of plant-emitted volatiles and their role in plant-insect, plant-microbe and plant-plant interactions. While each of these binary systems involves complex chemical and biochemical processes between two organisms, the progression of increasing complexity of a ternary system (i.e., plant-insect-microbe), and the study of a ternary system requires non-trivial planning. This planning can include: an experimental design that factors in potential overarching ecological interactions regarding the binary or ternary system; correctly identifying and understanding unexpected observations that may occur during the experiment; and, thorough interpretation of the resultant data. This challenge of planning, performing and interpreting a plant's defensive response to multiple biotic stressors will be even greater when abiotic stressors (i.e., temperature or water) are factored into the system. To fully understand the system, we need to not only continue to investigate and understand the volatile profiles, but also include and understand the biochemistry of the plant's response to these stressors. In this paper, we provide examples and discuss interaction considerations with respect to how readers and future authors of the Journal of Agricultural and Food Chemistry can contribute their expertise toward the extraction and interpretation of chemical information exchanged between agricultural commodities and their associated pests. This holistic, multidisciplinary and thoughtful approach to interactions of plants, insects, and microbes, and the resultant response of the plants, can lead to a better understanding of agricultural ecology, in turn leading to practical and viable solutions to agricultural problems.
NASA Technical Reports Server (NTRS)
Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.
2015-01-01
The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star (BNS), a neutron star - black hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence (CBC) parameter space.
Energy conversion/power plant cost-cutting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, K.
This presentation by Kenneth Nichols, Barber-Nichols, Inc., is about cost-cutting in the energy conversion phase and power plant phase of geothermal energy production. Mr. Nichols discusses several ways in which improvements could be made, including: use of more efficient compressors and other equipment as they become available, anticipating reservoir resource decline and planning for it, running smaller binary systems independent of human operators, and designing plants so that they are relatively maintenance-free.
USDA-ARS?s Scientific Manuscript database
Cotton is a world’s leading crop important to the world’s textile and energy industries, and a model species for studies of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. Here, we report the construction and extensive analysis of a binary bacterial artificial chromosome (BI...
Profiles in Renewable Energy: Case Studies of Successful Utility-Sector
Shape of Renewable Energy Technologies Today Biomass Wood-Burning Plant Reduces Air Pollution Kettle Economical Altamont Pass Windplants U.S. Windpower, Inc. For More Information The Shape of Renewable Energy temperatures >175 degrees C), which rely on flashing the hot water to steam, and binary plants (for resource
World Geothermal Congress WGC-2015
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.
2016-08-01
This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a promising Russian geothermal project to increase the installed capacity of Mutnovsk GPP (whose current capacity is 50.0 (2 × 25.0) MW of electric power) by 25% by constructing a combined binary-cycle power generating unit on the basis of waste separate utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.
This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operationalmore » water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and minimizing fresh water consumption throughout the life cycle of geothermal power development. The large resource base for EGSs represents a major opportunity for the geothermal industry; however, depending upon geology, these systems can require large quantities of makeup water due to belowground reservoir losses. Identifying potential sources of compatible degraded or low-quality water for use for makeup injection for EGS and flash systems represents an important opportunity to reduce the impacts of geothermal development on fresh water resources. The importance of identifying alternative water sources for geothermal systems is heightened by the fact that a large fraction of the geothermal resource is located in areas already experiencing water stress. Chapter 7 is a glossary of the technical terms used in the report, and Chapters 8 and 9 provide references and a bibliography, respectively.« less
Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers.
Bartos, I; Haiman, Z; Marka, Z; Metzger, B D; Stone, N C; Marka, S
2017-10-10
The recent discovery of gravitational waves from stellar-mass binary black hole mergers by the Laser Interferometer Gravitational-wave Observatory opened the door to alternative probes of stellar and galactic evolution, cosmology and fundamental physics. Probing the origin of binary black hole mergers will be difficult due to the expected lack of electromagnetic emission and limited localization accuracy. Associations with rare host galaxy types-such as active galactic nuclei-can nevertheless be identified statistically through spatial correlation. Here we establish the feasibility of statistically proving the connection between binary black hole mergers and active galactic nuclei as hosts, even if only a sub-population of mergers originate from active galactic nuclei. Our results are the demonstration that the limited localization of gravitational waves, previously written off as not useful to distinguish progenitor channels, can in fact contribute key information, broadening the range of astrophysical questions probed by binary black hole observations.Binary black hole mergers have recently been observed through the detection of gravitational wave signatures. The authors demonstrate that their association with active galactic nuclei can be made through a statistical spatial correlation.
Kon, Tatsuya; Yoshikawa, Nobuyuki
2014-01-01
Apple latent spherical virus (ALSV) is an efficient virus-induced gene silencing vector in functional genomics analyses of a broad range of plant species. Here, an Agrobacterium-mediated inoculation (agroinoculation) system was developed for the ALSV vector, and virus-induced transcriptional gene silencing (VITGS) is described in plants infected with the ALSV vector. The cDNAs of ALSV RNA1 and RNA2 were inserted between the cauliflower mosaic virus 35S promoter and the NOS-T sequences in a binary vector pCAMBIA1300 to produce pCALSR1 and pCALSR2-XSB or pCALSR2-XSB/MN. When these vector constructs were agroinoculated into Nicotiana benthamiana plants with a construct expressing a viral silencing suppressor, the infection efficiency of the vectors was 100%. A recombinant ALSV vector carrying part of the 35S promoter sequence induced transcriptional gene silencing of the green fluorescent protein gene in a line of N. benthamiana plants, resulting in the disappearance of green fluorescence of infected plants. Bisulfite sequencing showed that cytosine residues at CG and CHG sites of the 35S promoter sequence were highly methylated in the silenced generation zero plants infected with the ALSV carrying the promoter sequence as well as in progeny. The ALSV-mediated VITGS state was inherited by progeny for multiple generations. In addition, induction of VITGS of an endogenous gene (chalcone synthase-A) was demonstrated in petunia plants infected with an ALSV vector carrying the native promoter sequence. These results suggest that ALSV-based vectors can be applied to study DNA methylation in plant genomes, and provide a useful tool for plant breeding via epigenetic modification. PMID:25426109
Constraints on the Progenitor System of SN 2016gkg from a Comprehensive Statistical Analysis
NASA Astrophysics Data System (ADS)
Sravan, Niharika; Marchant, Pablo; Kalogera, Vassiliki; Margutti, Raffaella
2018-01-01
Type IIb supernovae (SNe) present a unique opportunity for understanding the progenitors of stripped-envelope SNe because the stellar progenitor of several SNe IIb have been identified in pre-explosion images. In this paper, we use Bayesian inference and a large grid of non-rotating solar-metallicity single and binary stellar models to derive the associated probability distributions of single and binary progenitors of the SN IIb 2016gkg using existing observational constraints. We find that potential binary star progenitors have smaller pre-SN hydrogen-envelope and helium-core masses than potential single-star progenitors typically by 0.1 M ⊙ and 2 M ⊙, respectively. We find that, a binary companion, if present, is a main-sequence or red-giant star. Apart from this, we do not find strong constraints on the nature of the companion star. We demonstrate that the range of progenitor helium-core mass inferred from observations could help improve constraints on the progenitor. We find that the probability that the progenitor of SN 2016gkg was a binary is 22% when we use constraints only on the progenitor luminosity and effective temperature. Imposing the range of pre-SN progenitor hydrogen-envelope mass and radius inferred from SN light curves, the probability that the progenitor is a binary increases to 44%. However, there is no clear preference for a binary progenitor. This is in contrast to binaries being the currently favored formation channel for SNe IIb. Our analysis demonstrates the importance of statistical inference methods to constrain progenitor channels.
A simplified approach to construct infectious cDNA clones of a tobamovirus in a binary vector.
Junqueira, Bruna Rayane Teodoro; Nicolini, Cícero; Lucinda, Natalia; Orílio, Anelise Franco; Nagata, Tatsuya
2014-03-01
Infectious cDNA clones of RNA viruses are important tools to study molecular processes such as replication and host-virus interactions. However, the cloning steps necessary for construction of cDNAs of viral RNA genomes in binary vectors are generally laborious. In this study, a simplified method of producing an agro-infectious Pepper mild mottle virus (PMMoV) clone is described in detail. Initially, the complete genome of PMMoV was amplified by a single-step RT-PCR, cloned, and subcloned into a small plasmid vector under the T7 RNA polymerase promoter to confirm the infectivity of the cDNA clone through transcript inoculation. The complete genome was then transferred to a binary vector using a single-step, overlap-extension PCR. The selected clones were agro-infiltrated to Nicotiana benthamiana plants and showed to be infectious, causing typical PMMoV symptoms. No differences in host responses were observed when the wild-type PMMoV isolate, the T7 RNA polymerase-derived transcripts and the agroinfiltration-derived viruses were inoculated to N. benthamiana, Capsicum chinense PI 159236 and Capsicum annuum plants. Copyright © 2013 Elsevier B.V. All rights reserved.
A new double right border binary vector for producing marker-free transgenic plants
2013-01-01
Background Once a transgenic plant is developed, the selectable marker gene (SMG) becomes unnecessary in the plant. In fact, the continued presence of the SMG in the transgenic plant may cause unexpected pleiotropic effects as well as environmental or biosafety issues. Several methods for removal of SMGs that have been reported remain inaccessible due to protection by patents, while development of new ones is expensive and cost prohibitive. Here, we describe the development of a new vector for producing marker-free plants by simply adapting an ordinary binary vector to the double right border (DRB) vector design using conventional cloning procedures. Findings We developed the DRB vector pMarkfree5.0 by placing the bar gene (representing genes of interest) between two copies of T-DNA right border sequences. The β-glucuronidase (gus) and nptII genes (representing the selectable marker gene) were cloned next followed by one copy of the left border sequence. When tested in a model species (tobacco), this vector system enabled the generation of 55.6% kanamycin-resistant plants by Agrobacterium-mediated transformation. The frequency of cotransformation of the nptII and bar transgenes using the vector was 66.7%. Using the leaf bleach and Basta assays, we confirmed that the nptII and bar transgenes were coexpressed and segregated independently in the transgenic plants. This enable separation of the transgenes in plants cotransformed using pMarkfree5.0. Conclusions The results suggest that the DRB system developed here is a practical and effective approach for separation of gene(s) of interest from a SMG and production of SMG-free plants. Therefore this system could be instrumental in production of “clean” plants containing genes of agronomic importance. PMID:24207020
Structural basis for olivetolic acid formation by a polyketide cyclase from Cannabis sativa.
Yang, Xinmei; Matsui, Takashi; Kodama, Takeshi; Mori, Takahiro; Zhou, Xiaoxi; Taura, Futoshi; Noguchi, Hiroshi; Abe, Ikuro; Morita, Hiroyuki
2016-03-01
In polyketide biosynthesis, ring formation is one of the key diversification steps. Olivetolic acid cyclase (OAC) from Cannabis sativa, involved in cannabinoid biosynthesis, is the only known plant polyketide cyclase. In addition, it is the only functionally characterized plant α+β barrel (DABB) protein that catalyzes the C2-C7 aldol cyclization of the linear pentyl tetra-β-ketide CoA as the substrate, to generate olivetolic acid (OA). Herein, we solved the OAC apo and OAC-OA complex binary crystal structures at 1.32 and 1.70 Å resolutions, respectively. The crystal structures revealed that the enzyme indeed belongs to the DABB superfamily, as previously proposed, and possesses a unique active-site cavity containing the pentyl-binding hydrophobic pocket and the polyketide binding site, which have never been observed among the functionally and structurally characterized bacterial polyketide cyclases. Furthermore, site-directed mutagenesis studies indicated that Tyr72 and His78 function as acid/base catalysts at the catalytic center. Structural and/or functional studies of OAC suggested that the enzyme lacks thioesterase and aromatase activities. These observations demonstrated that OAC employs unique catalytic machinery utilizing acid/base catalytic chemistry for the formation of the precursor of OA. The structural and functional insights obtained in this work thus provide the foundation for analyses of the plant polyketide cyclases that will be discovered in the future. Structural data reported in this paper are available in the Protein Data Bank under the accession numbers 5B08 for the OAC apo, 5B09 for the OAC-OA binary complex and 5B0A, 5B0B, 5B0C, 5B0D, 5B0E, 5B0F and 5B0G for the OAC His5Q, Ile7F, Tyr27F, Tyr27W, Val59M, Tyr72F and His78S mutant enzymes, respectively. © 2016 Federation of European Biochemical Societies.
Precision of proportion estimation with binary compressed Raman spectrum.
Réfrégier, Philippe; Scotté, Camille; de Aguiar, Hilton B; Rigneault, Hervé; Galland, Frédéric
2018-01-01
The precision of proportion estimation with binary filtering of a Raman spectrum mixture is analyzed when the number of binary filters is equal to the number of present species and when the measurements are corrupted with Poisson photon noise. It is shown that the Cramer-Rao bound provides a useful methodology to analyze the performance of such an approach, in particular when the binary filters are orthogonal. It is demonstrated that a simple linear mean square error estimation method is efficient (i.e., has a variance equal to the Cramer-Rao bound). Evolutions of the Cramer-Rao bound are analyzed when the measuring times are optimized or when the considered proportion for binary filter synthesis is not optimized. Two strategies for the appropriate choice of this considered proportion are also analyzed for the binary filter synthesis.
A unifying framework for marginalized random intercept models of correlated binary outcomes
Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian M.
2013-01-01
We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood-based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data with exchangeable correlation structures. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized random intercept models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts. PMID:25342871
R144: a very massive binary likely ejected from R136 through a binary-binary encounter
NASA Astrophysics Data System (ADS)
Oh, Seungkyung; Kroupa, Pavel; Banerjee, Sambaran
2014-02-01
R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from an R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of ≈355 M⊙ and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km s-1 at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with another massive binary or single star. In addition, we discuss all massive binaries and single stars which are ejected dynamically from their parent cluster in the N-body models.
Binder, Andreas; Lambert, Jayne; Morbitzer, Robert; Popp, Claudia; Ott, Thomas; Lahaye, Thomas; Parniske, Martin
2014-01-01
The Golden Gate (GG) modular assembly approach offers a standardized, inexpensive and reliable way to ligate multiple DNA fragments in a pre-defined order in a single-tube reaction. We developed a GG based toolkit for the flexible construction of binary plasmids for transgene expression in plants. Starting from a common set of modules, such as promoters, protein tags and transcribed regions of interest, synthetic genes are assembled, which can be further combined to multigene constructs. As an example, we created T-DNA constructs encoding multiple fluorescent proteins targeted to distinct cellular compartments (nucleus, cytosol, plastids) and demonstrated simultaneous expression of all genes in Nicotiana benthamiana, Lotus japonicus and Arabidopsis thaliana. We assembled an RNA interference (RNAi) module for the construction of intron-spliced hairpin RNA constructs and demonstrated silencing of GFP in N. benthamiana. By combination of the silencing construct together with a codon adapted rescue construct into one vector, our system facilitates genetic complementation and thus confirmation of the causative gene responsible for a given RNAi phenotype. As proof of principle, we silenced a destabilized GFP gene (dGFP) and restored GFP fluorescence by expression of a recoded version of dGFP, which was not targeted by the silencing construct. PMID:24551083
Rao, I G; Singh, D K
2000-11-01
The effects of sublethal treatments (20% and 60% of LC(50)/24 h) with plant-derived molluscicides on the reproduction of the giant African snail Achatina fulica were studied. Azadirachta indica oil, Cedrus deodara oil, Allium sativum bulb powder, and Nerium indicum bark powder singly and binary combinations on reproduction and survival of A. fulica were investigated. Repeated treatment occurred on day 0, day 15, and day 30. These plant-derived molluscicides significantly reduced fecundity, egg viability, and survival of A. fulica within 15 days. Discontinuation of the treatments after day 30 did not lead to a recovery trend in the next 30 days. Day 0 sublethal treatment of all the molluscicides caused a maximum reduction in protein, amino acid, DNA, RNA, and phospholipid levels and simultaneous increase in lipid peroxidation in the ovotestis of treated A. fulica. It is believed that sublethal exposure of these molluscicides on snail reproduction is a complex process, involving more than one factor in reducing the reproductive capacity of A. fulica.
SIM Lite Detection of Habitable Planets in P-Type Binary-Planetary Systems
NASA Technical Reports Server (NTRS)
Pan, Xiaopei; Shao, Michael; Shaklan, Stuart; Goullioud, Renaud
2010-01-01
Close binary stars like spectroscopic binaries create a completely different environment than single stars for the evolution of a protoplanetary disk. Dynamical interactions between one star and protoplanets in such systems provide more challenges for theorists to model giant planet migration and formation of multiple planets. For habitable planets the majority of host stars are in binary star systems. So far only a small amount of Jupiter-size planets have been discovered in binary stars, whose minimum separations are 20 AU and the median value is about 1000 AU (because of difficulties in radial velocity measurements). The SIM Lite mission, a space-based astrometric observatory, has a unique capability to detect habitable planets in binary star systems. This work analyzed responses of the optical system to the field stop for companion stars and demonstrated that SIM Lite can observe exoplanets in visual binaries with small angular separations. In particular we investigated the issues for the search for terrestrial planets in P-type binary-planetary systems, where the planets move around both stars in a relatively distant orbit.
Embedding intensity image into a binary hologram with strong noise resistant capability
NASA Astrophysics Data System (ADS)
Zhuang, Zhaoyong; Jiao, Shuming; Zou, Wenbin; Li, Xia
2017-11-01
A digital hologram can be employed as a host image for image watermarking applications to protect information security. Past research demonstrates that a gray level intensity image can be embedded into a binary Fresnel hologram by error diffusion method or bit truncation coding method. However, the fidelity of the retrieved watermark image from binary hologram is generally not satisfactory, especially when the binary hologram is contaminated with noise. To address this problem, we propose a JPEG-BCH encoding method in this paper. First, we employ the JPEG standard to compress the intensity image into a binary bit stream. Next, we encode the binary bit stream with BCH code to obtain error correction capability. Finally, the JPEG-BCH code is embedded into the binary hologram. By this way, the intensity image can be retrieved with high fidelity by a BCH-JPEG decoder even if the binary hologram suffers from serious noise contamination. Numerical simulation results show that the image quality of retrieved intensity image with our proposed method is superior to the state-of-the-art work reported.
Fu, Chunxiang; Hernandez, Timothy; Zhou, Chuanen; Wang, Zeng-Yu
2015-01-01
Alfalfa (Medicago sativa L.) is a high-quality forage crop widely grown throughout the world. This chapter describes an efficient protocol that allows for the generation of large number of transgenic alfalfa plants by sonication-assisted Agrobacterium-mediated transformation. Binary vectors carrying different selectable marker genes that confer resistance to phosphinothricin (bar), kanamycin (npt II), or hygromycin (hph) were used to generate transgenic alfalfa plants. Intact trifoliates collected from clonally propagated plants in the greenhouse were sterilized with bleach and then inoculated with Agrobacterium strain EHA105. More than 80 % of infected leaf pieces could produce rooted transgenic plants in 4-5 months after Agrobacterium-mediated transformation.
NASA Astrophysics Data System (ADS)
Mulyana, Cukup; Adiprana, Reza; Saad, Aswad H.; M. Ridwan, H.; Muhammad, Fajar
2016-02-01
The scarcity of fossil energy accelerates the development of geothermal power plant in Indonesia. The main issue is how to minimize the energy loss from the geothermal working fluid so that the power generated can be increased. In some of geothermal power plant, the hot water which is resulted from flashing is flown to injection well, and steam out from turbine is condensed in condenser, while the temperature and pressure of the working fluid is still high. The aim of this research is how the waste energy can be re-used as energy source to generate electric power. The step of the research is started by studying the characteristics of geothermal fluid out from the well head. The temperature of fluid varies from 140°C - 250°C, the pressure is more than 7 bar and the fluid phase are liquid, gas, or mixing phase. Dry steam power plant is selected for vapor dominated source, single or multiple flash power plant is used for dominated water with temperature > 225°C, while the binary power plant is used for low temperature of fluid < 160°C. Theoretically, the process in the power plant can be described by thermodynamic cycle. Utilizing the heat loss of the brine and by considering the broad range of working fluid temperature, the integrated geothermal power plant has been developed. Started with two ordinary single flash power plants named unit 1 and unit 2, with the temperature 250°C resulting power is W1'+W2'. The power is enhanced by utilizing the steam that is out from first stage of the turbine by inputting the steam to the third stage, the power of the plant increase with W1''+W2" or 10% from the original power. By using flasher, the water from unit 1 and 2 is re-flashed at 200°C, and the steam is used to drive the turbine in unit 3, while the water is re-flashed at the temperature170°C and the steam is flown to the same turbine (unit 3) resulting the power of W3+W4. Using the fluid enthalpy, the calculated power of these double and triple flash power plant are 50% of W1+W2. At the last step, the steam out from the turbine of unit 3 with the temperature 150°C is used as a heat source for binary cycle power plant named unit 4, while the hot water from the flasher is used as a heat source for the other binary cycle named unit 5 resulted power W5+W6 or 15% of W1+W2. Using this integrated model the power increased 75% from the original one.
Ye, Xing-Guo; Qin, Hua
2007-01-01
Obtaining marker-free plants with high efficiency will benefit the environmental release of transgenic crops. To achieve this point, a binary vector pNB35SVIP1 with three T-DNAs was constructed by using several mediate plasmids, in which one copy of bar gene expression cassette and two copies of VIP1 gene expression cassette were included. EHA101 Agrobacterium strain harboring the final construct was applied to transform soybean (Glycine max) cotyledon nodes. Through 2 - 3 months regeneration and selection on 3 - 5mg/L glufosinate containing medium, transgenic soybean plants were confirmed to be obtained at 0.83% - 3.16%, and co-transformation efficiency of both gene in the same individual reached up to 86.4%, based on southern blot test. By the analysis of PCR, southern blot and northern blot combining with leaf painting of herbicide in T1 progenies, 41 plants were confirmed to be eliminated of bar gene with the frequency of 7.6% . Among the T1 populations tested, the loss of the alien genes happened in 22.7% lines, the silence of bar gene took place in 27.3% lines, and VIP1 gene silence existed in 37.1% marker-free plants. The result also suggested that the plasmid with three T-DNAs might be an ideal vector to generate maker-free genetic modified organism.
Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng
2017-01-01
Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO3-NaNO3 binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts. PMID:28772910
Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng
2017-05-19
Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO₃-NaNO₃ binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.
Cai, Xin; Xie, Ni; Qiu, Zijie; Yang, Junxian; He, Minghao; Wong, Kam Sing; Tang, Ben Zhong; Qiu, Huihe
2017-08-30
In this study, the concentration gradient inside evaporating binary sessile droplets of 30, 50, and 60 vol % tetrahydrofuran (THF)/water mixtures was investigated. The 5 μL THF/water droplets were evaporated on a transparent hydrophobic substrate. This is the first demonstration of local concentration mapping within an evaporating binary droplet utilizing the aggregation-induced emission material. During the first two evaporation stages of the binary droplet, the local concentration can be directly visualized by the change of fluorescence emission intensity. Time-resolved average and local concentrations can be estimated by using the pre-established function of fluorescence intensity versus water volume fraction.
The Ruinous Influence of Close Binary Companions on Planetary Systems
NASA Astrophysics Data System (ADS)
Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.
2017-01-01
The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34 +0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.
The Ruinous Influence of Close Binary Companions on Planetary Systems
NASA Astrophysics Data System (ADS)
Kraus, Adam L.; Ireland, Michael; Mann, Andrew; Huber, Daniel; Dupuy, Trent J.
2017-06-01
The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. When the binary population is parametrized with a semimajor axis cutoff a cut and a suppression factor inside that cutoff S bin, we find with correlated uncertainties that inside acut = 47 +59/-23 AU, the planet occurrence rate in binary systems is only Sbin = 0.34+0.14/-0.15 times that of wider binaries or single stars. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion.
Wang, Guanghui; Tan, Jie; Tang, Minghui; Zhang, Changbin; Zhang, Dongying; Ji, Wenbin; Chen, Junhao; Ho, Ho-Pui; Zhang, Xuping
2018-03-16
Centrifugal microfluidics or lab-on-a-disc (LOAD) is a promising branch of lab-on-a-chip or microfluidics. Besides effective fluid transportation and inherently available density-based sample separation in centrifugal microfluidics, uniform actuation of flow on the disc makes the platform compact and scalable. However, the natural radially outward centrifugal force in a LOAD system limits its capacity to perform complex fluid manipulation steps. In order to increase the fluid manipulation freedom and integration capacity of the LOAD system, we propose a binary centrifugal microfluidics platform. With the help of Euler force, our platform allows free switching of both left and right states based on a rather simple mechanical structure. The periodical switching of state would provide a "clock" signal for a sequence of droplet binary logic operations. With the binary state platform and the "clock" signal, we can accurately handle the droplet separately in each time step with a maximum main frequency of about 10 S s-1 (switching per second). Apart from droplet manipulations such as droplet generation and metering, we also demonstrate a series of droplet logic operations, such as binary valving, droplet routing and digital addressable droplet storage. Furthermore, complex bioassays such as the Bradford assay and DNA purification assay are demonstrated on a binary platform, which is totally impossible for a traditional LOAD system. Our binary platform largely improves the capability for logic operation on the LOAD platform, and it is a simple and promising approach for microfluidic lab-on-a-disc large-scale integration.
Improvements to the construction of binary black hole initial data
NASA Astrophysics Data System (ADS)
Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald P.; Boyle, Michael; Szilágyi, Béla
2015-12-01
Construction of binary black hole initial data is a prerequisite for numerical evolutions of binary black holes. This paper reports improvements to the binary black hole initial data solver in the spectral Einstein code, to allow robust construction of initial data for mass-ratio above 10:1, and for dimensionless black hole spins above 0.9, while improving efficiency for lower mass-ratios and spins. We implement a more flexible domain decomposition, adaptive mesh refinement and an updated method for choosing free parameters. We also introduce a new method to control and eliminate residual linear momentum in initial data for precessing systems, and demonstrate that it eliminates gravitational mode mixing during the evolution. Finally, the new code is applied to construct initial data for hyperbolic scattering and for binaries with very small separation.
Development of a Scale-up Tool for Pervaporation Processes
Thiess, Holger; Strube, Jochen
2018-01-01
In this study, an engineering tool for the design and optimization of pervaporation processes is developed based on physico-chemical modelling coupled with laboratory/mini-plant experiments. The model incorporates the solution-diffusion-mechanism, polarization effects (concentration and temperature), axial dispersion, pressure drop and the temperature drop in the feed channel due to vaporization of the permeating components. The permeance, being the key model parameter, was determined via dehydration experiments on a mini-plant scale for the binary mixtures ethanol/water and ethyl acetate/water. A second set of experimental data was utilized for the validation of the model for two chemical systems. The industrially relevant ternary mixture, ethanol/ethyl acetate/water, was investigated close to its azeotropic point and compared to a simulation conducted with the determined binary permeance data. Experimental and simulation data proved to agree very well for the investigated process conditions. In order to test the scalability of the developed engineering tool, large-scale data from an industrial pervaporation plant used for the dehydration of ethanol was compared to a process simulation conducted with the validated physico-chemical model. Since the membranes employed in both mini-plant and industrial scale were of the same type, the permeance data could be transferred. The comparison of the measured and simulated data proved the scalability of the derived model. PMID:29342956
Cai, Guangyu; Sun, Jianfeng; Li, Guangyuan; Zhang, Guo; Xu, Mengmeng; Zhang, Bo; Yue, Chaolei; Liu, Liren
2016-06-10
A self-homodyne laser communication system based on orthogonally polarized binary phase shift keying is demonstrated. The working principles of this method and the structure of a transceiver are described using theoretical calculations. Moreover, the signal-to-noise ratio, sensitivity, and bit error rate are analyzed for the amplifier-noise-limited case. The reported experiment validates the feasibility of the proposed method and demonstrates its advantageous sensitivity as a self-homodyne communication system.
Targeted numerical simulations of binary black holes for GW170104
NASA Astrophysics Data System (ADS)
Healy, J.; Lange, J.; O'Shaughnessy, R.; Lousto, C. O.; Campanelli, M.; Williamson, A. R.; Zlochower, Y.; Calderón Bustillo, J.; Clark, J. A.; Evans, C.; Ferguson, D.; Ghonge, S.; Jani, K.; Khamesra, B.; Laguna, P.; Shoemaker, D. M.; Boyle, M.; García, A.; Hemberger, D. A.; Kidder, L. E.; Kumar, P.; Lovelace, G.; Pfeiffer, H. P.; Scheel, M. A.; Teukolsky, S. A.
2018-03-01
In response to LIGO's observation of GW170104, we performed a series of full numerical simulations of binary black holes, each designed to replicate likely realizations of its dynamics and radiation. These simulations have been performed at multiple resolutions and with two independent techniques to solve Einstein's equations. For the nonprecessing and precessing simulations, we demonstrate the two techniques agree mode by mode, at a precision substantially in excess of statistical uncertainties in current LIGO's observations. Conversely, we demonstrate our full numerical solutions contain information which is not accurately captured with the approximate phenomenological models commonly used to infer compact binary parameters. To quantify the impact of these differences on parameter inference for GW170104 specifically, we compare the predictions of our simulations and these approximate models to LIGO's observations of GW170104.
Analysis and Defense of Vulnerabilities in Binary Code
2008-09-29
language . We demonstrate our techniques by automatically generating input filters from vulnerable binary programs. vi Acknowledgments I thank my wife, family...21 2.2 The Vine Intermediate Language . . . . . . . . . . . . . . . . . . . . . . 21 ix 2.2.1 Normalized Memory...The Traditional Weakest Precondition Semantics . . . . . . . . . . . . . 44 3.2.1 The Guarded Command Language . . . . . . . . . . . . . . . . . 44
Vidal, T; Gigot, C; de Vallavieille-Pope, C; Huber, L; Saint-Jean, S
2018-06-08
Growing cultivars differing by their disease resistance level together (cultivar mixtures) can reduce the propagation of diseases. Although architectural characteristics of cultivars are little considered in mixture design, they could have an effect on disease, in particular through spore dispersal by rain splash, which occurs over short distances. The objective of this work was to assess the impact of plant height of wheat cultivars in mixtures on splash dispersal of Zymoseptoria tritici, which causes septoria tritici leaf blotch. We used a modelling approach involving an explicit description of canopy architecture and splash dispersal processes. The dispersal model computed raindrop interception by a virtual canopy as well as the production, transport and interception of splash droplets carrying inoculum. We designed 3-D virtual canopies composed of susceptible and resistant plants, according to field measurements at the flowering stage. In numerical experiments, we tested different heights of virtual cultivars making up binary mixtures to assess the influence of this architectural trait on dispersal patterns of spore-carrying droplets. Inoculum interception decreased exponentially with the height relative to the main inoculum source (lower diseased leaves of susceptible plants), and little inoculum was intercepted further than 40 cm above the inoculum source. Consequently, tall plants intercepted less inoculum than smaller ones. Plants with twice the standard height intercepted 33 % less inoculum than standard height plants. In cases when the height of suscpeptible plants was doubled, inoculum interception by resistant leaves was 40 % higher. This physical barrier to spore-carrying droplet trajectories reduced inoculum interception by tall susceptible plants and was modulated by plant height differences between cultivars of a binary mixture. These results suggest that mixture effects on spore dispersal could be modulated by an adequate choice of architectural characteristics of cultivars. In particular, even small differences in plant height could reduce spore dispersal.
Silica problem in the design of geothermal power plants
NASA Astrophysics Data System (ADS)
Dipippo, R.
1985-02-01
The silica problem is examined from the perspective of the power plant designer to develop a procedure to enable a quick estimate to be made of the potential seriousness of the silica deposition problem for a wide variety of resources and for selected types of power plant. The method employs correlations for the equilibrium solubilities of quartz and amorphous silica and for the saturated liquid enthalpy and the latent heat of water substance. Single- and double-flash plants optimized for highest thermodynamic efficiency are considered. Binary-type plants are included generically without mention of cycle specifics. The results are presented both graphically and in tabular form, and the governing equations will be given in an easily-programmable form.
The Impact of Binary Companions on Planetary Systems
NASA Astrophysics Data System (ADS)
Kraus, Adam L.; Ireland, Michael; Dupuy, Trent; Mann, Andrew; Huber, Daniel
2018-01-01
The majority of solar-type stars are found in binary systems, and the dynamical influence of binary companions is expected to profoundly influence planetary systems. However, the difficulty of identifying planets in binary systems has left the magnitude of this effect uncertain; despite numerous theoretical hurdles to their formation and survival, at least some binary systems clearly host planets. We present high-resolution imaging of nearly 500 Kepler Objects of Interest (KOIs) obtained using adaptive-optics imaging and nonredundant aperture-mask interferometry on the Keck II telescope. We super-resolve some binary systems to projected separations of under 5 AU, showing that planets might form in these dynamically active environments. However, the full distribution of projected separations for our planet-host sample more broadly reveals a deep paucity of binary companions at solar-system scales. Our results demonstrate that a fifth of all solar-type stars in the Milky Way are disallowed from hosting planetary systems due to the influence of a binary companion. We now update these results with multi-epoch imaging to reject non-comoving background stars and securely identify even the least massive stellar companions, as well as tracing out the orbital motion of stellar companions. These results are beginning to reveal not just the fraction of binaries that do not host planets, but also potential explanations for planet survival even in some very close, dynamically active binary systems.
Avci, Ertug; Culha, Mustafa
2014-01-01
The size-dependent interactions of eight blood proteins with silver nanoparticles (AgNPs) in their binary mixtures were investigated using surface-enhanced Raman scattering (SERS). Principal component analysis (PCA) was performed on the SERS spectra of each binary mixture, and the differentiation ability of the mixtures was tested. It was found that the effect of relative concentration change on the SERS spectra of the binary mixtures of small proteins could be detected using PCA. However, this change was not observed with the binary mixtures of large proteins. This study demonstrated that the relative interactions of the smaller proteins with an average size of 50 nm AgNPs smaller than the large proteins could be monitored, and this information can be used for the detection of proteins in protein mixtures.
OGLE-2016-BLG-1469L: Microlensing Binary Composed of Brown Dwarfs
NASA Astrophysics Data System (ADS)
Han, C.; Udalski, A.; Sumi, T.; Gould, A.; Albrow, M. D.; Chung, S.-J.; Jung, Y. K.; Ryu, Y.-H.; Shin, I.-G.; Yee, J. C.; Zhu, W.; Cha, S.-M.; Kim, S.-L.; Kim, D.-J.; Lee, C.-U.; Lee, Y.; Park, B.-G.; KMTNet Collaboration; Soszyński, I.; Mróz, P.; Pietrukowicz, P.; Szymański, M. K.; Skowron, J.; Poleski, R.; Kozłowski, S.; Ulaczyk, K.; Pawlak, M.; OGLE Collaboration; Abe, F.; Asakura, Y.; Bennett, D. P.; Bond, I. A.; Bhattacharya, A.; Donachie, M.; Freeman, M.; Fukui, A.; Hirao, Y.; Itow, Y.; Koshimoto, N.; Li, M. C. A.; Ling, C. H.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nagakane, M.; Ohnishi, K.; Oyokawa, H.; Rattenbury, N. J.; Saito, To.; Sharan, A.; Sullivan, D. J.; Suzuki, D.; Tristram, P. J.; Yamada, T.; Yamada, T.; Yonehara, A.; Barry, R.; MOA Collaboration
2017-07-01
We report the discovery of a binary composed of two brown dwarfs, based on the analysis of the microlensing event OGLE-2016-BLG-1469. Thanks to the detection of both finite-source and microlens-parallax effects, we are able to measure both the masses {M}1˜ 0.05 {M}⊙ and {M}2˜ 0.01 {M}⊙ , and the distance {D}{{L}}˜ 4.5 {kpc}, as well as the projected separation {a}\\perp ˜ 0.33 au. This is the third brown-dwarf binary detected using the microlensing method, demonstrating the usefulness of microlensing in detecting field brown-dwarf binaries with separations of less than 1 au.
The evolution of photoevaporating viscous discs in binaries
NASA Astrophysics Data System (ADS)
Rosotti, Giovanni P.; Clarke, Cathie J.
2018-02-01
A large fraction of stars are in binary systems, yet the evolution of protoplanetary discs in binaries has been little explored from the theoretical side. In this paper, we investigate the evolution of the discs surrounding the primary and secondary components of binary systems on the assumption that this is driven by photoevaporation induced by X-rays from the respective star. We show how for close enough separations (20-30 au for average X-ray luminosities) the tidal torque of the companion changes the qualitative behaviour of disc dispersal from inside out to outside in. Fewer transition discs created by photoevaporation are thus expected in binaries. We also demonstrate that in close binaries the reduction in viscous time leads to accelerated disc clearing around both components, consistent with unresolved observations. When looking at the differential disc evolution around the two components, in close binaries discs around the secondary clear first due to the shorter viscous time-scale associated with the smaller outer radius. In wide binaries instead the difference in photoevaporation rate makes the secondaries longer lived, though this is somewhat dependent on the assumed scaling of viscosity with stellar mass. We find that our models are broadly compatible with the growing sample of resolved observations of discs in binaries. We also predict that binaries have higher accretion rates than single stars for the same disc mass. Thus, binaries probably contribute to the observed scatter in the relationship between disc mass and accretion rate in young stars.
Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendt, Daniel; Mines, Greg; Turchi, Craig
There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods ofmore » high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing production fluid temperature, flow rate, or both during the life span of the associated power generation project. The impacts of geothermal production fluid temperature decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant efficiency. The impact of resource productivity decline on power generation project economics can be equally detrimental. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below a specified default level. While the magnitude of PPA penalties varies on a case-by-case basis, it is not unrealistic for these penalties to be on the order of the value of the deficit power sales such that the utility may purchase the power elsewhere. This report evaluates the use of geothermal/solar-thermal hybrid plant technology for mitigation of resource productivity decline, which has not been a primary topic of investigation in previous analyses in the open literature.« less
Pfeiffer, Tanja; Roschanski, Anna M; Pannell, John R; Korbecka, Grazyna; Schnittler, Martin
2011-01-01
For many applications in population genetics, codominant simple sequence repeats (SSRs) may have substantial advantages over dominant anonymous markers such as amplified fragment length polymorphisms (AFLPs). In high polyploids, however, allele dosage of SSRs cannot easily be determined and alleles are not easily attributable to potentially diploidized loci. Here, we argue that SSRs may nonetheless be better than AFLPs for polyploid taxa if they are analyzed as effectively dominant markers because they are more reliable and more precise. We describe the transfer of SSRs developed for diploid Mercurialis huetii to the clonal dioecious M. perennis. Primers were tested on a set of 54 male and female plants from natural decaploid populations. Eight of 65 tested loci produced polymorphic fragments. Binary profiles from 4 different scoring routines were used to define multilocus lineages (MLLs). Allowing for fragment differences within 1 MLL, all analyses revealed the same 14 MLLs without conflicting with merigenet, sex, or plot assignment. For semiautomatic scoring, a combination of as few as 2 of the 4 most polymorphic loci resulted in unambiguous discrimination of clones. Our study demonstrates that microsatellite fingerprinting of polyploid plants is a cost efficient and reliable alternative to AFLPs, not least because fewer loci are required than for diploids.
Henriksen, A; Smith, A T; Gajhede, M
1999-12-03
We have solved the x-ray structures of the binary horseradish peroxidase C-ferulic acid complex and the ternary horseradish peroxidase C-cyanide-ferulic acid complex to 2.0 and 1.45 A, respectively. Ferulic acid is a naturally occurring phenolic compound found in the plant cell wall and is an in vivo substrate for plant peroxidases. The x-ray structures demonstrate the flexibility and dynamic character of the aromatic donor binding site in horseradish peroxidase and emphasize the role of the distal arginine (Arg(38)) in both substrate oxidation and ligand binding. Arg(38) hydrogen bonds to bound cyanide, thereby contributing to the stabilization of the horseradish peroxidase-cyanide complex and suggesting that the distal arginine will be able to contribute with a similar interaction during stabilization of a bound peroxy transition state and subsequent O-O bond cleavage. The catalytic arginine is additionally engaged in an extensive hydrogen bonding network, which also includes the catalytic distal histidine, a water molecule and Pro(139), a proline residue conserved within the plant peroxidase superfamily. Based on the observed hydrogen bonding network and previous spectroscopic and kinetic work, a general mechanism of peroxidase substrate oxidation is proposed.
Towards constructing multi-bit binary adder based on Belousov-Zhabotinsky reaction
NASA Astrophysics Data System (ADS)
Zhang, Guo-Mao; Wong, Ieong; Chou, Meng-Ta; Zhao, Xin
2012-04-01
It has been proposed that the spatial excitable media can perform a wide range of computational operations, from image processing, to path planning, to logical and arithmetic computations. The realizations in the field of chemical logical and arithmetic computations are mainly concerned with single simple logical functions in experiments. In this study, based on Belousov-Zhabotinsky reaction, we performed simulations toward the realization of a more complex operation, the binary adder. Combining with some of the existing functional structures that have been verified experimentally, we designed a planar geometrical binary adder chemical device. Through numerical simulations, we first demonstrated that the device can implement the function of a single-bit full binary adder. Then we show that the binary adder units can be further extended in plane, and coupled together to realize a two-bit, or even multi-bit binary adder. The realization of chemical adders can guide the constructions of other sophisticated arithmetic functions, ultimately leading to the implementation of chemical computer and other intelligent systems.
Poynting-Flux-Driven Bubbles and Shocks Around Merging Neutron Star Binaries
NASA Astrophysics Data System (ADS)
Medvedev, M. V.; Loeb, A.
2013-04-01
Merging binaries of compact relativistic objects are thought to be progenitors of short gamma-ray bursts. Because of the strong magnetic field of one or both binary members and high orbital frequencies, these binaries are strong sources of energy in the form of Poynting flux. The steady injection of energy by the binary forms a bubble filled with matter with the relativistic equation of state, which pushes on the surrounding plasma and can drive a shock wave in it. Unlike the Sedov-von Neumann-Taylor blast wave solution for a point-like explosion, the shock wave here is continuously driven by the ever-increasing pressure inside the bubble. We calculate from the first principles the dynamics and evolution of the bubble and the shock surrounding it, demonstrate that it exhibits finite time singularity and find the corresponding analytical solution. We predict that such binaries can be observed as radio sources a few hours before and after the merger.
Correcting Velocity Dispersions of Dwarf Spheroidal Galaxies for Binary Orbital Motion
NASA Astrophysics Data System (ADS)
Minor, Quinn E.; Martinez, Greg; Bullock, James; Kaplinghat, Manoj; Trainor, Ryan
2010-10-01
We show that the measured velocity dispersions of dwarf spheroidal galaxies from about 4 to 10 km s-1 are unlikely to be inflated by more than 30% due to the orbital motion of binary stars and demonstrate that the intrinsic velocity dispersions can be determined to within a few percent accuracy using two-epoch observations with 1-2 yr as the optimal time interval. The crucial observable is the threshold fraction—the fraction of stars that show velocity changes larger than a given threshold between measurements. The threshold fraction is tightly correlated with the dispersion introduced by binaries, independent of the underlying binary fraction and distribution of orbital parameters. We outline a simple procedure to correct the velocity dispersion to within a few percent accuracy by using the threshold fraction and provide fitting functions for this method. We also develop a methodology for constraining properties of binary populations from both single- and two-epoch velocity measurements by including the binary velocity distribution in a Bayesian analysis.
Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus
Zhu, Wei; Yang, Bingxian; Komatsu, Setsuko; Lu, Xiaoping; Li, Ximin; Tian, Jingkui
2015-01-01
Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abundance of proteins related to tricarboxylic acid cycle and cell wall was largely increased; while, that of proteins related to tetrapyrrole synthesis and photosynthesis was decreased. Of note, 10-hydroxygeraniol oxidoreductase, which is involved in the biosynthesis of indole alkaloid was two-fold more abundant in treated group compared to the control. In addition, mRNA expression levels of genes involved in the indole alkaloid biosynthetic pathway indicated an up-regulation in their transcription in C. roseus under UV-B irradiation. These results suggest that binary stress might negatively affect the process of photosynthesis in C. roseus. In addition, the induction of alkaloid biosynthesis appears to be responsive to binary stress. PMID:26284098
ERIC Educational Resources Information Center
Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng
2010-01-01
Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…
A Simple Educational Method for the Measurement of Liquid Binary Diffusivities
ERIC Educational Resources Information Center
Rice, Nicholas P.; de Beer, Martin P.; Williamson, Mark E.
2014-01-01
A simple low-cost experiment has been developed for the measurement of the binary diffusion coefficients of liquid substances. The experiment is suitable for demonstrating molecular diffusion to small or large undergraduate classes in chemistry or chemical engineering. Students use a cell phone camera in conjunction with open-source image…
Baracco, Yanina; Rodriguez Furlán, Laura T; Campderrós, Mercedes E
2017-04-01
The aim of this work was to study the influence of the binary and ternary combinations of bovine plasma proteins (BPP), inulin (I) and κ-carrageenan (C) in the overall quality of fat-reduced sausages. The influence of these components over different properties (chemical composition, weight loss after cooking, emulsion stability, texture profile and sensory analysis of fat-reduced sausages) was studied and compared against two samples, one without fat reduction and another a fat-reduced sample without addition of texturing agents. In this sense, a full factorial experimental design of two levels with central point was used. The samples containing BPP+I and BPP+C showed a synergy in which the binary combinations presented higher values of moisture and protein content than the samples containing the individual components. The reduction of fat content increases the values of hardness and decreases the values of springiness. Samples with 5% BPP (w/w) and binary combinations of BPP+C and BPP+I had the best stability values (low total fluid loss), demonstrating a significant synergistic effect by combining BPP+C. Similar results were obtained from the study of weight loss after cooking. However, both studies showed a destabilization of the sample BPP+I+C as emulsion stability decreased and weight loss increased after cooking compared to binary combinations ( P < 0.05). Samples with a binary combination of BPP+C and BPP+I do not present a statistically significant difference in the chewiness with respect to a not-fat-reduced commercial sample ( P > 0.05). The less acceptable sample for flavor and texture was the one containing only BPP. However, when BPP combined with I or C, a major acceptability was obtained, demonstrating the synergistic effect of these binary combinations. Therefore, our studies revealed that the binary combinations of BPP with I or C are good alternatives for the development of fat-reduced sausage.
Error analysis of numerical gravitational waveforms from coalescing binary black holes
NASA Astrophysics Data System (ADS)
Fong, Heather; Chu, Tony; Kumar, Prayush; Pfeiffer, Harald; Boyle, Michael; Hemberger, Daniel; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela; SXS Collaboration
2016-03-01
The Advanced Laser Interferometer Gravitational-wave Observatory (Advanced LIGO) has finished a successful first observation run and will commence its second run this summer. Detection of compact object binaries utilizes matched-filtering, which requires a vast collection of highly accurate gravitational waveforms. This talk will present a set of about 100 new aligned-spin binary black hole simulations. I will discuss their properties, including a detailed error analysis, which demonstrates that the numerical waveforms are sufficiently accurate for gravitational wave detection purposes, as well as for parameter estimation purposes.
NASA Astrophysics Data System (ADS)
Zhou, Zheng; Liu, Chen; Shen, Wensheng; Dong, Zhen; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2017-04-01
A binary spike-time-dependent plasticity (STDP) protocol based on one resistive-switching random access memory (RRAM) device was proposed and experimentally demonstrated in the fabricated RRAM array. Based on the STDP protocol, a novel unsupervised online pattern recognition system including RRAM synapses and CMOS neurons is developed. Our simulations show that the system can efficiently compete the handwritten digits recognition task, which indicates the feasibility of using the RRAM-based binary STDP protocol in neuromorphic computing systems to obtain good performance.
Agrobacterium-mediated transformation of Fraxinus pennsylvanica hypocotyls and plant regeneration
Ningxia Du; Paula M. Pijut
2009-01-01
A genetic transformation protocol for green ash (Fraxinus pennsylvanica) hypocotyl explants was developed. Green ash hypocotyls were transformed using Agrobacterium tumefaciens strain EHA105 harboring binary vector pq35GR containing the neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) fusion...
Molecular breeding of transgenic rice plants expressing a bacterial chlorocatechol dioxygenase gene.
Shimizu, Masami; Kimura, Tetsuya; Koyama, Takayoshi; Suzuki, Katsuhisa; Ogawa, Naoto; Miyashita, Kiyotaka; Sakka, Kazuo; Ohmiya, Kunio
2002-08-01
The cbnA gene encoding the chlorocatechol dioxygenase gene from Ralstonia eutropha NH9 was introduced into rice plants. The cbnA gene was expressed in transgenic rice plants under the control of a modified cauliflower mosaic virus 35S promoter. Western blot analysis using anti-CbnA protein indicated that the cbnA gene was expressed in leaf tissue, roots, culms, and seeds. Transgenic rice calluses expressing the cbnA gene converted 3-chlorocatechol to 2-chloromucote efficiently. Growth and morphology of the transgenic rice plants expressing the cbnA gene were not distinguished from those of control rice plants harboring only a Ti binary vector. It is thus possible to breed transgenic plants that degrade chloroaromatic compounds in soil and surface water.
NASA Astrophysics Data System (ADS)
Yelkenci Köse, Simge; Demir, Leyla; Tunalı, Semra; Türsel Eliiyi, Deniz
2015-02-01
In manufacturing systems, optimal buffer allocation has a considerable impact on capacity improvement. This study presents a simulation optimization procedure to solve the buffer allocation problem in a heat exchanger production plant so as to improve the capacity of the system. For optimization, three metaheuristic-based search algorithms, i.e. a binary-genetic algorithm (B-GA), a binary-simulated annealing algorithm (B-SA) and a binary-tabu search algorithm (B-TS), are proposed. These algorithms are integrated with the simulation model of the production line. The simulation model, which captures the stochastic and dynamic nature of the production line, is used as an evaluation function for the proposed metaheuristics. The experimental study with benchmark problem instances from the literature and the real-life problem show that the proposed B-TS algorithm outperforms B-GA and B-SA in terms of solution quality.
Binary neutron stars with arbitrary spins in numerical relativity
NASA Astrophysics Data System (ADS)
Tacik, Nick; Foucart, Francois; Pfeiffer, Harald P.; Haas, Roland; Ossokine, Serguei; Kaplan, Jeff; Muhlberger, Curran; Duez, Matt D.; Kidder, Lawrence E.; Scheel, Mark A.; Szilágyi, Béla
2015-12-01
We present a code to construct initial data for binary neutron star systems in which the stars are rotating. Our code, based on a formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We compute the neutron star angular momentum through quasilocal angular momentum integrals. When constructing irrotational binary neutron stars, we find a very small residual dimensionless spin of ˜2 ×10-4 . Evolutions of rotating neutron star binaries show that the magnitude of the stars' angular momentum is conserved, and that the spin and orbit precession of the stars is well described by post-Newtonian approximation. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ˜0.1 % . The neutron stars show quasinormal mode oscillations at an amplitude which increases with the rotation rate of the stars.
Is black-hole ringdown a memory of its progenitor?
Kamaretsos, Ioannis; Hannam, Mark; Sathyaprakash, B S
2012-10-05
We perform an extensive numerical study of coalescing black-hole binaries to understand the gravitational-wave spectrum of quasinormal modes excited in the merged black hole. Remarkably, we find that the masses and spins of the progenitor are clearly encoded in the mode spectrum of the ringdown signal. Some of the mode amplitudes carry the signature of the binary's mass ratio, while others depend critically on the spins. Simulations of precessing binaries suggest that our results carry over to generic systems. Using Bayesian inference, we demonstrate that it is possible to accurately measure the mass ratio and a proper combination of spins even when the binary is itself invisible to a detector. Using a mapping of the binary masses and spins to the final black-hole spin allows us to further extract the spin components of the progenitor. Our results could have tremendous implications for gravitational astronomy by facilitating novel tests of general relativity using merging black holes.
The 125 MW Upper Mahiao geothermal power plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forte, N.
1996-12-31
The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by amore » subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.« less
Exact Algorithms for Duplication-Transfer-Loss Reconciliation with Non-Binary Gene Trees.
Kordi, Misagh; Bansal, Mukul S
2017-06-01
Duplication-Transfer-Loss (DTL) reconciliation is a powerful method for studying gene family evolution in the presence of horizontal gene transfer. DTL reconciliation seeks to reconcile gene trees with species trees by postulating speciation, duplication, transfer, and loss events. Efficient algorithms exist for finding optimal DTL reconciliations when the gene tree is binary. In practice, however, gene trees are often non-binary due to uncertainty in the gene tree topologies, and DTL reconciliation with non-binary gene trees is known to be NP-hard. In this paper, we present the first exact algorithms for DTL reconciliation with non-binary gene trees. Specifically, we (i) show that the DTL reconciliation problem for non-binary gene trees is fixed-parameter tractable in the maximum degree of the gene tree, (ii) present an exponential-time, but in-practice efficient, algorithm to track and enumerate all optimal binary resolutions of a non-binary input gene tree, and (iii) apply our algorithms to a large empirical data set of over 4700 gene trees from 100 species to study the impact of gene tree uncertainty on DTL-reconciliation and to demonstrate the applicability and utility of our algorithms. The new techniques and algorithms introduced in this paper will help biologists avoid incorrect evolutionary inferences caused by gene tree uncertainty.
High Efficiency Transformation of Cultured Tobacco Cells 1
An, Gynheung
1985-01-01
Tobacco calli were transformed at levels up to 50% by cocultivation of tobacco cultured cells with Agrobacterium tumefaciens harboring the binary transfer-DNA vector, pGA472, containing a kanamycin resistance marker. Transformation frequency was dependent on the physiological state of the tobacco cells, the nature of Agrobacterium strain and, less so, on the expression of the vir genes of the tumor-inducing plasmid. Maximum transformation frequency was obtained with exponentially growing plant cells, suggesting that rapid growth of plant cells is an essental factor for efficient transformation of higher plants. Images Fig. 1 PMID:16664453
2011-01-01
Background For efficient and large scale production of recombinant proteins in plants transient expression by agroinfection has a number of advantages over stable transformation. Simple manipulation, rapid analysis and high expression efficiency are possible. In pea, Pisum sativum, a Virus Induced Gene Silencing System using the pea early browning virus has been converted into an efficient agroinfection system by converting the two RNA genomes of the virus into binary expression vectors for Agrobacterium transformation. Results By vacuum infiltration (0.08 Mpa, 1 min) of germinating pea seeds with 2-3 cm roots with Agrobacteria carrying the binary vectors, expression of the gene for Green Fluorescent Protein as marker and the gene for the human acidic fibroblast growth factor (aFGF) was obtained in 80% of the infiltrated developing seedlings. Maximal production of the recombinant proteins was achieved 12-15 days after infiltration. Conclusions Compared to the leaf injection method vacuum infiltration of germinated seeds is highly efficient allowing large scale production of plants transiently expressing recombinant proteins. The production cycle of plants for harvesting the recombinant protein was shortened from 30 days for leaf injection to 15 days by applying vacuum infiltration. The synthesized aFGF was purified by heparin-affinity chromatography and its mitogenic activity on NIH 3T3 cells confirmed to be similar to a commercial product. PMID:21548923
Small Worldness in Dense and Weighted Connectomes
NASA Astrophysics Data System (ADS)
Colon-Perez, Luis; Couret, Michelle; Triplett, William; Price, Catherine; Mareci, Thomas
2016-05-01
The human brain is a heterogeneous network of connected functional regions; however, most brain network studies assume that all brain connections can be described in a framework of binary connections. The brain is a complex structure of white matter tracts connected by a wide range of tract sizes, which suggests a broad range of connection strengths. Therefore, the assumption that the connections are binary yields an incomplete picture of the brain. Various thresholding methods have been used to remove spurious connections and reduce the graph density in binary networks. But these thresholds are arbitrary and make problematic the comparison of networks created at different thresholds. The heterogeneity of connection strengths can be represented in graph theory by applying weights to the network edges. Using our recently introduced edge weight parameter, we estimated the topological brain network organization using a complimentary weighted connectivity framework to the traditional framework of a binary network. To examine the reproducibility of brain networks in a controlled condition, we studied the topological network organization of a single healthy individual by acquiring 10 repeated diffusion-weighted magnetic resonance image datasets, over a one-month period on the same scanner, and analyzing these networks with deterministic tractography. We applied a threshold to both the binary and weighted networks and determined that the extra degree of freedom that comes with the framework of weighting network connectivity provides a robust result as any threshold level. The proposed weighted connectivity framework provides a stable result and is able to demonstrate the small world property of brain networks in situations where the binary framework is inadequate and unable to demonstrate this network property.
