Science.gov

Sample records for binary gallium-rare-earth chalcogenides

  1. Growth mechanism of nanowires: binary and ternary chalcogenides

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Coriell, S. R.; Su, Ching Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-05-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acoustooptical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  2. Growth Mechanism of Nanowires: Binary and Ternary Chalcogenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Coriell, S. R.; Su, Ching-Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acousto-optical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  3. Compositional trends of γ-induced optical changes observed in chalcogenide glasses of binary As-S system

    SciTech Connect

    Shpotyuk, M.; Shpotyuk, O.; Golovchak, Roman; McCloy, John S.; Riley, Brian J.

    2014-01-23

    Compositional trends of γ-induced optical changes in chalcogenide glasses are studied with the binary As-S system. Effects of γ-irradiation and annealing are compared using the changes measured in the fundamental optical absorption edge region. It is shown that annealing near the glass transition temperature leads to bleaching of As-S glasses, while γ-irradiation leads to darkening; both depend on the glass composition and thermal history of the specimens. These results are explained in terms of competitive destruction–polymerization transformations and physical aging occurring in As-S chalcogenide glasses under the influence of γ-irradiation.

  4. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    SciTech Connect

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  5. Atomic layer deposition of quaternary chalcogenides

    DOEpatents

    Thimsen, Elijah J; Riha, Shannon C; Martinson, Alex B.F.; Elam, Jeffrey W; Pellin, Michael J

    2014-06-03

    Methods and systems are provided for synthesis and deposition of chalcogenides (including Cu.sub.2ZnSnS.sub.4). Binary compounds, such as metal sulfides, can be deposited by alternating exposures of the substrate to a metal cation precursor and a chalcogen anion precursor with purge steps between.

  6. Chalcogenide glass nanostructures

    DOEpatents

    Johnson, Bradley R.; Schweiger, Michael J.; MacIsaac, Brett D.; Sundaram, S. Kamakshi

    2007-05-01

    Chalcogenide nanowires and other micro-and nano scale structures are grown on a preselected portion of on a substrate. They are amorphous and of uniform composition and can be grown by a sublimation-condensation process onto the surface of an amorphous substrate. Among other uses, these structures can be used as coatings on optical fibers, as coatings on implants, as wispering galleries, in electrochemical devices, and in nanolasers.

  7. Chemical Routes to Colloidal Chalcogenide Nanosheets

    SciTech Connect

    Schaak, Raymond

    2015-02-19

    This project sought to develop new low-temperature synthetic pathways to intermetallic and chalcogenide nanostructures and powders, with an emphasis on systems that are relevant to advancing the synthesis, processing, and discovery of superconducting materials. The primary synthetic routes involved solution chemistry methods, and several fundamental synthetic challenges that underpinned the formation of these materials were identified and investigated. Methods for incorporating early transition metals and post transition metals into nanoscale and bulk crystals using low-temperature solution chemistry methods were developed and studied, leading to colloidal nanocrystals of elemental indium, manganese, and germanium, as well as nanocrystalline and bulk intermetallic compounds containing germanium, gallium, tin, indium, zinc, bismuth, and lithium. New chemical tools were developed to help target desired phases in complex binary intermetallic and metal chalcogenide systems that contain multiple stable phases, including direct synthesis methods and chemical routes that permit post-synthetic modification. Several phases that are metastable in bulk systems were targeted, synthesized, and characterized as nanocrystalline solids and bulk powders, including the L12-type intermetallic compounds Au3Fe, Au3Ni, and Au3Co, as well as wurtzite-type MnSe. Methods for accessing crystalline metal borides and carbides using direct solution chemistry methods were also developed, with an emphasis on Ni3B and Ni3C, which revealed useful correlations of composition and magnetic properties. Methods for scale-up and nanoparticle purification were explored, providing access to centimeter-scale pressed pellets of polyol-synthesized nanopowders and a bacteriophage-mediated method for separating impure nanoparticle mixtures into their components. Several advances were made in the synthesis of iron selenide and related superconducting materials, including the production of colloidal Fe

  8. Space processing of chalcogenide glass

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Ali, M. I.

    1977-01-01

    The manner in which the weightless, containerless nature of in-space processing can be successfully utilized to improve the quality of infrared transmitting chalcogenide glasses is determined. The technique of space processing chalcogenide glass was developed, and the process and equipment necessary to do so was defined. Earthbound processing experiments with As2S3 and G28Sb12Se60 glasses were experimented with. Incorporated into these experiments is the use of an acoustic levitation device.

  9. Space processing of chalcogenide glasses

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Ali, M. A.

    1975-01-01

    Chalcogenide glasses are discussed as good infrared transmitters, possessing the strength, corrosion resistance, and scale-up potential necessary for large 10.6-micron windows. The disadvantage of earth-produced chalcogenide glasses is shown to be an infrared absorption coefficient which is unacceptably high relative to alkali halides. This coefficient is traced to optical nonhomogeneities resulting from environmental and container contamination. Space processing is considered as a means of improving the infrared transmission quality of chalcogenides and of eliminating the following problems: optical inhomogeneities caused by thermal currents and density fluctuation in the l-g earth environment; contamination from the earth-melting crucible by oxygen and other elements deleterious to infrared transmission; and, heterogeneous nucleation at the earth-melting crucible-glass interface.

  10. Chalcogenide and germanium hybrid optics

    NASA Astrophysics Data System (ADS)

    Cogburn, Gabriel

    2011-11-01

    When choosing a material to design infrared optics, an optical designer has to decide which material properties are most important to what they are trying to achieve. Factors include; cost, optical performance, index of material, sensor format, manufacturability, mechanical mounting and others. This paper will present an optical design that is made for a 640×480, 17μm sensor and is athermalized by using the material properties of chalcogenide glass and Germanium (Ge). The optical design will be a 3-element, f1.0 optic with an EFL of 20mm at 10μm. It consists of two Ge spherical lenses and a middle chalcogenide aspheric element. By using Ge and chalcogenide, this design utilizes the high index of Ge and combines it with the lower dn/dt of chalcogenide glass to provide an athermalized design without the use of additional electro-optical compensation inside the assembly. This study will start from the optical design process and explain the mechanical and optical properties of the design, then show the manufacturing process of molding an aspheric chalcogenide element. After the three elements are manufactured, they will be assembled and tested throughout the temperature range of -40 to 85°C to compare optical performance to design expectations. Ultimately, this paper will show that a high performance, athermalized optical assembly is possible to manufacture at a lower cost with the use of combining different infrared materials that allow for spherical Ge lenses and only one aspherical chalcogenide element which can be produced in higher volumes at lower costs through glass molding technology.

  11. Focus on superconducting properties of iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2012-10-01

    Since the discovery of iron-based superconductors, much attention has been given to the exploration of new superconducting compounds. Numerous superconducting iron compounds have been found and categorized into five groups: LnFeAsO (Ln = lanthanide), BaFe2As2, KFeAs, FeSe and FeAs with perovskite blocking layers. Among them, FeSe has the simplest crystal structure. Since the crystal structure is composed of only superconducting Fe layers, the FeSe family must be the best material to investigate the mechanism of iron-based superconductivity. FeSe shows very strong pressure effects. The superconducting transition temperature (Tc) of FeSe is approximately 8 K at ambient pressure. However Tc dramatically increases up to 37 K under applied pressure of 4-6 GPa. This is the third highest Tc value among binary superconductors, surpassed only by CsC60 under pressure (Tc = 38 K) and MgB2 (Tc = 39 K). On the other hand, despite FeTe having a crystal structure analogous to that of FeSe, FeTe shows antiferromagnetic properties without superconductivity. Doping of small ions, either Se or S, however, can induce superconductivity in FeTe1-xSex or FeTe1-xSx . The superconductivity is very weak for small x values, and annealing under certain conditions is required to obtain strong superconductivity, for instance annealing in oxygen or alcoholic beverages such as red wine. The following selection of papers describe many important experimental and theoretical studies on iron chalcogenide superconductors including preparation of single crystals, bulk samples and thin films; NMR measurements; photoemission spectroscopy; high-pressure studies; annealing effects and research on new BiS2-based superconductors. I hope this focus issue will help researchers understand the frontiers of iron chalcogenide superconductors and assist in the discovery of new phenomena related to iron-based superconductivity.

  12. Space processing of chalcogenide glass

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Schramm, S. W.

    1978-01-01

    A program was conducted to develop the technique of space processing for chalcogenide glass, and to define the process and equipment necessary. In the course of this program, successful long term levitation of objects in a 1-g environment was achieved. Glass beads 4 mm diameter were containerless melted and fused together.

  13. Density functional theory (DFT) study of the gas-phase decomposition of the Cd[((i)Pr)2PSSe] 2 single-source precursor for the CVD of binary and ternary cadmium chalcogenides.

    PubMed

    Opoku, Francis; Asare-Donkor, Noah Kyame; Adimado, Anthony A

    2014-11-01

    The chemistry of group II-VI semiconductors has spurred considerable interest in decomposition reaction mechanisms and has been exploited for various technological applications. In this work, computational chemistry was employed to investigate the possible gas-phase decomposition pathways of the mixed Cd[((i)Pr)2PSSe]2 single-source precursor for the chemical vapour deposition of cadmium chalcogenides as thin films. The geometries of the species involved were optimised by employing density functional theory at the MO6/LACVP* level. The results indicate that the steps that lead to CdS formation on the singlet potential energy surface are favoured kinetically over those that lead to CdSe and ternary CdSe(x)S(1-x) formation. On the doublet PES, the steps that lead to CdSe formation are favoured kinetically over those that lead to CdS and CdSe(x)S(1-x) formation. However, thermodynamically, the steps that lead to ternary CdSe(x)S(1-x) formation are more favourable than those that lead to CdSe and CdS formation on both the singlet and the doublet PESs. Density functional theory calculations revealed that the first steps exhibit huge activation barriers, meaning that the thermodynamically favourable process takes a very long time to initiate. PMID:25338817

  14. Density functional theory (DFT) study of the gas-phase decomposition of the Cd[((i)Pr)2PSSe] 2 single-source precursor for the CVD of binary and ternary cadmium chalcogenides.

    PubMed

    Opoku, Francis; Asare-Donkor, Noah Kyame; Adimado, Anthony A

    2014-11-01

    The chemistry of group II-VI semiconductors has spurred considerable interest in decomposition reaction mechanisms and has been exploited for various technological applications. In this work, computational chemistry was employed to investigate the possible gas-phase decomposition pathways of the mixed Cd[((i)Pr)2PSSe]2 single-source precursor for the chemical vapour deposition of cadmium chalcogenides as thin films. The geometries of the species involved were optimised by employing density functional theory at the MO6/LACVP* level. The results indicate that the steps that lead to CdS formation on the singlet potential energy surface are favoured kinetically over those that lead to CdSe and ternary CdSe(x)S(1-x) formation. On the doublet PES, the steps that lead to CdSe formation are favoured kinetically over those that lead to CdS and CdSe(x)S(1-x) formation. However, thermodynamically, the steps that lead to ternary CdSe(x)S(1-x) formation are more favourable than those that lead to CdSe and CdS formation on both the singlet and the doublet PESs. Density functional theory calculations revealed that the first steps exhibit huge activation barriers, meaning that the thermodynamically favourable process takes a very long time to initiate.

  15. Destructive Clustering of Metal Nanoparticles in Chalcogenide and Oxide Glassy Matrices.

    PubMed

    Shpotyuk, M V; Shpotyuk, O I; Cebulski, J; Kozyukhin, S

    2016-12-01

    The energetic χ-criterion is developed to parameterize difference in the origin of high-order optical non-linearity associated with metallic atoms (Cu, Ag, Au) embedded destructively in oxide- and chalcogenide glasses. Within this approach, it is unambiguously proved that covalent-bonded networks of soft semiconductor chalcogenides exemplified by binary As(Ge)-S(Se) glasses differ essentially from those typical for hard dielectric oxides like vitreous silica by impossibility to accommodate pure agglomerates of metallic nanoparticles. In an excellence according to known experimental data, it is suggested that destructive clustering of nanoparticles is possible in Cu-, Ag-, and Au-ion-implanted dielectric oxide glass media, possessing a strongly negative χ-criterion. Some recent speculations trying to ascribe equally this ability to soft chalcogenide glasses despite an obvious difference in the corresponding bond dissociation energies have been disclosed and criticized as inconclusive.

  16. Destructive Clustering of Metal Nanoparticles in Chalcogenide and Oxide Glassy Matrices

    NASA Astrophysics Data System (ADS)

    Shpotyuk, M. V.; Shpotyuk, O. I.; Cebulski, J.; Kozyukhin, S.

    2016-01-01

    The energetic χ-criterion is developed to parameterize difference in the origin of high-order optical non-linearity associated with metallic atoms (Cu, Ag, Au) embedded destructively in oxide- and chalcogenide glasses. Within this approach, it is unambiguously proved that covalent-bonded networks of soft semiconductor chalcogenides exemplified by binary As(Ge)-S(Se) glasses differ essentially from those typical for hard dielectric oxides like vitreous silica by impossibility to accommodate pure agglomerates of metallic nanoparticles. In an excellence according to known experimental data, it is suggested that destructive clustering of nanoparticles is possible in Cu-, Ag-, and Au-ion-implanted dielectric oxide glass media, possessing a strongly negative χ-criterion. Some recent speculations trying to ascribe equally this ability to soft chalcogenide glasses despite an obvious difference in the corresponding bond dissociation energies have been disclosed and criticized as inconclusive.

  17. Phonon dynamics of neptunium chalcogenides

    NASA Astrophysics Data System (ADS)

    Aynyas, Mahendra; Rukmangad, Aditi; Arya, Balwant S.; Sanyal, Sankar P.

    2012-06-01

    We have performed phonon calculations of Neptunium Chalcogenides (NpX) (X= S, Se, Te) based on breathing shell model (BSM) which includes breathing motion of electron of the Np-atoms due to f-d hybridization. The model predicts that the short range breathing phenomenon play a dominant role in the phonon properties. We also report, for the first time specific heat for these compounds.

  18. Submicron sculpturing on chalcogenide films

    NASA Astrophysics Data System (ADS)

    Dror, Raphi; Feigel, A. I.; Veinguer, Maya; Sfez, Bruno G.; Klebanov, Matvei; Arsh, A.; Lyubin, Victor

    2005-01-01

    Arsenic based chalcogenide glasses present several advantages for nano-structured optical devices in the infrared. First they possess a good transparency in this optical window, second their amorphous nature is ideal for coating based applications or for hybrid integration, third their photo-structural transformation properties give the possibility of creating high-resolution patterns on films and finally their high index make them particularly suitable for the fabrication of photonic crystal devices. We have demonstrated the fabrication of two-dimensional and three-dimensional (wood-pile) photonic crystal structures for typically 500 nm period structures using interferometric lithography to create the periodic pattern. We show here different techniques in order to obtain specific patterns on the chalcogenide glass using a combination of illumination, etching and redeposition techniques. Moreover, in order to create very steep contrast, we have used the fact that silver ions can freely propagate in the glass under light action, providing a very effective contrast between illuminated and non-illuminated regions. 130 nm patterns with a 500 nm periodicity have been obtained using silver doping of chalcogenide glasses. We will finally show different examples of pattern sculpturing using different illumination and film preparation conditions.

  19. Chalcogenide-tellurite composite microstructured optical fibre

    NASA Astrophysics Data System (ADS)

    Kohoutek, T.; Duan, Z.; Kawashima, H.; Yan, X.; Suzuki, T.; Matsumoto, M.; Misumi, Takashi; Ohishi, Y.

    2012-02-01

    We report on fabrication a composite microstructured optical fibre composed of highly nonlinear chalcogenide Ge-Ga- Sb-S glass core and tellurite TeO2-ZnO-Li20-Bi2O3 glass clad. We aimed at obtaining more flattened chromatic dispersion for pumping chalcogenide glass based optical fibre by a pulse laser at current telecommunication wavelengths, i.e. λ = 1.35 - 1.7 μm, which is difficult to achieve by using a single material chalcogenide fibers due to their high refractive index (n > 2.1). A fibre design exploiting a composite of two glasses and one ring of the air holes brings similar options for tuning the fibre dispersion such as use of complex multi rings of air-holes approach. A good choice of glasses, allows for fabricating a composite chalcogenide-tellurite optical fibre benefiting from high nonlinearity of chalcogenide core glass but exploiting a tellurite glass technology and fibre drawing. In the paper, we discuss some aspects of CMOF design concerning current chalcogenide and tellurite glass choice. Also, we show the supercontinuum spectra recorded from current chalcogenide-tellurite CMOF pumped with a custom made femtosecond fibre laser at λ = 1.55 μm with the pulse duration of 400 fs.

  20. Space processing of chalcogenide glass

    NASA Technical Reports Server (NTRS)

    Ali, M. A.; Larsen, D. C.

    1976-01-01

    The manner in which the weightless, containerless nature of in-space processing can be successfully utilized to improve the quality of infrared transmitting chalcogenide glasses was investigated. The following conclusions were reached: (1) Laboratory experiments have established the techniques, processes and equipment necessary for the production of high purity chalcogenide glasses. (2) Processing techniques have been successfully adopted for Ge28Sb12Se60 glass in a 1-g environment. (3) The Ge28Sb12Se60 glasses that have been processed have optical transmission around 63% (5 mm thick). (4) Laboratory experiments have established that the use of precursor materials in powdered form increases the oxygen contamination of the processed glass. This indicates that high purity precursor materials in bar or pellet form should be used. (5) Modifications were made on the MSFC acoustic levitator in an attempt to improve levitation stability during long-time experiments. Room temperature experiments on As2S3 glasses and high temperature experiments on polystyrene were conducted.

  1. Amorphous chalcogenide layers and nanocomposites for direct surface patterning

    NASA Astrophysics Data System (ADS)

    Molnar, Sandor; Bohdan, Roland; Csarnovics, Istvan; Burunkova, Iulia; Kokenyesi, Sandor

    2015-03-01

    Homogeneous, 200 - 3000 nm thick layers of chalcogenide glasses, 1 - 2 mm thick plane-parallel plates as well as nanocomposite structures, containing gold nanoparticles have been produced and used for in situ surface optical and geometrical relief fabrication by optical- or electron-, ion-beam recording. Investigations were focused on the formation of giant (height modulation from nanometers up to micrometers) geometrical reliefs and elements (dots, lines and diffractive elements) applicable in the 0.5 - 10 micrometer spectral range. Recording parameters were compared with available data on acrylic polymer nanocomposites. The mechanism of the recording processes, which include thermal, electron and mass-transport components were explained and the selection of the materials from As(Ge)-S(Se) binary systems with best recording parameters was done.

  2. Origin of resistivity anomaly in p-type leads chalcogenide multiphase compounds

    SciTech Connect

    Aminorroaya Yamini, Sima E-mail: jsnyder@caltech.edu; Dou, Shi Xue; Mitchell, David R. G.; Wang, Heng; Gibbs, Zachary M.; Pei, Yanzhong; Snyder, G. Jeffrey E-mail: jsnyder@caltech.edu

    2015-05-15

    The electrical resistivity curves for binary phase compounds of p-type lead chalcogenide (PbTe){sub (0.9−x)}(PbSe){sub 0.1}(PbS){sub x,} (x = 0.15, 0.2, 0.25), which contain PbS-rich secondary phases, show different behaviour on heating and cooling between 500-700 K. This is contrast to single phase compounds which exhibit similar behaviour on heating and cooling. We correlate these anomalies in the electrical resistivities of multiphase compounds to the variation in phase composition at high temperatures. The inhomogeneous distribution of dopants between the matrix and secondary phase is found to be crucial in the electronic transport properties of the multiphase compounds. These results can lead to further advances in designing composite Pb-chalcogenides with high thermoelectric performance.

  3. Chalcogenide glasses and structures for quantum sensing

    SciTech Connect

    Sundaram, S K.; Johnson, Bradley R.; Schweiger, Michael J.; Martinez, James E.; Riley, Brian J.; Saraf, Laxmikant V.; Anheier, Norman C.; Allen, Paul J.; Schultz, John F.; Manijeh Razeghi, Gail J. Brown

    2004-08-01

    Chalcogenide glasses are formed by combining chalcogen elements with IV-V elements. Among the family of glasses, As2S3, and As2Se3 are important infrared (IR) transparent materials for a variety of applications such as IR sensors, waveguides, and photonic crystals. With the promise of accessibility to any wavelengths between 3.5 and 16 ?m using tunable quantum cascade lasers (QCL) and chalcogenides with IR properties that can be tuned, ultra-sensitive chemical sensing in mid-wave IR region is within reach now. PNNL has been developing QCLs, chalcogenides, and all other components for an integrated approach to chemical sensing. Significant progress has been made in glass formation and fabrication of different structures at PNNL. Three different glass-forming systems, As-S, As-S-Se, and As-S-Ag have been examined for this application. Purification of constituents from contaminants and thermal history are two major issues in obtaining defect-free glasses. We have shown how the optical properties can be systematically modified by changing the chemistry in As-S-Se system. Different fabrication techniques need to be employed for different geometries and structures. We have successfully fabricated periodic arrays and straight waveguides using laser-writing and characterized the structures. Wet-chemical lithography has been extended to chalcogenides and challenges identified. We have also demonstrated holographic recording or diffraction gratings in chalcogenides.

  4. A highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Zhu, Dong-Liang; Zhu, Chun-Nan; Zhang, Zhi-Ling; Zhang, Guo-Jun; Pang, Dai-Wen

    2015-11-01

    Metal chalcogenide semiconductor nanocrystals (NCs) are ideal inorganic materials for solar cells and biomedical labeling. In consideration of the hazard and instability of alkylphosphines, the phosphine-free synthetic route has become one of the most important trends in synthesizing selenide QDs. Here we report a novel phase transfer strategy to prepare phosphine-free chalcogenide precursors. The anions in aqueous solution were transferred to toluene via electrostatic interactions between the anions and didodecyldimethylammonium bromide (DDAB). The obtained chalcogenide precursors show high reactivity with metal ions in the organic phase and could be applied to the low-temperature synthesis of various metal chalcogenide NCs based on a simple reaction between metal ions (e.g. Ag+, Pb2+, Cd2+) and chalcogenide anions (e.g. S2-) in toluene. In addition to chalcogenide anions, other anions such as BH4- ions and AuCl4- ions can also be transferred to the organic phase for synthesizing noble metal NCs (such as Ag and Au NCs).Metal chalcogenide semiconductor nanocrystals (NCs) are ideal inorganic materials for solar cells and biomedical labeling. In consideration of the hazard and instability of alkylphosphines, the phosphine-free synthetic route has become one of the most important trends in synthesizing selenide QDs. Here we report a novel phase transfer strategy to prepare phosphine-free chalcogenide precursors. The anions in aqueous solution were transferred to toluene via electrostatic interactions between the anions and didodecyldimethylammonium bromide (DDAB). The obtained chalcogenide precursors show high reactivity with metal ions in the organic phase and could be applied to the low-temperature synthesis of various metal chalcogenide NCs based on a simple reaction between metal ions (e.g. Ag+, Pb2+, Cd2+) and chalcogenide anions (e.g. S2-) in toluene. In addition to chalcogenide anions, other anions such as BH4- ions and AuCl4- ions can also be transferred to

  5. Chalcogenide Nanoionic-based Radio Frequency Switch

    NASA Technical Reports Server (NTRS)

    Nessel, James (Inventor); Lee, Richard (Inventor)

    2013-01-01

    A nonvolatile nanoionic switch is disclosed. A thin layer of chalcogenide glass engages a substrate and a metal selected from the group of silver and copper photo-dissolved in the chalcogenide glass. A first oxidizable electrode and a second inert electrode engage the chalcogenide glass and are spaced apart from each other forming a gap therebetween. A direct current voltage source is applied with positive polarity applied to the oxidizable electrode and negative polarity applied to the inert electrode which electrodeposits silver or copper across the gap closing the switch. Reversing the polarity of the switch dissolves the electrodeposited metal and returns it to the oxidizable electrode. A capacitor arrangement may be formed with the same structure and process.

  6. Chalcogenide Nanoionic-Based Radio Frequency Switch

    NASA Technical Reports Server (NTRS)

    Nessel, James (Inventor); Lee, Richard (Inventor)

    2011-01-01

    A nonvolatile nanoionic switch is disclosed. A thin layer of chalcogenide glass engages a substrate and a metal selected from the group of silver and copper photo-dissolved in the chalcogenide glass. A first oxidizable electrode and a second inert electrode engage the chalcogenide glass and are spaced apart from each other forming a gap there between. A direct current voltage source is applied with positive polarity applied to the oxidizable electrode and negative polarity applied to the inert electrode which electrodeposits silver or copper across the gap closing the switch. Reversing the polarity of the switch dissolves the electrodeposited metal and returns it to the oxidizable electrode. A capacitor arrangement may be formed with the same structure and process.

  7. Dirac fermions at high-index surfaces of bismuth chalcogenide topological insulator nanostructures

    NASA Astrophysics Data System (ADS)

    Virk, Naunidh; Yazyev, Oleg V.

    2016-02-01

    Binary bismuth chalcogenides Bi2Se3, Bi2Te3, and related materials are currently being extensively investigated as the reference topological insulators (TIs) due to their simple surface-state band dispersion (single Dirac cone) and relatively large bulk band gaps. Nanostructures of TIs are of particular interest as an increased surface-to-volume ratio enhances the contribution of surfaces states, meaning they are promising candidates for potential device applications. So far, the vast majority of research efforts have focused on the low-energy (0001) surfaces, which correspond to natural cleavage planes in these layered materials. However, the surfaces of low-dimensional nanostructures (nanoplatelets, nanowires, nanoribbons) inevitably involve higher-index facets. We perform a systematic ab initio investigation of the surfaces of bismuth chalcogenide TI nanostructures characterized by different crystallographic orientations, atomic structures and stoichiometric compositions. We find several stable terminations of high-index surfaces, which can be realized at different values of the chemical potential of one of the constituent elements. For the uniquely defined stoichiometric termination, the topological Dirac fermion states are shown to be strongly anisotropic with a clear dependence of Fermi velocities and spin polarization on the surface orientation. Self-doping effects and the presence of topologically trivial mid-gap states are found to characterize the non-stoichiometric surfaces. The results of our study pave the way towards experimental control of topologically protected surface states in bismuth chalcogenide nanostructures.

  8. Electroneutral intrinsic point defects in cadmium chalcogenides

    SciTech Connect

    Kharif, Ya.L.; Kudryashov, N.I.; Strunilina, T.A.

    1987-12-01

    Low-mobility electrically neutral intrinsic point defects were observed in cadmium chalcogenides. It was shown that the concentration of these defects is proportional to the cadmium vapor pressure to the 1/3 power at a constant temperature, and a mechanism for the formation of these defects were proposed.

  9. Chalcogenide nanowires by evaporation-condensation

    SciTech Connect

    Johnson, Bradley R.; Schweiger, Michael J.; Sundaram, S. K.

    2005-02-02

    Chalcogenide (arsenic sulfide) nanowires have been successfully synthesized from As2S3 under near-equilibrium conditions via evaporation-condensation process in evacuated glass ampoules. The as-synthesized nanowires were pure, nearly stoichiometric, and amorphous. The nanowires had diameters ranging from 40 to 140 nm and lengths up to a few millimeters. Distinct joints of the crisscrossing nanowires indicate potential for forming structural networks. They have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Raman spectroscopy, and X-ray diffraction (XRD) to determine their structure, composition, and morphology. Selected area diffraction (SAD) in the TEM and XRD confirmed their amorphous nature. The As-S nanowires could make an ideal system for understanding the carrier transport and photonic properties in nanoscale for this family of materials (IV-V compounds). Chalcogenide nanowires show promise for integrated nanoelectronics and biophotonics.

  10. Photonic crystal fibers based on chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Adam, J. L.; Troles, J.; Brilland, L.; Coulombier, Q.; Chartier, T.

    2010-10-01

    Chalcogenide glasses are known for their large transparency in the mid-infrared and their high refractive index (>2). They present also a high non-linear coefficient (n2), 100 to 1000 times larger than for silica, depending on the composition. An original way to obtain single-mode fibers is to design microstructured optical fibers (MOFs). These fibers present unique optical properties thanks to the high degree of freedom in the design of their geometrical structure. A classical method to realize MOFs is the stack-and-draw technique. However, with chalcogenide glasses, that technique induces optical losses at the interfaces in the stack of capillaries. In consequence, we have developed a new casting method to fabricate the chalcogenide preform. This method permits to obtain optical losses around 1 dB/m at 1.55 μm and 0.3 dB/m in the mid-IR region. Various chalcogenide microstructured fibers working in the IR range were prepared in order to take advantage of the non-linear properties of these glasses and of the original MOF properties. For example, fibers with small effective mode area (Aeff < 10 μm2) have been realized to exacerbate the non-linear optical properties. Such fibers will find applications for signal regeneration in telecom, and for the generation of supercontinuum sources. On the contrary, for military applications in the 3-5 and 8-12 μm windows, large effective mode area and single mode fibers have been designed to permit the propagation of high-power gaussian laser beams.

  11. Chalcogenide Glass Optical Waveguides for Infrared Biosensing

    PubMed Central

    Anne, Marie-Laure; Keirsse, Julie; Nazabal, Virginie; Hyodo, Koji; Inoue, Satoru; Boussard-Pledel, Catherine; Lhermite, Hervé; Charrier, Joël; Yanakata, Kiyoyuki; Loreal, Olivier; Le Person, Jenny; Colas, Florent; Compère, Chantal; Bureau, Bruno

    2009-01-01

    Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (bio)sensors. PMID:22423209

  12. The Surface Chemistry of Metal Chalcogenide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Anderson, Nicholas Charles

    The surface chemistry of metal chalcogenide nanocrystals is explored through several interrelated analytical investigations. After a brief discussion of the nanocrystal history and applications, molecular orbital theory is used to describe the electronic properties of semiconductors, and how these materials behave on the nanoscale. Quantum confinement plays a major role in dictating the optical properties of metal chalcogenide nanocrystals, however surface states also have an equally significant contribution to the electronic properties of nanocrystals due to the high surface area to volume ratio of nanoscale semiconductors. Controlling surface chemistry is essential to functionalizing these materials for biological imaging and photovoltaic device applications. To better understand the surface chemistry of semiconducting nanocrystals, three competing surface chemistry models are presented: 1.) The TOPO model, 2.) the Non-stoichiometric model, and 3.) the Neutral Fragment model. Both the non-stoichiometric and neutral fragment models accurately describe the behavior of metal chalcogenide nanocrystals. These models rely on the covalent bond classification system, which divides ligands into three classes: 1.) X-type, 1-electron donating ligands that balance charge with excess metal at the nanocrystal surface, 2.) L-type, 2-electron donors that bind metal sites, and 3.) Z-type, 2-electron acceptors that bind chalcogenide sites. Each of these ligand classes is explored in detail to better understand the surface chemistry of metal chalcogenide nanocrystals. First, chloride-terminated, tri-n-butylphosphine (Bu 3P) bound CdSe nanocrystals were prepared by cleaving carboxylate ligands from CdSe nanocrystals with chlorotrimethylsilane in Bu3P solution. 1H and 31P{1H} nuclear magnetic resonance spectra of the isolated nanocrystals allowed assignment of distinct signals from several free and bound species, including surface-bound Bu3P and [Bu3P-H]+[Cl]- ligands as well as a Bu

  13. Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films

    DOEpatents

    Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    2000-01-01

    A colloidal suspension comprising metal chalcogenide nanoparticles and a volatile capping agent. The colloidal suspension is made by reacting a metal salt with a chalcogenide salt in an organic solvent to precipitate a metal chalcogenide, recovering the metal chalcogenide, and admixing the metal chalcogenide with a volatile capping agent. The colloidal suspension is spray deposited onto a substrate to produce a semiconductor precursor film which is substantially free of impurities.

  14. Chalcogenide three-dimensional photonic structures

    NASA Astrophysics Data System (ADS)

    Feigel, A. I.; Kotler, Zvi; Sfez, Bruno; Arsh, A.; Klebanov, Matvei; Lyubin, Victor

    2001-05-01

    AsSeTe/AsSe chalcogenide glasses are photosensitive materials with large refractive index. These properties make these glasses suitable for the fabrication of photonic crystals, waveguide components and MOEMS. We present in this article fabrication of 3D photonic crystals, composed from AsSeTe and air, with sub-micron feature size. The method of fabrication is relatively simple and cheap using only vapor deposition and optical holographic lithography. The interferometric alignment allows to eliminate requirement for a mask aligner.