Spatiotemporal characterization of Sclerotinia crown rot epidemics in pyrethrum
USDA-ARS?s Scientific Manuscript database
Sclerotinia crown rot, caused by Sclerotinia minor and S. sclerotiorum is a disease of pyrethrum in Australia that may cause substantial decline in plant density. The spatiotemporal characteristics of the disease were quantified in 14 fields spread across three growing seasons. Fitting the binary ...
Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Dale Edward
2013-02-12
This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. Themore » project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.« less
Hierarchically self-assembled hexagonal honeycomb and kagome superlattices of binary 1D colloids.
Lim, Sung-Hwan; Lee, Taehoon; Oh, Younghoon; Narayanan, Theyencheri; Sung, Bong June; Choi, Sung-Min
2017-08-25
Synthesis of binary nanoparticle superlattices has attracted attention for a broad spectrum of potential applications. However, this has remained challenging for one-dimensional nanoparticle systems. In this study, we investigate the packing behavior of one-dimensional nanoparticles of different diameters into a hexagonally packed cylindrical micellar system and demonstrate that binary one-dimensional nanoparticle superlattices of two different symmetries can be obtained by tuning particle diameter and mixing ratios. The hexagonal arrays of one-dimensional nanoparticles are embedded in the honeycomb lattices (for AB 2 type) or kagome lattices (for AB 3 type) of micellar cylinders. The maximization of free volume entropy is considered as the main driving force for the formation of superlattices, which is well supported by our theoretical free energy calculations. Our approach provides a route for fabricating binary one-dimensional nanoparticle superlattices and may be applicable for inorganic one-dimensional nanoparticle systems.Binary mixtures of 1D particles are rarely observed to cooperatively self-assemble into binary superlattices, as the particle types separate into phases. Here, the authors design a system that avoids phase separation, obtaining binary superlattices with different symmetries by simply tuning the particle diameter and mixture composition.
Lu, Jiwen; Erin Liong, Venice; Zhou, Jie
2017-08-09
In this paper, we propose a simultaneous local binary feature learning and encoding (SLBFLE) approach for both homogeneous and heterogeneous face recognition. Unlike existing hand-crafted face descriptors such as local binary pattern (LBP) and Gabor features which usually require strong prior knowledge, our SLBFLE is an unsupervised feature learning approach which automatically learns face representation from raw pixels. Unlike existing binary face descriptors such as the LBP, discriminant face descriptor (DFD), and compact binary face descriptor (CBFD) which use a two-stage feature extraction procedure, our SLBFLE jointly learns binary codes and the codebook for local face patches so that discriminative information from raw pixels from face images of different identities can be obtained by using a one-stage feature learning and encoding procedure. Moreover, we propose a coupled simultaneous local binary feature learning and encoding (C-SLBFLE) method to make the proposed approach suitable for heterogeneous face matching. Unlike most existing coupled feature learning methods which learn a pair of transformation matrices for each modality, we exploit both the common and specific information from heterogeneous face samples to characterize their underlying correlations. Experimental results on six widely used face datasets are presented to demonstrate the effectiveness of the proposed method.
Shen, Chun-Ying; Xu, Guang-Hui; Chen, Shi-Xuan; Song, Li-Zhen; Li, Mei-Jing; Wang, Li-Li; Zhu, Yan; Lv, Wei-Tao; Gong, Zhi-Zhong; Liu, Chun-Ming; Deng, Xin
2014-01-01
Functional genomic elements, including transposable elements, small RNAs and non-coding RNAs, are involved in regulation of gene expression in response to plant stress. To identify genomic elements that regulate dehydration and alkaline tolerance in Boea hygrometrica, a resurrection plant that inhabits drought and alkaline Karst areas, a genomic DNA library from B. hygrometrica was constructed and subsequently transformed into Arabidopsis using binary bacterial artificial chromosome (BIBAC) vectors. Transgenic lines were screened under osmotic and alkaline conditions, leading to the identification of Clone L1-4 that conferred osmotic and alkaline tolerance. Sequence analyses revealed that L1-4 contained a 49-kb retroelement fragment from B. hygrometrica, of which only a truncated sequence was present in L1-4 transgenic Arabidopsis plants. Additional subcloning revealed that activity resided in a 2-kb sequence, designated Osmotic and Alkaline Resistance 1 (OAR1). In addition, transgenic Arabidopsis lines carrying an OAR1-homologue also showed similar stress tolerance phenotypes. Physiological and molecular analyses demonstrated that OAR1-transgenic plants exhibited improved photochemical efficiency and membrane integrity and biomarker gene expression under both osmotic and alkaline stresses. Short transcripts that originated from OAR1 were increased under stress conditions in both B. hygrometrica and Arabidopsis carrying OAR1. The relative copy number of OAR1 was stable in transgenic Arabidopsis under stress but increased in B. hygrometrica. Taken together, our results indicated a potential role of OAR1 element in plant tolerance to osmotic and alkaline stresses, and verified the feasibility of the BIBAC transformation technique to identify functional genomic elements from physiological model species. PMID:24851859
Huang, Xia; Huang, Xue-Lin; Xiao, Wang; Zhao, Jie-Tang; Dai, Xue-Mei; Chen, Yun-Feng; Li, Xiao-Ju
2007-10-01
A high efficient protocol of Agrobacterium-mediated transformation of Musa acuminata cv. Mas (AA), a major banana variety of the South East Asia region, was developed in this study. Male-flower-derived embryogenic cell suspensions (ECS) were co-cultivated in liquid medium with Agrobacterium strain EHA105 harboring a binary vector pCAMBIA2301 carrying nptII and gusA gene in the T-DNA. Depending upon conditions and duration of co-cultivation in liquid medium, 0-490 transgenic plants per 0.5 ml packed cell volume (PCV) of ECS were obtained. The optimum duration of inoculation was 2 h, and the highest transformation frequency was achieved when infected ECS were co-cultivated in liquid medium first for 12 h at 40 rpm and then for 156 h at 100 rpm on a rotary shaker. Co-cultivation for a shorter duration (72 h) or shaking constantly at 100 rpm at the same duration gave 1.6 and 1.8 folds lower transformation efficiency, respectively. No transgenic plants were obtained in parallel experiments carried on semi-solid media. Histochemical GUS assay and molecular analysis in several tissues of the transgenic plants demonstrated that foreign genes were stably integrated into the banana genome. Compared to semi-solid co-cultivation transformation in other banana species, it is remarkable that liquid co-cultivation was much more efficient for transformation of the Mas cultivar, and was at least 1 month faster for regenerating transgenic plants.
NASA Astrophysics Data System (ADS)
Gessesse, Berhan; Bewket, Woldeamlak; Bräuning, Achim
2016-04-01
Land degradation due to lack of sustainable land management practices is one of the critical challenges in many developing countries including Ethiopia. This study explored the major determinants of farm-level tree-planting decisions as a land management strategy in a typical farming and degraded landscape of the Modjo watershed, Ethiopia. The main data were generated from household surveys and analysed using descriptive statistics and a binary logistic regression model. The model significantly predicted farmers' tree-planting decisions (χ2 = 37.29, df = 15, P < 0.001). Besides, the computed significant value of the model revealed that all the considered predictor variables jointly influenced the farmers' decisions to plant trees as a land management strategy. The findings of the study demonstrated that the adoption of tree-growing decisions by local land users was a function of a wide range of biophysical, institutional, socioeconomic and household-level factors. In this regard, the likelihood of household size, productive labour force availability, the disparity of schooling age, level of perception of the process of deforestation and the current land tenure system had a critical influence on tree-growing investment decisions in the study watershed. Eventually, the processes of land-use conversion and land degradation were serious, which in turn have had adverse effects on agricultural productivity, local food security and poverty trap nexus. Hence, the study recommended that devising and implementing sustainable land management policy options would enhance ecological restoration and livelihood sustainability in the study watershed.
First Higher-Multipole Model of Gravitational Waves from Spinning and Coalescing Black-Hole Binaries
NASA Astrophysics Data System (ADS)
London, Lionel; Khan, Sebastian; Fauchon-Jones, Edward; García, Cecilio; Hannam, Mark; Husa, Sascha; Jiménez-Forteza, Xisco; Kalaghatgi, Chinmay; Ohme, Frank; Pannarale, Francesco
2018-04-01
Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (ℓ=2 ,|m |=2 ) of the radiation during inspiral, merger, and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the nonprecessing PhenomD model. The result, PhenomHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and currently includes the (ℓ,|m |)=(2 ,2 ),(3 ,3 ),(4 ,4 ),(2 ,1 ),(3 ,2 ),(4 ,3 ) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.
NASA Astrophysics Data System (ADS)
Kumar, Santosh
2017-07-01
Binary to Binary coded decimal (BCD) converter is a basic building block for BCD processing. The last few decades have witnessed exponential rise in applications of binary coded data processing in the field of optical computing thus there is an eventual increase in demand of acceptable hardware platform for the same. Keeping this as an approach a novel design exploiting the preeminent feature of Mach-Zehnder Interferometer (MZI) is presented in this paper. Here, an optical 4-bit binary to binary coded decimal (BCD) converter utilizing the electro-optic effect of lithium niobate based MZI has been demonstrated. It exhibits the property of switching the optical signal from one port to the other, when a certain appropriate voltage is applied to its electrodes. The projected scheme is implemented using the combinations of cascaded electro-optic (EO) switches. Theoretical description along with mathematical formulation of the device is provided and the operation is analyzed through finite difference-Beam propagation method (FD-BPM). The fabrication techniques to develop the device are also discussed.
Yan, Luchun; Liu, Jiemin; Qu, Chen; Gu, Xingye; Zhao, Xia
2015-01-28
In order to explore the odor interaction of binary odor mixtures, a series of odor intensity evaluation tests were performed using both individual components and binary mixtures of aldehydes. Based on the linear relation between the logarithm of odor activity value and odor intensity of individual substances, the relationship between concentrations of individual constituents and their joint odor intensity was investigated by employing a partial differential equation (PDE) model. The obtained results showed that the binary odor interaction was mainly influenced by the mixing ratio of two constituents, but not the concentration level of an odor sample. Besides, an extended PDE model was also proposed on the basis of the above experiments. Through a series of odor intensity matching tests for several different binary odor mixtures, the extended PDE model was proved effective at odor intensity prediction. Furthermore, odorants of the same chemical group and similar odor type exhibited similar characteristics in the binary odor interaction. The overall results suggested that the PDE model is a more interpretable way of demonstrating the odor interactions of binary odor mixtures.
London, Lionel; Khan, Sebastian; Fauchon-Jones, Edward; García, Cecilio; Hannam, Mark; Husa, Sascha; Jiménez-Forteza, Xisco; Kalaghatgi, Chinmay; Ohme, Frank; Pannarale, Francesco
2018-04-20
Gravitational-wave observations of binary black holes currently rely on theoretical models that predict the dominant multipoles (ℓ=2,|m|=2) of the radiation during inspiral, merger, and ringdown. We introduce a simple method to include the subdominant multipoles to binary black hole gravitational waveforms, given a frequency-domain model for the dominant multipoles. The amplitude and phase of the original model are appropriately stretched and rescaled using post-Newtonian results (for the inspiral), perturbation theory (for the ringdown), and a smooth transition between the two. No additional tuning to numerical-relativity simulations is required. We apply a variant of this method to the nonprecessing PhenomD model. The result, PhenomHM, constitutes the first higher-multipole model of spinning and coalescing black-hole binaries, and currently includes the (ℓ,|m|)=(2,2),(3,3),(4,4),(2,1),(3,2),(4,3) radiative moments. Comparisons with numerical-relativity waveforms demonstrate that PhenomHM is more accurate than dominant-multipole-only models for all binary configurations, and typically improves the measurement of binary properties.
Lin, Bing-Ying; Jin, Zhi-Qiang; Li, Mei
2006-11-01
To construct a plant effective expression vector driven by a fruit specific promoter for the expression of hepatitis B virus surface antigen (HBsAg), to further improve the expression of exogenous gene in plant, and to prepare for the development of an effective anti-hepatitis vaccine. Tomato fruit-specific promoters' gene 2A12 and E8 were respectively introduced to pBPFOmega7 to form pB2A12 and pBE8. The DNA fragment containing HBsAg-s gene from plasmid YEP-HBs was inserted respectively into pB2A12 and pBE8 to form pB2A12-HBs and pBE8-HBs. The fragment containing "p35S+2A12+Omega+HBsAg-s+Tnos" of the pB2A12-HBs was sub-cloned into plasmid pCAMBIA1301 to yield the reconstructed plant binary expression plasmid pCAM2A12-HBs, and the fragment containing "p35S+E8+Omega+HBsAg-s+Tnos" of the pBE8-HBs was sub-cloned into plasmid pCAMBIA1301 to yield the plasmid pCAME8-HBs. The inserted gene HBsAg and fruit-specific promoters in the reconstructed plant binary expression vectors were confirmed by sequencing. Then, pCAM2A12-HBs and pCAME8-HBs were directly introduced into Agrobacterium tumefaciens strain EHA105. Digestion with restriction enzymes proved that all recombinant vectors had the inserts with expected length of the target fragments, and the sequencing results were confirmed correct. In this study, plant expression vector containing HBsAg gene driven by fruit specific promoter and CaMV35s promoter was successfully constructed.
Binary Neutron Stars with Arbitrary Spins in Numerical Relativity
NASA Astrophysics Data System (ADS)
Pfeiffer, Harald; Tacik, Nick; Foucart, Francois; Haas, Roland; Kaplan, Jeffrey; Muhlberger, Curran; Duez, Matt; Kidder, Lawrence; Scheel, Mark; Szilagyi, Bela
2015-04-01
We present a code to construct initial data for binary neutron star where the stars are rotating. Our code, based on the formalism developed by Tichy, allows for arbitrary rotation axes of the neutron stars and is able to achieve rotation rates near rotational breakup. We demonstrate that orbital eccentricity of the binary neutron stars can be controlled to ~ 0 . 1 % . Preliminary evolutions show that spin- and orbit-precession of Neutron stars is well described by post-Newtonian approximation. The neutron stars show quasi-normal mode oscillations at an amplitude which increases with the rotation rate of the stars.
A Novel Binarization Algorithm for Ballistics Firearm Identification
NASA Astrophysics Data System (ADS)
Li, Dongguang
The identification of ballistics specimens from imaging systems is of paramount importance in criminal investigation. Binarization plays a key role in preprocess of recognizing cartridges in the ballistic imaging systems. Unfortunately, it is very difficult to get the satisfactory binary image using existing binary algorithms. In this paper, we utilize the global and local thresholds to enhance the image binarization. Importantly, we present a novel criterion for effectively detecting edges in the images. Comprehensive experiments have been conducted over sample ballistic images. The empirical results demonstrate the proposed method can provide a better solution than existing binary algorithms.
Mesh Denoising based on Normal Voting Tensor and Binary Optimization.
Yadav, Sunil Kumar; Reitebuch, Ulrich; Polthier, Konrad
2017-08-17
This paper presents a two-stage mesh denoising algorithm. Unlike other traditional averaging approaches, our approach uses an element-based normal voting tensor to compute smooth surfaces. By introducing a binary optimization on the proposed tensor together with a local binary neighborhood concept, our algorithm better retains sharp features and produces smoother umbilical regions than previous approaches. On top of that, we provide a stochastic analysis on the different kinds of noise based on the average edge length. The quantitative results demonstrate that the performance of our method is better compared to state-of-the-art smoothing approaches.
Activity-Based Introduction to the Binary System: Nim Game Winning Strategy
ERIC Educational Resources Information Center
Vaninsky, A.
2007-01-01
The paper's aim is to demonstrate the utility of the well-known Nim game when it is used as a tool in teaching the binary system. A way to increase student comprehension, it also forms a basis for student projects and extracurricular activities on the topic. The paper offers descriptions of two versions of the game and the underlying mathematical…
High-speed particle tracking in microscopy using SPAD image sensors
NASA Astrophysics Data System (ADS)
Gyongy, Istvan; Davies, Amy; Miguelez Crespo, Allende; Green, Andrew; Dutton, Neale A. W.; Duncan, Rory R.; Rickman, Colin; Henderson, Robert K.; Dalgarno, Paul A.
2018-02-01
Single photon avalanche diodes (SPADs) are used in a wide range of applications, from fluorescence lifetime imaging microscopy (FLIM) to time-of-flight (ToF) 3D imaging. SPAD arrays are becoming increasingly established, combining the unique properties of SPADs with widefield camera configurations. Traditionally, the photosensitive area (fill factor) of SPAD arrays has been limited by the in-pixel digital electronics. However, recent designs have demonstrated that by replacing the complex digital pixel logic with simple binary pixels and external frame summation, the fill factor can be increased considerably. A significant advantage of such binary SPAD arrays is the high frame rates offered by the sensors (>100kFPS), which opens up new possibilities for capturing ultra-fast temporal dynamics in, for example, life science cellular imaging. In this work we consider the use of novel binary SPAD arrays in high-speed particle tracking in microscopy. We demonstrate the tracking of fluorescent microspheres undergoing Brownian motion, and in intra-cellular vesicle dynamics, at high frame rates. We thereby show how binary SPAD arrays can offer an important advance in live cell imaging in such fields as intercellular communication, cell trafficking and cell signaling.
NASA Astrophysics Data System (ADS)
Hyun, Jae-Sang; Li, Beiwen; Zhang, Song
2017-07-01
This paper presents our research findings on high-speed high-accuracy three-dimensional shape measurement using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of computer-generated 8-bit sinusoidal patterns (a.k.a., the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: a commercially available inexpensive projector and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.
High-speed 3D imaging using digital binary defocusing method vs sinusoidal method
NASA Astrophysics Data System (ADS)
Zhang, Song; Hyun, Jae-Sang; Li, Beiwen
2017-02-01
This paper presents our research findings on high-speed 3D imaging using digital light processing (DLP) technologies. In particular, we compare two different sinusoidal fringe generation techniques using the DLP projection devices: direct projection of 8-bit computer generated sinusoidal patterns (a.k.a, the sinusoidal method), and the creation of sinusoidal patterns by defocusing binary patterns (a.k.a., the binary defocusing method). This paper mainly examines their performance on high-accuracy measurement applications under precisely controlled settings. Two different projection systems were tested in this study: the commercially available inexpensive projector, and the DLP development kit. Experimental results demonstrated that the binary defocusing method always outperforms the sinusoidal method if a sufficient number of phase-shifted fringe patterns can be used.
Rekaya, Romdhane; Smith, Shannon; Hay, El Hamidi; Farhat, Nourhene; Aggrey, Samuel E
2016-01-01
Errors in the binary status of some response traits are frequent in human, animal, and plant applications. These error rates tend to differ between cases and controls because diagnostic and screening tests have different sensitivity and specificity. This increases the inaccuracies of classifying individuals into correct groups, giving rise to both false-positive and false-negative cases. The analysis of these noisy binary responses due to misclassification will undoubtedly reduce the statistical power of genome-wide association studies (GWAS). A threshold model that accommodates varying diagnostic errors between cases and controls was investigated. A simulation study was carried out where several binary data sets (case-control) were generated with varying effects for the most influential single nucleotide polymorphisms (SNPs) and different diagnostic error rate for cases and controls. Each simulated data set consisted of 2000 individuals. Ignoring misclassification resulted in biased estimates of true influential SNP effects and inflated estimates for true noninfluential markers. A substantial reduction in bias and increase in accuracy ranging from 12% to 32% was observed when the misclassification procedure was invoked. In fact, the majority of influential SNPs that were not identified using the noisy data were captured using the proposed method. Additionally, truly misclassified binary records were identified with high probability using the proposed method. The superiority of the proposed method was maintained across different simulation parameters (misclassification rates and odds ratios) attesting to its robustness.
Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan
2013-09-25
Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.
Be discs in coplanar circular binaries: Phase-locked variations of emission lines
NASA Astrophysics Data System (ADS)
Panoglou, Despina; Faes, Daniel M.; Carciofi, Alex C.; Okazaki, Atsuo T.; Baade, Dietrich; Rivinius, Thomas; Borges Fernandes, Marcelo
2018-01-01
In this paper, we present the first results of radiative transfer calculations on decretion discs of binary Be stars. A smoothed particle hydrodynamics code computes the structure of Be discs in coplanar circular binary systems for a range of orbital and disc parameters. The resulting disc configuration consists of two spiral arms, and this can be given as input into a Monte Carlo code, which calculates the radiative transfer along the line of sight for various observational coordinates. Making use of the property of steady disc structure in coplanar circular binaries, observables are computed as functions of the orbital phase. Some orbital-phase series of line profiles are given for selected parameter sets under various viewing angles, to allow comparison with observations. Flat-topped profiles with and without superimposed multiple structures are reproduced, showing, for example, that triple-peaked profiles do not have to be necessarily associated with warped discs and misaligned binaries. It is demonstrated that binary tidal effects give rise to phase-locked variability of the violet-to-red (V/R) ratio of hydrogen emission lines. The V/R ratio exhibits two maxima per cycle; in certain cases those maxima are equal, leading to a clear new V/R cycle every half orbital period. This study opens a way to identifying binaries and to constraining the parameters of binary systems that exhibit phase-locked variations induced by tidal interaction with a companion star.
Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices.
Wei, Jingjing; Schaeffer, Nicolas; Pileni, Marie-Paule
2015-11-25
The surface chemistry in colloidal nanocrystals on the final crystalline structure of binary superlattices produced by self-assembly of two sets of nanocrystals is hereby demonstrated. By mixing nanocrystals having two different sizes and the same coating agent, oleylamine (OAM), the binary nanocrystal superlattices that are produced, such as NaCl, AlB2, NaZn13, and MgZn2, are well in agreement with the crystalline structures predicted by the hard-sphere model, their formation being purely driven by entropic forces. By opposition, when large and small nanocrystals are coated with two different ligands [OAM and dodecanethiol (DDT), respectively] while keeping all other experimental conditions unchanged, the final binary structures markedly change and various structures with lower packing densities, such as Cu3Au, CaB6, and quasicrystals, are observed. This effect of the nanocrystals' coating agents could also be extended to other binary systems, such as Ag-Au and CoFe2O4-Ag supracrystalline binary lattices. In order to understand this effect, a mechanism based on ligand exchange process is proposed. Ligand exchange mechanism is believed to affect the thermodynamics in the formation of binary systems composed of two sets of nanocrystals with different sizes and bearing two different coating agents. Hence, the formation of binary superlattices with lower packing densities may be favored kinetically because the required energetic penalty is smaller than that of a denser structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jumper, Peter H.; Fisher, Robert T., E-mail: robert.fisher@umassd.edu
2013-05-20
The formation of brown dwarfs (BDs) poses a key challenge to star formation theory. The observed dearth of nearby ({<=}5 AU) BD companions to solar mass stars, known as the BD desert, as well as the tendency for low-mass binary systems to be more tightly bound than stellar binaries, has been cited as evidence for distinct formation mechanisms for BDs and stars. In this paper, we explore the implications of the minimal hypothesis that BDs in binary systems originate via the same fundamental fragmentation mechanism as stars, within isolated, turbulent giant molecular cloud cores. We demonstrate analytically that the scalingmore » of specific angular momentum with turbulent core mass naturally gives rise to the BD desert, as well as wide BD binary systems. Further, we show that the turbulent core fragmentation model also naturally predicts that very low mass binary and BD/BD systems are more tightly bound than stellar systems. In addition, in order to capture the stochastic variation intrinsic to turbulence, we generate 10{sup 4} model turbulent cores with synthetic turbulent velocity fields to show that the turbulent fragmentation model accommodates a small fraction of binary BDs with wide separations, similar to observations. Indeed, the picture which emerges from the turbulent fragmentation model is that a single fragmentation mechanism may largely shape both stellar and BD binary distributions during formation.« less
The Asteroid Impact Mission - Deflection Demonstration (AIM - D2)
NASA Astrophysics Data System (ADS)
Küppers, M.; Michel, P.; Carnelli, I.
2017-09-01
The Asteroid Impact Mission (AIM) is ESA's contribution to the international Asteroid Impact Deflection Assessment (AIDA) cooperation, targeting the demonstration of deflection of a hazardous near-earth asteroid. AIM will also be the first in-depth investigation of a binary asteroid and make measurements that are relevant for the preparation of asteroid resource utilisation. AIM is foreseen to rendezvous with the binary near-Earth asteroid (65803) Didymos and to observe the system before, during, and after the impact of NASA's Double Asteroid Redirection Test (DART) spacecraft. Here we describe the observations to be done by the simplified version Asteroid Impact Mission - Deflection Demonstration (AIM-D2) and show that most of the original AIM objectives can still be achieved.
Liquid-metal binary cycles for stationary power
NASA Technical Reports Server (NTRS)
Gutstein, M.; Furman, E. R.; Kaplan, G. M.
1975-01-01
The use of topping cycles to increase electric power plant efficiency is discussed, with particular attention to mercury and alkali metal Rankine cycle systems that could be considered for topping cycle applications. An overview of this technology, possible system applications, the required development, and possible problem areas is presented.
Gong, Yunchao; Lazebnik, Svetlana; Gordo, Albert; Perronnin, Florent
2013-12-01
This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections to multiclass spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ to learning binary attributes or "classemes" on the ImageNet data set.
Synergies in Astrometry: Predicting Navigational Error of Visual Binary Stars
NASA Astrophysics Data System (ADS)
Gessner Stewart, Susan
2015-08-01
Celestial navigation can employ a number of bright stars which are in binary systems. Often these are unresolved, appearing as a single, center-of-light object. A number of these systems are, however, in wide systems which could introduce a margin of error in the navigation solution if not handled properly. To illustrate the importance of good orbital solutions for binary systems - as well as good astrometry in general - the relationship between the center-of-light versus individual catalog position of celestial bodies and the error in terrestrial position derived via celestial navigation is demonstrated. From the list of navigational binary stars, fourteen such binary systems with at least 3.0 arcseconds apparent separation are explored. Maximum navigational error is estimated under the assumption that the bright star in the pair is observed at maximum separation, but the center-of-light is employed in the navigational solution. The relationships between navigational error and separation, orbital periods, and observers' latitude are discussed.
Rényi entropy measure of noise-aided information transmission in a binary channel.
Chapeau-Blondeau, François; Rousseau, David; Delahaies, Agnès
2010-05-01
This paper analyzes a binary channel by means of information measures based on the Rényi entropy. The analysis extends, and contains as a special case, the classic reference model of binary information transmission based on the Shannon entropy measure. The extended model is used to investigate further possibilities and properties of stochastic resonance or noise-aided information transmission. The results demonstrate that stochastic resonance occurs in the information channel and is registered by the Rényi entropy measures at any finite order, including the Shannon order. Furthermore, in definite conditions, when seeking the Rényi information measures that best exploit stochastic resonance, then nontrivial orders differing from the Shannon case usually emerge. In this way, through binary information transmission, stochastic resonance identifies optimal Rényi measures of information differing from the classic Shannon measure. A confrontation of the quantitative information measures with visual perception is also proposed in an experiment of noise-aided binary image transmission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohanty, Soumya D.; Nayak, Rajesh K.
The space based gravitational wave detector LISA (Laser Interferometer Space Antenna) is expected to observe a large population of Galactic white dwarf binaries whose collective signal is likely to dominate instrumental noise at observational frequencies in the range 10{sup -4} to 10{sup -3} Hz. The motion of LISA modulates the signal of each binary in both frequency and amplitude--the exact modulation depending on the source direction and frequency. Starting with the observed response of one LISA interferometer and assuming only Doppler modulation due to the orbital motion of LISA, we show how the distribution of the entire binary population inmore » frequency and sky position can be reconstructed using a tomographic approach. The method is linear and the reconstruction of a delta-function distribution, corresponding to an isolated binary, yields a point spread function (psf). An arbitrary distribution and its reconstruction are related via smoothing with this psf. Exploratory results are reported demonstrating the recovery of binary sources, in the presence of white Gaussian noise.« less
Pandey, Jitendra K; Singh, D K
2009-08-01
The toxic effect of dried berries powder of P. cubeba, dried fruit powder of P. longum and T. terrestris singly as well as in combination [binary (1:1) and tertiary (1:1:1)] were studied against snail L. exustus. Toxicity of these plant products were time and concentration dependent. Ethanol extracts of these plants were more effective than that of other organic solvents. 96 h LC50 value of column purified fraction of T. terrestris against I. exustus was 9.57 mg/l, where as 96 h LC50 values of column purified fractions of P. longum and P. cubeba were 11.57 mg/l and 10.93 mg/l, respectively. Binary (1:1) combination of P. cubeba (PC) + P. longum (PL) (41.78 mg/l) was more effective than P. cubeba (PC) + T. terrestris (TT) (42.17 mg/l) and P. longum (PL) + T. terrestris (TT) (55.84 mg/l) respectively; while tertiary (1:1:1) combinations of P. cubeba (PC) + T. terrestris (TT) + T. foenum-graecum (TF) (10.67 mg/l) was more effective than rest of the combinations. These plants can be used as potent source of molluscicides against the snail I. exustus.
Tak, Jun-Hyung; Isman, Murray B.
2017-01-01
Many plant essential oils and their terpenoid constituents possess bioactivities including insecticidal activity, and they sometimes act synergistically when mixed. Although several hypotheses for this have been proposed, the underlying mechanism has not been fully elucidated thus far. In the present study, we report that in larvae of the cabbage looper, Trichoplusia ni, most synergistic or antagonistic insecticidal activities among mixtures of plant essential oil constituents are pharmacokinetic effects, owing to changes in solubility as well as spreadability on a wax layer. Among the major constituents of rosemary (Rosmarinus officinalis) oil, in vitro analysis revealed up to a 19-fold increase in penetration of camphor in a binary mixture with 1,8-cineole through the larval integument, suggesting increased penetration as the major mechanism for synergy. A total of 138 synergistic or antagonistic interactions among 39 compounds were identified in binary mixtures via topical application, and these were highly correlated to changes in surface tension as measured by contact angle of the mixtures on a beeswax layer. Among compounds tested, trans-anethole alone showed evidence of internal synergy, whereas most of remaining synergistic or antagonistic combinations among the three most active compounds were identified as penetration-related interactions, confirmed via a divided-application bioassay. PMID:28181580
NASA Astrophysics Data System (ADS)
Tak, Jun-Hyung; Isman, Murray B.
2017-02-01
Many plant essential oils and their terpenoid constituents possess bioactivities including insecticidal activity, and they sometimes act synergistically when mixed. Although several hypotheses for this have been proposed, the underlying mechanism has not been fully elucidated thus far. In the present study, we report that in larvae of the cabbage looper, Trichoplusia ni, most synergistic or antagonistic insecticidal activities among mixtures of plant essential oil constituents are pharmacokinetic effects, owing to changes in solubility as well as spreadability on a wax layer. Among the major constituents of rosemary (Rosmarinus officinalis) oil, in vitro analysis revealed up to a 19-fold increase in penetration of camphor in a binary mixture with 1,8-cineole through the larval integument, suggesting increased penetration as the major mechanism for synergy. A total of 138 synergistic or antagonistic interactions among 39 compounds were identified in binary mixtures via topical application, and these were highly correlated to changes in surface tension as measured by contact angle of the mixtures on a beeswax layer. Among compounds tested, trans-anethole alone showed evidence of internal synergy, whereas most of remaining synergistic or antagonistic combinations among the three most active compounds were identified as penetration-related interactions, confirmed via a divided-application bioassay.
Jenkins, J M; Doyle, L R; Cullers, D K
1996-02-01
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.
NASA Technical Reports Server (NTRS)
Jenkins, J. M.; Doyle, L. R.; Cullers, D. K.
1996-01-01
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.
Learning Short Binary Codes for Large-scale Image Retrieval.
Liu, Li; Yu, Mengyang; Shao, Ling
2017-03-01
Large-scale visual information retrieval has become an active research area in this big data era. Recently, hashing/binary coding algorithms prove to be effective for scalable retrieval applications. Most existing hashing methods require relatively long binary codes (i.e., over hundreds of bits, sometimes even thousands of bits) to achieve reasonable retrieval accuracies. However, for some realistic and unique applications, such as on wearable or mobile devices, only short binary codes can be used for efficient image retrieval due to the limitation of computational resources or bandwidth on these devices. In this paper, we propose a novel unsupervised hashing approach called min-cost ranking (MCR) specifically for learning powerful short binary codes (i.e., usually the code length shorter than 100 b) for scalable image retrieval tasks. By exploring the discriminative ability of each dimension of data, MCR can generate one bit binary code for each dimension and simultaneously rank the discriminative separability of each bit according to the proposed cost function. Only top-ranked bits with minimum cost-values are then selected and grouped together to compose the final salient binary codes. Extensive experimental results on large-scale retrieval demonstrate that MCR can achieve comparative performance as the state-of-the-art hashing algorithms but with significantly shorter codes, leading to much faster large-scale retrieval.
Zavala, Jorge A; Mazza, Carlos A; Dillon, Francisco M; Chludil, Hugo D; Ballaré, Carlos L
2015-05-01
Solar UV-B radiation (280-315 nm) has a significant influence on trophic relationships in natural and managed ecosystems, affecting plant-insect interactions. We explored the effects of ambient UV-B radiation on the levels of herbivory by stink bugs (Nezara viridula and Piezodorus guildinii) in field-grown soybean crops. The experiments included two levels of UV-B radiation (ambient and attenuated UV-B) and four soybean cultivars known to differ in their content of soluble leaf phenolics. Ambient UV-B radiation increased the accumulation of the isoflavonoids daidzin and genistin in the pods of all cultivars. Soybean crops grown under attenuated UV-B had higher numbers of unfilled pods and damaged seeds than crops grown under ambient UV-B radiation. Binary choice experiments with soybean branches demonstrated that stink bugs preferred branches of the attenuated UV-B treatment. We found a positive correlation between percentage of undamaged seeds and the contents of daidzin and genistin in pods. Our results suggest that constitutive and UV-B-induced isoflavonoids increase plant resistance to stink bugs under field conditions. © 2014 John Wiley & Sons Ltd.
GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig Turchi; Guangdong Zhu; Michael Wagner
2014-10-01
This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant usingmore » the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.« less
Gender as a historical kind: a tale of two genders?
Godman, Marion
2018-01-01
Is there anything that members of each binary category of gender have in common? Even many non-essentialists find the lack of unity within a gender worrying as it undermines the basis for a common political agenda for women. One promising proposal for achieving unity is by means of a shared historical lineage of cultural reproduction with past binary models of gender (e.g. Bach in Ethics 122:231-272, 2012). I demonstrate how such an account is likely to take on board different binary and also non-binary systems of gender. This implies that all individuals construed as members of the category, "women" are in fact not members of the same historical kind after all! I then consider different possible means of modifying the account but conclude negatively: the problem runs deeper than has been appreciated thus far.
Correction factors for on-line microprobe analysis of multielement alloy systems
NASA Technical Reports Server (NTRS)
Unnam, J.; Tenney, D. R.; Brewer, W. D.
1977-01-01
An on-line correction technique was developed for the conversion of electron probe X-ray intensities into concentrations of emitting elements. This technique consisted of off-line calculation and representation of binary interaction data which were read into an on-line minicomputer to calculate variable correction coefficients. These coefficients were used to correct the X-ray data without significantly increasing computer core requirements. The binary interaction data were obtained by running Colby's MAGIC 4 program in the reverse mode. The data for each binary interaction were represented by polynomial coefficients obtained by least-squares fitting a third-order polynomial. Polynomial coefficients were generated for most of the common binary interactions at different accelerating potentials and are included. Results are presented for the analyses of several alloy standards to demonstrate the applicability of this correction procedure.
A Novel Partial Sequence Alignment Tool for Finding Large Deletions
Aruk, Taner; Ustek, Duran; Kursun, Olcay
2012-01-01
Finding large deletions in genome sequences has become increasingly more useful in bioinformatics, such as in clinical research and diagnosis. Although there are a number of publically available next generation sequencing mapping and sequence alignment programs, these software packages do not correctly align fragments containing deletions larger than one kb. We present a fast alignment software package, BinaryPartialAlign, that can be used by wet lab scientists to find long structural variations in their experiments. For BinaryPartialAlign, we make use of the Smith-Waterman (SW) algorithm with a binary-search-based approach for alignment with large gaps that we called partial alignment. BinaryPartialAlign implementation is compared with other straight-forward applications of SW. Simulation results on mtDNA fragments demonstrate the effectiveness (runtime and accuracy) of the proposed method. PMID:22566777
Regimbau, T; Evans, M; Christensen, N; Katsavounidis, E; Sathyaprakash, B; Vitale, S
2017-04-14
The merger rate of black hole binaries inferred from the detections in the first Advanced LIGO science run implies that a stochastic background produced by a cosmological population of mergers will likely mask the primordial gravitational wave background. Here we demonstrate that the next generation of ground-based detectors, such as the Einstein Telescope and Cosmic Explorer, will be able to observe binary black hole mergers throughout the Universe with sufficient efficiency that the confusion background can potentially be subtracted to observe the primordial background at the level of Ω_{GW}≃10^{-13} after 5 years of observation.
Shell-binary nanoparticle materials with variable electrical and electro-mechanical properties.
Zhang, P; Bousack, H; Dai, Y; Offenhäusser, A; Mayer, D
2018-01-18
Nanoparticle (NP) materials with the capability to adjust their electrical and electro-mechanical properties facilitate applications in strain sensing technology. Traditional NP materials based on single component NPs lack a systematic and effective means of tuning their electrical and electro-mechanical properties. Here, we report on a new type of shell-binary NP material fabricated by self-assembly with either homogeneous or heterogeneous arrangements of NPs. Variable electrical and electro-mechanical properties were obtained for both materials. We show that the electrical and electro-mechanical properties of these shell-binary NP materials are highly tunable and strongly affected by the NP species as well as their corresponding volume fraction ratio. The conductivity and the gauge factor of these shell-binary NP materials can be altered by about five and two orders of magnitude, respectively. These shell-binary NP materials with different arrangements of NPs also demonstrate different volume fraction dependent electro-mechanical properties. The shell-binary NP materials with a heterogeneous arrangement of NPs exhibit a peaking of the sensitivity at medium mixing ratios, which arises from the aggregation induced local strain enhancement. Studies on the electron transport regimes and micro-morphologies of these shell-binary NP materials revealed the different mechanisms accounting for the variable electrical and electro-mechanical properties. A model based on effective medium theory is used to describe the electrical and electro-mechanical properties of such shell-binary nanomaterials and shows an excellent match with experiment data. These shell-binary NP materials possess great potential applications in high-performance strain sensing technology due to their variable electrical and electro-mechanical properties.
Yang, Fan; Xu, Ying-Ying; Shen, Hong-Bin
2014-01-01
Human protein subcellular location prediction can provide critical knowledge for understanding a protein's function. Since significant progress has been made on digital microscopy, automated image-based protein subcellular location classification is urgently needed. In this paper, we aim to investigate more representative image features that can be effectively used for dealing with the multilabel subcellular image samples. We prepared a large multilabel immunohistochemistry (IHC) image benchmark from the Human Protein Atlas database and tested the performance of different local texture features, including completed local binary pattern, local tetra pattern, and the standard local binary pattern feature. According to our experimental results from binary relevance multilabel machine learning models, the completed local binary pattern, and local tetra pattern are more discriminative for describing IHC images when compared to the traditional local binary pattern descriptor. The combination of these two novel local pattern features and the conventional global texture features is also studied. The enhanced performance of final binary relevance classification model trained on the combined feature space demonstrates that different features are complementary to each other and thus capable of improving the accuracy of classification.
Beer, Lara-Antonia; Tatge, Helma; Schneider, Carmen; Ruschig, Maximilian; Hust, Michael; Barton, Jessica; Thiemann, Stefan; Fühner, Viola; Russo, Giulio; Gerhard, Ralf
2018-06-01
Binary toxins are produced by several pathogenic bacteria. Examples are the C2 toxin from Clostridium botulinum , the iota toxin from Clostridium perfringens, and the CDT from Clostridium difficile . All these binary toxins have ADP-ribosyltransferases (ADPRT) as their enzymatically active component that modify monomeric actin in their target cells. The binary C2 toxin was intensively described as a tool for intracellular delivery of allogenic ADPRTs. Here, we firstly describe the binary toxin CDT from C. difficile as an effective tool for heterologous intracellular delivery. Even 60 kDa glucosyltransferase domains of large clostridial glucosyltransferases can be delivered into cells. The glucosyltransferase domains of five tested large clostridial glucosyltransferases were successfully introduced into cells as chimeric fusions to the CDTa adapter domain (CDTaN). Cell uptake was demonstrated by the analysis of cell morphology, cytoskeleton staining, and intracellular substrate glucosylation. The fusion toxins were functional only when the adapter domain of CDTa was N -terminally located, according to its native orientation. Thus, like other binary toxins, the CDTaN/b system can be used for standardized delivery systems not only for bacterial ADPRTs but also for a variety of bacterial glucosyltransferase domains.
Analysis of the statistical thermodynamic model for nonlinear binary protein adsorption equilibria.
Zhou, Xiao-Peng; Su, Xue-Li; Sun, Yan
2007-01-01
The statistical thermodynamic (ST) model was used to study nonlinear binary protein adsorption equilibria on an anion exchanger. Single-component and binary protein adsorption isotherms of bovine hemoglobin (Hb) and bovine serum albumin (BSA) on DEAE Spherodex M were determined by batch adsorption experiments in 10 mM Tris-HCl buffer containing a specific NaCl concentration (0.05, 0.10, and 0.15 M) at pH 7.40. The ST model was found to depict the effect of ionic strength on the single-component equilibria well, with model parameters depending on ionic strength. Moreover, the ST model gave acceptable fitting to the binary adsorption data with the fitted single-component model parameters, leading to the estimation of the binary ST model parameter. The effects of ionic strength on the model parameters are reasonably interpreted by the electrostatic and thermodynamic theories. The effective charge of protein in adsorption phase can be separately calculated from the two categories of the model parameters, and the values obtained from the two methods are consistent. The results demonstrate the utility of the ST model for describing nonlinear binary protein adsorption equilibria.
NASA Astrophysics Data System (ADS)
Rebassa-Mansergas, A.; Ren, J. J.; Irawati, P.; García-Berro, E.; Parsons, S. G.; Schreiber, M. R.; Gänsicke, B. T.; Rodríguez-Gil, P.; Liu, X.; Manser, C.; Nevado, S. P.; Jiménez-Ibarra, F.; Costero, R.; Echevarría, J.; Michel, R.; Zorotovic, M.; Hollands, M.; Han, Z.; Luo, A.; Villaver, E.; Kong, X.
2017-12-01
We present the second paper of a series of publications aiming at obtaining a better understanding regarding the nature of type Ia supernovae (SN Ia) progenitors by studying a large sample of detached F, G and K main-sequence stars in close orbits with white dwarf companions (i.e. WD+FGK binaries). We employ the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) data release 4 spectroscopic data base together with Galaxy Evolution Explorer (GALEX) ultraviolet fluxes to identify 1549 WD+FGK binary candidates (1057 of which are new), thus doubling the number of known sources. We measure the radial velocities of 1453 of these binaries from the available LAMOST spectra and/or from spectra obtained by us at a wide variety of different telescopes around the globe. The analysis of the radial velocity data allows us to identify 24 systems displaying more than 3σ radial velocity variation that we classify as close binaries. We also discuss the fraction of close binaries among WD+FGK systems, which we find to be ∼10 per cent, and demonstrate that high-resolution spectroscopy is required to efficiently identify double-degenerate SN Ia progenitor candidates.
Treml, Benjamin E.; Lukose, Binit; Clancy, Paulette; Smilgies, Detlef-M; Hanrath, Tobias
2014-01-01
Binary nanocrystal superlattices present unique opportunities to create novel interconnected nanostructures by partial fusion of specific components of the superlattice. Here, we demonstrate the binary AB6 superlattice of PbSe and Fe2O3 nanocrystals as a model system to transform the central hexamer of PbSe nanocrystals into a single fused particle. We present detailed structural analysis of the superlattices by combining high-resolution X-ray scattering and electron microscopy. Molecular dynamics simulations show optimum separation of nanocrystals in agreement with the experiment and provide insights into the molecular configuration of surface ligands. We describe the concept of nanocrystal superlattices as a versatile ‘nanoreactor' to create and study novel materials based on precisely defined size, composition and structure of nanocrystals into a mesostructured cluster. We demonstrate ‘controlled fusion' of nanocrystals in the clusters in reactions initiated by thermal treatment and pulsed laser annealing. PMID:25339169
Shen, Xu; Tian, Xinmei; Liu, Tongliang; Xu, Fang; Tao, Dacheng
2017-10-03
Dropout has been proven to be an effective algorithm for training robust deep networks because of its ability to prevent overfitting by avoiding the co-adaptation of feature detectors. Current explanations of dropout include bagging, naive Bayes, regularization, and sex in evolution. According to the activation patterns of neurons in the human brain, when faced with different situations, the firing rates of neurons are random and continuous, not binary as current dropout does. Inspired by this phenomenon, we extend the traditional binary dropout to continuous dropout. On the one hand, continuous dropout is considerably closer to the activation characteristics of neurons in the human brain than traditional binary dropout. On the other hand, we demonstrate that continuous dropout has the property of avoiding the co-adaptation of feature detectors, which suggests that we can extract more independent feature detectors for model averaging in the test stage. We introduce the proposed continuous dropout to a feedforward neural network and comprehensively compare it with binary dropout, adaptive dropout, and DropConnect on Modified National Institute of Standards and Technology, Canadian Institute for Advanced Research-10, Street View House Numbers, NORB, and ImageNet large scale visual recognition competition-12. Thorough experiments demonstrate that our method performs better in preventing the co-adaptation of feature detectors and improves test performance.
Simões, M; Pereira, M O; Vieira, M J
2007-01-01
This study investigates the phenotype of turbulent (Re = 5,200) and laminar (Re = 2,000) flow-generated Pseudomonas fluorescens biofilms. Three P. fluorescens strains, the type strain ATCC 13525 and two strains isolated from an industrial processing plant, D3-348 and D3-350, were used throughout this study. The isolated strains were used to form single and binary biofilms. The biofilm physiology (metabolic activity, cellular density, mass, extracellular polymeric substances, structural characteristics and outer membrane proteins [OMP] expression) was compared. The results indicate that, for every situation, turbulent flow-generated biofilms were more active (p < 0.05), had more mass per cm(2) (p < 0.05), a higher cellular density (p < 0.05), distinct morphology, similar matrix proteins (p > 0.1) and identical (isolated strains -single and binary biofilms) and higher (type strain) matrix polysaccharides contents (p < 0.05) than laminar flow-generated biofilms. Flow-generated biofilms formed by the type strain revealed a considerably higher cellular density and amount of matrix polysaccharides than single and binary biofilms formed by the isolated strains (p < 0.05). Similar OMP expression was detected for the several single strains and for the binary situation, not dependent on the hydrodynamic conditions. Binary biofilms revealed an equal coexistence of the isolated strains with apparent neutral interactions. In summary, the biofilms formed by the type strain represent, apparently, the worst situation in a context of control. The results obtained clearly illustrate the importance of considering strain variation and hydrodynamics in biofilm development, and complement previous studies which have focused on physical aspects of structural and density differences.
Candidate Binary Microlensing Events from the MACHO Project
NASA Astrophysics Data System (ADS)
Becker, A. C.; Alcock, C.; Allsman, R. A.; Alves, D. R.; Axelrod, T. S.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Griest, K.; King, L. J.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; Baines, D.; Brakel, A.; Crook, B.; Howard, J.; Leach, T.; McDowell, D.; McKeown, S.; Mitchell, J.; Moreland, J.; Pozza, E.; Purcell, P.; Ring, S.; Salmon, A.; Ward, K.; Wyper, G.; Heller, A.; Kaspi, S.; Kovo, O.; Maoz, D.; Retter, A.; Rhie, S. H.; Stetson, P.; Walker, A.; MACHO Collaboration
1998-12-01
We present the lightcurves of 22 gravitational microlensing events from the first six years of the MACHO Project gravitational microlensing survey which are likely examples of lensing by binary systems. These events were selected from a total sample of ~ 300 events which were either detected by the MACHO Alert System or discovered through retrospective analyses of the MACHO database. Many of these events appear to have undergone a caustic or cusp crossing, and 2 of the events are well fit with lensing by binary systems with large mass ratios, indicating secondary companions of approximately planetary mass. The event rate is roughly consistent with predictions based upon our knowledge of the properties of binary stars. The utility of binary lensing in helping to solve the Galactic dark matter problem is demonstrated with analyses of 3 binary microlensing events seen towards the Magellanic Clouds. Source star resolution during caustic crossings in 2 of these events allows us to estimate the location of the lensing systems, assuming each source is a single star and not a short period binary. * MACHO LMC-9 appears to be a binary lensing event with a caustic crossing partially resolved in 2 observations. The resulting lens proper motion appears too small for a single source and LMC disk lens. However, it is considerably less likely to be a single source star and Galactic halo lens. We estimate the a priori probability of a short period binary source with a detectable binary character to be ~ 10 %. If the source is also a binary, then we currently have no constraints on the lens location. * The most recent of these events, MACHO 98-SMC-1, was detected in real-time. Follow-up observations by the MACHO/GMAN, PLANET, MPS, EROS and OGLE microlensing collaborations lead to the robust conclusion that the lens likely resides in the SMC.
Flexible link functions in nonparametric binary regression with Gaussian process priors.
Li, Dan; Wang, Xia; Lin, Lizhen; Dey, Dipak K
2016-09-01
In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. © 2015, The International Biometric Society.
Flexible Link Functions in Nonparametric Binary Regression with Gaussian Process Priors
Li, Dan; Lin, Lizhen; Dey, Dipak K.
2015-01-01
Summary In many scientific fields, it is a common practice to collect a sequence of 0-1 binary responses from a subject across time, space, or a collection of covariates. Researchers are interested in finding out how the expected binary outcome is related to covariates, and aim at better prediction in the future 0-1 outcomes. Gaussian processes have been widely used to model nonlinear systems; in particular to model the latent structure in a binary regression model allowing nonlinear functional relationship between covariates and the expectation of binary outcomes. A critical issue in modeling binary response data is the appropriate choice of link functions. Commonly adopted link functions such as probit or logit links have fixed skewness and lack the flexibility to allow the data to determine the degree of the skewness. To address this limitation, we propose a flexible binary regression model which combines a generalized extreme value link function with a Gaussian process prior on the latent structure. Bayesian computation is employed in model estimation. Posterior consistency of the resulting posterior distribution is demonstrated. The flexibility and gains of the proposed model are illustrated through detailed simulation studies and two real data examples. Empirical results show that the proposed model outperforms a set of alternative models, which only have either a Gaussian process prior on the latent regression function or a Dirichlet prior on the link function. PMID:26686333
Two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images.
He, Lifeng; Chao, Yuyan; Suzuki, Kenji
2011-08-01
Whenever one wants to distinguish, recognize, and/or measure objects (connected components) in binary images, labeling is required. This paper presents two efficient label-equivalence-based connected-component labeling algorithms for 3-D binary images. One is voxel based and the other is run based. For the voxel-based one, we present an efficient method of deciding the order for checking voxels in the mask. For the run-based one, instead of assigning each foreground voxel, we assign each run a provisional label. Moreover, we use run data to label foreground voxels without scanning any background voxel in the second scan. Experimental results have demonstrated that our voxel-based algorithm is efficient for 3-D binary images with complicated connected components, that our run-based one is efficient for those with simple connected components, and that both are much more efficient than conventional 3-D labeling algorithms.
HII 2407: AN ECLIPSING BINARY REVEALED BY K2 OBSERVATIONS OF THE PLEIADES
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Trevor J.; Hillenbrand, Lynne A.; Zhang, Celia
2015-11-20
The star HII 2407 is a member of the relatively young Pleiades star cluster and was previously discovered to be a single-lined spectroscopic binary. It is newly identified here within Kepler/K2 photometric time series data as an eclipsing binary system. Mutual fitting of the radial velocity and photometric data leads to an orbital solution and constraints on fundamental stellar parameters. While the primary has arrived on the main sequence, the secondary is still pre-main sequence and we compare our results for the M/M{sub ⊙} and R/R{sub ⊙} values with stellar evolutionary models. We also demonstrate that the system is likelymore » to be tidally synchronized. Follow-up infrared spectroscopy is likely to reveal the lines of the secondary, allowing for dynamically measured masses and elevating the system to benchmark eclipsing binary status.« less
Shaping planetary nebulae with jets in inclined triple stellar systems
NASA Astrophysics Data System (ADS)
Akashi, Muhammad; Soker, Noam
2017-08-01
We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a 'messy' planetary nebula (PN), namely a PN lacking any type of symmetry (I.e. highly irregular). In building the initial conditions, we assume that a tight binary system orbits the AGB star and that the orbital plane of the tight binary system is inclined to the orbital plane of the binary system and the AGB star (the triple system plane). We further assume that the accreted mass on to the tight binary system forms an accretion disc around one of the stars and that the plane of the disc is tilted to the orbital plane of the triple system. The highly asymmetrical and filamentary structures that we obtain support the notion that messy PNe might be shaped by triple stellar systems.
Shaping planetary nebulae with jets in inclined triple stellar systems
NASA Astrophysics Data System (ADS)
Akashi, Muhammad; Soker, Noam
2017-10-01
We conduct three-dimensional hydrodynamical simulations of two opposite jets launched obliquely to the orbital plane around an asymptotic giant branch (AGB) star and within its dense wind, and demonstrate the formation of a `messy' planetary nebula (PN), namely, a PN lacking any type of symmetry (highly irregular). In building the initial conditions we assume that a tight binary system orbits the AGB star, and that the orbital plane of the tight binary system is inclined to the orbital plane of binary system and the AGB star. We further assume that the accreted mass onto the tight binary system forms an accretion disk around one of the stars, and that the plane of the disk is in between the two orbital planes. The highly asymmetrical lobes that we obtain support the notion that messy PNe might be shaped by triple stellar systems.
Discriminating crop and other canopies by overlapping binary image layers
NASA Astrophysics Data System (ADS)
Doi, Ryoichi
2013-02-01
For optimal management of agricultural fields by remote sensing, discrimination of the crop canopy from weeds and other objects is essential. In a digital photograph, a rice canopy was discriminated from a variety of weed and tree canopies and other objects by overlapping binary image layers of red-green-blue and other color components indicating the pixels with target canopy-specific (intensity) values based on the ranges of means ±(3×) standard deviations. By overlapping and merging the binary image layers, the target canopy specificity improved to 0.0015 from 0.027 for the yellow 1× standard deviation binary image layer, which was the best among all combinations of color components and means ±(3×) standard deviations. The most target rice canopy-likely pixels were further identified by limiting the pixels at different luminosity values. The discriminatory power was also visually demonstrated in this manner.
Optical analogue of relativistic Dirac solitons in binary waveguide arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, Truong X., E-mail: truong.tran@mpl.mpg.de; Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen; Longhi, Stefano
2014-01-15
We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An opticalmore » analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.« less
Pulsar-black hole binaries as a window on quantum gravity
NASA Astrophysics Data System (ADS)
Estes, John; Kavic, Michael; Lippert, Matthew; Simonetti, John H.
Pulsars (PSRs) are some of the most accurate clocks found in nature, while black holes (BHs) offer a unique arena for the study of quantum gravity. As such, PSR-BH binaries provide ideal astrophysical systems for detecting effects of quantum gravity. With the success of aLIGO and the advent of instruments like the Square Kilometer Array (SKA) and Evolved Laser Interferometer Space Antenna (eLISA), the prospects for discovery of such PSR-BH binaries are very promising. We argue that PSR-BH binaries can serve as ready-made testing grounds for proposed resolutions to the BH information paradox. We propose using timing signals from a PSR beam passing through the region near a BH event horizon as a probe of quantum gravitational effects. In particular, we demonstrate that fluctuations of the geometry outside a BH lead to an increase in the measured root-mean-square deviation of arrival times of PSR pulsar traveling near the horizon.
Obtaining gravitational waves from inspiral binary systems using LIGO data
NASA Astrophysics Data System (ADS)
Antelis, Javier M.; Moreno, Claudia
2017-01-01
The discovery of the astrophysical events GW150926 and GW151226 has experimentally confirmed the existence of gravitational waves (GW) and has demonstrated the existence of binary stellar-mass black hole systems. This finding marks the beginning of a new era that will reveal unexpected features of our universe. This work presents a basic insight to the fundamental theory of GW emitted by inspiral binary systems and describes the scientific and technological efforts developed to measure these waves using the interferometer-based detector called LIGO. Subsequently, the work presents a comprehensive data analysis methodology based on the matched filter algorithm, which aims to recovery GW signals emitted by inspiral binary systems of astrophysical sources. This algorithm was evaluated with freely available LIGO data containing injected GW waveforms. Results of the experiments performed to assess detection accuracy showed the recovery of 85% of the injected GW.
Assessing Shape Characteristics of Jupiter Trojans in the Kepler Campaign 6 Field
NASA Astrophysics Data System (ADS)
Sharkey, Benjamin; Ryan, Erin L.; Woodward, Charles E.
2017-10-01
We report estimates of spin pole orientations and body-centric axis ratios of nine Jupiter Trojan asteroids through convex shape models derived from Kepler K2 photometry. Our sample contains single-component as well as candidate binary systems (identified through lightcurve features). Photometric baselines on the targets covered 7 to 93 full rotation periods. By incorporating a bias against highly elongated physical shapes, spin vector orientations of single-component systems were constrained to several discrete regions. Single-component convex models failed to converge on two binary candidates while two others demonstrated pronounced tapering that may be consistent with concavities of contact binaries. Further work to create two-component models is likely necessary to constrain the candidate binary targets. We find that Kepler K2 photometry provides robust datasets capable of providing detailed information on physical shape parameters of Jupiter Trojans.
Deterrent activity of plant lectins on cowpea weevil Callosobruchus maculatus (F.) oviposition.
Sadeghi, Amin; Van Damme, Els J M; Peumans, Willy J; Smagghe, Guy
2006-09-01
A set of 14 plant lectins was screened in a binary choice bioassay for inhibitory activity on cowpea weevil Callosobruchus maculatus (F.) oviposition. Coating of chickpea seeds (Cicer arietinum L.) with a 0.05% (w/v) solution of plant lectins caused a significant reduction in egg laying. Control experiments with heat inactivated lectin and BSA indicated that the observed deterrent effects are specific and require carbohydrate-binding activity. However, no clear correlation could be established between deterrent activity and sugar-binding specificity/molecular structure of the lectins. Increasing the insect density reduced the inhibitory effect of the lectins confirming that female insects are capable of adjusting their oviposition rates as a function of host availability.
Receptive fields selection for binary feature description.
Fan, Bin; Kong, Qingqun; Trzcinski, Tomasz; Wang, Zhiheng; Pan, Chunhong; Fua, Pascal
2014-06-01
Feature description for local image patch is widely used in computer vision. While the conventional way to design local descriptor is based on expert experience and knowledge, learning-based methods for designing local descriptor become more and more popular because of their good performance and data-driven property. This paper proposes a novel data-driven method for designing binary feature descriptor, which we call receptive fields descriptor (RFD). Technically, RFD is constructed by thresholding responses of a set of receptive fields, which are selected from a large number of candidates according to their distinctiveness and correlations in a greedy way. Using two different kinds of receptive fields (namely rectangular pooling area and Gaussian pooling area) for selection, we obtain two binary descriptors RFDR and RFDG .accordingly. Image matching experiments on the well-known patch data set and Oxford data set demonstrate that RFD significantly outperforms the state-of-the-art binary descriptors, and is comparable with the best float-valued descriptors at a fraction of processing time. Finally, experiments on object recognition tasks confirm that both RFDR and RFDG successfully bridge the performance gap between binary descriptors and their floating-point competitors.
GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-04-01
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30 M⊙, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict ΩGW(f =25 Hz )=1. 1-0.9+2.7×10-9 with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.
GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes.
Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J
2016-04-01
The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25 Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.
Au-Ge MEAM potential fitted to the binary phase diagram
NASA Astrophysics Data System (ADS)
Wang, Yanming; Santana, Adriano; Cai, Wei
2017-02-01
We have developed a modified embedded atom method potential for the gold-germanium (Au-Ge) binary system that is fitted to the experimental binary phase diagram. The phase diagram is obtained from the common tangent construction of the free energy curves calculated by the adiabatic switching method. While maintaining the accuracy of the melting points of pure Au and Ge, this potential reproduces the eutectic temperature, eutectic composition and the solubility of Ge in solid Au, all in good agreement with the experimental values. To demonstrate the self-consistency of the potential, we performed benchmark molecular dynamics simulations of Ge crystal growth and etching in contact with a Au-Ge liquid alloy.
Estimating neighborhood variability with a binary comparison matrix.
Murphy, D.L.
1985-01-01
A technique which utilizes a binary comparison matrix has been developed to implement a neighborhood function for a raster format data base. The technique assigns an index value to the center pixel of 3- by 3-pixel neighborhoods. The binary comparison matrix provides additional information not found in two other neighborhood variability statistics; the function is sensitive to both the number of classes within the neighborhood and the frequency of pixel occurrence in each of the classes. Application of the function to a spatial data base from the Kenai National Wildlife Refuge, Alaska, demonstrates 1) the numerical distribution of the index values, and 2) the spatial patterns exhibited by the numerical values. -Author
Geometric relationships for homogenization in single-phase binary alloy systems
NASA Technical Reports Server (NTRS)
Unnam, J.; Tenney, D. R.; Stein, B. A.
1978-01-01
A semiempirical relationship is presented which describes the extent of interaction between constituents in single-phase binary alloy systems having planar, cylindrical, or spherical interfaces. This relationship makes possible a quick estimate of the extent of interaction without lengthy numerical calculations. It includes two parameters which are functions of mean concentration and interface geometry. Experimental data for the copper-nickel system are included to demonstrate the usefulness of this relationship.
Plant phosphomannose isomerase as a selectable marker for rice transformation
Hu, Lei; Li, Hao; Qin, Ruiying; Xu, Rongfang; Li, Juan; Li, Li; Wei, Pengcheng; Yang, Jianbo
2016-01-01
The E. coli phosphomannose isomerase (EcPMI) gene is widely used as a selectable marker gene (SMG) in mannose (Man) selection-based plant transformation. Although some plant species exhibit significant PMI activity and active PMIs were even identified in Man-sensitive plants, whether plant PMIs can be used as SMGs remains unclear. In this study, we isolated four novel PMI genes from Chlorella variabilis and Oryza sativa. Their isoenzymatic activities were examined in vitro and compared with that of EcPMI. The active plant PMIs were separately constructed into binary vectors as SMGs and then transformed into rice via Agrobacterium. In both Indica and Japonica subspecies, our results indicated that the plant PMIs could select and produce transgenic plants in a pattern similar to that of EcPMI. The transgenic plants exhibited an accumulation of plant PMI transcripts and enhancement of the in vivo PMI activity. Furthermore, a gene of interest was successfully transformed into rice using the plant PMIs as SMGs. Thus, novel SMGs for Man selection were isolated from plants, and our analysis suggested that PMIs encoding active enzymes might be common in plants and could potentially be used as appropriate genetic elements in cisgenesis engineering. PMID:27174847
Formation and Evolution of X-ray Binaries
NASA Astrophysics Data System (ADS)
Shao, Y.
2017-07-01
X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period-donor mass plane increases with the increasing neutron star mass. This may help to explain why some millisecond pulsars with orbital periods longer than ˜ 60 d seem to have less massive white dwarfs than expected. Alternatively, some of these wide binary pulsars may be formed through mass transfer driven by planet/brown dwarf-involved common envelope evolution; (2) Some of the pulsars in compact binaries might have evolved from intermediate-mass X-ray binaries with an anomalous magnetic braking; (3) The equilibrium spin periods of neutron stars in low-mass X-ray binaries are in general shorter than the observed spin periods of binary pulsars by more than one order of magnitude, suggesting that either the simple equilibrium spin model does not apply, or there are other mechanisms/processes spinning down the neutron stars. In Chapter 4, angular momentum loss mechanisms in the cataclysmic variables below the period gap are presented. By considering several kinds of consequential angular momentum loss mechanisms, we find that neither isotropic wind from the white dwarf nor outflow from the L1 point can explain the extra angular momentum loss rate, while an ouflow from the L2 point or a circumbinary disk can effectively extract the angular momentum provided that ˜ 15%-45% of the transferred mass is lost from the binary. A more promising mechanism is a circumbinary disk exerting a gravitational torque on the binary. In this case the mass loss fraction can be as low as ≲ 10-3. In Chapter 5 we present a study on the population of ultraluminous X-ray sources with an accreting neutron star. Most ULXs are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized neutron star. In this chapter we model the formation history of neutron star ULXs in an M82- or Milky Way-like galaxy, by use of both binary population synthesis and detailed binary evolution calculations. We find that the birthrate is around 10-4 yr-1 for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass - orbital period plane. Our results suggest that, compared with black hole X-ray binaries, neutron star X-ray binaries may significantly contribute to the ULX population, and high/intermediate-mass X-ray binaries dominate the neutron star ULX population in M82/Milky Way-like galaxies, respectively. In Chapter 6, the population of intermediate- and low-mass X-ray binaries in the Galaxy is explored. We investigate the formation and evolutionary sequences of Galactic intermediate- and low-mass X-ray binaries by combining binary population synthesis (BPS) and detailed stellar evolutionary calculations. Using an updated BPS code we compute the evolution of massive binaries that leads to the formation of incipient I/LMXBs, and present their distribution in the initial donor mass vs. initial orbital period diagram. We then follow the evolution of I/LMXBs until the formation of binary millisecond pulsars (BMSPs). We show that during the evolution of I/LMXBs they are likely to be observed as relatively compact binaries. The resultant BMSPs have orbital periods ranging from about 1 day to a few hundred days. These features are consistent with observations of LMXBs and BMSPs. We also confirm the discrepancies between theoretical predictions and observations mentioned in the literature, that is, the theoretical average mass transfer rates of LMXBs are considerably lower than observed, and the number of BMSPs with orbital periods ˜ 0.1-1 \\unit{d} is severely underestimated. Both imply that something is missing in the modeling of LMXBs, which is likely to be related to the mechanisms of the orbital angular momentum loss. Finally in Chapter 7 we summarize our results and give the prospects for the future work.
Wide binaries in Tycho-Gaia II: metallicities, abundances and prospects for chemical tagging
NASA Astrophysics Data System (ADS)
Andrews, Jeff J.; Chanamé, Julio; Agüeros, Marcel A.
2018-02-01
From our recent catalogue based on the first Gaia data release (TGAS), we select wide binaries in which both stars have been observed by the Radial Velocity Experiment (RAVE) or the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Using RAVE and LAMOST metallicities and RAVE Mg, Al, Si, Ti and Fe abundances, we find that the differences in the metallicities and elemental abundances of components of wide binaries are consistent with being due to observational uncertainties, in agreement with previous results for smaller and more restricted samples. The metallicity and elemental abundance consistency between wide binary components presented in this work confirms their common origin and bolsters the status of wide binaries as 'mini-open clusters'. Furthermore, this is evident that wide binaries are effectively co-eval and co-chemical, supporting their use for, e.g. constraining age-activity-rotation relations, the initial-final mass relation for white dwarfs and M-dwarf metallicity indicators. Additionally, we demonstrate that the common proper motion, common parallax pairs in TGAS with the most extreme separations (s ≳ 0.1 pc) typically have inconsistent metallicities, radial velocities or both and are therefore likely to be predominantly comprised of random alignments of unassociated stars with similar astrometry, in agreement with our previous results. Finally, we propose that wide binaries form an ideal data set with which we can test chemical tagging as a method to identify stars of common origin, particularly because the stars in wide binaries span a wide range of metallicities, much wider than that spanned by nearby open clusters.
Kärkkäinen, Hanni P; Sillanpää, Mikko J
2013-09-04
Because of the increased availability of genome-wide sets of molecular markers along with reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for parameter estimation under these models. We demonstrate our method with simulated and real data. Our example analyses suggest that the use of the extra information present in an ordered categorical or censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data, while with a binary or an ordinal data the superiority of the threshold model could not be confirmed.
Kärkkäinen, Hanni P.; Sillanpää, Mikko J.
2013-01-01
Because of the increased availability of genome-wide sets of molecular markers along with reduced cost of genotyping large samples of individuals, genomic estimated breeding values have become an essential resource in plant and animal breeding. Bayesian methods for breeding value estimation have proven to be accurate and efficient; however, the ever-increasing data sets are placing heavy demands on the parameter estimation algorithms. Although a commendable number of fast estimation algorithms are available for Bayesian models of continuous Gaussian traits, there is a shortage for corresponding models of discrete or censored phenotypes. In this work, we consider a threshold approach of binary, ordinal, and censored Gaussian observations for Bayesian multilocus association models and Bayesian genomic best linear unbiased prediction and present a high-speed generalized expectation maximization algorithm for parameter estimation under these models. We demonstrate our method with simulated and real data. Our example analyses suggest that the use of the extra information present in an ordered categorical or censored Gaussian data set, instead of dichotomizing the data into case-control observations, increases the accuracy of genomic breeding values predicted by Bayesian multilocus association models or by Bayesian genomic best linear unbiased prediction. Furthermore, the example analyses indicate that the correct threshold model is more accurate than the directly used Gaussian model with a censored Gaussian data, while with a binary or an ordinal data the superiority of the threshold model could not be confirmed. PMID:23821618
NASA Astrophysics Data System (ADS)
Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng
2018-02-01
Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.
Gravitational wave searches for aligned-spin binary neutron stars using nonspinning templates
NASA Astrophysics Data System (ADS)
Cho, Hee-Suk; Lee, Chang-Hwan
2018-01-01
We study gravitational wave searches for merging binary neutron stars (NSs). We use nonspinning template waveforms towards the signals emitted from aligned-spin NS-NS binaries, in which the spins of the NSs are aligned with the orbital angular momentum. We use the TaylorF2 waveform model, which can generate inspiral waveforms emitted from aligned-spin compact binaries. We employ the single effective spin parameter χeff to represent the effect of two component spins (χ1, χ2) on the wave function. For a target system, we choose a binary consisting of the same component masses of 1.4 M ⊙ and consider the spins up to χ i = 0.4. We investigate fitting factors of the nonspinning templates to evaluate their efficiency in gravitational wave searches for the aligned-spin NS-NS binaries. We find that the templates can achieve the fitting factors exceeding 0.97 only for the signals in the range of -0.2 ≲ χeff ≲ 0. Therefore, we demonstrate the necessity of using aligned-spin templates not to lose the signals outside that range. We also show how much the recovered total mass can be biased from the true value depending on the spin of the signal.
Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng
2018-02-01
Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.
How I Learned to Stop Worrying and Love Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Moe, Maxwell Cassady
Relatively massive B-type stars with closely orbiting stellar companions can evolve to produce Type Ia supernovae, X-ray binaries, millisecond pulsars, mergers of neutron stars, gamma ray bursts, and sources of gravitational waves. However, the formation mechanism, intrinsic frequency, and evolutionary processes of B-type binaries are poorly understood. As of 2012, the binary statistics of massive stars had not been measured at low metallicities, extreme mass ratios, or intermediate orbital periods. This thesis utilizes large data sets of eclipsing binaries to measure the physical properties of B-type binaries in these previously unexplored portions of the parameter space. The updated binary statistics provide invaluable insight into the formation of massive stars and binaries as well as reliable initial conditions for population synthesis studies of binary star evolution. We first compare the properties of B-type eclipsing binaries in our Milky Way Galaxy and the nearby Magellanic Cloud Galaxies. We model the eclipsing binary light curves and perform detailed Monte Carlo simulations to recover the intrinsic properties and distributions of the close binary population. We find the frequency, period distribution, and mass-ratio distribution of close B-type binaries do not significantly depend on metallicity or environment. These results indicate the formation of massive binaries are relatively insensitive to their chemical abundances or immediate surroundings. Second, we search for low-mass eclipsing companions to massive B-type stars in the Large Magellanic Cloud Galaxy. In addition to finding such extreme mass-ratio binaries, we serendipitously discover a new class of eclipsing binaries. Each system comprises a massive B-type star that is fully formed and a nascent low-mass companion that is still contracting toward its normal phase of evolution. The large low-mass secondaries discernibly reflect much of the light they intercept from the hot B-type stars, thereby producing sinusoidal variations in perceived brightness as they orbit. These nascent eclipsing binaries are embedded in the hearts of star-forming emission nebulae, and therefore provide a unique snapshot into the formation and evolution of massive binaries and stellar nurseries. We next examine a large sample of B-type eclipsing binaries with intermediate orbital periods. To achieve such a task, we develop an automated pipeline to classify the eclipsing binaries, measure their physical properties from the observed light curves, and recover the intrinsic binary statistics by correcting for selection effects. We find the population of massive binaries at intermediate separations differ from those orbiting in close proximity. Close massive binaries favor small eccentricities and have correlated component masses, demonstrating they coevolved via competitive accretion during their formation in the circumbinary disk. Meanwhile, B-type binaries at slightly wider separations are born with large eccentricities and are weighted toward extreme mass ratios, indicating the components formed relatively independently and subsequently evolved to their current configurations via dynamical interactions. By using eclipsing binaries as accurate age indicators, we also reveal that the binary orbital eccentricities and the line-of-sight dust extinctions are anticorrelated with respect to time. These empirical relations provide robust constraints for tidal evolution in massive binaries and the evolution of the dust content in their surrounding environments. Finally, we compile observations of early-type binaries identified via spectroscopy, eclipses, long-baseline interferometry, adaptive optics, lucky imaging, high-contrast photometry, and common proper motion. We combine the samples from the various surveys and correct for their respective selection effects to determine a comprehensive nature of the intrinsic binary statistics of massive stars. We find the probability distributions of primary mass, secondary mass, orbital period, and orbital eccentricity are all interrelated. These updated multiplicity statistics imply a greater frequency of low-mass X-ray binaries, millisecond pulsars, and Type Ia supernovae than previously predicted.
Breitler, Jean-Christophe; Meynard, Donaldo; Van Boxtel, Jos; Royer, Monique; Bonnot, François; Cambillau, Laurence; Guiderdoni, Emmanuel
2004-06-01
A pilot binary vector was constructed to assess the potential of the 2 T-DNA system for generating selectable marker-free progeny plants in three elite rice cultivars (ZhongZuo321, Ariete and Khao Dawk Mali 105) known to exhibit contrasting amenabilities to transformation. The first T-DNA of the vector, delimited by Agrobacterium tumefaciens borders, contains the hygromycin phosphotransferase (hpt) selectable gene and the green fluorescent protein (gfp) reporter gene while the second T-DNA, delimited by Agrobacterium rhizogenes borders, bears the phosphinothricin acetyl transferase (bar) gene, featuring the gene of interest. 82-90% of the hygromycin-resistant primary transformants exhibited tolerance to ammonium glufosinate mediated by the bar gene suggesting very high co-transformation frequency in the three cultivars. All of the regenerated plants were analyzed by Southern blot which confirmed co-integration of the T-DNAs at frequencies consistent with those of co-expression and allowed determination of copy number for each gene as well as detection of two different vector backbone fragments extending between the two T-DNAs. Hygromycin susceptible, ammonium glufosinate tolerant phenotypes represented 14.4, 17.4 and 14.3% of the plants in T1 progenies of ZZ321, Ariete and KDML105 primary transformants, respectively. We developed a statistical model for deducing from the observed copy number of each T-DNA in T0 plants and phenotypic segregations in T1 progenies the most likely constitution and linkage of the T-DNA integration locus. Statistical analysis identified in 40 out of 42 lines a most likely linkage configuration theoretically allowing genetic separation of the two T-DNA types and out segregation of the T-DNA bearing the bar gene. Overall, though improvements of the technology would be beneficial, the 2 T-DNA system appeared to be a useful approach to generate selectable marker-free rice plants with a consistent frequency among cultivars.
Surface structure, crystallographic and ice-nucleating properties of cellulose
NASA Astrophysics Data System (ADS)
Hiranuma, Naruki; Möhler, Ottmar; Kiselev, Alexei; Saathoff, Harald; Weidler, Peter; Shutthanandan, Shuttha; Kulkarni, Gourihar; Jantsch, Evelyn; Koop, Thomas
2015-04-01
Increasing evidence of the high diversity and efficient freezing ability of biological ice-nucleating particles is driving a reevaluation of their impact upon climate. Despite their potential importance, little is known about their atmospheric abundance and ice nucleation efficiency, especially non-proteinaceous ones, in comparison to non-biological materials (e.g., mineral dust). Recently, microcrystalline cellulose (MCC; non-proteinaceous plant structural polymer) has been identified as a potential biological ice-nucleating particle. However, it is still uncertain if the ice-nucleating activity is specific to the MCC structure or generally relevant to all cellulose materials, such that the results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to address its role in clouds and the climate system. Here we use the helium ion microscopy (HIM) imaging and the X-ray diffraction (XRD) technique to characterize the nanoscale surface structure and crystalline properties of the two different types of cellulose (MCC and fibrous cellulose extracted from natural wood pulp) as model proxies for atmospheric cellulose particles and to assess their potential accessibility for water molecules. To complement these structural characterizations, we also present the results of immersion freezing experiments using the cold stage-based droplet freezing BINARY (Bielefeld Ice Nucleation ARaY) technique. The HIM results suggest that both cellulose types have a complex porous morphology with capillary spaces between the nanoscale fibrils over the microfiber surface. These surface structures may make cellulose accessible to water. The XRD results suggest that the structural properties of both cellulose materials are in agreement (i.e., P21 space group; a=7.96 Å, b=8.35 Å, c=10.28 Å) and comparable to the crystallographic properties of general monoclinic cellulose (i.e., Cellulose Iβ). The results obtained from the BINARY measurements suggest that there is no significant difference of the immersion ice nucleation activity of MCC and fibrous cellulose in supercooled water. Overall, our findings support the view that MCC may be a good proxy for inferring water uptake, wettability and ice nucleating properties of various cellulose materials. In addition, we discuss the ice-nucleating efficiencies of both cellulose samples and plant debris from the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) chamber experiments in comparison to the BINARY results. The influence of the acid processing of cellulose on its ice nucleation propensity may also be discussed to further demonstrate their atmospheric relevancy. Acknowledgement: We acknowledge support by German Research Society (DFG) and Ice Nuclei research UnIT (FOR 1525 INUIT).
Primary Surface Particle Motion as a Mechanism for YORP-Driven Binary Asteroid Evolution
NASA Astrophysics Data System (ADS)
Fahnestock, Eugene G.; Scheeres, D. J.
2008-09-01
Within the largest class of binary asteroid systems -- asynchronous binaries typified by 1999 KW4 -- we hypothesize continued YORP spin-up of the rapidly rotating primary leads to recurring episodic lofting motion of primary equator regolith. We theorize this is a mechanism for transporting YORP-injected angular momentum from primary spin into the mutual orbit. This both enables binary primaries to continue to spin at near surface fission rates and produces continued orbit expansion on time scales several times faster than expansion predicted by tidal dissipation alone. This is distinct from the Binary Yorp (BYORP) phenomenon, not studied in this work but to be added to it later. We evaluate our hypotheses using a combination of techniques for an example binary system. First high-fidelity dynamic simulation of surface-originating particles in the full-detail gravity field of the binary components, themselves propagated according to the full two body problem, gives particle final disposition (return impact, transfer impact, escape). Trajectory end states found for regolith lofted at different initial primary spin rates and relative poses are collected into probability matrices, allowing probabilistic propagation of surface particles for long durations at low computational cost. We track changes to mass, inertia dyad, rotation state, and centroid position and velocity for each component in response to this mapped particle motion. This allows tracking of primary, secondary, and mutual orbit angular momenta over time, clearly demonstrating the angular momentum transfer mechanism and validating our hypotheses. We present current orbit expansion rates and estimated orbit size doubling times consistent with this mechanism, for a few binary systems. We also discuss ramifications of this type of rapid binary evolution towards separation, including the frequency with which "divorced binaries" on similar heliocentric orbits are produced, formation of triple systems such as 2001 SN263, and separation timescale dependence on heliocentric distance.
Xanthomonas TAL effectors hijack host basal transcription factor IIA α and γ subunits for invasion.
Ma, Ling; Wang, Qiang; Yuan, Meng; Zou, Tingting; Yin, Ping; Wang, Shiping
2018-02-05
The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria, which infect a broad range of crops and wild plant species, cause symptoms with leaf blights, streaks, spots, stripes, necrosis, wilt, cankers and gummosis on leaves, stems and fruits in a wide variety of plants via injecting their effector proteins into the host cell during infection. Among these virulent effectors, transcription activator-like effectors (TALEs) interact with the γ subunit of host transcription factor IIA (TFIIAγ) to activate the transcription of host disease susceptibility genes. Functional TFIIA is a ternary complex comprising α, β and γ subunits. However, whether TALEs recruit TFIIAα, TFIIAβ, or both remains unknown. The underlying molecular mechanisms by which TALEs mediate host susceptibility gene activation require full elucidation. Here, we show that TALEs interact with the α+γ binary subcomplex but not the α+β+γ ternary complex of rice TFIIA (holo-OsTFIIA). The transcription factor binding (TFB) regions of TALEs, which are highly conserved in Xanthomonas species, have a dominant role in these interactions. Furthermore, the interaction between TALEs and the α+γ complex exhibits robust DNA binding activity in vitro. These results collectively demonstrate that TALE-carrying pathogens hijack the host basal transcription factors TFIIAα and TFIIAγ, but not TFIIAβ, to enhance host susceptibility during pathogen infection. The uncovered mechanism widens new insights on host-microbe interaction and provide an applicable strategy to breed high-resistance crop varieties. Copyright © 2018 Elsevier Inc. All rights reserved.
Simple views on critical binary liquid mixtures in porous glass
NASA Astrophysics Data System (ADS)
Tremblay, L.; Socol, S. M.; Lacelle, S.
2000-01-01
A simple scenario, different from previous attempts, is proposed to resolve the problem of the slow phase separation dynamics of binary liquid mixtures confined in porous Vycor glass. We demonstrate that simply mutual diffusion, renormalized by critical composition fluctuations and geometrical hindrance of the porous glass, accounts for the slow phase separation kinetics. Capillary invasion studies of porous Vycor glass by the critical isobutyric acid-water mixture, close to the consolute solution temperature, corroborate our analysis.
Secore, Susan; Wang, Su; Doughtry, Julie; Xie, Jinfu; Miezeiewski, Matt; Rustandi, Richard R; Horton, Melanie; Xoconostle, Rachel; Wang, Bei; Lancaster, Catherine; Kristopeit, Adam; Wang, Sheng-Ching; Christanti, Sianny; Vitelli, Salvatore; Gentile, Marie-Pierre; Goerke, Aaron; Skinner, Julie; Strable, Erica; Thiriot, David S; Bodmer, Jean-Luc; Heinrichs, Jon H
2017-01-01
Clostridium difficile infections (CDI) are a leading cause of nosocomial diarrhea in the developed world. The main virulence factors of the bacterium are the large clostridial toxins (LCTs), TcdA and TcdB, which are largely responsible for the symptoms of the disease. Recent outbreaks of CDI have been associated with the emergence of hypervirulent strains, such as NAP1/BI/027, many strains of which also produce a third toxin, binary toxin (CDTa and CDTb). These hypervirulent strains have been associated with increased morbidity and higher mortality. Here we present pre-clinical data describing a novel tetravalent vaccine composed of attenuated forms of TcdA, TcdB and binary toxin components CDTa and CDTb. We demonstrate, using the Syrian golden hamster model of CDI, that the inclusion of binary toxin components CDTa and CDTb significantly improves the efficacy of the vaccine against challenge with NAP1 strains in comparison to vaccines containing only TcdA and TcdB antigens, while providing comparable efficacy against challenge with the prototypic, non-epidemic strain VPI10463. This combination vaccine elicits high neutralizing antibody titers against TcdA, TcdB and binary toxin in both hamsters and rhesus macaques. Finally we present data that binary toxin alone can act as a virulence factor in animal models. Taken together, these data strongly support the inclusion of binary toxin in a vaccine against CDI to provide enhanced protection from epidemic strains of C. difficile.
Wang, Su; Doughtry, Julie; Xie, Jinfu; Miezeiewski, Matt; Rustandi, Richard R.; Horton, Melanie; Xoconostle, Rachel; Wang, Bei; Lancaster, Catherine; Kristopeit, Adam; Wang, Sheng-Ching; Christanti, Sianny; Vitelli, Salvatore; Gentile, Marie-Pierre; Goerke, Aaron; Skinner, Julie; Strable, Erica; Thiriot, David S.; Bodmer, Jean-Luc; Heinrichs, Jon H.
2017-01-01
Clostridium difficile infections (CDI) are a leading cause of nosocomial diarrhea in the developed world. The main virulence factors of the bacterium are the large clostridial toxins (LCTs), TcdA and TcdB, which are largely responsible for the symptoms of the disease. Recent outbreaks of CDI have been associated with the emergence of hypervirulent strains, such as NAP1/BI/027, many strains of which also produce a third toxin, binary toxin (CDTa and CDTb). These hypervirulent strains have been associated with increased morbidity and higher mortality. Here we present pre-clinical data describing a novel tetravalent vaccine composed of attenuated forms of TcdA, TcdB and binary toxin components CDTa and CDTb. We demonstrate, using the Syrian golden hamster model of CDI, that the inclusion of binary toxin components CDTa and CDTb significantly improves the efficacy of the vaccine against challenge with NAP1 strains in comparison to vaccines containing only TcdA and TcdB antigens, while providing comparable efficacy against challenge with the prototypic, non-epidemic strain VPI10463. This combination vaccine elicits high neutralizing antibody titers against TcdA, TcdB and binary toxin in both hamsters and rhesus macaques. Finally we present data that binary toxin alone can act as a virulence factor in animal models. Taken together, these data strongly support the inclusion of binary toxin in a vaccine against CDI to provide enhanced protection from epidemic strains of C. difficile. PMID:28125650
AIDA DART asteroid deflection test: Planetary defense and science objectives
NASA Astrophysics Data System (ADS)
Cheng, Andrew F.; Rivkin, Andrew S.; Michel, Patrick; Atchison, Justin; Barnouin, Olivier; Benner, Lance; Chabot, Nancy L.; Ernst, Carolyn; Fahnestock, Eugene G.; Kueppers, Michael; Pravec, Petr; Rainey, Emma; Richardson, Derek C.; Stickle, Angela M.; Thomas, Cristina
2018-08-01
The Asteroid Impact & Deflection Assessment (AIDA) mission is an international cooperation between NASA and ESA. NASA plans to provide the Double Asteroid Redirection Test (DART) mission which will perform a kinetic impactor experiment to demonstrate asteroid impact hazard mitigation. ESA proposes to provide the Hera mission which will rendezvous with the target to monitor the deflection, perform detailed characterizations, and measure the DART impact outcomes and momentum transfer efficiency. The primary goals of AIDA are (i) to demonstrate the kinetic impact technique on a potentially hazardous near-Earth asteroid and (ii) to measure and characterize the deflection caused by the impact. The AIDA target will be the binary asteroid (65803) Didymos, which is of spectral type Sq, with the deflection experiment to occur in October, 2022. The DART impact on the secondary member of the binary at ∼6 km/s changes the orbital speed and the binary orbit period, which can be measured by Earth-based observatories with telescope apertures as small as 1 m. The DART impact will in addition alter the orbital and rotational states of the Didymos binary, leading to excitation of eccentricity and libration that, if measured by Hera, can constrain internal structure of the target asteroid. Measurements of the DART crater diameter and morphology can constrain target properties like cohesion and porosity based on numerical simulations of the DART impact.
On multi-site damage identification using single-site training data
NASA Astrophysics Data System (ADS)
Barthorpe, R. J.; Manson, G.; Worden, K.
2017-11-01
This paper proposes a methodology for developing multi-site damage location systems for engineering structures that can be trained using single-site damaged state data only. The methodology involves training a sequence of binary classifiers based upon single-site damage data and combining the developed classifiers into a robust multi-class damage locator. In this way, the multi-site damage identification problem may be decomposed into a sequence of binary decisions. In this paper Support Vector Classifiers are adopted as the means of making these binary decisions. The proposed methodology represents an advancement on the state of the art in the field of multi-site damage identification which require either: (1) full damaged state data from single- and multi-site damage cases or (2) the development of a physics-based model to make multi-site model predictions. The potential benefit of the proposed methodology is that a significantly reduced number of recorded damage states may be required in order to train a multi-site damage locator without recourse to physics-based model predictions. In this paper it is first demonstrated that Support Vector Classification represents an appropriate approach to the multi-site damage location problem, with methods for combining binary classifiers discussed. Next, the proposed methodology is demonstrated and evaluated through application to a real engineering structure - a Piper Tomahawk trainer aircraft wing - with its performance compared to classifiers trained using the full damaged-state dataset.
Novel Approach to Classify Plants Based on Metabolite-Content Similarity.
Liu, Kang; Abdullah, Azian Azamimi; Huang, Ming; Nishioka, Takaaki; Altaf-Ul-Amin, Md; Kanaya, Shigehiko
2017-01-01
Secondary metabolites are bioactive substances with diverse chemical structures. Depending on the ecological environment within which they are living, higher plants use different combinations of secondary metabolites for adaptation (e.g., defense against attacks by herbivores or pathogenic microbes). This suggests that the similarity in metabolite content is applicable to assess phylogenic similarity of higher plants. However, such a chemical taxonomic approach has limitations of incomplete metabolomics data. We propose an approach for successfully classifying 216 plants based on their known incomplete metabolite content. Structurally similar metabolites have been clustered using the network clustering algorithm DPClus. Plants have been represented as binary vectors, implying relations with structurally similar metabolite groups, and classified using Ward's method of hierarchical clustering. Despite incomplete data, the resulting plant clusters are consistent with the known evolutional relations of plants. This finding reveals the significance of metabolite content as a taxonomic marker. We also discuss the predictive power of metabolite content in exploring nutritional and medicinal properties in plants. As a byproduct of our analysis, we could predict some currently unknown species-metabolite relations.
Novel Approach to Classify Plants Based on Metabolite-Content Similarity
Abdullah, Azian Azamimi; Huang, Ming; Nishioka, Takaaki
2017-01-01
Secondary metabolites are bioactive substances with diverse chemical structures. Depending on the ecological environment within which they are living, higher plants use different combinations of secondary metabolites for adaptation (e.g., defense against attacks by herbivores or pathogenic microbes). This suggests that the similarity in metabolite content is applicable to assess phylogenic similarity of higher plants. However, such a chemical taxonomic approach has limitations of incomplete metabolomics data. We propose an approach for successfully classifying 216 plants based on their known incomplete metabolite content. Structurally similar metabolites have been clustered using the network clustering algorithm DPClus. Plants have been represented as binary vectors, implying relations with structurally similar metabolite groups, and classified using Ward's method of hierarchical clustering. Despite incomplete data, the resulting plant clusters are consistent with the known evolutional relations of plants. This finding reveals the significance of metabolite content as a taxonomic marker. We also discuss the predictive power of metabolite content in exploring nutritional and medicinal properties in plants. As a byproduct of our analysis, we could predict some currently unknown species-metabolite relations. PMID:28164123
A Bayesian approach to multi-messenger astronomy: identification of gravitational-wave host galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, XiLong; Messenger, Christopher; Heng, Ik Siong
We present a general framework for incorporating astrophysical information into Bayesian parameter estimation techniques used by gravitational wave data analysis to facilitate multi-messenger astronomy. Since the progenitors of transient gravitational wave events, such as compact binary coalescences, are likely to be associated with a host galaxy, improvements to the source sky location estimates through the use of host galaxy information are explored. To demonstrate how host galaxy properties can be included, we simulate a population of compact binary coalescences and show that for ∼8.5% of simulations within 200 Mpc, the top 10 most likely galaxies account for a ∼50% ofmore » the total probability of hosting a gravitational wave source. The true gravitational wave source host galaxy is in the top 10 galaxy candidates ∼10% of the time. Furthermore, we show that by including host galaxy information, a better estimate of the inclination angle of a compact binary gravitational wave source can be obtained. We also demonstrate the flexibility of our method by incorporating the use of either the B or K band into our analysis.« less
Rubin, Jacob
1992-01-01
The feed forward (FF) method derives efficient operational equations for simulating transport of reacting solutes. It has been shown to be applicable in the presence of networks with any number of homogeneous and/or heterogeneous, classical reaction segments that consist of three, at most binary participants. Using a sequential (network type after network type) exploration approach and, independently, theoretical explanations, it is demonstrated for networks with classical reaction segments containing more than three, at most binary participants that if any one of such networks leads to a solvable transport problem then the FF method is applicable. Ways of helping to avoid networks that produce problem insolvability are developed and demonstrated. A previously suggested algebraic, matrix rank procedure has been adapted and augmented to serve as the main, easy-to-apply solvability test for already postulated networks. Four network conditions that often generate insolvability have been identified and studied. Their early detection during network formulation may help to avoid postulation of insolvable networks.
Analysis of the Conformally Flat Approximation for Binary Neutron Star Initial Conditions
Suh, In-Saeng; Mathews, Grant J.; Haywood, J. Reese; ...
2017-01-09
The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here in this paper, we analyze the viability of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasicircular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasicircular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect themore » emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.« less
Pan, Xiaohong; Julian, Thomas; Augsburger, Larry
2006-02-10
Differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRPD) methods were developed for the quantitative analysis of the crystallinity of indomethacin (IMC) in IMC and silica gel (SG) binary system. The DSC calibration curve exhibited better linearity than that of XRPD. No phase transformation occurred in the IMC-SG mixtures during DSC measurement. The major sources of error in DSC measurements were inhomogeneous mixing and sampling. Analyzing the amount of IMC in the mixtures using high-performance liquid chromatography (HPLC) could reduce the sampling error. DSC demonstrated greater sensitivity and had less variation in measurement than XRPD in quantifying crystalline IMC in the IMC-SG binary system.
NASA Astrophysics Data System (ADS)
Sherje, Atul P.; Patel, Forum; Murahari, Manikanta; Suvarna, Vasanti; Patel, Kavitkumar
2018-02-01
The present study demonstrated the binary and ternary complexes of Zaltoprofen (ZPF) with β-CD and HP-β-CD. The products were characterized using solubility, in vitro dissolution, and DSC studies. The mode of interaction of guest and host was revealed through 1H NMR and FT-IR studies. A significant increase was noticed in the stability constant (Kc) and complexation efficiency (CE) of β-CD and HP-β-CD due to addition of L-Arg in ternary complexes. The ternary complexes showed greater increase in solubility and dissolution of ZPF than binary complexes. Thus, ternary system of ZPF could be an innovative approach for its solubility and dissolution enhancement.
Fate of very low-mass secondaries in accreting binaries and the 1.5-ms pulsar
NASA Technical Reports Server (NTRS)
Ruderman, M. A.; Shaham, J.
1983-01-01
It is shown analytically that the canonical stability postulate for low-mass binaries can be inaccurate when the secondary component mass is less than 0.02 solar mass. The adjustable evolutionary parameter h is demonstrated to have a value (in terms of the mass flow effects) of 2/3, less than which catastrophic instability and tidal disruption of the secondary might occur. The disrupted secondary would be reduced to a remnant significantly smaller in mass than the earth, and not be observable visually. Additionally, close passage by another star could accelerate or initiate the process. The model is applicable to the pulsar binary PSR1937+214, and is noted not to conflict with spin-up theories.
NASA Technical Reports Server (NTRS)
Hertzberg, A.; Decher, R.; Mattick, A. T.; Lau, C. V.
1978-01-01
High temperature heat engines designed to make maximum use of the thermodynamic potential of concentrated solar radiation are described. Plasmas between 2000 K and 4000 K can be achieved by volumetric absorption of radiation in alkali metal vapors, leading to thermal efficiencies up to 75% for terrestrial solar power plants and up to 50% for space power plants. Two machines capable of expanding hot plasmas using practical technology are discussed. A binary Rankine cycle uses fluid mechanical energy transfer in a device known as the 'Comprex' or 'energy exchanger.' The second machine utilizes magnetohydrodynamics in a Brayton cycle for space applications. Absorption of solar energy and plasma radiation losses are investigated for a solar superheater using potassium vapor.
Logic gates based all-optical binary half adder using triple core photonic crystal fiber
NASA Astrophysics Data System (ADS)
Uthayakumar, T.; Vasantha Jayakantha Raja, R.
2018-06-01
This study presents the implementation of an all-optical binary logic half adder by employing a triple core photonic crystal fiber (TPCF). The noteworthy feature of the present investigation is that an identical set of TPCF schemes, which demonstrated all-optical logic functions in our previous report, has revealed the ability to demonstrate the successful half adder operation. The control signal (CS) power defining the extinction ratios of the output ports for the considered symmetric planar and triangular TPCFs is evaluated through a numerical algorithm. Through suitable CS power and input combinations, the logic outputs are generated from extinction ratios to demonstrate the half adder operation. The results obtained display the significant influence of the input conditions on the delivery of half adder operation for different TPCF schemes considered. Furthermore, chloroform filled TPCF structures demonstrated the efficient low power half adder operation with a significant figure of merit, compared to that of the silica counterpart.
Multiplicity in Early Stellar Evolution
NASA Astrophysics Data System (ADS)
Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.
Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.
Direct Exoplanet Detection with Binary Differential Imaging
NASA Astrophysics Data System (ADS)
Rodigas, Timothy J.; Weinberger, Alycia; Mamajek, Eric E.; Males, Jared R.; Close, Laird M.; Morzinski, Katie; Hinz, Philip M.; Kaib, Nathan
2015-10-01
Binaries are typically excluded from direct imaging exoplanet surveys. However, the recent findings of Kepler and radial velocity programs show that planets can and do form in binary systems. Here, we suggest that visual binaries offer unique advantages for direct imaging. We show that Binary Differential Imaging (BDI), whereby two stars are imaged simultaneously at the same wavelength within the isoplanatic patch at a high Strehl ratio, offers improved point spread function (PSF) subtraction that can result in increased sensitivity to planets close to each star. We demonstrate this by observing a young visual binary separated by 4″ with MagAO/Clio-2 at 3.9 μm, where the Strehl ratio is high, the isoplanatic patch is large, and giant planets are bright. Comparing BDI to angular differential imaging (ADI), we find that BDI’s 5σ contrast is ˜0.5 mag better than ADI’s within ˜1″ for the particular binary we observed. Because planets typically reside close to their host stars, BDI is a promising technique for discovering exoplanets in stellar systems that are often ignored. BDI is also 2-4× more efficient than ADI and classical reference PSF subtraction, since planets can be detected around both the target and PSF reference simultaneously. We are currently exploiting this technique in a new MagAO survey for giant planets in 140 young nearby visual binaries. BDI on a space-based telescope would not be limited by isoplanatism effects and would therefore be an even more powerful tool for imaging and discovering planets. This paper includes data obtained at the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
A Search for Low Mass Stars and Substellar Companions and A Study of Circumbinary Gas and Dust Disks
NASA Astrophysics Data System (ADS)
Rodriguez, David R.
2011-01-01
We have searched for nearby low-mass stars and brown dwarfs and have studied the planet-forming environment of binary stars. We have carried out a search for young, low-mass stars in nearby stellar associations using X-ray and UV source catalogs. We discovered a new technique to identify 10-100 Myr-old low-mass stars within 100 pc of the Earth using GALEX-optical/near-IR data. We present candidate young stars found by applying this new method in the 10 Myr old TW Hydrae and Scorpius-Centaurus associations. In addition, we have searched for the coolest brown dwarf class: Y-dwarfs, expected to appear at temperatures <500 K. Using wide-field near infrared imaging with ground (CTIO, Palomar, KPNO) and space (Spitzer, AKARI) observatories, we have looked for companions to nearby, old (2 Gyr or older), high proper motion white dwarfs. We present results for Southern Hemisphere white dwarfs. Additionally, we have characterized how likely planet formation occurs in binary star systems. While 20% of planets have been discovered around one member of a binary system, these binaries have semi-major axes larger than 20 AU. We have performed an AO and spectroscopic search for binary stars among a sample of known debris disk stars, which allows us to indirectly study planet formation and evolution in binary systems. As a case study, we examined the gas and dust present in the circumbinary disk around V4046 Sagittarii, a 2.4-day spectroscopic binary. Our results demonstrate it is unlikely that planets can form in binaries with stellar semi-major axes of 10s of AU. This research has been funded by a NASA ADA grant to UCLA and RIT.
NASA Astrophysics Data System (ADS)
Sun, Degui; Wang, Na-Xin; He, Li-Ming; Weng, Zhao-Heng; Wang, Daheng; Chen, Ray T.
1996-06-01
A space-position-logic-encoding scheme is proposed and demonstrated. This encoding scheme not only makes the best use of the convenience of binary logic operation, but is also suitable for the trinary property of modified signed- digit (MSD) numbers. Based on the space-position-logic-encoding scheme, a fully parallel modified signed-digit adder and subtractor is built using optoelectronic switch technologies in conjunction with fiber-multistage 3D optoelectronic interconnects. Thus an effective combination of a parallel algorithm and a parallel architecture is implemented. In addition, the performance of the optoelectronic switches used in this system is experimentally studied and verified. Both the 3-bit experimental model and the experimental results of a parallel addition and a parallel subtraction are provided and discussed. Finally, the speed ratio between the MSD adder and binary adders is discussed and the advantage of the MSD in operating speed is demonstrated.
Azhar, Muhammad Rizwan; Abid, Hussein Rasool; Sun, Hongqi; Periasamy, Vijay; Tadé, Moses O; Wang, Shaobin
2017-03-15
In this study, binary metal organic frameworks (MOFs) with HKUST-1 and UiO-66 have been synthesized in a one-pot process. The synthesized MOFs were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), N 2 adsorption, and thermogravimetric analysis (TGA). The meso-porosity and thermal stability of the binary MOFs were higher than those of single HKUST-1 or UiO-66. The synthesized MOF hybrids were then tested for adsorptive removal of methylene blue (MB) from wastewater in terms of kinetic and isothermal adsorption as compared to a commercially available activated carbon (AC). All the synthesized MOFs showed significant removal of MB under a wide range of pH. The adsorption capacities of HKUST-1 are higher than UiO-66 and commercial AC while the binary MOFs presented an even higher adsorption capacity than single MOFs. This is the first time that binary HKUST-1 and UiO-66 MOFs have been successfully synthesized and demonstrated enhanced adsorptive removal of contaminants. Copyright © 2016 Elsevier Inc. All rights reserved.
Hou, Jianwen; Cui, Lele; Chen, Runhai; Xu, Xiaodong; Chen, Jiayue; Yin, Ligang; Liu, Jingchuan; Shi, Qiang; Yin, Jinghua
2018-03-01
A versatile platform allowing capture and detection of normal and dysfunctional cells on the same patterned surface is important for accessing the cellular mechanism, developing diagnostic assays, and implementing therapy. Here, an original and effective method for fabricating binary polymer brushes pattern is developed for controlled cell adhesion. The binary polymer brushes pattern, composed of poly(N-isopropylacrylamide) (PNIPAAm) and poly[poly(ethylene glycol) methyl ether methacrylate] (POEGMA) chains, is simply obtained via a combination of surface-initiated photopolymerization and surface-activated free radical polymerization. This method is unique in that it does not utilize any protecting groups or procedures of backfilling with immobilized initiator. It is demonstrated that the precise and well-defined binary polymer patterns with high resolution are fabricated using this facile method. PNIPAAm chains capture and release cells by thermoresponsiveness, while POEGMA chains possess high capability to capture dysfunctional cells specifically, inducing a switch of normal red blood cells (RBCs) arrays to hemolytic RBCs arrays on the pattern with temperature. This novel platform composed of binary polymer brush pattern is smart and versatile, which opens up pathways to potential applications as microsensors, biochips, and bioassays. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Feenstra, Adam D.; Ames Lab., Ames, IA; O'Neill, Kelly C.; ...
2016-10-13
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a widely adopted, versatile technique, especially in high-throughput analysis and imaging. However, matrix-dependent selectivity of analytes is often a severe limitation. In this work, a mixture of organic 2,5-dihydroxybenzoic acid and inorganic Fe 3O 4 nanoparticles is developed as a binary MALDI matrix to alleviate the well-known issue of triacylglycerol (TG) ion suppression by phosphatidylcholine (PC). In application to lipid standards and maize seed cross-sections, the binary matrix not only dramatically reduced the ion suppression of TG, but also efficiently desorbed and ionized a wide variety of lipids such as cationic PC, anionicmore » phosphatidylethanolamine (PE) and phosphatidylinositol (PI), and neutral digalactosyldiacylglycerol (DGDG). The binary matrix was also very efficient for large polysaccharides, which were not detected by either of the individual matrices. As a result, the usefulness of the binary matrix is demonstrated in MS imaging of maize seed sections, successfully visualizing diverse medium-size molecules and acquiring high-quality MS/MS spectra for these compounds.« less
On the period determination of ASAS eclipsing binaries
NASA Astrophysics Data System (ADS)
Mayangsari, L.; Priyatikanto, R.; Putra, M.
2014-03-01
Variable stars, or particularly eclipsing binaries, are very essential astronomical occurrence. Surveys are the backbone of astronomy, and many discoveries of variable stars are the results of surveys. All-Sky Automated Survey (ASAS) is one of the observing projects whose ultimate goal is photometric monitoring of variable stars. Since its first light in 1997, ASAS has collected 50,099 variable stars, with 11,076 eclipsing binaries among them. In the present work we focus on the period determination of the eclipsing binaries. Since the number of data points in each ASAS eclipsing binary light curve is sparse, period determination of any system is a not straightforward process. For 30 samples of such systems we compare the implementation of Lomb-Scargle algorithm which is an Fast Fourier Transform (FFT) basis and Phase Dispersion Minimization (PDM) method which is non-FFT basis to determine their period. It is demonstrated that PDM gives better performance at handling eclipsing detached (ED) systems whose variability are non-sinusoidal. More over, using semi-automatic recipes, we get better period solution and satisfactorily improve 53% of the selected object's light curves, but failed against another 7% of selected objects. In addition, we also highlight 4 interesting objects for further investigation.
NASA Astrophysics Data System (ADS)
Taylor, Stephen R.; Simon, Joseph; Sampson, Laura
2017-01-01
The final parsec of supermassive black-hole binary evolution is subject to the complex interplay of stellar loss-cone scattering, circumbinary disk accretion, and gravitational-wave emission, with binary eccentricity affected by all of these. The strain spectrum of gravitational-waves in the pulsar-timing band thus encodes rich information about the binary population's response to these various environmental mechanisms. Current spectral models have heretofore followed basic analytic prescriptions, and attempt to investigate these final-parsec mechanisms in an indirect fashion. Here we describe a new technique to directly probe the environmental properties of supermassive black-hole binaries through "Bayesian model-emulation". We perform black-hole binary population synthesis simulations at a restricted set of environmental parameter combinations, compute the strain spectra from these, then train a Gaussian process to learn the shape of the spectrum at any point in parameter space. We describe this technique, demonstrate its efficacy with a program of simulated datasets, then illustrate its power by directly constraining final-parsec physics in a Bayesian analysis of the NANOGrav 5-year dataset. The technique is fast, flexible, and robust.
NASA Astrophysics Data System (ADS)
Taylor, Stephen; Simon, Joseph; Sampson, Laura
2017-01-01
The final parsec of supermassive black-hole binary evolution is subject to the complex interplay of stellar loss-cone scattering, circumbinary disk accretion, and gravitational-wave emission, with binary eccentricity affected by all of these. The strain spectrum of gravitational-waves in the pulsar-timing band thus encodes rich information about the binary population's response to these various environmental mechanisms. Current spectral models have heretofore followed basic analytic prescriptions, and attempt to investigate these final-parsec mechanisms in an indirect fashion. Here we describe a new technique to directly probe the environmental properties of supermassive black-hole binaries through ``Bayesian model-emulation''. We perform black-hole binary population synthesis simulations at a restricted set of environmental parameter combinations, compute the strain spectra from these, then train a Gaussian process to learn the shape of spectrum at any point in parameter space. We describe this technique, demonstrate its efficacy with a program of simulated datasets, then illustrate its power by directly constraining final-parsec physics in a Bayesian analysis of the NANOGrav 5-year dataset. The technique is fast, flexible, and robust.
Cook, James P; Mahajan, Anubha; Morris, Andrew P
2017-02-01
Linear mixed models are increasingly used for the analysis of genome-wide association studies (GWAS) of binary phenotypes because they can efficiently and robustly account for population stratification and relatedness through inclusion of random effects for a genetic relationship matrix. However, the utility of linear (mixed) models in the context of meta-analysis of GWAS of binary phenotypes has not been previously explored. In this investigation, we present simulations to compare the performance of linear and logistic regression models under alternative weighting schemes in a fixed-effects meta-analysis framework, considering designs that incorporate variable case-control imbalance, confounding factors and population stratification. Our results demonstrate that linear models can be used for meta-analysis of GWAS of binary phenotypes, without loss of power, even in the presence of extreme case-control imbalance, provided that one of the following schemes is used: (i) effective sample size weighting of Z-scores or (ii) inverse-variance weighting of allelic effect sizes after conversion onto the log-odds scale. Our conclusions thus provide essential recommendations for the development of robust protocols for meta-analysis of binary phenotypes with linear models.
Non-binary Colour Modulation for Display Device Based on Phase Change Materials.
Ji, Hong-Kai; Tong, Hao; Qian, Hang; Hui, Ya-Juan; Liu, Nian; Yan, Peng; Miao, Xiang-Shui
2016-12-19
A reflective-type display device based on phase change materials is attractive because of its ultrafast response time and high resolution compared with a conventional display device. This paper proposes and demonstrates a unique display device in which multicolour changing can be achieved on a single device by the selective crystallization of double layer phase change materials. The optical contrast is optimized by the availability of a variety of film thicknesses of two phase change layers. The device exhibits a low sensitivity to the angle of incidence, which is important for display and colour consistency. The non-binary colour rendering on a single device is demonstrated for the first time using optical excitation. The device shows the potential for ultrafast display applications.
Simulations of nearly extremal binary black holes
NASA Astrophysics Data System (ADS)
Giesler, Matthew; Scheel, Mark; Hemberger, Daniel; Lovelace, Geoffrey; Kuper, Kevin; Boyle, Michael; Szilagyi, Bela; Kidder, Lawrence; SXS Collaboration
2015-04-01
Astrophysical black holes could have nearly extremal spins; therefore, nearly extremal black holes could be among the binaries that current and future gravitational-wave observatories will detect. Predicting the gravitational waves emitted by merging black holes requires numerical-relativity simulations, but these simulations are especially challenging when one or both holes have mass m and spin S exceeding the Bowen-York limit of S /m2 = 0 . 93 . Using improved methods we simulate an unequal-mass, precessing binary black hole coalescence, where the larger black hole has S /m2 = 0 . 99 . We also use these methods to simulate a nearly extremal non-precessing binary black hole coalescence, where both black holes have S /m2 = 0 . 994 , nearly reaching the Novikov-Thorne upper bound for holes spun up by thin accretion disks. We demonstrate numerical convergence and estimate the numerical errors of the waveforms; we compare numerical waveforms from our simulations with post-Newtonian and effective-one-body waveforms; and we compare the evolution of the black-hole masses and spins with analytic predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, C.; Udalski, A.; Szymański, M. K.
In this paper, we demonstrate the severity of the degeneracy between the microlens-parallax and lens-orbital effects by presenting the analysis of the gravitational binary-lens event OGLE-2015-BLG-0768. Despite the obvious deviation from the model based on the linear observer motion and the static binary, it is found that the residual can be almost equally well explained by either the parallactic motion of the Earth or the rotation of the binary-lens axis, resulting in the severe degeneracy between the two effects. We show that the degeneracy can be readily resolved with the additional data provided by space-based microlens parallax observations. By enablingmore » us to distinguish between the two higher-order effects, space-based microlens parallax observations will not only make it possible to accurately determine the physical lens parameters but also to further constrain the orbital parameters of binary lenses.« less
NASA Technical Reports Server (NTRS)
Athale, R. A.; Lee, S. H.
1978-01-01
The paper describes the fabrication and operation of an optical parallel logic (OPAL) device which performs Boolean algebraic operations on binary images. Several logic operations on two input binary images were demonstrated using an 8 x 8 device with a CdS photoconductor and a twisted nematic liquid crystal. Two such OPAL devices can be interconnected to form a half-adder circuit which is one of the essential components of a CPU in a digital signal processor.