  15. Superconductivity in Pd, Ir, and Pt chalcogenide

    NASA Astrophysics Data System (ADS)

    Oh, Yoon Seok; Yang, Junjie; Choi, Y. J.; Hogan, A.; Horibe, Y.; Cheong, S.-W.

    2012-02-01

    Large spin-orbit coupling in materials with heavy chalcogens can result in unique quantum states or functional properties such as topological insulator, giant thermoelectric power, and superconductivity. When materials contain heavy cations in addition to heavy chalcogens, spin-orbit coupling can be further enhanced. For these reasons, we have studied the superconductivity of Pd, Ir, and Pt tellurides and selenides. In the exploration of these chalcogenides, we have focused on the competition between superconductivity and charge density wave that is associated with superlattice reflections.

  16. Synthesis and structures of metal chalcogenide precursors

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.

    1990-01-01

    The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.

  17. Vortex pinning properties in Fe-chalcogenides

    NASA Astrophysics Data System (ADS)

    Leo, A.; Grimaldi, G.; Guarino, A.; Avitabile, F.; Nigro, A.; Galluzzi, A.; Mancusi, D.; Polichetti, M.; Pace, S.; Buchkov, K.; Nazarova, E.; Kawale, S.; Bellingeri, E.; Ferdeghini, C.

    2015-12-01

    Among the families of iron-based superconductors, the 11-family is one of the most attractive for high field applications at low temperatures. Optimization of the fabrication processes for bulk, crystalline and/or thin film samples is the first step in producing wires and/or tapes for practical high power conductors. Here we present the results of a comparative study of pinning properties in iron-chalcogenides, investigating the flux pinning mechanisms in optimized Fe(Se{}1-xTe x ) and FeSe samples by current-voltage characterization, magneto-resistance and magnetization measurements. In particular, from Arrhenius plots in magnetic fields up to 9 T, the activation energy is derived as a function of the magnetic field, {U}0(H), whereas the activation energy as a function of temperature, U(T), is derived from relaxation magnetization curves. The high pinning energies, high upper critical field versus temperature slopes near critical temperatures, and highly isotropic pinning properties make iron-chalcogenide superconductors a technological material which could be a real competitor to cuprate high temperature superconductors for high field applications.

  18. Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithography

    SciTech Connect

    Riley, Brian J.; Sundaram, S. K.; Johnson, Bradley R.; Saraf, Laxmikant V.

    2006-12-01

    This report describes a study designed to explore the different properties of two different chalcogenide materials, As2S3 and As24S38Se38, when subjected to photolithographic wet-etching techniques. Chalcogenide glasses are made by combining chalcogen elements S, Se, and Te with Group IV and/or V elements. The etchant was selected from the literature and was composed of sodium hydroxide, isopropyl alcohol, and deionized water and the types of chalcogenide glass for study were As2S3 and As24S38Se38. The main goals here were to obtain a single variable etch rate curve of etch depth per time versus NaOH overall solution concentration in M and to see the difference in etch rate between a given etchant when used on the different chalcogenide stoichiometries. Upon completion of these two goals, future studies will begin to explore creating complex, integrated photonic devices via these methods.

  19. Surface enhanced infrared absorption by nanoantenna on chalcogenide glass substrates

    NASA Astrophysics Data System (ADS)

    Verger, Frédéric; Colas, Florent; Sire, Olivier; Shen, Hong; Rinnert, Emmanuel; Boukerma, Kada; Nazabal, Virgine; Boussard-Plédel, Catherine; Bureau, Bruno; Toury, Timothée; de la Chapelle, Marc Lamy; Compère, Chantal

    2015-02-01

    In recent years, nanowires have been proven efficient to enhanced IR absorption of molecules and opened prospects of new ultrasensitive IR sensors. The development of integrated components requires the use of special IR glasses such as chalcogenide or silver halide glasses. In this study, we report the fabrication of a surface enhanced IR absorption substrate composed of nanowires deposited onto a chalcogenide glass slide. It enabled us to detect 4-nitrophenol at the femtomolar level and enhancement factor close to 106 was calculated.

  20. First principles thermodynamical modeling of the binodal and spinodal curves in lead chalcogenides.

    PubMed

    Usanmaz, Demet; Nath, Pinku; Plata, Jose J; Hart, Gus L W; Takeuchi, Ichiro; Nardelli, Marco Buongiorno; Fornari, Marco; Curtarolo, Stefano

    2016-02-14

    High-throughput ab initio calculations, cluster expansion techniques, and thermodynamic modeling have been synergistically combined to characterize the binodal and the spinodal decompositions features in the pseudo-binary lead chalcogenides PbSe-PbTe, PbS-PbTe, and PbS-PbSe. While our results agree with the available experimental data, our consolute temperatures substantially improve with respect to previous computational modeling. The computed phase diagrams corroborate that in ad hoc synthesis conditions the formation of nanostructure may occur justifying the low thermal conductivities in these alloys. The presented approach, making a rational use of online quantum repositories, can be extended to study thermodynamical and kinetic properties of materials of technological interest. PMID:26811862

  1. Opal photonic crystals infiltrated with chalcogenide glasses

    SciTech Connect

    Astratov, V. N.; Adawi, A. M.; Skolnick, M. S.; Tikhomirov, V. K.; Lyubin, V.; Lidzey, D. G.; Ariu, M.; Reynolds, A. L.

    2001-06-25

    Composite opal structures for nonlinear applications are obtained by infiltration with chalcogenide glasses As{sub 2}S{sub 3} and AsSe by precipitation from solution. Analysis of spatially resolved optical spectra reveals that the glass aggregates into submillimeter areas inside the opal. These areas exhibit large shifts in the optical stop bands by up to 80 nm, and by comparison with modelling are shown to have uniform glass filling factors of opal pores up to 40%. Characterization of the domain structure of the opals prior to infiltration by large area angle-resolved spectroscopy is an important step in the analysis of the properties of the infiltrated regions. {copyright} 2001 American Institute of Physics.

  2. Multimode supercontinuum generation in chalcogenide glass fibres.

    PubMed

    Kubat, Irnis; Bang, Ole

    2016-02-01

    Mid-infrared supercontinuum generation is considered in chalcogenide fibres when taking into account both polarisations and the necessary higher order modes. In particular we focus on high pulse energy supercontinuum generation with long pump pulses. The modeling indicates that when only a single polarisation in the fundamental mode is considered the obtainable supercontinuum bandwidth is substantially exaggerated compared to when both polarisations are taken into account. Our modeling shows that if the pump pulse is short enough (≤ 10 ps) then higher order modes are not important because of temporal walk-off. In contrast long pump pulses (≥ 40 ps) will efficiently excite higher order modes through Raman scattering, which will deplete the fundamental mode of energy and limit the possibility of obtaining a broadband supercontinuum. PMID:26906826

  3. Bipolar switching in chalcogenide phase change memory

    PubMed Central

    Ciocchini, N.; Laudato, M.; Boniardi, M.; Varesi, E.; Fantini, P.; Lacaita, A. L.; Ielmini, D.

    2016-01-01

    Phase change materials based on chalcogenides are key enabling technologies for optical storage, such as rewritable CD and DVD, and recently also electrical nonvolatile memory, named phase change memory (PCM). In a PCM, the amorphous or crystalline phase affects the material band structure, hence the device resistance. Although phase transformation is extremely fast and repeatable, the amorphous phase suffers structural relaxation and crystallization at relatively low temperatures, which may affect the temperature stability of PCM state. To improve the time/temperature stability of the PCM, novel operation modes of the device should be identified. Here, we present bipolar switching operation of PCM, which is interpreted by ion migration in the solid state induced by elevated temperature and electric field similar to the bipolar switching in metal oxides. The temperature stability of the high resistance state is demonstrated and explained based on the local depletion of chemical species from the electrode region. PMID:27377822

  4. Bipolar switching in chalcogenide phase change memory.

    PubMed

    Ciocchini, N; Laudato, M; Boniardi, M; Varesi, E; Fantini, P; Lacaita, A L; Ielmini, D

    2016-01-01

    Phase change materials based on chalcogenides are key enabling technologies for optical storage, such as rewritable CD and DVD, and recently also electrical nonvolatile memory, named phase change memory (PCM). In a PCM, the amorphous or crystalline phase affects the material band structure, hence the device resistance. Although phase transformation is extremely fast and repeatable, the amorphous phase suffers structural relaxation and crystallization at relatively low temperatures, which may affect the temperature stability of PCM state. To improve the time/temperature stability of the PCM, novel operation modes of the device should be identified. Here, we present bipolar switching operation of PCM, which is interpreted by ion migration in the solid state induced by elevated temperature and electric field similar to the bipolar switching in metal oxides. The temperature stability of the high resistance state is demonstrated and explained based on the local depletion of chemical species from the electrode region. PMID:27377822

  5. Chalcogenide glass hollow core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Désévédavy, Frédéric; Renversez, Gilles; Troles, Johann; Houizot, Patrick; Brilland, Laurent; Vasilief, Ion; Coulombier, Quentin; Traynor, Nicholas; Smektala, Frédéric; Adam, Jean-Luc

    2010-09-01

    We report the first hollow core photonic crystal fibers (HC PCF) in chalcogenide glass. To design the required HC PCF profiles for such high index glass, we use both band diagram analysis to define the required photonic bandgap and numerical simulations of finite size HC PCFs to compute the guiding losses. The material losses have also been taken into account to compute the overall losses of the HC PCF profiles. These fibers were fabricated by the stack and draw technique from TeAsSe (TAS) glass. The fibers we drew in this work are composed of six rings of holes and regular microstructures. Two profiles are presented, one is known as a kagome lattice and the other one corresponds to a triangular lattice. Geometrical parameters are compared to the expected parameters obtained by computation. Applications of such fibers include power delivery or fiber sensors among others.

  6. Bipolar switching in chalcogenide phase change memory

    NASA Astrophysics Data System (ADS)

    Ciocchini, N.; Laudato, M.; Boniardi, M.; Varesi, E.; Fantini, P.; Lacaita, A. L.; Ielmini, D.

    2016-07-01

    Phase change materials based on chalcogenides are key enabling technologies for optical storage, such as rewritable CD and DVD, and recently also electrical nonvolatile memory, named phase change memory (PCM). In a PCM, the amorphous or crystalline phase affects the material band structure, hence the device resistance. Although phase transformation is extremely fast and repeatable, the amorphous phase suffers structural relaxation and crystallization at relatively low temperatures, which may affect the temperature stability of PCM state. To improve the time/temperature stability of the PCM, novel operation modes of the device should be identified. Here, we present bipolar switching operation of PCM, which is interpreted by ion migration in the solid state induced by elevated temperature and electric field similar to the bipolar switching in metal oxides. The temperature stability of the high resistance state is demonstrated and explained based on the local depletion of chemical species from the electrode region.

  7. Thermal dissociation of copper chalcogenides during melting

    NASA Astrophysics Data System (ADS)

    Pavlova, L. M.; Glazov, V. M.; Asryan, A. A.

    1998-01-01

    An attempt was undertaken to describe the mechanism of dissociation of copper chalcogenides during melting. Two-stage schemes of the dissociation of the Cu2BVI compounds (BVI is S, Se, or Te) were proposed. It was suggested that in the copper-sulfur and copper-selenium melts, Cu2BVI and CuBVI associates exist, whereas in the copper tellurium systems, Cu2Te and Cu5Te3 associates exist. The interpretation of available data on magnetic susceptibility was given in terms of suggested associates in Cu-Te alloys. Nous avons essayé de décrire le mécanisme de dissociation des chalcogénures de cuivre pendant la fusion. Nous proposons des schémas à deux étapes de dissociation pour les composés Cu2BVI (BVI est S, Se, ou Te). Nous suggérons l'existence dans le bain fondu cuivre-soufre et cuivre-sélénium des associés du type Cu2BVI et CuBVI et dans le système cuivre-tellure Cu2Te et Cu5Te3. L'interprétation des données disponibles de susceptibilité magnétique est réalisée en termes de formation d'associés dans les alliages Cu-Te.

  8. Nonlinear optical localization in embedded chalcogenide waveguide arrays

    SciTech Connect

    Li, Mingshan; Huang, Sheng; Wang, Qingqing; Chen, Kevin P.; Petek, Hrvoje

    2014-05-15

    We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm{sup 2}, using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass.

  9. Fabrication of chalcogenide glass lens module for thermal security camera

    NASA Astrophysics Data System (ADS)

    Cha, Du Hwan; Hwang, Yeon; Kim, Jeong-Ho; Kim, Dong-Sik; Kim, Hye-Jeong

    2014-10-01

    Although the development of small formats (640x480 pixel arrays) and amorphous silicon microbolometers has greatly decreased detector cost, another important component of a thermal camera, optics, still prohibit a breakthrough for highvolume commercial systems. Aspheric lenses used in the thermal imaging are typically made using the costly single point diamond turning(SPDT) process of expensive single crystal materials (Ge and ZnS, etc). As a potential solution to reduce cost, compression molding method using chalcogenide glass has been attracted to fabricate IR optic. The present paper reports fabrication of a molded chalcogenide glass lens module for thermal security camera. In addition, the molded chalcogenide glass lens was evaluated through form error, roughness and decentration for each surface of the molded lens. From evaluation results, we verified that the molded lens is capable of adopting to thermal imaging applications.

  10. Pressure and temperature induced elastic properties of rare earth chalcogenides

    NASA Astrophysics Data System (ADS)

    Shriya, S.; Singh, N.; Sapkale, R.; Varshney, M.; Varshney, Dinesh

    2016-05-01

    The pressure and temperature dependent mechanical properties as Young modulus, Thermal expansion coefficient of rare earth REX (RE = La, Pr, Eu; X = O, S, Se, and Te) chalcogenides are studied. The rare earth chalcogenides showed a structural phase transition (B1-B2). Pressure dependence of Young modulus discerns an increase in pressure inferring the hardening or stiffening of the lattice as a consequence of bond compression and bond strengthening. Suppressed Young modulus as functions of temperature infers the weakening of the lattice results in bond weakening in REX. Thermal expansion coefficient demonstrates that REX (RE = La, Pr, Eu; X = O, S, Se, and Te) chalcogenides is mechanically stiffened, and thermally softened on applied pressure and temperature.

  11. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

    NASA Astrophysics Data System (ADS)

    Markos, Christos; Kubat, Irnis; Bang, Ole

    2014-08-01

    The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The integrated high refractive index glass films introduce distinct antiresonant transmission bands in the 480-900 nm wavelength region. We demonstrate that the ultra-high Kerr nonlinearity of the chalcogenide glass makes the polymer PCF nonlinear and provides a possibility to shift the transmission band edges as much as 17 nm by changing the intensity. The proposed fabrication technique constitutes a new highway towards all-fiber nonlinear tunable devices based on polymer PCFs, which at the moment is not possible with any other fabrication method.

  12. High surface area graphene-supported metal chalcogenide assembly

    DOEpatents

    Worsley, Marcus A.; Kuntz, Joshua; Orme, Christine A.

    2016-04-19

    A composition comprising at least one graphene-supported assembly, which comprises a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and at least one metal chalcogenide compound disposed on said graphene sheets, wherein the chalcogen of said metal chalcogenide compound is selected from S, Se and Te. Also disclosed are methods for making and using the graphene-supported assembly, including graphene-supported MoS.sub.2. Monoliths with high surface area and conductivity can be achieved. Lower operating temperatures in some applications can be achieved. Pore size and volume can be tuned.

  13. Chalcogenide glass-based three-dimensional photonic crystals

    NASA Astrophysics Data System (ADS)

    Feigel, A.; Kotler, Z.; Sfez, B.; Arsh, A.; Klebanov, M.; Lyubin, V.

    2000-11-01

    AsSeTe chalcogenide glasses are materials that are photosensitive and have a large refractive index. These properties make these glasses particularly suitable for the fabrication of photonic crystals. We present a way to build three-dimensional photonic structures from chalcogenide glasses using vapor deposition and direct holographic writing. We show that this technique is intrinsically self-aligned, providing a simple way to build layer-by-layer photonic crystals and a four-layer structure demonstrating the principle of the technique.

  14. Optical Properties of As-Based Chalcogenide Glasses

    NASA Astrophysics Data System (ADS)

    Harea, Diana; Iovu, Maria; Iovu, Mihail; Benea, Vasile; Colomeico, Eduard; Cojocaru, Ion; Tanasescu, Cristina

    Photostructural transformations in amorphous films of chalcogenide glasses (ChG) under light irradiation are presently of scientific and practical interests. As the composition of the ChGs determines the kind of structural units and the mean coordination number, in the present work amorphous films of the chalcogenide systems As100-xSex (x = 40-98) and As40Se60:Sny (y = 0-10.0 at.% Sn) were studied. Experimental investigations of the transmission spectra and the photodarkening relaxation characteristics of the amorphous films under study, including the thickness dependence, are presented.

  15. Theory and Experiment of Chalcogenide Materials

    NASA Astrophysics Data System (ADS)

    Prasai, Binay K.

    In this dissertation, we present the experimental and theoretical investigation of extensive properties of chalcogenide materials and their potential application in solid electrolytes and phase change memory materials. Extended X-ray absorption fine structure (EXAFS) spectroscopy was employed to study the structural properties and the results were validated from the computer simulated models through ab-initio molecular dynamic (AIMD) simulations. EXAFS analysis on Ge-Sb-Te (GST) alloys, synthesized using electrodeposition and radio frequency sputtering methods confirmed the structural similarities in Ge-Te and Sb-Te bond pairs suggesting the possibility of utilizing the electrodeposition method to grow GST alloys in nanoporous materials and thus enabling miniaturizing the phase change memory devices. The analyses of structural, electronic and optical properties of computer generated amorphous and crystalline TiO 2 confirmed the structural similarities of amorphous TiO2 with the anatase phase of crystalline TiO2 and hence recommending the possibilities of replacing the crystalline TiO2 by less processed thus cheaper form of amorphous TiO2. Moreover, the AIMD simulations of the ionic conductivity of transitions metals like Ag and Cu in Ge-Se glasses confirmed the superiority of Ag over Cu in terms of conductivity. Ag was found to be easily hopping around while Cu was often trapped. In addition, an experimental and computational investigation on Ag-doped Ge-Sb-Te alloys predicted an enhanced crystallization of Ge-Sb-Te alloys. The enhanced crystallization was related to the reduction of fraction of tetrahedral Ge relative to octahedral Ge as also reflected as the increased Ge-Te bond lengths on adding Ag. Finally, further investigation of dopant-induced modification of GST alloys with transition metals (Cu, Ag and Au) demonstrated the superiority of Ag over Cu and Au regarding crystalline speed while at ˜2% dopant level no significant structural modification was

  16. Structure and Magnetism in Superconducting Iron Chalcogenides

    NASA Astrophysics Data System (ADS)

    Thampy, Vivek

    Iron superconductors are unique in that they provide a wide range of control parameters such as structure, chemical composition, pressure and impurities that can be tuned to provide insight into the underlying mechanisms of cooper pairing. In this dissertation, we will discuss the relationship of superconductivity with a) crystal structure, b) magnetic order, c) impurities, and d) low energy magnetic excitations in the structurally simplest iron superconductors, (Fe 1+yTe1-xSex). We use thin films of FeTe0.5Se0.5, in which the structural parameters are modulated using different growth conditions, to demonstrate the importance of the Te/Se height to superconductivity and show that it is consistent with the s± pairing symmetry. The proximity of magnetism and superconductivity in the iron superconductors is delved into for the iron chalcogenide superconductors by tracking the evolution of magnetic order and superconductivity with dopant (Se) concentration. We elucidate the pivotal role played by iron impurities, occupying interstitial sites in Fe1+yTe0.62Se0.38, in the microscopic origin of the quasi-static magnetism at (½,0). We used polarized and unpolarized neutron scattering, simulations of the scattering function based on structural data, and a semi-metallic 5-band model with super-exchange interactions with the interstitial iron to show the formation of magnetic polarons around the interstitial iron atoms which seed the observed (½,0) magnetism. Though the quasi-static magnetism occurs at (½,0), the low energy spin dynamics are dominated by the (½,½) fluctuations, like other iron based superconductors. We examine the characteristics of the signature feature in the low energy inelastic neutron scattering spectrum - the so-called spin resonance, and try to glean its microscopic origin by studying the effect of magnetic fields on the resonance.

  17. Tailoring chromatic dispersion in chalcogenide-tellurite microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Kohoutek, Tomas; Duan, Zhongchao; Kawashima, Hiroyasu; Cheng, Tonglei; Suzuki, Takenobu; Matsumoto, Morio; Misumi, Takashi; Ohishi, Yasutake

    2014-08-01

    We report fabrication of a highly nonlinear hybrid microstructured optical fiber composed of chalcogenide glass core and tellurite glass cladding. The flattened chromatic dispersion can be achieved in such an optical fiber with near zero dispersion wavelength at telecommunication wavelengths λ = 1.35-1.7 μm, which cannot be achieved in chalcogenide glass optical fibers due to their high refractive index, i.e. n > 2.1. We demonstrate a hybrid 4-air hole chalcogenide-tellurite optical fiber (Δn = 0.25) with flattened chromatic dispersion around λ = 1.55 μm. In optimized 12-air hole optical fiber composed of the same glasses, the chromatic dispersion values were achieved between -20 and 32 ps/nm/km in a broad wavelength range of 1.5-3.8 μm providing the fiber with extremely high nonlinear coefficient 86,000 km-1W-1. Hybrid chalcogenide/tellurite fibers pumped with the near infrared lasers give good promise for broadband optical amplification, wavelength conversion, and supercontinuum generation in the near- to mid-infrared region.

  18. Nanoporous hollow transition metal chalcogenide nanosheets synthesized via the anion-exchange reaction of metal hydroxides with chalcogenide ions.

    PubMed

    Zhao, Weiwei; Zhang, Chao; Geng, Feiyang; Zhuo, Sifei; Zhang, Bin

    2014-10-28

    Nanoporous hollow transition metal chalcogenides are of special interest for a variety of promising applications. Although some advanced synthetic methods have been reported, the development of a facile and general strategy to fabricate porous hollow nanostructures of transition metal chalcogenides, especially with enhanced electrocatalytic performance, still remains highly challenged. Herein, we report a facile chemical transformation strategy to prepare nanoporous hollow Co3S4 nanosheets via the anion exchange reaction of Co(OH)2 with sulfide ions. The chemical transformation mechanism involves the as-formed layer of nanoporous cobalt sulfide on Co(OH)2 driven by the anion-exchange-reaction and lattice mismatch induced quick strain release, a following diffusion-effect-dominated core-shell hollow intermediate with hollow interiors, and subsequent Ostwald ripening growth of hollow nanosheets at elevated temperatures. This anion-exchange strategy of transition metal hydroxides with chalcogenide ions is also suitable for fabricating nanoporous hollow nanosheets of other metal chalcogenides (e.g., CoSe2, CoTe2, CdS, and NiS). The as-prepared nanoporous hollow Co3S4 nanosheets are found to be highly active and stable for electrocatalytic oxygen evolution reaction.

  19. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars.

  20. Binary stars.

    PubMed

    Paczynacuteski, B

    1984-07-20

    Most stars in the solar neighborhood are either double or multiple systems. They provide a unique opportunity to measure stellar masses and radii and to study many interesting and important phenomena. The best candidates for black holes are compact massive components of two x-ray binaries: Cygnus X-1 and LMC X-3. The binary radio pulsar PSR 1913 + 16 provides the best available evidence for gravitational radiation. Accretion disks and jets observed in close binaries offer a very good testing ground for models of active galactic nuclei and quasars. PMID:17749544

  1. The nanostructuring of surfaces and films using interference lithography and chalcogenide photoresist.

    PubMed

    Dan'ko, Viktor; Indutnyi, Ivan; Myn'ko, Victor; Lukaniuk, Mariia; Shepeliavyi, Petro

    2015-01-01

    The reversible and transient photostimulated structural changes in annealed chalcogenide glass (ChG) layers were used to form interference periodic structures on semiconductor surfaces and metal films. It was shown that negative-action etchants based on amines dissolve illuminated parts of a chalcogenide film, i.e., act as positive etchants. The diffraction gratings and 2-D interference structures on germanium ChGs - more environmentally acceptable compounds than traditionally used arsenic chalcogenides - were recorded, and their characteristics were studied.

  2. Utilization of Metal Oxides and Chalcogenides Stabilized in Organic Solvents

    NASA Astrophysics Data System (ADS)

    Lampert, Lester; Flaig, Robby; Camacho, Jorge; Hamilton, James

    2011-03-01

    Metal oxides and metal chalcogenides are important materials for a variety of applications including photocatalysis for decomposition of water, conductive and optical coatings, catalysts, photovoltaics, pryoelectrics, self-cleaning surfaces, pigments, and high efficiency Li-insertion materials in batteries among many other applications. Fundamental discoveries of surprising solubility of insoluble materials such as single and multi-walled carbon nanotubes and graphene has lead us to discover that certain metal oxides and metal chalcogenides such as TiO2 are soluble in certain solvents. Due to the industrial importance of TiO2, discovering stable pure solvent systems demonstrates a possibility to avoid surface modification of TiO2 nanoparticles by use materials such as of (3-methacryloxypropyl)-trimethoxysilane and various other methods of artificial stabilization. We have created thin films of TiO2, transparent ultraviolet (UV) --absorptive polymers, and Li-ion battery anodes with graphene-TiO2 hybrid materials.

  3. Preparation of chalcogenide glass fiber using an improved extrusion method

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Wang, Xunsi; Zhu, Minming; Xu, Huijuan; Nie, Qiuhua; Dai, Shixun; Tao, Guangming; Shen, Xiang; Cheng, Ci; Zhu, Qingde; Liao, Fangxing; Zhang, Peiquan; Zhang, Peiqing; Liu, Zijun; Zhang, Xianghua

    2016-05-01

    We developed the extrusion method to prepare arsenic-free chalcogenide glass fibers with glass cladding. By using the double nested extrusion molds and the corresponding isolated stacked extrusion method, the utilization rate of glass materials was greatly improved compared with the conventional extrusion method. Fiber preforms with optimal stability of core/cladding ratio throughout the 160 mm length were prepared using the developed extrusion method. Typical fiber structure defects between the core/cladding interface, such as bubbles, cracks, and core diameter variation, were effectively eliminated. Ge-Sb-Se/S chalcogenide glasses were used to form a core/cladding pair and fibers with core/cladding structure were prepared by thermally drawing the extruded preforms. The transmission loss, fiber bending loss, and other optical characters of the fibers were also investigated.

  4. Paramagnetism in X-irradiated chalcogenide glasses and crystals

    NASA Astrophysics Data System (ADS)

    Taylor, P. C.; Strom, U.; Bishop, S. G.

    1982-11-01

    In semiconducting chalcogenide glasses, X-irradiation at 77 K produces paramagnetic responses which are similar to those produced by optical excitation at band gap energies. These Electron Spin Resonance (ESR) signals can be bleached with light of less than band gap energies. There is evidence that X-irradiation at low temperature creates a greater density of metastable centers which can subsequently be populated or depopulated (rendered paramagnetic) optically, by excitation with low intensities (of about 10 mW/sq cm) of band-gap light. In addition to the usual, optically induced responses, X-irradiation in the chalcogenide glasses also produces signals attributable to impurities such as copper and iron. In pure crystalline As2Se, X-irradiation at 77 K produces only centers associated with Cu(2+) impurities.

  5. Electronic structure of ruthenium-doped iron chalcogenides

    SciTech Connect

    Winiarski, M. J. Samsel-Czekała, M.; Ciechan, A.

    2014-12-14

    The structural and electronic properties of hypothetical Ru{sub x}Fe{sub 1−x}Se and Ru{sub x}Fe{sub 1−x}Te systems have been investigated from first principles within the density functional theory (DFT). Reasonable values of lattice parameters and chalcogen atomic positions in the tetragonal unit cell of iron chalcogenides have been obtained with the use of norm-conserving pseudopotentials. The well known discrepancies between experimental data and DFT-calculated results for structural parameters of iron chalcogenides are related to the semicore atomic states which were frozen in the used here approach. Such an approach yields valid results of the electronic structures of the investigated compounds. The Ru-based chalcogenides exhibit the same topology of the Fermi surface (FS) as that of FeSe, differing only in subtle FS nesting features. Our calculations predict that the ground states of RuSe and RuTe are nonmagnetic, whereas those of the solid solutions Ru{sub x}Fe{sub 1−x}Se and Ru{sub x}Fe{sub 1−x}Te become the single- and double-stripe antiferromagnetic, respectively. However, the calculated stabilization energy values are comparable for each system. The phase transitions between these magnetic arrangements may be induced by slight changes of the chalcogen atom positions and the lattice parameters a in the unit cell of iron selenides and tellurides. Since the superconductivity in iron chalcogenides is believed to be mediated by the spin fluctuations in single-stripe magnetic phase, the Ru{sub x}Fe{sub 1−x}Se and Ru{sub x}Fe{sub 1−x}Te systems are good candidates for new superconducting iron-based materials.

  6. Electronic structure of ruthenium-doped iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Winiarski, M. J.; Samsel-Czekała, M.; Ciechan, A.

    2014-12-01

    The structural and electronic properties of hypothetical RuxFe1-xSe and RuxFe1-xTe systems have been investigated from first principles within the density functional theory (DFT). Reasonable values of lattice parameters and chalcogen atomic positions in the tetragonal unit cell of iron chalcogenides have been obtained with the use of norm-conserving pseudopotentials. The well known discrepancies between experimental data and DFT-calculated results for structural parameters of iron chalcogenides are related to the semicore atomic states which were frozen in the used here approach. Such an approach yields valid results of the electronic structures of the investigated compounds. The Ru-based chalcogenides exhibit the same topology of the Fermi surface (FS) as that of FeSe, differing only in subtle FS nesting features. Our calculations predict that the ground states of RuSe and RuTe are nonmagnetic, whereas those of the solid solutions RuxFe1-xSe and RuxFe1-xTe become the single- and double-stripe antiferromagnetic, respectively. However, the calculated stabilization energy values are comparable for each system. The phase transitions between these magnetic arrangements may be induced by slight changes of the chalcogen atom positions and the lattice parameters a in the unit cell of iron selenides and tellurides. Since the superconductivity in iron chalcogenides is believed to be mediated by the spin fluctuations in single-stripe magnetic phase, the RuxFe1-xSe and RuxFe1-xTe systems are good candidates for new superconducting iron-based materials.

  7. Chalcogenide material strengthening through the lens molding process

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Scordato, M.; Lucas, Pierre; Coleman, Garrett J.

    2016-05-01

    The demand for infrared transmitting materials has grown steadily for several decades as markets realize new applications for longer wavelength sensing and imaging. With this growth has come the demand for new and challenging material requirements that cannot be satisfied with crystalline products alone. Chalcogenide materials, with their unique physical, thermal, and optical properties, have found acceptance by designers and fabricators to meet these demands. No material is perfect in every regard, and chalcogenides are no exception. A cause for concern has been the relatively low fracture toughness and the propensity of the bulk material to fracture. This condition is amplified when traditional subtractive manufacturing processes are employed. This form of processing leaves behind micro fractures and sub surface damage, which act as propagation points for both local and catastrophic failure of the material. Precision lens molding is not a subtractive process, and as a result, micro fractures and sub surface damage are not created. This results in a stronger component than one produced by traditional methods. New processing methods have also been identified that result in an even stronger surface that is more resistant to breakage, without the need for post processing techniques that may compromise surface integrity. This paper will discuss results achieved in the process of lens molding development at Edmund Optics that result in measurably stronger chalcogenide components. Various metrics will be examined and data will be presented that quantifies component strength for different manufacturing processes.

  8. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2011-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more that two data states.

  9. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2012-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  10. Forced Ion Migration for Chalcogenide Phase Change Memory Device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A (Inventor)

    2013-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  11. Inverse opal photonic crystal of chalcogenide glass by solution processing.