Water cavities of sH clathrate hydrate stabilized by molecular hydrogen.
Strobel, Timothy A; Koh, Carolyn A; Sloan, E Dendy
2008-02-21
X-ray diffraction and Raman spectroscopic measurements confirm that molecular hydrogen can be contained within the small water cavities of a binary sH clathrate hydrate using large guest molecules that stabilize the large cavity. The potential increase in hydrogen storage could be more than 40% when compared with binary sII hydrates. This work demonstrates the stabilization of hydrogen in a hydrate structure previously unknown for encapsulating molecular hydrogen, indicating the potential for other inclusion compound materials with even greater hydrogen storage capabilities.
NASA Astrophysics Data System (ADS)
Shoukry, Mohamed M.; Hassan, Safaa S.
2014-01-01
The formation equilibria for the binary complexes of Cu(II) with 1-aminocyclopropane carboxylic acid (ACC) and 3,3-bis(1-methylimidazol-2-yl)propionic acid (BIMP) were investigated. ACC and BIMP form the complexes 1 1 0, 1 2 0 and 1 1 -1. The ternary complexes of Cu(II) with BIMP and biorelevant ligands as some selected amino acids, peptides and DNA constituents are formed in a stepwise mechanism. The stability constants of the complexes formed were determined and their distribution diagrams were evaluated. The kinetics of hydrolysis of glycine methyl ester in presence of [Cu(BIMP)]+ was investigated by pH-stat technique and the mechanism was discussed.
Bayesian inference for unidirectional misclassification of a binary response trait.
Xia, Michelle; Gustafson, Paul
2018-03-15
When assessing association between a binary trait and some covariates, the binary response may be subject to unidirectional misclassification. Unidirectional misclassification can occur when revealing a particular level of the trait is associated with a type of cost, such as a social desirability or financial cost. The feasibility of addressing misclassification is commonly obscured by model identification issues. The current paper attempts to study the efficacy of inference when the binary response variable is subject to unidirectional misclassification. From a theoretical perspective, we demonstrate that the key model parameters possess identifiability, except for the case with a single binary covariate. From a practical standpoint, the logistic model with quantitative covariates can be weakly identified, in the sense that the Fisher information matrix may be near singular. This can make learning some parameters difficult under certain parameter settings, even with quite large samples. In other cases, the stronger identification enables the model to provide more effective adjustment for unidirectional misclassification. An extension to the Poisson approximation of the binomial model reveals the identifiability of the Poisson and zero-inflated Poisson models. For fully identified models, the proposed method adjusts for misclassification based on learning from data. For binary models where there is difficulty in identification, the method is useful for sensitivity analyses on the potential impact from unidirectional misclassification. Copyright © 2017 John Wiley & Sons, Ltd.
Einstein@Home Discovery of 24 Pulsars in the Parkes Multi-beam Pulsar Survey
NASA Astrophysics Data System (ADS)
Knispel, B.; Eatough, R. P.; Kim, H.; Keane, E. F.; Allen, B.; Anderson, D.; Aulbert, C.; Bock, O.; Crawford, F.; Eggenstein, H.-B.; Fehrmann, H.; Hammer, D.; Kramer, M.; Lyne, A. G.; Machenschalk, B.; Miller, R. B.; Papa, M. A.; Rastawicki, D.; Sarkissian, J.; Siemens, X.; Stappers, B. W.
2013-09-01
We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of ≈17, 000 CPU core years was provided by the distributed volunteer computing project Einstein@Home, which has a sustained computing power of about 1 PFlop s-1. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channels and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM (≈420 pc cm-3). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.
Uematsu, Masahiro; Ito, Makiko; Hama, Yukihiro; Inomata, Takayuki; Fujii, Masahiro; Nishio, Teiji; Nakamura, Naoki; Nakagawa, Keiichi
2012-01-01
In this paper, we suggest a new method for verifying the motion of a binary multileaf collimator (MLC) in helical tomotherapy. For this we used a combination of a cylindrical scintillator and a general‐purpose camcorder. The camcorder records the light from the scintillator following photon irradiation, which we use to track the motion of the binary MLC. The purpose of this study is to demonstrate the feasibility of this method as a binary MLC quality assurance (QA) tool. First, the verification was performed using a simple binary MLC pattern with a constant leaf open time; secondly, verification using the binary MLC pattern used in a clinical setting was also performed. Sinograms of simple binary MLC patterns, in which leaves that were open were detected as “open” from the measured light, define the sensitivity which, in this case, was 1.000. On the other hand, the specificity, which gives the fraction of closed leaves detected as “closed”, was 0.919. The leaf open error identified by our method was −1.3±7.5%. The 68.6% of observed leaves were performed within ± 3% relative error. The leaf open error was expressed by the relative errors calculated on the sinogram. In the clinical binary MLC pattern, the sensitivity and specificity were 0.994 and 0.997, respectively. The measurement could be performed with −3.4±8.0% leaf open error. The 77.5% of observed leaves were performed within ± 3% relative error. With this method, we can easily verify the motion of the binary MLC, and the measurement unit developed was found to be an effective QA tool. PACS numbers: 87.56.Fc, 87.56.nk PMID:22231222
Wang, Gen-Ping; Yu, Xiu-Dao; Sun, Yong-Wei; Jones, Huw D; Xia, Lan-Qin
2016-01-01
Horizontal transfer of antibiotic resistance genes to animals and vertical transfer of herbicide resistance genes to the weedy relatives are perceived as major biosafety concerns in genetically modified (GM) crops. In this study, five novel vectors which used gusA and bar as a reporter gene and a selection marker gene, respectively, were constructed based on the pCLEAN dual binary vector system. Among these vectors, 1G7B and 5G7B carried two T-DNAs located on two respective plasmids with 5G7B possessing an additional virGwt gene. 5LBTG154 and 5TGTB154 carried two T-DNAs in the target plasmid with either one or double right borders, and 5BTG154 carried the selectable marker gene on the backbone outside of the T-DNA left border in the target plasmid. In addition, 5BTG154, 5LBTG154, and 5TGTB154 used pAL154 as a helper plasmid which contains Komari fragment to facilitate transformation. These five dual binary vector combinations were transformed into Agrobacterium strain AGL1 and used to transform durum wheat cv Stewart 63. Evaluation of the co-transformation efficiencies, the frequencies of marker-free transgenic plants, and integration of backbone sequences in the obtained transgenic lines indicated that two vectors (5G7B and 5TGTB154) were more efficient in generating marker-free transgenic wheat plants with no or minimal integration of backbone sequences in the wheat genome. The vector series developed in this study for generation of marker- and/or backbone-free transgenic wheat plants via Agrobacterium -mediated transformation will be useful to facilitate the creation of "clean" GM wheat containing only the foreign genes of agronomic importance.
Thermodynamic properties and energy characteristics of water+1-propanol
NASA Astrophysics Data System (ADS)
Alhasov, A. B.; Bazaev, A. R.; Bazaev, E. A.; Osmanova, B. K.
2017-11-01
By using own precise experimental data on p,ρ,T,x- relations differential and integral thermodynamic properties of water+1-propanol homogeneous binary mixtures (0.2, 0.5, and 0.8 mole fractions of 1-propanol) were obtained in one phase (liquid, vapor) region, along coexistence curve phase, at critical and supercritical regions of parameters of state. These values were obtained in the regions of temperatures 373.15 - 673.15 K, densities 3 - 820 kg/m3 and pressures up to 50 MPa. It is found that shape of p,ρ,T,- dependences of water+1-propanol mixtures in investigated range of temperatures is the same with those of pure liquid, but the pressure of the mixture is higher than those of pure water or 1-propanol. The critical line of water+1-propanol binary mixtures as opposed to those of water+methanol and water+ethanol mixtures has convex shape. It is ascertained that using water+1-propanol mixture (0.2 mol.fraction of 1-propanol) instead of pure water allows to decrease lower limit of operating temperatures to 50 K, to increase effective coefficient of efficiency and partially unify thermal mechanical equipment of power plant. Our comparative energy analysis of cycles of steam-turbine plant on water and water+1- propanol mixtures, carried out at the same thermobaric conditionsand showed that thermal coefficient of efficiencyofcycle of steam-turbine plant onwater+1-propanol mixture (0.2 mol.fraction of 1-propanol) is higher than those of pure water.Thus and so we made a conclusion about usability of water+1-propanol mixture (0.2 mole fraction of 1-propanol) as a working substance of steam-turbine plant cycle.
STABLE CONIC-HELICAL ORBITS OF PLANETS AROUND BINARY STARS: ANALYTICAL RESULTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oks, E.
2015-05-10
Studies of planets in binary star systems are especially important because it was estimated that about half of binary stars are capable of supporting habitable terrestrial planets within stable orbital ranges. One-planet binary star systems (OBSS) have a limited analogy to objects studied in atomic/molecular physics: one-electron Rydberg quasimolecules (ORQ). Specifically, ORQ, consisting of two fully stripped ions of the nuclear charges Z and Z′ plus one highly excited electron, are encountered in various plasmas containing more than one kind of ion. Classical analytical studies of ORQ resulted in the discovery of classical stable electronic orbits with the shape ofmore » a helix on the surface of a cone. In the present paper we show that despite several important distinctions between OBSS and ORQ, it is possible for OBSS to have stable planetary orbits in the shape of a helix on a conical surface, whose axis of symmetry coincides with the interstellar axis; the stability is not affected by the rotation of the stars. Further, we demonstrate that the eccentricity of the stars’ orbits does not affect the stability of the helical planetary motion if the center of symmetry of the helix is relatively close to the star of the larger mass. We also show that if the center of symmetry of the conic-helical planetary orbit is relatively close to the star of the smaller mass, a sufficiently large eccentricity of stars’ orbits can switch the planetary motion to the unstable mode and the planet would escape the system. We demonstrate that such planets are transitable for the overwhelming majority of inclinations of plane of the stars’ orbits (i.e., the projections of the planet and the adjacent start on the plane of the sky coincide once in a while). This means that conic-helical planetary orbits at binary stars can be detected photometrically. We consider, as an example, Kepler-16 binary stars to provide illustrative numerical data on the possible parameters and the stability of the conic-helical planetary orbits, as well as on the transitability. Then for the general case, we also show that the power of the gravitational radiation due to this planet can be comparable or even exceed the power of the gravitational radiation due to the stars in the binary. This means that in the future, with a progress of gravitational wave detectors, the presence of a planet in a conic-helical orbit could be revealed by the noticeably enhanced gravitational radiation from the binary star system.« less
Relaxation dynamics in a binary hard-ellipse liquid.
Xu, Wen-Sheng; Sun, Zhao-Yan; An, Li-Jia
2015-01-21
Structural relaxation in binary hard spherical particles has been shown recently to exhibit a wealth of remarkable features when size disparity or mixture composition is varied. In this paper, we test whether or not similar dynamical phenomena occur in glassy systems composed of binary hard ellipses. We demonstrate via event-driven molecular dynamics simulation that a binary hard-ellipse mixture with an aspect ratio of two and moderate size disparity displays characteristic glassy dynamics upon increasing density in both the translational and the rotational degrees of freedom. The rotational glass transition density is found to be close to the translational one for the binary mixtures investigated. More importantly, we assess the influence of size disparity and mixture composition on the relaxation dynamics. We find that an increase of size disparity leads, both translationally and rotationally, to a speed up of the long-time dynamics in the supercooled regime so that both the translational and the rotational glass transition shift to higher densities. By increasing the number concentration of the small particles, the time evolution of both translational and rotational relaxation dynamics at high densities displays two qualitatively different scenarios, i.e., both the initial and the final part of the structural relaxation slow down for small size disparity, while the short-time dynamics still slows down but the final decay speeds up in the binary mixture with large size disparity. These findings are reminiscent of those observed in binary hard spherical particles. Therefore, our results suggest a universal mechanism for the influence of size disparity and mixture composition on the structural relaxation in both isotropic and anisotropic particle systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jia; Halpern, Jules P.; Eracleous, Michael
2016-01-20
One of the proposed explanations for the broad, double-peaked Balmer emission lines observed in the spectra of some active galactic nuclei (AGNs) is that they are associated with sub-parsec supermassive black hole (SMBH) binaries. Here, we test the binary broad-line region hypothesis through several decades of monitoring of the velocity structure of double-peaked Hα emission lines in 13 low-redshift, mostly radio-loud AGNs. This is a much larger set of objects compared to an earlier test by Eracleous et al. and we use much longer time series for the three objects studied in that paper. Although systematic changes in radial velocitymore » can be traced in many of their lines, they are demonstrably not like those of a spectroscopic binary in a circular orbit. Any spectroscopic binary period must therefore be much longer than the span of the monitoring (assuming a circular orbit), which in turn would require black hole masses that exceed by 1–2 orders of magnitude the values obtained for these objects using techniques such as reverberation mapping and stellar velocity dispersion. Moreover, the response of the double-peaked Balmer line profiles to fluctuations of the ionizing continuum and the shape of the Lyα profiles are incompatible with an SMBH binary. The binary broad-line region hypothesis is therefore disfavored. Other processes evidently shape these line profiles and cause the long-term velocity variations of the double peaks.« less
NASA Astrophysics Data System (ADS)
Matthews, H. B.
The major fraction of hydrothermal resources with the prospect of economic usefulness for the generation of electricity are in the 300(0)F to 425(0)F temperature range. Cost effective conversion of the geothermal energy to electricity requires new ideas to improve conversion efficiency, enhance brine flow, reduce plant costs, increase plant availability, and shorten the time between investment and return. The problems addressed are those inherent in the geothermal environment, in the binary fluid cycle, in the difficulty of efficiently converting the energy of a low temperature resource, and in geothermal economics some of these problems are explained. The energy expended by the down hole pump; the difficulty in designing reliable down hole equipment; fouling of heat exchanger surfaces by geothermal fluids; the unavailability of condenser cooling water at most geothermal sites; the large portion of the available energy used by the feed pump in a binary system; the pinch effect, a loss in available energy in transferring heat from water to an organic fluid; flow losses in fluids that carry only a small amount of useful energy to begin with; high heat exchanger costs, the lower the temperature interval of the cycle, the higher the heat exchanger costs in $/kW; the complexity and cost of the many auxiliary elements of proposed geothermal plants; and the unfortunate cash flow vs. investment curve caused by the many years of investment required to bring a field into production before any income is realized.
NASA Astrophysics Data System (ADS)
Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W.
2016-05-01
Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.
Hinderer, Tanja; Taracchini, Andrea; Foucart, Francois; Buonanno, Alessandra; Steinhoff, Jan; Duez, Matthew; Kidder, Lawrence E; Pfeiffer, Harald P; Scheel, Mark A; Szilagyi, Bela; Hotokezaka, Kenta; Kyutoku, Koutarou; Shibata, Masaru; Carpenter, Cory W
2016-05-06
Extracting the unique information on ultradense nuclear matter from the gravitational waves emitted by merging neutron-star binaries requires robust theoretical models of the signal. We develop a novel effective-one-body waveform model that includes, for the first time, dynamic (instead of only adiabatic) tides of the neutron star as well as the merger signal for neutron-star-black-hole binaries. We demonstrate the importance of the dynamic tides by comparing our model against new numerical-relativity simulations of nonspinning neutron-star-black-hole binaries spanning more than 24 gravitational-wave cycles, and to other existing numerical simulations for double neutron-star systems. Furthermore, we derive an effective description that makes explicit the dependence of matter effects on two key parameters: tidal deformability and fundamental oscillation frequency.
Martín, Carmen
2014-01-01
Summary Zn(salen) complexes have been employed as active catalysts for the formation of cyclic carbonates from epoxides and CO2. A series of kinetic experiments was carried out to obtain information about the mechanism for this process catalyzed by these complexes and in particular about the order-dependence in catalyst. A comparative analysis was done between the binary catalyst system Zn(salphen)/NBu4I and a bifunctional system Zn(salpyr)·MeI with a built-in nucleophile. The latter system demonstrates an apparent second-order dependence on the bifunctional catalyst concentration and thus follows a different, bimetallic mechanism as opposed to the binary catalyst that is connected with a first-order dependence on the catalyst concentration and a monometallic mechanism. PMID:25161742
Quantum memory receiver for superadditive communication using binary coherent states
NASA Astrophysics Data System (ADS)
Klimek, Aleksandra; Jachura, Michał; Wasilewski, Wojciech; Banaszek, Konrad
2016-11-01
We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011, 106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.
Quantum memory receiver for superadditive communication using binary coherent states.
Klimek, Aleksandra; Jachura, Michał; Wasilewski, Wojciech; Banaszek, Konrad
2016-11-12
We propose a simple architecture based on multimode quantum memories for collective readout of classical information keyed using a pair coherent states, exemplified by the well-known binary phase shift keying format. Such a configuration enables demonstration of the superadditivity effect in classical communication over quantum channels, where the transmission rate becomes enhanced through joint detection applied to multiple channel uses. The proposed scheme relies on the recently introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011 , 106 , 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar receiver which implements the minimum-error measurement for individual detection of a binary coherent state alphabet.
Measuring interdependence in ambulatory care.
Katerndahl, David; Wood, Robert; Jaen, Carlos R
2017-04-01
Complex systems differ from complicated systems in that they are nonlinear, unpredictable and lacking clear cause-and-effect relationships, largely due to the interdependence of their components (effects of interconnectedness on system behaviour and consequences). The purpose of this study was to demonstrate the potential for network density to serve as a measure of interdependence, assess its concurrent validity and test whether the use of valued or binary ties yields better results. This secondary analysis used the 2010 National Ambulatory Care Medical Survey to assess interdependence of 'top 20' diagnoses seen and medications prescribed for 14 specialties. The degree of interdependence was measured as the level of association between diagnoses and drug interactions among medications. Both valued and binary network densities were computed for each specialty. To assess concurrent validity, these measures were correlated with previously-derived valid measures of complexity of care using the same database, adjusting for diagnosis and medication diversity. Partial correlations between diagnosis density, and both diagnosis and total input complexity, were significant, as were those between medication density and both medication and total output complexity; for both diagnosis and medication densities, adjusted correlations were higher for binary rather than valued densities. This study demonstrated the feasibility and validity of using network density as a measure of interdependence. When adjusted for measure diversity, density-complexity correlations were significant and higher for binary than valued density. This approach complements other methods of estimating complexity of care and may be applicable to unique settings. © 2015 John Wiley & Sons, Ltd.
Qian, Jin; Shen, Mengmeng; Wang, Peifang; Wang, Chao; Li, Kun; Liu, Jingjing; Lu, Bianhe; Tian, Xin
2017-09-01
Powdered activated carbon (PAC), as an adsorbent, was applied to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Laboratory batch experiments were performed to investigate the influences of phosphate (P) competition, temperature, and pH for PFOS adsorption onto PAC. The results showed that higher temperature favored PFOS adsorption in single and binary systems. The kinetic data fitted very well to the pseudo second-order kinetic model. Thermodynamically, the endothermic enthalpy of the PFOS adsorption in single and binary systems were 125.07 and 21.25 kJ mol -1 , respectively. The entropy of the PFOS adsorption in single and binary systems were 0.479 and 0.092 kJ mol -1 K -1 , respectively. And the Gibbs constants were negative. These results indicated that the adsorption processes were spontaneous. The adsorption isotherms of PFOS agreed well with the Langmuir model. In the single system, PFOS adsorption decreased with increased pH value. The difference in the amount of PFOS adsorption between the single and binary systems increased at higher pH. Frustrated total internal reflection (FTIR) demonstrated that P competition increased the hydrophilicity of the PAC and the electrostatic repulsion between PFOS and PAC, then the PFOS adsorption amount decreased. It also demonstrated that, at higher temperature, increased PFOS adsorption was mainly due to the higher diffusion rate of PFOS molecules and greater number of active sites opened on the PAC surface. Copyright © 2017 Elsevier Ltd. All rights reserved.
Improving the analysis of composite endpoints in rare disease trials.
McMenamin, Martina; Berglind, Anna; Wason, James M S
2018-05-22
Composite endpoints are recommended in rare diseases to increase power and/or to sufficiently capture complexity. Often, they are in the form of responder indices which contain a mixture of continuous and binary components. Analyses of these outcomes typically treat them as binary, thus only using the dichotomisations of continuous components. The augmented binary method offers a more efficient alternative and is therefore especially useful for rare diseases. Previous work has indicated the method may have poorer statistical properties when the sample size is small. Here we investigate small sample properties and implement small sample corrections. We re-sample from a previous trial with sample sizes varying from 30 to 80. We apply the standard binary and augmented binary methods and determine the power, type I error rate, coverage and average confidence interval width for each of the estimators. We implement Firth's adjustment for the binary component models and a small sample variance correction for the generalized estimating equations, applying the small sample adjusted methods to each sub-sample as before for comparison. For the log-odds treatment effect the power of the augmented binary method is 20-55% compared to 12-20% for the standard binary method. Both methods have approximately nominal type I error rates. The difference in response probabilities exhibit similar power but both unadjusted methods demonstrate type I error rates of 6-8%. The small sample corrected methods have approximately nominal type I error rates. On both scales, the reduction in average confidence interval width when using the adjusted augmented binary method is 17-18%. This is equivalent to requiring a 32% smaller sample size to achieve the same statistical power. The augmented binary method with small sample corrections provides a substantial improvement for rare disease trials using composite endpoints. We recommend the use of the method for the primary analysis in relevant rare disease trials. We emphasise that the method should be used alongside other efforts in improving the quality of evidence generated from rare disease trials rather than replace them.
Burrows, Matthew; Morawo, Tolulope; Fadamiro, Henry
2017-06-01
Parasitoids utilize various sugar resources in nature, and rely on odor cues from plants to locate their food and hosts. However, lack of sugar in the diet may negatively impact odor reception in parasitoids, thus affecting foraging efficiency. We used Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), a larval endoparasitoid of Heliothis virescens (F.) (Lepidoptera: Noctuidae), as a model species to test the hypothesis that variation in sugar diet of parasitoids affects their olfactory response to host-related odors. Heliothis virescens is a major pest of cotton and other important crops. Response of female M. croceipes fed different diet treatments (i.e., 40%, 20%, 10%, or 0% sucrose/water solution [w/v]) to select cotton volatiles were tested in electroantennogram (EAG) and Y-tube olfactometer bioassays. The following cotton plant odors were tested: cis-3-hexenol, α-pinene, 50/50 v/v binary mixture of cis-3-hexenol and α-pinene, and H. virescens-infested cotton. Sucrose-fed parasitoids showed higher EAG response to the binary mixture and host-infested plant volatile extract, compared with sucrose-starved (0% sucrose) parasitoids. However, there was no significant difference in EAG response of parasitoids to odor treatments among individuals fed 40%, 20%, or 10% sucrose. In a Y-tube olfactometer, female M. croceipes fed 40% sucrose were significantly more attracted to host-infested cotton than to a control (no plant). However, parasitoids were not significantly attracted to other odor stimuli. These results suggest that the availability of sugar diet affects odor reception in M. croceipes but variation in sugar concentration probably plays a minimal role in olfactory response of M. croceipes to host-related odors. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Second law analysis of advanced power generation systems using variable temperature heat sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bliem, C.J.; Mines, G.L.
1990-01-01
Many systems produce power using variable temperature (sensible) heat sources. The Heat Cycle Research Program is currently investigating the potential improvements to such power cycles utilizing moderate temperature geothermal resources to produce electrical power. It has been shown that mixtures of saturated hydrocarbons (alkanes) or halogenated hydrocarbons operating with a supercritical Rankine cycle gave improved performance over boiling Rankine cycles with the pure working fluids for typical applications. Recently, in addition to the supercritical Rankine Cycle, other types of cycles have been proposed for binary geothermal service. This paper explores the limits on efficiency of a feasible plant and discussesmore » the methods used in these advanced concept plants to achieve the maximum possible efficiency. The advanced plants considered appear to be approaching the feasible limit of performance so that the designer must weigh all considerations to fine the best plant for a given service. These results would apply to power systems in other services as well as to geothermal power plants. 17 refs., 15 figs.« less
Mel'nikova, N N; Bulavenko, L V; Kurdish, I K; Titova, L V; Kots', S Ia
2002-01-01
The effects of bacteria belonging to the genera Azotobacter and Bacillus in a mixed culture with Bradyrhizobium japonicum strains on formation and function of the legume-rhizobium symbiosis of soybean plants were studied. The data showed that the bacterial compositions B. japonicum 634b + B. subtilis 5, B. japonicum 634b + A. chroococcum 20, and B. japonicum 10k + A. vinelandii 56 with a cell ratio of 1:0.1 increased the number and weight of root nodules as well as the height and weight of the aboveground plant parts in almost all the cases by 22-105% compared with the control variants. These binary microbial cultures may be used for development of combined bacterial preparations for soybean.
Nanofiltration properties of PTMSP in binary organic solvents mixtures
NASA Astrophysics Data System (ADS)
Yushkin, A. A.; Kossov, A. A.; Volkov, V. V.
2016-09-01
In this study, the stability and nanofiltration performance of poly[1-(trimethylsilyl)- 1-propyne] (PTMSP) in ethanol solutions of butylaldehyde, 1-decanal, 1-hexene, 1-decene was evaluated. It was found that PTMSP was insoluble in all aldehyde solutions, but it was soluble at olefin concentration of 80% or higher. Nanofiltration experiments demonstrate that binary mixtures of 1-decanal and ethanol viscosity are not the parameter affecting on membrane permeability and rejection of solute as well as swelling degree. In the case of decanol/ethanol solutions both solution viscosity and molar volume demonstrate the best fit of experimental data. It was shown that with the decrease of ethanol content in the feed, the rejection of anionic solute Remazol Brilliant Blue R (MW 626) increases from 94 up to 97%.
High cytokinin levels induce a hypersensitive-like response in tobacco.
Novák, Jan; Pavlů, Jaroslav; Novák, Ondřej; Nožková-Hlaváčková, Vladimíra; Špundová, Martina; Hlavinka, Jan; Koukalová, Šárka; Skalák, Jan; Černý, Martin; Brzobohatý, Břetislav
2013-07-01
Cytokinins are positive regulators of shoot development. However, it has previously been demonstrated that efficient activation of the cytokinin biosynthesis gene ipt can cause necrotic lesions and wilting in tobacco leaves. Some plant pathogens reportedly use their ability to produce cytokinins in disease development. In response to pathogen attacks, plants can trigger a hypersensitive response that rapidly kills cells near the infection site, depriving the pathogen of nutrients and preventing its spread. In this study, a diverse set of processes that link ipt activation to necrotic lesion formation were investigated in order to evaluate the potential of cytokinins as signals and/or mediators in plant defence against pathogens. The binary pOp-ipt/LhGR system for dexamethasone-inducible ipt expression was used to increase endogenous cytokinin levels in transgenic tobacco. Changes in the levels of cytokinins and the stress hormones salicylic, jasmonic and abscisic acid following ipt activation were determined by ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-MS/MS). Trends in hydrogen peroxide content and lipid peroxidation were monitored using the potassium iodide and malondialdehyde assays. The subcellular distribution of hydrogen peroxide was investigated using 3,3'-diaminobenzidine staining. The dynamics of transcripts related to photosynthesis and pathogen response were analysed by reverse transcription followed by quantitative PCR. The effects of cytokinins on photosynthesis were deciphered by analysing changes in chlorophyll fluorescence and leaf gas exchange. Plants can produce sufficiently high levels of cytokinins to trigger fast cell death without any intervening chlorosis - a hallmark of the hypersensitive response. The results suggest that chloroplastic hydrogen peroxide orchestrates the molecular responses underpinning the hypersensitive-like response, including the inhibition of photosynthesis, elevated levels of stress hormones, oxidative membrane damage and stomatal closure. Necrotic lesion formation triggered by ipt activation closely resembles the hypersensitive response. Cytokinins may thus act as signals and/or mediators in plant defence against pathogen attack.
Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cells.
Mercx, Sébastien; Tollet, Jérémie; Magy, Bertrand; Navarre, Catherine; Boutry, Marc
2016-01-01
Plant suspension cells are interesting hosts for the heterologous production of pharmacological proteins such as antibodies. They have the advantage to facilitate the containment and the application of good manufacturing practices. Furthermore, antibodies can be secreted to the extracellular medium, which makes the purification steps much simpler. However, improvements are still to be made regarding the quality and the production yield. For instance, the inactivation of proteases and the humanization of glycosylation are both important targets which require either gene silencing or gene inactivation. To this purpose, CRISPR-Cas9 is a very promising technique which has been used recently in a series of plant species, but not yet in plant suspension cells. Here, we sought to use the CRISPR-Cas9 system for gene inactivation in Nicotiana tabacum BY-2 suspension cells. We transformed a transgenic line expressing a red fluorescent protein (mCherry) with a binary vector containing genes coding for Cas9 and three guide RNAs targeting mCherry restriction sites, as well as a bialaphos-resistant (bar) gene for selection. To demonstrate gene inactivation in the transgenic lines, the mCherry gene was PCR-amplified and analyzed by electrophoresis. Seven out of 20 transformants displayed a shortened fragment, indicating that a deletion occurred between two target sites. We also analyzed the transformants by restriction fragment length polymorphism and observed that the three targeted restriction sites were hit. DNA sequencing of the PCR fragments confirmed either deletion between two target sites or single nucleotide deletion. We therefore conclude that CRISPR-Cas9 can be used in N. tabacum BY2 cells.
Kaur, Amandeep; Singh, Baldev; Ohri, Puja; Wang, Jia; Wadhwa, Renu; Pati, Pratap Kumar; Kaur, Arvinder
2018-01-01
Withania somnifera (Ashwagandha) has recently been studied extensively for its health-supplementing and therapeutic activities against a variety of ailments. Several independent studies have experimentally demonstrated pharmaceutical potential of its active Withanolides, Withaferin A (Wi-A), Withanone (Wi-N) and Withanolide A (Wil-A). However, to promote its use in herbal industry, an environmentally sustainable cultivation and high yield are warranted. In modern agriculture strategies, there has been indiscriminate use of chemical fertilizers to boost the crop-yield, however the practice largely ignored its adverse effect on the quality of soil and the environment. In view of these, we attempted to recruit Vermicompost (Vcom, 20–100%) as an organic fertilizer of choice during the sowing and growing phases of Ashwagandha plants. We report that (i) pre-soaking of seeds for 12 h in Vermicompost leachate (Vcom-L) and Vermicompost tea (Vcom-T) led to higher germination, (ii) binary combination of pre-soaking of seeds and cultivation in Vcom (up to 80%) resulted in further improvement both in germination and seedling growth, (iii) cultivated plants in the presence of Vcom+Vcom-L showed higher leaf and root mass, earlier onset of flowering and fruiting and (iv) leaves from the Vcom+Vcom-L cultivated plants showed higher level of active Withanolides, Withanone (Wi-N), Withanolide A (Wil-A) and Withaferin A (Wi-A) and showed anticancer activities in cell culture assays. Taken together, we report a simple and inexpensive method for improving the yield and pharmaceutical components of Ashwagandha leaves. PMID:29659590
Kaur, Amandeep; Singh, Baldev; Ohri, Puja; Wang, Jia; Wadhwa, Renu; Kaul, Sunil C; Pati, Pratap Kumar; Kaur, Arvinder
2018-01-01
Withania somnifera (Ashwagandha) has recently been studied extensively for its health-supplementing and therapeutic activities against a variety of ailments. Several independent studies have experimentally demonstrated pharmaceutical potential of its active Withanolides, Withaferin A (Wi-A), Withanone (Wi-N) and Withanolide A (Wil-A). However, to promote its use in herbal industry, an environmentally sustainable cultivation and high yield are warranted. In modern agriculture strategies, there has been indiscriminate use of chemical fertilizers to boost the crop-yield, however the practice largely ignored its adverse effect on the quality of soil and the environment. In view of these, we attempted to recruit Vermicompost (Vcom, 20-100%) as an organic fertilizer of choice during the sowing and growing phases of Ashwagandha plants. We report that (i) pre-soaking of seeds for 12 h in Vermicompost leachate (Vcom-L) and Vermicompost tea (Vcom-T) led to higher germination, (ii) binary combination of pre-soaking of seeds and cultivation in Vcom (up to 80%) resulted in further improvement both in germination and seedling growth, (iii) cultivated plants in the presence of Vcom+Vcom-L showed higher leaf and root mass, earlier onset of flowering and fruiting and (iv) leaves from the Vcom+Vcom-L cultivated plants showed higher level of active Withanolides, Withanone (Wi-N), Withanolide A (Wil-A) and Withaferin A (Wi-A) and showed anticancer activities in cell culture assays. Taken together, we report a simple and inexpensive method for improving the yield and pharmaceutical components of Ashwagandha leaves.
Distributed Adaptive Binary Quantization for Fast Nearest Neighbor Search.
Xianglong Liu; Zhujin Li; Cheng Deng; Dacheng Tao
2017-11-01
Hashing has been proved an attractive technique for fast nearest neighbor search over big data. Compared with the projection based hashing methods, prototype-based ones own stronger power to generate discriminative binary codes for the data with complex intrinsic structure. However, existing prototype-based methods, such as spherical hashing and K-means hashing, still suffer from the ineffective coding that utilizes the complete binary codes in a hypercube. To address this problem, we propose an adaptive binary quantization (ABQ) method that learns a discriminative hash function with prototypes associated with small unique binary codes. Our alternating optimization adaptively discovers the prototype set and the code set of a varying size in an efficient way, which together robustly approximate the data relations. Our method can be naturally generalized to the product space for long hash codes, and enjoys the fast training linear to the number of the training data. We further devise a distributed framework for the large-scale learning, which can significantly speed up the training of ABQ in the distributed environment that has been widely deployed in many areas nowadays. The extensive experiments on four large-scale (up to 80 million) data sets demonstrate that our method significantly outperforms state-of-the-art hashing methods, with up to 58.84% performance gains relatively.
Binary encoding of multiplexed images in mixed noise.
Lalush, David S
2008-09-01
Binary coding of multiplexed signals and images has been studied in the context of spectroscopy with models of either purely constant or purely proportional noise, and has been shown to result in improved noise performance under certain conditions. We consider the case of mixed noise in an imaging system consisting of multiple individually-controllable sources (X-ray or near-infrared, for example) shining on a single detector. We develop a mathematical model for the noise in such a system and show that the noise is dependent on the properties of the binary coding matrix and on the average number of sources used for each code. Each binary matrix has a characteristic linear relationship between the ratio of proportional-to-constant noise and the noise level in the decoded image. We introduce a criterion for noise level, which is minimized via a genetic algorithm search. The search procedure results in the discovery of matrices that outperform the Hadamard S-matrices at certain levels of mixed noise. Simulation of a seven-source radiography system demonstrates that the noise model predicts trends and rank order of performance in regions of nonuniform images and in a simple tomosynthesis reconstruction. We conclude that the model developed provides a simple framework for analysis, discovery, and optimization of binary coding patterns used in multiplexed imaging systems.
Multimodal Discriminative Binary Embedding for Large-Scale Cross-Modal Retrieval.
Wang, Di; Gao, Xinbo; Wang, Xiumei; He, Lihuo; Yuan, Bo
2016-10-01
Multimodal hashing, which conducts effective and efficient nearest neighbor search across heterogeneous data on large-scale multimedia databases, has been attracting increasing interest, given the explosive growth of multimedia content on the Internet. Recent multimodal hashing research mainly aims at learning the compact binary codes to preserve semantic information given by labels. The overwhelming majority of these methods are similarity preserving approaches which approximate pairwise similarity matrix with Hamming distances between the to-be-learnt binary hash codes. However, these methods ignore the discriminative property in hash learning process, which results in hash codes from different classes undistinguished, and therefore reduces the accuracy and robustness for the nearest neighbor search. To this end, we present a novel multimodal hashing method, named multimodal discriminative binary embedding (MDBE), which focuses on learning discriminative hash codes. First, the proposed method formulates the hash function learning in terms of classification, where the binary codes generated by the learned hash functions are expected to be discriminative. And then, it exploits the label information to discover the shared structures inside heterogeneous data. Finally, the learned structures are preserved for hash codes to produce similar binary codes in the same class. Hence, the proposed MDBE can preserve both discriminability and similarity for hash codes, and will enhance retrieval accuracy. Thorough experiments on benchmark data sets demonstrate that the proposed method achieves excellent accuracy and competitive computational efficiency compared with the state-of-the-art methods for large-scale cross-modal retrieval task.
Interactive Exploration for Continuously Expanding Neuron Databases.
Li, Zhongyu; Metaxas, Dimitris N; Lu, Aidong; Zhang, Shaoting
2017-02-15
This paper proposes a novel framework to help biologists explore and analyze neurons based on retrieval of data from neuron morphological databases. In recent years, the continuously expanding neuron databases provide a rich source of information to associate neuronal morphologies with their functional properties. We design a coarse-to-fine framework for efficient and effective data retrieval from large-scale neuron databases. In the coarse-level, for efficiency in large-scale, we employ a binary coding method to compress morphological features into binary codes of tens of bits. Short binary codes allow for real-time similarity searching in Hamming space. Because the neuron databases are continuously expanding, it is inefficient to re-train the binary coding model from scratch when adding new neurons. To solve this problem, we extend binary coding with online updating schemes, which only considers the newly added neurons and update the model on-the-fly, without accessing the whole neuron databases. In the fine-grained level, we introduce domain experts/users in the framework, which can give relevance feedback for the binary coding based retrieval results. This interactive strategy can improve the retrieval performance through re-ranking the above coarse results, where we design a new similarity measure and take the feedback into account. Our framework is validated on more than 17,000 neuron cells, showing promising retrieval accuracy and efficiency. Moreover, we demonstrate its use case in assisting biologists to identify and explore unknown neurons. Copyright © 2017 Elsevier Inc. All rights reserved.
EINSTEIN-HOME DISCOVERY OF 24 PULSARS IN THE PARKES MULTI-BEAM PULSAR SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knispel, B.; Kim, H.; Allen, B.
2013-09-10
We have conducted a new search for radio pulsars in compact binary systems in the Parkes multi-beam pulsar survey (PMPS) data, employing novel methods to remove the Doppler modulation from binary motion. This has yielded unparalleled sensitivity to pulsars in compact binaries. The required computation time of Almost-Equal-To 17, 000 CPU core years was provided by the distributed volunteer computing project Einstein-Home, which has a sustained computing power of about 1 PFlop s{sup -1}. We discovered 24 new pulsars in our search, 18 of which were isolated pulsars, and 6 were members of binary systems. Despite the wide filterbank channelsmore » and relatively slow sampling time of the PMPS data, we found pulsars with very large ratios of dispersion measure (DM) to spin period. Among those is PSR J1748-3009, the millisecond pulsar with the highest known DM ( Almost-Equal-To 420 pc cm{sup -3}). We also discovered PSR J1840-0643, which is in a binary system with an orbital period of 937 days, the fourth largest known. The new pulsar J1750-2536 likely belongs to the rare class of intermediate-mass binary pulsars. Three of the isolated pulsars show long-term nulling or intermittency in their emission, further increasing this growing family. Our discoveries demonstrate the value of distributed volunteer computing for data-driven astronomy and the importance of applying new analysis methods to extensively searched data.« less
Effects of gravity reduction on phase equilibria. Part 1: Unary and binary isostructural solids
NASA Technical Reports Server (NTRS)
Larson, D. J., Jr.
1975-01-01
Analysis of the Skylab II M553 Experiment samples resulted in the hypothesis that the reduced gravity environment was altering the melting and solidification reactions. A theoretical study was conducted to define the conditions under which such alteration of phase relations is feasible, determine whether it is restricted to space processing, and, if so, ascertain which alloy systems or phase reactions are most likely to demonstrate such effects. Phase equilibria of unary and binary systems with a single solid phase (unary and isomorphous) were considered.
The dressed atom as binary phase modulator: towards attojoule/edge optical phase-shift keying.
Kerckhoff, Joseph; Armen, Michael A; Pavlichin, Dmitri S; Mabuchi, Hideo
2011-03-28
We use a single 133Cs atom strongly coupled to an optical resonator to induce random binary phase modulation of a near infra-red, ∼ 500 pW laser beam, with each modulation edge caused by the dissipation of a single photon (≈ 0.23 aJ) by the atom. While our ability to deterministically induce phase edges with an additional optical control beam is limited thus far, theoretical analysis of an analogous, solid-state system indicates that efficient external control should be achievable in demonstrated nanophotonic systems.
Methodology of Numerical Optimization for Orbital Parameters of Binary Systems
NASA Astrophysics Data System (ADS)
Araya, I.; Curé, M.
2010-02-01
The use of a numerical method of maximization (or minimization) in optimization processes allows us to obtain a great amount of solutions. Therefore, we can find a global maximum or minimum of the problem, but this is only possible if we used a suitable methodology. To obtain the global optimum values, we use the genetic algorithm called PIKAIA (P. Charbonneau) and other four algorithms implemented in Mathematica. We demonstrate that derived orbital parameters of binary systems published in some papers, based on radial velocity measurements, are local minimum instead of global ones.
Durable pd-based alloy and hydrogen generation membrane thereof
Benn, Raymond C.; Opalka, Susanne M.; Vanderspurt, Thomas Henry
2010-02-02
A durable Pd-based alloy is used for a H.sub.2-selective membrane in a hydrogen generator, as in the fuel processor of a fuel cell plant. The Pd-based alloy includes Cu as a binary element, and further includes "X", where "X" comprises at least one metal from group "M" that is BCC and acts to stabilize the .beta. BCC phase for stability during operating temperatures. The metal from group "M" is selected from the group consisting of Fe, Cr, Nb, Ta, V, Mo, and W, with Nb and Ta being most preferred. "X" may further comprise at least one metal from a group "N" that is non-BCC, preferably FCC, that enhances other properties of the membrane, such as ductility. The metal from group "N" is selected from the group consisting of Ag, Au, Re, Ru, Rh, Y, Ce, Ni, Ir, Pt, Co, La and In. The at. % of Pd in the binary Pd--Cu alloy ranges from about 35 at. % to about 55 at. %, and the at. % of "X" in the higher order alloy, based on said binary alloy, is in the range of about 1 at. % to about 15 at. %. The metals are selected according to a novel process.
Pattern formation in binary colloidal assemblies: hidden symmetries in a kaleidoscope of structures.
Lotito, Valeria; Zambelli, Tomaso
2018-06-10
In this study we present a detailed investigation of the morphology of binary colloidal structures formed by self-assembly at air/water interface of particles of two different sizes, with a size ratio such that the larger particles do not retain a hexagonal arrangement in the binary assembly. While the structure and symmetry of binary mixtures in which such hexagonal order is preserved has been thoroughly scrutinized, binary colloids in the regime of non-preservation of the hexagonal order have not been examined with the same level of detail due also to the difficulty in finding analysis tools suitable to recognize hidden symmetries in seemingly amorphous and disordered arrangements. For this purpose, we resorted to a combination of different analysis tools based on computational geometry and computational topology in order to get a comprehensive picture of the morphology of the assemblies. By carrying out an extensive investigation of binary assemblies in this regime with variable concentration of smaller particles with respect to larger particles, we identify the main patterns that coexist in the apparently disordered assemblies and detect transitions in the symmetries upon increase in the number of small particles. As the concentration of small particles increases, large particle arrangements become more dilute and a transition from hexagonal to rhombic and square symmetries occurs, accompanied also by an increase in clusters of small particles; the relative weight of each specific symmetry can be controlled by varying the composition of the assemblies. The demonstration of the possibility to control the morphology of apparently disordered binary colloidal assemblies by varying experimental conditions and the definition of a route for the investigation of disordered assemblies are precious for future studies of complex colloidal patterns to understand self-assembly mechanisms and to tailor physical properties of colloidal assemblies.
Halder, Ritaban; Jana, Biman
2018-06-05
Aqueous binary mixtures have received immense attention in recent years because of their extensive application in several biological and industrial processes. Water-ethanol binary mixture serves as a unique system because it exhibits composition dependent alteration of dynamic and thermodynamic properties. Our present work demonstrates how different compositions of water-ethanol binary mixtures affect the pair hydrophobicity of different hydrophobes. Pair hydrophobicity is measured by the depth of the first minimum (contact minima) of potential of mean force (PMF) profile between two hydrophobes. The pair hydrophobicity is found to be increased with addition of ethanol to water up to mole fraction of 0.10 and decreased with further addition of ethanol. This observation is shown to be true for three different pairs of hydrophobes. Decomposition of PMF into enthalpic and entropic contribution indicates a switch from entropic to enthalpic stabilization of the contact minimum upon addition of ethanol to water. The gain in mixing enthalpy of the binary solvent system upon association of two hydrophobes is found to be the determining factor for the stabilization of contact minimum. Several static/dynamics quantities (average composition fluctuations, diffusion coefficients, fluctuations in total dipole moment, propensity of ethyl-ethyl association, etc) of the ethanol-water binary mixture also show irregularities around xEtOH =0.10-0.15. We have also discovered that the hydrogen bonding pattern of ethanol rather than water reveals a change in trend near the similar composition range. As the anomalous behaviour of the physical/dynamical properties along with the pair hydrophobicity in aqueous binary mixture of amphiphilic solutes is common phenomena, our results may provide a general viewpoint on these aspects.
"One-sample concept" micro-combinatory for high throughput TEM of binary films.
Sáfrán, György
2018-04-01
Phases of thin films may remarkably differ from that of bulk. Unlike to the comprehensive data files of Binary Phase Diagrams [1] available for bulk, complete phase maps for thin binary layers do not exist. This is due to both the diverse metastable, non-equilibrium or instable phases feasible in thin films and the required volume of characterization work with analytical techniques like TEM, SAED and EDS. The aim of the present work was to develop a method that remarkably facilitates the TEM study of the diverse binary phases of thin films, or the creation of phase maps. A micro-combinatorial method was worked out that enables both preparation and study of a gradient two-component film within a single TEM specimen. For a demonstration of the technique thin Mn x Al 1- x binary samples with evolving concentration from x = 0 to x = 1 have been prepared so that the transition from pure Mn to pure Al covers a 1.5 mm long track within the 3 mm diameter TEM grid. The proposed method enables the preparation and study of thin combinatorial samples including all feasible phases as a function of composition or other deposition parameters. Contrary to known "combinatorial chemistry", in which a series of different samples are deposited in one run, and investigated, one at a time, the present micro-combinatorial method produces a single specimen condensing a complete library of a binary system that can be studied, efficiently, within a single TEM session. That provides extremely high throughput for TEM characterization of composition-dependent phases, exploration of new materials, or the construction of phase diagrams of binary films. Copyright © 2018 Elsevier B.V. All rights reserved.
Jung, Hee Joon; Huh, June; Park, Cheolmin
2012-10-21
This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm(-1)). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.
Selective Encaging of N2O in N2O-N2 Binary Gas Hydrates via Hydrate-Based Gas Separation.
Yang, Youjeong; Shin, Donghoon; Choi, Seunghyun; Woo, Yesol; Lee, Jong-Won; Kim, Dongseon; Shin, Hee-Young; Cha, Minjun; Yoon, Ji-Ho
2017-03-21
The crystal structure and guest inclusion behaviors of nitrous oxide-nitrogen (N 2 O-N 2 ) binary gas hydrates formed from N 2 O/N 2 gas mixtures are determined through spectroscopic analysis. Powder X-ray diffraction results indicate that the crystal structure of all the N 2 O-N 2 binary gas hydrates is identified as the structure I (sI) hydrate. Raman spectra for the N 2 O-N 2 binary gas hydrate formed from N 2 O/N 2 (80/20, 60/40, 40/60 mol %) gas mixtures reveal that N 2 O molecules occupy both large and small cages of the sI hydrate. In contrast, there is a single Raman band of N 2 O molecules for the N 2 O-N 2 binary gas hydrate formed from the N 2 O/N 2 (20/80 mol %) gas mixture, indicating that N 2 O molecules are trapped in only large cages of the sI hydrate. From temperature-dependent Raman spectra and the Predictive Soave-Redlich-Kwong (PSRK) model calculation, we confirm the self-preservation of N 2 O-N 2 binary gas hydrates in the temperature range of 210-270 K. Both the experimental measurements and the PSRK model calculations demonstrate the preferential occupation of N 2 O molecules rather than N 2 molecules in the hydrate cages, leading to a possible process for separating N 2 O from gas mixtures via hydrate formation. The phase equilibrium conditions, pseudo-pressure-composition (P-x) diagram, and gas storage capacity of N 2 O-N 2 binary gas hydrates are discussed in detail.
NASA Astrophysics Data System (ADS)
Jung, Hee Joon; Huh, June; Park, Cheolmin
2012-09-01
This feature article describes a new and facile process to fabricate a variety of thin films of non-volatile binary solute mixtures suitable for high performance organic electronic devices via electro-hydrodynamic flow of conventional corona discharge. Both Corona Discharge Coating (CDC) and a modified version of CDC, Scanning Corona Discharge Coating (SCDC), are based on utilizing directional electric flow, known as corona wind, of the charged uni-polar particles generated by corona discharge between a metallic needle and a bottom plate under a high electric field (5-10 kV cm-1). The electric flow rapidly spreads out the binary mixture solution on the bottom plate and subsequently forms a smooth and flat thin film in a large area within a few seconds. In the case of SCDC, the static movement of the bottom electrode on which a binary mixture solution is placed provides further control of thin film formation, giving rise to a film highly uniform over a large area. Interesting phase separation behaviors were observed including nanometer scale phase separation of a polymer-polymer binary mixture and vertical phase separation of a polymer-organic semiconductor mixture. Core-shell type phase separation of either polymer-polymer or polymer-colloidal nanoparticle binary mixtures was also developed with a periodically patterned microstructure when the relative location of the corona wind was controlled to a binary solution droplet on a substrate. We also demonstrate potential applications of thin functional films with controlled microstructures by corona coating to various organic electronic devices such as electroluminescent diodes, field effect transistors and non-volatile polymer memories.
NASA Astrophysics Data System (ADS)
Boone, Kyle Robert; Aldering, Gregory; Copin, Yannick; Dixon, Samantha; Domagalski, Rachel; Gangler, Emmanuel; Pecontal, Emmanuel; Perlmutter, Saul; Nearby Supernova Factory Collaboration
2018-01-01
We discovered an anomalous behavior of CCD readout electronics that affects their use in many astronomical applications, which we call the “binary offset effect”. Due to feedback in the readout electronics, an offset is introduced in the values read out for each pixel that depends on the binary encoding of the previously read-out pixel values. One consequence of this effect is that a pathological local background offset can be introduced in images that only appears where science data are present on the CCD. The amplitude of this introduced offset does not scale monotonically with the amplitude of the objects in the image, and can be up to 4.5 ADU per pixel for certain instruments. Additionally, this background offset will be shifted by several pixels from the science data, potentially distorting the shape of objects in the image. We tested 22 instruments for signs of the binary offset effect and found evidence of it in 16 of them, including LRIS and DEIMOS on the Keck telescopes, WFC3-UVIS and STIS on HST, MegaCam on CFHT, SNIFS on the UH88 telescope, GMOS on the Gemini telescopes, HSC on Subaru, and FORS on VLT. A large amount of archival data is therefore affected by the binary offset effect, and conventional methods of reducing CCD images do not measure or remove the introduced offsets. As a demonstration of how to correct for the binary offset effect, we have developed a model that can accurately predict and remove the introduced offsets for the SNIFS instrument on the UH88 telescope. Accounting for the binary offset effect is essential for precision low-count astronomical observations with CCDs.
Measuring Parameters of Massive Black Hole Binaries with Partially Aligned Spins
NASA Technical Reports Server (NTRS)
Lang, Ryan N.; Hughes, Scott A.; Cornish, Neil J.
2011-01-01
The future space-based gravitational wave detector LISA will be able to measure parameters of coalescing massive black hole binaries, often to extremely high accuracy. Previous work has demonstrated that the black hole spins can have a strong impact on the accuracy of parameter measurement. Relativistic spin-induced precession modulates the waveform in a manner which can break degeneracies between parameters, in principle significantly improving how well they are measured. Recent studies have indicated, however, that spin precession may be weak for an important subset of astrophysical binary black holes: those in which the spins are aligned due to interactions with gas. In this paper, we examine how well a binary's parameters can be measured when its spins are partially aligned and compare results using waveforms that include higher post-Newtonian harmonics to those that are truncated at leading quadrupole order. We find that the weakened precession can substantially degrade parameter estimation, particularly for the "extrinsic" parameters sky position and distance. Absent higher harmonics, LISA typically localizes the sky position of a nearly aligned binary about an order of magnitude less accurately than one for which the spin orientations are random. Our knowledge of a source's sky position will thus be worst for the gas-rich systems which are most likely to produce electromagnetic counterparts. Fortunately, higher harmonics of the waveform can make up for this degradation. By including harmonics beyond the quadrupole in our waveform model, we find that the accuracy with which most of the binary's parameters are measured can be substantially improved. In some cases, the improvement is such that they are measured almost as well as when the binary spins are randomly aligned.
Detecting unresolved binary stars in Euclid VIS images
NASA Astrophysics Data System (ADS)
Kuntzer, T.; Courbin, F.
2017-10-01
Measuring a weak gravitational lensing signal to the level required by the next generation of space-based surveys demands exquisite reconstruction of the point-spread function (PSF). However, unresolved binary stars can significantly distort the PSF shape. In an effort to mitigate this bias, we aim at detecting unresolved binaries in realistic Euclid stellar populations. We tested methods in numerical experiments where (I) the PSF shape is known to Euclid requirements across the field of view; and (II) the PSF shape is unknown. We drew simulated catalogues of PSF shapes for this proof-of-concept paper. Following the Euclid survey plan, the objects were observed four times. We propose three methods to detect unresolved binary stars. The detection is based on the systematic and correlated biases between exposures of the same object. One method is a simple correlation analysis, while the two others use supervised machine-learning algorithms (random forest and artificial neural network). In both experiments, we demonstrate the ability of our methods to detect unresolved binary stars in simulated catalogues. The performance depends on the level of prior knowledge of the PSF shape and the shape measurement errors. Good detection performances are observed in both experiments. Full complexity, in terms of the images and the survey design, is not included, but key aspects of a more mature pipeline are discussed. Finding unresolved binaries in objects used for PSF reconstruction increases the quality of the PSF determination at arbitrary positions. We show, using different approaches, that we are able to detect at least binary stars that are most damaging for the PSF reconstruction process. The code corresponding to the algorithms used in this work and all scripts to reproduce the results are publicly available from a GitHub repository accessible via http://lastro.epfl.ch/software
Flacher, Floriane; Raynaud, Xavier; Hansart, Amandine; Motard, Eric; Dajoz, Isabelle
2015-01-01
Plant traits related to attractiveness to pollinators (e.g. flowers and nectar) can be sensitive to abiotic or biotic conditions. Soil nutrient availability, as well as interactions among insect-pollinated plants species, can induce changes in flower and nectar production. However, further investigations are needed to determine the impact of interactions between insect-pollinated species and abiotically pollinated species on such floral traits, especially floral rewards. We carried out a pot experiment in which three insect-pollinated plant species were grown in binary mixtures with four wind-pollinated plant species, differing in their competitive ability. Along the flowering period, we measured floral traits of the insect-pollinated species involved in attractiveness to pollinators (i.e. floral display size, flower size, daily and total 1) flower production, 2) nectar volume, 3) amount of sucrose allocated to nectar). Final plant biomass was measured to quantify competitive interactions. For two out of three insect-pollinated species, we found that the presence of a wind-pollinated species can negatively impact floral traits involved in attractiveness to pollinators. This effect was stronger with wind-pollinated species that induced stronger competitive interactions. These results stress the importance of studying the whole plant community (and not just the insect-pollinated plant community) when working on plant-pollinator interactions. PMID:26335409
V and K-band Mass-Luminosity Relations for M Dwarf Stars
NASA Astrophysics Data System (ADS)
Benedict, George Frederick; Henry, Todd J.; McArthur, Barbara E.; Franz, Otto; Wasserman, Larry H.; Dieterich, Sergio
2015-08-01
Applying Hubble Space Telescope Fine Guidance Sensor astrometric techniques developed to establish relative orbits for binary stars (Franz et al. 1998, AJ, 116, 1432), determine masses of binary components (Benedict et al. 2001, AJ, 121, 1607), and measure companion masses of exoplanet host stars (McArthur et al. 2010, ApJ, 715, 1203), we derive masses with an average 2% error for 28 components of 14 M dwarf binary star systems. With these and other published masses we update the lower Main Sequence V-band Mass-Luminosity Relation first shown in Henry et al. 1999, ApJ, 512, 864. We demonstrate that a Mass-Luminosity Relation in the K-band has far less scatter. These relations can be used to estimate the masses of the ubiquitous red dwarfs (75% of all stars) to an accuracy of better than 5%.
Comparison of NRZ and duo-binary format in adaptive equalization assisted 10G-optics based 25G-EPON
NASA Astrophysics Data System (ADS)
Xia, Junqi; Li, Zhengxuan; Li, Yingchun; Xu, Tingting; Chen, Jian; Song, Yingxiong; Wang, Min
2018-03-01
We investigate and compare the requirements of FFE/DFE based adaptive equalization techniques for NRZ and Duo-binary based 25-Gb/s transmission, which are two of the most promising schemes for 25G-EPON. A 25-Gb/s transmission system based on 10G optical transceivers is demonstrated and the performance of only FFE and combination of FFE and DFE with different number of taps are compared with two modulation formats. The FFE/DFE based Duo-binary receiver shows better performance than NRZ receiver. For Duo-binary receiver, only 13-tap FFE is needed for BtB case and the combination of 17-tap FFE and 5-tap DFE can achieve a sensitivity of -23.45 dBm in 25 km transmission case, which is ∼0.6 dB better than the best performance of NRZ equalization. In addition, the requirements of training sequence length for FFE/DFE based adaptive equalization is verified. Experimental results show that 400 symbols training length is optimal for the two modulations, which shows a small packet preamble in up-stream burst-mode transmission.
Crowd-Sourced Help with Emergent Knowledge for Optimized Formal Verification (CHEKOFV)
2016-03-01
up game Binary Fission, which was deployed during Phase Two of CHEKOFV. Xylem: The Code of Plants is a casual game for players using mobile ...there are the design and engineering challenges of building a game infrastructure that integrates verification technology with crowd participation...the backend processes that annotate the originating software. Allowing players to construct their own equations opened up the flexibility to receive
The Double Asteroid Redirection Test (DART)
NASA Astrophysics Data System (ADS)
Rivkin, A.; Cheng, A. F.; Stickle, A. M.; Richardson, D. C.; Barnouin, O. S.; Thomas, C.; Fahnestock, E.
2017-12-01
The Double Asteroid Redirection Test (DART) will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. DART is currently in Preliminary Design Phase ("Phase B"), and is part of the Asteroid Impact and Deflection Assessment (AIDA), a joint ESA-NASA cooperative project. The AIDA target is the near-Earth binary asteroid 65803 Didymos, an S-class system that will make a close approach to Earth in fall 2022. The DART spacecraft is designed to impact the Didymos secondary at 6 km/s and demonstrate the ability to modify its trajectory through momentum transfer. The primary goals of AIDA are (1) perform a full-scale demonstration of the spacecraft kinetic impact technique for deflection of an asteroid; (2) measure the resulting asteroid deflection, by targeting the secondary member of a binary NEO and measuring the resulting changes of the binary orbit; and (3) study hyper-velocity collision effects on an asteroid, validating models for momentum transfer in asteroid impacts. The DART impact on the Didymos secondary will change the orbital period of the binary by several minutes, which can be measured by Earth-based optical and radar observations. The baseline DART mission launches in late 2020 to impact the Didymos secondary in 2022 near the time of its close pass of Earth, which enables an array of ground- and space-based observatories to participate in gathering data. The AIDA project will provide the first measurements of momentum transfer efficiency from hyper-velocity kinetic impact at full scale on an asteroid, where the impact conditions of the projectile are known, and physical properties and internal structures of the target asteroid are characterized or constrained. The DART kinetic impact is predicted to make a crater of 6 to 17 meters diameter, depending on target physical properties, but will also release a large volume of particulate ejecta that may be directly observable from Earth or even resolvable as a coma or an ejecta tail by ground-based telescopes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humme, J.T.; Tanaka, M.T.; Yokota, M.H.
1979-07-01
The purpose of this study was to determine the feasibility of geothermal resource utilization at the Puna Sugar Company cane sugar processing plant, located in Keaau, Hawaii. A proposed well site area was selected based on data from surface exploratory surveys. The liquid dominated well flow enters a binary thermal arrangement, which results in an acceptable quality steam for process use. Hydrogen sulfide in the well gases is incinerated, leaving sulfur dioxide in the waste gases. The sulfur dioxide in turn is recovered and used in the cane juice processing at the sugar factory. The clean geothermal steam from themore » binary system can be used directly for process requirements. It replaces steam generated by the firing of the waste fibrous product from cane sugar processing. The waste product, called bagasse, has a number of alternative uses, but an evaluation clearly indicated it should continue to be employed for steam generation. This steam, no longer required for process demands, can be directed to increased electric power generation. Revenues gained by the sale of this power to the utility, in addition to other savings developed through the utilization of geothermal energy, can offset the costs associated with hydrothermal utilization.« less
NASA Astrophysics Data System (ADS)
Valsecchi, Francesca
Binary star systems hosting black holes, neutron stars, and white dwarfs are unique laboratories for investigating both extreme physical conditions, and stellar and binary evolution. Black holes and neutron stars are observed in X-ray binaries, where mass accretion from a stellar companion renders them X-ray bright. Although instruments like Chandra have revolutionized the field of X-ray binaries, our theoretical understanding of their origin and formation lags behind. Progress can be made by unravelling the evolutionary history of observed systems. As part of my thesis work, I have developed an analysis method that uses detailed stellar models and all the observational constraints of a system to reconstruct its evolutionary path. This analysis models the orbital evolution from compact-object formation to the present time, the binary orbital dynamics due to explosive mass loss and a possible kick at core collapse, and the evolution from the progenitor's Zero Age Main Sequence to compact-object formation. This method led to a theoretical model for M33 X-7, one of the most massive X-ray binaries known and originally marked as an evolutionary challenge. Compact objects are also expected gravitational wave (GW) sources. In particular, double white dwarfs are both guaranteed GW sources and observed electromagnetically. Although known systems show evidence of tidal deformation and a successful GW astronomy requires realistic models of the sources, detached double white dwarfs are generally approximated to point masses. For the first time, I used realistic models to study tidally-driven periastron precession in eccentric binaries. I demonstrated that its imprint on the GW signal yields constrains on the components' masses and that the source would be misclassified if tides are neglected. Beyond this adiabatic precession, tidal dissipation creates a sink of orbital angular momentum. Its efficiency is strongest when tides are dynamic and excite the components' free oscillation modes. Accounting for this effect will determine whether our interpretation of current and future observations will constrain the sources' true physical properties. To investigate dynamic tides I have developed CAFein, a novel code that calculates forced non-adiabatic stellar oscillations using a highly stable and efficient numerical method.
Fast Localization in Large-Scale Environments Using Supervised Indexing of Binary Features.
Youji Feng; Lixin Fan; Yihong Wu
2016-01-01
The essence of image-based localization lies in matching 2D key points in the query image and 3D points in the database. State-of-the-art methods mostly employ sophisticated key point detectors and feature descriptors, e.g., Difference of Gaussian (DoG) and Scale Invariant Feature Transform (SIFT), to ensure robust matching. While a high registration rate is attained, the registration speed is impeded by the expensive key point detection and the descriptor extraction. In this paper, we propose to use efficient key point detectors along with binary feature descriptors, since the extraction of such binary features is extremely fast. The naive usage of binary features, however, does not lend itself to significant speedup of localization, since existing indexing approaches, such as hierarchical clustering trees and locality sensitive hashing, are not efficient enough in indexing binary features and matching binary features turns out to be much slower than matching SIFT features. To overcome this, we propose a much more efficient indexing approach for approximate nearest neighbor search of binary features. This approach resorts to randomized trees that are constructed in a supervised training process by exploiting the label information derived from that multiple features correspond to a common 3D point. In the tree construction process, node tests are selected in a way such that trees have uniform leaf sizes and low error rates, which are two desired properties for efficient approximate nearest neighbor search. To further improve the search efficiency, a probabilistic priority search strategy is adopted. Apart from the label information, this strategy also uses non-binary pixel intensity differences available in descriptor extraction. By using the proposed indexing approach, matching binary features is no longer much slower but slightly faster than matching SIFT features. Consequently, the overall localization speed is significantly improved due to the much faster key point detection and descriptor extraction. It is empirically demonstrated that the localization speed is improved by an order of magnitude as compared with state-of-the-art methods, while comparable registration rate and localization accuracy are still maintained.
Study of binary asteroids with three space missions
NASA Astrophysics Data System (ADS)
Kovalenko, Irina; Doressoundiram, Alain; Hestroffer, Daniel
Binary and multiple asteroids are common in the Solar system and encountered in various places going from Near-Earth region, to the main-belt, Trojans and Centaurs, and beyond Neptune. Their study can provide insight on the Solar System formation and its subsequent dynamical evolution. Binaries are also objects of high interest because they provide fundamental physical parameters such as mass and density, and hence clues on the early Solar System, or other processes that are affecting asteroid over time. We will present our current project on analysis of such systems based on three space missions. The first one is the Herschel space observatory (ESA), the largest infrared telescope ever launched. Thirty Centaurs and trans-Neptunian binaries were observed by Herschel and the measurement allowed to define size, albedo and thermal properties [1]. The second one is the satellite Gaia (ESA). This mission is designed to chart a three-dimensional map of the Galaxy. Gaia will provide positional measurements of Solar System Objects - including asteroid binaries - with unprecedented accuracy [2]. And the third one is the proposed mission AIDA, which would study the effects of crashing a spacecraft into an asteroid [3]. The objectives are to demonstrate the ability to modify the trajectory of an asteroid, to precisely measure its trajectory change, and to characterize its physical properties. The target of this mission is a binary system: (65803) Didymos. This encompasses orbital characterisations for both astrometric and resolved binaries, as well as unbound orbit, study of astrometric binaries, derivation of densities, and general statistical analysis of physical and orbital properties of trans-Neptunian and other asteroid binaries. Acknowledgements : work supported by Labex ESEP (ANR N° 2011-LABX-030) [1] Müller T., Lellouch E., Stansberry J. et al. 2009. TNOs are Cool: A Survey of the Transneptunian Region. EM&P 105, 209-219. [2] Mignard F., Cellino A., Muinonen K. et al. 2007. The Gaia Mission: Expected Applications to Asteroid Science. EM&P 1001, 97-125. [3] Galvez A., Carnelli I. et al. 2013. AIDA: The Asteroid Impact & Deflection Assessment Mission. EPSC 2013 - 1043.
COBRA: a Bayesian approach to pulsar searching
NASA Astrophysics Data System (ADS)
Lentati, L.; Champion, D. J.; Kramer, M.; Barr, E.; Torne, P.
2018-02-01
We introduce COBRA, a GPU-accelerated Bayesian analysis package for performing pulsar searching, that uses candidates from traditional search techniques to set the prior used for the periodicity of the source, and performs a blind search in all remaining parameters. COBRA incorporates models for both isolated and accelerated systems, as well as both Keplerian and relativistic binaries, and exploits pulse phase information to combine search epochs coherently, over time, frequency or across multiple telescopes. We demonstrate the efficacy of our approach in a series of simulations that challenge typical search techniques, including highly aliased signals, and relativistic binary systems. In the most extreme case, we simulate an 8 h observation containing 24 orbits of a pulsar in a binary with a 30 M⊙ companion. Even in this scenario we show that we can build up from an initial low-significance candidate, to fully recovering the signal. We also apply the method to survey data of three pulsars from the globular cluster 47Tuc: PSRs J0024-7204D, J0023-7203J and J0024-7204R. This final pulsar is in a 1.6 h binary, the shortest of any pulsar in 47Tuc, and additionally shows significant scintillation. By allowing the amplitude of the source to vary as a function of time, however, we show that we are able to obtain optimal combinations of such noisy data. We also demonstrate the ability of COBRA to perform high-precision pulsar timing directly on the single pulse survey data, and obtain a 95 per cent upper limit on the eccentricity of PSR J0024-7204R of εb < 0.0007.
Tracing thallium contamination in soils using isotopes
NASA Astrophysics Data System (ADS)
Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Ettler, Vojtěch; Trubač, Jakub; Teper, Leslaw; Cabala, Jerzy; Rohovec, Jan; Penížek, Vít; Zádorová, Tereza; Pavlů, Lenka; Holubík, Ondřej; Drábek, Ondřej; Němeček, Karel; Houška, Jakub; Ash, Christopher
2017-04-01
We report the thallium (Tl) isotope record in moderately contaminated soils, which have been historically affected by emissions from coal-fired power plants. Our findings clearly demonstrate that Tl of anthropogenic (high-temperature) origin with light isotope composition was deposited onto the studied soils, where heavier Tl (ɛ205Tl -1) naturally occurs. The results show a positive linear relationship (R2 = 0.71) between 1/Tl and the isotope record, as determined for all the soils and bedrocks, also indicative of binary Tl mixing between two dominant reservoirs. We also identified significant Tl isotope variations within the products from coal combustion and thermo-desorption experiments with local Tl-rich coal pyrite. Bottom ash exhibited the heaviest Tl isotope composition (ɛ205Tl 0), followed by fly ash (ɛ205Tl between -2.5 and -2.8) and volatile Tl fractions (ɛ205Tl between -6.2 and -10.3), suggesting partial Tl isotope fractionations. Despite the evident role of soil processes in the isotope redistribution, we demonstrate that Tl contamination can be traced in soils, and propose that the isotope data represent a possible tool to aid our understanding of post-depositional Tl dynamics in surface environments for the future. This research was supported by the Czech Science Foundation (grant no. 14-01866S and 17-03211S).
A Laboratory Study of X-to-Frequency Converters.
ERIC Educational Resources Information Center
Kartalopoulos, Stamatios V.
1979-01-01
Describes a laboratory demonstration that can be used to convert an analog quantity into frequency, which can then be converted into a binary measure using either an oscilloscope or a frequency counter. (MA)
Broadband and chiral binary dielectric meta-holograms.
Khorasaninejad, Mohammadreza; Ambrosio, Antonio; Kanhaiya, Pritpal; Capasso, Federico
2016-05-01
Subwavelength structured surfaces, known as meta-surfaces, hold promise for future compact and optically thin devices with versatile functionalities. By revisiting the concept of detour phase, we demonstrate high-efficiency holograms with broadband and chiral imaging functionalities. In our devices, the apertures of binary holograms are replaced by subwavelength structured microgratings. We achieve broadband operation from the visible to the near infrared and efficiency as high as 75% in the 1.0 to 1.4 μm range by compensating for the inherent dispersion of the detour phase with that of the subwavelength structure. In addition, we demonstrate chiral holograms that project different images depending on the handedness of the reference beam by incorporating a geometric phase. Our devices' compactness, lightness, and ability to produce images even at large angles have significant potential for important emerging applications such as wearable optics.
Broadband and chiral binary dielectric meta-holograms
Khorasaninejad, Mohammadreza; Ambrosio, Antonio; Kanhaiya, Pritpal; Capasso, Federico
2016-01-01
Subwavelength structured surfaces, known as meta-surfaces, hold promise for future compact and optically thin devices with versatile functionalities. By revisiting the concept of detour phase, we demonstrate high-efficiency holograms with broadband and chiral imaging functionalities. In our devices, the apertures of binary holograms are replaced by subwavelength structured microgratings. We achieve broadband operation from the visible to the near infrared and efficiency as high as 75% in the 1.0 to 1.4 μm range by compensating for the inherent dispersion of the detour phase with that of the subwavelength structure. In addition, we demonstrate chiral holograms that project different images depending on the handedness of the reference beam by incorporating a geometric phase. Our devices’ compactness, lightness, and ability to produce images even at large angles have significant potential for important emerging applications such as wearable optics. PMID:27386518
Phase-field crystal modeling of compositional domain formation in ultrathin films.
Muralidharan, Srevatsan; Haataja, Mikko
2010-09-17
Bulk-immiscible binary systems often form stress-induced miscible alloy phases when deposited on a substrate. Both alloying and surface dislocation formation lead to the decrease of the elastic strain energy, and the competition between these two strain-relaxation mechanisms gives rise to the emergence of pseudomorphic compositional nanoscale domains, often coexisting with a partially coherent single phase. In this work, we develop a phase-field crystal model for compositional patterning in monolayer aggregates of binary metallic systems. We first demonstrate that the model naturally incorporates the competition between alloying and misfit dislocations, and quantify the effects of misfit and line tension on equilibrium domain size. Then, we quantitatively relate the parameters of the phase-field crystal model to a specific system, CoAg/Ru(0001), and demonstrate that the simulations capture experimentally observed morphologies.
EPIC 219217635: A Doubly Eclipsing Quadruple System Containing an Evolved Binary
NASA Astrophysics Data System (ADS)
Borkovits, T.; Albrecht, S.; Rappaport, S.; Nelson, L.; Vanderburg, A.; Gary, B. L.; Tan, T. G.; Justesen, A. B.; Kristiansen, M. H.; Jacobs, T. L.; LaCourse, D.; Ngo, H.; Wallack, N.; Ruane, G.; Mawet, D.; Howell, S. B.; Tronsgaard, R.
2018-05-01
We have discovered a doubly eclipsing, bound, quadruple star system in the field of K2 Campaign 7. EPIC 219217635 is a stellar image with Kp = 12.7 that contains an eclipsing binary (`EB') with PA = 3.59470 d and a second EB with PB = 0.61825 d. We have obtained followup radial-velocity (`RV') spectroscopy observations, adaptive optics imaging, as well as ground-based photometric observations. From our analysis of all the observations, we derive good estimates for a number of the system parameters. We conclude that (1) both binaries are bound in a quadruple star system; (2) a linear trend to the RV curve of binary A is found over a 2-year interval, corresponding to an acceleration, \\dot{γ }= 0.0024 ± 0.0007 cm s-2; (3) small irregular variations are seen in the eclipse-timing variations (`ETVs') detected over the same interval; (4) the orbital separation of the quadruple system is probably in the range of 8-25 AU; and (5) the orbital planes of the two binaries must be inclined with respect to each other by at least 25°. In addition, we find that binary B is evolved, and the cooler and currently less massive star has transferred much of its envelope to the currently more massive star. We have also demonstrated that the system is sufficiently bright that the eclipses can be followed using small ground-based telescopes, and that this system may be profitably studied over the next decade when the outer orbit of the quadruple is expected to manifest itself in the ETV and/or RV curves.
NASA Astrophysics Data System (ADS)
Hwang, Han-Jeong; Choi, Han; Kim, Jeong-Youn; Chang, Won-Du; Kim, Do-Won; Kim, Kiwoong; Jo, Sungho; Im, Chang-Hwan
2016-09-01
In traditional brain-computer interface (BCI) studies, binary communication systems have generally been implemented using two mental tasks arbitrarily assigned to "yes" or "no" intentions (e.g., mental arithmetic calculation for "yes"). A recent pilot study performed with one paralyzed patient showed the possibility of a more intuitive paradigm for binary BCI communications, in which the patient's internal yes/no intentions were directly decoded from functional near-infrared spectroscopy (fNIRS). We investigated whether such an "fNIRS-based direct intention decoding" paradigm can be reliably used for practical BCI communications. Eight healthy subjects participated in this study, and each participant was administered 70 disjunctive questions. Brain hemodynamic responses were recorded using a multichannel fNIRS device, while the participants were internally expressing "yes" or "no" intentions to each question. Different feature types, feature numbers, and time window sizes were tested to investigate optimal conditions for classifying the internal binary intentions. About 75% of the answers were correctly classified when the individual best feature set was employed (75.89% ±1.39 and 74.08% ±2.87 for oxygenated and deoxygenated hemoglobin responses, respectively), which was significantly higher than a random chance level (68.57% for p<0.001). The kurtosis feature showed the highest mean classification accuracy among all feature types. The grand-averaged hemodynamic responses showed that wide brain regions are associated with the processing of binary implicit intentions. Our experimental results demonstrated that direct decoding of internal binary intention has the potential to be used for implementing more intuitive and user-friendly communication systems for patients with motor disabilities.
Ge, Yaxin; Wang, Zeng-Yu
2006-01-01
Bermudagrass is an important warm-season forage and turf species widely grown in the southern United States. This chapter describes a rapid and efficient protocol that allows for the generation of a large number of transgenic bermudagrass plants, bypassing the callus formation phase. Stolon nodes are infected and co-cultivated with Agrobacterium tumefaciens harboring pCAMBIA binary vectors. Hygromycin phosphotransferase gene (hph) is used as the selectable marker and hygromycin is used as the selection agent. Green shoots are directly produced from infected stolon nodes 4 to 5 wk after hygromycin selection. Without callus formation and with minimum tissue culture, this procedure allowed us to obtain well-rooted transgenic plantlets in only 7 wk and greenhouse-grown plants in only 9 wk.
Heat Transfer and Pressure Drop in Concentric Annular Flows of Binary Inert Gas Mixtures
NASA Technical Reports Server (NTRS)
Reid, R. S.; Martin, J. J.; Yocum, D. J.; Stewart, E. T.
2007-01-01
Studies of heat transfer and pressure drop of binary inert gas mixtures flowing through smooth concentric circular annuli, tubes with fully developed velocity profiles, and constant heating rate are described. There is a general lack of agreement among the constant property heat transfer correlations for such mixtures. No inert gas mixture data exist for annular channels. The intent of this study was to develop highly accurate and benchmarked pressure drop and heat transfer correlations that can be used to size heat exchangers and cores for direct gas Brayton nuclear power plants. The inside surface of the annular channel is heated while the outer surface of the channel is insulated. Annulus ratios range 0.5 < r* < 0.83. These smooth tube data may serve as a reference to the heat transfer and pressure drop performance in annuli, tubes, and channels having helixes or spacer ribs, or other surfaces.
NASA Astrophysics Data System (ADS)
Lasfargues, Mathieu; Bell, Andrew; Ding, Yulong
2016-06-01
In this study, TiO2 nanoparticles (average particle size 16 nm) were successfully produced in molten salt phase and were showed to significantly enhance the specific heat capacity of a binary eutectic mixture of sodium and potassium nitrate (60/40) by 5.4 % at 390 °C and 7.5 % at 445 °C for 3.0 wt% of precursors used. The objective of this research was to develop a cost-effective alternate method of production which is potentially scalable, as current techniques utilized are not economically viable for large quantities. Enhancing the specific heat capacity of molten salt would promote more competitive pricing for electricity production by concentrating solar power plant. Here, a simple precursor (TiOSO4) was added to a binary eutectic mixture of potassium and sodium nitrate, heated to 450 °C, and cooled to witness the production of nanoparticles.
NASA Astrophysics Data System (ADS)
Hobler, Gerhard
2015-06-01
Many experiments indicate the importance of stress and stress relaxation upon ion implantation. In this paper, a model is proposed that is capable of describing ballistic effects as well as stress relaxation by viscous flow. It combines atomistic binary collision simulation with continuum mechanics. The only parameters that enter the continuum model are the bulk modulus and the radiation-induced viscosity. The shear modulus can also be considered but shows only minor effects. A boundary-fitted grid is proposed that is usable both during the binary collision simulation and for the spatial discretization of the force balance equations. As an application, the milling of a slit into an amorphous silicon membrane with a 30 keV focused Ga beam is studied, which demonstrates the relevance of the new model compared to a more heuristic approach used in previous work.
Deterministic binary vectors for efficient automated indexing of MEDLINE/PubMed abstracts.
Wahle, Manuel; Widdows, Dominic; Herskovic, Jorge R; Bernstam, Elmer V; Cohen, Trevor
2012-01-01
The need to maintain accessibility of the biomedical literature has led to development of methods to assist human indexers by recommending index terms for newly encountered articles. Given the rapid expansion of this literature, it is essential that these methods be scalable. Document vector representations are commonly used for automated indexing, and Random Indexing (RI) provides the means to generate them efficiently. However, RI is difficult to implement in real-world indexing systems, as (1) efficient nearest-neighbor search requires retaining all document vectors in RAM, and (2) it is necessary to maintain a store of randomly generated term vectors to index future documents. Motivated by these concerns, this paper documents the development and evaluation of a deterministic binary variant of RI. The increased capacity demonstrated by binary vectors has implications for information retrieval, and the elimination of the need to retain term vectors facilitates distributed implementations, enhancing the scalability of RI.
Deterministic Binary Vectors for Efficient Automated Indexing of MEDLINE/PubMed Abstracts
Wahle, Manuel; Widdows, Dominic; Herskovic, Jorge R.; Bernstam, Elmer V.; Cohen, Trevor
2012-01-01
The need to maintain accessibility of the biomedical literature has led to development of methods to assist human indexers by recommending index terms for newly encountered articles. Given the rapid expansion of this literature, it is essential that these methods be scalable. Document vector representations are commonly used for automated indexing, and Random Indexing (RI) provides the means to generate them efficiently. However, RI is difficult to implement in real-world indexing systems, as (1) efficient nearest-neighbor search requires retaining all document vectors in RAM, and (2) it is necessary to maintain a store of randomly generated term vectors to index future documents. Motivated by these concerns, this paper documents the development and evaluation of a deterministic binary variant of RI. The increased capacity demonstrated by binary vectors has implications for information retrieval, and the elimination of the need to retain term vectors facilitates distributed implementations, enhancing the scalability of RI. PMID:23304369
Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics
NASA Astrophysics Data System (ADS)
Chen, Yu-Zhong; Lai, Ying-Cheng
2018-03-01
Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.
An instrumental variable random-coefficients model for binary outcomes
Chesher, Andrew; Rosen, Adam M
2014-01-01
In this paper, we study a random-coefficients model for a binary outcome. We allow for the possibility that some or even all of the explanatory variables are arbitrarily correlated with the random coefficients, thus permitting endogeneity. We assume the existence of observed instrumental variables Z that are jointly independent with the random coefficients, although we place no structure on the joint determination of the endogenous variable X and instruments Z, as would be required for a control function approach. The model fits within the spectrum of generalized instrumental variable models, and we thus apply identification results from our previous studies of such models to the present context, demonstrating their use. Specifically, we characterize the identified set for the distribution of random coefficients in the binary response model with endogeneity via a collection of conditional moment inequalities, and we investigate the structure of these sets by way of numerical illustration. PMID:25798048
Binary fingerprints at fluctuation-enhanced sensing.
Chang, Hung-Chih; Kish, Laszlo B; King, Maria D; Kwan, Chiman
2010-01-01
We have developed a simple way to generate binary patterns based on spectral slopes in different frequency ranges at fluctuation-enhanced sensing. Such patterns can be considered as binary "fingerprints" of odors. The method has experimentally been demonstrated with a commercial semiconducting metal oxide (Taguchi) sensor exposed to bacterial odors (Escherichia coli and Anthrax-surrogate Bacillus subtilis) and processing their stochastic signals. With a single Taguchi sensor, the situations of empty chamber, tryptic soy agar (TSA) medium, or TSA with bacteria could be distinguished with 100% reproducibility. The bacterium numbers were in the range of 2.5 × 10(4)-10(6). To illustrate the relevance for ultra-low power consumption, we show that this new type of signal processing and pattern recognition task can be implemented by a simple analog circuitry and a few logic gates with total power consumption in the microWatts range.
Effects of normal aging on memory for multiple contextual features.
Gagnon, Sylvain; Soulard, Kathleen; Brasgold, Melissa; Kreller, Joshua
2007-08-01
Twenty-four younger (18-35 years) and 24 older adult participants (65 or older) were exposed to three experimental conditions involving the memorization words and their associated contextual features, with contextual feature complexity increasing from Conditions 1 to 3. In Condition 1, words presented varied only on one binary feature (color, size, or character), while in Conditions 2 and 3, words presented varied on two and three binary features, respectively. Each condition was carried out as follows: (1) learning of a word list; (2) encoding of words and their contextual features; (3) delay; and (4) memory for contextual features through a discrimination task. Results indicated that young adults discriminated more features than older adults on all conditions. In both age groups, contextual feature discrimination accuracy decreased as the number of features increased. Moreover, older adults demonstrated near floor performance when tested with two or more binary features. We conclude that increasing context complexity strains attentional resources.
Composition measurements of binary mixture droplets by rainbow refractometry.
Wilms, J; Weigand, B
2007-04-10
So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup was used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.
NASA Technical Reports Server (NTRS)
Izmailov, Alexander F.; Myerson, Allan S.
1993-01-01
A new mathematical ansatz is developed for solution of the time-dependent Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxation in binary (solute+solvent) non-critical solutions with non-conserved scalar order parameter in presence of a gravitational field. It has been demonstrated analytically that in such systems metastability initiates heterogeneous solute redistribution which results in the formation of a non-equilibrium singly-periodic spatial solute structure in the new solute-rich phase. The critical radius of nucleation and the induction time in these systems are gravity-dependent. It has also been proved that metastable state relaxation in vertical columns of supersaturated non-critical binary solutions leads to formation of the solute concentration gradient. Analytical expression for this concentration gradient is found and analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal decomposition).
High efficiency x-ray nanofocusing by the blazed stacking of binary zone plates
NASA Astrophysics Data System (ADS)
Mohacsi, I.; Karvinen, P.; Vartiainen, I.; Diaz, A.; Somogyi, A.; Kewish, C. M.; Mercere, P.; David, C.
2013-09-01
The focusing efficiency of binary Fresnel zone plate lenses is fundamentally limited and higher efficiency requires a multi step lens profile. To overcome the manufacturing problems of high resolution and high efficiency multistep zone plates, we investigate the concept of stacking two different binary zone plates in each other's optical near-field. We use a coarse zone plate with π phase shift and a double density fine zone plate with π/2 phase shift to produce an effective 4- step profile. Using a compact experimental setup with piezo actuators for alignment, we demonstrated 47.1% focusing efficiency at 6.5 keV using a pair of 500 μm diameter and 200 nm smallest zone width. Furthermore, we present a spatially resolved characterization method using multiple diffraction orders to identify manufacturing errors, alignment errors and pattern distortions and their effect on diffraction efficiency.
Sparse dynamical Boltzmann machine for reconstructing complex networks with binary dynamics.
Chen, Yu-Zhong; Lai, Ying-Cheng
2018-03-01
Revealing the structure and dynamics of complex networked systems from observed data is a problem of current interest. Is it possible to develop a completely data-driven framework to decipher the network structure and different types of dynamical processes on complex networks? We develop a model named sparse dynamical Boltzmann machine (SDBM) as a structural estimator for complex networks that host binary dynamical processes. The SDBM attains its topology according to that of the original system and is capable of simulating the original binary dynamical process. We develop a fully automated method based on compressive sensing and a clustering algorithm to construct the SDBM. We demonstrate, for a variety of representative dynamical processes on model and real world complex networks, that the equivalent SDBM can recover the network structure of the original system and simulates its dynamical behavior with high precision.
Mergers of Black-Hole Binaries with Aligned Spins: Waveform Characteristics
NASA Technical Reports Server (NTRS)
Kelly, Bernard J.; Baker, John G.; vanMeter, James R.; Boggs, William D.; McWilliams, Sean T.; Centrella, Joan
2011-01-01
"We apply our gravitational-waveform analysis techniques, first presented in the context of nonspinning black holes of varying mass ratio [1], to the complementary case of equal-mass spinning black-hole binary systems. We find that, as with the nonspinning mergers, the dominant waveform modes phases evolve together in lock-step through inspiral and merger, supporting the previous model of the binary system as an adiabatically rigid rotator driving gravitational-wave emission - an implicit rotating source (IRS). We further apply the late-merger model for the rotational frequency introduced in [1], along with a new mode amplitude model appropriate for the dominant (2, plus or minus 2) modes. We demonstrate that this seven-parameter model performs well in matches with the original numerical waveform for system masses above - 150 solar mass, both when the parameters are freely fit, and when they are almost completely constrained by physical considerations."
Galactic binary science with the new LISA design
NASA Astrophysics Data System (ADS)
Cornish, Neil; Robson, Travis
2017-05-01
Building on the great success of the LISA Pathfinder mission, the outlines of a new LISA mission design were laid out at the 11th International LISA Symposium in Zurich. The revised design calls for three identical spacecraft forming an equilateral triangle with 2.5 million kilometer sides, and two laser links per side delivering full polarization sensitivity. With the demonstrated Pathfinder performance for the disturbance reduction system, and a well studied design for the laser metrology, it is anticipated that the new mission will have a sensitivity very close to the original LISA design. This implies that the mid-band performance, between 0.5 mHz and 3 mHz, will be limited by unresolved signals from compact binaries in our galaxy. Here we use the new LISA design to compute updated estimates for the galactic confusion noise, the number of resolvable galactic binaries, and the accuracy to which key parameters of these systems can be measured.
Detecting binary neutron star systems with spin in advanced gravitational-wave detectors
NASA Astrophysics Data System (ADS)
Brown, Duncan A.; Harry, Ian; Lundgren, Andrew; Nitz, Alexander H.
2012-10-01
The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars’ angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, cJ/GM2, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational-wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with nonzero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximum signal-to-noise for only 9% (0.2%) of binary neutron star sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.
PHYSICS OF ECLIPSING BINARIES. II. TOWARD THE INCREASED MODEL FIDELITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prša, A.; Conroy, K. E.; Horvat, M.
The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures, and luminosities), yet the models are not capable of reproducing observed data well, either because of the missing physics or because of insufficient precision. This led to a predicament where radiative and dynamical effects, insofar buried in noise, started showing up routinely in the data, but weremore » not accounted for in the models. PHOEBE (PHysics Of Eclipsing BinariEs; http://phoebe-project.org) is an open source modeling code for computing theoretical light and radial velocity curves that addresses both problems by incorporating missing physics and by increasing the computational fidelity. In particular, we discuss triangulation as a superior surface discretization algorithm, meshing of rotating single stars, light travel time effects, advanced phase computation, volume conservation in eccentric orbits, and improved computation of local intensity across the stellar surfaces that includes the photon-weighted mode, the enhanced limb darkening treatment, the better reflection treatment, and Doppler boosting. Here we present the concepts on which PHOEBE is built and proofs of concept that demonstrate the increased model fidelity.« less
NASA Astrophysics Data System (ADS)
Ghosh, Abhirup; Johnson-McDaniel, Nathan K.; Ghosh, Archisman; Kant Mishra, Chandra; Ajith, Parameswaran; Del Pozzo, Walter; Berry, Christopher P. L.; Nielsen, Alex B.; London, Lionel
2018-01-01
Advanced LIGO’s recent observations of gravitational waves (GWs) from merging binary black holes have opened up a unique laboratory to test general relativity (GR) in the highly relativistic regime. One of the tests used to establish the consistency of the first LIGO event with a binary black hole merger predicted by GR was the inspiral-merger-ringdown consistency test. This involves inferring the mass and spin of the remnant black hole from the inspiral (low-frequency) part of the observed signal and checking for the consistency of the inferred parameters with the same estimated from the post-inspiral (high-frequency) part of the signal. Based on the observed rate of binary black hole mergers, we expect the advanced GW observatories to observe hundreds of binary black hole mergers every year when operating at their design sensitivities, most of them with modest signal to noise ratios (SNRs). Anticipating such observations, this paper shows how constraints from a large number of events with modest SNRs can be combined to produce strong constraints on deviations from GR. Using kludge modified GR waveforms, we demonstrate how this test could identify certain types of deviations from GR if such deviations are present in the signal waveforms. We also study the robustness of this test against reasonable variations of a variety of different analysis parameters.
Astrophysical Implications of the Binary Black-hole Merger GW150914
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; and; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration
2016-02-01
The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (≳ 25 {M}⊙ ) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳ 1 Gpc-3 yr-1) from both types of formation models. The low measured redshift (z≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.
Astrophysical Implications of the Binary Black Hole Merger GW150914
NASA Technical Reports Server (NTRS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.;
2016-01-01
The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that in spiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (> or approx. 25 Stellar Mass) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 12 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (> or approx. 1/cu Gpc/yr) from both types of formation models. The low measured redshift (z approx. = 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.
Critical mingling and universal correlations in model binary active liquids
NASA Astrophysics Data System (ADS)
Bain, Nicolas; Bartolo, Denis
2017-06-01
Ensembles of driven or motile bodies moving along opposite directions are generically reported to self-organize into strongly anisotropic lanes. Here, building on a minimal model of self-propelled bodies targeting opposite directions, we first evidence a critical phase transition between a mingled state and a phase-separated lane state specific to active particles. We then demonstrate that the mingled state displays algebraic structural correlations also found in driven binary mixtures. Finally, constructing a hydrodynamic theory, we single out the physical mechanisms responsible for these universal long-range correlations typical of ensembles of oppositely moving bodies.
NASA Astrophysics Data System (ADS)
Taib, L. Abdul; Hadi, M. S. Abdul; Umarov, B. A.
2017-12-01
The existence of dark strongly localized modes of binary discrete media with cubic-quintic nonlinearity is numerically demonstrated by solving the relevant discrete nonlinear Schrödinger equations. In the model, the coupling coefficients between adjacent sites are set to be relatively small representing the anti-continuum limit. In addition, approximated analytical solutions for vectorial solitons with various topologies are derived. Stability analysis of the localized states was performed using the standard linearized eigenfrequency problem. The prediction from the stability analysis are furthermore verified by direct numerical integrations.
Study of hydrogen bonding in ethanol-water binary solutions by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Li, Fabing; Men, Zhiwei; Li, Shuo; Wang, Shenghan; Li, Zhanlong; Sun, Chenglin
2018-01-01
Raman spectra of ethanol-water binary solutions have been observed at room temperature and atmospheric pressure. We find that with increasing ethanol concentration, the symmetric and asymmetric Osbnd H stretching vibrational mode (3286 and 3434 cm- 1) of water are shifted to lower frequency and the weak shoulder peak at 3615 cm- 1 (free OH) disappears. These results indicate that ethanol strengthens hydrogen bonds in water. Simultaneously, our experiment shows that Raman shifts of ethanol reverses when the volume ratio of ethanol and the overall solution is 0.2, which demonstrates that ethanol-water structure undergoes a phase transition.
Reaction-mediated entropic effect on phase separation in a binary polymer system
NASA Astrophysics Data System (ADS)
Sun, Shujun; Guo, Miaocai; Yi, Xiaosu; Zhang, Zuoguang
2017-10-01
We present a computer simulation to study the phase separation behavior induced by polymerization in a binary system comprising polymer chains and reactive monomers. We examined the influence of interaction parameter between components and monomer concentration on the reaction-induced phase separation. The simulation results demonstrate that increasing interaction parameter (enthalpic effect) would accelerate phase separation, while entropic effect plays a key role in the process of phase separation. Furthermore, scanning electron microscopy observations illustrate identical morphologies as found in theoretical simulation. This study may enrich our comprehension of phase separation in polymer mixture.
Binary optical filters for scale invariant pattern recognition
NASA Technical Reports Server (NTRS)
Reid, Max B.; Downie, John D.; Hine, Butler P.
1992-01-01
Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.
Thermodynamic modelling of the C-U and B-U binary systems
NASA Astrophysics Data System (ADS)
Chevalier, P. Y.; Fischer, E.
2001-02-01
The thermodynamic modelling of the carbon-uranium (C-U) and boron-uranium (B-U) binary systems is being performed in the framework of the development of a thermodynamic database for nuclear materials, for increasing the basic knowledge of key phenomena which may occur in the event of a severe accident in a nuclear power plant. Applications are foreseen in the nuclear safety field to the physico-chemical interaction modelling, on the one hand the in-vessel core degradation producing the corium (fuel, zircaloy, steel, control rods) and on the other hand the ex-vessel molten corium-concrete interaction (MCCI). The key O-U-Zr ternary system, previously modelled, allows us to describe the first interaction of the fuel with zircaloy cladding. Then, the three binary systems Fe-U, Cr-U and Ni-U were modelled as a preliminary work for modelling the O-U-Zr-Fe-Cr-Ni multicomponent system, allowing us to introduce the steel components in the corium. In the existing database (TDBCR, thermodynamic data base for corium), Ag and In were introduced for modelling AIC (silver-indium-cadmium) control rods which are used in French pressurized water reactors (PWR). Elsewhere, B 4C is also used for control rods. That is why it was agreed to extend in the next years the database with two new components, B and C. Such a work needs the thermodynamic modelling of all the binary and pseudo-binary sub-systems resulting from the combination of B, B 2O 3 and C with the major components of TDBCR, O-U-Zr-Fe-Cr-Ni-Ag-In-Ba-La-Ru-Sr-Al-Ca-Mg-Si + Ar-H. The critical assessment of the very numerous experimental information available for the C-U and B-U binary systems was performed by using a classical optimization procedure and the Scientific Group Thermodata Europe (SGTE). New optimized Gibbs energy parameters are given, and comparisons between calculated and experimental equilibrium phase diagrams or thermodynamic properties are presented. The self-consistency obtained is quite satisfactory.
NASA Astrophysics Data System (ADS)
Li, Baihong; Dong, Ruifang; Zhou, Conghua; Xiang, Xiao; Li, Yongfang; Zhang, Shougang
2018-05-01
Selective two-photon microscopy and high-precision nonlinear spectroscopy rely on efficient spectral compression at the desired frequency. Previously, a Fresnel-inspired binary phase shaping (FIBPS) method was theoretically proposed for spectral compression of two-photon absorption and second-harmonic generation (SHG) with a square-chirped pulse. Here, we theoretically show that the FIBPS can introduce a negative quadratic frequency phase (negative chirp) by analogy with the spatial-domain phase function of Fresnel zone plate. Thus, the previous theoretical model can be extended to the case where the pulse can be transformed limited and in any symmetrical spectral shape. As an example, we experimentally demonstrate spectral compression in SHG by FIBPS for a Gaussian transform-limited pulse and show good agreement with the theory. Given the fundamental pulse bandwidth, a narrower SHG bandwidth with relatively high intensity can be obtained by simply increasing the number of binary phases. The experimental results also verify that our method is superior to that proposed in [Phys. Rev. A 46, 2749 (1992), 10.1103/PhysRevA.46.2749]. This method will significantly facilitate the applications of selective two-photon microscopy and spectroscopy. Moreover, as it can introduce negative dispersion, hence it can also be generalized to other applications in the field of dispersion compensation.
Geothermal probabilistic cost study
NASA Technical Reports Server (NTRS)
Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.
1981-01-01
A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.
Stellar and Binary Evolution in Star Clusters
NASA Technical Reports Server (NTRS)
McMillan, Stephen L. W.
2001-01-01
This paper presents a final report on research activities covered on Stellar and Binary Evolution in Star Clusters. Substantial progress was made in the development and dissemination of the "Starlab" software environment. Significant improvements were made to "kira," an N-body simulation program tailored to the study of dense stellar systems such as star clusters and galactic nuclei. Key advances include (1) the inclusion of stellar and binary evolution in a self-consistent manner, (2) proper treatment of the anisotropic Galactic tidal field, (3) numerous technical enhancements in the treatment of binary dynamics and interactions, and (4) full support for the special-purpose GRAPE-4 hardware, boosting the program's performance by a factor of 10-100 over the accelerated version. The data-reduction and analysis tools in Starlab were also substantially expanded. A Starlab Web site (http://www.sns.ias.edu/-starlab) was created and developed. The site contains detailed information on the structure and function of the various tools that comprise the package, as well as download information, "how to" tips and examples of common operations, demonstration programs, animations, etc. All versions of the software are freely distributed to all interested users, along with detailed installation instructions.
MnO2 nanosheet mediated "DD-A" FRET binary probes for sensitive detection of intracellular mRNA.
Ou, Min; Huang, Jin; Yang, Xiaohai; Quan, Ke; Yang, Yanjing; Xie, Nuli; Wang, Kemin
2017-01-01
The donor donor-acceptor (DD-A) FRET model has proven to have a higher FRET efficiency than donor-acceptor acceptor (D-AA), donor-acceptor (D-A), and donor donor-acceptor acceptor (DD-AA) FRET models. The in-tube and in-cell experiments clearly demonstrate that the "DD-A" FRET binary probes can indeed increase the FRET efficiency and provide higher imaging contrast, which is about one order of magnitude higher than the ordinary "D-A" model. Furthermore, MnO 2 nanosheets were employed to deliver these probes into living cells for intracellular TK1 mRNA detection because they can adsorb ssDNA probes, penetrate across the cell membrane and be reduced to Mn 2+ ions by intracellular GSH. The results indicated that the MnO 2 nanosheet mediated "DD-A" FRET binary probes are capable of sensitive and selective sensing gene expression and chemical-stimuli changes in gene expression levels in cancer cells. We believe that the MnO 2 nanosheet mediated "DD-A" FRET binary probes have the potential as a simple but powerful tool for basic research and clinical diagnosis.
NASA Astrophysics Data System (ADS)
Yang, Xi; Guo, Wei; Wang, Xixi; Liao, Mingdun; Gao, Pingqi; Ye, Jichun
2017-11-01
2D metallic arrays with binary nanostructures derived from a nanosphere lithography (NSL) method have been rarely reported. Here, we demonstrate a novel NSL strategy to fabricate highly ordered 2D gold arrays with disc-in-hole binary (DIHB) nanostructures in large scale by employing a sacrificing layer combined with a three-step lift-off process. The structural parameters of the resultant DIHB arrays, such as periodicity, hole diameter, disc diameter and thicknesses can be facilely controlled by tuning the nanospheres size, etching condition, deposition angle and duration, respectively. Due to the intimate interactions between two subcomponents, the DIHB arrays exhibit both an extraordinary high surface-enhanced Raman scattering enhancement factor up to 5 × 108 and a low sheet resistance down to 1.7 Ω/sq. Moreover, the DIHB array can also be used as a metal catalyzed chemical etching catalytic pattern to create vertically-aligned Si nano-tube arrays for anti-reflectance application. This strategy provides a universal route for synthesizing other diverse binary nanostructures with controlled morphology, and thus expands the applications of the NSL to prepare ordered nanostructures with multi-function.
Lee, Chan Woo; Yang, Ki Dong; Nam, Dae-Hyun; Jang, Jun Ho; Cho, Nam Heon; Im, Sang Won; Nam, Ki Tae
2018-01-24
While Cu electrodes are a versatile material in the electrochemical production of desired hydrocarbon fuels, Cu binary alloy electrodes are recently proposed to further tune reaction directionality and, more importantly, overcome the intrinsic limitation of scaling relations. Despite encouraging empirical demonstrations of various Cu-based metal alloy systems, the underlying principles of their outstanding performance are not fully addressed. In particular, possible phase segregation with concurrent composition changes, which is widely observed in the field of metallurgy, is not at all considered. Moreover, surface-exposed metals can easily form oxide species, which is another pivotal factor that determines overall catalytic properties. Here, the understanding of Cu binary alloy catalysts for CO 2 reduction and recent progress in this field are discussed. From the viewpoint of the thermodynamic stability of the alloy system and elemental mixing, possible microstructures and naturally generated surface oxide species are proposed. These basic principles of material science can help to predict and understand metal alloy structure and, moreover, act as an inspiration for the development of new binary alloy catalysts to further improve CO 2 conversion and, ultimately, achieve a carbon-neutral cycle. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Binary partition tree analysis based on region evolution and its application to tree simplification.
Lu, Huihai; Woods, John C; Ghanbari, Mohammed
2007-04-01
Pyramid image representations via tree structures are recognized methods for region-based image analysis. Binary partition trees can be applied which document the merging process with small details found at the bottom levels and larger ones close to the root. Hindsight of the merging process is stored within the tree structure and provides the change histories of an image property from the leaf to the root node. In this work, the change histories are modelled by evolvement functions and their second order statistics are analyzed by using a knee function. Knee values show the reluctancy of each merge. We have systematically formulated these findings to provide a novel framework for binary partition tree analysis, where tree simplification is demonstrated. Based on an evolvement function, for each upward path in a tree, the tree node associated with the first reluctant merge is considered as a pruning candidate. The result is a simplified version providing a reduced solution space and still complying with the definition of a binary tree. The experiments show that image details are preserved whilst the number of nodes is dramatically reduced. An image filtering tool also results which preserves object boundaries and has applications for segmentation.
V and K-band Mass-Luminosity Relations for M dwarf Stars
NASA Astrophysics Data System (ADS)
Benedict, G. Fritz; Henry, Todd J.; McArthur, Barbara; Franz, Otto G.; Wasserman, Lawrence H.; Dieterich, Sergio
2015-01-01
Applying Hubble Space Telescope Fine Guidance Sensor astrometric techniques developed to establish relative orbits for binary stars (Franz et al. 1998, AJ, 116, 1432), determine masses of binary components (Benedict et al. 2001, AJ, 121, 1607), and measure companion masses of exoplanet host stars (McArthur et al. 2010, ApJ, 715, 1203), we derive masses with an average 2.1% error for 24 components of 12 M dwarf binary star systems. Masses range 0.08 to 0.40 solar masses. With these we update the lower Main Sequence V-band Mass-Luminosity Relation first shown in Henry et al. (1999, ApJ, 512, 864). We demonstrate that a Mass-Luminosity Relation in the K-band has far less scatter than in the V-band. For the eight binary components for which we have component magnitude differences in the K-band the RMS residual drops from 0.5 magnitude in the V-band to 0.05 magnitude in the K-band. These relations can be used to estimate the masses of the ubiquitous red dwarfs that account for 75% of all stars, to an accuracy of 5%, which is much better than ever before.
Fabrication of large binary colloidal crystals with a NaCl structure
Vermolen, E. C. M.; Kuijk, A.; Filion, L. C.; Hermes, M.; Thijssen, J. H. J.; Dijkstra, M.; van Blaaderen, A.
2009-01-01
Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (≈0.002 kBT). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder. PMID:19805259
Logical NAND and NOR Operations Using Algorithmic Self-assembly of DNA Molecules
NASA Astrophysics Data System (ADS)
Wang, Yanfeng; Cui, Guangzhao; Zhang, Xuncai; Zheng, Yan
DNA self-assembly is the most advanced and versatile system that has been experimentally demonstrated for programmable construction of patterned systems on the molecular scale. It has been demonstrated that the simple binary arithmetic and logical operations can be computed by the process of self assembly of DNA tiles. Here we report a one-dimensional algorithmic self-assembly of DNA triple-crossover molecules that can be used to execute five steps of a logical NAND and NOR operations on a string of binary bits. To achieve this, abstract tiles were translated into DNA tiles based on triple-crossover motifs. Serving as input for the computation, long single stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. Our method shows that engineered DNA self-assembly can be treated as a bottom-up design techniques, and can be capable of designing DNA computer organization and architecture.
Vibrational relaxation of I2 in complexing solvents: The role of solvent-solute attractive forces
NASA Astrophysics Data System (ADS)
Shiang, Joseph J.; Liu, Hongjun; Sension, Roseanne J.
1998-12-01
Femtosecond transient absorption studies of I2-arene complexes, with arene=hexamethylbenzene (HMB), mesitylene (MST), or m-xylene (mX), are used to investigate the effect of solvent-solute attractive forces upon the rate of vibrational relaxation in solution. Comparison of measurements on I2-MST complexes in neat mesitylene and I2-MST complexes diluted in carbontetrachloride demonstrate that binary solvent-solute attractive forces control the rate of vibrational relaxation in this prototypical model of diatomic vibrational relaxation. The data obtained for different arenes demonstrate that the rate of I2 relaxation increases with the magnitude of the I2-arene attractive interaction. I2-HMB relaxes much faster than I2 in MST or mX. The results of these experiments are discussed in terms of both isolated binary collision and instantaneous normal mode models for vibrational relaxation.
Sequence selection by dynamical symmetry breaking in an autocatalytic binary polymer model
NASA Astrophysics Data System (ADS)
Fellermann, Harold; Tanaka, Shinpei; Rasmussen, Steen
2017-12-01
Template-directed replication of nucleic acids is at the essence of all living beings and a major milestone for any origin of life scenario. We present an idealized model of prebiotic sequence replication, where binary polymers act as templates for their autocatalytic replication, thereby serving as each others reactants and products in an intertwined molecular ecology. Our model demonstrates how autocatalysis alters the qualitative and quantitative system dynamics in counterintuitive ways. Most notably, numerical simulations reveal a very strong intrinsic selection mechanism that favors the appearance of a few population structures with highly ordered and repetitive sequence patterns when starting from a pool of monomers. We demonstrate both analytically and through simulation how this "selection of the dullest" is caused by continued symmetry breaking through random fluctuations in the transient dynamics that are amplified by autocatalysis and eventually propagate to the population level. The impact of these observations on related prebiotic mathematical models is discussed.
Croker, Denise M; Hennigan, Michelle C; Maher, Anthony; Hu, Yun; Ryder, Alan G; Hodnett, Benjamin K
2012-04-07
Diffraction and spectroscopic methods were evaluated for quantitative analysis of binary powder mixtures of FII(6.403) and FIII(6.525) piracetam. The two polymorphs of piracetam could be distinguished using powder X-ray diffraction (PXRD), Raman and near-infrared (NIR) spectroscopy. The results demonstrated that Raman and NIR spectroscopy are most suitable for quantitative analysis of this polymorphic mixture. When the spectra are treated with the combination of multiplicative scatter correction (MSC) and second derivative data pretreatments, the partial least squared (PLS) regression model gave a root mean square error of calibration (RMSEC) of 0.94 and 0.99%, respectively. FIII(6.525) demonstrated some preferred orientation in PXRD analysis, making PXRD the least preferred method of quantification. Copyright © 2012 Elsevier B.V. All rights reserved.
Ishizaki, Kimitsune; Chiyoda, Shota; Yamato, Katsuyuki T; Kohchi, Takayuki
2008-07-01
Agrobacterium-mediated transformation has not been practical in pteridophytes, bryophytes and algae to date, although it is commonly used in model plants including Arabidopsis and rice. Here we present a rapid Agrobacterium-mediated transformation system for the haploid liverwort Marchantia polymorpha L. using immature thalli developed from spores. Hundreds of hygromycin-resistant plants per sporangium were obtained by co-cultivation of immature thalli with Agrobacterium carrying the binary vector that contains a reporter, the beta-glucuronidase (GUS) gene with an intron, and a selection marker, the hygromycin phosphotransferase (hpt) gene. In this system, individual gemmae, which arise asexually from single initial cells, were analyzed as isogenic transformants. GUS activity staining showed that all hygromycin-resistant plants examined expressed the GUS transgene in planta. DNA analyses verified random integration of 1-5 copies of the intact T-DNA between the right and the left borders into the M. polymorpha genome. The efficient and rapid Agrobacterium-mediated transformation of M. polymorpha should provide molecular techniques to facilitate comparative genomics, taking advantage of this unique model plant that retains many features of the common ancestor of land plants.