    PubMed

    Kohoutek, Tomas; Orava, Jiri; Sawada, Tsutomu; Fudouzi, Hiroshi

    2011-01-15

    Chalcogenide opal and inverse opal photonic crystals were successfully fabricated by low-cost and low-temperature solution-based process, which is well developed in polymer films processing. Highly ordered silica colloidal crystal films were successfully infilled with nano-colloidal solution of the high refractive index As(30)S(70) chalcogenide glass by using spin-coating method. The silica/As-S opal film was etched in HF acid to dissolve the silica opal template and fabricate the inverse opal As-S photonic crystal. Both, the infilled silica/As-S opal film (Δn ~ 0.84 near λ=770 nm) and the inverse opal As-S photonic structure (Δn ~ 1.26 near λ=660 nm) had significantly enhanced reflectivity values and wider photonic bandgaps in comparison with the silica opal film template (Δn ~ 0.434 near λ=600 nm). The key aspects of opal film preparation by spin-coating of nano-colloidal chalcogenide glass solution are discussed. The solution fabricated "inorganic polymer" opal and the inverse opal structures exceed photonic properties of silica or any organic polymer opal film. The fabricated photonic structures are proposed for designing novel flexible colloidal crystal laser devices, photonic waveguides and chemical sensors.

  12. Linear and nonlinear optical properties of chalcogenide microstructured optical fibers

    NASA Astrophysics Data System (ADS)

    Trolès, Johann; Brilland, Laurent; Caillaud, Celine; Renversez, Gilles; Mechin, David; Adam, Jean-Luc

    2015-03-01

    Chalcogenide glasses are known for their large transparency in the mid-infrared and their high linear refractive index (>2). They present also a high non-linear coefficient (n2), 100 to 1000 times larger than for silica, depending on the composition. we have developed a casting method to prepare the microstructured chalcogenide preform. This method allows optical losses as low as 0.4 dB/m at 1.55 µm and less than 0.05 dB/m in the mid IR. Various chalcogenide MOFs operating in the IR range has been fabricated in order to associate the high non-linear properties of these glasses and the original MOF properties. For example, small core fibers have been drawn to enhance the non linearities for telecom applications such as signal regeneration and generation of supercontinuum sources. On another hand, in the 3-12 µm window, single mode fibers and exposed core fibers have been realized for Gaussian beams propagation and sensors applications respectively.

  13. Binary Planets

    NASA Astrophysics Data System (ADS)

    Ryan, Keegan; Nakajima, Miki; Stevenson, David J.

    2014-11-01

    Can a bound pair of similar mass terrestrial planets exist? We are interested here in bodies with a mass ratio of ~ 3:1 or less (so Pluto/Charon or Earth/Moon do not qualify) and we do not regard the absence of any such discoveries in the Kepler data set to be significant since the tidal decay and merger of a close binary is prohibitively fast well inside of 1AU. SPH simulations of equal mass “Earths” were carried out to seek an answer to this question, assuming encounters that were only slightly more energetic than parabolic (zero energy). We were interested in whether the collision or near collision of two similar mass bodies would lead to a binary in which the two bodies remain largely intact, effectively a tidal capture hypothesis though with the tidal distortion being very large. Necessarily, the angular momentum of such an encounter will lead to bodies separated by only a few planetary radii if capture occurs. Consistent with previous work, mostly by Canup, we find that most impacts are disruptive, leading to a dominant mass body surrounded by a disk from which a secondary forms whose mass is small compared to the primary, hence not a binary planet by our adopted definition. However, larger impact parameter “kissing” collisions were found to produce binaries because the dissipation upon first encounter was sufficient to provide a bound orbit that was then rung down by tides to an end state where the planets are only a few planetary radii apart. The long computational times for these simulation make it difficult to fully map the phase space of encounters for which this outcome is likely but the indications are that the probability is not vanishingly small and since planetary encounters are a plausible part of planet formation, we expect binary planets to exist and be a non-negligible fraction of the larger orbital radius exoplanets awaiting discovery.

  14. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides

    NASA Astrophysics Data System (ADS)

    Congxin, Xia; Jingbo, Li

    2016-05-01

    Since two-dimensional (2D) graphene was fabricated successfully, many kinds of graphene-like 2D materials have attracted extensive attention. Among them, the studies of 2D metal chalcogenides have become the focus of intense research due to their unique physical properties and promising applications. Here, we review significant recent advances in optoelectronic properties and applications of 2D metal chalcogenides. This review highlights the recent progress of synthesis, characterization and isolation of single and few layer metal chalcogenides nanosheets. Moreover, we also focus on the recent important progress of electronic, optical properties and optoelectronic devices of 2D metal chalcogenides. Additionally, the theoretical model and understanding on the band structures, optical properties and related physical mechanism are also reviewed. Finally, we give some personal perspectives on potential research problems in the optoelectronic characteristics of 2D metal chalcogenides and related device applications.

  15. Chemical synthesis and modification of target phases of chalcogenide nanomaterials

    NASA Astrophysics Data System (ADS)

    Sines, Ian T.

    Inorganic nanoparticles have been at the forefront of materials research in recent years due to their utility in modern technological processes. Chalcogenide nanomaterials are of particular interest because of their wide range of desirable properties for semiconductors, magnetic devices, and energy industries. Primary factors that dictate the properties of the material are the elemental composition, crystal structure, stoichiometry, crystallite size, and particle morphology. One of the most common approaches to synthesize these materials is through solution mediated routes. This approach offers unique advantages in controlling the morphology and particle size that other methods lack. This dissertation describes our recent work on exploiting solution chemical routes to control the crystal structure and composition of chalcogenide nanomaterials. We will start by discussing solution chemistry routes to synthesize non-equilibrium phases of chaclogenide nanomaterials. By using low-temperature bottom-up techniques it is possible to trap kinetically stable phases that cannot be accessed using traditional high-temperature techniques. We used solution chemistry to synthesize and characterize, for the first time, wurtzite-type MnSe. Wurtzite-type MnSe is the end-member of the highly investigated ZnxMn1-xSe solid solution, a classic magnetic semiconductor system. We will then discuss PbO-type FeS, another non-equilibrium phase that is isostructural with the superconducting phase of FeSe. We synthesized phase-pure PbO-type FeS using a low-temperature solvothermal route. We will then discuss the post-synthetic modification of chalcogenides nanomaterials. By exploiting the solubility of Se and S in tri-n-octylphosphine we can selectively extract the chalcogen from preformed chalcogenide nanomaterials. This gives chemists a technique for purification and phase-targeting of particular chalcogenide phases. This method can be modified to facilitate anion exchange. When Te is

  16. The intercalation chemistry of layered iron chalcogenide superconductors

    NASA Astrophysics Data System (ADS)

    Vivanco, Hector K.; Rodriguez, Efrain E.

    2016-10-01

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the role of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials-mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.

  17. Mode-locked fiber laser based on chalcogenide microwires.

    PubMed

    Al-Kadry, Alaa; El Amraoui, Mohammed; Messaddeq, Younès; Rochette, Martin

    2015-09-15

    We report the first mode-locked fiber laser using a chalcogenide microwire as the nonlinear medium. The laser is passively mode-locked with nonlinear polarization rotation and can be adjusted for the emission of solitons or noise-like pulses. The use of the microwire leads to a mode-locking threshold at the microwatt level and shortens the cavity length by 4 orders of magnitude with respect to other lasers of its kind. The controlled birefringence of the microwire, combined with a linear polarizer in the cavity, enables multiwavelength laser operation with tunable central wavelength, switchable wavelength separation, and a variable number of laser wavelengths. PMID:26371923

  18. Origin of photoinduced metastable defects in amorphous chalcogenides

    NASA Astrophysics Data System (ADS)

    Shimakawa, K.; Inami, S.; Kato, T.; Elliott, S. R.

    1992-10-01

    Prolonged exposure to band-gap light decreases the photoconductivity of annealed films of amorphous chalcogenides (As2S3, As3S7, AsS, As2Se3, GeS2, GeSe2, and GeSe). This can be attributed to photoinduced metastable defects, which could act as additional trapping and/or recombination centers. These metastable centers are removed by annealing near the glass transition temperature. The kinetics of the temporal change of photocurrent during illumination are discussed in a model of defect-conserved bond switching.

  19. Mechanical stiffening and thermal softening of rare earth chalcogenides

    SciTech Connect

    Shriya, S.; Varshney, Dinesh; Singh, Namita; Varshney, M.

    2014-04-24

    The pressure and temperature dependent elastic properties such as melting temperature nature in REX; (RE = La, Pr, Eu; X = O, S, Se, Te) chalcogenides is computed with emphasis on charge transfer interactions and covalent contribution in the effective interionic interaction potential. The pressure dependent elastic constants and melting temperature confirms that REX chalcogens lattice get stiffened as a consequence of bond compression and bond strengthening, however thermal softening arose due to bond expansion and bond weakening is evidenced from temperature dependence of melting temperature (T{sub M})

  20. Spectral diagnostics of laser erosion plasma of mercury chalcogenide targets

    NASA Astrophysics Data System (ADS)

    Kotlyarchuk, B. K.; Popovych, D. I.; Savchuk, V. K.; Savitsky, V. G.

    1995-11-01

    The article sets out to investigate spatial-time and spectral characteristics of laser erosive vapor-plasma torch (EVT), formed at the vaporization of mercury chalcogenines targets. Its influence on the synthesis processes of HgTe and CdHgTe layers, condensed in mercury vapor, is described. It is shown that the laser radiation flux density and Hg vapor pressure in the reaction chamber are dominating factors which determine the character of gas-dynamic spread and EVT composition of mercury chalcogenides targets.

  1. Packaged chalcogenide microsphere resonator with high Q-factor

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Ding, Ming; Lee, Timothy; Senthil Murugan, Ganapathy; Bo, Lin; Semenova, Yuliya; Wu, Qiang; Hewak, Dan; Brambilla, Gilberto; Farrell, Gerald

    2013-04-01

    The fabrication and characterization of a packaged As2S3 microsphere resonator coupled to a tapered fiber using a low refractive index UV-curable polymer are reported. Embedding provides an efficient means to remove the highest order whispering gallery modes in the microsphere resonator, thus cleaning the resonator spectrum. At wavelengths near 1549.5 nm, high-Q modes up to 1.8 × 105 can be efficiently excited in a 110 μm diameter chalcogenide microsphere via evanescent coupling from a 2 μm diameter tapered silica fiber. The device photosensitivity, useful for tuning, is still present and useable after the packaging process.

  2. Positronics of radiation-induced effects in chalcogenide glassy semiconductors

    SciTech Connect

    Shpotyuk, O.; Kozyukhin, S. A.; Shpotyuk, M.; Ingram, A.; Szatanik, R.

    2015-03-15

    Using As{sub 2}S{sub 3} and AsS{sub 2} glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models.

  3. Mode-locked fiber laser based on chalcogenide microwires.

    PubMed

    Al-Kadry, Alaa; El Amraoui, Mohammed; Messaddeq, Younès; Rochette, Martin

    2015-09-15

    We report the first mode-locked fiber laser using a chalcogenide microwire as the nonlinear medium. The laser is passively mode-locked with nonlinear polarization rotation and can be adjusted for the emission of solitons or noise-like pulses. The use of the microwire leads to a mode-locking threshold at the microwatt level and shortens the cavity length by 4 orders of magnitude with respect to other lasers of its kind. The controlled birefringence of the microwire, combined with a linear polarizer in the cavity, enables multiwavelength laser operation with tunable central wavelength, switchable wavelength separation, and a variable number of laser wavelengths.

  4. Vapor Growth of Binary and Ternary Chalcogenides in Preparation for Microgravity Experiments

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In the bulk crystal growth of some technologically important semiconducting chalcopyrites, such as ZnTe, CdS, ZnSe and ZnS, vapor growth techniques have significant advantages over melt growth techniques due to the high melting points of these materials. The realization of routine production of high-quality single crystals of these semiconductors requires a fundamental, systematic and in-depth study on the PVT growth process and crystal growth by vapor transport in low gravity offers a set of unique conditions for this study. Previously, two reasons have been put forward to account for this. The first is weight-related reductions in crystal strain and defects. These are thought to be caused by the weight of the crystals during processing at elevated temperatures and retained on cooling, particularly for materials with a low yield strength. The second, and more general, reason is related to the reduction in density-gradient driven convection. The PVT crystal growth process consists of essentially three processes: sublimation of the source material, transport of the vapor species and condensation of the vapor species to form the crystal. The latter two processes can be affected by the convection caused by gravitational accelerations on Earth. Reductions in such convection in low gravity is expected to yield a nearly diffusion-limited growth condition which results in more uniform growth rates (on the microscopic scale) and hence greater crystalline perfection and compositional homogeneity. The reduction of convective contamination by performing flight experiments in a reduced gravity environment will help to understand the relation between fluid phase processes (growth parameters) and defect and impurity incorporation in grown crystals.

  5. A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation

    PubMed Central

    Yang, Yuan; Wang, Kai; Liang, Hai-Wei; Liu, Guo-Qiang; Feng, Mei; Xu, Liang; Liu, Jian-Wei; Wang, Jin-Long; Yu, Shu-Hong

    2015-01-01

    One-dimensional metal chalcogenide nanostructures are important candidates for many technological applications such as photovoltaic and thermoelectric devices. However, the design and synthesis of one-dimensional metal chalcogenide nanostructured materials with controllable components and properties remain a challenge. We report a general chemical transformation process for the synthesis of more than 45 kinds of one-dimensional alloyed/hybrid metal chalcogenide nanostructures inherited from mother template TexSey@Se core-shell nanowires with tunable compositions. As many as nine types of monometal chalcogenide alloy nanowires (including AgSeTe, HgSeTe, CuSeTe, BiSeTe, PbSeTe, CdSeTe, SbSeTe, NiSeTe, and CoSeTe) can be synthesized. Alloyed and hybrid nanowires integrated with two or more alloyed metal chalcogenide phases can also be prepared. The compositions of all of these metal chalcogenide nanowires are tunable within a wide range. This protocol provides a new general route for the controllable synthesis of a new generation of one-dimensional metal chalcogenide nanostructures. PMID:26601137

  6. Fabrication of planar photonic crystals in chalcogenide glass film by maskless projection lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Peiqing; Zhang, Qian; Zeng, Jianghui; Han, Jintao; Zhou, Jie; Zhang, Wei; Jiao, Qing; Wu, Yuehao; Dai, Shixun

    2016-09-01

    Ge20Sb15Se65 chalcogenide glass films were deposited and patterned using maskless projection lithography to create photonic crystal structures. This lithography technology, which is based on a digital micro-mirror device, is demonstrated as a powerful and low-cost tool to produce arbitrary intensity distributions to fabricate photonic devices. Direct photolithography in resist-free chalcogenide films was first studied, and results indicate that the quality of the products is insufficient. High-quality photonic crystals with sub-micrometer size were finally obtained in chalcogenide films with photoresist by maskless projection lithography and inductively coupled plasma technology.

  7. Lead-Chalcogenides Under Pressure: Ab-Initio Study

    NASA Astrophysics Data System (ADS)

    Gupta, Dinesh C.; Hamid, Idris

    ab-initio calculations using fully relativistic pseudo-potential have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. The enthalpy calculations show that these materials undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa for PbS, PbSe, PbTe and PbPo, respectively. Present calculations successfully predicted the location of the band gap at L-point of Brillouin zone as well as the value of the band gap in every case at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalized under high pressures. For this purpose, the electronic structure of these materials has also been computed in parent as well as in high pressure phase.

  8. Differential etching of chalcogenides for infrared photonic waveguide structures

    SciTech Connect

    Riley, Brian J.; Sundaram, S. K.; Johnson, Bradley R.; Saraf, Laxmikant V.

    2007-10-10

    Chemical etching rates for two different chalcogenide glass compositions (As2S3 and As24S38Se38) were studied using sodium hydroxide based etchant solutions. Etching was performed using a variation of standard photolithographic masking and wet-etching techniques. Variations in etch rate with NaOH concentration and glass composition were observed. The depth of etch was characterized using an optical profilometer. Etch rate differences as large as three orders of magnitude between these two glasses were observed at low NaOH concentration (0.053 M). We present a single variable etch rate curve of etch depth per time (nm/s) versus NaOH overall solution concentration (in M) for these two different chalcogenide glasses (As2S3 and As24S38Se38). This technology shows promise for fabricating highly asymmetrical photonic structures and has potential applications in fabricating novel photonic bandgap (PBG) structures that will function in the long-wave infrared (LWIR) regime.

  9. Dynamic Control of Optical Response in Layered Metal Chalcogenide Nanoplates.

    PubMed

    Liu, Yanping; Tom, Kyle; Wang, Xi; Huang, Chunming; Yuan, Hongtao; Ding, Hong; Ko, Changhyun; Suh, Joonki; Pan, Lawrence; Persson, Kristin A; Yao, Jie

    2016-01-13

    Tunable optical transitions in ultrathin layered 2-dimensional (2D) materials unveil the electronic structures of materials and provide exciting prospects for potential applications in optics and photonics. Here, we present our realization of dynamic optical modulation of layered metal chalcogenide nanoplates using ionic liquid (IL) gating over a wide spectral range. The IL gating significantly increased the tuning range of the Fermi level and, as a result, substantially altered the optical transitions in the nanoplates. Using heavily n-doped Bi2Se3 nanoplates, we substantially modulated the light transmission through the ultrathin layer. A tunable, high-transmission spectral window in the visible to near-infrared region has been observed due to simultaneous shifts of both the plasma edge and absorption edge of the material. On the other hand, optical response of multilayer MoSe2 flakes gated by IL has shown enhanced transmission in both positive and negative biases, which is consistent with their ambipolar electrical behavior. The electrically controlled optical property tuning in metal chalcogenide material systems provides new opportunities for potential applications, such as wide spectral range optical modulators, optical filters, and electrically controlled smart windows with extremely low material consumption.

  10. Correlation, magnetization and conduction in iron pnictides and iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Yin, Zhiping; Haule, Kristjan; Kotliar, Gabriel

    2011-03-01

    By combining density functional theory (DFT) and dynamical mean field theory (DMFT), we study the electronic properties of iron pnictides and iron chalcogenides in both the paramagnetic and magnetic states. With ab initio derived realistic Coulomb interaction U and Hund's exchange coupling J, we find detailed agreements bewtween our calculations and many experimental observations in these compounds, including ARPES, magnetic properties, optical conductivity and anisotropy, and so on, WITHOUT any adjustment such as shifting of atomic positions, Fermi level and bands and renormalizations of bands which are commonly needed in DFT calculations in order to compare with experiments. Our theory explains the origin of the different magnetizations in FeTe and other iron pnictides and provides a unique physical picture. We find that in the magnetic phase of the iron pnictides, both the spin and the orbital polarization are strongly energy dependent. The spin polarization becomes weaker around Fermi level when the orbital polarization is stronger and vice verse at high energies. We stress on the role of the Hund's J rather than the Coulomb U and show how the iron pnictides and iron chalcogenides differ from other compounds.

  11. Fabrication of uniformly dispersed nanoparticle-doped chalcogenide glass

    SciTech Connect

    Lu, Chao; Arnold, Craig; Almeida, Juliana M. P.; Yao, Nan

    2014-12-29

    The dispersion of metallic nanoparticles within a chalcogenide glass matrix has the potential for many important applications in active and passive optical materials. However, the challenge of particle agglomeration, which can occur during traditional thin film processing, leads to materials with poor performance. Here, we report on the preparation of a uniformly dispersed Ag-nanoparticle (Ag NP)/chalcogenide glass heterogeneous material prepared through a combined laser- and solution-based process. Laser ablation of bulk silver is performed directly within an arsenic sulfide/propylamine solution resulting in the formation of Ag NPs in solution with an average particle size of less than 15 nm as determined by dynamic light scattering. The prepared solutions are fabricated into thin films using standard coating processes and are then analyzed using energy-dispersive X-ray spectroscopy and transmission electron microscopy to investigate the particle shape and size distribution. By calculating the nearest neighbor index and standard normal deviate of the nanoparticle locations inside the films, we verify that a uniformly dispersed distribution is achieved through this process.

  12. Dynamic Control of Optical Response in Layered Metal Chalcogenide Nanoplates.

    PubMed

    Liu, Yanping; Tom, Kyle; Wang, Xi; Huang, Chunming; Yuan, Hongtao; Ding, Hong; Ko, Changhyun; Suh, Joonki; Pan, Lawrence; Persson, Kristin A; Yao, Jie

    2016-01-13

    Tunable optical transitions in ultrathin layered 2-dimensional (2D) materials unveil the electronic structures of materials and provide exciting prospects for potential applications in optics and photonics. Here, we present our realization of dynamic optical modulation of layered metal chalcogenide nanoplates using ionic liquid (IL) gating over a wide spectral range. The IL gating significantly increased the tuning range of the Fermi level and, as a result, substantially altered the optical transitions in the nanoplates. Using heavily n-doped Bi2Se3 nanoplates, we substantially modulated the light transmission through the ultrathin layer. A tunable, high-transmission spectral window in the visible to near-infrared region has been observed due to simultaneous shifts of both the plasma edge and absorption edge of the material. On the other hand, optical response of multilayer MoSe2 flakes gated by IL has shown enhanced transmission in both positive and negative biases, which is consistent with their ambipolar electrical behavior. The electrically controlled optical property tuning in metal chalcogenide material systems provides new opportunities for potential applications, such as wide spectral range optical modulators, optical filters, and electrically controlled smart windows with extremely low material consumption. PMID:26599063

  13. Compositional-tailoring of optical properties in IR transparent chalcogenide glasses for precision glass molding

    NASA Astrophysics Data System (ADS)

    Gleason, B.; Wachtel, P.; Musgraves, J. D.; Qiao, A.; Anheier, N.; Richardson, K.

    2013-09-01

    The structural and optical properties of AsSe chalcogenide glass, starting with As40Se60, were studied as a function of Ge or Se additions. These elements provide broad glass forming options when combined with the host matrix to allow for compositional tuning of properties. Optimization of glass composition has been shown to produce bulk glasses with a thermoptic coefficient (dn/dT) equal to zero, as well as a composition which could demonstrate a net zero change in index after precision glass molding (PGM). The bulk glass density, coefficient of thermal expansion (CTE), refractive index, and dn/dT were measured for all bulk compositions, as was the refractive index after PGM. For the bulk glasses examined, both the refractive index (measured at discrete laser wavelengths from 3.4 to10.6 μm) and dn/dT were observed to decrease as the molecular percentage of either Ge or Se is increased. Compared to the starting glass' network, additions of either Ge or Se lead to a deviation from the "optimally constrained" binary glass' average coordination number = 2.4. Additions of Se or Ge serve to decrease or increase the average coordination number (CN) of the glass, respectively, while also changing the network's polarizability. After a representative PGM process, glasses exhibited an "index drop" consistent with that seen for oxide glasses.1 Based on our evaluation, both the Gecontaining and Ge-free tielines show potential for developing unique compositions with either a zero dn/dT for the unmolded, bulk glass, as well as the potential for a glass that demonstrates a net zero "index drop" after molding. Such correlation of glass chemistry, network, physical and optical properties will enable the tailoring of novel compositions suitable for prototyping towards targeted molding behavior and final properties.

  14. Method of producing stable metal oxides and chalcogenides and power source

    DOEpatents

    Doddapaneni, N.; Ingersoll, D.

    1996-10-22

    A method is described for making chemically and electrochemically stable oxides or other chalcogenides for use as cathodes for power source applications, and of making batteries comprising such materials. 6 figs.

  15. Chalcogenide phase-change thin films used as grayscale photolithography materials.

    PubMed

    Wang, Rui; Wei, Jingsong; Fan, Yongtao

    2014-03-10

    Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb(2)Te(3) chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks.

  16. Chalcogenide phase-change thin films used as grayscale photolithography materials.

    PubMed

    Wang, Rui; Wei, Jingsong; Fan, Yongtao

    2014-03-10

    Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb(2)Te(3) chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks. PMID:24663836

  17. Magnetism in Parent Iron Chalcogenides: Quantum Fluctuations Select Plaquette Order

    NASA Astrophysics Data System (ADS)

    Ducatman, Samuel; Perkins, Natalia B.; Chubukov, Andrey

    2012-10-01

    We analyze magnetic order in Fe chalcogenide Fe1+yTe, the parent compound of the high-temperature superconductor Fe1+yTe1-xSex. Experiments show that magnetic order in this material contains components with momentum Q1=(π/2,π/2) and Q2=(π/2,-π/2) in the Fe only Brillouin zone. The actual spin order depends on the interplay between these two components. Previous works assumed that the ordered state has a single Q (either Q1 or Q2). In such a state, spins form double stripes along one of the diagonals breaking the rotational C4 symmetry. We show that quantum fluctuations actually select another order—a double Q plaquette state with equal weight of Q1 and Q2 components, which preserves C4 symmetry. We argue that the order in Fe1+yTe is determined by the competition between quantum fluctuations and magnetoelastic coupling.

  18. Electron-beam recording of patterns in chalcogenide films

    NASA Astrophysics Data System (ADS)

    Sergeev, S. A.; Iovu, M. S.; Iaseniuc, O. V.

    2015-02-01

    Thin films of chalcogenide glasses (ChG) of different composition have been used for e-beam recording of diffraction grating structures. The dependencies of diffraction efficiency of gratings on radiation dose were studied. The influence of ChG film composition on diffraction properties of gratings was shown. It was established that the refractive index gratings formed in As2S3 films exhibit high stability during their dark storage. The diffraction efficiency enhancement caused by uniform light irradiation was observed for gratings recorded in As4S3Se3 thin films, doped with Sn. With use of computer-controlled positioning of electron beam both the raster scan and vector patterns were recorded in As2S3 films. In the former case the images from BMP-files were patterned. In the latter case the mosaic of diffraction gratings, producing the multi-beam light diffraction was recorded.

  19. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    SciTech Connect

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waal's forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have

  20. All-solid all-chalcogenide microstructured optical fiber.

    PubMed

    Toupin, Perrine; Brilland, Laurent; Renversez, Gilles; Troles, Johann

    2013-06-17

    The realization of an all-solid microstructured optical fiber based on chalcogenide glasses was achieved. The fiber presents As(2)S(3) inclusions selected as low refractive index material (n = 2.4) embedded in a As(38)Se(62) glass matrix (n = 2.8). The single mode regime of the fiber was demonstrated both theoretically by multipole method calculations and experimentally by near field measurements. Optical transmission measurements of the microstructured fiber and single index fibers made of the initial glasses reveal an excess of losses as high as 6-7 dB/m. This excess is not due to the guide geometry but can be explained by the presence of defects in the glass interface regions.

  1. Self-Structured Conductive Filament Nanoheater for Chalcogenide Phase Transition.

    PubMed

    You, Byoung Kuk; Byun, Myunghwan; Kim, Seungjun; Lee, Keon Jae

    2015-06-23

    Ge2Sb2Te5-based phase-change memories (PCMs), which undergo fast and reversible switching between amorphous and crystalline structural transformation, are being utilized for nonvolatile data storage. However, a critical obstacle is the high programming current of the PCM cell, resulting from the limited pattern size of the optical lithography-based heater. Here, we suggest a facile and scalable strategy of utilizing self-structured conductive filament (CF) nanoheaters for Joule heating of chalcogenide materials. This CF nanoheater can replace the lithographical-patterned conventional resistor-type heater. The sub-10 nm contact area between the CF and the phase-change material achieves significant reduction of the reset current. In particular, the PCM cell with a single Ni filament nanoheater can be operated at an ultralow writing current of 20 μA. Finally, phase-transition behaviors through filament-type nanoheaters were directly observed by using transmission electron microscopy. PMID:26039415

  2. Ligand engineering of lead chalcogenide nanoparticle solar cells

    NASA Astrophysics Data System (ADS)

    Voros, Marton; Brawand, Nicholas; Galli, Giulia

    Semiconductor nanoparticles (NP) are promising materials to build cheap and efficient solar cells. One of the key challenges in their utilization for solar energy conversion is the control of ligand-NP interfaces. Recent experiments have shown that by carefully choosing the ligands terminating the NPs, one can tailor electronic and optical absorption properties of NP assemblies, along with their transport properties. By using density functional theory based methods, we investigated how the opto-electronic properties of lead chalcogenide NPs may be tuned by using diverse organic and inorganic ligands. We interpreted experiments, and we showed that an essential prerequisite to avoid detrimental trap states is to ensure charge balance at the ligand-NP interface, possibly with the help of hydrogen treatment. Work supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

  3. Copper Antimony Chalcogenide Thin Film PV Device Development

    SciTech Connect

    Welch, Adam W.; Baranowski, Lauryn L.; de Souza Lucas, Francisco Willian; Toberer, Eric S.; Wolden, Colin A.; Zakutayev, Andriy

    2015-06-14

    Emerging ternary chalcogenide thin film solar cell technologies, such as CuSbS2 and CuSbSe2, have recently attracted attention as simpler alternatives to quaternary Cu2ZnSnS4 (CZTS). Despite suitable photovoltaic properties, the initial energy conversion efficiency of CuSbS2 is rather low (0.3%). Here, we report on our progress towards improving the efficiency of CuSbS2 solar cells using a high throughput approach. The combinatorial methodology quickly results in baseline solar cell prototypes with 0.6% efficiency, and then modification of the back contact architecture leads to 1% PV devices. We then translate the optimal CuSbS2 synthesis parameters to CuSbSe2 devices, which show 3% efficiencies.

  4. Precision compression molding of chalcogenide glass optical elements

    NASA Astrophysics Data System (ADS)

    Qi, Chaowei; Ma, Tao; Chen, Fan

    2013-12-01

    Precision glass molding process (GMP) is a promising process to manufacture small precision optical elements in large volume. In this paper, we report on the fabrication of a molded chalcogenide glass lens as an optical element. A set of mold was designed and manufactured with silicon carbide material for the molding test. The structure of the mold set was semi-closed and detachable which can make the molded lens easy releasing with non-invasion. The surfaces of the mold cores are coated with thin protecting DLC film to relieve adhesion problem and increase the working life. Experiments were also performed using a precision glass molding machine Toshiba GMP-311V to determine the molding parameters i.e. molding temperature, pressure and cooling rate. The glass lens breakage during precision molding process was analyzed according to the glass property and the molding parameters. By modifying the mold design and optimization the processing parameters, ultimately achieve the desired molded lens.

  5. Planar omnidirectional reflectors in chalcogenide glass and polymer.

    PubMed

    Decorby, R; Nguyen, H; Dwivedi, P; Clement, T

    2005-08-01

    We have fabricated and tested planar reflectors exhibiting an omnidirectional stop band centered near 1750 nm wavelength. The reflectors are comprised of multiple layers of Ge33As12Se55 chalcogenide glass and polyamide-imide polymer. Glass layers were deposited by thermal evaporation and polymer layers were deposited by spin-casting. Thin film stacks of up to 13 layers showed good planarity and adhesion, which we attribute to the well-matched thermo-mechanical properties of the materials. The optical properties of the reflectors were tested in both transmission and reflection, and the results are in good agreement with theoretical predictions. Relatively low-temperature processing steps were employed, making these reflectors of interest for integrated optics.

  6. Precision lens molding of asphero diffractive surfaces in chalcogenide materials

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.

    2015-10-01

    Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.

  7. Raman and CT scan mapping of chalcogenide glass diffusion generated gradient index profiles

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Berg, R. H.; Deegan, J.; Benson, R.; Salvaggio, P. S.; Gross, N.; Weinstein, B. A.; Gibson, D.; Bayya, S.; Sanghera, J.; Nguyen, V.; Kotov, M.

    2016-05-01

    Metrology of a gradient index (GRIN) material is non-trivial, especially in the realm of infrared and large refractive index. Traditional methods rely on index matching fluids which are not available for indexes as high as those found in the chalcogenide glasses (2.4-3.2). By diffusing chalcogenide glasses of similar composition one can blend the properties in a continuous way. In an effort to measure this we will present data from both x-ray computed tomography scans (CT scans) and Raman mapping scans of the diffusion profiles. Proof of concept measurements on undiffused bonded sheets of chalcogenide glasses were presented previously. The profiles measured will be of axially stacked sheets of chalcogenide glasses diffused to create a linear GRIN profile and nested tubes of chalcogenide glasses diffused to create a radial parabolic GRIN profile. We will show that the x-ray absorption in the CT scan and the intensity of select Raman peaks spatially measured through the material are indicators of the concentration of the diffusion ions and correlate to the spatial change in refractive index. We will also present finite element modeling (FEM) results and compare them to post precision glass molded (PGM) elements that have undergone CT and Raman mapping.