The Double Asteroid Redirection Test in the AIDA Mission
NASA Astrophysics Data System (ADS)
Cheng, Andrew; Reed, Cheryl; Rivkin, Andrew
2016-07-01
The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. AIDA is a joint ESA-NASA cooperative project, consisting of the ESA Asteroid Impact Mission (AIM) rendezvous mission and the NASA Double Asteroid Redirection Test (DART) mission. The AIDA target is the near-Earth binary asteroid 65803 Didymos, which will make an unusually close approach to Earth in October, 2022. The DART spacecraft is designed to impact the Didymos secondary at 7 km/s and demonstrate the ability to modify its trajectory through momentum transfer. DART and AIM are currently Phase A studies supported by NASA and ESA respectively. The primary goals of AIDA are (1) perform a full-scale demonstration of the spacecraft kinetic impact technique for deflection of an asteroid; (2) measure the resulting asteroid deflection, by targeting the secondary member of a binary NEO and measuring the resulting changes of the binary orbit; and (3) study hyper-velocity collision effects on an asteroid, validating models for momentum transfer in asteroid impacts based on measured physical properties of the asteroid surface and sub-surface, and including long-term dynamics of impact ejecta. The primary DART objectives are to demonstrate a hyper-velocity impact on the Didymos moon and to determine the resulting deflection from ground-based observations. The DART impact on the Didymos secondary will change the orbital period of the binary which can be measured by supporting Earth-based optical and radar observations. The baseline DART mission launches in December, 2020 to impact the Didymos secondary in September,2022. There are multiple launch opportunities for DART leading to impact around the 2022 Didymos close approach to Earth. The AIM spacecraft will be launched in Dec. 2020 and arrive at Didymos in spring, 2022, several months before the DART impact. AIM will characterize the Didymos binary system by means of remote sensing and in-situ instruments both before and after the DART impact. The asteroid deflection will be measured to higher accuracy, and additional results of the DART impact, like the impact crater, will be studied in detail by the AIM mission. The combined DART and AIM missions will provide the first measurements of momentum transfer efficiency from hyper-velocity kinetic impact at full scale on an asteroid, where the impact conditions of the projectile are known, and physical properties and internal structures of the target asteroid are also characterized. The DART impact on the Didymos secondary is predicted to cause a 4.4 minute change in the binary orbit period, assuming unit momentum transfer efficiency. The predicted transfer efficiency would be in the range 1.1 to 1.3 for a porous target material based on a variety of numerical and analytical methods, but may be much larger if the target is non-porous. The DART kinetic impact is predicted to make a crater of 6 to 17 meters diameter, depending on target physical properties, but will also release a large volume of particulate ejecta that may be directly observable from Earth or even resolvable as a coma or an ejecta tail by ground-based telescopes.
van Wijk, Michiel; de Bruijn, Paulien J A; Sabelis, Maurice W
2010-11-01
Phytoseiulus persimilis is a predatory mite that in absence of vision relies on the detection of herbivore-induced plant odors to locate its prey, the two-spotted spider-mite Tetranychus urticae. This herbivorous prey is feeding on leaves of a wide variety of plant species in different families. The predatory mites respond to numerous structurally different compounds. However, typical spider-mite induced plant compounds do not attract more predatory mites than plant compounds not associated with prey. Because the mites are sensitive to many compounds, components of odor mixtures may affect each other's perception. Although the response to pure compounds has been well documented, little is known how interactions among compounds affect the response to odor mixtures. We assessed the relation between the mites' responses elicited by simple mixtures of two compounds and by the single components of these mixtures. The preference for the mixture was compared to predictions under three conceptual models, each based on one of the following assumptions: (1) the responses elicited by each of the individual components can be added to each other; (2) they can be averaged; or (3) one response overshadows the other. The observed response differed significantly from the response predicted under the additive response, average response, and overshadowing response model in 52, 36, and 32% of the experimental tests, respectively. Moreover, the behavioral responses elicited by individual compounds and their binary mixtures were determined as a function of the odor concentration. The relative contribution of each component to the behavioral response elicited by the mixture varied with the odor concentration, even though the ratio of both compounds in the mixture was kept constant. Our experiments revealed that compounds that elicited no response had an effect on the response elicited by binary mixtures that they were part of. The results are not consistent with the hypothesis that P. persimilis perceives odor mixtures as a collection of strictly elemental objects. They suggest that odor mixtures rather are perceived as one synthetic whole.
Protein-protein interactions and metabolite channelling in the plant tricarboxylic acid cycle
Zhang, Youjun; Beard, Katherine F. M.; Swart, Corné; Bergmann, Susan; Krahnert, Ina; Nikoloski, Zoran; Graf, Alexander; Ratcliffe, R. George; Sweetlove, Lee J.; Fernie, Alisdair R.; Obata, Toshihiro
2017-01-01
Protein complexes of sequential metabolic enzymes, often termed metabolons, may permit direct channelling of metabolites between the enzymes, providing increased control over metabolic pathway fluxes. Experimental evidence supporting their existence in vivo remains fragmentary. In the present study, we test binary interactions of the proteins constituting the plant tricarboxylic acid (TCA) cycle. We integrate (semi-)quantitative results from affinity purification-mass spectrometry, split-luciferase and yeast-two-hybrid assays to generate a single reliability score for assessing protein–protein interactions. By this approach, we identify 158 interactions including those between catalytic subunits of sequential enzymes and between subunits of enzymes mediating non-adjacent reactions. We reveal channelling of citrate and fumarate in isolated potato mitochondria by isotope dilution experiments. These results provide evidence for a functional TCA cycle metabolon in plants, which we discuss in the context of contemporary understanding of this pathway in other kingdoms. PMID:28508886
Muniz, C R; da Silva, G F; Souza, M T; Freire, F C O; Kema, G H J; Guedes, M I F
2014-02-21
Lasiodiplodia theobromae is a major pathogen of many different crop cultures, including cashew nut plants. This paper describes an efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for the successful delivery of T-DNA, transferring the genes of green fluorescent protein (gfp) and hygromycin B phosphotransferase (hph) to L. theobromae. When the fungal pycnidiospores were co-cultured with A. tumefaciens harboring the binary vector with hph-gfp gene, hygromycin-resistant fungus only developed with acetosyringone supplementation. The cashew plants inoculated with the fungus expressing GFP revealed characteristic pathogen colonization by epifluorescence microscopy. Intense and bright green hyphae were observed for transformants in all extensions of mycelium cultures. The penetration of parenchyma cells near to the inoculation site, beneath the epicuticle surface, was observed prior to 25 dpi. Penetration was followed by the development of hyphae within invaded host cells. These findings provide a rapid and reproducible ATMT method for L. theobromae transformation.
Jatropha (Jatropha curcas L.).
Maravi, Devendra Kumar; Mazumdar, Purabi; Alam, Shamsher; Goud, Vaibhav V; Sahoo, Lingaraj
2015-01-01
The seed oil of Jatropha (Jatropha curcas L.) as a source of biodiesel fuel is gaining worldwide importance. Commercial-scale exploration of Jatropha has not succeeded due to low and unstable seed yield in semiarid lands unsuitable for the food production and infestation to diseases. Genetic engineering is promising to improve various agronomic traits in Jatropha and to understand the molecular functions of key Jatropha genes for molecular breeding. We describe a protocol routinely followed in our laboratory for stable and efficient Agrobacterium tumefaciens-mediated transformation of Jatropha using cotyledonary leaf as explants. The 4-day-old explants are infected with Agrobacterium tumefaciens strain EHA105 harboring pBI121 plant binary vector, which contains nptII as plant selectable marker and gus as reporter. The putative transformed plants are selected on kanamycin, and stable integration of transgene(s) is confirmed by histochemical GUS assay, polymerase chain reaction, and Southern hybridization.
Machine learning to parse breast pathology reports in Chinese.
Tang, Rong; Ouyang, Lizhi; Li, Clara; He, Yue; Griffin, Molly; Taghian, Alphonse; Smith, Barbara; Yala, Adam; Barzilay, Regina; Hughes, Kevin
2018-06-01
Large structured databases of pathology findings are valuable in deriving new clinical insights. However, they are labor intensive to create and generally require manual annotation. There has been some work in the bioinformatics community to support automating this work via machine learning in English. Our contribution is to provide an automated approach to construct such structured databases in Chinese, and to set the stage for extraction from other languages. We collected 2104 de-identified Chinese benign and malignant breast pathology reports from Hunan Cancer Hospital. Physicians with native Chinese proficiency reviewed the reports and annotated a variety of binary and numerical pathologic entities. After excluding 78 cases with a bilateral lesion in the same report, 1216 cases were used as a training set for the algorithm, which was then refined by 405 development cases. The Natural language processing algorithm was tested by using the remaining 405 cases to evaluate the machine learning outcome. The model was used to extract 13 binary entities and 8 numerical entities. When compared to physicians with native Chinese proficiency, the model showed a per-entity accuracy from 91 to 100% for all common diagnoses on the test set. The overall accuracy of binary entities was 98% and of numerical entities was 95%. In a per-report evaluation for binary entities with more than 100 training cases, 85% of all the testing reports were completely correct and 11% had an error in 1 out of 22 entities. We have demonstrated that Chinese breast pathology reports can be automatically parsed into structured data using standard machine learning approaches. The results of our study demonstrate that techniques effective in parsing English reports can be scaled to other languages.
NASA Astrophysics Data System (ADS)
Palou, Anna; Miró, Aira; Blanco, Marcelo; Larraz, Rafael; Gómez, José Francisco; Martínez, Teresa; González, Josep Maria; Alcalà, Manel
2017-06-01
Even when the feasibility of using near infrared (NIR) spectroscopy combined with partial least squares (PLS) regression for prediction of physico-chemical properties of biodiesel/diesel blends has been widely demonstrated, inclusion in the calibration sets of the whole variability of diesel samples from diverse production origins still remains as an important challenge when constructing the models. This work presents a useful strategy for the systematic selection of calibration sets of samples of biodiesel/diesel blends from diverse origins, based on a binary code, principal components analysis (PCA) and the Kennard-Stones algorithm. Results show that using this methodology the models can keep their robustness over time. PLS calculations have been done using a specialized chemometric software as well as the software of the NIR instrument installed in plant, and both produced RMSEP under reproducibility values of the reference methods. The models have been proved for on-line simultaneous determination of seven properties: density, cetane index, fatty acid methyl esters (FAME) content, cloud point, boiling point at 95% of recovery, flash point and sulphur.
Binary logistic regression-Instrument for assessing museum indoor air impact on exhibits.
Bucur, Elena; Danet, Andrei Florin; Lehr, Carol Blaziu; Lehr, Elena; Nita-Lazar, Mihai
2017-04-01
This paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The prediction of the impact on the exhibits during certain pollution scenarios (environmental impact) was calculated by a mathematical model based on the binary logistic regression; it allows the identification of those environmental parameters from a multitude of possible parameters with a significant impact on exhibitions and ranks them according to their severity effect. Air quality (NO 2 , SO 2 , O 3 and PM 2.5 ) and microclimate parameters (temperature, humidity) monitoring data from a case study conducted within exhibition and storage spaces of the Romanian National Aviation Museum Bucharest have been used for developing and validating the binary logistic regression method and the mathematical model. The logistic regression analysis was used on 794 data combinations (715 to develop of the model and 79 to validate it) by a Statistical Package for Social Sciences (SPSS 20.0). The results from the binary logistic regression analysis demonstrated that from six parameters taken into consideration, four of them present a significant effect upon exhibits in the following order: O 3 >PM 2.5 >NO 2 >humidity followed at a significant distance by the effects of SO 2 and temperature. The mathematical model, developed in this study, correctly predicted 95.1 % of the cumulated effect of the environmental parameters upon the exhibits. Moreover, this model could also be used in the decisional process regarding the preventive preservation measures that should be implemented within the exhibition space. The paper presents a new way to assess the environmental impact on historical artifacts using binary logistic regression. The mathematical model developed on the environmental parameters analyzed by the binary logistic regression method could be useful in a decision-making process establishing the best measures for pollution reduction and preventive preservation of exhibits.
Doyle, L R; Dunham, E T; Deeg, H J; Blue, J E; Jenkins, J M
1996-06-25
The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.
NASA Technical Reports Server (NTRS)
Doyle, L. R.; Dunham, E. T.; Deeg, H. J.; Blue, J. E.; Jenkins, J. M.
1996-01-01
The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.
ON THE DYNAMICS AND TIDAL DISSIPATION RATE OF THE WHITE DWARF IN 4U 1820-30
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prodan, Snezana; Murray, Norman, E-mail: sprodan@cita.utoronto.ca
It has been suggested that the 170 day period in the light curve of the low-mass X-ray binary 4U 1820-30 arises from the presence of a third body with a large inclination to the binary orbit. We show that this long-period motion arises if the system is librating around the stable fixed point in a Kozai resonance. We demonstrate that mass transfer drives the system toward this fixed point and calculate, both analytically and via numerical integrations, that the period of libration is of order 170 days when the mutual inclination is near the Kozai critical value. The non-zero eccentricitymore » of the binary, combined with tidal dissipation, implies that the rate of change of the binary period would be slower than, or even of opposite sign to, that implied by standard mass transfer models. If the 170 day period results from libration, then, contrary to appearances, the orbital period of the inner binary is increasing with time; in that case, (e/0.009){sup 2} Q/k{sub 2} {approx}> 2.5 Multiplication-Sign 10{sup 9}, where k{sub 2} Almost-Equal-To 0.01 is the tidal Love number and e = 0.009 is the fiducial eccentricity of the inner binary. It appears unlikely that the observed negative period derivative results from the smaller than expected (but positive) value of P-dot combined with the previously suggested acceleration of the system in the gravitational field of the host globular cluster NGC 6624. The discrepancy between the observed and the expected period derivative requires further investigation.« less
Hwang, Han-Jeong; Choi, Han; Kim, Jeong-Youn; Chang, Won-Du; Kim, Do-Won; Kim, Kiwoong; Jo, Sungho; Im, Chang-Hwan
2016-09-01
In traditional brain-computer interface (BCI) studies, binary communication systems have generally been implemented using two mental tasks arbitrarily assigned to “yes” or “no” intentions (e.g., mental arithmetic calculation for “yes”). A recent pilot study performed with one paralyzed patient showed the possibility of a more intuitive paradigm for binary BCI communications, in which the patient’s internal yes/no intentions were directly decoded from functional near-infrared spectroscopy (fNIRS). We investigated whether such an “fNIRS-based direct intention decoding” paradigm can be reliably used for practical BCI communications. Eight healthy subjects participated in this study, and each participant was administered 70 disjunctive questions. Brain hemodynamic responses were recorded using a multichannel fNIRS device, while the participants were internally expressing “yes” or “no” intentions to each question. Different feature types, feature numbers, and time window sizes were tested to investigate optimal conditions for classifying the internal binary intentions. About 75% of the answers were correctly classified when the individual best feature set was employed (75.89% ± 1.39 and 74.08% ± 2.87 for oxygenated and deoxygenated hemoglobin responses, respectively), which was significantly higher than a random chance level (68.57% for p < 0.001). The kurtosis feature showed the highest mean classification accuracy among all feature types. The grand-averaged hemodynamic responses showed that wide brain regions are associated with the processing of binary implicit intentions. Our experimental results demonstrated that direct decoding of internal binary intention has the potential to be used for implementing more intuitive and user-friendly communication systems for patients with motor disabilities.
NASA Astrophysics Data System (ADS)
Maxwell, J. L.; Black, M. R.; Chavez, C. A.; Maskaly, K. R.; Espinoza, M.; Boman, M.; Landstrom, L.
2008-06-01
This work demonstrates that two or more elements of negligible solubility (and no known phase diagram) can be co-deposited in fiber form by hyperbaric-pressure laser chemical vapor deposition (HP-LCVD). For the first time, Hg-W alloys were grown as fibers from mixtures of tungsten hexafluoride, mercury vapor, and hydrogen. This new class of materials is termed normally-immiscible materials (NIMs), and includes not only immiscible materials, but also those elemental combinations that have liquid states at exclusive temperatures. This work also demonstrates that a wide variety of other binary and ternary alloys, intermetallics, and mixtures can be grown as fibers, e.g. silicon-tungsten, aluminum-silicon, boron-carbon-silicon, and titanium-carbon-nitride. In addition, pure metallic fibers of aluminum, titanium, and tungsten were deposited, demonstrating that materials of high thermal conductivity can indeed be grown in three-dimensions, provided sufficient vapor pressures are employed. A wide variety of fiber properties and microstructures resulted depending on process conditions; for example, single crystals, fine-grained alloys, and glassy metals could be deposited.
NASA Astrophysics Data System (ADS)
Cottaar, M.; Hénault-Brunet, V.
2014-02-01
Orbital motions from binary stars can broaden the observed line-of-sight velocity distribution of a stellar system and artificially inflate the measured line-of-sight velocity dispersion, which can in turn lead to erroneous conclusions about the dynamical state of the system. Recently, a maximum-likelihood procedure was proposed to recover the intrinsic velocity dispersion of a resolved star cluster from a single epoch of radial velocity data of individual stars, which was achieved by simultaneously fitting the intrinsic velocity distribution of the single stars and the centers of mass of the binaries along with the velocity shifts caused by binary orbital motions. Assuming well-characterized binary properties, this procedure can accurately reproduce intrinsic velocity dispersions below 1 km s-1 for solar-type stars. Here we investigate the systematic offsets induced when the binary properties are uncertain and we show that two epochs of radial velocity data with an appropriate baseline can help to mitigate these systematic effects. We first test the method described above using Monte Carlo simulations, taking into account the large uncertainties in the binary properties of OB stars. We then apply it to radial velocity data in the young massive cluster R136 for which the intrinsic velocity dispersion of O-type stars is known from an intensive multi-epoch approach. For typical velocity dispersions of young massive clusters (≳4 km s-1) and with a single epoch of data, we demonstrate that the method can just about distinguish between a cluster in virial equilibrium and an unbound cluster. This is due to the higher spectroscopic binary fraction and more loosely constrained distributions of orbital parameters of OB stars compared to solar-type stars. By extending the maximum-likelihood method to multi-epoch data, we show that the accuracy on the fitted velocity dispersion can be improved by only a few percent by using only two epochs of radial velocities. This procedure offers a promising method of accurately measuring the intrinsic stellar velocity dispersion in other systems for which the binary properties are poorly constrained, for example, young clusters and associations whose luminosity is dominated by OB stars. Appendix A is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Murphy, Simon J.; Moe, Maxwell; Kurtz, Donald W.; Bedding, Timothy R.; Shibahashi, Hiromoto; Boffin, Henri M. J.
2018-03-01
The orbital parameters of binaries at intermediate periods (102-103 d) are difficult to measure with conventional methods and are very incomplete. We have undertaken a new survey, applying our pulsation timing method to Kepler light curves of 2224 main-sequence A/F stars and found 341 non-eclipsing binaries. We calculate the orbital parameters for 317 PB1 systems (single-pulsator binaries) and 24 PB2s (double-pulsators), tripling the number of intermediate-mass binaries with full orbital solutions. The method reaches down to small mass ratios q ≈ 0.02 and yields a highly homogeneous sample. We parametrize the mass-ratio distribution using both inversion and Markov-Chain Monte Carlo forward-modelling techniques, and find it to be skewed towards low-mass companions, peaking at q ≈ 0.2. While solar-type primaries exhibit a brown dwarf desert across short and intermediate periods, we find a small but statistically significant (2.6σ) population of extreme-mass-ratio companions (q < 0.1) to our intermediate-mass primaries. Across periods of 100-1500 d and at q > 0.1, we measure the binary fraction of current A/F primaries to be 15.4 per cent ± 1.4 per cent, though we find that a large fraction of the companions (21 per cent ± 6 per cent) are white dwarfs in post-mass-transfer systems with primaries that are now blue stragglers, some of which are the progenitors of Type Ia supernovae, barium stars, symbiotics, and related phenomena. Excluding these white dwarfs, we determine the binary fraction of original A/F primaries to be 13.9 per cent ± 2.1 per cent over the same parameter space. Combining our measurements with those in the literature, we find the binary fraction across these periods is a constant 5 per cent for primaries M1 < 0.8 M⊙, but then increases linearly with log M1, demonstrating that natal discs around more massive protostars M1 ≳ 1 M⊙ become increasingly more prone to fragmentation. Finally, we find the eccentricity distribution of the main-sequence pairs to be much less eccentric than the thermal distribution.
Onion and garlic dehydration in the San Emidio Desert, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lund, J.W.; Lienau, P.J.
1994-07-01
Integrated Ingredients dedicated their new onion and garlic processing plant on May 25th. {open_quotes}Grunion{close_quotes} as the new community of 72 employees has been labeled, is located just south of Empire and Gerlach and about 100 miles north of Reno, Nevada. The plant, run by Integrated Ingredients (based in Alameda, CA), is a division of Burns Philp Food, Inc., which owns brands such as Spice Islands, Durkee-French and Fleischmann`s. This plant gives the company the ability to produce its own products for industrial and consumer markets instead of purchasing them. The plant was located in the San Emidio Desert at themore » edge of the vast Black Rock Desert and the Great Basin to take advantage of the high temperature geothermal resource (approximately 270{degrees}F). The resource is also used by the OESI/AMOR II 3.6 MW binary plant about a mile south of the dehydration plant and a gold heap leaching operation just to the north of the plant (Wind Mt. mine operated by AMAX). In addition to the geothermal energy, the high desert is an ideal location for onion and garlic processing because the cold winters kill damaging microbes. Dry winters and summers also help.« less
Jaganath, Balusamy; Subramanyam, Kondeti; Mayavan, Subramanian; Karthik, Sivabalan; Elayaraja, Dhandapani; Udayakumar, Rajangam; Manickavasagam, Markandan; Ganapathi, Andy
2014-05-01
An efficient and reproducible Agrobacterium-mediated in planta transformation was developed in Jatropha curcas. The various factors affecting J. curcas in planta transformation were optimized, including decapitation, Agrobacterium strain, pin-pricking, vacuum infiltration duration and vacuum pressure. Simple vegetative in vivo cleft grafting method was adopted in the multiplication of transformants without the aid of tissue culture. Among the various parameters evaluated, decapitated plants on pin-pricking and vacuum infiltrated at 250 mmHg for 3 min with the Agrobacterium strain EHA 105 harbouring the binary vector pGA 492 was proved to be efficient in all terms with a transformation efficiency of 62.66%. Transgene integration was evinced by the GUS histochemical analysis, and the GUS positive plants were subjected to grafting. Putatively transformed J. curcas served as "Scion" and the wild type J. curcas plant severed as "Stock". There was no occurrence of graft rejection and the plants were then confirmed by GUS histochemical analysis, polymerase chain reaction (PCR) and Southern hybridization. Genetic stability of the grafted plants was evaluated by using randomly amplified polymorphic DNA (RAPD), marker which showed 100% genetic stability between mother and grafted plants. Thus, an efficient in planta transformation and grafting based multiplication of J. curcas was established.
NASA Astrophysics Data System (ADS)
Wilson, Machelle; Ustin, Susan L.; Rocke, David
2003-03-01
Remote sensing technologies with high spatial and spectral resolution show a great deal of promise in addressing critical environmental monitoring issues, but the ability to analyze and interpret the data lags behind the technology. Robust analytical methods are required before the wealth of data available through remote sensing can be applied to a wide range of environmental problems for which remote detection is the best method. In this study we compare the classification effectiveness of two relatively new techniques on data consisting of leaf-level reflectance from plants that have been exposed to varying levels of heavy metal toxicity. If these methodologies work well on leaf-level data, then there is some hope that they will also work well on data from airborne and space-borne platforms. The classification methods compared were support vector machine classification of exposed and non-exposed plants based on the reflectance data, and partial east squares compression of the reflectance data followed by classification using logistic discrimination (PLS/LD). PLS/LD was performed in two ways. We used the continuous concentration data as the response during compression, and then used the binary response required during logistic discrimination. We also used a binary response during compression followed by logistic discrimination. The statistics we used to compare the effectiveness of the methodologies was the leave-one-out cross validation estimate of the prediction error.
Group Contribution Methods for Phase Equilibrium Calculations.
Gmehling, Jürgen; Constantinescu, Dana; Schmid, Bastian
2015-01-01
The development and design of chemical processes are carried out by solving the balance equations of a mathematical model for sections of or the whole chemical plant with the help of process simulators. For process simulation, besides kinetic data for the chemical reaction, various pure component and mixture properties are required. Because of the great importance of separation processes for a chemical plant in particular, a reliable knowledge of the phase equilibrium behavior is required. The phase equilibrium behavior can be calculated with the help of modern equations of state or g(E)-models using only binary parameters. But unfortunately, only a very small part of the experimental data for fitting the required binary model parameters is available, so very often these models cannot be applied directly. To solve this problem, powerful predictive thermodynamic models have been developed. Group contribution methods allow the prediction of the required phase equilibrium data using only a limited number of group interaction parameters. A prerequisite for fitting the required group interaction parameters is a comprehensive database. That is why for the development of powerful group contribution methods almost all published pure component properties, phase equilibrium data, excess properties, etc., were stored in computerized form in the Dortmund Data Bank. In this review, the present status, weaknesses, advantages and disadvantages, possible applications, and typical results of the different group contribution methods for the calculation of phase equilibria are presented.
Competitive sorption of heavy metals by water hyacinth roots.
Zheng, Jia-Chuan; Liu, Hou-Qi; Feng, Hui-Min; Li, Wen-Wei; Lam, Michael Hon-Wah; Lam, Paul Kwan-Sing; Yu, Han-Qing
2016-12-01
Heavy metal pollution is a global issue severely constraining aquaculture practices, not only deteriorating the aquatic environment but also threatening the aquaculture production. One promising solution is adopting aquaponics systems where a synergy can be established between aquaculture and aquatic plants for metal sorption, but the interactions of multiple metals in such aquatic plants are poorly understood. In this study, we investigated the absorption behaviors of Cu(II) and Cd(II) in water by water hyacinth roots in both single- and binary-metal systems. Cu(II) and Cd(II) were individually removed by water hyacinth roots at high efficiency, accompanied with release of protons and cations such as Ca 2+ and Mg 2+ . However, in a binary-metal arrangement, the Cd(II) sorption was significantly inhibited by Cu(II), and the higher sorption affinity of Cu(II) accounted for its competitive sorption advantage. Ionic exchange was identified as a predominant mechanism of the metal sorption by water hyacinth roots, and the amine and oxygen-containing groups are the main binding sites accounting for metal sorption via chelation or coordination. This study highlights the interactive impacts of different metals during their sorption by water hyacinth roots and elucidates the underlying mechanism of metal competitive sorption, which may provide useful implications for optimization of phytoremediation system and development of more sustainable aquaculture industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, Lance G.
2014-11-18
Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures asmore » low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required process conditions for the TGH demonstration. Operation of the TGH with and without the ABS system will demonstrate an increase in geothermal resource productivity for the VPC from 1 MW/(million lb) of brine to 1.75 MW/(million lb) of brine, a 75% increase.« less
Learning Optimized Local Difference Binaries for Scalable Augmented Reality on Mobile Devices.
Xin Yang; Kwang-Ting Cheng
2014-06-01
The efficiency, robustness and distinctiveness of a feature descriptor are critical to the user experience and scalability of a mobile augmented reality (AR) system. However, existing descriptors are either too computationally expensive to achieve real-time performance on a mobile device such as a smartphone or tablet, or not sufficiently robust and distinctive to identify correct matches from a large database. As a result, current mobile AR systems still only have limited capabilities, which greatly restrict their deployment in practice. In this paper, we propose a highly efficient, robust and distinctive binary descriptor, called Learning-based Local Difference Binary (LLDB). LLDB directly computes a binary string for an image patch using simple intensity and gradient difference tests on pairwise grid cells within the patch. To select an optimized set of grid cell pairs, we densely sample grid cells from an image patch and then leverage a modified AdaBoost algorithm to automatically extract a small set of critical ones with the goal of maximizing the Hamming distance between mismatches while minimizing it between matches. Experimental results demonstrate that LLDB is extremely fast to compute and to match against a large database due to its high robustness and distinctiveness. Compared to the state-of-the-art binary descriptors, primarily designed for speed, LLDB has similar efficiency for descriptor construction, while achieving a greater accuracy and faster matching speed when matching over a large database with 2.3M descriptors on mobile devices.
Cool Star Binaries with ALEXIS
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1998-01-01
We proposed to search for high-temperature, flare-produced Fe XXIII line emission from active cool star binary systems using the ALEXIS all-sky survey. Previous X-ray transient searches with ARIEL V and HEAO-1, and subsequent shorter duration monitoring with the GINGA and EXOSAT satellites demonstrated that active binaries can produce large (EM approximately equals 10(exp 55-56/cu cm) X-ray flares lasting several hours or longer. Hot plasma from these flares at temperatures of 10(exp 7)K or more should produce Fe XXIII line emission at lambda = 132.8 A, very near the peak response of ALEXIS telescopes 1A and 2A. Our primary goals were to estimate flare frequency for the largest flares in the active binary systems, and, if the data permitted, to derive a distribution of flare energy vs. frequency for the sample as a whole. After a long delay due to the initial problems with the ALEXIS attitude control, the heroic efforts on the part of the ALEXIS satellite team enabled us to carry out this survey. However, the combination of the higher than expected and variable background in the ALEXIS detectors, and the lower throughput of the ALEXIS telescopes resulted in no convincing detections of large flares from the active binary systems. In addition, vignetting-corrected effective exposure times from the ALEXIS aspect solution were not available prior to the end of this contract; therefore, we were unable to convert upper limits measured in ALEXIS counts to the equivalent L(sub EUV).
The Green Bank North Celestial Cap Pulsar Survey. III. 45 New Pulsar Timing Solutions
NASA Astrophysics Data System (ADS)
Lynch, Ryan S.; Swiggum, Joseph K.; Kondratiev, Vlad I.; Kaplan, David L.; Stovall, Kevin; Fonseca, Emmanuel; Roberts, Mallory S. E.; Levin, Lina; DeCesar, Megan E.; Cui, Bingyi; Cenko, S. Bradley; Gatkine, Pradip; Archibald, Anne M.; Banaszak, Shawn; Biwer, Christopher M.; Boyles, Jason; Chawla, Pragya; Dartez, Louis P.; Day, David; Ford, Anthony J.; Flanigan, Joseph; Hessels, Jason W. T.; Hinojosa, Jesus; Jenet, Fredrick A.; Karako-Argaman, Chen; Kaspi, Victoria M.; Leake, Sean; Lunsford, Grady; Martinez, José G.; Mata, Alberto; McLaughlin, Maura A.; Noori, Hind Al; Ransom, Scott M.; Rohr, Matthew D.; Siemens, Xavier; Spiewak, Renée; Stairs, Ingrid H.; van Leeuwen, Joeri; Walker, Arielle N.; Wells, Bradley L.
2018-06-01
We provide timing solutions for 45 radio pulsars discovered by the Robert C. Byrd Green Bank Telescope. These pulsars were found in the Green Bank North Celestial Cap pulsar survey, an all-GBT-sky survey being carried out at a frequency of 350 {MHz}. We include pulsar timing data from the Green Bank Telescope and Low Frequency Array. Our sample includes five fully recycled millisecond pulsars (MSPs, three of which are in a binary system), a new relativistic double neutron star system, an intermediate-mass binary pulsar, a mode-changing pulsar, a 138 ms pulsar with a very low magnetic field, and several nulling pulsars. We have measured two post-Keplerian parameters and thus the masses of both objects in the double neutron star system. We also report a tentative companion mass measurement via Shapiro delay in a binary MSP. Two of the MSPs can be timed with high precision and have been included in pulsar timing arrays being used to search for low-frequency gravitational waves, while a third MSP is a member of the black widow class of binaries. Proper motion is measurable in five pulsars, and we provide an estimate of their space velocity. We report on an optical counterpart to a new black widow system and provide constraints on the optical counterparts to other binary MSPs. We also present a preliminary analysis of nulling pulsars in our sample. These results demonstrate the scientific return of long timing campaigns on pulsars of all types.
Detections of Planets in Binaries Through the Channel of Chang–Refsdal Gravitational Lensing Events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Cheongho; Shin, In-Gu; Jung, Youn Kil
Chang–Refsdal (C–R) lensing, which refers to the gravitational lensing of a point mass perturbed by a constant external shear, provides a good approximation in describing lensing behaviors of either a very wide or a very close binary lens. C–R lensing events, which are identified by short-term anomalies near the peak of high-magnification lensing light curves, are routinely detected from lensing surveys, but not much attention is paid to them. In this paper, we point out that C–R lensing events provide an important channel to detect planets in binaries, both in close and wide binary systems. Detecting planets through the C–Rmore » lensing event channel is possible because the planet-induced perturbation occurs in the same region of the C–R lensing-induced anomaly and thus the existence of the planet can be identified by the additional deviation in the central perturbation. By presenting the analysis of the actually observed C–R lensing event OGLE-2015-BLG-1319, we demonstrate that dense and high-precision coverage of a C–R lensing-induced perturbation can provide a strong constraint on the existence of a planet in a wide range of planet parameters. The sample of an increased number of microlensing planets in binary systems will provide important observational constraints in giving shape to the details of planet formation, which have been restricted to the case of single stars to date.« less
Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culp, Elzie Lynn
Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges amore » small rural electric cooperative encountered and managed to develop a geothermal generating plant.« less
Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zheng-Han; Jiang, Shang-Chi; Xiong, Xiang
We report here the design and realization of a broadband, equal-intensity optical beam splitter with a dispersion-free binary geometric phase on a metasurface with unit cell consisting of two mirror-symmetric elements. We demonstrate experimentally that two identical beams can be efficiently generated with incidence of any polarization. The efficiency of the device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000–1400 nm. We suggest that this approach for generating identical, coherent beams have wide applications in diffraction optics and in entangled photon light source for quantum communication.
PAM-4 Signaling over VCSELs with 0.13µm CMOS Chip Technology
NASA Astrophysics Data System (ADS)
Cunningham, J. E.; Beckman, D.; Zheng, Xuezhe; Huang, Dawei; Sze, T.; Krishnamoorthy, A. V.
2006-12-01
We present results for VCSEL based links operating PAM-4 signaling using a commercial 0.13µm CMOS technology. We perform a complete link analysis of the Bit Error Rate, Q factor, random and deterministic jitter by measuring waterfall curves versus margins in time and amplitude. We demonstrate that VCSEL based PAM 4 can match or even improve performance over binary signaling under conditions of a bandwidth limited, 100meter multi-mode optical link at 5Gbps. We present the first sensitivity measurements for optical PAM-4 and compare it with binary signaling. Measured benefits are reconciled with information theory predictions.
PAM-4 Signaling over VCSELs with 0.13microm CMOS Chip Technology.
Cunningham, J E; Beckman, D; Zheng, Xuezhe; Huang, Dawei; Sze, T; Krishnamoorthy, A V
2006-12-11
We present results for VCSEL based links operating PAM-4 signaling using a commercial 0.13microm CMOS technology. We perform a complete link analysis of the Bit Error Rate, Q factor, random and deterministic jitter by measuring waterfall curves versus margins in time and amplitude. We demonstrate that VCSEL based PAM-4 can match or even improve performance over binary signaling under conditions of a bandwidth limited, 100meter multi-mode optical link at 5Gbps. We present the first sensitivity measurements for optical PAM-4 and compare it with binary signaling. Measured benefits are reconciled with information theory predictions.
Dynamical and Physical Properties of 65803 Didymos, the AIDA Mission Target
NASA Astrophysics Data System (ADS)
Campo Bagatin, A.; Richardson, D. C.; Tsiganis, K.; Cheng, A. F.; Michel, P.
2017-09-01
The near-Earth asteroid (NEA) 65803 Didymos is a binary system and is the target of the proposed Asteroid Impact & Deflection Assessment (AIDA) mission, which combines an orbiter (Asteroid Impact Mission, AIM, or the reduced-scope AIM Deflection Demonstration, AIM-D2) [1, 2] and a kinetic impactor experiment (Double Asteroid Redirection Test, DART) planned to impact the secondary of the Didymos binary system in October, 2022 [3]. The Dynamical and Physical Properties of Didymos Working Group supports the AIDA mission by addressing questions related to understanding the dynamical state of the system and inferring the physical properties of the components
Disordered multihyperuniformity derived from binary plasmas
NASA Astrophysics Data System (ADS)
Lomba, Enrique; Weis, Jean-Jacques; Torquato, Salvatore
2018-01-01
Disordered multihyperuniform many-particle systems are exotic amorphous states that allow exquisite color sensing capabilities due to their anomalous suppression of density fluctuations for distinct subsets of particles, as recently evidenced in photoreceptor mosaics in avian retina. Motivated by this biological finding, we present a statistical-mechanical model that rigorously achieves disordered multihyperuniform many-body systems by tuning interactions in binary mixtures of nonadditive hard-disk plasmas. We demonstrate that multihyperuniformity competes with phase separation and stabilizes a clustered phase. Our work provides a systematic means to generate disordered multihyperuniform solids, and hence lays the groundwork to explore their potentially unique photonic, phononic, electronic, and transport properties.
Generation of atmospheric wavefronts using binary micromirror arrays.
Anzuola, Esdras; Belmonte, Aniceto
2016-04-10
To simulate in the laboratory the influence that a turbulent atmosphere has on light beams, we introduce a practical method for generating atmospheric wavefront distortions that considers digital holographic reconstruction using a programmable binary micromirror array. We analyze the efficiency of the approach for different configurations of the micromirror array and experimentally demonstrate the benchtop technique. Though the mirrors on the digital array can only be positioned in one of two states, we show that the holographic technique can be used to devise a wide variety of atmospheric wavefront aberrations in a controllable and predictable way for a fraction of the cost of phase-only spatial light modulators.
NASA Astrophysics Data System (ADS)
Yaremko, Z. M.; Fedushinskaya, L. B.; Burka, O. A.; Soltys, M. N.
2014-09-01
The role of hydrophobic interaction in the development of associative processes is demonstrated, based on the concentration dependences of the viscosity and pH of binary solutions of polymethacrylic acid as an anionic polyelectrolyte and sodium laureth sulfate as an anionic surfactant. It is found that the inflection point on the dependence of the difference between the pH values of binary solutions of polymethacrylic acid and sodium laureth sulfate on the polyelectrolyte concentration is a criterion for determining the predominant contribution from hydrophobic interaction, as is the inflection point on the dependence of pH of individual solutions of polymethacrylic acid on the polyelectrolyte concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suh, In-Saeng; Mathews, Grant J.; Haywood, J. Reese
The spatially conformally flat approximation (CFA) is a viable method to deduce initial conditions for the subsequent evolution of binary neutron stars employing the full Einstein equations. Here in this paper, we analyze the viability of the CFA for the general relativistic hydrodynamic initial conditions of binary neutron stars. We illustrate the stability of the conformally flat condition on the hydrodynamics by numerically evolving ~100 quasicircular orbits. We illustrate the use of this approximation for orbiting neutron stars in the quasicircular orbit approximation to demonstrate the equation of state dependence of these initial conditions and how they might affect themore » emergent gravitational wave frequency as the stars approach the innermost stable circular orbit.« less
GRAVITATIONAL WAVE EXTRACTION FROM AN INSPIRALING CONFIGURATION OF MERGING BLACK HOLES
NASA Technical Reports Server (NTRS)
Baker, John G.; Centrella, Joan; Dae-Il, Choi; Koppitz, Michael; van Meter, James
2005-01-01
We present new techniques for evolving binary black hole systems which allow the accurate determination of gravitational waveforms directly from the wave zone region of the numerical simulations. Rather than excising the black hole interiors, our approach follows the "puncture" treatment of black holes, but utilizing a new gauge condition which allows the black holes to move successfully through the computational domain. We apply these techniques to an inspiraling binary, modeling the radiation generated during the final plunge and ringdown. We demonstrate convergence of the waveforms and and good conservation of mass-energy, with just over 3% of the system s mass converted to gravitational radiation.
ASPECT spectral imaging satellite proposal to AIDA/AIM CubeSat payload
NASA Astrophysics Data System (ADS)
Kohout, Tomas; Näsilä, Antti; Tikka, Tuomas; Penttilä, Antti; Muinonen, Karri; Kestilä, Antti; Granvik, Mikael; Kallio, Esa
2016-04-01
ASPECT (Asteroid Spectral Imaging Mission) is a part of AIDA/AIM project and aims to study the composition of the Didymos binary asteroid and the effects of space weathering and shock metamorphism in order to gain understanding of the formation and evolution of the Solar System. The joint ESA/NASA AIDA (Asteroid Impact & Deflection Assessment) mission to binary asteroid Didymos consists of AIM (Asteroid Impact Mission, ESA) and DART (Double Asteroid Redirection Test, NASA). DART is targeted to impact Didymos secondary component (Didymoon) and serve as a kinetic impactor to demonstrate deflection of potentially hazardous asteroids. AIM will serve as an observational spacecraft to evaluate the effects of the impact and resulting changes in the Didymos dynamic parameters. The AIM mission will also carry two CubeSat miniaturized satellites, released in Didymoon proximity. This arrangement opens up a possibility for secondary scientific experiments. ASPECT is one of the proposed CubeSat payloads. Whereas Didymos is a space-weathered binary asteroid, the DART impactor is expected to produce a crater and excavate fresh material from the secondary component (Didymoon). Spectral comparison of the mature surface to the freshly exposed material will allow to directly deter-mine space weathering effects. It will be also possible to study spectral shock effects within the impact crater. ASPECT will also demonstrate for the first time the joint spacecraft - CubeSat operations in asteroid proximity and miniature spectral imager operation in deep-space environment. Science objectives: 1. Study of the surface composition of the Didymos system. 2. Photometric observations (and modeling) under varying phase angle and distance. 3. Study of space weathering effects on asteroids (comparison of mature / freshly exposed material). 4. Study of shock effects (spectral properties of crater interior). 5. Observations during the DART impact. Engineering objectives: 1. Demonstration of CubeSat semi-autonomous operations in deep space environment. 2. Navigation in the vicinity of a binary asteroid. 3. Demonstration of a satellite survival during impact. 4. Demonstration of joint spacecraft - CubeSat operations. ASPECT is a 3U CubeSat (size of 3 units, Fig. 1) equipped with a spectral imager from 500 nm to 1600 nm (spatial resolution < 2 m, spectral resolution 10 - 30 nm; VIS channel 512 x 512 pixels, NIR channel 256 x 256 pixels), and a non-imaging spectrometer from 1600 - 2500 nm. The design is based on the Aalto-1 CubeSat Spectral Imager heritage. ASPECT will also demonstrate the capabilities of a CubeSat and a miniature spectral imager for the first time in deep-space environment. Acknowledgements: This work is done under Sys-Nova: R&D Studies Competition for Innovation contract with ESA.
Toxicity of major geochemical ions to freshwater species
Extensive testing regarding the toxicity of major geochemical ions to Ceriodaphnia dubia, Hyalella azteca, and Pimephales promelas will be presented. For C. dubia, tests of single salts and binary mixtures in various dilution waters demonstrated multiple mechanisms of toxicity an...
Leterrier, Marina; Corpas, Francisco J; Barroso, Juan B; Sandalio, Luisa M; del Río, Luis A
2005-08-01
In plant cells, ascorbate is a major antioxidant that is involved in the ascorbate-glutathione cycle. Monodehydroascorbate reductase (MDAR) is the enzymatic component of this cycle involved in the regeneration of reduced ascorbate. The identification of the intron-exon organization and the promoter region of the pea (Pisum sativum) MDAR 1 gene was achieved in pea leaves using the method of walking polymerase chain reaction on genomic DNA. The nuclear gene of MDAR 1 comprises nine exons and eight introns, giving a total length of 3,770 bp. The sequence of 544 bp upstream of the initiation codon, which contains the promoter and 5' untranslated region, and 190 bp downstream of the stop codon were also determined. The presence of different regulatory motifs in the promoter region of the gene might indicate distinct responses to various conditions. The expression analysis in different plant organs by northern blots showed that fruits had the highest level of MDAR. Confocal laser scanning microscopy analysis of pea leaves transformed with Agrobacterium tumefaciens having the binary vectors pGD, which contain the autofluorescent proteins enhanced green fluorescent protein and enhanced yellow fluorescent protein with the full-length cDNA for MDAR 1 and catalase, indicated that the MDAR 1 encoded the peroxisomal isoform. The functional analysis of MDAR by activity and protein expression was studied in pea plants grown under eight stress conditions, including continuous light, high light intensity, continuous dark, mechanical wounding, low and high temperature, cadmium, and the herbicide 2,4-dichlorophenoxyacetic acid. This functional analysis is representative of all the MDAR isoforms present in the different cell compartments. Results obtained showed a significant induction by high light intensity and cadmium. On the other hand, expression studies, performed by semiquantitative reverse transcription-polymerase chain reaction demonstrated differential expression patterns of peroxisomal MDAR 1 transcripts in pea plants grown under the mentioned stress conditions. These findings show that the peroxisomal MDAR 1 has a differential regulation that could be indicative of its specific function in peroxisomes. All these biochemical and molecular data represent a significant step to understand the specific physiological role of each MDAR isoenzyme and its participation in the antioxidant mechanisms of plant cells.
NASA Astrophysics Data System (ADS)
Audigié, Pauline; Bizien, Nicolas; Baráibar, Ignacio; Rodríguez, Sergio; Pastor, Ana; Hernández, Marta; Agüero, Alina
2017-06-01
Molten nitrates can be employed as heat storage fluids in solar concentration power plants. However molten nitrates are corrosive and if operating temperatures are raised to increase efficiencies, the corrosion rates will also increase. High temperature corrosion resistant coatings based on Al have demonstrated excellent results in other sectors such as gas turbines. Aluminide slurry coated and uncoated P92 steel specimens were exposed to the so called Solar Salt (industrial grade), a binary eutectic mixture of 60 % NaNO3 - 40 % KNO3, in air for 2000 hours at 550°C and 580°C in order to analyze their behavior as candidates to be used in future solar concentration power plants employing molten nitrates as heat transfer fluids. Coated ferritic steels constitute a lower cost technology than Ni based alloy. Two different coating morphologies resulting from two heat treatment performed at 700 and 1050°C after slurry application were tested. The coated systems exhibited excellent corrosion resistance at both temperatures, whereas uncoated P92 showed significant mass loss from the beginning of the test. The coatings showed very slow reaction with the molten Solar Salt. In contrast, uncoated P92 developed a stratified, unprotected Fe, Cr oxide with low adherence which shows oscillating Cr content as a function of coating depth. NaFeO2 was also found at the oxide surface as well as within the Fe, Cr oxide.
Characterization of a Novel Polerovirus Infecting Maize in China
Chen, Sha; Jiang, Guangzhuang; Wu, Jianxiang; Liu, Yong; Qian, Yajuan; Zhou, Xueping
2016-01-01
A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3′ half of P3–P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved. PMID:27136578
Characterization of a Novel Polerovirus Infecting Maize in China.
Chen, Sha; Jiang, Guangzhuang; Wu, Jianxiang; Liu, Yong; Qian, Yajuan; Zhou, Xueping
2016-04-28
A novel virus, tentatively named Maize Yellow Mosaic Virus (MaYMV), was identified from the field-grown maize plants showing yellow mosaic symptoms on the leaves collected from the Yunnan Province of China by the deep sequencing of small RNAs. The complete 5642 nucleotide (nt)-long genome of the MaYMV shared the highest nucleotide sequence identity (73%) to Maize Yellow Dwarf Virus-RMV. Sequence comparisons and phylogenetic analyses suggested that MaYMV represents a new member of the genus Polerovirus in the family Luteoviridae. Furthermore, the P0 protein encoded by MaYMV was demonstrated to inhibit both local and systemic RNA silencing by co-infiltration assays using transgenic Nicotiana benthamiana line 16c carrying the GFP reporter gene, which further supported the identification of a new polerovirus. The biologically-active cDNA clone of MaYMV was generated by inserting the full-length cDNA of MaYMV into the binary vector pCB301. RT-PCR and Northern blot analyses showed that this clone was systemically infectious upon agro-inoculation into N. benthamiana. Subsequently, 13 different isolates of MaYMV from field-grown maize plants in different geographical locations of Yunnan and Guizhou provinces of China were sequenced. Analyses of their molecular variation indicate that the 3' half of P3-P5 read-through protein coding region was the most variable, whereas the coat protein- (CP-) and movement protein- (MP-)coding regions were the most conserved.
40 CFR 63.1585 - How does an industrial POTW treatment plant demonstrate compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Works Industrial Potw Treatment Plant Description and Requirements § 63.1585 How does an industrial POTW treatment plant demonstrate compliance? (a) An existing industrial POTW treatment plant demonstrates... §§ 63.1586 through 63.1590. Non-industrial POTW Treatment Plant Requirements ...
Simulation of the dusty plasma environment of 65803 Didymos for the Asteroid Impact Mission (AIM)
NASA Astrophysics Data System (ADS)
Cipriani, Fabrice; Rodgers, David; Hilgers, Alain; Hess, Sebastien; Carnelli, Ian
2016-10-01
The Asteroid Impact and Deflection Assessment mission (AIDA) is a joint European-US technology demonstrator mission including the DART asteroid impactor (NASA/JHU/APL) and the AIM asteroid rendezvous platform (ESA/DLR/OCA) set to reach Near Earth binary Object 65803 Didymos in October 2022. Besides technology demonstration in the deep space communications domain and the realization of a kinetic impact on the moonlet to study deflection parameters, this asteroid rendezvous mission is an opportunity to carry out in-situ observations of the close environment of a binary system, addressing some fundamental science questions. The MASCOT-2 lander will be released from the AIM platform and operate at the surface of the moonlet of 65803 Didymos, complemented by the ability of the Cubesat Opportunity Payloads (COPINS) to sample the close environment of the binary.In this context, we have developed an model describing the plasma and charged dust components of the near surface environment of the moonlet (170m in diameter), targeted by the MASCOT-2 lander and of the DART impactor. We performed numerical simulations in order to estimate the electrostatic surface potentials at various locations of the surface, resulting from its interaction with the solar wind plasma and solar photons. In addition, we describe charging levels, density profiles, and velocity distribution of regolith grains lifted out from the surface up to about 70m above the surface.
Allahham, Ayman; Stewart, Peter J; Das, Shyamal C
2013-11-30
Influence of ternary, poorly water-soluble components on the agglomerate strength of cohesive indomethacin mixtures during dissolution was studied to explore the relationship between agglomerate strength and extent of de-agglomeration and dissolution of indomethacin (Ind). Dissolution profiles of Ind from 20% Ind-lactose binary mixtures, and ternary mixtures containing additional dibasic calcium phosphate (1% or 10%; DCP), calcium sulphate (10%) and talc (10%) were determined. Agglomerate strength distributions were estimated by Monte Carlo simulation of particle size, work of cohesion and packing fraction distributions. The agglomerate strength of Ind decreased from 1.19 MPa for the binary Ind mixture to 0.84 MPa for 1DCP:20Ind mixture and to 0.42 MPa for 1DCP:2Ind mixture. Both extent of de-agglomeration, demonstrated by the concentration of the dispersed indomethacin distribution, and extent of dispersion, demonstrated by the particle size of the dispersed indomethacin, were in descending order of 1DCP:2Ind>1DCP:20Ind>binary Ind. The addition of calcium sulphate dihydrate and talc also reduced the agglomerate strength and improved de-agglomeration and dispersion of indomethacin. While not definitively causal, the improved de-agglomeration and dispersion of a poorly water soluble drug by poorly water soluble components was related to the agglomerate strength of the cohesive matrix during dissolution. Copyright © 2013 Elsevier B.V. All rights reserved.
Deposition behavior of mixed binary metallic powders in cold spraying process
NASA Astrophysics Data System (ADS)
Zhou, X. L.; Mou, S. J.; Wu, X. K.; Zhang, J. S.
2011-10-01
In the present study, Zn/Al composite coating was selected for the typical case to study the deposition behavior and the deformation of binary mixing particles in cold spraying process by means of an experiment and numerical simulation. The experimental results demonstrated that the coating had a dense microstructure, and that Zn and Al were uniformly distributed in the coating. Al particles deformed more severely than Zn particles, and extensively deformed Al particles had a local jet-metallic mixing area. The steel substrate underwent a small amount of deformation when impacted by Zn particles, whereas the substrate did not deform when impacted by Al particles. XRD results show that the Zn/Al composite coating did not form a new phase, and only resulted in the mechanical mixing of Zn and Al, producing a pseudo-alloy coating. In addition, a binary Zn/Al multiparticle impact was first simulated using the finite element analysis software ANSYS/LS-DYNA. The effective plastic strain contour, which enabled the description of the particle deposit procedure, was demonstrated. The plastic deformation evolution of Zn and Al particles in the composite coating was analyzed individually, and the curves of effective plastic strain versus time of typical monitored elements at the edge of the Zn and Al particles were plotted. The simulations showed good concordance with the experimental results.
The Peculiar Galactic Center Neutron Star X-Ray Binary XMM J174457-2850.3
NASA Technical Reports Server (NTRS)
Degenaar, N.; Wijnands, R.; Reynolds, M. T.; Miller, J. M.; Altamirano, D.; Kennea, J.; Gehrels, N.; Haggard, D.; Ponti, G.
2014-01-01
The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of 2 hr and a radiated energy output of 5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx5E32 ergs and exhibits occasional accretion outbursts during which it brightens to Lx1E35-1E36 ergs for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at Lx1E33-1E34 ergs. This unusual X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.
Effects of chemical alternation on damage accumulation in concentrated solid-solution alloys
Ullah, Mohammad W.; Xue, Haizhou; Velisa, Gihan; ...
2017-06-23
Single-phase concentrated solid-solution alloys (SP-CSAs) have recently gained unprecedented attention due to their promising properties. To understand effects of alloying elements on irradiation-induced defect production, recombination and evolution, an integrated study of ion irradiation, ion beam analysis and atomistic simulations are carried out on a unique set of model crystals with increasing chemical complexity, from pure Ni to Ni 80Fe 20, Ni 50Fe 50, and Ni 80Cr 20 binaries, and to a more complex Ni 40Fe 40Cr 20 alloy. Both experimental and simulation results suggest that the binary and ternary alloys exhibit higher radiation resistance than elemental Ni. The modelingmore » work predicts that Ni 40Fe 40Cr 20 has the best radiation tolerance, with the number of surviving Frenkel pairs being factors of 2.0 and 1.4 lower than pure Ni and the 80:20 binary alloys, respectively. While the reduced defect mobility in SP-CSAs is identified as a general mechanism leading to slower growth of large defect clusters, the effect of specific alloying elements on suppression of damage accumulation is clearly demonstrated. This work suggests that concentrated solid-solution provides an effective way to enhance radiation tolerance by creating elemental alternation at the atomic level. The demonstrated chemical effects on defect dynamics may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.« less
Eskinazi-Budge, Aaron; Manickavasagam, Dharani; Czech, Tori; Novak, Kimberly; Kunzler, James; Oyewumi, Moses O
2018-05-30
Simvastatin (Sim) is a widely known drug in the treatment of hyperlipidemia that has attracted so much attention in bone regeneration based on its potential osteoanabolic effect. However, repurposing of Sim in bone regeneration will require suitable delivery systems that can negate undesirable off-target/side effects. In this study, we have investigated a new lipid nanoparticle (NP) platform that was fabricated using a binary blend of emulsifying wax (Ewax) and glyceryl monooleate (GMO). Using the binary matrix materials, NPs loaded with Sim (0-500 µg/mL) were prepared and showed an average particle size of about 150 nm. NP size stability was dependent on Sim concentration loaded in NPs. The suitability of NPs prepared with the binary matrix materials in Sim delivery for potential application in bone regeneration was supported by biocompatibility in pre-osteoclastic and pre-osteoblastic cells. Additional data demonstrated that biofunctional Sim was released from NPs that facilitated differentiation of osteoblasts (cells that form bones) while inhibiting differentiation of osteoclasts (cells that resorb bones). The overall work demonstrated the preparation of NPs from Ewax/GMO blends and characterization to ascertain potential suitability in Sim delivery for bone regeneration. Additional studies on osteoblast and osteoclast functions are warranted to fully evaluate the efficacy simvastatin-loaded Ewax/GMO NPs using in-vitro and in-vivo approaches.
NASA Astrophysics Data System (ADS)
Bhagwat, Swetha; Kumar, Prayush; Barkett, Kevin; Afshari, Nousha; Brown, Duncan A.; Lovelace, Geoffrey; Scheel, Mark A.; Szilagyi, Bela; LIGO Collaboration
2016-03-01
Detection of gravitational wave involves extracting extremely weak signal from noisy data and their detection depends crucially on the accuracy of the signal models. The most accurate models of compact binary coalescence are known to come from solving the Einstein's equation numerically without any approximations. However, this is computationally formidable. As a more practical alternative, several analytic or semi analytic approximations are developed to model these waveforms. However, the work of Nitz et al. (2013) demonstrated that there is disagreement between these models. We present a careful follow up study on accuracies of different waveform families for spinning black-hole neutron star binaries, in context of both detection and parameter estimation and find that SEOBNRv2 to be the most faithful model. Post Newtonian models can be used for detection but we find that they could lead to large parameter bias. Supported by National Science Foundation (NSF) Awards No. PHY-1404395 and No. AST-1333142.
Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees
Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng
2015-01-01
In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597
Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors.
Förstner, Philip; Bayer, Fabienne; Kalu, Nnanya; Felsen, Susanne; Förtsch, Christina; Aloufi, Abrar; Ng, David Y W; Weil, Tanja; Nestorovich, Ekaterina M; Barth, Holger
2014-07-14
Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.