  8. Growth of chalcogenide semiconductors within a nanoporous aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Zelenski, Catherine Mary

    This dissertation reports investigations on the synthesis of metal chalcogenide semiconductor nanoparticles grown within the pores of a nanoporous aluminum oxide template. The template used to restrict the growth of the materials contained cylindrical pores, yielding nanoparticles with non-spherical shapes. Two classes of metal chalcogenides were studied: those with three dimensional structures and those with layered structures. Three different methods were developed and investigated for the growth of MQ compounds (M = Cd, Zn, Cu, Hg; Q = S, Te): (1) a dipping method, (2) a U-tube method, and (3) a sublimation. The dipping method produced material on the template's outer surface and within the pores only within ˜2 mum of their ends. Within the limits of the template pore size, particle size and shape could not be controlled. The U-tube method deposited multiple oval shaped particles within each pore of the template. The oval particles were polycrystalline, had sizes ranging from ˜5-120 nm, and were concentrated in only one location in the pores. Reasons for the uneven distribution of particles throughout the pores were investigated. The sublimation method only deposited material on the outer surfaces of the template, and the conditions used for the sublimation altered the morphology of the template. Layered MSsb2 compounds (M = Mo, W, Re, Ti) were prepared by the thermal decomposition of selected precursor molecules within the pores of the template. The fibers produced had the same dimensions as the pores of the template. When MoSsb2 was prepared by this method, tubules of oriented crystals were formed with multiple plugs in each tubule. When WSsb2 was prepared, more solid fibers were formed. The preparation of ReSsb2 and TiSsb2 resulted in fibers that were similar in morphology to the MoSsb2 fibers. The effect of template loading method, precursor concentration, precursor type, solvent, presence of a surfactant, and annealing temperature on morphology and

  9. Stability of binaries. Part 1: Rigid binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2015-09-01

    We consider the stability of binary asteroids whose members are possibly granular aggregates held together by self-gravity alone. A binary is said to be stable whenever each member is orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability test for rotating granular aggregates introduced by Sharma (Sharma, I. [2012]. J. Fluid Mech., 708, 71-99; Sharma, I. [2013]. Icarus, 223, 367-382; Sharma, I. [2014]. Icarus, 229, 278-294) to the case of binary systems comprised of rubble members. In part I, we specialize to the case of a binary with rigid members subjected to full three-dimensional perturbations. Finally, we employ the stability test to critically appraise shape models of four suspected binary systems, viz., 216 Kleopatra, 25143 Itokawa, 624 Hektor and 90 Antiope.

  10. Band gap anomaly and topological properties in lead chalcogenides

    NASA Astrophysics Data System (ADS)

    Simin, Nie; Xiao, Yan Xu; Gang, Xu; Zhong, Fang

    2016-03-01

    Band gap anomaly is a well-known issue in lead chalcogenides PbX (X = S, Se, Te, Po). Combining ab initio calculations and tight-binding (TB) method, we have studied the band evolution in PbX, and found that the band gap anomaly in PbTe is mainly related to the high on-site energy of Te 5s orbital and the large s-p hopping originated from the irregular extended distribution of Te 5s electrons. Furthermore, our calculations show that PbPo is an indirect band gap (6.5 meV) semiconductor with band inversion at L point, which clearly indicates that PbPo is a topological crystalline insulator (TCI). The calculated mirror Chern number and surface states double confirm this conclusion. Project supported by the National Natural Science Foundation of China (Grant No. 11204359), the National Basic Research Program of China (Grant No. 2013CB921700), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100).

  11. Nanoscale Andreev Reflection Spectroscopy on Bismuth-Chalcogenide Topological Insulators

    NASA Astrophysics Data System (ADS)

    Granstrom, C. R.; Fridman, I.; Liang, R. X.; Lei, H.; Petrovic, C.; Yang, Shuo; Wu, K. H.; Wei, J. Y. T.

    Andreev reflection (AR) is the basic mechanism underlying the superconducting proximity effect which, at the interface between a topological insulator (TI) and a spin-singlet superconductor, can induce chiral p-wave pairing in the TI. Despite this novel importance, it is not well understood how AR is affected by the unique attributes of a three-dimensional TI, namely the Dirac dispersion and helical spin-polarization of its surface states. In this work, we use both s-wave and d-wave superconducting tips to perform AR spectroscopy at 4.2 K on flux-grown Bi2Se3 and Bi2Te3 single crystals, as well as epitaxial Bi2Se3 thin films grown on SrTiO3 substrates by molecular beam epitaxy. These AR measurements are complemented by scanning tunneling spectroscopy, in order to characterize the superconducting tip as well as the doping level and surface condition of the TI sample. Our data are analyzed using BTK theory, in light of the characteristic band structure of bismuth chalcogenides, to elucidate how the band structure affects the AR process. Work supported by: NSERC, CFI-OIT, the Canadian Institute for Advanced Research, and the Department of Energy.

  12. Alloyed Copper Chalcogenide Nanoplatelets via Partial Cation Exchange Reactions

    PubMed Central

    2014-01-01

    We report the synthesis of alloyed quaternary and quinary nanocrystals based on copper chalcogenides, namely, copper zinc selenide–sulfide (CZSeS), copper tin selenide–sulfide (CTSeS), and copper zinc tin selenide–sulfide (CZTSeS) nanoplatelets (NPLs) (∼20 nm wide) with tunable chemical composition. Our synthesis scheme consisted of two facile steps: i.e., the preparation of copper selenide–sulfide (Cu2–xSeyS1–y) platelet shaped nanocrystals via the colloidal route, followed by an in situ cation exchange reaction. During the latter step, the cation exchange proceeded through a partial replacement of copper ions by zinc or/and tin cations, yielding homogeneously alloyed nanocrystals with platelet shape. Overall, the chemical composition of the alloyed nanocrystals can easily be controlled by the amount of precursors that contain cations of interest (e.g., Zn, Sn) to be incorporated/alloyed. We have also optimized the reaction conditions that allow a complete preservation of the size, morphology, and crystal structure as that of the starting Cu2–xSeyS1–y NPLs. The alloyed NPLs were characterized by optical spectroscopy (UV–vis–NIR) and cyclic voltammetry (CV), which demonstrated tunability of their light absorption characteristics as well as their electrochemical band gaps. PMID:25050455

  13. Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit.

    PubMed

    Yuan, Hongtao; Liu, Zhongkai; Xu, Gang; Zhou, Bo; Wu, Sanfeng; Dumcenco, Dumitru; Yan, Kai; Zhang, Yi; Mo, Sung-Kwan; Dudin, Pavel; Kandyba, Victor; Yablonskikh, Mikhail; Barinov, Alexei; Shen, Zhixun; Zhang, Shoucheng; Huang, Yingsheng; Xu, Xiaodong; Hussain, Zahid; Hwang, Harold Y; Cui, Yi; Chen, Yulin

    2016-08-10

    Layered transition metal chalcogenides with large spin orbit coupling have recently sparked much interest due to their potential applications for electronic, optoelectronic, spintronics, and valleytronics. However, most current understanding of the electronic structure near band valleys in momentum space is based on either theoretical investigations or optical measurements, leaving the detailed band structure elusive. For example, the exact position of the conduction band valley of bulk MoS2 remains controversial. Here, using angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES), we systematically imaged the conduction/valence band structure evolution across representative chalcogenides MoS2, WS2, and WSe2, as well as the thickness dependent electronic structure from bulk to the monolayer limit. These results establish a solid basis to understand the underlying valley physics of these materials, and also provide a link between chalcogenide electronic band structure and their physical properties for potential valleytronics applications.

  14. Experimental study of the fabrication of chalcogenide glass lenses by using precision glass molding

    NASA Astrophysics Data System (ADS)

    Cha, Du Hwan; Kim, Jeong-Ho; Kim, Hye-Jeong

    2014-11-01

    Although the development of small formats (640 × 480 pixel arrays) and amorphous silicon microbolometers has greatly decreased detector cost, another important component of a thermal camera, the optics, still prohibit a breakthrough for high-volume commercial systems. The aspheric lenses used in thermal imaging are typically made using the costly single-point diamond turning (SPDT) process with expensive single-crystal materials (Ge, ZnS, etc.). As a potential solution to reduce cost, the compression molding method using chalcogenide glass has become attractive for fabricating IR optics. The present paper reports the fabrication of a mold and a molded chalcogenide glass lens for a thermal security camera. In addition, the molded chalcogenide glass lens was evaluated using the form error, roughness and decentration for each surface of the molded lens. From the evaluation results, we verified that the molded lens was capable of being used for thermal imaging applications.

  15. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching

    SciTech Connect

    Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh; Novak, Spencer; Richardson, Kathleen; Fathpour, Sasan

    2015-03-16

    A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes.

  16. Growth Mechanisms and Structural Properties of Lead Chalcogenide Films Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Virt, I. S.; Rudyi, I. O.; Lopatynskyi, I. Ye.; Dubov, Yu.; Tur, Y.; Lusakowska, E.; Luka, G.

    2016-09-01

    Three lead chalcogenide films, PbTe, PbSe, and PbS, with a high structural quality were grown by pulsed lased deposition (PLD). The films were grown on single crystal substrates (Si, KCl, Al2O3) and on Si covered with a Si3N4 buffer layer. The Si3N4 layer latter facilitated the lead chalcogenide layer nucleation during the first growth stages and resulted in a more homogeneous surface morphology and a lower surface roughness. The surface geometry (roughness) of the films grown on Si3N4 was studied by means of the power spectral density analysis. Different growth modes, ranging from plasma plume condensation to bulk diffusion, resulting in observed film morphologies were identified. The investigations were complemented by electrical characterization of the chalcogenide films.

  17. Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit.

    PubMed

    Yuan, Hongtao; Liu, Zhongkai; Xu, Gang; Zhou, Bo; Wu, Sanfeng; Dumcenco, Dumitru; Yan, Kai; Zhang, Yi; Mo, Sung-Kwan; Dudin, Pavel; Kandyba, Victor; Yablonskikh, Mikhail; Barinov, Alexei; Shen, Zhixun; Zhang, Shoucheng; Huang, Yingsheng; Xu, Xiaodong; Hussain, Zahid; Hwang, Harold Y; Cui, Yi; Chen, Yulin

    2016-08-10

    Layered transition metal chalcogenides with large spin orbit coupling have recently sparked much interest due to their potential applications for electronic, optoelectronic, spintronics, and valleytronics. However, most current understanding of the electronic structure near band valleys in momentum space is based on either theoretical investigations or optical measurements, leaving the detailed band structure elusive. For example, the exact position of the conduction band valley of bulk MoS2 remains controversial. Here, using angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES), we systematically imaged the conduction/valence band structure evolution across representative chalcogenides MoS2, WS2, and WSe2, as well as the thickness dependent electronic structure from bulk to the monolayer limit. These results establish a solid basis to understand the underlying valley physics of these materials, and also provide a link between chalcogenide electronic band structure and their physical properties for potential valleytronics applications. PMID:27357620

  18. Permanent photoalignment of liquid crystals on nanostructured chalcogenide glassy thin films

    SciTech Connect

    Gelbaor, Miri; Abdulhalim, I.; Klebanov, Matvey; Lyubin, Victor

    2011-02-14

    Photoalignment of nematic liquid crystals is obtained on the chalcogenide glassy thin film of As{sub 2}S{sub 3} using irradiation with polarized blue light. A uniform homogeneously aligned device is obtained with high contrast and strong anchoring. The device alignment quality is permanent as checked by following its functionality over a period of few months. The origin of the observed photoalignment is attributed to the photoinduced anisotropy in chalcogenide glasses. No differences between the different As{sub 2}S{sub 3} film thicknesses observed, thus supporting the proposition that some orientational order is photoinduced on the surface of the glass and responsible for the photoalignment.

  19. Engineering excitonic dynamics and environmental stability of post-transition metal chalcogenides by pyridine functionalization technique

    NASA Astrophysics Data System (ADS)

    Meng, Xiuqing; Pant, Anupum; Cai, Hui; Kang, Jun; Sahin, Hasan; Chen, Bin; Wu, Kedi; Yang, Sijie; Suslu, Aslihan; Peeters, F. M.; Tongay, Sefaattin

    2015-10-01

    Owing to their strong photon emission, low excitonic binding energies, and nearly-ideal band offset values for water splitting reactions, direct gap quasi-2D gallium chalcogenides are potential candidates for applications in energy harvesting, optoelectronics, and photonics. Unlike other 2D materials systems, chemical functionalization of gallium chalcogenides is still at its seminal stages. Here, we propose vapor phase pyridine intercalation technique to manipulate optical properties of gallium chalcogenides. After functionalization, the excitonic dynamics of quasi-2D GaSe change significantly as evidenced by an increase in integrated PL intensity and emergence of a new emission feature that is below the band edge. Based on our DFT calculations, we attribute these to formation of bound exciton complexes at the trap sites introduced by chemical reaction between pyridine and GaSe. On the contrary, pyridine functionalization does not impact the optical properties of GaTe, instead treats GaTe surface to prevent oxidization of tellurium atoms. Overall, results suggest novel ways to control properties of gallium chalcogenides on demand and unleash their full potential for a range of applications in photonics and optoelectronics.Owing to their strong photon emission, low excitonic binding energies, and nearly-ideal band offset values for water splitting reactions, direct gap quasi-2D gallium chalcogenides are potential candidates for applications in energy harvesting, optoelectronics, and photonics. Unlike other 2D materials systems, chemical functionalization of gallium chalcogenides is still at its seminal stages. Here, we propose vapor phase pyridine intercalation technique to manipulate optical properties of gallium chalcogenides. After functionalization, the excitonic dynamics of quasi-2D GaSe change significantly as evidenced by an increase in integrated PL intensity and emergence of a new emission feature that is below the band edge. Based on our DFT calculations

  20. The dynamics of photoinduced defect creation in amorphous chalcogenides: The origin of the stretched exponential function

    SciTech Connect

    Freitas, R. J.; Shimakawa, K.; Wagner, T.

    2014-01-07

    The article discusses the dynamics of photoinduced defect creations (PDC) in amorphous chalcogenides, which is described by the stretched exponential function (SEF), while the well known photodarkening (PD) and photoinduced volume expansion (PVE) are governed only by the exponential function. It is shown that the exponential distribution of the thermal activation barrier produces the SEF in PDC, suggesting that thermal energy, as well as photon energy, is incorporated in PDC mechanisms. The differences in dynamics among three major photoinduced effects (PD, PVE, and PDC) in amorphous chalcogenides are now well understood.

  1. Open framework metal chalcogenides as efficient photocatalysts for reduction of CO2 into renewable hydrocarbon fuel.

    PubMed

    Sasan, Koroush; Lin, Qipu; Mao, Chengyu; Feng, Pingyun

    2016-06-01

    Open framework metal chalcogenides are a family of porous semiconducting materials with diverse chemical compositions. Here we show that these materials containing covalent three-dimensional superlattices of nanosized supertetrahedral clusters can function as efficient photocatalysts for the reduction of CO2 to CH4. Unlike dense semiconductors, metal cations are successfully incorporated into the channels of the porous semiconducting materials to further tune the physical properties of the materials such as electrical conductivity and band gaps. In terms of the photocatalytic properties, the metal-incorporated porous chalcogenides demonstrated enhanced solar energy absorption and higher electrical conductivity and improved photocatalytic activity. PMID:27186825

  2. Binary mask programmable hologram.

    PubMed

    Tsang, P W M; Poon, T-C; Zhou, Changhe; Cheung, K W K

    2012-11-19

    We report, for the first time, the concept and generation of a novel Fresnel hologram called the digital binary mask programmable hologram (BMPH). A BMPH is comprised of a static, high resolution binary grating that is overlaid with a lower resolution binary mask. The reconstructed image of the BMPH can be programmed to approximate a target image (including both intensity and depth information) by configuring the pattern of the binary mask with a simple genetic algorithm (SGA). As the low resolution binary mask can be realized with less stringent display technology, our method enables the development of simple and economical holographic video display.

  3. Search for Binary Trojans

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.; Grundy, W. M.; Ryan, E. L.; Benecchi, S. D.

    2015-11-01

    We have reexamined 41 Trojan asteroids observed with the Hubble Space Telescope (HST) to search for unresolved binaries. We have identified one candidate binary with a separation of 53 milliarcsec, about the width of the diffraction limited point-spread function (PSF). Sub-resolution-element detection of binaries is possible with HST because of the high signal-to-noise ratio of the observations and the stability of the PSF. Identification and confirmation of binary Trojans is important because a Trojan Tour is one of five possible New Frontiers missions. A binary could constitute a potentially high value target because of the opportunity to study two objects and to test models of the primordial nature of binaries. The potential to derive mass-based physical information from the binary orbit could yield more clues to the origin of Trojans.

  4. An overview of the Fe-chalcogenide superconductors

    NASA Astrophysics Data System (ADS)

    Wu, M. K.; Wu, P. M.; Wen, Y. C.; Wang, M. J.; Lin, P. H.; Lee, W. C.; Chen, T. K.; Chang, C. C.

    2015-08-01

    This review intends to summarize recent advancements in FeSe and related systems. The FeSe and related superconductors are currently receiving considerable attention for the high critical temperature (T C) observed and for many similar features to the high T C cuprate superconductors. These similarities suggest that understanding the FeSe-based compounds could potentially help our understanding of the cuprates. We begin the review by presenting common features observed in the FeSe- and FeAs-based systems. Then we discuss the importance of careful control of the material preparation allowing for a systematic structure characterization. With this control, numerous rich phases have been observed. Importantly, we suggest that the Fe-vacancy ordered phases found in the FeSe-based compounds, which are non-superconducting magnetic Mott insulators, are the parent compounds of the superconductors. Superconductivity can emerge from the parent phases by disordering the Fe vacancy order, often by a simple annealing treatment. Then we review physical properties of the Fe chalcogenides, specifically the optical properties and angle-resolved photoemission spectroscopy (ARPES) results. From the literature, strong evidence points to the existence of orbital modification accompanied by a gap-opening, prior to the structural phase transition, which is closely related to the occurrence of superconductivity. Furthermore, strong lattice to spin coupling are important for the occurrence of superconductivity in FeSe. Therefore, it is believed that the iron selenides and related compounds will provide essential information to understand the origin of superconductivity in the iron-based superconductors, and possibly the superconducting cuprates.

  5. Tolerant chalcogenide cathodes of membraneless micro fuel cells.

    PubMed

    Gago, Aldo Saul; Gochi-Ponce, Yadira; Feng, Yong-Jun; Esquivel, Juan Pablo; Sabaté, Neus; Santander, Joaquin; Alonso-Vante, Nicolas

    2012-08-01

    The most critical issues to overcome in micro direct methanol fuel cells (μDMFCs) are the lack of tolerance of the platinum cathode and fuel crossover through the polymer membrane. Thus, two novel tolerant cathodes of a membraneless microlaminar-flow fuel cell (μLFFC), Pt(x)S(y) and CoSe(2), were developed. The multichannel structure of the system was microfabricated in SU-8 polymer. A commercial platinum cathode served for comparison. When using 5 M CH(3)OH as the fuel, maximum power densities of 6.5, 4, and 0.23 mW cm(-2) were achieved for the μLFFC with Pt, Pt(x)S(y), and CoSe(2) cathodes, respectively. The Pt(x)S(y) cathode outperformed Pt in the same fuel cell when using CH(3)OH at concentrations above 10 M. In a situation where fuel crossover is 100 %, that is, mixing the fuel with the reactant, the maximum power density of the micro fuel cell with Pt decreased by 80 %. However, for Pt(x)S(y) this decrease corresponded to 35 % and for CoSe(2) there was no change in performance. This result is the consequence of the high tolerance of the chalcogenide-based cathodes. When using 10 M HCOOH and a palladium-based anode, the μLFFC with a CoSe(2) cathode achieved a maxiumum power density of 1.04 mW cm(-2). This micro fuel cell does not contain either Nafion membrane or platinum. We report, for the first time, the evaluation of Pt(x)S(y)- and CoSe(2)-based cathodes in membraneless micro fuel cells. The results suggest the development of a novel system that is not size restricted and its operation is mainly based on the selectivity of its electrodes.

  6. Static Behavior of Chalcogenide Based Programmable Metallization Cells

    NASA Astrophysics Data System (ADS)

    Rajabi, Saba

    Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which is referred to as programmable metallization cell (PMC), conductive bridge RAM (CBRAM), or electrochemical metallization memory (ECM), which is likely to surpass flash memory in all the ideal memory characteristics. A comprehensive physics-based model is needed to completely understand PMC operation and assist in design optimization. To advance the PMC modeling effort, this thesis presents a precise physical model parameterizing materials associated with both ion-rich and ion-poor layers of the PMC's solid electrolyte, so that captures the static electrical behavior of the PMC in both its low-resistance on-state (LRS) and high resistance off-state (HRS). The experimental data is measured from a chalcogenide glass PMC designed and manufactured at ASU. The static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film is characterized and modeled using three dimensional simulation code written in Silvaco Atlas finite element analysis software. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities. The sensitivity of our modeled PMC to the variation of its prominent achieved material parameters is examined on the HRS and LRS impedance behavior. The obtained accurate set of material parameters for both Ag-rich and Ag-poor ChG systems and process variation verification on electrical characteristics enables greater fidelity in PMC device simulation, which significantly enhances our ability to understand the underlying physics of

  7. Localized rapid heating process for precision chalcogenide glass molding

    NASA Astrophysics Data System (ADS)

    Li, Hui; He, Peng; Yu, Jianfeng; Lee, L. James; Yi, Allen Y.

    2015-10-01

    Precision glass molding is an important process for high volume optical fabrication. However, conventional glass molding is a bulk heating process that usually requires a long thermal cycle, where molding assembly and other mechanical parts are heated and cooled together. This often causes low efficiency and other heating and cooling related problems, such as large thermal expansion in both the molds and molded optics. To cope with this issue, we developed a localized rapid heating process to effectively heat only very small part of the glass. This localized rapid heating study utilized a fused silica wafer coated with a thin graphene layer to heat only the surface of the glass. The graphene coating functions as an electrical resistant heater when a power source was applied across the thin film coating, generating heat on and near the coating. The feasibility of this process was validated by both experiments and numerical simulation. To demonstrate the advantages of the localized rapid heating, both localized rapid heating process and bulk heating process were performed and carefully compared. The uniformity and quality of the molded sample by localized rapid heating process was also demonstrated. In summary, localized rapid heating process by using graphene coated fused silica wafer was characterized and can be readily implemented in replication of micro scale chalcogenide glasses. A fused silica wafer coated with a thin graphene layer was utilized for localized rapid heating only the surface of the glass. The graphene coating functions as an electrical resistant heater when a power source was applied across the thin film coating, generating high temperature on and near the coating. This process is fast and efficient since only interested areas are heated without affecting the entire glass substrate or the mold assembly. The uniformity and quality of the molded sample by localized rapid heating process was demonstrated by comparing both localized rapid heating

  8. PHOEBE: PHysics Of Eclipsing BinariEs

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Matijevic, Gal; Latkovic, Olivera; Vilardell, Francesc; Wils, Patrick

    2011-06-01

    PHOEBE (PHysics Of Eclipsing BinariEs) is a modeling package for eclipsing binary stars, built on top of the widely used WD program (Wilson & Devinney 1971). This introductory paper overviews most important scientific extensions (incorporating observational spectra of eclipsing binaries into the solution-seeking process, extracting individual temperatures from observed color indices, main-sequence constraining and proper treatment of the reddening), numerical innovations (suggested improvements to WD's Differential Corrections method, the new Nelder & Mead's downhill Simplex method) and technical aspects (back-end scripter structure, graphical user interface). While PHOEBE retains 100% WD compatibility, its add-ons are a powerful way to enhance WD by encompassing even more physics and solution reliability.

  9. An innovative approach to develop highly performant chalcogenide glasses and glass-ceramics transparent in the infrared range.

    PubMed

    Hubert, Mathieu; Delaizir, Gaëlle; Monnier, Judith; Godart, Claude; Ma, Hong-Li; Zhang, Xiang-Hua; Calvez, Laurent

    2011-11-01

    An innovative way to produce chalcogenide glasses and glass-ceramics for infrared devices is reported. This new method of synthesis at low temperature combining ball-milling and sintering by SPS (Spark Plasma Sintering) is a technological breakthrough to produce efficient infrared chalcogenide glasses and glass-ceramics. This technique will offer the possibility to strongly decrease the cost of infrared devices and to produce new chalcogenide glasses. It will also permit to increase the potential of some glass compositions by allowing their shaping at desired dimensions.

  10. Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion.

    PubMed

    Liu, Lai; Cheng, Tonglei; Nagasaka, Kenshiro; Tong, Hoangtuan; Qin, Guanshi; Suzuki, Takenobu; Ohishi, Yasutake

    2016-01-15

    We report the coherent mid-infrared supercontinuum generation in an all-solid chalcogenide microstructured fiber with all-normal dispersion. The chalcogenide microstructured fiber is a four-hole structure with core material of AsSe2 and air holes that are replaced by As2S5 glass rods. Coherent mid-infrared supercontinuum light extended to 3.3 μm is generated in a 2 cm long chalcogenide microstructured fiber pumped by a 2.7 μm laser. PMID:26766722

  11. On-chip chalcogenide glass waveguide-integrated mid-infrared PbTe detectors

    NASA Astrophysics Data System (ADS)

    Han, Z.; Singh, V.; Kita, D.; Monmeyran, C.; Becla, P.; Su, P.; Li, J.; Huang, X.; Kimerling, L. C.; Hu, J.; Richardson, K.; Tan, D. T. H.; Agarwal, A.

    2016-08-01

    We experimentally demonstrate an on-chip polycrystalline PbTe photoconductive detector integrated with a chalcogenide glass waveguide. The device is monolithically fabricated on silicon, operates at room-temperature, and exhibits a responsivity of 1.0 A/W at wavelengths between 2.1 and 2.5 μm.

  12. Driving Oxygen Coordinated Ligand Exchange at Nanocrystal Surfaces using Trialkylsilylated Chalcogenides

    SciTech Connect

    Caldwell, Marissa A.; Albers, Aaron E.; Levy, Seth C.; Pick, Teresa E.; Cohen, Bruce E.; Helms, Brett A.; Milliron, Delia J.

    2010-11-11

    A general, efficient method is demonstrated for exchanging native oxyanionic ligands on inorganic nanocrystals with functional trimethylsilylated (TMS) chalcogenido ligands. In addition, newly synthesized TMS mixed chalcogenides leverage preferential reactivity of TMS-S bonds over TMS-O bonds, enabling efficient transfer of luminescent nanocrystals into aqueous media with retention of their optical properties.

  13. Open framework metal chalcogenides as efficient photocatalysts for reduction of CO2 into renewable hydrocarbon fuel

    NASA Astrophysics Data System (ADS)

    Sasan, Koroush; Lin, Qipu; Mao, Chengyu; Feng, Pingyun

    2016-05-01

    Open framework metal chalcogenides are a family of porous semiconducting materials with diverse chemical compositions. Here we show that these materials containing covalent three-dimensional superlattices of nanosized supertetrahedral clusters can function as efficient photocatalysts for the reduction of CO2 to CH4. Unlike dense semiconductors, metal cations are successfully incorporated into the channels of the porous semiconducting materials to further tune the physical properties of the materials such as electrical conductivity and band gaps. In terms of the photocatalytic properties, the metal-incorporated porous chalcogenides demonstrated enhanced solar energy absorption and higher electrical conductivity and improved photocatalytic activity.Open framework metal chalcogenides are a family of porous semiconducting materials with diverse chemical compositions. Here we show that these materials containing covalent three-dimensional superlattices of nanosized supertetrahedral clusters can function as efficient photocatalysts for the reduction of CO2 to CH4. Unlike dense semiconductors, metal cations are successfully incorporated into the channels of the porous semiconducting materials to further tune the physical properties of the materials such as electrical conductivity and band gaps. In terms of the photocatalytic properties, the metal-incorporated porous chalcogenides demonstrated enhanced solar energy absorption and higher electrical conductivity and improved photocatalytic activity. Electronic supplementary information (ESI) available: The synthetic procedure, facilities information, EDX patterns and UV-Vis data. See DOI: 10.1039/c6nr02525k

  14. Measurement of chalcogenide glass optical dispersion using a mid-infrared prism coupler

    SciTech Connect

    Qiao, Hong; Anheier, Norman C.; Musgraves, Jonathan D.; Richardson, Kathleen; Hewak, Daniel W.

    2011-05-01

    Physical properties of chalcogenide glass, including broadband infrared transparency, high refractive index, low glass transition temperature, and nonlinear properties, make them attractive candidates for advanced mid-infrared (3 to 12 {micro}m) optical designs. Efforts focused at developing new chalcogenide glass formulations and processing methods require rapid quantitative evaluation of their optical contents to guide the materials research. However, characterization of important optical parameters such as optical dispersion remains a slow and costly process, generally with limited accuracy. The recent development of a prism coupler at the Pacific Northwest National Laboratory (PNNL) now enables rapid, high precision measurement of refractive indices at discrete wavelengths from the visible to the mid-infrared. Optical dispersion data of several chalcogenide glass families were collected using this method. Variations in the optical dispersion were correlated to glass composition and compared against measurements using other methods. While this work has been focused on facilitating chalcogenide glass synthesis, mid-infrared prism coupler analysis has broader applications to other mid-infrared optical material development efforts, including oxide glasses and crystalline materials.

  15. Low-Temperature Growth of Two-Dimensional Layered Chalcogenide Crystals on Liquid.

    PubMed

    Zhou, Yubing; Deng, Bing; Zhou, Yu; Ren, Xibiao; Yin, Jianbo; Jin, Chuanhong; Liu, Zhongfan; Peng, Hailin

    2016-03-01

    The growth of high-quality two-dimensional (2D) layered chalcogenide crystals is highly important for practical applications in future electronics, optoelectronics, and photonics. Current route for the synthesis of 2D chalcogenide crystals by vapor deposition method mainly involves an energy intensive high-temperature growth process on solid substrates, often suffering from inhomogeneous nucleation density and grain size distribution. Here, we first demonstrate a facile vapor-phase synthesis of large-area high-quality 2D layered chalcogenide crystals on liquid metal surface with relatively low surface energy at a growth temperature as low as ∼100 °C. Uniform and large-domain-sized 2D crystals of GaSe and GaxIn1-xSe were grown on liquid metal surface even supported on a polyimide film. As-grown 2D GaSe crystals have been fabricated to flexible photodetectors, showing high photoresponse and excellent flexibility. Our strategy of energy-sustainable low-temperature growth on liquid metal surface may open a route to the synthesis of high-quality 2D crystals of Ga-, In-, Bi-, Hg-, Pb-, or Sn-based chalcogenides and halides.

  16. Electronic origins of the magnetic phase transitions in zinc-blende Mn chalcogenides

    SciTech Connect

    Wei, S.; Zunger, A. )

    1993-09-01

    Precise first-principles spin-polarized total-energy and band-structure calculations have been performed for the zinc-blende Mn chalcogenides with the use of the local-spin-density (LSD) approach. We find that the LSD is capable of identifying the correct magnetic-ground-state structure, but it overestimates the ordering temperature [ital T][sub [ital N

  17. The third-order optical nonlinearities of Ge-Ga-Sb(In)-S chalcogenide glasses

    SciTech Connect

    Guo, Haitao; Chen, Hongyan; Hou, Chaoqi; Lin, Aoxiang; Zhu, Yonggang; Lu, Shoudi; Gu, Shaoxuan; Lu, Min; Peng, Bo

    2011-05-15

    Research highlights: {yields} It is firstly demonstrated that the nonlinear refractive index n{sub 2} is dependent on the covalency of bonds in chalcogenide glass. {yields} Homopolar metallic bonds in chalcogenide glass have positive contribution to large nonlinear refractive index n{sub 2} also. {yields} The 80GeS{sub 2}.20Sb{sub 2}S{sub 3} glass would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths. -- Abstract: The third-order optical nonlinearities of 80GeS{sub 2}.(20 - x)Ga{sub 2}S{sub 3}.xY{sub 2}S{sub 3} (x = 0, 5, 10, 15, 20 and Y = Sb or In) chalcogenide glasses were investigated utilizing the Z-scan method at the wavelength of 800 nm and their linear optical properties and structure were also studied. By analyzing the compositional dependences and possible influencing factors including the linear refractive index, the concentration of lone electron pairs, the optical bandgap and the amount of weak covalent/homopolar bonds, it indicates that the electronic contribution in weak heteropolar covalent and homopolar metallic bonds is responsible for large nonlinear refractive index n{sub 2} in the chalcogenide glasses. These chalcogenide glasses have characteristics of environmentally friendship, wide transparency in the visible region, high nonlinear refractive index n{sub 2} and low nonlinear absorption coefficient {beta}, and would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths.

  18. New chalcogenide glasses in the CdTe-AgI-As{sub 2}Te{sub 3} system

    SciTech Connect

    Kassem, M.; Le Coq, D.; Boidin, R.; Bychkov, E.

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Determination of the glass-forming region in the pseudo-ternary CdTe-AgI-As{sub 2}Te{sub 3} system. Black-Right-Pointing-Pointer Characterization of macroscopic properties of the new CdTe-AgI-As{sub 2}Te{sub 3} glasses. Black-Right-Pointing-Pointer Characterization of the total conductivity of CdTe-AgI-As{sub 2}Te{sub 3} glasses. Black-Right-Pointing-Pointer Comparison between the selenide and telluride equivalent systems. -- Abstract: Chalcogenide glasses in the pseudo-ternary CdTe-AgI-As{sub 2}Te{sub 3} system were synthesized and the glass-forming range was determined. The maximum content of CdTe in this glass system was found to be equal to 15 mol.%. The macroscopic characterizations of samples have consisted in Differential Scanning Calorimetry, density, and X-ray diffraction measurements. The cadmium telluride addition does not generate any significant change in the glass transition temperature but the resistance of binary AgI-As{sub 2}Te{sub 3} glasses towards crystallisation is estimated to be decreasing on the base of {Delta}T = T{sub x} - T{sub g} parameter. The total electrical conductivity {sigma} was measured by complex impedance spectroscopy. First, the CdTe additions in the (AgI){sub 0.5}(As{sub 2}Te{sub 3}){sub 0.5} host glass, (CdTe){sub x}(AgI){sub 0.5-x/2}(As{sub 2}Te{sub 3}){sub 0.5-x/2} lead to a conductivity decrease at x {<=} 0.05. Then, the behaviour is reversed at 0.05 {<=} x {<=} 0.15. The obtained results are discussed by comparison with the equivalent selenide system.

  19. Syntheses, structures, magnetism, and optical properties of gadolinium scandium chalcogenides

    SciTech Connect

    Jin Gengbang; Choi, Eun Sang; Albrecht-Schmitt, Thomas E.

    2009-05-15

    Three gadolinium scandium chalcogenides have been synthesized using Sb{sub 2}Q{sub 3} (Q=S, Se) fluxes at 975 deg. C. Gd{sub 3.04}Sc{sub 0.96}S{sub 6}, GdScS{sub 3}, and Gd{sub 1.05}Sc{sub 0.95}Se{sub 3} are crystallized in U{sub 3}ScS{sub 6} type, GdFeO{sub 3} type, and UFeS{sub 3} type structures, respectively. The magnetic susceptibilities for these compounds follow the Curie-Weiss law above their transition temperatures. The effective magnetic moments are close to calculated values for free Gd{sup 3+} ions. The Weiss constants for Gd{sub 3.04}Sc{sub 0.96}S{sub 6}, GdScS{sub 3}, and Gd{sub 1.05}Sc{sub 0.95}Se{sub 3} are determined to be -3.3(1), -4.5(4), and 1.5(1) K, respectively. Gd{sub 3.04}Sc{sub 0.96}S{sub 6} orders antiferromagnetically below 9 K. GdScS{sub 3} exhibits an antiferromagnetic ordering below 3 K with a weak ferromagnetism. Gd{sub 1.05}Sc{sub 0.95}Se{sub 3} undergoes a ferromagnetic transition around 5 K. The optical band gaps for Gd{sub 3.04}Sc{sub 0.96}S{sub 6}, GdScS{sub 3}, and Gd{sub 1.05}Sc{sub 0.95}Se{sub 3} are 1.5, 2.1, and 1.2 eV, respectively. - Graphical abstract: A view of the three-dimensional structure of Gd{sub 3.04}Sc{sub 0.96}S{sub 6} along the c axis.

  20. Laser annealing and defect study of chalcogenide photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Bhatia, Ashish

    Cu(In,Ga)Se2 (CIGSe), CuZnSn(S,Se)4(CZTSSe), etc., are the potential chalcogenide semiconductors being investigated for next-generation thin film photovoltaics (TFPV). While the champion cell efficiency of CIGSe has exceeded 20%, CZTSSe has crossed the 10% mark. This work investigates the effect of laser annealing on CISe films, and compares the electrical characteristics of CIGSe (chalcopyrite) and CZTSe (kesterite) solar cells. Chapter 1 through 3 provide a background on semiconductors and TFPV, properties of chalcopyrite and kesterite materials, and their characterization using deep level transient spectroscopy (DLTS) and thermal admittance spectroscopy (TAS). Chapter 4 investigates electrochemical deposition (nonvacuum synthesis) of CISe followed by continuous wave laser annealing (CWLA) using a 1064 nm laser. It is found that CWLA at ≈ 50 W/cm2 results in structural changes without melting and dewetting of the films. While Cu-poor samples show about 40% reduction in the full width at half maximum of the respective x-ray diffraction peaks, identically treated Cu-rich samples register more than 80% reduction. This study demonstrates that an entirely solid-phase laser annealing path exists for chalcopyrite phase formation and crystallization. Chapter 5 investigates the changes in defect populations after pulse laser annealing in submelting regime of electrochemically deposited and furnace annealed CISe films. DLTS on Schottky diodes reveal that the ionization energy of the dominant majority carrier defect state changes nonmonotonically from 215+/-10 meV for the reference sample, to 330+/-10 meV for samples irradiated at 20 and 30 mJ/cm2, and then back to 215+/-10 meV for samples irradiated at 40 mJ/cm2. A hypothesis involving competing processes of diffusion of Cu and laser-induced generation of In vacancies may explain this behavior. Chapter 6 compares the electrical characteristics of chalcopyrite and kesterite materials. Experiments reveal CZTSe cell has an

  1. Wireless Chalcogenide Nanoionic-Based Radio-Frequency Switch

    NASA Technical Reports Server (NTRS)

    Nessel, James; Miranda, Felix

    2013-01-01

    A new nonvolatile nanoionic switch is powered and controlled through wireless radio-frequency (RF) transmission. A thin layer of chalcogenide glass doped with a metal ion, such as silver, comprises the operational portion of the switch. For the switch to function, an oxidizable electrode is made positive (anode) with respect to an opposing electrode (cathode) when sufficient bias, typically on the order of a few tenths of a volt or more, is applied. This action causes the metal ions to flow toward the cathode through a coordinated hopping mechanism. At the cathode, a reduction reaction occurs to form a metal deposit. This metal deposit creates a conductive path that bridges the gap between electrodes to turn the switch on. Once this conductive path is formed, no further power is required to maintain it. To reverse this process, the metal deposit is made positive with respect to the original oxidizable electrode, causing the dissolution of the metal bridge thereby turning the switch off. Once the metal deposit has been completely dissolved, the process self-terminates. This switching process features the following attributes. It requires very little to change states (i.e., on and off). Furthermore, no power is required to maintain the states; hence, the state of the switch is nonvolatile. Because of these attributes the integration of a rectenna to provide the necessary power and control is unique to this embodiment. A rectenna, or rectifying antenna, generates DC power from an incident RF signal. The low voltages and power required for the nanoionic switch control are easily generated from this system and provide the switch with a novel capability to be operated and powered from an external wireless device. In one realization, an RF signal of a specific frequency can be used to set the switch into an off state, while another frequency can be used to set the switch to an on state. The wireless, miniaturized, and nomoving- part features of this switch make it

  2. Effect of the Chalcogenide Element Doping on the Electronic Properties of Co2FeAl Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Huang, Ting; Cheng, Xiao-min; Guan, Xia-wei; Miao, Xiang-shui

    2016-02-01

    The electronic properties of the typical Heusler compound Co2FeAl with chalcogenide element doping were investigated by means of first principles calculations within the local spin-density approximation (LSDA) + Hubbard U parameter (U). The calculations indicate that, only when 25% of the number of Al atoms is substituted by the chalcogenide element, the chalcogenide element-doped Co2FeAl shows the half metallic properties. The Fermi energy ( E F) of the 25% chalcogenide element-doped Co2FeAl is located in the middle of the gap of the minority states instead of around the top of the valence band as in Co2FeAl. Moreover, the band gap of 25% Te-doped Co2FeAl (0.80 eV) is wider than that of Co2FeAl (0.74 eV). These improved electronic structures will make 25% chalcogenide element-doped Co2FeAl more stable against temperature variation. Therefore, the expected excellent stability of the 25% chalcogenide element-doped Co2FeAl make it more suitable for spintronic applications than Co2FeAl.

  3. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.

    PubMed

    Heine, Thomas

    2015-01-20

    CONSPECTUS: After the discovery of graphene and the development of powerful exfoliation techniques, experimental preparation of two-dimensional (2D) crystals can be expected for any layered material that is known to chemistry. Besides graphene and hexagonal boron nitride (h-BN), transition metal chalcogenides (TMC) are among the most studied ultrathin materials. In particular, single-layer MoS2, a direct band gap semiconductor with ∼1.9 eV energy gap, is popular in physics and nanoelectronics, because it nicely complements semimetallic graphene and insulating h-BN monolayer as a construction component for flexible 2D electronics and because it was already successfully applied in the laboratory as basis material for transistors and other electronic and optoelectronic devices. Two-dimensional crystals are subject to significant quantum confinement: compared with their parent layered 3D material, they show different structural, electronic, and optical properties, such as spontaneous rippling as free-standing monolayer, significant changes of the electronic band structure, giant spin-orbit splitting, and enhanced photoluminescence. Most of those properties are intrinsic for the monolayer and already absent for two-layer stacks of the same 2D crystal. For example, single-layer MoS2 is a direct band gap semiconductor with spin-orbit splitting of 150 meV in the valence band, while the bilayer of the same material is an indirect band gap semiconductor without observable spin-orbit splitting. All these properties have been observed experimentally and are in excellent agreement with calculations based on density-functional theory. This Account reports theoretical studies of a subgroup of transition metal dichalcogenides with the composition MX2, with M = Mo, or W and X = Se or S, also referred to as "MoWSeS materials". Results on the electronic structure, quantum confinement, spin-orbit coupling, spontaneous monolayer rippling, and change of electronic properties in the

  4. A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells

    NASA Astrophysics Data System (ADS)

    Freitas, Jilian N.; Gonçalves, Agnaldo S.; Nogueira, Ana F.

    2014-05-01

    In this review the use of solution-processed chalcogenide quantum dots (CdS, CdSe, PbS, etc.) in hybrid organic-inorganic solar cells is explored. Such devices are known as potential candidates for low-cost and efficient solar energy conversion, and compose the so-called third generation solar cells. The incorporation of oxides and metal nanoparticles has also been successfully achieved in this new class of photovoltaic devices; however, we choose to explore here chalcogenide quantum dots in light of their particularly attractive optical and electronic properties. We address herein a comprehensive review of the historical background and state-of-the-art comprising the incorporation of such nanoparticles in polymer matrices. Later strategies for surface chemistry manipulation, in situ synthesis of nanoparticles, use of continuous 3D nanoparticles network (aerogels) and ternary systems are also reviewed.

  5. Gamma radiation induced effects in floppy and rigid Ge-containing chalcogenide thin films

    SciTech Connect

    Ailavajhala, Mahesh S.; Mitkova, Maria; Gonzalez-Velo, Yago; Barnaby, Hugh; Kozicki, Michael N.; Holbert, Keith; Poweleit, Christian; Butt, Darryl P.

    2014-01-28

    We explore the radiation induced effects in thin films from the Ge-Se to Ge-Te systems accompanied with silver radiation induced diffusion within these films, emphasizing two distinctive compositional representatives from both systems containing a high concentration of chalcogen or high concentration of Ge. The studies are conducted on blanket chalcogenide films or on device structures containing also a silver source. Data about the electrical conductivity as a function of the radiation dose were collected and discussed based on material characterization analysis. Raman Spectroscopy, X-ray Diffraction Spectroscopy, and Energy Dispersive X-ray Spectroscopy provided us with data about the structure, structural changes occurring as a result of radiation, molecular formations after Ag diffusion into the chalcogenide films, Ag lateral diffusion as a function of radiation and the level of oxidation of the studied films. Analysis of the electrical testing suggests application possibilities of the studied devices for radiation sensing for various conditions.

  6. Chalcogenide-based optical parametric oscillator at 2  μm.

    PubMed

    Abdukerim, Nurmemet; Li, Lizhu; Rochette, Martin

    2016-09-15

    We report the first chalcogenide-based optical parametric oscillator (OPO) relying on pure parametric gain. The all-fiber OPO operates in the wavelength range of 2 μm and is tunable over 290 nm from the combined Stokes and anti-Stokes contributions. The gain medium is a 10 cm long chalcogenide microwire made from a high modal confinement As2Se3 core with cyclo olefin polymer cladding, leading to optimized chromatic dispersion, high nonlinearity, and broadband transparency. With a power threshold of only a fraction of a milliwatt, this design is promising for the fabrication of tunable, compact, and low-power consumption mid-infrared sources.

  7. Magnetic Properties Controlled by Interstitial or Interlayer Cations in Iron Chalcogenides

    PubMed Central

    Tang, Shan-Chang; Ding, Ming-Cui; Zhang, Yu-Zhong

    2016-01-01

    By applying density functional theory calculations to iron chalcogenides, we find that magnetic order in Fe1+yTe and magnetic instability at (π, π) in KyFe2Se2 are controlled by interstitial and interlayer cations, respectively. While in Fe1+yTe, magnetic phase transitions occur among collinear, exotic bicollinear and plaquette-ordered antiferronmagnetic states when the height of interstitial irons measured from iron plane or the concentration of interstitial irons is varied, the magnetic instability at (π, π) which is believed to be responsible for the Cooper pairing in iron pnictides is significantly enhanced when y is much smaller than 1 in KyFe2Se2. Our results indicate that, similar to iron pnictides, itinerant electrons play important roles in iron chalcogenides, even though the fluctuating local moments become larger. PMID:26742455

  8. The mechanism of alcoholic beverage induced superconductivity in Fe-chalcogenide compounds

    NASA Astrophysics Data System (ADS)

    Deguchi, Keita; Demura, Satoshi; Okazaki, Hiroyuki; Denholme, Saleem; Fujioka, Masaya; Ozaki, Toshinori; Yamaguchi, Takahide; Takeya, Hiroyuki; Takano, Yoshihiko

    2013-03-01

    We have clarified the mechanism of alcoholic beverage induced superconductivity in Fe-chalcogenide compounds. Previously we reported that the bulk superconductivity in Fe-based compounds Fe(Te, Se) and Fe(Te, S) is achieved by heating in alcoholic beverages. However, the exact mechanism of how they act to enhance the superconductivity in the compounds remains unsolved. To understand the effect of alcoholic beverage treatment, we investigated the mechanism using a technology of metabolomic analysis. We found that weak acid in alcoholic beverages has the ability to deintercalate the excess Fe, which is not in favor of superconductivity. In this presentation, we will discuss the systematic mechanism to induce superconductivity in Fe-chalcogenide compounds.

  9. Bending-induced mode non-degeneracy and coupling in chalcogenide negative curvature fibers.

    PubMed

    Wei, Chengli; Menyuk, Curtis R; Hu, Jonathan

    2016-05-30

    We study bend loss in chalcogenide negative curvature fibers with different polarizations, different tube wall thicknesses, and different bend directions relative to the mode polarization. The coupling between the core mode and tube modes induces bend loss peaks in the two non-degenerate modes at the same bend radius. There is as much as a factor of 28 difference between the losses of the two polarization modes. The fiber with a larger tube wall thickness, corresponding to a smaller inner tube diameter, can sustain a smaller bend radius. The bend loss is sensitive to the bend direction when coupling occurs between the core mode and tube modes. A bend loss of 0.2 dB/m at a bend radius of 16 cm, corresponding to 0.2 dB/turn, can be achieved in a chalcogenide negative curvature fiber. PMID:27410139

  10. Infrared Polarizer Fabrication by Imprinting on Sb-Ge-Sn-S Chalcogenide Glass

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Tani, Kunihiko; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2012-01-01

    We fabricated infrared wire-grid polarizers consisting of a 500-nm pitch Al grating on a low toxic chalcogenide glass (Sb-Ge-Sn-S system) using the direct imprinting of subwavelength grating followed by a deposition of Al metal by thermal evaporation. To fabricate the subwavelength grating on a chalcogenide glass more easily, the sharp grating was formed on the mold surface. The fabricated polarizer with Al thickness of 130 nm exhibited a polarization function with a transverse magnetic transmittance greater than 60% in the 5-9 µm wavelength range, and an extinction ratio greater than 20 dB in 3.5-11 µm wavelength range. The extinction ratio of the element with Al wires of 180-nm thickness reached 27 dB at 5.4-µm wavelength. The polarizer can be fabricated at lower costs and simpler fabrication processes compared to conventional infrared polarizers.

  11. Fabrication of Achromatic Infrared Wave Plate by Direct Imprinting Process on Chalcogenide Glass

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Tani, Kunihiko; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2012-07-01

    An achromatic infrared wave plate was fabricated by forming a subwavelength grating on the chalcogenide glass using direct imprint lithography. A low toxic chalcogenide glass (Sb-Ge-Sn-S system) substrate was imprinted with a grating of 1.63-µm depth, a fill factor of 0.7, and 3-µm period using glassy carbon as a mold at 253 °C and 3.8 MPa. Phase retardation of the element reached around 30° at 8.5-10.5 µm wavelengths, and the transmittance exceeded that of a flat substrate over 8 µm wavelength. Fabrication of the mid-infrared wave plate is thereby less expensive than that of conventional crystalline wave plates.

  12. Direct imprinting on chalcogenide glass and fabrication of infrared wire-grid polarizer

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2013-05-01

    Infrared wire-grid polarizers were fabricated consisting of a 500-nm pitch Al grating on a low toxic chalcogenide glass (Sb-Ge-Sn-S system) using the direct imprinting of subwavelength grating followed by a deposition of Al metal by thermal evaporation. To fabricate the subwavelength grating on a chalcogenide glass more easily, the sharp grating was formed on the mold surface. The fabricated polarizer with Al thickness of 130 nm exhibited a polarization function with a transverse magnetic transmittance greater than 60% in the 5-9-μm wavelength range, and an extinction ratio greater than 20 dB in the 4-11-μm wavelength range. The polarizer can be fabricated at lower costs and simpler fabrication processes compared to conventional infrared polarizers.

  13. Photonic bandgap amorphous chalcogenide thin films with multilayered structure grown by pulsed laser deposition method

    NASA Astrophysics Data System (ADS)

    Zhang, Shao-qian; Němec, Petre; Nazabal, Virginie; Jin, Yu-qi

    2016-05-01

    Amorphous chalcogenide thin films were fabricated by the pulsed laser deposition technique. Thereafter, the stacks of multilayered thin films for reflectors and microcavity were designed for telecommunication wavelength. The prepared multilayered thin films for reflectors show good compatibility. The microcavity structure consists of Ge25Ga5Sb10S65 (doped with Er3+) spacer layer surrounded by two 5-layer As40Se60/Ge25Sb5S70 reflectors. Scanning/transmission electron microscopy results show good periodicity, great adherence and smooth interfaces between the alternating dielectric layers, which confirms a suitable compatibility between different materials. The results demonstrate that the chalcogenides can be used for preparing vertical Bragg reflectors and microcavity with high quality.

  14. Revisiting the Local Structure in Ge-Sb-Te based Chalcogenide Superlattices

    PubMed Central

    Casarin, Barbara; Caretta, Antonio; Momand, Jamo; Kooi, Bart J.; Verheijen, Marcel A.; Bragaglia, Valeria; Calarco, Raffaella; Chukalina, Marina; Yu, Xiaoming; Robertson, John; Lange, Felix R. L.; Wuttig, Matthias; Redaelli, Andrea; Varesi, Enrico; Parmigiani, Fulvio; Malvestuto, Marco

    2016-01-01

    The technological success of phase-change materials in the field of data storage and functional systems stems from their distinctive electronic and structural peculiarities on the nanoscale. Recently, superlattice structures have been demonstrated to dramatically improve the optical and electrical performances of these chalcogenide based phase-change materials. In this perspective, unravelling the atomistic structure that originates the improvements in switching time and switching energy is paramount in order to design nanoscale structures with even enhanced functional properties. This study reveals a high- resolution atomistic insight of the [GeTe/Sb2Te3] interfacial structure by means of Extended X-Ray Absorption Fine Structure spectroscopy and Transmission Electron Microscopy. Based on our results we propose a consistent novel structure for this kind of chalcogenide superlattices. PMID:26926116

  15. Progress on a New Non-Volatile Memory for Space Based on Chalcogenide Glass

    SciTech Connect

    Maimon, J.; Hunt, K.; Rodgers, J.; Burcin, L.; Knowles, K.

    2004-02-04

    We report on the progress of a recent addition to non-volatile solid state memory technologies suited for space and other ionizing radiation environments. We summarize the material and processing science behind the current generation of chalcogenide phase-change memories fabricated on CMOS structures. The chalcogenide material used for phase-change applications in rewritable optical storage (Ge2Sb2Te5) has been integrated with a radiation hardened CMOS process to produce 64kbit memory arrays. On selected arrays electrical testing demonstrated up to 100% memory cell yield, 100ns programming and read speeds, and write currents as low as 1mA/bit. Devices functioned normally from - 55 deg. C to 125 deg. C. Write/read endurance has been demonstrated to 1 x 108 before first bit failure. Radiation results show no degradation to the hardened CMOS or effects that can be attributed to the phase-change material. Future applications of the technology are discussed.

  16. Charge separation in facet-engineered chalcogenide photocatalyst: a selective photocorrosion approach.

    PubMed

    Li, Naixu; Liu, Maochang; Zhou, Zhaohui; Zhou, Jiancheng; Sun, Yueming; Guo, Liejin

    2014-08-21

    Finding active sites for photocatalytic reduction and oxidation allows the mechanistic understanding of a given reaction, ensuring the rational design and fabrication of an efficient photocatalyst. Herein, using well-shaped Cu2WS4 decahedra as model photocatalysts, we demonstrated that photoinduced oxidative etching could be considered as an indication of the photooxidation reaction sites of chalcogenide photocatalyst as it only occurred on {101} facets of Cu2WS4 during photocatalytic hydrogen production. The photocatalytic reduction reaction, in contrast, was confined on its {001} facets. Based on this finding, the photocatalytic activity of Cu2WS4 decahedra could be further tailored by controlling the ratio of {001}/{101} facets. Thus, this work provides a general route to the determination of reactive sites on shaped chalcogenide photocatalysts.

  17. Structural investigation of Bi doped InSe chalcogenide thin films using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharma, Shaveta; Sharma, Rita; Kumar, Praveen; Chander, Ravi; Thangaraj, R.; Mian, M.

    2015-05-01

    The infrared transparency of the chalcogenide glasses have been investigated presently for the CO/CO2 laser power in various medical diagnostic applications. The addition of Bi improves the chemical durability and broadens the IR transparency region of various chalcogenide glassy systems. In the present work, we have studied the effect of Bi addition on the structural properties of In-Se thin films by using the RAMAN spectroscopy. The melt quenched bulk ingot of BixIn25-xSe75 (1≤ x≤ 7) alloys were used for the vacuum thermal evaporation of films in a vacuum better than 10-5 mbar. RAMAN bands at 1575, 1354 and 525 cm-1 has been observed, while with the increase in the Bi concentration vibrational band disappear at 525 cm-1 in sample x=7.

  18. Solution processed chalcogenide films and micro-patterns via self-assembly

    NASA Astrophysics Data System (ADS)

    Singh, Radhakant; Sachan, Priyanka; Dwivedi, Prabhat K.; Sharma, Ashutosh

    2016-05-01

    Chalcogenide (ChG) are the choice materials for IR applications due to their high refractive index, mid IR transparency and high nonlinear optical properties. In this work, we study the characteristics of solution processed Chalcogenide films, As2S3 prepared by various amine solvents, for possible pattern fabrications. Since solution processed ChG films tend to contain solvent related defects, it is important to optimize the process parameters to create defect free films, structurally similar to bulk ChG. We have studied the physical integrity and morphology of solution processed ChG films as a function of annealing conditions and film thickness. Optical and morphological characterizations of these films are carried out in order to fabricate defect free, optically useful micro-structures.

  19. Chalcogenide-based optical parametric oscillator at 2  μm.

    PubMed

    Abdukerim, Nurmemet; Li, Lizhu; Rochette, Martin

    2016-09-15

    We report the first chalcogenide-based optical parametric oscillator (OPO) relying on pure parametric gain. The all-fiber OPO operates in the wavelength range of 2 μm and is tunable over 290 nm from the combined Stokes and anti-Stokes contributions. The gain medium is a 10 cm long chalcogenide microwire made from a high modal confinement As2Se3 core with cyclo olefin polymer cladding, leading to optimized chromatic dispersion, high nonlinearity, and broadband transparency. With a power threshold of only a fraction of a milliwatt, this design is promising for the fabrication of tunable, compact, and low-power consumption mid-infrared sources. PMID:27628398

  20. Recording of polarization holograms in a liquid crystal cell with a photosensitive chalcogenide orientation layer [Invited].

    PubMed

    Sheremet, Nina; Kurioz, Yuriy; Slyusarenko, Kostyantyn; Trunov, Michael; Reznikov, Yuriy

    2013-08-01

    Polarization gratings have been recorded in a combined liquid crystal (LC) cell made of a substrate covered with a photosensitive chalcogenide orientation layer and a reference substrate covered with a rubbed polyimide film. The gratings are formed due to the spatially modulated light-induced easy orientation axis on the chalcogenide surface recorded by two beams with opposite circular polarizations. The gratings are permanent, but they can be erased by one of the recording beams and re-recorded. The diffraction intensity of the circularly polarized light is achromatic and does not depend on the birefringence of the LC. The diffraction efficiency of the grating is of the order of a few percents. Application of an ac field causes a strong increase of the diffraction efficiency up to 45%. PMID:23913086

  1. Low-power-threshold photonic saturable absorber in nonlinear chalcogenide glass.

    PubMed

    Minardi, S; Cheng, G; D'Amico, C; Stoian, R

    2015-01-15

    We experimentally demonstrate controllable nonlinear modulation of optical guiding in ultrafast laser-written evanescently coupled waveguide arrays in bulk gallium lanthanum sulfide chalcogenide glass. The intensity-dependent response is validated by simulating light propagation in waveguide arrays with instantaneous Kerr nonlinearity using a discrete-continuous spatiotemporal unidirectional Maxwell equation model. The intensity-driven modulation of transmission in multicore structures acts as a potential saturable absorber at kilowatt threshold levels. PMID:25679858

  2. Large magnetoresistance in non-magnetic silver chalcogenides and new class of magnetoresistive compounds

    DOEpatents

    Saboungi, Marie-Louis; Price, David C. L.; Rosenbaum, Thomas F.; Xu, Rong; Husmann, Anke

    2001-01-01

    The heavily-doped silver chalcogenides, Ag.sub.2+.delta. Se and Ag.sub.2+.delta. Te, show magnetoresistance effects on a scale comparable to the "colossal" magnetoresistance (CMR) compounds. Hall coefficient, magnetoconductivity, and hydrostatic pressure experiments establish that elements of narrow-gap semiconductor physics apply, but both the size of the effects at room temperature and the linear field dependence down to fields of a few Oersteds are surprising new features.

  3. Minority carrier device comprising a passivating layer including a Group 13 element and a chalcogenide component

    NASA Technical Reports Server (NTRS)

    Barron, Andrew R. (Inventor); Hepp, Aloysius F. (Inventor); Jenkins, Phillip P. (Inventor); MacInnes, Andrew N. (Inventor)

    1999-01-01

    A minority carrier device includes at least one junction of at least two dissimilar materials, at least one of which is a semiconductor, and a passivating layer on at least one surface of the device. The passivating layer includes a Group 13 element and a chalcogenide component. Embodiments of the minority carrier device include, for example, laser diodes, light emitting diodes, heterojunction bipolar transistors, and solar cells.

  4. On-chip mid-infrared gas detection using chalcogenide glass waveguide

    NASA Astrophysics Data System (ADS)

    Han, Z.; Lin, P.; Singh, V.; Kimerling, L.; Hu, J.; Richardson, K.; Agarwal, A.; Tan, D. T. H.

    2016-04-01

    We demonstrate an on-chip sensor for room-temperature detection of methane gas using a broadband spiral chalcogenide glass waveguide coupled with off-chip laser and detector. The waveguide is fabricated using UV lithography patterning and lift-off after thermal evaporation. We measure the intensity change due to the presence and concentration of methane gas in the mid-infrared (MIR) range. This work provides an approach for broadband planar MIR gas sensing.

  5. Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy.

    PubMed

    Klein, Andreas

    2015-04-10

    Energy band alignment plays an important role in thin film solar cells. This article presents an overview of the energy band alignment in chalcogenide thin film solar cells with a particular focus on the commercially available material systems CdTe and Cu(In,Ga)Se2. Experimental results from two decades of photoelectron spectroscopy experiments are compared with density functional theory calculations taken from literature. It is found that the experimentally determined energy band alignment is in good agreement with theoretical predictions for many interfaces. These alignments, in particular the theoretically predicted alignments, can therefore be considered as the intrinsic or natural alignments for a given material combination. The good agreement between experiment and theory enables a detailed discussion of the interfacial composition of Cu(In,Ga)Se2/CdS interfaces in terms of the contribution of ordered vacancy compounds to the alignment of the energy bands. It is furthermore shown that the most important interfaces in chalcogenide thin film solar cells, those between Cu(In,Ga)Se2 and CdS and between CdS and CdTe are quite insensitive to the processing of the layers. There are plenty of examples where a significant deviation between experimentally-determined band alignment and theoretical predictions are evident. In such cases a variation of band alignment of sometimes more than 1 eV depending on interface preparation can be obtained. This variation can lead to a significant deterioration of device properties. It is suggested that these modifications are related to the presence of high defect concentrations in the materials forming the contact. The particular defect chemistry of chalcogenide semiconductors, which is related to the ionicity of the chemical bond in these materials and which can be beneficial for material and device properties, can therefore cause significant device limitations, as e.g. in the case of the CuInS2 thin film solar cells or for new

  6. Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Klein, Andreas

    2015-04-01

    Energy band alignment plays an important role in thin film solar cells. This article presents an overview of the energy band alignment in chalcogenide thin film solar cells with a particular focus on the commercially available material systems CdTe and Cu(In,Ga)Se2. Experimental results from two decades of photoelectron spectroscopy experiments are compared with density functional theory calculations taken from literature. It is found that the experimentally determined energy band alignment is in good agreement with theoretical predictions for many interfaces. These alignments, in particular the theoretically predicted alignments, can therefore be considered as the intrinsic or natural alignments for a given material combination. The good agreement between experiment and theory enables a detailed discussion of the interfacial composition of Cu(In,Ga)Se2/CdS interfaces in terms of the contribution of ordered vacancy compounds to the alignment of the energy bands. It is furthermore shown that the most important interfaces in chalcogenide thin film solar cells, those between Cu(In,Ga)Se2 and CdS and between CdS and CdTe are quite insensitive to the processing of the layers. There are plenty of examples where a significant deviation between experimentally-determined band alignment and theoretical predictions are evident. In such cases a variation of band alignment of sometimes more than 1 eV depending on interface preparation can be obtained. This variation can lead to a significant deterioration of device properties. It is suggested that these modifications are related to the presence of high defect concentrations in the materials forming the contact. The particular defect chemistry of chalcogenide semiconductors, which is related to the ionicity of the chemical bond in these materials and which can be beneficial for material and device properties, can therefore cause significant device limitations, as e.g. in the case of the CuInS2 thin film solar cells or for new

  7. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    SciTech Connect

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  8. Chemical Control of Plasmons in Metal Chalcogenide and Metal Oxide Nanostructures.