Composition measurements of binary mixture droplets by rainbow refractometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilms, J.; Weigand, B
2007-04-10
So far, refractive index measurements by rainbow refractometry have been used to determine the temperature of single droplets and ensembles of droplets. Rainbow refractometry is, for the first time, to the best of our knowledge, applied to measure composition histories of evaporating, binary mixture droplets. An evaluation method is presented that makes use of Airy theory and the simultaneous size measurement by Mie scattering imaging. The method further includes an empirical correction function for a certain diameter and refractive index range. The measurement uncertainty was investigated by numerical simulations with Lorenz-Mie theory. For the experiments, an optical levitation setup wasmore » used allowing for long measurement periods. Temperature measurements of single-component droplets at different temperature levels are shown to demonstrate the accuracy of rainbow refractometry. Measurements of size and composition histories of binary mixture droplets are presented for two different mixtures. Experimental results show good agreement with numerical results using a rapid-mixing model.« less
Salvatierra, Rodrigo Villegas; Zakhidov, Dante; Sha, Junwei; Kim, Nam Dong; Lee, Seoung-Ki; Raji, Abdul-Rahman O; Zhao, Naiqin; Tour, James M
2017-03-28
Here we show that a versatile binary catalyst solution of Fe 3 O 4 /AlO x nanoparticles enables homogeneous growth of single to few-walled carbon nanotube (CNT) carpets from three-dimensional carbon-based substrates, moving past existing two-dimensional limited growth methods. The binary catalyst is composed of amorphous AlO x nanoclusters over Fe 3 O 4 crystalline nanoparticles, facilitating the creation of seamless junctions between the CNTs and the underlying carbon platform. The resulting graphene-CNT (GCNT) structure is a high-density CNT carpet ohmically connected to the carbon substrate, an important feature for advanced carbon electronics. As a demonstration of the utility of this approach, we use GCNTs as anodes and cathodes in binder-free lithium-ion capacitors, producing stable devices with high-energy densities (∼120 Wh kg -1 ), high-power density capabilities (∼20,500 W kg -1 at 29 Wh kg -1 ), and a large operating voltage window (4.3 to 0.01 V).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaib, Nathan A.; Duncan, Martin J.; Raymond, Sean N., E-mail: nkaib@astro.queensu.ca
Although the 55 Cnc system contains multiple, closely packed planets that are presumably in a coplanar configuration, we use numerical simulations to demonstrate that they are likely to be highly inclined to their parent star's spin axis. Due to perturbations from its distant binary companion, this planetary system precesses like a rigid body about its parent star. Consequently, the parent star's spin axis and the planetary orbit normal likely diverged long ago. Because only the projected separation of the binary is known, we study this effect statistically, assuming an isotropic distribution for wide binary orbits. We find that the mostmore » likely projected spin-orbit angle is {approx}50 Degree-Sign , with a {approx}30% chance of a retrograde configuration. Transit observations of the innermost planet-55 Cnc e-may be used to verify these findings via the Rossiter-McLaughlin effect. 55 Cancri may thus represent a new class of planetary systems with well-ordered, coplanar orbits that are inclined with respect to the stellar equator.« less
A neural net based architecture for the segmentation of mixed gray-level and binary pictures
NASA Technical Reports Server (NTRS)
Tabatabai, Ali; Troudet, Terry P.
1991-01-01
A neural-net-based architecture is proposed to perform segmentation in real time for mixed gray-level and binary pictures. In this approach, the composite picture is divided into 16 x 16 pixel blocks, which are identified as character blocks or image blocks on the basis of a dichotomy measure computed by an adaptive 16 x 16 neural net. For compression purposes, each image block is further divided into 4 x 4 subblocks; a one-bit nonparametric quantizer is used to encode 16 x 16 character and 4 x 4 image blocks; and the binary map and quantizer levels are obtained through a neural net segmentor over each block. The efficiency of the neural segmentation in terms of computational speed, data compression, and quality of the compressed picture is demonstrated. The effect of weight quantization is also discussed. VLSI implementations of such adaptive neural nets in CMOS technology are described and simulated in real time for a maximum block size of 256 pixels.
NASA Astrophysics Data System (ADS)
Leinhardt, Zoë M.; Richardson, Derek C.
2005-08-01
We present a new code ( companion) that identifies bound systems of particles in O(NlogN) time. Simple binaries consisting of pairs of mutually bound particles and complex hierarchies consisting of collections of mutually bound particles are identifiable with this code. In comparison, brute force binary search methods scale as O(N) while full hierarchy searches can be as expensive as O(N), making analysis highly inefficient for multiple data sets with N≳10. A simple test case is provided to illustrate the method. Timing tests demonstrating O(NlogN) scaling with the new code on real data are presented. We apply our method to data from asteroid satellite simulations [Durda et al., 2004. Icarus 167, 382-396; Erratum: Icarus 170, 242; reprinted article: Icarus 170, 243-257] and note interesting multi-particle configurations. The code is available at http://www.astro.umd.edu/zoe/companion/ and is distributed under the terms and conditions of the GNU Public License.
Cationic PAMAM Dendrimers as Pore-Blocking Binary Toxin Inhibitors
2015-01-01
Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria. PMID:24954629
NASA Astrophysics Data System (ADS)
Nitz, Alexander H.
2018-02-01
‘Blip glitches’ are a type of short duration transient noise in LIGO data. The cause for the majority of these is currently unknown. Short duration transient noise creates challenges for searches of the highest mass binary black hole systems, as standard methods of applying signal consistency, which look for consistency in the accumulated signal-to-noise of the candidate event, are unable to distinguish many blip glitches from short duration gravitational-wave signals due to similarities in their time and frequency evolution. We demonstrate a straightforward method, employed during Advanced LIGO’s second observing run, including the period of joint observation with the Virgo observatory, to separate the majority of this transient noise from potential gravitational-wave sources. This yields a ∼20% improvement in the detection rate of high mass binary black hole mergers (> 60 Mȯ ) for the PyCBC analysis.
Spectral energy distributions and colours of hot subluminous stars
NASA Astrophysics Data System (ADS)
Heber, Ulrich; Irrgang, Andreas; Schaffenroth, Johannes
2018-02-01
Photometric surveys at optical, ultraviolet, and infrared wavelengths provide ever-growing datasets as major surveys proceed. Colour-colour diagrams are useful tools to identify classes of star and provide large samples. However, combining all photometric measurements of a star into a spectral energy distribution will allow quantitative analyses to be carried out. We demonstrate how to construct and exploit spectral energy distributions and colours for sublumious B (sdB) stars. The aim is to identify cool companions to hot subdwarfs and to determine atmospheric parameters of apparently single sdB stars as well as composite spectrum sdB binaries.We analyse two sdB stars with high-quality photometric data which serve as our benchmarks, the apparently single sdB HD205805 and the sdB + K5 binary PG 0749+658, briefly present preliminary results for the sample of 142 sdB binaries with known orbits, and discuss future prospects from ongoing all-sky optical space- (Gaia) and ground-based (e.g. SkyMapper) as well as NIR surveys.
Inferring the post-merger gravitational wave emission from binary neutron star coalescences
NASA Astrophysics Data System (ADS)
Chatziioannou, Katerina; Clark, James Alexander; Bauswein, Andreas; Millhouse, Margaret; Littenberg, Tyson B.; Cornish, Neil
2017-12-01
We present a robust method to characterize the gravitational wave emission from the remnant of a neutron star coalescence. Our approach makes only minimal assumptions about the morphology of the signal and provides a full posterior probability distribution of the underlying waveform. We apply our method on simulated data from a network of advanced ground-based detectors and demonstrate the gravitational wave signal reconstruction. We study the reconstruction quality for different binary configurations and equations of state for the colliding neutron stars. We show how our method can be used to constrain the yet-uncertain equation of state of neutron star matter. The constraints on the equation of state we derive are complementary to measurements of the tidal deformation of the colliding neutron stars during the late inspiral phase. In the case of nondetection of a post-merger signal following a binary neutron star inspiral, we show that we can place upper limits on the energy emitted.
A young contracting white dwarf in the peculiar binary HD 49798/RX J0648.0-4418?
NASA Astrophysics Data System (ADS)
Popov, S. B.; Mereghetti, S.; Blinnikov, S. I.; Kuranov, A. G.; Yungelson, L. R.
2018-02-01
HD 49798/RX J0648.0-4418 is a peculiar X-ray binary with a hot subdwarf (sdO) mass donor. The nature of the accreting compact object is not known, but its spin period P = 13.2 s and \\dot{P} =-2.15 × 10^{-15} s s-1 proves that it can be only either a white dwarf or a neutron star. The spin-up has been very stable for more than 20 yr. We demonstrate that the continuous stable spin-up of the compact companion of HD 49798 can be best explained by contraction of a young white dwarf with an age ˜2 Myr. This allows us to interpret all the basic parameters of the system in the framework of an accreting white dwarf. We present examples of binary evolution, which result in such systems. If correct, this is the first direct evidence for a white dwarf contraction in early evolutionary stages.
Fast large-scale object retrieval with binary quantization
NASA Astrophysics Data System (ADS)
Zhou, Shifu; Zeng, Dan; Shen, Wei; Zhang, Zhijiang; Tian, Qi
2015-11-01
The objective of large-scale object retrieval systems is to search for images that contain the target object in an image database. Where state-of-the-art approaches rely on global image representations to conduct searches, we consider many boxes per image as candidates to search locally in a picture. In this paper, a feature quantization algorithm called binary quantization is proposed. In binary quantization, a scale-invariant feature transform (SIFT) feature is quantized into a descriptive and discriminative bit-vector, which allows itself to adapt to the classic inverted file structure for box indexing. The inverted file, which stores the bit-vector and box ID where the SIFT feature is located inside, is compact and can be loaded into the main memory for efficient box indexing. We evaluate our approach on available object retrieval datasets. Experimental results demonstrate that the proposed approach is fast and achieves excellent search quality. Therefore, the proposed approach is an improvement over state-of-the-art approaches for object retrieval.
Organometallic Routes into the Nanorealms of Binary Fe-Si Phases
Kolel-Veetil, Manoj K.; Keller, Teddy M.
2010-01-01
The Fe-Si binary system provides several iron silicides that have varied and exceptional material properties with applications in the electronic industry. The well known Fe-Si binary silicides are Fe3Si, Fe5Si3, FeSi, α-FeSi2 and β-FeSi2. While the iron-rich silicides Fe3Si and Fe5Si3 are known to be room temperature ferromagnets, the stoichiometric FeSi is the only known transition metal Kondo insulator. Furthermore, Fe5Si3 has also been demonstrated to exhibit giant magnetoresistance (GMR). The silicon-rich β-FeSi2 is a direct band gap material usable in light emitting diode (LED) applications. Typically, these silicides are synthesized by traditional solid-state reactions or by ion beam-induced mixing (IBM) of alternating metal and silicon layers. Alternatively, the utilization of organometallic compounds with reactive transition metal (Fe)-carbon bonds has opened various routes for the preparation of these silicides and the silicon-stabilized bcc- and fcc-Fe phases contained in the Fe-Si binary phase diagram. The unique interfacial interactions of carbon with the Fe and Si components have resulted in the preferential formation of nanoscale versions of these materials. This review will discuss such reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senesac, Larry R; Datskos, Panos G; Sepaniak, Michael J
2006-01-01
In the present work, we have performed analyte species and concentration identification using an array of ten differentially functionalized microcantilevers coupled with a back-propagation artificial neural network pattern recognition algorithm. The array consists of ten nanostructured silicon microcantilevers functionalized by polymeric and gas chromatography phases and macrocyclic receptors as spatially dense, differentially responding sensing layers for identification and quantitation of individual analyte(s) and their binary mixtures. The array response (i.e. cantilever bending) to analyte vapor was measured by an optical readout scheme and the responses were recorded for a selection of individual analytes as well as several binary mixtures. Anmore » artificial neural network (ANN) was designed and trained to recognize not only the individual analytes and binary mixtures, but also to determine the concentration of individual components in a mixture. To the best of our knowledge, ANNs have not been applied to microcantilever array responses previously to determine concentrations of individual analytes. The trained ANN correctly identified the eleven test analyte(s) as individual components, most with probabilities greater than 97%, whereas it did not misidentify an unknown (untrained) analyte. Demonstrated unique aspects of this work include an ability to measure binary mixtures and provide both qualitative (identification) and quantitative (concentration) information with array-ANN-based sensor methodologies.« less
The Structure of the Narcissistic Personality Inventory With Binary and Rating Scale Items.
Boldero, Jennifer M; Bell, Richard C; Davies, Richard C
2015-01-01
Narcissistic Personality Inventory (NPI) items typically have a forced-choice format, comprising a narcissistic and a nonnarcissistic statement. Recently, some have presented the narcissistic statements and asked individuals to either indicate whether they agree or disagree that the statements are self-descriptive (i.e., a binary response format) or to rate the extent to which they agree or disagree that these statements are self-descriptive on a Likert scale (i.e., a rating response format). The current research demonstrates that when NPI items have a binary or a rating response format, the scale has a bifactor structure (i.e., the items load on a general factor and on 6 specific group factors). Indexes of factor strength suggest that the data are unidimensional enough for the NPI's general factor to be considered a measure of a narcissism latent trait. However, the rating item general factor assessed more narcissism components than the binary item one. The positive correlations of the NPI's general factor, assessed when items have a rating response format, were moderate with self-esteem, strong with a measure of narcissistic grandiosity, and weak with 2 measures of narcissistic vulnerability. Together, the results suggest that using a rating format for items enhances the information provided by the NPI.
Thermoelectric properties of Co(x)Ni(4-x)Sb(12-y)Sn(y) ternary skutterudites
NASA Technical Reports Server (NTRS)
Mackey, Jon A.; Dynys, Frederick W.; Sehirlioglu, Alp
2014-01-01
Thermoelectric materials based on the skutterudite crystal structure have demonstrated enhanced performance (ZT greater than 1), along with good thermal stability and favorable mechanical properties. Binary skutterudites, with single and multiple fillers, have been intensively studied in recent years. Compared to binary skutterudites, the ternary systems have received less attention, e.g. Ni4Sb8Sn4. Ternary skutterudites are isoelectronic variants of binary skutterudites; cation substitutions appear to be isostructural to their binary analogues. In general, ternary skutterudites exhibit lower thermal conductivity. Ternary systems of Ni4Bi8Ge4, Ni4Sb8Ge4, and Ni4Sb8Sn4 were investigated using combined solidification and sintering steps. Skutterudite formation was not achieved in the Ni4Bi8Ge4 and Ni4Sb8Ge4 systems; skutterudite formation occurred in Ni4Sb8Sn4 system. P-type material was achieved by Co substitution for Ni. Thermoelectric properties were measured from 298 K to 673 K for Ni4Sb8Sn4, Ni4 Sb7Sn5 and Co2Ni2Sb7Sn5. N-type Ni4Sb8Sn4 exhibit the highest figure of merit of 0.1 at 523 K.
Optimal Search for an Astrophysical Gravitational-Wave Background
NASA Astrophysics Data System (ADS)
Smith, Rory; Thrane, Eric
2018-04-01
Roughly every 2-10 min, a pair of stellar-mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest contribute to a stochastic background. We derive the statistically optimal search strategy (producing minimum credible intervals) for a background of unresolved binaries. Our method applies Bayesian parameter estimation to all available data. Using Monte Carlo simulations, we demonstrate that the search is both "safe" and effective: it is not fooled by instrumental artifacts such as glitches and it recovers simulated stochastic signals without bias. Given realistic assumptions, we estimate that the search can detect the binary black hole background with about 1 day of design sensitivity data versus ≈40 months using the traditional cross-correlation search. This framework independently constrains the merger rate and black hole mass distribution, breaking a degeneracy present in the cross-correlation approach. The search provides a unified framework for population studies of compact binaries, which is cast in terms of hyperparameter estimation. We discuss a number of extensions and generalizations, including application to other sources (such as binary neutron stars and continuous-wave sources), simultaneous estimation of a continuous Gaussian background, and applications to pulsar timing.
Cross-talk free selective reconstruction of individual objects from multiplexed optical field data
NASA Astrophysics Data System (ADS)
Zea, Alejandro Velez; Barrera, John Fredy; Torroba, Roberto
2018-01-01
In this paper we present a data multiplexing method for simultaneous storage in a single package composed by several optical fields of tridimensional (3D) objects, and their individual cross-talk free retrieval. Optical field data are extracted from off axis Fourier holograms, and then sampled by multiplying them with random binary masks. The resulting sampled optical fields can be used to reconstruct the original objects. Sampling causes a loss of quality that can be controlled by the number of white pixels in the binary masks and by applying a padding procedure on the optical field data. This process can be performed using a different binary mask for each optical field, and then added to form a multiplexed package. With the adequate choice of sampling and padding, we can achieve a volume reduction in the multiplexed package over the addition of all individual optical fields. Moreover, the package can be multiplied by a binary mask to select a specific optical field, and after the reconstruction procedure, the corresponding 3D object is recovered without any cross-talk. We demonstrate the effectiveness of our proposal for data compression with a comparison with discrete cosine transform filtering. Experimental results confirm the validity of our proposal.
Astroserver - Research Services in the Stellar Webshop
NASA Astrophysics Data System (ADS)
Németh, Péter
2017-12-01
A quick look at research and development in astronomy shows that we live in exciting times. Exoplanetary systems, supernovae, and merging binary black holes were far out of reach for observers two decades ago and now such phenomena are recorded routinely. This quick development would not have been possible without the ability for researchers to be connected, to think globally and to be mobile. Classical short-term positions are not always suitable to support these conditions and freelancing may be a viable alternative.We introduce the Astroserver framework, which is a new freelancing platform for scientists, and demonstrate through examples how it contributed to some recent projects related to hot subdwarf stars and binaries. These contributions, which included spectroscopic data mining, computing services and observing services, as well as artwork, allowed a deeper look into the investigated systems. The work on composite spectra binaries provided new details for the hypervelocity wide subdwarf binary PB 3877 and found diverse and rare systems with sub-giant companions in high-resolution spectroscopic surveys. The models for the peculiar abundance pattern of the evolved compact star LP 40-365 showed it to be a bound hypervelocity remnant of a supernova Iax event. Some of these works also included data visualizations to help presenting the new results. Such services may be of interest for many researchers.
Tauris; van Den Heuvel EP; Savonije
2000-02-20
We have performed detailed numerical calculations of the nonconservative evolution of close X-ray binary systems with intermediate-mass (2.0-6.0 M middle dot in circle) donor stars and a 1.3 M middle dot in circle accreting neutron star. We calculated the thermal response of the donor star to mass loss in order to determine its stability and follow the evolution of the mass transfer. Under the assumption of the "isotropic reemission model," we demonstrate that in many cases it is possible for the binary to prevent a spiral-in and survive a highly super-Eddington mass transfer phase (1
ERIC Educational Resources Information Center
Anguiano, Claudia A.; Nájera, Lourdes Gutiérrez
2015-01-01
This article examines the problematic labels of "deserving" and "undeserving" within a broader context of undocumented immigration. Specifically, we interrogate the categorization of "deservingness" that imposes distinctions between "good" versus "bad" immigrants. We demonstrate these categories…
1992-09-01
finding an inverse plant such as was done by Bertrand [BD91] and by Levin, Gewirtzman and Inbar in a binary type inverse controller [LGI91], to self tuning...gain robust control. 2) Self oscillating adaptive controller. 3) Gain scheduling. 4) Self tuning. 5) Model-reference adaptive systems. Although the...of multidimensional systems (CS881 as well as aircraft [HG90]. The self oscillating method is also a feedback based mechanism, utilizing a relay in the
High-frequency transformation of Lobelia erinus L. by Agrobacterium-mediated gene transfer.
Tsugawa, H; Kagami, T; Suzuki, M
2004-05-01
A highly efficient transformation procedure was developed for Lobelia erinus. Leaf or cotyledon discs were inoculated with Agrobacterium tumefaciens strain EHA105 harboring the binary vector plasmid pIG121Hm, which contains a beta-glucuronidase gene with an intron as a reporter gene and both the neomycin phosphotransferase II and hygromycin phosphotransferase genes as selectable markers. The hygromycin-resistant calli produced on the selection medium were transferred to MS medium supplemented with 0.5 mg/l benzyladenine and 0.2 mg/l indole-3-acetic acid for regeneration of adventitious shoots. Transgenic plants were obtained as a result of the high regeneration rate of the transformed calli, which was as high as 83%. In contrast, no transgenic plant was obtained by the procedure of direct shoot formation following inoculation with A. tumefaciens. Transgenic plants flowered 3-4 months after transformation. Integration of the transgenes was detected using PCR and Southern blot analysis, which revealed that one to several copies were integrated into the genomes of the host plants. The transformation frequency at the stage of whole plants was very high--45% per inoculated disc. Copyright 2004 Springer-Verlag
The Double Asteroid Redirection Test in the AIDA Project
NASA Astrophysics Data System (ADS)
Cheng, Andrew; Rivkin, Andrew; Michel, Patrick
2016-04-01
The Asteroid Impact & Deflection Assessment (AIDA) mission will be the first space experiment to demonstrate asteroid impact hazard mitigation by using a kinetic impactor. AIDA is a joint ESA-NASA cooperative project, that includes the ESA Asteroid Impact Mission (AIM) rendezvous mission and the NASA Double Asteroid Redirection Test (DART) mission. The AIDA target is the near-Earth binary asteroid 65803 Didymos, which will make an unusually close approach to Earth in October, 2022. The ~300-kg DART spacecraft is designed to impact the Didymos secondary at 7 km/s and demonstrate the ability to modify its trajectory through momentum transfer. DART and AIM are currently Phase A studies supported by NASA and ESA respectively. The primary goals of AIDA are (1) perform a full-scale demonstration of the spacecraft kinetic impact technique for deflection of an asteroid, by targeting an object larger than ~100 m and large enough to qualify as a Potentially Hazardous Asteroid; (2) measure the resulting asteroid deflection, by targeting the secondary member of a binary NEO and measuring the period change of the binary orbit; (3) understand the hyper-velocity collision effects on an asteroid, including the long-term dynamics of impact ejecta; and validate models for momentum transfer in asteroid impacts, based on measured physical properties of the asteroid surface and sub-surface. The primary DART objectives are to demonstrate a hyper-velocity impact on the Didymos moon and to determine the resulting deflection from ground-based observatories. The DART impact on the Didymos secondary will cause a measurable change in the orbital period of the binary. Supporting Earth-based optical and radar observations and numerical simulation studies are an integral part of the DART mission. The baseline DART mission launches in December, 2020 to impact the Didymos secondary in September, 2022. There are multiple launch opportunities for DART leading to impact around the 2022 Didymos close approach to Earth. The AIM spacecraft will be launched in Dec. 2020 and arrive at Didymos in spring, 2022, several months before the DART impact. AIM will characterize the Didymos binary system by means of remote sensing and in-situ instruments both before and after the DART impact. The asteroid deflection will be measured to higher accuracy, and additional results of the DART impact, like the impact crater, will be studied in great detail by the AIM mission. The combined DART and AIM missions will provide the first measurements of momentum transfer efficiency β from hyper-velocity kinetic impact at full scale on an asteroid, where the impact conditions of the projectile are known, and physical properties and internal structures of the target asteroid are also characterized. The DART impact on the Didymos secondary is predicted to cause a ~4.4 minute change in the binary orbit period, assuming β=1, and is expected to be observable within a few days. The predicted β would be in the range 1.1 to 1.3 for a porous target material based on a variety of numerical and analytical methods, but may be much larger if the target is non-porous. The DART kinetic impact is predicted to make a crater of ~6 to ~17 meters diameter, depending on target physical properties, but will also release a large volume of particulate ejecta that may be directly observable from Earth or even resolvable as a coma or an ejecta tail by ground-based telescopes.
Experimental distillation of quantum nonlocality.
Zu, C; Deng, D-L; Hou, P-Y; Chang, X-Y; Wang, F; Duan, L-M
2013-08-02
We report the first experimental demonstration of distillation of quantum nonlocality, confirming the recent theoretical protocol [Phys. Rev. Lett. 102, 120401 (2009)]. Quantum nonlocality is described by a correlation box with binary inputs and outputs, and the nonlocal boxes are realized through appropriate measurements on polarization entangled photon pairs. We demonstrate that nonlocality is amplified by connecting two nonlocal boxes into a composite one through local operations and four-photon measurements.
CRISPR/Cas9-Based Multiplex Genome Editing in Monocot and Dicot Plants.
Ma, Xingliang; Liu, Yao-Guang
2016-07-01
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome targeting system has been applied to a variety of organisms, including plants. Compared to other genome-targeting technologies such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), the CRISPR/Cas9 system is easier to use and has much higher editing efficiency. In addition, multiple "single guide RNAs" (sgRNAs) with different target sequences can be designed to direct the Cas9 protein to multiple genomic sites for simultaneous multiplex editing. Here, we present a procedure for highly efficient multiplex genome targeting in monocot and dicot plants using a versatile and robust CRISPR/Cas9 vector system, emphasizing the construction of binary constructs with multiple sgRNA expression cassettes in one round of cloning using Golden Gate ligation. We also describe the genotyping of targeted mutations in transgenic plants by direct Sanger sequencing followed by decoding of superimposed sequencing chromatograms containing biallelic or heterozygous mutations using the Web-based tool DSDecode. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.
Lasfargues, Mathieu; Bell, Andrew; Ding, Yulong
In this study, TiO 2 nanoparticles (average particle size 16 nm) were successfully produced in molten salt phase and were showed to significantly enhance the specific heat capacity of a binary eutectic mixture of sodium and potassium nitrate (60/40) by 5.4 % at 390 °C and 7.5 % at 445 °C for 3.0 wt% of precursors used. The objective of this research was to develop a cost-effective alternate method of production which is potentially scalable, as current techniques utilized are not economically viable for large quantities. Enhancing the specific heat capacity of molten salt would promote more competitive pricing for electricity production by concentrating solar power plant. Here, a simple precursor (TiOSO 4 ) was added to a binary eutectic mixture of potassium and sodium nitrate, heated to 450 °C, and cooled to witness the production of nanoparticles.
Genetic transformation of tobacco NT1 cells with Agrobacterium tumefaciens.
Mayo, Kristin J; Gonzales, Barbara J; Mason, Hugh S
2006-01-01
This protocol is used to produce stably transformed tobacco (Nicotiana tabacum) NT1 cell lines, using Agrobacterium tumefaciens-mediated DNA delivery of a binary vector containing a gene encoding hepatitis B surface antigen and a gene encoding the kanamycin selection marker. The NT1 cultures, at the appropriate stage of growth, are inoculated with A. tumefaciens containing the binary vector. A 3-day cocultivation period follows, after which the cultures are rinsed and placed on solid selective medium. Transformed colonies ('calli') appear in approximately 4 weeks; they are subcultured until adequate material is obtained for analysis of antigen production. 'Elite' lines are selected based on antigen expression and growth characteristics. The time required for the procedure from preparation of the plant cell materials to callus development is approximately 5 weeks. Growth of selected calli to sufficient quantities for antigen screening may require 4-6 weeks beyond the initial selection. Creation of the plasmid constructs, transformation of the A. tumefaciens line, and ELISA and Bradford assays to assess protein production require additional time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dan Wendt; Greg Mines
2014-09-01
Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contractsmore » in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.« less
Ammagarahalli, Byrappa; Gemeno, César
2015-10-01
In moths, sex pheromone components are detected by pheromone-specific olfactory receptor neurons (ph-ORNs) housed in sensilla trichodea in the male antennae. In Grapholita molesta, ph-ORNs are highly sensitive and specific to the individual sex pheromone components, and thus help in the detection and discrimination of the unique conspecific pheromone blend. Plant odors interspersed with a sub-optimal pheromone dose are reported to increase male moth attraction. To determine if the behavioral synergism of pheromone and plant odors starts at the ph-ORN level, single sensillum recordings were performed on Z8-12:Ac and E8-12:Ac ph-ORNs (Z-ORNs and E-ORNs, respectively) stimulated with pheromone-plant volatile mixtures. First, biologically meaningful plant-volatile doses were determined by recording the response of plant-specific ORNs housed in sensilla auricillica and trichodea to several plant odorants. This exploration provided a first glance at plant ORNs in this species. Then, using these plant volatile doses, we found that the spontaneous activity of ph-ORNs was not affected by the stimulation with plant volatiles, but that a binary mixture of sex pheromone and plant odorants resulted in a small (about 15%), dose-independent, but statistically significant, reduction in the spike frequency of Z-ORNs with respect to stimulation with Z8-12:Ac alone. The response of E-ORNs to a combination of E8-12:Ac and plant volatiles was not different from E8-12:Ac alone. We argue that the small inhibition of Z-ORNs caused by physiologically realistic plant volatile doses is probably not fully responsible for the observed behavioral synergism of pheromone and plant odors. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lange, J.; O'Shaughnessy, R.; Boyle, M.; Calderón Bustillo, J.; Campanelli, M.; Chu, T.; Clark, J. A.; Demos, N.; Fong, H.; Healy, J.; Hemberger, D. A.; Hinder, I.; Jani, K.; Khamesra, B.; Kidder, L. E.; Kumar, P.; Laguna, P.; Lousto, C. O.; Lovelace, G.; Ossokine, S.; Pfeiffer, H.; Scheel, M. A.; Shoemaker, D. M.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.
2017-11-01
We present and assess a Bayesian method to interpret gravitational wave signals from binary black holes. Our method directly compares gravitational wave data to numerical relativity (NR) simulations. In this study, we present a detailed investigation of the systematic and statistical parameter estimation errors of this method. This procedure bypasses approximations used in semianalytical models for compact binary coalescence. In this work, we use the full posterior parameter distribution for only generic nonprecessing binaries, drawing inferences away from the set of NR simulations used, via interpolation of a single scalar quantity (the marginalized log likelihood, ln L ) evaluated by comparing data to nonprecessing binary black hole simulations. We also compare the data to generic simulations, and discuss the effectiveness of this procedure for generic sources. We specifically assess the impact of higher order modes, repeating our interpretation with both l ≤2 as well as l ≤3 harmonic modes. Using the l ≤3 higher modes, we gain more information from the signal and can better constrain the parameters of the gravitational wave signal. We assess and quantify several sources of systematic error that our procedure could introduce, including simulation resolution and duration; most are negligible. We show through examples that our method can recover the parameters for equal mass, zero spin, GW150914-like, and unequal mass, precessing spin sources. Our study of this new parameter estimation method demonstrates that we can quantify and understand the systematic and statistical error. This method allows us to use higher order modes from numerical relativity simulations to better constrain the black hole binary parameters.
NASA Astrophysics Data System (ADS)
Kathalikkattil, Amal Cherian; Damodaran, Subin; Bisht, Kamal Kumar; Suresh, Eringathodi
2011-01-01
Four new binary molecular compounds between a flexible exobidentate N-heterocycle and a series of dicarboxylic acids have been synthesized. The N-donor 1,4-bis(imidazol-1-ylmethyl)benzene (bix) was reacted with flexible and rigid dicarboxylic acids viz., cyclohexane-1,4-dicarboxylic acid (H 2chdc), naphthalene-1,4-dicarboxylic acid (H 2npdc) and 1H-pyrazole-3,5-dicarboxylic acid (H 2pzdc), generating four binary molecular complexes. X-ray crystallographic investigation of the molecular adducts revealed the primary intermolecular interactions carboxylic acid⋯amine (via O-H⋯N) as well as carboxylate⋯protonated amine (via N-H +⋯O -) within the binary compounds, generating layered and two-dimensional sheet type H-bonded networks involving secondary weak interactions (C-H⋯O) including the solvent of crystallization. Depending on the differences in p Ka values of the selected base/acid (Δp Ka), diverse H-bonded supramolecular assemblies could be premeditated. This study demonstrates the H-bonding interactions between imidazole/imidazolium cation and carboxylic acid/carboxylate anion in providing sufficient driving force for the directed assembly of binary molecular complexes. In the two-component solid form of hetero synthons involving bix and dicarboxylic acid, only H 2chdc exist as cocrystal with bix, while all the other three compounds crystallized exclusively as salt, in agreement with the Δp Ka values predicted for the formation of salts/cocrystals from the base and acid used in the synthesis of supramolecular solids.
NASA Astrophysics Data System (ADS)
Ding, Weihua; Huang, Chuanqi; Guan, Lingmei; Liu, Xianhu; Luo, Zhixun; Li, Weixue
2017-05-01
Here we report a successful synthesis of water-soluble 13-atoms gold clusters under the monolayer protection of binary thiolates, glutathione and penicillamine, under a molecular formula of Au13(SG)5(PA)7. This monolayer-protected cluster (MPC) finds decent stability and is demonstrated to possess an icosahedral geometry pertaining to structural accommodation in contrast to a planar bare Au13 of local minima energy. Natural bond orbital (NBO) analysis depicts the interaction patterns between gold and the ligands, enlightening to understand the origin of enhanced stability of the Au13 MPCs. Further, the water-soluble Au13 MPCs are found to be a decent candidate for chemosensing and bioimaging.
Liu, Xujun; Guan, Leilei; Fu, Xiaoniu; Zhao, Yu; Wu, Jiada; Xu, Ning
2014-03-21
Light-absorbing and electrically conductive binary CNx nanocone (CNNC) arrays have been fabricated using a glow discharge plasma-assisted reaction deposition method. The intact CNNCs with amorphous structure and central nickel-filled pipelines could be vertically and neatly grown on nickel-covered substrates according to the catalyst-leading mode. The morphologies and composition of the as-grown CNNC arrays can be well controlled by regulating the methane/nitrogen mixture inlet ratio, and their optical absorption and resistivity strongly depend on their morphologies and composition. Beside large specific surface area, the as-grown CNNC arrays demonstrate high wideband absorption, good conduction, and nice wettability to polymer absorbers.
Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.; ...
2017-11-26
The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300–360 °C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N 2 gas. Lastly, results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.
A chance-constrained stochastic approach to intermodal container routing problems.
Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.
A chance-constrained stochastic approach to intermodal container routing problems
Zhao, Yi; Zhang, Xi; Whiteing, Anthony
2018-01-01
We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost. PMID:29438389
Phase-field-crystal study of solute trapping
NASA Astrophysics Data System (ADS)
Humadi, Harith; Hoyt, Jeffrey J.; Provatas, Nikolas
2013-02-01
In this study we have incorporated two time scales into the phase-field-crystal model of a binary alloy to explore different solute trapping properties as a function of crystal-melt interface velocity. With only diffusive dynamics, we demonstrate that the segregation coefficient, K as a function of velocity for a binary alloy is consistent with the model of Kaplan and Aziz where K approaches unity in the limit of infinite velocity. However, with the introduction of wavelike dynamics in both the density and concentration fields, the trapping follows the kinetics proposed by Sobolev [Phys. Lett. A10.1016/0375-9601(95)00084-G 199, 383 (1995)], where complete trapping occurs at a finite velocity.
Synergism and Combinatorial Coding for Binary Odor Mixture Perception in Drosophila
Chakraborty, Tuhin Subhra; Siddiqi, Obaid
2016-01-01
Most odors in the natural environment are mixtures of several compounds. Olfactory receptors housed in the olfactory sensory neurons detect these odors and transmit the information to the brain, leading to decision-making. But whether the olfactory system detects the ingredients of a mixture separately or treats mixtures as different entities is not well understood. Using Drosophila melanogaster as a model system, we have demonstrated that fruit flies perceive binary odor mixtures in a manner that is heavily dependent on both the proportion and the degree of dilution of the components, suggesting a combinatorial coding at the peripheral level. This coding strategy appears to be receptor specific and is independent of interneuronal interactions. PMID:27588303
NASA Technical Reports Server (NTRS)
Izmailov, Alexander; Myerson, Allan S.
1993-01-01
A new mathematical ansatz for a solution of the time-dependent Ginzburg-Landau non-linear partial differential equation is developed for non-critical systems such as non-critical binary solutions (solute + solvent) described by the non-conserved scalar order parameter. It is demonstrated that in such systems metastability initiates heterogeneous solute redistribution which results in formation of the non-equilibrium singly-periodic spatial solute structure. It is found how the time-dependent period of this structure evolves in time. In addition, the critical radius r(sub c) for solute embryo of the new solute rich phase together with the metastable state lifetime t(sub c) are determined analytically and analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.
The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300–360 °C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N 2 gas. Lastly, results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruemmer, S. M.; Olszta, M. J.; Toloczko, M. B.
The effects of alloying elements in Ni-5at%X binary alloys on intergranular (IG) corrosion and stress corrosion cracking (SCC) have been assessed in 300-360°C hydrogenated water at the Ni/NiO stability line. Alloys with Cr or Al additions exhibited grain boundary oxidation and IGSCC, while localized degradation was not observed for pure Ni, Ni-Cu or Ni-Fe alloys. Environment-enhanced crack growth was determined by comparing the response in water and N2 gas. Results demonstrate that selective grain boundary oxidation of Cr and Al promoted IGSCC of these Ni alloys in hydrogenated water.
Are LIGO's Black Holes Made from Smaller Black Holes?
NASA Astrophysics Data System (ADS)
Fishbach, Maya; Holz, Daniel; Farr, Ben; LIGO Collaboration
2017-01-01
We consider the hierarchical merger model for the formation of stellar mass black holes (such as the binary black holes observable by LIGO). In the hierarchical merger model, each black hole in a black hole binary is the result of a merger of two lesser black holes from a previous generation, and the previous generation's black holes may themselves be merger products of an even earlier generation. We apply the formulas of Hofmann, Barausse and Rezzolla (2016) to show that if black holes form in this hierarchical merger scenario, their spin magnitudes follow a certain probability distribution. We demonstrate how to compare this spin distribution to LIGO spin measurements in order to constrain the hierarchical merger scenario.
Differential Binary Encoding Method for Calibrating Image Sensors Based on IOFBs
Fernández, Pedro R.; Lázaro-Galilea, José Luis; Gardel, Alfredo; Espinosa, Felipe; Bravo, Ignacio; Cano, Ángel
2012-01-01
Image transmission using incoherent optical fiber bundles (IOFBs) requires prior calibration to obtain the spatial in-out fiber correspondence necessary to reconstruct the image captured by the pseudo-sensor. This information is recorded in a Look-Up Table called the Reconstruction Table (RT), used later for reordering the fiber positions and reconstructing the original image. This paper presents a very fast method based on image-scanning using spaces encoded by a weighted binary code to obtain the in-out correspondence. The results demonstrate that this technique yields a remarkable reduction in processing time and the image reconstruction quality is very good compared to previous techniques based on spot or line scanning, for example. PMID:22666023
Hyperspectral image classification based on local binary patterns and PCANet
NASA Astrophysics Data System (ADS)
Yang, Huizhen; Gao, Feng; Dong, Junyu; Yang, Yang
2018-04-01
Hyperspectral image classification has been well acknowledged as one of the challenging tasks of hyperspectral data processing. In this paper, we propose a novel hyperspectral image classification framework based on local binary pattern (LBP) features and PCANet. In the proposed method, linear prediction error (LPE) is first employed to select a subset of informative bands, and LBP is utilized to extract texture features. Then, spectral and texture features are stacked into a high dimensional vectors. Next, the extracted features of a specified position are transformed to a 2-D image. The obtained images of all pixels are fed into PCANet for classification. Experimental results on real hyperspectral dataset demonstrate the effectiveness of the proposed method.
An adjoint-based framework for maximizing mixing in binary fluids
NASA Astrophysics Data System (ADS)
Eggl, Maximilian; Schmid, Peter
2017-11-01
Mixing in the inertial, but laminar parameter regime is a common application in a wide range of industries. Enhancing the efficiency of mixing processes thus has a fundamental effect on product quality, material homogeneity and, last but not least, production costs. In this project, we address mixing efficiency in the above mentioned regime (Reynolds number Re = 1000 , Peclet number Pe = 1000) by developing and demonstrating an algorithm based on nonlinear adjoint looping that minimizes the variance of a passive scalar field which models our binary Newtonian fluids. The numerical method is based on the FLUSI code (Engels et al. 2016), a Fourier pseudo-spectral code, which we modified and augmented by scalar transport and adjoint equations. Mixing is accomplished by moving stirrers which are numerically modeled using a penalization approach. In our two-dimensional simulations we consider rotating circular and elliptic stirrers and extract optimal mixing strategies from the iterative scheme. The case of optimizing shape and rotational speed of the stirrers will be demonstrated.
Susarla, Sandhya; Kochat, Vidya; Kutana, Alex; ...
2017-08-15
Transition metal dichalcogenide (TMD) alloys form a broad class of two-dimensional (2D) layered materials with tunable bandgaps leading to interesting optoelectronic applications. In the bottom-up approach of building these atomically thin materials, atomic doping plays a crucial role. Here we demonstrate a single step CVD (chemical vapor deposition) growth procedure for obtaining binary alloys and heterostructures by tuning atomic composition. We show that a minute doping of tin during the growth phase of the Mo 1–xW xS 2 alloy system leads to formation of lateral and vertical heterostructure growth. High angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imagingmore » and density functional theory (DFT) calculations also support the modified stacking and growth mechanism due to the nonisomorphous Sn substitution. Our experiments demonstrate the possibility of growing heterostructures of TMD alloys whose spectral responses can be desirably tuned for various optoelectronic applications.« less
Large tunable valley splitting in edge-free graphene quantum dots on boron nitride
NASA Astrophysics Data System (ADS)
Freitag, Nils M.; Reisch, Tobias; Chizhova, Larisa A.; Nemes-Incze, Péter; Holl, Christian; Woods, Colin R.; Gorbachev, Roman V.; Cao, Yang; Geim, Andre K.; Novoselov, Kostya S.; Burgdörfer, Joachim; Libisch, Florian; Morgenstern, Markus
2018-05-01
Coherent manipulation of the binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid-state systems, whereas exploitation of the valley has only recently been started, albeit without control at the single-electron level. Here, we show that van der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunnelling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits.
NASA Astrophysics Data System (ADS)
Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram
2017-03-01
The binary states, i.e., success or failed state assumptions used in conventional reliability are inappropriate for reliability analysis of complex industrial systems due to lack of sufficient probabilistic information. For large complex systems, the uncertainty of each individual parameter enhances the uncertainty of the system reliability. In this paper, the concept of fuzzy reliability has been used for reliability analysis of the system, and the effect of coverage factor, failure and repair rates of subsystems on fuzzy availability for fault-tolerant crystallization system of sugar plant is analyzed. Mathematical modeling of the system is carried out using the mnemonic rule to derive Chapman-Kolmogorov differential equations. These governing differential equations are solved with Runge-Kutta fourth-order method.
Searching for brown dwarfs from submotions of binaries with speckle observations
NASA Astrophysics Data System (ADS)
Fu, Hsieh-Hai
1994-01-01
The search for brown dwarfs in binary systems is of great scientific interest and is a quest that pushes observing accuracy to its limit. The study of brown dwarfs is related to the search for dark matter, the initial mass function for stars of all masses, and theories of stellar formation. On the other hand, searching for brown dwarfs is a challenge because of their faintness and very low mass. Although many techniques have been used to detect brown dwarfs, a direct measurement of mass is the only criterion for distinguishing a brown dwarf from a star, and binary observation is still the best way for determining the accurate masses of celestial objects through Kepler's third law. Since 1976, CHARA has accumulated thousands of binary star speckle observations with high precision that can be used to find masses of possible unseen companions in binary systems through astrometrically measured submotions. A modified discrete Fourier transform was used to detect periodicity in data sets having uneven temporal distributions. This dissertation, an extension of work initiated by Dr. Ali Al-Shukri in 1991, uses the CHARA speckle measurements to evaluate their limiting accuracy and then to search for unseen companions from submotions of binary orbital motions. The successful detection of the previously known 1.83-year period sub-motion of the astrometric system ADS 8119 Aa demonstrates that this analysis can be used to find other systems in future investigations, even though no convincing evidence was found for the existence of a brown dwarf. Four possible companions were found to the binaries ADS 8197, ADS 9392, ADS 9494, and ADS 14073 with periods of 3.3, 2.6, 0.3, and 3.78 years and minimum masses in the ranges of 0.015-0.019, 0.11-0.65, 0.04-0.19, and 0.14-0.16 solar masses, respectively. The overall null result for detecting brown dwarfs may be partially explained as a real lack of massive brown dwarfs as members of multiple systems.
Generation of composite Persea americana (Mill.) (avocado) plants: A proof-of-concept-study.
Prabhu, S Ashok; Ndlovu, Buyani; Engelbrecht, Juanita; van den Berg, Noëlani
2017-01-01
Avocado (Persea americana (Mill.)), an important commercial fruit, is severely affected by Phytophthora Root Rot in areas where the pathogen is prevalent. However, advances in molecular research are hindered by the lack of a high-throughput transient transformation system in this non-model plant. In this study, a proof-of-concept is demonstrated by the successful application of Agrobacterium rhizogenes-mediated plant transformation to produce composite avocado plants. Two ex vitro strategies were assessed on two avocado genotypes (Itzamna and A0.74): In the first approach, 8-week-old etiolated seedlings were scarred with a sterile hacksaw blade at the base of the shoot, and in the second, inch-long incisions were made at the base of the shoot (20-week-old non-etiolated plants) with a sterile blade to remove the cortical tissue. The scarred/wounded shoot surfaces were treated with A. rhizogenes strains (K599 or ARqua1) transformed with or without binary plant transformation vectors pRedRootII (DsRed1 marker), pBYR2e1-GFP (GFP- green fluorescence protein marker) or pBINUbiGUSint (GUS- beta-glucuronidase marker) with and without rooting hormone (Dip 'N' Grow) application. The treated shoot regions were air-layered with sterile moist cocopeat to induce root formation. Results showed that hormone application significantly increased root induction, while Agrobacterium-only treatments resulted in very few roots. Combination treatments of hormone+Agrobacterium (-/+ plasmids) showed no significant difference. Only the ARqua1(+plasmid):A0.74 combination resulted in root transformants, with hormone+ARqua1(+pBINUbiGUSint) being the most effective treatment with ~17 and 25% composite plants resulting from strategy-1 and strategy-2, respectively. GUS- and GFP-expressing roots accounted for less than 4 and ~11%, respectively, of the total roots/treatment/avocado genotype. The average number of transgenic roots on the composite plants was less than one per plant in all treatments. PCR and Southern analysis further confirmed the transgenic nature of the roots expressing the screenable marker genes. Transgenic roots showed hyper-branching compared to the wild-type roots but this had no impact on Phytophthora cinnamomi infection. There was no difference in pathogen load 7-days-post inoculation between transformed and control roots. Strategy-2 involving A0.74:ARqua1 combination was the best ex vitro approach in producing composite avocado plants. The approach followed in this proof-of-concept study needs further optimisation involving multiple avocado genotypes and A. rhizogenes strains to achieve enhanced root transformation efficiencies, which would then serve as an effective high-throughput tool in the functional screening of host and pathogen genes to improve our understanding of the avocado-P. cinnamomi interaction.
Generation of composite Persea americana (Mill.) (avocado) plants: A proof-of-concept-study
Prabhu, S. Ashok; Ndlovu, Buyani; Engelbrecht, Juanita
2017-01-01
Avocado (Persea americana (Mill.)), an important commercial fruit, is severely affected by Phytophthora Root Rot in areas where the pathogen is prevalent. However, advances in molecular research are hindered by the lack of a high-throughput transient transformation system in this non-model plant. In this study, a proof-of-concept is demonstrated by the successful application of Agrobacterium rhizogenes-mediated plant transformation to produce composite avocado plants. Two ex vitro strategies were assessed on two avocado genotypes (Itzamna and A0.74): In the first approach, 8-week-old etiolated seedlings were scarred with a sterile hacksaw blade at the base of the shoot, and in the second, inch-long incisions were made at the base of the shoot (20-week-old non-etiolated plants) with a sterile blade to remove the cortical tissue. The scarred/wounded shoot surfaces were treated with A. rhizogenes strains (K599 or ARqua1) transformed with or without binary plant transformation vectors pRedRootII (DsRed1 marker), pBYR2e1-GFP (GFP- green fluorescence protein marker) or pBINUbiGUSint (GUS- beta-glucuronidase marker) with and without rooting hormone (Dip 'N' Grow) application. The treated shoot regions were air-layered with sterile moist cocopeat to induce root formation. Results showed that hormone application significantly increased root induction, while Agrobacterium-only treatments resulted in very few roots. Combination treatments of hormone+Agrobacterium (-/+ plasmids) showed no significant difference. Only the ARqua1(+plasmid):A0.74 combination resulted in root transformants, with hormone+ARqua1(+pBINUbiGUSint) being the most effective treatment with ~17 and 25% composite plants resulting from strategy-1 and strategy-2, respectively. GUS- and GFP-expressing roots accounted for less than 4 and ~11%, respectively, of the total roots/treatment/avocado genotype. The average number of transgenic roots on the composite plants was less than one per plant in all treatments. PCR and Southern analysis further confirmed the transgenic nature of the roots expressing the screenable marker genes. Transgenic roots showed hyper-branching compared to the wild-type roots but this had no impact on Phytophthora cinnamomi infection. There was no difference in pathogen load 7-days-post inoculation between transformed and control roots. Strategy-2 involving A0.74:ARqua1 combination was the best ex vitro approach in producing composite avocado plants. The approach followed in this proof-of-concept study needs further optimisation involving multiple avocado genotypes and A. rhizogenes strains to achieve enhanced root transformation efficiencies, which would then serve as an effective high-throughput tool in the functional screening of host and pathogen genes to improve our understanding of the avocado-P. cinnamomi interaction. PMID:29053757
Towards a Fundamental Understanding of Short Period Eclipsing Binary Systems Using Kepler Data
NASA Astrophysics Data System (ADS)
Prsa, Andrej
Kepler's ultra-high precision photometry is revolutionizing stellar astrophysics. We are seeing intrinsic phenomena on an unprecedented scale, and interpreting them is both a challenge and an exciting privilege. Eclipsing binary stars are of particular significance for stellar astrophysics because precise modeling leads to fundamental parameters of the orbiting components: masses, radii, temperatures and luminosities to better than 1-2%. On top of that, eclipsing binaries are ideal physical laboratories for studying other physical phenomena, such as asteroseismic properties, chromospheric activity, proximity effects, mass transfer in close binaries, etc. Because of the eclipses, the basic geometry is well constrained, but a follow-up spectroscopy is required to get the dynamical masses and the absolute scale of the system. A conjunction of Kepler photometry and ground- based spectroscopy is a treasure trove for eclipsing binary star astrophysics. This proposal focuses on a carefully selected set of 100 short period eclipsing binary stars. The fundamental goal of the project is to study the intrinsic astrophysical effects typical of short period binaries in great detail, utilizing Kepler photometry and follow-up spectroscopy to devise a robust and consistent set of modeling results. The complementing spectroscopy is being secured from 3 approved and fully funded programs: the NOAO 4-m echelle spectroscopy at Kitt Peak (30 nights; PI Prsa), the 10- m Hobby-Eberly Telescope high-resolution spectroscopy (PI Mahadevan), and the 2.5-m Sloan Digital Sky Survey III spectroscopy (PI Mahadevan). The targets are prioritized by the projected scientific yield. Short period detached binaries host low-mass (K- and M- type) components for which the mass-radius relationship is sparsely populated and still poorly understood, as the radii appear up to 20% larger than predicted by the population models. We demonstrate the spectroscopic detection viability in the secondary-to-primary light ratio regime of ~1-2% for the circumbinary host system Kepler-16. Semi-detached binaries are ideal targets to study the dynamical processes such as mass flow and accretion, and the associated thermal processes such as intensity variation due to distortion of the lobe-filling component and material inflow collisions with accretion disks. Overcontact binaries are very abundant, yet their evolution and radiative properties are poorly understood and conflicting theories exist to explain their population frequency and structure. In addition, we will measure eclipse timing variations for all program binaries that attest to the presence of perturbing third bodies (stellar and substellar!) or dynamical interaction between the components. By a dedicated, detailed, manual modeling of these sets of targets, we will be able to use Kepler's ultra-high precision photometry to a rewarding scientific end. Thanks to the unprecedented quality of Kepler data, this will be a highly focused effort that maximizes the scientific yield and the reliability of the results. Our team has ample experience dealing with Kepler data (PI Prsa serves as chair of the Eclipsing Binary Working Group in the Kepler Science Team), spectroscopic follow-up (Co-Is Mahadevan and Bender both have experience with radial velocity instrumentation and large spectroscopic surveys), and eclipsing binary modeling (PI Prsa and Co-I Devinney both have a long record of theoretical and computational development of modeling tools). The bulk of funding we are requesting is for two postdoctoral research fellows to conduct this work at 0.5 FTE/year each, for the total of 2 years.
NASA Astrophysics Data System (ADS)
Liew, Oi Wah; Asundi, Anand K.; Chen, Jun-Wei; Chew, Yiwen; Yu, Shangjuan; Yeo, Gare H.
2001-05-01
In this paper, fiber optic spectroscopy is developed to detect and quantify recombinant green (EGFP) and red (DsRED) fluorescent proteins in vitro and in vivo. The bacterial expression vectors carrying the coding regions of EGFP and DsRED were introduced into Escherichia coli host cells and fluorescent proteins were produced following induction with IPTG. Soluble EGFP and DsRED proteins were isolated from lysed bacterial cells and serially diluted for quantitative analysis by fiber optic spectroscopy. Fluorescence at the appropriate emission wavelengths could be detected up to 64X dilution for EGFP and 40X dilution for DsRED. To determine the capability of spectroscopy detection in vivo, transgenic potato hairy roots expressing EGFP and DsRED were regenerated. This was achieved by cloning the EGFP and DsRED genes into the plant binary vector, pTMV35S, to create the recombinant vectors pGLOWGreen and pGLOWRed. These latter binary vectors were introduced into Agrobacterium rhizogenes strain A4T. Infection of potato cells with transformed agrobacteria was used to insert the fluorescent protein genes into the potato genome. Genetically modified potato cells were then regenerated into hairy roots. A panel of transformed hairy roots expressing varying levels of fluorescent proteins was selected by fluorescence microscopy. We are now assessing the capability of spectroscopic detection system for in vivo quantification of green and red fluorescence levels in transformed roots.
Gorzerino, Caroline; Quemeneur, Alphonse; Hillenweck, Anne; Baradat, Maryse; Delous, Georges; Ollitrault, Martine; Azam, Didier; Caquet, Thierry; Lagadic, Laurent
2009-03-01
The influence of tank-mix adjuvants on pesticide toxicity remains largely unknown. Agral 90, a nonylphenol polyethoxylated tank-mix adjuvant, has been used with diquat (bipyridylium herbicide) and fomesafen (diphenyl-ether herbicide) in aquatic indoor microcosms in order to compare the toxicity of the single compounds and of binary herbicide-adjuvant mixtures to Lemna minor. Twenty-four microcosms were used and treatments were performed with substances alone or with herbicide-adjuvant binary mixtures, at two concentrations levels (44.4 and 222.2 microg/L for the herbicides, and 100 and 500 microg/L for Agral 90). Toxicity was assessed weekly for 1 month through growth measurements, as inferred from the relative frond number (RFN) and relative frond area (RFA). Concentrations of diquat and fomesafen in water and sediments were measured weekly. The herbicides showed very different behaviour in microcosms, with a rapid disappearance of diquat from the aqueous phase whereas fomesafen levels remained almost constant over time. Diquat strongly inhibited the growth of L. minor whereas fomesafen had no effect on plant growth. Presence of the adjuvant only slightly reduced the effect of the lowest concentration of diquat, probably as a result of dispersion of the herbicide at the water surface. It is concluded that tank-mix adjuvant designed to improve herbicide efficiency in the terrestrial environment did not have any effect on aquatic plants when applied to the aquatic environment.
Clostridium difficile in retail meat and processing plants in Texas.
Harvey, Roger B; Norman, Keri N; Andrews, Kathleen; Norby, Bo; Hume, Michael E; Scanlan, Charles M; Hardin, Margaret D; Scott, Harvey M
2011-07-01
The incidence and severity of disease associated with toxigenic Clostridium difficile have increased in hospitals in North America from the emergence of newer, more virulent strains. Toxigenic C. difficile has been isolated from food animals and retail meat with potential implications of transfer to human beings. The objective of the present study was to determine the prevalence of C. difficile in pork from sausage manufacturing plants and retail meat in Texas. Twenty-three C. difficile isolates were detected from 243 meat samples (9.5%) from 3 sausage-manufacturing plants and 5 retail meat outlets from 2004 to 2009. Twenty-two isolates were positive for toxins A, B, and binary toxin, and were characterized as toxinotype V, PFGE type-NAP7, or "NAP7-variant." Susceptibilities to 11 antimicrobial agents in the current study were similar to those reported previously for toxinotype V isolates, although the results suggested somewhat reduced resistance than reported for other meat, animal, or human clinical toxinotype V isolates.
Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander
NASA Astrophysics Data System (ADS)
Demuth, O. J.
1984-06-01
The velocity pump reaction turbine (VPRT) was evaluated as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360(F) geothermal resource, 60 F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120 F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.77, with plant geofluid effectiveness values ranging as high as 9.5 watt hr-lbm geofluid for the 360 F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.