    PubMed

    Mattox, Tracy M; Ye, Xingchen; Manthiram, Karthish; Schuck, P James; Alivisatos, A Paul; Urban, Jeffrey J

    2015-10-14

    The field of plasmonics has grown to impact a diverse set of scientific disciplines ranging from quantum optics and photovoltaics to metamaterials and medicine. Plasmonics research has traditionally focused on noble metals; however, any material with a sufficiently high carrier density can support surface plasmon modes. Recently, researchers have made great gains in the synthetic (both intrinsic and extrinsic) control over the morphology and doping of nanoscale oxides, pnictides, sulfides, and selenides. These synthetic advances have, collectively, blossomed into a new, emerging class of plasmonic metal chalcogenides that complement traditional metallic materials. Chalcogenide and oxide nanostructures expand plasmonic properties into new spectral domains and also provide a rich suite of chemical controls available to manipulate plasmons, such as particle doping, shape, and composition. New opportunities in plasmonic chalcogenide nanomaterials are highlighted in this article, showing how they may be used to fundamentally tune the interaction and localization of electromagnetic fields on semiconductor surfaces in a way that enables new horizons in basic research and energy-relevant applications.

  9. Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes

    PubMed Central

    Bendounan, Azzedine; Harish, Makri Nimbegondi Kotresh; Giglia, Angelo; Kubsky, Stefan; Sirotti, Fausto; Pasquali, Luca; Sampath, Srinivasan

    2016-01-01

    Summary This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon–chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon–chalcogen atom-bond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the π-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules. PMID:26977383

  10. Digital transfer growth of patterned 2D metal chalcogenides by confined nanoparticle evaporation.

    PubMed

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; Boulesbaa, Abdelaziz; Rouleau, Christopher M; Puretzky, Alexander A; McGuire, Michael A; Srijanto, Bernadeta R; Xiao, Kai; Eres, Gyula; Duscher, Gerd; Geohegan, David B

    2014-11-25

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor-phase synthesis. Here, we demonstrate a method to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (∼100 μm lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.

  11. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures.

    PubMed

    Sun, Ya'nan; Dai, Shixun; Zhang, Peiqing; Wang, Xunsi; Xu, Yinsheng; Liu, Zijun; Chen, Feifei; Wu, Yuehao; Zhang, Yuji; Wang, Rongping; Tao, Guangming

    2015-09-01

    This paper reports on the fabrication and characterization of multimaterial chalcogenide fiber tapers that have high numerical apertures (NAs). We first fabricated multimaterial As(2)Se(3)-As(2)S(3) chalcogenide fiber preforms via a modified one-step coextrusion process. The preforms were drawn into multi- and single-mode fibers with high NAs (≈1.45), whose core/cladding diameters were 103/207 and 11/246 μm, respectively. The outer diameter of the fiber was tapered from a few hundred microns to approximately two microns through a self-developed automatic tapering process. Simulation results showed that the zero-dispersion wavelengths (ZDWs) of the tapers were shorter than 2 μm, indicating that the tapers can be conveniently pumped by commercial short wavelength infrared lasers. We also experimentally demonstrated the supercontinuum generation (SCG) in a 15-cm-long multimaterial As(2)Se(3)-As(2)S(3) chalcogenide taper with 1.9 μm core diameter and the ZDW was shifted to 3.3 μm. When pumping the taper with 100 fs short pulses at 3.4 µm, a 20 dB spectral of the generated supercontinuum spans from 1.5 μm to longer than 4.8 μm. PMID:26368447

  12. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    SciTech Connect

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; McGuire, Michael A.; Srijanto, Bernadeta R.; Xiao, Kai; Eres, Gyula; Duscher, Gerd; Geohegan, David B.

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.

  13. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

    SciTech Connect

    Yi, M.; Liu, Z. -K.; Zhang, Y.; Yu, R.; Zhu, J. -X.; Lee, J. J.; Moore, R. G.; Schmitt, F. T.; Li, W.; Riggs, S. C.; Chu, J. -H.; Lv, B.; Hu, J.; Hashimoto, M.; Mo, S. -K.; Hussain, Z.; Mao, Z. Q.; Chu, C. W.; Fisher, I. R.; Si, Q.; Shen, Z. -X.; Lu, D. H.

    2015-07-23

    Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe0.56Se0.44, monolayer FeSe grown on SrTiO3 and K0.76Fe1.72Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. As a result, these observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.

  14. Low threshold fiber taper coupled rare earth ion-doped chalcogenide microsphere laser

    NASA Astrophysics Data System (ADS)

    Li, Chao-Ran; Dai, Shi-Xun; Zhang, Qing-Yuan; Shen, Xiang; Wang, Xun-Si; Zhang, Pei-Qing; Lu, Lai-Wei; Wu, Yue-Hao; Lv, She-Qin

    2015-04-01

    We report the applications of a low-cost and environmentally friendly chalcogenide glass, 75GeS2-15Ga2S3-10CsI, in building active microsphere laser oscillators. A silica fiber taper is used as the coupling mechanism. With an 808-nm laser diode as a pump source, we show that a high-Q (˜ 6×104) laser mode could be obtained from a 75-μm diameter microsphere that is coupled with a 1.77-μm waist-diameter fiber taper. The threshold of the incident pump power is 1.39 mW, which is considerably lower than those of previously reported free-space coupled chalcogenide microsphere lasers. We also note an apparent enhancement in laser power generated from this chalcogenide microsphere laser. Project supported by the National Natural Science Foundation of China (Grant Nos. 61177087 and 61435009), the National Key Basic Research Program of China (Grant No. 2012CB722703), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B21007) , the K. C. Wong Magna Fund in Ningbo University, the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology), China (Grant No. 2014-skllmd-01), and the Natural Science Foundation of Ningbo City, China (Grant No. 2014A610125).

  15. Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides

    PubMed Central

    Liu, Zhen; Zhang, Lin; Wang, Ruigang; Poyraz, Selcuk; Cook, Jonathan; Bozack, Michael J.; Das, Siddhartha; Zhang, Xinyu; Hu, Liangbing

    2016-01-01

    Metal Chalcogenides (MCs) have emerged as an extremely important class of nanomaterials with applications ranging from lubrication to energy storage devices. Here we report our discovery of a universal, ultrafast (60 seconds), energy-efficient, and facile technique of synthesizing MC nanoparticles and nanostructures, using microwave-assisted heating. A suitable combination of chemicals was selected for reactions on Polypyrrole nanofibers (PPy-NF) in presence of microwave irradiation. The PPy-NF serves as the conducting medium to absorb microwave energy to heat the chemicals that provide the metal and the chalcogenide constituents separately. The MCs are formed as nanoparticles that eventually undergo a size-dependent, multi-stage aggregation process to yield different kinds of MC nanostructures. Most importantly, this is a single-step metal chalcogenide formation process that is much faster and much more energy-efficient than all the other existing methods and can be universally employed to produce different kinds of MCs (e.g., MoS2, and WS2). PMID:26931353

  16. Template-directed assembly of metal-chalcogenide nanocrystals into ordered mesoporous networks.

    SciTech Connect

    Vamvasakis, Ioannis; Subrahmanyam, Kota S.; Kanatzidis, Mercouri G.; Armatas, Gerasimos S.

    2015-04-01

    Although great progress in the synthesis of porous networks of metal and metal oxide nanoparticles with highly accessible pore surface and ordered mesoscale pores has been achieved, synthesis of assembled 3D mesostructures of metal-chalcogenide nanocrystals is still challenging. In this work we demonstrate that ordered mesoporous networks, which comprise well-defined interconnected metal sulfide nanocrystals, can be prepared through a polymer-templated oxidative polymerization process. The resulting self-assembled mesostructures that were obtained after solvent extraction of the polymer template impart the unique combination of light-emitting metal chalcogenide nanocrystals, three-dimensional open-pore structure, high surface area, and uniform pores. We show that the pore surface of these materials is active and accessible to incoming molecules, exhibiting high photocatalytic activity and stability, for instance, in oxidation of 1-phenylethanol into acetophenone. We demonstrate through appropriate selection of the synthetic components that this method is general to prepare ordered mesoporous materials from metal chalcogenide nanocrystals with various sizes and compositions.

  17. Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Zhang, Lin; Wang, Ruigang; Poyraz, Selcuk; Cook, Jonathan; Bozack, Michael J.; Das, Siddhartha; Zhang, Xinyu; Hu, Liangbing

    2016-03-01

    Metal Chalcogenides (MCs) have emerged as an extremely important class of nanomaterials with applications ranging from lubrication to energy storage devices. Here we report our discovery of a universal, ultrafast (60 seconds), energy-efficient, and facile technique of synthesizing MC nanoparticles and nanostructures, using microwave-assisted heating. A suitable combination of chemicals was selected for reactions on Polypyrrole nanofibers (PPy-NF) in presence of microwave irradiation. The PPy-NF serves as the conducting medium to absorb microwave energy to heat the chemicals that provide the metal and the chalcogenide constituents separately. The MCs are formed as nanoparticles that eventually undergo a size-dependent, multi-stage aggregation process to yield different kinds of MC nanostructures. Most importantly, this is a single-step metal chalcogenide formation process that is much faster and much more energy-efficient than all the other existing methods and can be universally employed to produce different kinds of MCs (e.g., MoS2, and WS2).

  18. New functionality of chalcogenide glasses for radiation sensing of nuclear wastes.

    PubMed

    Ailavajhala, M S; Gonzalez-Velo, Y; Poweleit, C D; Barnaby, H J; Kozicki, M N; Butt, D P; Mitkova, M

    2014-03-30

    Data about gamma radiation induced effects in Ge40Se60 chalcogenide thin films and radiation induced silver diffusion within these are presented. Blanket films and devices were created to study the structural changes, diffusion products, and device performance. Raman spectroscopy, X-ray diffraction, current vs. voltage (I-V) and impedance measurements expound the behavior of Ge40Se60 glass and silver diffusion within this glass under radiation. Raman study shows that there is a decrease in the area ratio between edge shared and corner shared structural units revealing structural reorganization occurring in the glasses as a result of gamma radiation. X-ray diffraction studies revealed that with sufficiently radiation dose it is also possible to create Ag2Se in selenium-depleted systems. Oxidation of the Ge enriched chalcogenide backbone is confirmed through the electrical performance of the sensing elements based on these films. Combination of these structural and diffusion products influences the device performance. The I-V behavior is characterized by increase in current and then stabilization as a function of radiation dose. Additionally, device modeling is also presented using Silvaco software and analytical methods to shed light on the device behavior. This type of sensor design and material characterizations facilitate in improving the radiation sensing capabilities of silver containing chalcogenide glass thin films.

  19. New functionality of chalcogenide glasses for radiation sensing of nuclear wastes.

    PubMed

    Ailavajhala, M S; Gonzalez-Velo, Y; Poweleit, C D; Barnaby, H J; Kozicki, M N; Butt, D P; Mitkova, M

    2014-03-30

    Data about gamma radiation induced effects in Ge40Se60 chalcogenide thin films and radiation induced silver diffusion within these are presented. Blanket films and devices were created to study the structural changes, diffusion products, and device performance. Raman spectroscopy, X-ray diffraction, current vs. voltage (I-V) and impedance measurements expound the behavior of Ge40Se60 glass and silver diffusion within this glass under radiation. Raman study shows that there is a decrease in the area ratio between edge shared and corner shared structural units revealing structural reorganization occurring in the glasses as a result of gamma radiation. X-ray diffraction studies revealed that with sufficiently radiation dose it is also possible to create Ag2Se in selenium-depleted systems. Oxidation of the Ge enriched chalcogenide backbone is confirmed through the electrical performance of the sensing elements based on these films. Combination of these structural and diffusion products influences the device performance. The I-V behavior is characterized by increase in current and then stabilization as a function of radiation dose. Additionally, device modeling is also presented using Silvaco software and analytical methods to shed light on the device behavior. This type of sensor design and material characterizations facilitate in improving the radiation sensing capabilities of silver containing chalcogenide glass thin films. PMID:24332317

  20. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

    DOE PAGESBeta

    Yi, M.; Liu, Z. -K.; Zhang, Y.; Yu, R.; Zhu, J. -X.; Lee, J. J.; Moore, R. G.; Schmitt, F. T.; Li, W.; Riggs, S. C.; et al

    2015-07-23

    Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe0.56Se0.44, monolayer FeSe grown on SrTiO3 and K0.76Fe1.72Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phasemore » where the dxy orbital loses all spectral weight while other orbitals remain itinerant. As a result, these observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.« less

  1. Binaries in globular clusters

    NASA Technical Reports Server (NTRS)

    Hut, Piet; Mcmillan, Steve; Goodman, Jeremy; Mateo, Mario; Phinney, E. S.; Pryor, Carlton; Richer, Harvey B.; Verbunt, Frank; Weinberg, Martin

    1992-01-01

    Recent observations have shown that globular clusters contain a substantial number of binaries most of which are believed to be primordial. We discuss different successful optical search techniques, based on radial-velocity variables, photometric variables, and the positions of stars in the color-magnitude diagram. In addition, we review searches in other wavelengths, which have turned up low-mass X-ray binaries and more recently a variety of radio pulsars. On the theoretical side, we give an overview of the different physical mechanisms through which individual binaries evolve. We discuss the various simulation techniques which recently have been employed to study the effects of a primordial binary population, and the fascinating interplay between stellar evolution and stellar dynamics which drives globular-cluster evolution.

  2. Sometimes binary is better

    NASA Astrophysics Data System (ADS)

    Sprows, David

    2015-04-01

    This note uses material involving perfect numbers and Zeno's paradoxes to show that although most students prefer to use base 10 when working with mathematical concepts there are times when the binary system is best.

  3. Double Degenerate Binary Systems

    SciTech Connect

    Yakut, K.

    2011-09-21

    In this study, angular momentum loss via gravitational radiation in double degenerate binary (DDB)systems (NS + NS, NS + WD, WD + WD, and AM CVn) is studied. Energy loss by gravitational waves has been estimated for each type of systems.

  4. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  5. Binary-Symmetry Detection

    NASA Technical Reports Server (NTRS)

    Lopez, Hiram

    1987-01-01

    Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.

  6. Scattering from binary optics

    NASA Technical Reports Server (NTRS)

    Ricks, Douglas W.

    1993-01-01

    There are a number of sources of scattering in binary optics: etch depth errors, line edge errors, quantization errors, roughness, and the binary approximation to the ideal surface. These sources of scattering can be systematic (deterministic) or random. In this paper, scattering formulas for both systematic and random errors are derived using Fourier optics. These formulas can be used to explain the results of scattering measurements and computer simulations.

  7. Spectroscopic Binary Stars

    NASA Astrophysics Data System (ADS)

    Batten, A.; Murdin, P.

    2000-11-01

    Historically, spectroscopic binary stars were binary systems whose nature was discovered by the changing DOPPLER EFFECT or shift of the spectral lines of one or both of the component stars. The observed Doppler shift is a combination of that produced by the constant RADIAL VELOCITY (i.e. line-of-sight velocity) of the center of mass of the whole system, and the variable shift resulting from the o...

  8. Orbits of 6 Binaries

    NASA Astrophysics Data System (ADS)

    Olevic, D.; Cvetkovic, Z.

    In this paper the orbits of binaries WDS 10093+2020 = A 2145, WDS 21074-0814 = BU 368 AB and WDS 22288-0001 = STF 2909 AB are recalculated because of significant deviations of more recent observations from the ephemerides. For binaries WDS 22384-0754 = A 2695, WDS 23474-7118 = FIN 375 Aa and WDS 23578+2508 = McA 76 the orbital elements are calculated for the first time.

  9. Solar System binaries

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.

    The discovery of binaries in each of the major populations of minor bodies in the solar system is propelling a rapid growth of heretofore unattainable physical information. The availability of mass and density constraints for minor bodies opens the door to studies of internal structure, comparisons with meteorite samples, and correlations between bulk-physical and surface-spectral properties. The number of known binaries is now more than 70 and is growing rapidly. A smaller number have had the extensive followup observations needed to derive mass and albedo information, but this list is growing as well. It will soon be the case that we will know more about the physical parameters of objects in the Kuiper Belt than has been known about asteroids in the Main Belt for the last 200 years. Another important aspect of binaries is understanding the mechanisms that lead to their formation and survival. The relative sizes and separations of binaries in the different minor body populations point to more than one mechanism for forming bound pairs. Collisions appear to play a major role in the Main Belt. Rotational and/or tidal fission may be important in the Near Earth population. For the Kuiper Belt, capture in multi-body interactions may be the preferred formation mechanism. However, all of these conclusions remain tentative and limited by observational and theoretical incompleteness. Observational techniques for identifying binaries are equally varied. High angular resolution observations from space and from the ground are critical for detection of the relatively distant binaries in the Main Belt and the Kuiper Belt. Radar has been the most productive method for detection of Near Earth binaries. Lightcurve analysis is an independent technique that is capable of exploring phase space inaccessible to direct observations. Finally, spacecraft flybys have played a crucial paradigm-changing role with discoveries that unlocked this now-burgeoning field.

  10. Kepler's Cool Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Swift, Jonathan; Muirhead, P. S.; Johnson, J. A.; Gonzales, A.; Shporer, A.; Plavchan, P.; Lockwood, A.; Morton, T.

    2014-01-01

    Some of the most exciting exoplanet results to date have come from the smallest and coolest sample of stars in the Kepler field—the M dwarfs. These cool stars represent the largest stellar population in the Galaxy which in turn harbors one of the largest known exoplanet populations. However, an accurate understanding of their physical properties currently eludes us. Detached, M dwarf eclipsing binary systems provide an accurate and precise, model-independent means of measuring the fundamental properties of low-mass stars shedding light on the rich physics embodied by this spectral class and refining our knowledge of their exoplanets. We have undertaken an observational campaign to obtain masses, radii, and effective temperatures of the Kepler eclipsing binaries having an M dwarf primary with periods between 1 and 60 days. These data will allow detailed comparisons between stellar properties, binary period, rotation, metallicity and activity levels.

  11. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, Gerald P.; Zhao, Jianmin; Feng, Zhen

    1996-01-01

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered.

  12. Binary ferrihydrite catalysts

    DOEpatents

    Huffman, G.P.; Zhao, J.; Feng, Z.

    1996-12-03

    A method of preparing a catalyst precursor comprises dissolving an iron salt and a salt of an oxoanion forming agent, in water so that a solution of the iron salt and oxoanion forming agent salt has a ratio of oxoanion/Fe of between 0.0001:1 to 0.5:1. Next is increasing the pH of the solution to 10 by adding a strong base followed by collecting of precipitate having a binary ferrihydrite structure. A binary ferrihydrite catalyst precursor is also prepared by dissolving an iron salt in water. The solution is brought to a pH of substantially 10 to obtain ferrihydrite precipitate. The precipitate is then filtered and washed with distilled water and subsequently admixed with a hydroxy carboxylic acid solution. The admixture is mixed/agitated and the binary ferrihydrite precipitate is then filtered and recovered. 3 figs.

  13. Investigation of As40Se60 chalcogenide glass in precision glass molding for high-volume thermal imaging lenses

    NASA Astrophysics Data System (ADS)

    Huddleston, Jeremy; Novak, Jacklyn; Moreshead, William V.; Symmons, Alan; Foote, Edward

    2015-05-01

    The growing demand for thermal imaging sensors and cameras has focused attention on the need for larger volumes of lower cost optics in this infrared region. A major component of the cost of thermal imaging lenses is the germanium content. As40Se60 was developed as a moldable, germanium-free chalcogenide glass that can serve as a low cost alternative to germanium and other infrared materials. This material also has promising characteristics for improved optical performance, especially with regard to reduced thermal sensitivity. As40Se60 has found acceptance as a material to be diamond turned or polished, but it is only now emerging as a legitimate candidate for precision glass molding. This paper will review chalcogenide molding and characterize As40Se60 for widespread use in highvolume thermal imaging optics. The relative advantages and disadvantages of As40Se60 as compared to other chalcogenide glasses will also be discussed.

  14. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1996-01-01

    We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.

  15. Identification list of binaries

    NASA Astrophysics Data System (ADS)

    Malkov,, O.; Karchevsky,, A.; Kaygorodov, P.; Kovaleva, D.

    The Identification List of Binaries (ILB) is a star catalogue constructed to facilitate cross-referencing between different catalogues of binary stars. As of 2015, it comprises designations for approximately 120,000 double/multiple systems. ILB contains star coordinates and cross-references to the Bayer/Flemsteed, DM (BD/CD/CPD), HD, HIP, ADS, WDS, CCDM, TDSC, GCVS, SBC9, IGR (and some other X-ray catalogues), PSR designations, as well as identifications in the recently developed BSDB system. ILB eventually became a part of the BDB stellar database.

  16. Structure and Properties of Modified and Charge-Compensated Chalcogenide Glasses in the Na/Ba-Ga-Ge Selenide System

    NASA Astrophysics Data System (ADS)

    Mao, Alvin W.

    Se, and consequently the removal of Ge-Ge bonds. This observation was ascribed instead to the formation of Ba-Se bonds, which are associated with a lower bandgap compared to the (Ga/Ge)-Se bonds that they replace. Finally, there is no straightforward structural explanation for trends in fragility, because it is related to the number of structural configurations dynamically available to the supercooled liquid. In the binary Ga2Se3--GeSe2 glasses, the fragility tends to increase with the formation of homopolar Ge-Ge bonds, which is consistent with other chalcogenide systems in which fragility increases with the removal of heteropolar bonds within corner-sharing tetrahedra and pyramids. In the stoichiometric BaSe--Ga2Se3--GeSe2 glasses on the other hand, a shift in trend near the compositions where BaSe:Ga 2Se3 = 1 coincides with a structural shift between the formation of Ge-Ge bonds and Se-Se/non-bridging Se.

  17. Visible Light Generation and Its Influence on Supercontinuum in Chalcogenide As2S3 Microstructured Optical Fiber

    NASA Astrophysics Data System (ADS)

    Gao, Weiqing; Liao, Meisong; Yan, Xin; Kito, Chihiro; Kohoutek, Tomas; Suzuki, Takenobu; El-Amraoui, Mohammed; Jules, Jean-Charles; Gadret, Grégory; Désévédavy, Frédéric; Smektala, Frédéric; Ohishi, Yasutake

    2011-10-01

    We demonstrate visible light generation in chalcogenide As2S3 microstructured optical fiber. The generated visible light causes irreversible damage to the fiber core because of the high absorption coefficient of chalcogenide glasses in the visible band. The SCs (supercontinua) are measured in both untapered and tapered As2S3 fibers, no wider SC is obtained in the tapered one. The SC growth is prevented by the visible light generation since the damage to the fiber core decreases the fiber transmission substantially. This effect can be avoided by designing the fiber to enable the pump source to work in single-mode operation.

  18. Binary coding for hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Chang, Chein-I.; Chang, Chein-Chi; Lin, Chinsu

    2004-10-01

    Binary coding is one of simplest ways to characterize spectral features. One commonly used method is a binary coding-based image software system, called Spectral Analysis Manager (SPAM) for remotely sensed imagery developed by Mazer et al. For a given spectral signature, the SPAM calculates its spectral mean and inter-band spectral difference and uses them as thresholds to generate a binary code word for this particular spectral signature. Such coding scheme is generally effective and also very simple to implement. This paper revisits the SPAM and further develops three new SPAM-based binary coding methods, called equal probability partition (EPP) binary coding, halfway partition (HP) binary coding and median partition (MP) binary coding. These three binary coding methods along with the SPAM well be evaluated for spectral discrimination and identification. In doing so, a new criterion, called a posteriori discrimination probability (APDP) is also introduced for performance measure.

  19. N-Bit Binary Resistor

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping

    1989-01-01

    Binary resistors in series tailored to precise value of resistance. Desired value of resistance obtained by cutting appropriate traces across resistors. Multibit, binary-based, adjustable resistor with high resolution used in many applications where precise resistance required.

  20. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    DOE PAGESBeta

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; Boulesbaa, Abdelaziz; Rouleau, Christopher M.; Puretzky, Alexander A.; McGuire, Michael A.; Srijanto, Bernadeta R.; Xiao, Kai; Eres, Gyula; et al

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substrate bymore » pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.« less

  1. Binary stars - Formation by fragmentation

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1988-01-01

    Theories of binary star formation by capture, separate nuclei, fission and fragmentation are compared, assessing the success of theoretical attempts to explain the observed properties of main-sequence binary stars. The theory of formation by fragmentation is examined, discussing the prospects for checking the theory against observations of binary premain-sequence stars. It is concluded that formation by fragmentation is successful at explaining many of the key properties of main-sequence binary stars.

  2. Separation in Binary Alloys

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.

    1986-01-01

    Studies of monotectic alloys and alloy analogs reviewed. Report surveys research on liquid/liquid and solid/liquid separation in binary monotectic alloys. Emphasizes separation processes in low gravity, such as in outer space or in free fall in drop towers. Advances in methods of controlling separation in experiments highlighted.

  3. An automatic method for atom identification in scanning tunnelling microscopy images of Fe-chalcogenide superconductors.

    PubMed

    Perasso, A; Toraci, C; Massone, A M; Piana, M; Gerbi, A; Buzio, R; Kawale, S; Bellingeri, E; Ferdeghini, C

    2015-12-01

    We describe a computational approach for the automatic recognition and classification of atomic species in scanning tunnelling microscopy images. The approach is based on a pipeline of image processing methods in which the classification step is performed by means of a Fuzzy Clustering algorithm. As a representative example, we use the computational tool to characterize the nanoscale phase separation in thin films of the Fe-chalcogenide superconductor FeSex Te1-x , starting from synthetic data sets and experimental topographies. We quantify the stoichiometry fluctuations on length scales from tens to a few nanometres. PMID:26291960

  4. An automatic method for atom identification in scanning tunnelling microscopy images of Fe-chalcogenide superconductors.

    PubMed

    Perasso, A; Toraci, C; Massone, A M; Piana, M; Gerbi, A; Buzio, R; Kawale, S; Bellingeri, E; Ferdeghini, C

    2015-12-01

    We describe a computational approach for the automatic recognition and classification of atomic species in scanning tunnelling microscopy images. The approach is based on a pipeline of image processing methods in which the classification step is performed by means of a Fuzzy Clustering algorithm. As a representative example, we use the computational tool to characterize the nanoscale phase separation in thin films of the Fe-chalcogenide superconductor FeSex Te1-x , starting from synthetic data sets and experimental topographies. We quantify the stoichiometry fluctuations on length scales from tens to a few nanometres.

  5. Solution based approach for the fabrication of photonic devices in chalcogenide glasses

    SciTech Connect

    Prince, Raman, Swati; Dwivedi, Prabhat K.; Zulfequar, M.; Husain, M.

    2015-06-24

    In this report, we describe the solution preparation conditions of various chalcogenide glasses. The dissolution mechanism of (As{sub 2}S{sub 3}){sub 60}Ge{sub 40}, (As{sub 2}S{sub 3}){sub 60}Se{sub 40} in ethanolamine is studied. Dynamic light scattering (DLS)measurements confirms that the particles in suspension are <10 nm in all the solutions.Prepared solutions are shown to possess similar molecular structure to the parent bulk glasses. Optical properties of the prepared solution are also discussed.

  6. Second-order Bragg gratings in single-mode chalcogenide fibres

    SciTech Connect

    Bernier, M; Asatryan, K E; Vallee, R; Galstian, T M; Vasil'ev, Sergei A; Medvedkov, O I; Plotnichenko, V G; Gnusin, P I; Dianov, Evgenii M

    2011-05-31

    Bragg gratings with a second-order resonance wavelength in the near-IR spectral region have been inscribed into single-mode chalcogenide (As{sub 2}S{sub 3}) glass fibre by a He - Ne laser beam using a configuration typical of Bragg grating fabrication in germanosilicate fibre, with the use of a phase mask that ensures effective diffraction of the writing light into the +1 and -1 orders. The spectra of the inscribed gratings show no resonances due to cladding mode excitation because the cladding material is photosensitive. (fibre optics)

  7. Octave-spanning infrared supercontinuum generation in robust chalcogenide nanotapers using picosecond pulses.

    PubMed

    Shabahang, Soroush; Marquez, Michael P; Tao, Guangming; Piracha, Mohammad U; Nguyen, Dat; Delfyett, Peter J; Abouraddy, Ayman F

    2012-11-15

    We report on infrared supercontinuum generation extending over more than one octave of bandwidth, from 850 nm to 2.35 μm, produced in a single spatial mode from a robust, compact, composite chalcogenide glass nanotaper. A picosecond laser at 1.55 μm pumps a high-index-contrast, all-solid nanotaper that strongly confines the field to a 480 nm diameter core, while a thermally compatible built-in polymer jacket lends the nanotaper mechanical stability. PMID:23164864

  8. The electronic structure of the antimony chalcogenide series: Prospects for optoelectronic applications

    SciTech Connect

    Carey, John J.; Allen, Jeremy P.; Scanlon, David O.; Watson, Graeme W.

    2014-05-01

    In this study, density functional theory is used to evaluate the electronic structure of the antimony chalcogenide series. Analysis of the electronic density of states and charge density shows that asymmetric density, or ‘lone pairs’, forms on the Sb{sup III} cations in the distorted oxide, sulphide and selenide materials. The asymmetric density progressively weakens down the series, due to the increase in energy of valence p states from O to Te, and is absent for Sb{sub 2}Te{sub 3}. The fundamental and optical band gaps were calculated and Sb{sub 2}O{sub 3}, Sb{sub 2}S{sub 3} and Sb{sub 2}Se{sub 3} have indirect band gaps, while Sb{sub 2}Te{sub 3} was calculated to have a direct band gap at Γ. The band gaps are also seen to reduce from Sb{sub 2}O{sub 3} to Sb{sub 2}Te{sub 3}. The optical band gap for Sb{sub 2}O{sub 3} makes it a candidate as a transparent conducting oxide, while Sb{sub 2}S{sub 3} and Sb{sub 2}Se{sub 3} have suitable band gaps for thin film solar cell absorbers. - Graphical abstract: A schematic illustrating the interaction between the Sb{sup III} cations and the chalcogenide anions and the change in their respective energy levels down the series. - Highlights: • The electronic structure of the antimony chalcogenide series is modelled using DFT. • Asymmetric density is present on distorted systems and absent on the symmetric telluride system. • Asymmetric density is formed from the mixing of Sb 5s and anion p states, where the anti-bonding combination is stabilised by the Sb 5p states. • The asymmetric density weakens down the series due to the increase in energy of chalcogenide p states. • The increase in energy of the anion p states reduces the fundamental and optical band gaps.

  9. ARPES studies on FeTe1-x Se x iron chalcogenides epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Innocenti, Davide; Moreschini, Luca; Chang, Young Jun; Walter, Andrew; Bostwick, Aaron; di Castro, Daniele; Tebano, Antonello; Medaglia, Pier Gianni; Bellingeri, Emilio; Pallecchi, Ilaria; Ferdeghini, Carlo; Balestrino, Giuseppe; Rotenberg, Eli

    2011-03-01

    The physics of iron-based chalcogenides raises fundamental questions on the interplay of magnetic order and electron pairing at the origin of the superconducting state. We have performed angle-resolved photemission spectroscopy (ARPES) studies on high-quality epitaxial thin films of FeTe 1-x Se x , grown by in situ pulsed laser deposition (PLD) on beamline 7.0.1 at the ALS. Specifically, we are able to show the evolution of the band structure as a function of x. We discuss our experimental results in comparison to the available theoretical band calculations.

  10. Theory of Two-Magnon Raman Scattering in Iron Pnictides and Chalcogenides

    SciTech Connect

    Chen, C. C.

    2011-08-15

    Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of local moment picture to understand their magnetic properties is still widespread. We study magnetic Raman scattering from a local moment perspective for various quantum spin models proposed for this new class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust and independent measure of the underlying spin interactions. In accord with other recent experiments, our results indicate that the amount of magnetic frustration in these systems may be small.

  11. Chalcogenide glasses for infrared applications: New synthesis routes and rare earth doping

    NASA Astrophysics Data System (ADS)

    Hubert, Mathieu

    Chalcogenide glasses and glass-ceramics present a high interest for the production of thermal imaging lenses transparent in the 3--5 microm and 8--12 microm windows. However, chalcogenide glasses are conventionally synthesized utilizing expensive and single use silica ampoules sealed under vacuum. The present work addresses the development of innovative synthesis methods for chalcogenide glasses that can present an alternative to the silica tube route. The first approach assessed by melting the raw starting elements in reusable silica containers appears inadequate for synthesis of glasses from the system Ge-Ga-Se. The second synthesis approach consists of the preparation of amorphous chalcogenide powders by ball milling of raw elements (mechanosynthesis) followed by consolidation of the as-prepared powders. Hot Uniaxial Pressing is suitable for sintering of powders with compositions stable against crystallization but uncontrolled crystallization occurs for the unstable compositions. In contrast, consolidation through Spark Plasma Sintering (SPS) allows production of bulk glasses with large dimensions in a short duration and at relatively low temperatures. Moreover, increased SPS treatment duration yields infrared transparent glass-ceramics with enhanced mechanical properties. This innovative synthesis method combining mechanosynthesis and SPS has been patented in the framework if this study. The controlled etching of 80GeSe2-20Ga2Se 3 glass-ceramics in acid solution yields nanoporous materials with enhanced surface area. The porous layer created on the surface of the glass-ceramic plays the role of anti-reflection coating and increases the optical transmission in the infrared range by 10%. These materials present potential for the production of sensors with increased sensitivity. The influence of indium and lead addition on the thermal and optical properties of the 80GeSe2-20Ga2Se3 glass is also assessed. Increased In or Pb contents tend to decrease the Tg and

  12. Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots.

    PubMed

    Bertolotti, Federica; Dirin, Dmitry N; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H; Kovalenko, Maksym V; Guagliardi, Antonietta; Masciocchi, Norberto

    2016-09-01

    Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found. PMID:27295101

  13. Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Bertolotti, Federica; Dirin, Dmitry N.; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H.; Kovalenko, Maksym V.; Guagliardi, Antonietta; Masciocchi, Norberto

    2016-09-01

    Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.

  14. Structural and electronic properties of high pressure phases of lead chalcogenides

    NASA Astrophysics Data System (ADS)

    Petersen, John; Scolfaro, Luisa; Myers, Thomas

    2012-10-01

    Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity. Variation in synthesis conditions gives rise to a need for analysis of structural and thermoelectric properties of these materials at different pressures. In addition to the NaCl structure at ambient conditions, lead chalcogenides have a dynamic orthorhombic (Pnma) intermediate phase and a higher pressure yet stable CsCl phase. By altering the lattice constant, we simulate the application of external pressure; this has notable effects on ground state total energy, band gap, and structural phase. Using the General Gradient Approximation (GGA) in Density Functional Theory (DFT), we calculate the phase transition pressures by finding the differences in enthalpy from total energy calculations. For each phase, elastic constants, bulk modulus, shear modulus, Young's modulus, and hardness are calculated, using two different approaches. In addition to structural properties, we analyze the band structure and density of states at varying pressures, paying special note to thermoelectric implications.

  15. Mid-gap phenomena in chalcogenide glasses and barrier-cluster-heating model

    SciTech Connect

    Banik, Ivan Kubliha, Marián; Lukovičová, Jozefa; Pavlendová, Gabriela

    2015-12-07

    The physical mechanism of photoluminescence spectrum formation of chalcogenide glasses (CHG) belongs to the important unsolved problems in physics of non-crystalline materials. Photoluminescence is an important means of the electron spectrum investigation. PL spectrum in CHG is produced mostly in the middle of the band gap, and its profile is normal - Gaussian. Several features of PL spectra in CHG is still a great mystery. The aim of the paper is to make reader acquainted with the new insight into the problem. In this article we also deal with the issue of clarifying the nature of mid-gap absorption. From the experiments it is known that after excitation of the glass As{sub 2}S{sub 3} (or As{sub 2}Se{sub 3}) with primary radiation from Urbach-tail region the glass will be able to absorb the photons of low energy (IR) radiation from mid-gap region of spectra. This low photon absorption without action of the primary excitation radiation of the higher photon energy is impossible. Mid-gap absorption yields boost in the photoluminescence. The paper gives the reader the new insights into some, until now, unexplained effects and contexts in chalcogenide glasses from the position of barrier-cluster-heating model.

  16. Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots.

    PubMed

    Bertolotti, Federica; Dirin, Dmitry N; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H; Kovalenko, Maksym V; Guagliardi, Antonietta; Masciocchi, Norberto

    2016-09-01

    Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.

  17. Laser processing for thin film chalcogenide photovoltaics: a review and prospectus

    NASA Astrophysics Data System (ADS)

    Simonds, Brian J.; Meadows, Helene J.; Misra, Sudhajit; Ferekides, Christos; Dale, Phillip J.; Scarpulla, Michael A.

    2015-01-01

    We review prior and on-going works in using laser annealing (LA) techniques in the development of chalcogenide-based [CdTe and Cu(In,Ga)S] solar cells. LA can achieve unique processing regimes as the wavelength and pulse duration can be chosen to selectively heat particular layers of a thin film solar cell or even particular regions within a single layer. Pulsed LA, in particular, can achieve non-steady-state conditions that allow for stoichiometry control by preferential evaporation, which has been utilized in CdTe solar cells to create Ohmic back contacts. Pulsed lasers have also been used with Cu(In,Ga)S to improve device performance by surface-defect annealing as well as bulk deep-defect annealing. Continuous-wave LA shows promise for use as a replacement for furnace annealing as it almost instantaneously supplies heat to the absorbing film without wasting time or energy to bring the much thicker substrate to temperature. Optimizing and utilizing such a technology would allow production lines to increase throughput and thus manufacturing capacity. Lasers have also been used to create potentially low-cost chalcogenide thin films from precursors, which is also reviewed.

  18. Sensitive measurement of optical nonlinearity in amorphous chalcogenide materials in nanosecond regime.

    PubMed

    Rani, Sunita; Mohan, Devendra; Kishore, Nawal; Purnima

    2012-07-01

    The present work focuses on the nonlinear optical behavior of chalcogenide As(2)S(3) film as well as on bulk material. The thin film of As(2)S(3) grown by thermal evaporation and bulk glass developed by melt-quenched technique has been characterized using nanosecond pulses of Nd:YAG (532 nm) and Nd:YVO(4) (1,064 nm) laser. Using Z-scan technique, the laser induced nonlinear optical parameters viz. nonlinear refractive index (n(2)), nonlinear absorption coefficient (β) and third order nonlinear susceptibility (χ(3)) have been estimated. At 1,064 nm excitation, the materials exhibit stronger nonlinearity as compared to that of 532 nm laser. In case of As(2)S(3) thin film, observed nonlinearity attributes to two-photon absorption. The optical limiting response of chalcogenide film as well as bulk sample has also been reported. The study predicts that the As(2)S(3) thin film is a better optical limiting material than bulk glass due to relatively higher nonlinearity and lower limiting threshold.

  19. Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films

    PubMed Central

    Molatta, Sebastian; Haindl, Silvia; Trommler, Sascha; Schulze, Michael; Wurmehl, Sabine; Hühne, Ruben

    2015-01-01

    Thin film growth of iron chalcogenides by pulsed laser deposition (PLD) is still a delicate issue in terms of simultaneous control of stoichiometry, texture, substrate/film interface properties, and superconducting properties. The high volatility of the constituents sharply limits optimal deposition temperatures to a narrow window and mainly challenges reproducibility for vacuum based methods. In this work we demonstrate the beneficial introduction of a semiconducting FeSe1−xTex seed layer for subsequent homoepitaxial growth of superconducting FeSe1−xTex thin film on MgO substrates. MgO is one of the most favorable substrates used in superconducting thin film applications, but the controlled growth of iron chalcogenide thin films on MgO has not yet been optimized and is the least understood. The large mismatch between the lattice constants of MgO and FeSe1−xTex of about 11% results in thin films with a mixed texture, that prevents further accurate investigations of a correlation between structural and electrical properties of FeSe1−xTex. Here we present an effective way to significantly improve epitaxial growth of superconducting FeSe1−xTex thin films with reproducible high critical temperatures (≥17 K) at reduced deposition temperatures (200 °C–320 °C) on MgO using PLD. This offers a broad scope of various applications. PMID:26548645

  20. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting.

    PubMed

    Li, Kexue; Liu, Lei; Yu, Peter Y; Chen, Xiaobo; Shen, D Z

    2016-05-11

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality. PMID:27049355

  1. Random free energy barrier hopping model for ac conduction in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Murti, Ram; Tripathi, S. K.; Goyal, Navdeep; Prakash, Satya

    2016-03-01

    The random free energy barrier hopping model is proposed to explain the ac conductivity (σac) of chalcogenide glasses. The Coulomb correlation is consistently accounted for in the polarizability and defect distribution functions and the relaxation time is augmented to include the overlapping of hopping particle wave functions. It is observed that ac and dc conduction in chalcogenides are due to same mechanism and Meyer-Neldel (MN) rule is the consequence of temperature dependence of hopping barriers. The exponential parameter s is calculated and it is found that s is subjected to sample preparation and measurement conditions and its value can be less than or greater than one. The calculated results for a - Se, As2S3, As2Se3 and As2Te3 are found in close agreement with the experimental data. The bipolaron and single polaron hopping contributions dominates at lower and higher temperatures respectively and in addition to high energy optical phonons, low energy optical and high energy acoustic phonons also contribute to the hopping process. The variations of hopping distance with temperature is also studied. The estimated defect number density and static barrier heights are compared with other existing calculations.

  2. Structural disorder, anisotropic micro-strain and cation vacancies in thermo-electric lead chalcogenides.

    PubMed

    Christensen, Sebastian; Bindzus, Niels; Sist, Mattia; Takata, Masaki; Iversen, Bo Brummerstedt

    2016-06-21

    Thermoelectric materials can interconvert heat and electricity, and the extraordinary thermoelectric properties of lead chalcogenides (PbX, X = S, Se, Te) attract immense scientific interest. A key topic is the role of the cation in reaching a very low thermal conductivity necessary for efficient energy conversion. Here we present new structural insights about the deceptively simple rock-salt lead chalcogenides through a comparative multi-temperature synchrotron powder X-ray diffraction study. For the first time, the presence of anisotropic microstrain broadening as well as lead vacancies are quantified for all three compounds. The microstrain implies extended breakage of cubic symmetry as a sign of the incipient ferroelectric nature of PbX. The degree of microstrain is correlated to the transition pressure of a symmetry reducing phase transition, and this trend can be explained by anion mediated s-p hybridization on lead. The observed number of vacancies is greatest for PbS (4-8%), but two samples of PbS show different cation occupancy, and thus sample-dependent vacancies might be the property that unifies conflicting results reported for PbX. Gram-Charlier analysis identifies a local non-spherical distribution of Pb; however, model unbiased maximum entropy analysis indicates that any static displacement of Pb, if present, is less than 0.2 Å at 100 K. PMID:27240951

  3. Mid-gap phenomena in chalcogenide glasses and barrier-cluster-heating model

    NASA Astrophysics Data System (ADS)

    Banik, Ivan; Kubliha, Marián; Lukovičová, Jozefa; Pavlendová, Gabriela

    2015-12-01

    The physical mechanism of photoluminescence spectrum formation of chalcogenide glasses (CHG) belongs to the important unsolved problems in physics of non-crystalline materials. Photoluminescence is an important means of the electron spectrum investigation. PL spectrum in CHG is produced mostly in the middle of the band gap, and its profile is normal - Gaussian. Several features of PL spectra in CHG is still a great mystery. The aim of the paper is to make reader acquainted with the new insight into the problem. In this article we also deal with the issue of clarifying the nature of mid-gap absorption. From the experiments it is known that after excitation of the glass As2S3 (or As2Se3) with primary radiation from Urbach-tail region the glass will be able to absorb the photons of low energy (IR) radiation from mid-gap region of spectra. This low photon absorption without action of the primary excitation radiation of the higher photon energy is impossible. Mid-gap absorption yields boost in the photoluminescence. The paper gives the reader the new insights into some, until now, unexplained effects and contexts in chalcogenide glasses from the position of barrier-cluster-heating model.

  4. Low threshold mid-infrared supercontinuum generation in short fluoride-chalcogenide multimaterial fibers.

    PubMed

    Li, Xia; Chen, Wei; Xue, Tianfeng; Gao, Juanjuan; Gao, Weiqing; Hu, Lili; Liao, Meisong

    2014-10-01

    Mid-infrared supercontinuum generation (SCG) is mostly studied in fluoride glass fibers in which long fibers and high power pump sources are needed. Taking advantages of high nonlinearity and transparency, chalcogenide glass is also applied for SCG in mid-infrared region, where specific strategy is needed to compensate large normal material dispersion. We investigate multimaterial fibers (MMFs) combined with fluoride and chalcogenide glasses for SCG. The high refraction contrast allows the zero dispersion point of the fiber to shift to below 2 μm without air holes. These two materials have similar glass transition temperatures and thermal expansion coefficients. They are possible to be drawn together. Both step-index MMFs and microstructured MMFs (MS-MMFs) are considered. The chromatic dispersions and supercontinuum spectra are studied. A 20 dB bandwidth of over one octave SCG with high coherence can be obtained from a 1 cm MS-MMF at 1.95 μm with a pumping peak power of 175 W. As the pump power increased, the spectrum can extend to 5 μm. In this scheme the fiber is so short that the high level of loss, which is the feature of MMFs, will not cause problems. PMID:25321993

  5. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting

    NASA Astrophysics Data System (ADS)

    Li, Kexue; Liu, Lei; Yu, Peter Y.; Chen, Xiaobo; Shen, D. Z.

    2016-05-01

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.

  6. Identification of Abnormal Phase and its Formation Mechanism in Synthesizing Chalcogenide Films

    NASA Astrophysics Data System (ADS)

    Liu, Kegao; Ji, Nianjing; Xu, Yong; Liu, Hong

    2016-09-01

    Chalcogenide films can be used in thin-film solar cells due to their high photoelectric conversion efficiencies. It was difficult to identify one abnormal phase with high X-ray diffraction (XRD) intensity and preferred orientation in the samples for preparing chalcogenide films by spin-coating and co-reduction on soda-lime glass (Na2OṡCaOṡ6SiO2) substrates. The raw materials and reductant are metal chlorides and hydrazine hydrate respectively. In order to identify this phase, a series of experiments were done under different conditions. The phases of obtained products were analyzed by XRD and the size and morphology were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). From the experimental results, first it was proved that the abnormal phase was water-soluble by water immersion experiment, then it was identified as NaCl crystal through XRD, energy dispersive spectrometer (EDS) and SEM. The cubic NaCl crystals have high crystallinity with size lengths of about 0.5-2μm and show a <100> preferred orientation. The reaction mechanism of NaCl crystal was proposed as follows: The NaCl crystal was formed by reaction of Na2O and HCl in a certain experimental conditions.

  7. Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films

    NASA Astrophysics Data System (ADS)

    Molatta, Sebastian; Haindl, Silvia; Trommler, Sascha; Schulze, Michael; Wurmehl, Sabine; Hühne, Ruben

    2015-11-01

    Thin film growth of iron chalcogenides by pulsed laser deposition (PLD) is still a delicate issue in terms of simultaneous control of stoichiometry, texture, substrate/film interface properties, and superconducting properties. The high volatility of the constituents sharply limits optimal deposition temperatures to a narrow window and mainly challenges reproducibility for vacuum based methods. In this work we demonstrate the beneficial introduction of a semiconducting FeSe1-xTex seed layer for subsequent homoepitaxial growth of superconducting FeSe1-xTex thin film on MgO substrates. MgO is one of the most favorable substrates used in superconducting thin film applications, but the controlled growth of iron chalcogenide thin films on MgO has not yet been optimized and is the least understood. The large mismatch between the lattice constants of MgO and FeSe1-xTex of about 11% results in thin films with a mixed texture, that prevents further accurate investigations of a correlation between structural and electrical properties of FeSe1-xTex. Here we present an effective way to significantly improve epitaxial growth of superconducting FeSe1-xTex thin films with reproducible high critical temperatures (≥17 K) at reduced deposition temperatures (200 °C-320 °C) on MgO using PLD. This offers a broad scope of various applications.

  8. Chalcogenide glass fibers: Optical window tailoring and suitability for bio-chemical sensing

    NASA Astrophysics Data System (ADS)

    Lucas, Pierre; Coleman, Garrett J.; Jiang, Shibin; Luo, Tao; Yang, Zhiyong

    2015-09-01

    Glassy materials based on chalcogen elements are becoming increasingly prominent in the development of advanced infrared sensors. In particular, infrared fibers constitute a desirable sensing platform due to their high sensitivity and versatile remote collection capabilities for in-situ detection. Tailoring the transparency window of an optical material to the vibrational signature of a target molecule is important for the design of infrared sensor, and particularly for fiber evanescent wave spectroscopy. Here we review the basic principles and recent developments in the fabrication of chalcogenide glass infrared fibers for application as bio-chemical sensors. We emphasize the challenges in designing materials that combine good rheological properties with chemical stability and sufficiently wide optical windows for bio-chemical sensing. The limitation in optical transparency due to higher order overtones of the amorphous network vibrations is established for this family of glasses. It is shown that glasses with wide optical window suffer from higher order overtone absorptions. Compositional engineering with heavy elements such as iodine is shown to widen the optical window but at the cost of lower chemical stability. The optical attenuations of various families of chalcogenide glass fibers are presented and weighed for their applications as chemical sensors. It is then shown that long-wave infrared fibers can be designed to optimize the collection of selective signal from bio-molecules such as cells and tissues. Issues of toxicity and mechanical resistance in the context of bio-sensing are also discussed.

  9. Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion.

    PubMed

    Xing, Sida; Grassani, Davide; Kharitonov, Svyatoslav; Billat, Adrien; Brès, Camille-Sophie

    2016-05-01

    We experimentally demonstrate wavelength conversion in the 2 µm region by four-wave mixing in an AsSe and a GeAsSe chalcogenide photonic crystal fibers. A maximum conversion efficiency of -25.4 dB is measured for 112 mW of coupled continuous wave pump in a 27 cm long fiber. We estimate the dispersion parameters and the nonlinear refractive indexes of the chalcogenide PCFs, establishing a good agreement with the values expected from simulations. The different fiber geometries and glass compositions are compared in terms of performance, showing that GeAsSe is a more suited candidate for nonlinear optics at 2 µm. Building from the fitted parameters we then propose a new tapered GeAsSe PCF geometry to tailor the waveguide dispersion and lower the zero dispersion wavelength (ZDW) closer to the 2 µm pump wavelength. Numerical simulations shows that the new design allows both an increased conversion efficiency and bandwidth, and the generation of idler waves further in the mid-IR regions, by tuning the pump wavelength in the vicinity of the fiber ZDW. PMID:27137588

  10. Design of fiber coupled Er:chalcogenide microsphere amplifier via particle swarm optimization algorithm

    NASA Astrophysics Data System (ADS)

    Palma, Giuseppe; Bia, Pietro; Mescia, Luciano; Yano, Tetsuji; Nazabal, Virginie; Taguchi, Jun; Moréac, Alain; Prudenzano, Francesco

    2014-07-01

    A mid-IR amplifier consisting of a tapered chalcogenide fiber coupled to an Er-doped chalcogenide microsphere has been optimized via a particle swarm optimization (PSO) approach. More precisely, a dedicated three-dimensional numerical model, based on the coupled mode theory and solving the rate equations, has been integrated with the PSO procedure. The rate equations have included the main transitions among the erbium energy levels, the amplified spontaneous emission, and the most important secondary transitions pertaining to the ion-ion interactions. The PSO has allowed the optimal choice of the microsphere and fiber radius, taper angle, and fiber-microsphere gap in order to maximize the amplifier gain. The taper angle and the fiber-microsphere gap have been optimized to efficiently inject into the microsphere both the pump and the signal beams and to improve their spatial overlapping with the rare-earth-doped region. The employment of the PSO approach shows different attractive features, especially when many parameters have to be optimized. The numerical results demonstrate the effectiveness of the proposed approach for the design of amplifying systems. The PSO-based optimization approach has allowed the design of a microsphere-based amplifying system more efficient than a similar device designed by using a deterministic optimization method. In fact, the amplifier designed via the PSO exhibits a simulated gain G=33.7 dB, which is higher than the gain G=6.9 dB of the amplifier designed via the deterministic method.

  11. Luminescence at 2.8 μm: Er3+-doped chalcogenide micro-waveguide

    NASA Astrophysics Data System (ADS)

    Nazabal, V.; Starecki, F.; Doualan, J.-L.; Němec, P.; Camy, P.; Lhermite, H.; Bodiou, L.; Anne, M. L.; Charrier, J.; Adam, J. L.

    2016-08-01

    This paper reports the fabrication of luminescent optical rib/ridge waveguides made of erbium doped Ga-Ge-Sb-S films deposited by RF magnetron sputtering. Several fluorescence emissions of Er3+ ions from the visible to the middle infrared spectral domain were clearly observed within the films. The study of the 4I13/2 level lifetime enabled development of a suitable annealing treatment of the films to reach the value of the bulk counterpart while the variation in surface roughness was limited, thus ensuring reasonable optical losses (0.7-0.9 dB/cm). Amplification experiments were carried out at 1.54 μm leading to complete characterization of the erbium-doped micro-waveguide with ∼3.4 dB/cm on/off gain. A demonstration of mid-IR photoluminescence from Er3+-doped chalcogenide micro-waveguide was recorded at ∼2.76 μm. The multi-luminescence from the visible to mid-IR generated using erbium doped chalcogenide waveguiding micro-structures might find easy-to-use applications concerning telecommunication technologies or on-chip optical sensors for which luminescent sources or amplifiers operating at different wavelengths are required.

  12. Investigation of Optical Nonlinearities in Bi-Doped Se-Te Chalcogenide Thin Films

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2015-03-01

    The present paper reports the nonlinear optical properties of chalcogenide Se85- x Te15Bi x (0 ≤ x ≤ 5) thin films. The formulation proposed by Boling, Fournier, and Snitzer and Tichy and Ticha has been used to compute the nonlinear refractive index n 2. The two-photon absorption coefficient β 2, and first- and third-order susceptibilities [ χ (1) and χ (3)] are also reported. The nonlinear refractive index n 2 is well correlated with the linear refractive index n and Wemple-DiDomenico (WDD) parameters, in turn depending on the density ρ and molar volume V m of the system. The density of the system is calculated experimentally by using Archimedes' principle. The linear optical parameters, viz. n, WDD parameters, and optical bandgap E g, are measured experimentally using ellipsometric curves obtained by spectrophotometry. The composition-dependent behavior of n 2 is analyzed on the basis of various parameters, viz. density, bond distribution, cohesive energy (CE), and optical bandgap E g, of the system. The variation of n 2 and β 2 with changing bandgap E g is also reported. The values of n 2 and χ (3) of the investigated chalcogenides are compared with those of pure silica, oxide, and other Se-based glasses.

  13. Solid-state chemistry on a surface and in a beaker: Unconventional routes to transition metal chalcogenide nanomaterials

    SciTech Connect

    Stender, Christopher L.; Sekar, Perumal; Odom, Teri W.

    2008-07-15

    This article focuses on two different approaches to create nanoscale transition metal chalcogenide materials. First, we used chemical nanofabrication, a combination of top-down patterning and bottom-up solid-state synthesis, to achieve control over the shape, size, and ordering of the patterned nanomaterials. We demonstrated orientational control over nanocrystals within sub-300 nm patterns of MoS{sub 2} and formed free-standing nanostructures of crystalline NiS{sub 2}. In addition, crossed line arrays of mixed metal chalcogenide nanostructures were achieved, and TaS{sub 2} nanopatterns were made by the chemical transformation of tantalum oxide templates. Second, we developed a one-pot procedure using molecular precursors to synthesize two-dimensional NbSe{sub 2}, TaS{sub 2} and TaSe{sub 2} nanoplates and one-dimensional NbSe{sub 2} wires depending on the relative amount of surfactants in the reaction mixture. Prospects for these transition metal chalcogenide nanomaterials with controlled shapes and morphologies will be discussed. - Graphical abstract: This paper describes how transition metal chalcogenide nanomaterials can be produced by two approaches. First, chemical nanofabrication-a combination of top-down patterning and bottom-up solid-state synthesis-was used to achieve control over the shape, size, and ordering of patterned nanomaterials. Second, a one-pot procedure using molecular precursors was developed to synthesize two-dimensional nanoplates and one-dimensional nanowires of conducting transition metal dichalcogenides.

  14. A unifying phase diagram with correlation-driven superconductor-to-insulator transition for the 122 series of iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Niu, X. H.; Chen, S. D.; Jiang, J.; Ye, Z. R.; Yu, T. L.; Xu, D. F.; Xu, M.; Feng, Y.; Yan, Y. J.; Xie, B. P.; Zhao, J.; Gu, D. C.; Sun, L. L.; Mao, Qianhui; Wang, Hangdong; Fang, Minghu; Zhang, C. J.; Hu, J. P.; Sun, Z.; Feng, D. L.

    2016-02-01

    The 122 series of iron chalcogenide superconductors, for example KxFe2 -ySe2 , only possesses electron Fermi pockets. Their distinctive electronic structure challenges the picture built upon iron pnictide superconductors, where both electron and hole Fermi pockets coexist. However, partly due to the intrinsic phase separation in this family of compounds, many aspects of their behavior remain elusive. In particular, the evolution of the 122 series of iron chalcogenides with chemical substitution still lacks a microscopic and unified interpretation. Using angle-resolved photoemission spectroscopy, we studied a major fraction of 122 iron chalcogenides, including the isovalently "doped" KxFe2 -ySe2 -zSz,RbxFe2 -ySe2 -zTez , and (Tl,K) xFe2 -ySe2 -zSz . We found that the bandwidths of the low energy Fe 3 d bands in these materials depend on doping; and more crucially, as the bandwidth decreases, the ground state evolves from a metal to a superconductor, and eventually to an insulator, yet the Fermi surface in the metallic phases is unaffected by the isovalent dopants. Moreover, the correlation-driven insulator found here with small band filling may be a novel insulating phase. Our study shows that almost all the known 122-series iron chalcogenides can be understood via one unifying phase diagram which implies that moderate correlation strength is beneficial for the superconductivity.

  15. Massive Black Hole Binary Evolution

    NASA Astrophysics Data System (ADS)

    Merritt, David; Milosavljević, Milos

    2005-11-01

    Coalescence of binary supermassive black holes (SBHs) would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers) are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, "diffusive" refilling of the binary's loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the "damage" inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.

  16. Binary Love relations

    NASA Astrophysics Data System (ADS)

    Yagi, Kent; Yunes, Nicolás

    2016-07-01

    When in a tight binary, the mutual tidal deformations of neutron stars get imprinted onto observables, encoding information about their internal structure at supranuclear densities and gravity in the extreme-gravity regime. Gravitational wave (GW) observations of their late binary inspiral may serve as a tool to extract the individual tidal deformabilities, but this is made difficult by degeneracies between them in the GW model. We here resolve this problem by discovering approximately equation-of-state (EoS)-insensitive relations between dimensionless combinations of the individual tidal deformabilities. We show that these relations break degeneracies in the GW model, allowing for the accurate extraction of both deformabilities. Such measurements can be used to better differentiate between EoS models, and improve tests of general relativity and cosmology.

  17. Low-Temperature Synthesis of New Ternary Chalcogenide Compounds of Copper, Gold, and Mercury Using Alkali Metal Polychalcogenide Fluxes

    NASA Astrophysics Data System (ADS)

    Park, Younbong

    In last two decades great efforts have been exerted to find new materials with interesting optical, electrical, and catalytic properties. Metal chalcogenides have been studied extensively because of their interesting physical properties and rich structural chemistry, among the potential materials. Prior to this work, most known metal chalcogenides had been synthesized at high temperature (T > 500^circC). Intermediate temperature synthesis in solid state chemistry was seldom pursued because of the extremely slow diffusion rates between reactants. This intermediate temperature regime could be a new synthesis condition if one looks for new materials with unusual structural features and properties. Metastable or kinetically stable compounds can be stabilized in this intermediate temperature regime, in contrast to the thermodynamically stable high temperature compounds. Molten salts, especially alkali metal polychalcogenide fluxes, can provide a route for exploring new chalcogenide materials at intermediate temperatures. These fluxes are very reactive and melt as low as 145^circC (mp of K_2S_4). Using these fluxes as reaction media, we have encountered many novel chalcogenide compounds with unusual structures and interesting electrical properties (semiconductors to metallic conductors). Low-dimensional polychalcogenide compounds of alpha-ACuQ_4 (A = K, Cs; Q = S, Se), beta -KCuS_4, KAuQ_5 (Q = S, Se), K_3AuSe_ {13}, Na_3AuSe _8, and CsAuSe_3 exhibit the beautiful structural diversity and bonding flexibility of the polychalcogenide ligands. In addition, many novel chalcogenide compounds of Cu, Hg, and Au with low-dimensional structures. The preparation of novel mixed -valence Cu compounds, K_2Cu _5Te_5, Cs _3Cu_8Te_ {10}, Na_3Cu _4Se_4, K _3Cu_8S_4 Te_2, and KCu_4 S_2Te, which show interesting metallic properties, especially underscores the enormous potential of the molten salt method for the synthesis of new chalcogenide materials with interesting physical properties

  18. Parametric binary dissection

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.; Crockett, Thomas W.; Nicol, David M.

    1993-01-01

    Binary dissection is widely used to partition non-uniform domains over parallel computers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the regions being generated and can yield decompositions that have poor communication to computation ratio. Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen to minimize load + lambda x(shape). In a 2 (or 3) dimensional problem, load is the amount of computation to be performed in a subregion and shape could refer to the perimeter (respectively surface) of that subregion. Shape is a measure of communication overhead and the parameter permits us to trade off load imbalance against communication overhead. When A is zero, the algorithm reduces to plain binary dissection. This algorithm can be used to partition graphs embedded in 2 or 3-d. Load is the number of nodes in a subregion, shape the number of edges that leave that subregion, and lambda the ratio of time to communicate over an edge to the time to compute at a node. An algorithm is presented that finds the depth d parametric dissection of an embedded graph with n vertices and e edges in O(max(n log n, de)) time, which is an improvement over the O(dn log n) time of plain binary dissection. Parallel versions of this algorithm are also presented; the best of these requires O((n/p) log(sup 3)p) time on a p processor hypercube, assuming graphs of bounded degree. How PBD is applied to 3-d unstructured meshes and yields partitions that are better than those obtained by plain dissection is described. Its application to the color image quantization problem is also discussed, in which samples in a high-resolution color space are mapped onto a lower resolution space in a way that minimizes the color error.

  19. Binary Optics Toolkit

    1996-04-02

    This software is a set of tools for the design and analysis of binary optics. It consists of a series of stand-alone programs written in C and some scripts written in an application-specific language interpreted by a CAD program called DW2000. This software can be used to optimize the design and placement of a complex lens array from input to output and produce contours, mask designs, and data exported for diffractive optic analysis.

  20. Separated Fringe Packet Binaries

    NASA Astrophysics Data System (ADS)

    Bagnuolo, W. G.; Taylor, S. F.; McAlister, H. A.; ten Brummelaar, T.; Sturmann, L.; Sturmann, J.; Turner, N. H.; Berger, D.; Ridgway, S. T.; CenterHigh Angular Resolution Astronomy (CHARA)

    2004-12-01

    Individually resolved packets are produced by scans from the CHARA Interferometer Array for binary stars with separations from 10 to 100 milli-arcsec (mas) in the K' band. We have used this data for astrometry of the binary with the goal of improving the visual orbits for these systems. About 12 data sets of 400 scans each can be collected for a star within an hour. The intrinsic accuracy with simple linear/quadratic fits to the time-separation curve yields accuracies of 0.15 mas. But, for systems with separations less than 80 mas, the measured separation is modulated periodically by the secondary star's packet riding over the sidelobes of the primary which provides a phase reference. This "sidelobe verniering" can improve the precision to better than 50 micro-arcsec. These techniques, represents 1-2 orders of magnitude improvement in astrometic accuracy over speckle interferometry techniques. Visual orbits can then be refined via a maximum liklihood technique, which leads to revisions in the stellar masses. We present the results for several binaries that have been observed at the CHARA Array, starting in 2001.