Magnetic power conversion with machines containing full or porous wheel heat exchangers
NASA Astrophysics Data System (ADS)
Egolf, Peter W.; Kitanovski, Andrej; Diebold, Marc; Gonin, Cyrill; Vuarnoz, Didier
2009-04-01
A first part of the article contains a thermodynamic theory describing the temperature distribution in a Curie wheel. The occurring nonlinear ordinary differential equation has an analytical solution. If a Curie wheel is stabilized by levitation, it is named Palmy wheel. These wheels show a full structure, and because of this reason, their uptake of heat from a flame (Curie wheel) or by (solar) light absorption (Palmy wheel) only on the periphery of a cylinder is very limited. To improve the method, a modification of the principle by introducing a convective heat transport into a porous wheel is discussed. By this the power conversion rate from a heat flux to mechanical and electric power is very much increased. The second part of the article presents results of a theoretical/numerical study on the efficiencies of magnetic power conversion plants operating with porous wheels. Furthermore, these efficiencies—which are promising—are compared with those of existing power conversion plants, as e.g. geothermal binary cycle power plants.
USDA-ARS?s Scientific Manuscript database
Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. The majority of interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll viru...
Integrally regulated solar array demonstration using an Intel 8080 microprocessor
NASA Technical Reports Server (NTRS)
Petrik, E. J.
1977-01-01
A concept for regulating the voltage of a solar array by using a microprocessor to effect discrete voltage changes was demonstrated. Eight shorting switches were employed to regulate a simulated array at set-point voltages between 10,000 and 15,000 volts. The demonstration showed that the microprocessor easily regulated the solar array output voltage independently of whether or not the switched cell groups were binary sized in voltage. In addition, the microprocessor provided logic memory capability to perform additional tasks such as locating and insolating a faulty switch.
Leveraging natural dynamical structures to explore multi-body systems
NASA Astrophysics Data System (ADS)
Bosanac, Natasha
Multi-body systems have become the target of an increasing number of mission concepts and observations, supplying further information about the composition, origin and dynamical environment of bodies within the solar system and beyond. In many of these scenarios, identification and characterization of the particular solutions that exist in a circular restricted three-body model is valuable. This insight into the underlying natural dynamical structures is achieved via the application of dynamical systems techniques. One application of such analysis is trajectory design for CubeSats, which are intended to explore cislunar space and other planetary systems. These increasingly complex mission objectives necessitate innovative trajectory design strategies for spacecraft within our solar system, as well as the capability for rapid and well-informed redesign. Accordingly, a trajectory design framework is constructed using dynamical systems techniques and demonstrated for the Lunar IceCube mission. An additional application explored in this investigation involves the motion of an exoplanet near a binary star system. Due to the strong gravitational field near a binary star, physicists have previously leveraged these systems as testbeds for examining the validity of gravitational and relativistic theories. In this investigation, a preliminary analysis into the effect of an additional three-body interaction on the dynamical environment near a large mass ratio binary system is conducted. As demonstrated through both of these sample applications, identification and characterization of the natural particular solutions that exist within a multi-body system supports a well-informed and guided analysis.
Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R.; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger
2016-01-01
The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629
Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Azarnia Tehran, Domenico; Montecucco, Cesare; Barth, Holger
2016-04-01
The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.
Giddings, Jeffrey M; Campana, David; Nair, Shyam; Brain, Richard
2018-04-16
The US Environmental Protection Agency (USEPA) has historically used different methods to derive an aquatic level of concern (LoC) for atrazine, though all have generally relied on an expanding set of mesocosm and microcosm ("cosm") studies for calibration. The database of results from ecological effects studies with atrazine in cosms now includes 108 data points from 39 studies and forms the basis for assessing atrazine's potential to impact aquatic plant communities. Inclusion of the appropriate cosm studies and accurate interpretation of each data point-delineated as binary scores of "effect" (effect score 1) or "no effect" (effect score 0) of a specific atrazine exposure profile on plant communities in a single study-is critical to USEPA's approach to determining the LoC. We reviewed the atrazine cosm studies in detail and carefully interpreted their results in terms of the binary effect scores. The cosm database includes a wide range of experimental systems and study designs, some of which are more relevant to natural plant communities than others. Moreover, the studies vary in the clarity and consistency of their results. We therefore evaluated each study against objective criteria for relevance and reliability to produce a weighting score that can be applied to the effect scores when calculating the LoC. This approach is useful because studies that are more relevant and reliable have greater influence on the LoC than studies with lower weighting scores. When the current iteration of USEPA's LoC approach, referred to as the plant assemblage toxicity index (PATI), was calibrated with the weighted cosm data set, the result was a 60-day LoC of 21.2 μg/L. Integr Environ Assess Manag 2018;00:000-000. © 2018 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2018 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
de Bruijn, Paulien J. A.; Sabelis, Maurice W.
2010-01-01
Phytoseiulus persimilis is a predatory mite that in absence of vision relies on the detection of herbivore-induced plant odors to locate its prey, the two-spotted spider-mite Tetranychus urticae. This herbivorous prey is feeding on leaves of a wide variety of plant species in different families. The predatory mites respond to numerous structurally different compounds. However, typical spider-mite induced plant compounds do not attract more predatory mites than plant compounds not associated with prey. Because the mites are sensitive to many compounds, components of odor mixtures may affect each other’s perception. Although the response to pure compounds has been well documented, little is known how interactions among compounds affect the response to odor mixtures. We assessed the relation between the mites’ responses elicited by simple mixtures of two compounds and by the single components of these mixtures. The preference for the mixture was compared to predictions under three conceptual models, each based on one of the following assumptions: (1) the responses elicited by each of the individual components can be added to each other; (2) they can be averaged; or (3) one response overshadows the other. The observed response differed significantly from the response predicted under the additive response, average response, and overshadowing response model in 52, 36, and 32% of the experimental tests, respectively. Moreover, the behavioral responses elicited by individual compounds and their binary mixtures were determined as a function of the odor concentration. The relative contribution of each component to the behavioral response elicited by the mixture varied with the odor concentration, even though the ratio of both compounds in the mixture was kept constant. Our experiments revealed that compounds that elicited no response had an effect on the response elicited by binary mixtures that they were part of. The results are not consistent with the hypothesis that P. persimilis perceives odor mixtures as a collection of strictly elemental objects. They suggest that odor mixtures rather are perceived as one synthetic whole. Electronic supplementary material The online version of this article (doi:10.1007/s10886-010-9858-3) contains supplementary material, which is available to authorized users. PMID:20872172
An integrated approach to demonstrating the ANR pathway of proanthocyanidin biosynthesis in plants.
Peng, Qing-Zhong; Zhu, Yue; Liu, Zhong; Du, Ci; Li, Ke-Gang; Xie, De-Yu
2012-09-01
Proanthocyanidins (PAs) are oligomers or polymers of plant flavan-3-ols and are important to plant adaptation in extreme environmental conditions. The characterization of anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR) has demonstrated the different biogenesis of four stereo-configurations of flavan-3-ols. It is important to understand whether ANR and the ANR pathway widely occur in the plant kingdom. Here, we report an integrated approach to demonstrate the ANR pathway in plants. This includes different methods to extract native ANR from different tissues of eight angiosperm plants (Lotus corniculatus, Desmodium uncinatum, Medicago sativa, Hordeum vulgare, Vitis vinifera, Vitis bellula, Parthenocissus heterophylla, and Cerasus serrulata) and one fern plant (Dryopteris pycnopteroides), a general enzymatic analysis approach to demonstrate the ANR activity, high-performance liquid chromatography-based fingerprinting to demonstrate (-)-epicatechin and other flavan-3-ol molecules, and phytochemical analysis of PAs. Results demonstrate that in addition to leaves of M. sativa, tissues of other eight plants contain an active ANR pathway. Particularly, the leaves, flowers and pods of D. uncinatum, which is a model plant to study LAR and the LAR pathways, are demonstrated to express an active ANR pathway. This finding suggests that the ANR pathway involves PA biosynthesis in D. uncinatum. In addition, a sequence BLAST analysis reveals that ANR homologs have been sequenced in plants from both gymnosperms and angiosperms. These data show that the ANR pathway to PA biosynthesis occurs in both seed and seedless vascular plants.
Kiranyaz, Serkan; Mäkinen, Toni; Gabbouj, Moncef
2012-10-01
In this paper, we propose a novel framework based on a collective network of evolutionary binary classifiers (CNBC) to address the problems of feature and class scalability. The main goal of the proposed framework is to achieve a high classification performance over dynamic audio and video repositories. The proposed framework adopts a "Divide and Conquer" approach in which an individual network of binary classifiers (NBC) is allocated to discriminate each audio class. An evolutionary search is applied to find the best binary classifier in each NBC with respect to a given criterion. Through the incremental evolution sessions, the CNBC framework can dynamically adapt to each new incoming class or feature set without resorting to a full-scale re-training or re-configuration. Therefore, the CNBC framework is particularly designed for dynamically varying databases where no conventional static classifiers can adapt to such changes. In short, it is entirely a novel topology, an unprecedented approach for dynamic, content/data adaptive and scalable audio classification. A large set of audio features can be effectively used in the framework, where the CNBCs make appropriate selections and combinations so as to achieve the highest discrimination among individual audio classes. Experiments demonstrate a high classification accuracy (above 90%) and efficiency of the proposed framework over large and dynamic audio databases. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Three-body System δ Circini
NASA Astrophysics Data System (ADS)
Mayer, Pavel; Harmanec, Petr; Sana, Hugues; Le Bouquin, Jean-Baptiste
2014-12-01
Delta Cir is known as an O7.5 III eclipsing and spectroscopic binary with an eccentric orbit. Penny et al. discovered the presence of a third component in the IUE spectra. The eclipsing binary and the third body revolve around a common center of gravity with a period of 1644 days in an eccentric orbit with a semimajor axis of 10 AU. We demonstrate the presence of apsidal-line rotation with a period of ≈141 yr, which is considerably longer than its theoretically predicted value, based on the published radii of the binary components derived from the Hipparchos H p light curve. However, our new solution of the same light curve resulted in smaller radii and better agreement between the observed and predicted period of the apsidal-line advance. There are indications that the third body is a binary. The object was resolved by VLTI using the PIONIER combiner; in 2012 June, the separation was 3.78 mas with magnitude difference in the H region 1.ͫ75. This result means that (assuming a distance of 770 pc) the inclination of the long orbit is 87.°7. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programs ID 65.N-0577, 67.B-0504, 074D-0300, 178.D-0361, 182.D-0356, 083.D-0589, 185.D-0056, 086.D-0997, and 087D-0946.
Optical triple-in digital logic using nonlinear optical four-wave mixing
NASA Astrophysics Data System (ADS)
Widjaja, Joewono; Tomita, Yasuo
1995-08-01
A new programmable optical processor is proposed for implementing triple-in combinatorial digital logic that uses four-wave mixing. Binary-coded decimal-to-octal decoding is experimentally demonstrated by use of a photorefractive BaTiO 3 crystal. The result confirms the feasibility of the proposed system.
Neural Networks for Handwritten English Alphabet Recognition
NASA Astrophysics Data System (ADS)
Perwej, Yusuf; Chaturvedi, Ashish
2011-04-01
This paper demonstrates the use of neural networks for developing a system that can recognize hand-written English alphabets. In this system, each English alphabet is represented by binary values that are used as input to a simple feature extraction system, whose output is fed to our neural network system.
Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.
ERIC Educational Resources Information Center
Tasic, Aleksandar Z.; Djordjevic, Bojan D.
1983-01-01
Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…
Tarmizi, Azmil Haizam Ahmad; Ismail, Razali
2014-01-01
Binary blends of palm olein (PO) with sunflower oil (SFO), canola oil (CNO), and cottonseed oil (CSO) were formulated to assess their stability under continuous frying conditions. The results were then compared with those obtained in PO. The oil blends studied were: (1) 60:40 for PO + SFO; (2) 70:30 for PO + CNO; and (3) 50:50 for PO + CSO. The PO and its blends were used to fry potato chips at 180°C for a total of 56 h of operation. The evolution of analytical parameters such as tocols, induction period, color, p-anisidine value, free fatty acid, smoke point, polar compounds, and polymer compounds were evaluated over the frying time. Blending PO with unsaturated oils was generally proved to keep most qualitative parameters comparable to those demonstrated in PO. Indeed, none of the oils surpassed the legislative limits for used frying. Overall, it was noted that oil containing PO and SFO showed higher resistance toward oxidative and hydrolytic behaviors as compared to the other oil blends. PMID:24804062
Lu, Yuwen; Yin, Mingyuan; Wang, Xiaodan; Chen, Binghua; Yang, Xue; Peng, Jiejun; Zheng, Hongying; Zhao, Jinping; Lin, Lin; Yu, Chulang; MacFarlane, Stuart; He, Jianqing; Liu, Yong; Chen, Jianping; Dai, Liangying; Yan, Fei
2016-06-01
Garlic virus X (GarVX) ORF3 encodes a p11 protein, which contributes to virus cell-to-cell movement and forms granules on the endoplasmic reticulum (ER) in Nicotiana benthamiana. Expression of p11 either from a binary vector, PVX or TMV induced ER stress and the unfolded protein response (UPR), as demonstrated by an increase in transcription of the ER luminal binding protein (BiP) and bZIP60 genes. UPR-related programmed cell death (PCD) was elicited by PVX : p11 or TMV : p11 in systemic infected leaves. Examination of p11 mutants with deletions of two transmembrane domains (TM) revealed that both were required for generating granules and for inducing necrosis. TRV-based VIGS was used to investigate the correlation between bZIP60 expression and p11-induced UPR-related PCD. Less necrosis was observed on local and systemic leaves of bZIP60 knockdown plants when infected with PVXp11, suggesting that bZIP60 plays an important role in the UPR-related PCD response to p11 in N. benthamiana.
The infrared counterpart of the eclipsing X-ray binary HO253 + 193
NASA Technical Reports Server (NTRS)
Zuckerman, B.; Becklin, E. E.; Mclean, I. S.; Patterson, Joseph
1992-01-01
We report the identification of the infrared counterpart of the pulsating X-ray source HO253 + 193. It is a highly reddened star varying in K light with a period near 3 hr, but an apparent even-odd effect in the light curve implies that the true period is 6.06 hr. Together with the recent report of X-ray eclipses at the latter period, this establishes the close binary nature of the source. Infrared minimum occurs at X-ray minimum, certifying that the infrared variability arises from the tidal distortion of the lobe-filling secondary. The absence of a point source at radio wavelengths, plus the distance derived from the infrared data, suggests that the binary system is accidentally located behind the dense core of the molecular cloud Lynds 1457. The eclipses and pulsations in the X-ray light curve, coupled with the hard X-ray spectrum and low luminosity, demonstrate that HO253 + 193 contains an accreting magnetic white dwarf, and hence belongs to the 'DQ Herculis' class of cataclysmic variables.
Interaction between Saikosaponin D, Paeoniflorin, and Human Serum Albumin.
Liang, Guo-Wu; Chen, Yi-Cun; Wang, Yi; Wang, Hong-Mei; Pan, Xiang-Yu; Chen, Pei-Hong; Niu, Qing-Xia
2018-01-27
Saikosaponin D (SSD) and paeoniflorin (PF) are the major active constituents of Bupleuri Radix and Paeonia lactiflora Pall , respectively, and have been widely used in China to treat liver and other diseases for many centuries. We explored the binding of SSD/PF to human serum albumin (HSA) by using fluorospectrophotometry, circular dichroism (CD) and molecular docking. Both SSD and PF produced a conformational change in HSA. Fluorescence quenching was accompanied by a blue shift in the fluorescence spectra. Co-binding of PF and SSD also induced quenching and a conformational change in HSA. The Stern-Volmer equation showed that quenching was dominated by static quenching. The binding constant for ternary interaction was below that for binary interaction. Site-competitive experiments demonstrated that SSD/PF bound to site I (subdomain IIA) and site II (subdomain IIIA) in HSA. Analysis of thermodynamic parameters indicated that hydrogen bonding and van der Waals forces were mostly responsible for the binary association. Also, there was energy transfer upon binary interaction. Molecular docking supported the experimental findings in conformation, binding sites and binding forces.
Modeling CO2 mass transfer in amine mixtures: PZ-AMP and PZ-MDEA.
Puxty, Graeme; Rowland, Robert
2011-03-15
The most common method of carbon dioxide (CO(2)) capture is the absorption of CO(2) into a falling thin film of an aqueous amine solution. Modeling of mass transfer during CO(2) absorption is an important way to gain insight and understanding about the underlying processes that are occurring. In this work a new software tool has been used to model CO(2) absorption into aqueous piperazine (PZ) and binary mixtures of PZ with 2-amino-2-methyl-1-propanol (AMP) or methyldiethanolamine (MDEA). The tool solves partial differential and simultaneous equations describing diffusion and chemical reaction automatically derived from reactions written using chemical notation. It has been demonstrated that by using reactions that are chemically plausible the mass transfer in binary mixtures can be fully described by combining the chemical reactions and their associated parameters determined for single amines. The observed enhanced mass transfer in binary mixtures can be explained through chemical interactions occurring in the mixture without need to resort to using additional reactions or unusual transport phenomena such as the "shuttle mechanism".
Numerical Modelling of Tertiary Tides
NASA Astrophysics Data System (ADS)
Gao, Yan; Correia, Alexandre C. M.; Eggleton, Peter P.; Han, Zhanwen
2018-06-01
Stellar systems consisting of multiple stars tend to undergo tidal interactions when the separations between the stars are short. While tidal phenomena have been extensively studied, a certain tidal effect exclusive to hierarchical triples (triples in which one component star has a much wider orbit than the others) has hardly received any attention, mainly due to its complexity and consequent resistance to being modelled. This tidal effect is the tidal perturbation of the tertiary by the inner binary, which in turn depletes orbital energy from the inner binary, causing the inner binary separation to shrink. In this paper, we develop a fully numerical simulation of these "tertiary tides" by modifying established tidal models. We also provide general insight as to how close a hierarchical triple needs to be in order for such an effect to take place, and demonstrate that our simulations can effectively retrieve the orbital evolution for such systems. We conclude that tertiary tides are a significant factor in the evolution of close hierarchical triples, and strongly influence at least ˜1% of all multiple star systems.
Kinetic theory of binary particles with unequal mean velocities and non-equipartition energies
NASA Astrophysics Data System (ADS)
Chen, Yanpei; Mei, Yifeng; Wang, Wei
2017-03-01
The hydrodynamic conservation equations and constitutive relations for a binary granular mixture composed of smooth, nearly elastic spheres with non-equipartition energies and different mean velocities are derived. This research is aimed to build three-dimensional kinetic theory to characterize the behaviors of two species of particles suffering different forces. The standard Enskog method is employed assuming a Maxwell velocity distribution for each species of particles. The collision components of the stress tensor and the other parameters are calculated from the zeroth- and first-order approximation. Our results demonstrate that three factors, namely the differences between two granular masses, temperatures and mean velocities all play important roles in the stress-strain relation of the binary mixture, indicating that the assumption of energy equipartition and the same mean velocity may not be acceptable. The collision frequency and the solid viscosity increase monotonously with each granular temperature. The zeroth-order approximation to the energy dissipation varies greatly with the mean velocities of both species of spheres, reaching its peak value at the maximum of their relative velocity.
Implementation of Ultrasonic Sensing for High Resolution Measurement of Binary Gas Mixture Fractions
Bates, Richard; Battistin, Michele; Berry, Stephane; Bitadze, Alexander; Bonneau, Pierre; Bousson, Nicolas; Boyd, George; Bozza, Gennaro; Crespo-Lopez, Olivier; Riva, Enrico Da; Degeorge, Cyril; Deterre, Cecile; DiGirolamo, Beniamino; Doubek, Martin; Favre, Gilles; Godlewski, Jan; Hallewell, Gregory; Hasib, Ahmed; Katunin, Sergey; Langevin, Nicolas; Lombard, Didier; Mathieu, Michel; McMahon, Stephen; Nagai, Koichi; Pearson, Benjamin; Robinson, David; Rossi, Cecilia; Rozanov, Alexandre; Strauss, Michael; Vitek, Michal; Vacek, Vaclav; Zwalinski, Lukasz
2014-01-01
We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions. PMID:24961217
NASA Astrophysics Data System (ADS)
Galley, Chad R.; Rothstein, Ira Z.
2017-05-01
We utilize the dynamical renormalization group formalism to calculate the real space trajectory of a compact binary inspiral for long times via a systematic resummation of secularly growing terms. This method generates closed form solutions without orbit averaging, and the accuracy can be systematically improved. The expansion parameter is v5ν Ω (t -t0) where t0 is the initial time, t is the time elapsed, and Ω and v are the angular orbital frequency and initial speed, respectively. ν is the binary's symmetric mass ratio. We demonstrate how to apply the renormalization group method to resum solutions beyond leading order in two ways. First, we calculate the second-order corrections of the leading radiation reaction force, which involves highly nontrivial checks of the formalism (i.e., its renormalizability). Second, we show how to systematically include post-Newtonian corrections to the radiation reaction force. By avoiding orbit averaging, we gain predictive power and eliminate ambiguities in the initial conditions. Finally, we discuss how this methodology can be used to find analytic solutions to the spin equations of motion that are valid over long times.
Transversely polarized sub-diffraction optical needle with ultra-long depth of focus
NASA Astrophysics Data System (ADS)
Guan, Jian; Lin, Jie; Chen, Chen; Ma, Yuan; Tan, Jiubin; Jin, Peng
2017-12-01
We generated purely transversely polarized sub-diffraction optical needles with ultra-long depth of focus (DOF) by focusing azimuthally polarized (AP) beams that were modulated by a vortex 0-2 π phase plate and binary phase diffraction optical elements (DOEs). The concentric belts' radii of the DOEs were optimized by a hybrid genetic particle swarm optimization (HGPSO) algorithm. For the focusing system with the numerical aperture (NA) of 0.95, an optical needle with the full width at half maximum (FWHM) of 0.40 λ and the DOF of 6.23 λ was generated. Similar optical needles were also generated by binary phase DOEs with different belts. The results demonstrated that the binary phase DOEs could achieve smaller FWHMs and longer DOFs simultaneously. The generated needles were circularly polarized on the z-axis and there were no longitudinally polarized components in the focal fields. The radius fabrication errors of a DOE have little effect on the optical needle produced by itself. The generated optical needles can be applied to the fields of photolithography, high-density optical data storage, microscope imaging and particle trapping.
Wang, Futao; Pan, Yuanfeng; Cai, Pingxiong; Guo, Tianxiang; Xiao, Huining
2017-10-01
A high efficient and eco-friendly sugarcane cellulose-based adsorbent was prepared in an attempt to remove Pb 2+ , Cu 2+ and Zn 2+ from aqueous solutions. The effects of initial concentration of heavy metal ions and temperature on the adsorption capacity of the bioadsorbent were investigated. The adsorption isotherms showed that the adsorption of Pb 2+ , Cu 2+ and Zn 2+ followed the Langmuir model and the maximum adsorptions were as high as 558.9, 446.2 and 363.3mg·g -1 , respectively, in single component system. The binary component system was better described with the competitive Langmuir isotherm model. The three dimensional sorption surface of binary component system demonstrated that the presence of Pb 2+ decreased the sorption of Cu 2+ , but the adsorption amount of other metal ions was not affected. The result from SEM-EDAX revealed that the adsorption of metal ions on bioadsorbent was mainly driven by coordination, ion exchange and electrostatic association. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yang, Jixian; Wei, Wei; Pi, Shanshan; Ma, Fang; Li, Ang; Wu, Dan; Xing, Jie
2015-11-01
The adsorption of Cu(2+) and Zn(2+) by extracellular polymeric substances (EPS) extracted from Klebsiella sp. J1 and competitive adsorption mechanism were investigated. Equilibrium adsorption capacities of Cu(2+) (1.77mMg(-1)) on Klebsiella sp. J1 EPS were higher than those of Zn(2+) (1.36mMg(-1)) in single systems. The competitive Langmuir and Langmuir-Freundlich isotherm models were proven to be effective in describing the experimental data of binary component system. The three dimensional sorption surfaces of binary component system demonstrated that the presence of Cu(2+) more significantly decreased the sorption of Zn(2+), but the sorption of Cu(2+) was not disturbed by the presence of Zn(2+). FTIR and EEM results revealed the adsorption sites of Cu(2+) entirely overlapped with those of Zn(2+). Cu(2+) and Zn(2+) showed competitive adsorption in binary systems, and Cu(2+) was preferentially adsorbed because of the stronger complexation ability of the protein-like substances in Klebsiella sp. J1 EPS. Copyright © 2015 Elsevier Ltd. All rights reserved.
Study of flame combustion of off-design binary coal blends in steam boilers
NASA Astrophysics Data System (ADS)
Kapustyanskii, A. A.
2017-07-01
Changes in the structure of the fuel consumption by the thermal power stations of Ukraine caused by failure in supplying anthracite from the Donets Basin are analyzed and the major tasks of maintaining the functioning of the coal industry are formulated. The possibility of using, in the near future, the flame combustion of off-design solid fuels in the power boilers of the thermal power plants and combined heat and power plants is studied. The article presents results of expert tests of the TPP-210A and TP-15 boilers under flame combustion of mixtures of anthracites, lean coal, and the coal from the RSA in various combinations. When combusting, such mixtures have higher values of the combustibles yield and the ash fusibility temperature. The existence of the synergetic effect in the flame combustion of binary coal blends with different degrees of metamorphism is discussed. A number of top-priority measures have been worked out that allow for switching over the boilers designed to be fired with anthracite to using blends of coals of different ranks. Zoned thermal analysis of the TP-15 boiler furnace was performed for numerical investigation of the temperature distribution between the furnace chamber zones and exploration of the possibility of the liquid slag disposal and the temperature conditions for realization of this process. A positive result was achieved by combusting anthracite culm (AC), the coal from the RSA, and their mixtures with lean coal within the entire range of the working loads of the boilers in question. The problems of normalization of the liquid slag flow were also successfully solved without closing the slag notch. The results obtained by balance experiments suggest that the characteristics of the flame combustion of a binary blend, i.e., the temperature conditions in the furnace, the support flame values, and the degree of the fuel burnout, are similar to the characteristics of the flame of the coal with a higher reactive capacity, which proves the existence of the synergetic effect in the processes of cocombustion of coals of various grades.
Demonstrating the Effects of Light Quality on Plant Growth.
ERIC Educational Resources Information Center
Whitesell, J. H.; Garcia, Maria
1977-01-01
Describes a lab demonstration that illustrates the effect of different colors or wavelengths of visible light on plant growth and development. This demonstration is appropriate for use in college biology, botany, or plant physiology courses. (HM)
Gamma-ray-burst beaming and gravitational-wave observations.
Chen, Hsin-Yu; Holz, Daniel E
2013-11-01
Using the observed rate of short-duration gamma-ray bursts (GRBs) it is possible to make predictions for the detectable rate of compact binary coalescences in gravitational-wave detectors. We show that the nondetection of mergers in the existing LIGO/Virgo data constrains the beaming angles and progenitor masses of gamma-ray bursts, although these limits are fully consistent with existing expectations. We make predictions for the rate of events in future networks of gravitational-wave observatories, finding that the first detection of a neutron-star-neutron-star binary coalescence associated with the progenitors of short GRBs is likely to happen within the first 16 months of observation, even in the case of only two observatories (e.g., LIGO-Hanford and LIGO-Livingston) operating at intermediate sensitivities (e.g., advanced LIGO design sensitivity, but without signal recycling mirrors), and assuming a conservative distribution of beaming angles (e.g., all GRBs beamed within θ(j) = 30°). Less conservative assumptions reduce the waiting time until first detection to a period of weeks to months, with an event detection rate of >/~10/yr. Alternatively, the compact binary coalescence model of short GRBs can be ruled out if a binary is not seen within the first two years of operation of a LIGO-Hanford, LIGO-Livingston, and Virgo network at advanced design sensitivity. We also demonstrate that the gravitational wave detection rate of GRB triggered sources (i.e., those seen first in gamma rays) is lower than the rate of untriggered events (i.e., those seen only in gravitational waves) if θ(j)≲30°, independent of the noise curve, network configuration, and observed GRB rate. The first detection in gravitational waves of a binary GRB progenitor is therefore unlikely to be associated with the observation of a GRB.
Absolute Properties of the Pulsating Post-mass Transfer Eclipsing Binary OO Draconis
NASA Astrophysics Data System (ADS)
Lee, Jae Woo; Hong, Kyeongsoo; Koo, Jae-Rim; Park, Jang-Ho
2018-01-01
OO Dra is a short-period Algol system with a δ Sct-like pulsator. We obtained time-series spectra between 2016 February and May to derive the fundamental parameters of the binary star and to study its evolutionary scenario. The radial velocity (RV) curves for both components were presented, and the effective temperature of the hotter and more massive primary was determined to be {T}{eff,1}=8260+/- 210 K by comparing the disentangling spectrum and the Kurucz models. Our RV measurements were solved with the BV light curves of Zhang et al. using the Wilson-Devinney binary code. The absolute dimensions of each component are determined as follows: M 1 = 2.03 ± 0.06 {M}⊙ , M 2 = 0.19 ± 0.01 {M}⊙ , R 1 = 2.08 ± 0.03 {R}⊙ , R 2 = 1.20 ± 0.02 {R}⊙ , L 1 = 18 ± 2 {L}⊙ , and L 2 = 2.0 ± 0.2 {L}⊙ . Comparison with stellar evolution models indicated that the primary star resides inside the δ Sct instability strip on the main sequence, while the cool secondary component is noticeably overluminous and oversized. We demonstrated that OO Dra is an oscillating post-mass transfer R CMa-type binary; the originally more massive star became the low-mass secondary component through mass loss caused by stellar wind and mass transfer, and the gainer became the pulsating primary as the result of mass accretion. The R CMa stars, such as OO Dra, are thought to have formed by non-conservative binary evolution and ultimately to evolve into EL CVn stars.
HD 66051: the first eclipsing binary hosting an early-type magnetic star
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.
2018-05-01
Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.
A Chandra Survey of Milky Way Globular Clusters. I. Emissivity and Abundance of Weak X-Ray Sources
NASA Astrophysics Data System (ADS)
Cheng, Zhongqun; Li, Zhiyuan; Xu, Xiaojie; Li, Xiangdong
2018-05-01
Based on archival Chandra data, we have carried out an X-ray survey of 69, or nearly half the known population of, Milky Way globular clusters (GCs), focusing on weak X-ray sources, mainly cataclysmic variables (CVs) and coronally active binaries (ABs). Using the cumulative X-ray luminosity per unit stellar mass (i.e., X-ray emissivity) as a proxy of the source abundance, we demonstrate a paucity (lower by 41% ± 27% on average) of weak X-ray sources in most GCs relative to the field, which is represented by the Solar Neighborhood and Local Group dwarf elliptical galaxies. We also revisit the mutual correlations among the cumulative X-ray luminosity (L X), cluster mass (M), and stellar encounter rate (Γ), finding {L}{{X}}\\propto {M}0.74+/- 0.13, {L}{{X}}\\propto {{{Γ }}}0.67+/- 0.07 and {{Γ }}\\propto {M}1.28+/- 0.17. The three quantities can further be expressed as {L}{{X}}\\propto {M}0.64+/- 0.12 {{{Γ }}}0.19+/- 0.07, which indicates that the dynamical formation of CVs and ABs through stellar encounters in GCs is less dominant than previously suggested, and that the primordial formation channel has a substantial contribution. Taking these aspects together, we suggest that a large fraction of primordial, soft binaries have been disrupted in binary–single or binary–binary stellar interactions before they could otherwise evolve into X-ray-emitting close binaries, whereas the same interactions also have led to the formation of new close binaries. No significant correlations between {L}{{X}}/{L}K and cluster properties, including dynamical age, metallicity, and structural parameters, are found.
Standardized UXO Technology Demonstration Site Blind Grid Scoring Record No. 805
2007-03-01
and receiver (RX) coils. b. The Tensor Magnetic Gradiometer System ( TMGS ) has been reconfigured to improve its performance compared with the...ALL TEM. The TMGS raw data files consist of an ASCII header with system settings followed by the data in binary format. The GPS positions, EDA...exported in ASCII format. A new data acquisition system for the TMGS will be supplied by the demonstrator. It is controlled by LabVIEW, as is the ALL
Binary colloidal structures assembled through Ising interactions
NASA Astrophysics Data System (ADS)
Khalil, Karim S.; Sagastegui, Amanda; Li, Yu; Tahir, Mukarram A.; Socolar, Joshua E. S.; Wiley, Benjamin J.; Yellen, Benjamin B.
2012-04-01
New methods for inducing microscopic particles to assemble into useful macroscopic structures could open pathways for fabricating complex materials that cannot be produced by lithographic methods. Here we demonstrate a colloidal assembly technique that uses two parameters to tune the assembly of over 20 different pre-programmed structures, including kagome, honeycomb and square lattices, as well as various chain and ring configurations. We programme the assembled structures by controlling the relative concentrations and interaction strengths between spherical magnetic and non-magnetic beads, which behave as paramagnetic or diamagnetic dipoles when immersed in a ferrofluid. A comparison of our experimental observations with potential energy calculations suggests that the lowest energy configuration within binary mixtures is determined entirely by the relative dipole strengths and their relative concentrations.
Creep Behavior of Near-Stoichiometric Polycrystalline Binary NiAl
NASA Technical Reports Server (NTRS)
Raj, S. V.
2002-01-01
New and published constant load creep and constant engineering strain rate data on near-stoichiometric binary NiAl in the intermediate temperature range 700 to 1300 K are reviewed. Both normal and inverse primary creep curves are observed depending on stress and temperature. Other characteristics relating to creep of NiAl involving grain size, stress and temperature dependence are critically examined and discussed. At stresses below 25 MPa and temperatures above 1000 K, a new grain boundary sliding mechanism was observed with n approx. 2, Qc approx. 100 kJ/ mol and a grain size exponent of about 2. It is demonstrated that Coble creep and accommodated grain boundary sliding models fail to predict the experimental creep rates by several orders of magnitude.
An object recognition method based on fuzzy theory and BP networks
NASA Astrophysics Data System (ADS)
Wu, Chuan; Zhu, Ming; Yang, Dong
2006-01-01
It is difficult to choose eigenvectors when neural network recognizes object. It is possible that the different object eigenvectors is similar or the same object eigenvectors is different under scaling, shifting, rotation if eigenvectors can not be chosen appropriately. In order to solve this problem, the image is edged, the membership function is reconstructed and a new threshold segmentation method based on fuzzy theory is proposed to get the binary image. Moment invariant of binary image is extracted and normalized. Some time moment invariant is too small to calculate effectively so logarithm of moment invariant is taken as input eigenvectors of BP network. The experimental results demonstrate that the proposed approach could recognize the object effectively, correctly and quickly.
Development of Pulsar Detection Methods for a Galactic Center Search
NASA Astrophysics Data System (ADS)
Thornton, Stephen; Wharton, Robert; Cordes, James; Chatterjee, Shami
2018-01-01
Finding pulsars within the inner parsec of the galactic center would be incredibly beneficial: for pulsars sufficiently close to Sagittarius A*, extremely precise tests of general relativity in the strong field regime could be performed through measurement of post-Keplerian parameters. Binary pulsar systems with sufficiently short orbital periods could provide the same laboratories with which to test existing theories. Fast and efficient methods are needed to parse large sets of time-domain data from different telescopes to search for periodicity in signals and differentiate radio frequency interference (RFI) from pulsar signals. Here we demonstrate several techniques to reduce red noise (low-frequency interference), generate signals from pulsars in binary orbits, and create plots that allow for fast detection of both RFI and pulsars.
Patt, Joseph M.; Stockton, Dara; Meikle, William G.; Sétamou, Mamoudou; Mafra-Neto, Agenor; Adamczyk, John J.
2014-01-01
Asian citrus psyllid (Diaphorina citri) transmits Huanglongbing, a devastating disease that threatens citrus trees worldwide. A better understanding of the psyllid’s host-plant selection process may lead to the development of more efficient means of monitoring it and predicting its movements. Since behavioral adaptations, such as associative learning, may facilitate recognition of suitable host-plants, we examined whether adult D. citri could be conditioned to visual and chemosensory stimuli from host and non-host-plant sources. Response was measured as the frequency of salivary sheaths, the residue of psyllid probing activity, in a line of emulsified wax on the surface of a test arena. The psyllids displayed both appetitive and aversive conditioning to two different chemosensory stimuli. They could also be conditioned to recognize a blue-colored probing substrate and their response to neutral visual cues was enhanced by chemosensory stimuli. Conditioned psyllids were sensitive to the proportion of chemosensory components present in binary mixtures. Naïve psyllids displayed strong to moderate innate biases to several of the test compounds. While innate responses are probably the psyllid’s primary behavioral mechanism for selecting host-plants, conditioning may enhance its ability to select host-plants during seasonal transitions and dispersal. PMID:26462949
Thirugnanasambantham, Krishnaraj; Saravanan, Subramanian; Karikalan, Kulandaivelu; Bharanidharan, Rajaraman; Lalitha, Perumal; Ilango, S; HairulIslam, Villianur Ibrahim
2015-10-01
Momordica charantia (bitter gourd, bitter melon) is a monoecious Cucurbitaceae with anti-oxidant, anti-microbial, anti-viral and anti-diabetic potential. Molecular studies on this economically valuable plant are very essential to understand its phylogeny and evolution. MicroRNAs (miRNAs) are conserved, small, non-coding RNA with ability to regulate gene expression by bind the 3' UTR region of target mRNA and are evolved at different rates in different plant species. In this study we have utilized homology based computational approach and identified 27 mature miRNAs for the first time from this bio-medically important plant. The phylogenetic tree developed from binary data derived from the data on presence/absence of the identified miRNAs were noticed to be uncertain and biased. Most of the identified miRNAs were highly conserved among the plant species and sequence based phylogeny analysis of miRNAs resolved the above difficulties in phylogeny approach using miRNA. Predicted gene targets of the identified miRNAs revealed their importance in regulation of plant developmental process. Reported miRNAs held sequence conservation in mature miRNAs and the detailed phylogeny analysis of pre-miRNA sequences revealed genus specific segregation of clusters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Patt, Joseph M; Stockton, Dara; Meikle, William G; Sétamou, Mamoudou; Mafra-Neto, Agenor; Adamczyk, John J
2014-11-19
Asian citrus psyllid (Diaphorina citri) transmits Huanglongbing, a devastating disease that threatens citrus trees worldwide. A better understanding of the psyllid's host-plant selection process may lead to the development of more efficient means of monitoring it and predicting its movements. Since behavioral adaptations, such as associative learning, may facilitate recognition of suitable host-plants, we examined whether adult D. citri could be conditioned to visual and chemosensory stimuli from host and non-host-plant sources. Response was measured as the frequency of salivary sheaths, the residue of psyllid probing activity, in a line of emulsified wax on the surface of a test arena. The psyllids displayed both appetitive and aversive conditioning to two different chemosensory stimuli. They could also be conditioned to recognize a blue-colored probing substrate and their response to neutral visual cues was enhanced by chemosensory stimuli. Conditioned psyllids were sensitive to the proportion of chemosensory components present in binary mixtures. Naïve psyllids displayed strong to moderate innate biases to several of the test compounds. While innate responses are probably the psyllid's primary behavioral mechanism for selecting host-plants, conditioning may enhance its ability to select host-plants during seasonal transitions and dispersal.
Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi
2012-01-01
Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521
Israel Electric joins oil shale power plant project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-12-01
The Israel Electric Corporation has purchased a 25% share in PAMA (Energy Resources Development, Ltd). PAMA is planning to build a 7 1/2 megawatt shale-fired demonstration plant at Mishor Rotem in Israel. The demonstration cogeneration plant is being designed to produce 42 tons/hours of steam for use in nearby phosphate plants, and also produce electricity. Construction of the demonstration plant is expected to begin in early 1987 and be completed within 2 years. It will be based on fluidized bed technology. Successful operation of the demo plant could then lead to a 50 to 100 megawatt or larger commercial plant.
Lamentowicz, Mariusz; Lamentowicz, Lukasz; van der Knaap, Willem O; Gabka, Maciej; Mitchell, Edward A D
2010-04-01
We studied the vegetation, testate amoebae and abiotic variables (depth of the water table, pH, electrical conductivity, Ca and Mg concentrations of water extracted from mosses) along the bog to extremely rich fen gradient in sub-alpine peatlands of the Upper Engadine (Swiss Alps). Testate amoeba diversity was correlated to that of mosses but not of vascular plants. Diversity peaked in rich fen for testate amoebae and in extremely rich fen for mosses, while for testate amoebae and mosses it was lowest in bog but for vascular plants in extremely rich fen. Multiple factor and redundancy analyses (RDA) revealed a stronger correlation of testate amoebae than of vegetation to water table and hydrochemical variables and relatively strong correlation between testate amoeba and moss community data. In RDA, hydrochemical variables explained a higher proportion of the testate amoeba and moss data than water table depth. Abiotic variables explained a higher percentage of the species data for testate amoebae (30.3% or 19.5% for binary data) than for mosses (13.4%) and vascular plants (10%). These results show that (1) vascular plant, moss and testate amoeba communities respond differently to ecological gradients in peatlands and (2) testate amoebae are more strongly related than vascular plants to the abiotic factors at the mire surface. These differences are related to vertical trophic gradients and associated niche differentiation.
Software-assisted stacking of gene modules using GoldenBraid 2.0 DNA-assembly framework.
Vazquez-Vilar, Marta; Sarrion-Perdigones, Alejandro; Ziarsolo, Peio; Blanca, Jose; Granell, Antonio; Orzaez, Diego
2015-01-01
GoldenBraid (GB) is a modular DNA assembly technology for plant multigene engineering based on type IIS restriction enzymes. GB speeds up the assembly of transcriptional units from standard genetic parts and facilitates the stacking of several genes within the same T-DNA in few days. GBcloning is software-assisted with a set of online tools. The GBDomesticator tool assists in the adaptation of DNA parts to the GBstandard. The combination of GB-adapted parts to build new transcriptional units is assisted by the GB TU Assembler tool. Finally, the assembly of multigene modules is simulated by the GB Binary Assembler. All the software tools are available at www.gbcloning.org . Here, we describe in detail the assembly methodology to create a multigene construct with three transcriptional units for polyphenol metabolic engineering in plants.
Genetic transformation of Begonia tuberhybrida by Ri rol genes.
Kiyokawa, S; Kikuchi, Y; Kamada, H; Harada, H
1996-04-01
We have developed an Agrobacterium -mediated transformation system for commercial Begonia species. The leaf explants of Begonia semperflorens, Begonia x hiemalis and B. tuberhybrida were inoculated with Agrobacterium tumefaciens LBA4404 harboring a binary vector pBI121 which contains rolA, B and C genes of an agropine type Ri plasmid (pRiA4b). Kanamycin resistant shoots of B. tuberhybrida were obtained on MS agar medium supplemented with 0.1 mg/l NAA, 0.5 mg/l BA, 500 mg/l claforan and 100 mg/l kanamycin. These shoots exhibited GUS activity and Southern analysis showed a single copy insertion into the genome. When the transgenic plants were transferred to soil, they displayed the phenotype specific to the transgenic plants by A. rhizogenes such as dwarfness, delay of flowering, and wrinkled leaves and petals.
Yarasi, Bharathi; Sadumpati, Vijayakumar; Immanni, China Pasalu; Vudem, Dasavantha Reddy; Khareedu, Venkateswara Rao
2008-01-01
Background Rice (Oryza sativa) productivity is adversely impacted by numerous biotic and abiotic factors. An approximate 52% of the global production of rice is lost annually owing to the damage caused by biotic factors, of which ~21% is attributed to the attack of insect pests. In this paper we report the isolation, cloning and characterization of Allium sativum leaf agglutinin (asal) gene, and its expression in elite indica rice cultivars using Agrobacterium-mediated genetic transformation method. The stable transgenic lines, expressing ASAL, showed explicit resistance against major sap-sucking pests. Results Allium sativum leaf lectin gene (asal), coding for mannose binding homodimeric protein (ASAL) from garlic plants, has been isolated and introduced into elite indica rice cultivars susceptible to sap-sucking insects, viz., brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH). Embryogenic calli of rice were co-cultivated with Agrobacterium harbouring pSB111 super-binary vector comprising garlic lectin gene asal along with the herbicide resistance gene bar, both under the control of CaMV35S promoter. PCR and Southern blot analyses confirmed stable integration of transgenes into the genomes of rice plants. Northern and western blot analyses revealed expression of ASAL in different transgenic rice lines. In primary transformants, the level of ASAL protein, as estimated by enzyme-linked immunosorbent assay, varied between 0.74% and 1.45% of the total soluble proteins. In planta insect bioassays on transgenic rice lines revealed potent entomotoxic effects of ASAL on BPH, GLH and WBPH insects, as evidenced by significant decreases in the survival, development and fecundity of the insects. Conclusion In planta insect bioassays were carried out on asal transgenic rice lines employing standard screening techniques followed in conventional breeding for selection of insect resistant plants. The ASAL expressing rice plants, bestowed with high entomotoxic effects, imparted appreciable resistance against three major sap-sucking insects. Our results amply demonstrate that transgenic indica rice harbouring asal exhibit surpassing resistance against BPH, GLH and WBPH insects. The prototypic asal transgenic rice lines appear promising for direct commercial cultivation besides serving as a potential genetic resource in recombination breeding. PMID:18854007
Yarasi, Bharathi; Sadumpati, Vijayakumar; Immanni, China Pasalu; Vudem, Dasavantha Reddy; Khareedu, Venkateswara Rao
2008-10-14
Rice (Oryza sativa) productivity is adversely impacted by numerous biotic and abiotic factors. An approximate 52% of the global production of rice is lost annually owing to the damage caused by biotic factors, of which approximately 21% is attributed to the attack of insect pests. In this paper we report the isolation, cloning and characterization of Allium sativum leaf agglutinin (asal) gene, and its expression in elite indica rice cultivars using Agrobacterium-mediated genetic transformation method. The stable transgenic lines, expressing ASAL, showed explicit resistance against major sap-sucking pests. Allium sativum leaf lectin gene (asal), coding for mannose binding homodimeric protein (ASAL) from garlic plants, has been isolated and introduced into elite indica rice cultivars susceptible to sap-sucking insects, viz., brown planthopper (BPH), green leafhopper (GLH) and whitebacked planthopper (WBPH). Embryogenic calli of rice were co-cultivated with Agrobacterium harbouring pSB111 super-binary vector comprising garlic lectin gene asal along with the herbicide resistance gene bar, both under the control of CaMV35S promoter. PCR and Southern blot analyses confirmed stable integration of transgenes into the genomes of rice plants. Northern and western blot analyses revealed expression of ASAL in different transgenic rice lines. In primary transformants, the level of ASAL protein, as estimated by enzyme-linked immunosorbent assay, varied between 0.74% and 1.45% of the total soluble proteins. In planta insect bioassays on transgenic rice lines revealed potent entomotoxic effects of ASAL on BPH, GLH and WBPH insects, as evidenced by significant decreases in the survival, development and fecundity of the insects. In planta insect bioassays were carried out on asal transgenic rice lines employing standard screening techniques followed in conventional breeding for selection of insect resistant plants. The ASAL expressing rice plants, bestowed with high entomotoxic effects, imparted appreciable resistance against three major sap-sucking insects. Our results amply demonstrate that transgenic indica rice harbouring asal exhibit surpassing resistance against BPH, GLH and WBPH insects. The prototypic asal transgenic rice lines appear promising for direct commercial cultivation besides serving as a potential genetic resource in recombination breeding.
Zhao, Ruifeng; Zhou, Huarong; Qian, Yibing; Zhang, Jianjun
2006-06-01
A total of 16 quadrants of wetlands and surrounding lands in the mid- and lower reaches of Tarim River were surveyed, and the data about the characteristics of plant communities and environmental factors were collected and counted. By using PCA (principal component analysis) ordination and regression procedure, the distribution patterns of plant communities and the relationships between the characteristics of plant community structure and environmental factors were analyzed. The results showed that the distribution of the plant communities was closely related to soil moisture, salt, and nutrient contents. The accumulative contribution rate of soil moisture and salt contents in the first principal component accounted for 35.70%, and that of soil nutrient content in the second principal component reached 25.97%. There were 4 types of habitats for the plant community distribution, i. e., fenny--light salt--medium nutrient, moist--medium salt--medium nutrient, mesophytic--medium salt--low nutrient, and medium xerophytic-heavy salt--low nutrient. Along these habitats, swamp vegetation, meadow vegetation, riparian sparse forest, halophytic desert, and salinized shrub were distributed. In the wetlands and surrounding lands of mid- and lower reaches of Tarim River, the ecological dominance of the plant communities was markedly and unitary-linearly correlated with the compound gradient of soil moisture and salt contents. The relationships between species diversity, ecological dominance, and compound gradient of soil moisture and salt contents were significantly accorded to binary-linear regression model.
Membership, binarity, and rotation of F-G-K stars in the open cluster Blanco 1
NASA Astrophysics Data System (ADS)
Mermilliod, J.-C.; Platais, I.; James, D. J.; Grenon, M.; Cargile, P. A.
2008-07-01
Context: The nearby open cluster Blanco 1 is of considerable astrophysical interest for formation and evolution studies of open clusters because it is the third highest Galactic latitude cluster known. It has been observed often, but so far no definitive and comprehensive membership determination is readily available. Aims: An observing programme was carried out to study the stellar population of Blanco 1, and especially the membership and binary frequency of the F5-K0 dwarfs. Methods: We obtained radial-velocities with the CORAVEL spectrograph in the field of Blanco 1 for a sample of 148 F-G-K candidate stars in the magnitude range 10 < V < 14. New proper motions and UBVI CCD photometric data from two extensive surveys were obtained independently and are used to establish reliable cluster membership assignments in concert with radial-velocity data. Results: The membership of 68 stars is confirmed on the basis of proper motion, radial velocity, and photometric criteria. Fourteen spectroscopic- and suspected binaries (2 SB2s, 9 SB1s, 3 SB?) have been discovered among the confirmed members. Thirteen additional stars are located above the main sequence or close to the binary ridge, with radial velocities and proper motions supporting their membership. These are probable binaries with wide separations. Nine binaries (7 SB1 and 2 SB2) were detected among the field stars. The spectroscopic binary frequency among members is 20% (14/68); however, the overall binary rate reaches 40% (27/68) if one includes the photometric binaries. The cluster mean heliocentric radial velocity is +5.53 ± 0.11 km s-1 based on the most reliable 49 members. The V sin i distribution is similar to that of the Pleiades, confirming the age similarities between the two clusters. Conclusions: This study clearly demonstrates that, in spite of the cluster's high Galactic latitude, three membership criteria - radial velocity, proper motion, and photometry - are necessary for performing a reliable membership selection. Furthermore, even with accurate and extensive data, ambiguous cases still remain. Based on observations collected with the Danish 1.54-m and the Swiss telescopes at the European Southern Observatory, La Silla, Chile, and with the old YALO 1-m telescope at the Cerro Tololo InterAmerican Observatory, Chile. Table [see full textsee full textsee full textsee full textsee full textsee full text] is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/485/95
Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have beenmore » designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.« less
DeBlasio, Stacy L; Chavez, Juan D; Alexander, Mariko M; Ramsey, John; Eng, Jimmy K; Mahoney, Jaclyn; Gray, Stewart M; Bruce, James E; Cilia, Michelle
2016-02-15
Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection-hallmarks of host-pathogen interactions-were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
DeBlasio, Stacy L.; Chavez, Juan D.; Alexander, Mariko M.; Ramsey, John; Eng, Jimmy K.; Mahoney, Jaclyn; Gray, Stewart M.; Bruce, James E.
2015-01-01
ABSTRACT Demonstrating direct interactions between host and virus proteins during infection is a major goal and challenge for the field of virology. Most protein interactions are not binary or easily amenable to structural determination. Using infectious preparations of a polerovirus (Potato leafroll virus [PLRV]) and protein interaction reporter (PIR), a revolutionary technology that couples a mass spectrometric-cleavable chemical cross-linker with high-resolution mass spectrometry, we provide the first report of a host-pathogen protein interaction network that includes data-derived, topological features for every cross-linked site that was identified. We show that PLRV virions have hot spots of protein interaction and multifunctional surface topologies, revealing how these plant viruses maximize their use of binding interfaces. Modeling data, guided by cross-linking constraints, suggest asymmetric packing of the major capsid protein in the virion, which supports previous epitope mapping studies. Protein interaction topologies are conserved with other species in the Luteoviridae and with unrelated viruses in the Herpesviridae and Adenoviridae. Functional analysis of three PLRV-interacting host proteins in planta using a reverse-genetics approach revealed a complex, molecular tug-of-war between host and virus. Structural mimicry and diversifying selection—hallmarks of host-pathogen interactions—were identified within host and viral binding interfaces predicted by our models. These results illuminate the functional diversity of the PLRV-host protein interaction network and demonstrate the usefulness of PIR technology for precision mapping of functional host-pathogen protein interaction topologies. IMPORTANCE The exterior shape of a plant virus and its interacting host and insect vector proteins determine whether a virus will be transmitted by an insect or infect a specific host. Gaining this information is difficult and requires years of experimentation. We used protein interaction reporter (PIR) technology to illustrate how viruses exploit host proteins during plant infection. PIR technology enabled our team to precisely describe the sites of functional virus-virus, virus-host, and host-host protein interactions using a mass spectrometry analysis that takes just a few hours. Applications of PIR technology in host-pathogen interactions will enable researchers studying recalcitrant pathogens, such as animal pathogens where host proteins are incorporated directly into the infectious agents, to investigate how proteins interact during infection and transmission as well as develop new tools for interdiction and therapy. PMID:26656710
A m-ary linear feedback shift register with binary logic
NASA Technical Reports Server (NTRS)
Perlman, M. (Inventor)
1973-01-01
A family of m-ary linear feedback shift registers with binary logic is disclosed. Each m-ary linear feedback shift register with binary logic generates a binary representation of a nonbinary recurring sequence, producible with a m-ary linear feedback shift register without binary logic in which m is greater than 2. The state table of a m-ary linear feedback shift register without binary logic, utilizing sum modulo m feedback, is first tubulated for a given initial state. The entries in the state table are coded in binary and the binary entries are used to set the initial states of the stages of a plurality of binary shift registers. A single feedback logic unit is employed which provides a separate feedback binary digit to each binary register as a function of the states of corresponding stages of the binary registers.
Lateral gene transfers have polished animal genomes: lessons from nematodes
Danchin, Etienne G. J.; Rosso, Marie-Noëlle
2012-01-01
It is now accepted that lateral gene transfers (LGT), have significantly contributed to the composition of bacterial genomes. The amplitude of the phenomenon is considered so high in prokaryotes that it challenges the traditional view of a binary hierarchical tree of life to correctly represent the evolutionary history of species. Given the plethora of transfers between prokaryotes, it is currently impossible to infer the last common ancestral gene set for any extant species. For this ensemble of reasons, it has been proposed that the Darwinian binary tree of life may be inappropriate to correctly reflect the actual relations between species, at least in prokaryotes. In contrast, the contribution of LGT to the composition of animal genomes is less documented. In the light of recent analyses that reported series of LGT events in nematodes, we discuss the importance of this phenomenon in the evolutionary history and in the current composition of an animal genome. Far from being neutral, it appears that besides having contributed to nematode genome contents, LGT have favored the emergence of important traits such as plant-parasitism. PMID:22919619
Optical Implementation Of The Synthetic Discrimination Function
NASA Astrophysics Data System (ADS)
Butler, Steve; Riggins, James
1985-01-01
Computer-generated holograms of geometrical shape and synthetic discriminant function (SDF) matched filters are modeled and produced. The models include ideal correlations and Allebach-Keegan binary holograms. A distinction between Phase-Only-Information and Phase-Only-Material Filters is demonstrated. Signal-to-noise and efficiency measurements were made on the resultant correlation planes.
Professional Development in Real Time
ERIC Educational Resources Information Center
Bills, Patricia; Kulkarni, Madhura; Hart, Reeda Stamper
2017-01-01
Students in Mrs. Wilson's fourth-grade classroom watch in anticipation as the guest teacher, Ms. Davis, demonstrates binary signaling using a lightbulb that flashes when she holds it in her hands. She challenges them to guess what she is trying to "say" while making the lightbulb flash on and off, explaining that the lightbulb stands for…
USDA-ARS?s Scientific Manuscript database
Technical Abstract: BACKGROUND: There is little research evaluating flavor preferences among wheat varieties. We previously demonstrated that mice exert very strong preferences when given binary mixtures of wheat varieties. We plan to utilize mice to identify varieties and genes associated with pref...