  1. Evolutionary models of binaries

    NASA Astrophysics Data System (ADS)

    van Rensbergen, Walter; Mennekens, Nicki; de Greve, Jean-Pierre; Jansen, Kim; de Loore, Bert

    2011-07-01

    We have put on CDS a catalog containing 561 evolutionary models of binaries: J/A+A/487/1129 (Van Rensbergen+, 2008). The catalog covers a grid of binaries with a B-type primary at birth, different values for the initial mass ratio and a wide range of initial orbital periods. The evolution was calculated with the Brussels code in which we introduced the spinning up and the creation of a hot spot on the gainer or its accretion disk, caused by impacting mass coming from the donor. When the kinetic energy of fast rotation added to the radiative energy of the hot spot exceeds the binding energy, a fraction of the transferred matter leaves the system: the evolution is liberal during a short lasting era of rapid mass transfer. The spin-up of the gainer was modulated using both strong and weak tides. The catalog shows the results for both types. For comparison, we included the evolutionary tracks calculated with the conservative assumption. Binaries with an initial primary below 6 Msolar show hardly any mass loss from the system and thus evolve conservatively. Above this limit differences between liberal and conservative evolution grow with increasing initial mass of the primary star.

  2. Binary-Signal Recovery

    NASA Technical Reports Server (NTRS)

    Griebeler, Elmer L.

    2011-01-01

    Binary communication through long cables, opto-isolators, isolating transformers, or repeaters can become distorted in characteristic ways. The usual solution is to slow the communication rate, change to a different method, or improve the communication media. It would help if the characteristic distortions could be accommodated at the receiving end to ease the communication problem. The distortions come from loss of the high-frequency content, which adds slopes to the transitions from ones to zeroes and zeroes to ones. This weakens the definition of the ones and zeroes in the time domain. The other major distortion is the reduction of low frequency, which causes the voltage that defines the ones or zeroes to drift out of recognizable range. This development describes a method for recovering a binary data stream from a signal that has been subjected to a loss of both higher-frequency content and low-frequency content that is essential to define the difference between ones and zeroes. The method makes use of the frequency structure of the waveform created by the data stream, and then enhances the characteristics related to the data to reconstruct the binary switching pattern. A major issue is simplicity. The approach taken here is to take the first derivative of the signal and then feed it to a hysteresis switch. This is equivalent in practice to using a non-resonant band pass filter feeding a Schmitt trigger. Obviously, the derivative signal needs to be offset to halfway between the thresholds of the hysteresis switch, and amplified so that the derivatives reliably exceed the thresholds. A transition from a zero to a one is the most substantial, fastest plus movement of voltage, and therefore will create the largest plus first derivative pulse. Since the quiet state of the derivative is sitting between the hysteresis thresholds, the plus pulse exceeds the plus threshold, switching the hysteresis switch plus, which re-establishes the data zero to one transition

  3. Effect of chemical ordering on the crystallization behavior of Se90Te10-xSnx (x=2, 4, 6, and 8) chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Lafi, Omar A.; Imran, Mousa M. A.; Abu-Shaweesh, Nazem I.; Al-Kurdi, Fares M.; Khatatbeh, Ibtehaj K.

    2014-06-01

    Ternary Se90Te10-xSnx (x=2, 4, 6, and 8) chalcogenide glassy alloys have been prepared by melt quenching technique. Various crystallization parameters, such as onset (Tc) and peak (Tp) crystallization temperatures, activation energy of crystallization (Ec) and Avrami exponent (n) have been determined for these alloys. Tc and Tp have been determined directly from the non-isothermal differential scanning calorimeter (DSC) thermograms. The value of Ec has been calculated from the variation of both Tc and Tp with the heating rate (β) according to Kissinger, Takhor, Augis-Bennett and Ozawa models while Augis-Bennett method has been used to deduce the value of n for the studied samples. The obtained values of the crystallization parameters have been correlated with the character and the energy of the chemical bonds through the calculation of the heteronuclear bond energies of the constituent atoms using Pauling principle. In addition to that, Tichy-Ticha model was used to estimate the mean bond energy of the average cross-linking per atom , the average bond energy per atom of the remaining matrix , and the overall mean bond energy of the studied glasses. Results reveal that both of Tc and Tp decreases with increases Sn content. This is may be attributed to the decreasing in the overall mean bond energy . Besides, the plot of Ec (and also Tg) against was found to be non linear, which contradicts the well known linear correlation between Ec and Tg with as suggested by Tichy-Ticha model. This discrepancy may be due to the fact that the Tichy-Ticha linear correlation model was based on the assumption of covalent glassy network, while in the present glassy alloys, Se-Te binary doped with heavy elements such as Sn exhibit iono-covalent bonding. The calculated values of the ionicity are in support of this argument.

  4. Synthesis, crystal structure and electrical properties of the tetrahedral quaternary chalcogenides CuM2InTe4 (M=Zn, Cd)

    NASA Astrophysics Data System (ADS)

    Nolas, George S.; Hassan, M. Shafiq; Dong, Yongkwan; Martin, Joshua

    2016-10-01

    Quaternary chalcogenides form a large class of materials that continue to be of interest for energy-related applications. Certain compositions have recently been identified as possessing good thermoelectric properties however these materials typically have the kesterite structure type with limited variation in composition. In this study we report on the structural, optical and electrical properties of the quaternary chalcogenides CuZn2InTe4 and CuCd2InTe4 which crystallize in the modified zinc-blende crystal structure, and compare their properties with that of CuZn2InSe4. These p-type semiconductors have direct band gaps of about 1 eV resulting in relatively high Seebeck coefficient and resistivity values. This work expands on the research into quaternary chalcogenides with new compositions and structure types in order to further the fundamental investigation of multinary chalcogenides for potential thermoelectrics applications.

  5. Binary optics: Trends and limitations

    NASA Technical Reports Server (NTRS)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  6. Binary optics: Trends and limitations

    NASA Astrophysics Data System (ADS)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-08-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  7. Binary Stars in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Mateo, M.; Murdin, P.

    2000-11-01

    Globular clusters have long been known to be among the richest stellar groupings within our Galaxy, but for many years they were believed to be largely devoid of the most minimal stellar group: binary stars (see BINARY STARS: OVERVIEW). For many years, the only evidence that any binaries existed in these clusters came from the presence of BLUE STRAGGLERS—stars that appear to be significantly you...

  8. High thermoelectric figure of merit nanostructured pnictogen chalcogenides by bottom-up synthesis and assembly

    NASA Astrophysics Data System (ADS)

    Mehta, Rutvik J.

    Thermoelectric materials offer promise for realizing transformative environmentallyfriendly solid-state refrigeration technologies that could replace current technologies based on ozone-depleting liquid coolants. The fruition of this vision requires factorial enhancements in the figure of merit (ZT) of thermoelectric materials, necessitating high Seebeck coefficient (alpha), high electrical conductivity (sigma) and low thermal conductivity (kappa). This thesis reports a novel bottom-up approach to scalably sculpt large quantities (>10g/minute) of V 2VI3 nanocrystals with controllable shapes and sizes, and assemble them into bulk samples to obtain both high power factors alpha 2sigma as well as unprecedentedly low kappa through tunable doping and nanostructuring. The thesis demonstrates a surfactant-mediated microwave-solvothermal synthesis technique that selectively yields both n- and p-typed pnictogen chalcogenide (Bi2Te3, Sb2Te3, Bi2Se3) nanoplates and, nanowires and nanotubes (Sb 2Se3) that can be sintered to obtain 25-250 % increases in ZT>1 compared to their non-nanostructured and un-doped counterparts. A key result is that nanostructuring diminishes the lattice thermal conductivity kappa L to ultra-low values of 0.2-0.5 Wm-1K-1. Sub-atomic-percent sulfur doping and sulfurization of the pnictogen chalcogenides induced through mercaptan-terminated organic surfactants used in the synthesis result in large Seebeck coefficients between -240 < alpha < 298 muV/K and high sigma between 0.2-2.5 x 105 O -1m-1 as a consequence of high carrier mobilities 250-60 cm2/Vs, comparable to single-crystal values. The unique combination of properties results in the realization of a phonon-glass electron-crystal material, ideal for thermoelectric conversion and hence high ZT. The high power factors are shown to arise due to sulfur doping induced changes in the electronic structure and defect chemistries. These correlations are verified by detailed materials characterization, Hall

  9. Evolution of Close Binary Systems

    SciTech Connect

    Yakut, K; Eggleton, P

    2005-01-24

    We collected data on the masses, radii, etc. of three classes of close binary stars: low-temperature contact binaries (LTCBs), near-contact binaries (NCBs), and detached close binaries (DCBs). They restrict themselves to systems where (1) both components are, at least arguably, near the Main Sequence, (2) the periods are less than a day, and (3) there is both spectroscopic and photometric analysis leading to reasonably reliable data. They discuss the possible evolutionary connections between these three classes, emphasizing the roles played by mass loss and angular momentum loss in rapidly-rotating cool stars.

  10. Low autocorrelation binary sequences

    NASA Astrophysics Data System (ADS)

    Packebusch, Tom; Mertens, Stephan

    2016-04-01

    Binary sequences with minimal autocorrelations have applications in communication engineering, mathematics and computer science. In statistical physics they appear as groundstates of the Bernasconi model. Finding these sequences is a notoriously hard problem, that so far can be solved only by exhaustive search. We review recent algorithms and present a new algorithm that finds optimal sequences of length N in time O(N {1.73}N). We computed all optimal sequences for N≤slant 66 and all optimal skewsymmetric sequences for N≤slant 119.

  11. BINARY STORAGE ELEMENT

    DOEpatents

    Chu, J.C.

    1958-06-10

    A binary storage device is described comprising a toggle provided with associsted improved driver circuits adapted to produce reliable action of the toggle during clearing of the toggle to one of its two states. or transferring information into and out of the toggle. The invention resides in the development of a self-regulating driver circuit to minimize the fluctuation of the driving voltages for the toggle. The disclosed driver circuit produces two pulses in response to an input pulse: a first or ''clear'' pulse beginning nt substantially the same time but endlrg slightly sooner than the second or ''transfer'' output pulse.

  12. The ζ Aurigae Binaries

    NASA Astrophysics Data System (ADS)

    Griffin, R. Elizabeth; Ake, Thomas B.

    This opening chapter provides a brief historical overview of the ζ Aur stars, with a focus on what K.O. Wright, his predecessors and colleagues at the Dominion Astrophysical Observatory, and his contemporaries further afield, achieved during the era of pre-electronic data. It places the topic within the framework of modern observing, data management and computing, outlines the principal features of the chromospheric-eclipse phenomena which single out the ζ Aur binaries for special study, and describes the considerable potential which this remarkable yet very select group of stars offers for increasing our understanding of stellar physics.

  13. Binary porous convection

    NASA Astrophysics Data System (ADS)

    Carey, Michael Richard

    Binary porous convection falls into the larger category of pattern formation---a symmetry breaking instability which creates a spatially periodic structure within a homogeneous system. The experiments and model presented in this dissertation indicate that an essential piece of physics is missing from the standard Darcian picture used to describe pattern formation in a porous medium convection system. Present theory predicts a bifurcation to an oscillatory state at onset for a binary mixture in a porous media over a wide range of experimental parameters (Brand and Steinberg, Physics Letters 93A 333 (1983)). This theory is inadequate in explaining the predominant large amplitude, backward, stationary overturning convection state observed in our experiments after transients have decayed. Convection experiments were visualized with magnetic resonance imaging and performed with a foam medium in slot and cylindrical geometries as well as a rectangular, packed bead system with water-ethanol mixtures. We explore the possibility that the difference between theory and experiment is due to enhanced solutal mixing not included in previous theories. The enhanced mixing of the fluid produces an effective diffusion coefficient that largely suppresses gradients in the concentration field, resulting in single-fluid like behavior. We model the experimental system with a Lorenz truncation of the binary Darcy equations with enhanced mixing. This model predicts results qualitatively similar to experiments: a forward bifurcation to small amplitude oscillations with a secondary backward bifurcation to large amplitude stationary convection. We have also developed an experimental nuclear magnetic resonance technique that measures the effective diffusion coefficient, D = D(v), as a function of velocity, v, for the individual species of the binary mixture simultaneously. However, the mixing effect measured in plug flow experiments is roughly two to three orders of magnitude too small to have

  14. EFFECTS OF LASER RADIATION ON MATTER: Photoinduced absorption in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Ponomar', V. V.

    1990-08-01

    A dependence of the absorption coefficient on the optical radiation intensity in the range 10 - 5 - 1 W/cm2 was observed for chalcogenide glasses at a photon energy less than the band gap of the material. The absorption coefficient depended on the irradiation time. In the case of arsenic sulfide in the range 1.6-1.7 eV an absorption peak was observed at intensities of the order of 10 - 3 W/cm2. In this part of the spectrum the absorption probably involved metastable As-As, S-Se, and Se-Se "defect" bonds and was similar to the photoinduced degradation of hydrogenated amorphous silicon.

  15. Atomistic origin of an ordered superstructure induced superconductivity in layered chalcogenides.

    PubMed

    Ang, R; Wang, Z C; Chen, C L; Tang, J; Liu, N; Liu, Y; Lu, W J; Sun, Y P; Mori, T; Ikuhara, Y

    2015-01-27

    Interplay among various collective electronic states such as charge density wave and superconductivity is of tremendous significance in low-dimensional electron systems. However, the atomistic and physical nature of the electronic structures underlying the interplay of exotic states, which is critical to clarifying its effect on remarkable properties of the electron systems, remains elusive, limiting our understanding of the superconducting mechanism. Here, we show evidence that an ordering of selenium and sulphur atoms surrounding tantalum within star-of-David clusters can boost superconductivity in a layered chalcogenide 1T-TaS2-xSex, which undergoes a superconducting transition in the nearly commensurate charge density wave phase. Advanced electron microscopy investigations reveal that such an ordered superstructure forms only in the x area, where the superconductivity manifests, and is destructible to the occurrence of the Mott metal-insulator transition. The present findings provide a novel dimension in understanding the relationship between lattice and electronic degrees of freedom.

  16. Second harmonic generation in nanoscale films of transition metal chalcogenides: Taking into account multibeam interference

    NASA Astrophysics Data System (ADS)

    Lavrov, S. D.; Kudryavtsev, A. V.; Shestakova, A. P.; Kulyuk, L.; Mishina, E. D.

    2016-05-01

    Second harmonic generation is studied in structures containing nanoscale layers of transition metal chalcogenides that are two-dimensional semiconductors and deposited on a SiO2/Si substrate. The second harmonic generation intensity is calculated with allowance for multibeam interference in layers of dichalcogenide and silicon oxide. The coefficient of reflection from the SiO2-layer-based Fabry-Perot cavity is subsequently calculated for pump wave fields initiating nonlinear polarization at every point of dichalcogenide, which is followed by integration of all second harmonic waves generated by this polarization. Calculated second harmonic intensities are presented as functions of dichalcogenide and silicon oxide layer thicknesses. The dependence of the second harmonic intensity on the MoS2 layer thickness is studied experimentally in the layer of 2-140 nm. A good coincidence of the experimental data and numerical simulation results has been obtained.

  17. Correlated structural and electronic phase transformations in transition metal chalcogenide under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Chunyu; Ke, Feng; Hu, Qingyang; Yu, Zhenhai; Zhao, Jinggeng; Chen, Zhiqiang; Yan, Hao

    2016-04-01

    Here, we report comprehensive studies on the high-pressure structural and electrical transport properties of the layered transition metal chalcogenide (Cr2S3) up to 36.3 GPa. A structural phase transition was observed in the rhombohedral Cr2S3 near 16.5 GPa by the synchrotron angle dispersive X-ray diffraction measurement using a diamond anvil cell. Through in situ resistance measurement, the electric resistance value was detected to decrease by an order of three over the pressure range of 7-15 GPa coincided with the structural phase transition. Measurements on the temperature dependence of resistivity indicate that it is a semiconductor-to-metal transition in nature. The results were also confirmed by the electronic energy band calculations. Above results may shed a light on optimizing the performance of Cr2S3 based applications under extreme conditions.

  18. Half-metallic ferromagnetism in Cr-doped semiconducting Ge-chalcogenide: Density functional approach

    SciTech Connect

    Saini, Hardev S.; Singh, Mukhtiyar; Thakur, Jyoti; Kashyap, Manish K.

    2014-04-24

    A supercell approach has been used to calculate the electronic and magnetic properties of Cr-doped Ge chalcogenide, Ge{sub 1−x}Cr{sub x}Te (x = 0.25 and 0.125). The calculations have been performed using full potential Linear Augmented Plane Wave (FPLAPW) method within generalized gradient approximation (GGA) as exchange-correlation (XC) potential. The calculated results show that the doping of Cr induces the 100% spin polarization at Fermi level (EF) and showed the robust half metallic ferromagnetism in this compound. Thus, the compound at both dopant concentrations behave as dilute magnetic semiconductor (DMS) showing metallic property in majority and semiconducting for minority spin channels which is best suited for spintronic applications. The total magnetic moments of this compound are mainly due to Cr-d states present at E{sup F} with negligible contribution from electronic states of other atoms.

  19. Review on Chalcogenide 3D Nano-structured Crystals: Synthesis and Growth Mechanism.

    PubMed

    Qiu, Qi

    2015-01-01

    Three dimensional (3D) nano-structured crystals have received extensive attention for their superior properties over zero dimensional (0D), one dimensional (1D), or two dimensional (2D) nanomaterials in many areas. This review is generalized for the group of chalcogenide nanoflowers (NFs) by the synthetic techniques, such as solvothermal, wet chemical, sol-gel, surface oxidation, microwave, coating, electrochemical, and several other methods. The formation mechanism was also described for the purpose of opening up new food for thoughts to bring up new functionality of materials by tuning the morphology of crystals. The pH value or the template plays fundamental role in forming the nano-flowered structure. Moreover, the correlations between the surface area (SA), contact angle (CA), and the NFs are also discussed within the context. Here, we also discussed some patents relevant to the topic.

  20. High-quality chalcogenide glass waveguide fabrication by hot melt smoothing and micro-trench filling

    NASA Astrophysics Data System (ADS)

    Zhai, Yanfen; Qi, Renduo; Yuan, Chenzhi; Zhang, Wei; Huang, Yidong

    2016-05-01

    We propose a fabrication method for chalcogenide glass (ChG) waveguides based on hot melt smoothing and micro-trench filling. ChGs has low melting points and good flowability. Experiments show that this method can realize high quality As2S7 glass waveguides with reverse ridge structures. The attenuations of the fundamental quasi-TE mode and quasi-TM mode are 0.1 and 0.9 dB/cm, respectively. This method avoids fabrication processes, such as photolithography, lift-off, and dry or wet etching that are directly applied to the ChG films. It provides a simple way to fabricate high quality ChG waveguides, which have great potential for applications in integrated nonlinear optical devices.

  1. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon.

    PubMed

    Rao, Ashutosh; Patil, Aniket; Chiles, Jeff; Malinowski, Marcin; Novak, Spencer; Richardson, Kathleen; Rabiei, Payam; Fathpour, Sasan

    2015-08-24

    Thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge(23)Sb(7)S(70), to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 10(5) quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scale dense on-chip integration of high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes. PMID:26368243

  2. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon.

    PubMed

    Rao, Ashutosh; Patil, Aniket; Chiles, Jeff; Malinowski, Marcin; Novak, Spencer; Richardson, Kathleen; Rabiei, Payam; Fathpour, Sasan

    2015-08-24

    Thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge(23)Sb(7)S(70), to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 10(5) quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scale dense on-chip integration of high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes.

  3. Half-metallic exchange bias ferromagnetic/antiferromagnetic interfaces in transition-metal chalcogenides.

    PubMed

    Nakamura, Kohji; Kato, Yoshinori; Akiyama, Toru; Ito, Tomonori; Freeman, A J

    2006-02-01

    To investigate half-metallic exchange bias interfaces, magnetic structures at ferromagnetic (FM)/antiferromagnetic (AFM) interfaces in the zinc blende transition-metal chalcogenides, and with compensated and uncompensated AFM interfaces, were determined by the full-potential linearized augmented plane-wave method. With the uncompensated AFM interface, an antiparallel alignment of the Cr and Mn moments induces an excellent half-metallicity. More striking still, in the compensated AFM interface the Cr moments in the FM layer lie perpendicular to the Mn moments in the AFM layer but the Mn moments strongly cant to induce a net moment so as to retain the half-metallicity. These findings may offer a key ingredient for exchange biased spintronic devices with 100% spin polarization, having a unidirectional anisotropy to control and manipulate spins at the nanoscale.

  4. Glass formation and physical properties of chalcogenide glasses in Ge-S-Pb system

    NASA Astrophysics Data System (ADS)

    Qu, Guoshun; Lin, Changgui; Li, Zhuobin; Zhai, Sumin; Gu, Shaoxuan; Tao, Haizheng; Xu, Tiefeng

    2014-03-01

    Chalcogenide glasses based on Ge-S-Pb system were prepared, and the compositional dependence of their physic-chemical properties and glass structure were investigated. Up to 23 mol% Pb can be dissolved in this glass system and the glass-formation region like a small isolated island was found. The effect of the introduction of Pb on the glass structure is discussed by employing Raman spectra. It is shown that the substitution of Pb for Ge decreases the number of [GeS4] and [S3Ge-GeS3] units, leading to the variation of properties, such as Tg, H‧, and Hv. The knowledge of this structure-properties relationship of Ge-S-Pb glasses would be of significance to select or to design suitable host glass for optoelectronic applications.

  5. Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires

    DOE PAGESBeta

    Lin, Junhao; Zhang, Yuyang; Zhou, Wu; Pantelides, Sokrates T.

    2016-01-18

    Metallic transition-metal chalcogenide (TMC) nanowires are an important building block for 2D electronics that may be fabricated within semiconducting transition-metal dichalcogenide (TMDC) monolayers. Tuning the geometric structure and electronic properties of such nanowires is a promising way to pattern diverse functional channels for wiring multiple units inside a 2D electronic circuit. Nevertheless, few experimental investigations have been reported exploring the structural and compositional tunability of these nanowires, due to difficulties in manipulating the structure and chemical composition of an individual nanowire. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we report that TMCmore » nanowires have substantial intrinsic structural flexibility and their chemical composition can be manipulated.« less

  6. Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip.

    PubMed

    Pelusi, M D; Vo, T D; Luan, F; Madden, S J; Choi, D-Y; Bulla, D A P; Luther-Davies, B; Eggleton, B J

    2009-05-25

    We report the first demonstration of the use of an RF spectrum analyser with multi-terahertz bandwidth to measure the properties of femtosecond optical pulses. A low distortion and broad measurement bandwidth of 2.78 THz (nearly two orders of magnitude greater than conventional opto-electronic analyzers) was achieved by using a 6 cm long As(2)S(3) chalcogenide waveguide designed for high Kerr nonlinearity and near zero dispersion. Measurements of pulses as short as 260 fs produced from a soliton-effect compressor reveal features not evident from the pulse's optical spectrum. We also applied an inverse Fourier transform numerically to the captured data to re-construct a time-domain waveform that resembled pulse measurement obtained from intensity autocorrelation. PMID:19466183

  7. Estimating optical feedback from a chalcogenide fiber in mid-infrared quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Jumpertz, L.; Caillaud, C.; Gilles, C.; Ferré, S.; Schires, K.; Brilland, L.; Troles, J.; Carras, M.; Grillot, F.

    2016-10-01

    The amount of optical feedback originating from a chalcogenide fiber used to couple light from a mid-infrared quantum cascade laser is evaluated experimentally. Threshold reduction measurements on the fibered laser, combined with an analytical study of a rate equations model of the laser under optical feedback, allow estimating the feedback strength between 11% and 15% depending on the fiber cleavage quality. While this remains below the frontier of the chaotic regime, it is sufficient to deeply modify the optical spectrum of a quantum cascade laser. Hence for applications such as gas spectroscopy, where the shape of the optical spectrum is of prime importance, the use of mid-infrared optical isolators may be necessary for fibered quantum cascade lasers to be fully exploited.

  8. Investigation of magnetic phases in parent compounds of iron-chalcogenides via quasiparticle scattering interference

    NASA Astrophysics Data System (ADS)

    Kamble, Bhaskar; Akbari, Alireza; Eremin, Ilya

    2016-04-01

    We employ a five-orbital tight-binding model to develop the mean-field solution for various possible spin density wave states in the iron-chalcogenides. The quasiparticle interference (QPI) technique is applied to detect signatures of these states due to scatterings arising from non-magnetic impurities. Apart from the experimentally observed double-striped structure with ordering vector (π/2,π/2) , the QPI method is investigated for the extended-stripe as well as the orthogonal double-stripe phase. We discuss QPI as a possible tool to detect and classify various magnetic structures with different electronic structure reconstruction within the framework of the \\text{Fe}1+y\\text{Te} compound.

  9. Recent advances in very highly nonlinear chalcogenide photonic crystal fibers and their applications

    NASA Astrophysics Data System (ADS)

    Méchin, David; Brilland, Laurent; Troles, Johann; Chartier, Thierry; Besnard, Pascal; Canat, Guillaume; Renversez, Gilles

    2012-02-01

    Perfos and the laboratory Glasses and Ceramics Group of University of Rennes 1 have worked together to develop a new fabrication technique for chalcogenide preforms based on the glass-casting process. Various fiber profiles have been designed by the Fresnel Institute and fiber losses have been significantly improved, approaching those of the material losses. Using this technology, we have manufactured an AsSe CPCF exhibiting a nonlinear coefficient γ of 46 000 W-1km-1. Self-phase modulation, Raman effect, Brillouin effect, Four-Wave Mixing have been observed leading to the demonstration of various optical functions such four-wave mixing based wavelength conversion at 1.55 μm by FOTON, the demonstration of Raman Shifts and the generation of a mid-IR supercontinuum source by ONERA and the demonstration of a Brillouin fiber laser by FOTON.

  10. XPS analysis of the oxidation reaction of ruthenium-chalcogenide photoelectrodes

    NASA Astrophysics Data System (ADS)

    Jaegermann, W.; Kühne, H.-M.

    1986-07-01

    The oxidation of RuS 2, RuSe 2, and RuTe 2 single crystals and polycrystalline samples by air and electrochemical / photoelectrochemical means have been studied by XPS. The amount of oxidized species detected at the surface can be related to the tendency of the material to electrochemical corrosion. For RuS 2, which is able to oxidize H 2O to O 2 only an oxidation of the top surface layer can be derived from the changes of the O1s is signal. For RuSe 2 and RuTe 2 Ru-oxide/hydroxide and chalcogenide-oxide species are detected in correspondence to their corrosion tendency. The results of the XPS analysis are discussed with respect to the electrocatalytic properties of the materials.

  11. Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient

    NASA Astrophysics Data System (ADS)

    Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.

    2016-07-01

    Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.

  12. Power-efficient production of photon pairs in a tapered chalcogenide microwire

    SciTech Connect

    Meyer-Scott, Evan Dot, Audrey; Ahmad, Raja; Li, Lizhu; Rochette, Martin; Jennewein, Thomas

    2015-02-23

    Using tapered fibers of As{sub 2}Se{sub 3} chalcogenide glass, we produce photon pairs at telecommunication wavelengths with low pump powers. We found maximum coincidences-to-accidentals ratios of 2.13 ± 0.07 for degenerate pumping with 3.2 μW average power, and 1.33 ± 0.03 for non-degenerate pumping with 1.0 μW and 1.5 μW average power of the two pumps. Our results show that the ultrahigh nonlinearity in these microwires could allow single-photon pumping to produce photon pairs, enabling the production of large entangled states, heralding of single photons after lossy transmission, and photonic quantum information processing with nonlinear optics.

  13. Structural and optical investigation of Te-based chalcogenide thin films

    SciTech Connect

    Sharma, Rita Sharma, Shaveta; Thangaraj, R.; Mian, M.; Chander, Ravi; Kumar, Praveen

    2015-05-15

    We report the structural and optical properties of thermally evaporated Bi{sub 2}Te{sub 3}, In{sub 2}Te{sub 3} and InBiTe{sub 3} films by using X-ray diffraction, optical and Raman Spectroscopy techniques. The as-prepared thin films were found to be Semi-crystalline by X-ray diffraction. Particle Size and Strain has been calculated from XRD data. The optical constants, film thickness, refractive index and optical band gap (E{sub g}) has been reported for In{sub 2}Te{sub 3}, InBiTe{sub 3} films. Raman Spectroscopy was performed to investigate the effect of Bi, In, on lattice vibration and chemical bonding in Te based chalcogenide glassy alloys.

  14. Organic phase synthesis of noble metal-zinc chalcogenide core-shell nanostructures.

    PubMed

    Kumar, Prashant; Diab, Mahmud; Flomin, Kobi; Rukenstein, Pazit; Mokari, Taleb

    2016-10-15

    Multi-component nanostructures have been attracting tremendous attention due to their ability to form novel materials with unique chemical, optical and physical properties. Development of hybrid nanostructures that are composed of metal-semiconductor components using a simple approach is of interest. Herein, we report a robust and general organic phase synthesis of metal (Au or Ag)-Zinc chalcogenide (ZnS or ZnSe) core-shell nanostructures. This synthetic protocol also enabled the growth of more compositionally complex nanostructures of Au-ZnSxSe1-x alloys and Au-ZnS-ZnSe core-shell-shell. The optical and structural properties of these hybrid nanostructures are also presented. PMID:27428852

  15. Temperature dependence of the photoinduced anisotropy in chalcogenide glasses: Activation energies and their interpretation

    NASA Astrophysics Data System (ADS)

    Tikhomirov, V. K.; Adriaenssens, G. J.; Elliott, S. R.

    1997-01-01

    Three distinct regions have been observed in the measured temperature dependence of photoinduced anisotropy in chalcogenide glasses (Se and AsSe). At high temperatures the relaxation of the induced anisotropy is governed by an Arrhenius law with a change of activation energy at the glass-transition temperature Tg (thus suggesting a method for detection of Tg in glasses). Conversely, the low-temperature relaxation is not thermally activated. These observations are explained by introducing a triple-well configurational diagram for the valence-alternation pairs (VAP's) and their environments, which are believed to be responsible. A transient neutral state connects two (initial and final) charged states of the VAP's. A symmetry reversal of the pyramid centered at an overcoordinated chalcogen atom is suggested as a microscopic mechanism for the photoinduced anisotropy.

  16. Engineering of chalcogenide materials for embedded applications of Phase Change Memory

    NASA Astrophysics Data System (ADS)

    Zuliani, Paola; Palumbo, Elisabetta; Borghi, Massimo; Dalla Libera, Giovanna; Annunziata, Roberto

    2015-09-01

    Phase Change Memory technology can be a real breakthrough for process cost saving and performances for embedded applications. The feasibility at 90 nm technology node has been solidly proven in an industrial environment and the added value of this solution demonstrated. Nevertheless, for specific applications some improvement in High Temperature Data Retention (HTDR) characteristics is needed. In this work we present the engineering of chalcogenide materials in order to increase the stability of RESET state as a function of temperature. This goal has been achieved by exploring Ge-rich compounds in the Ge-Sb-Te ternary diagram. In particular, an optimized GexSbyTez Phase Change material, able to guarantee code integrity of the memory content after soldering thermal profile and data retention in extended temperature range has been obtained. Extrapolation of data retention at 10 years for temperatures higher than 150 °C cell-level has been demonstrated, thus enabling automotive applications.

  17. Low-phonon-frequency chalcogenide crystalline hosts for rare earth lasers operating beyond three microns

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Schaffers, Kathleen I.; Nostrand, Michael C.; Krupke, William F.; Schunemann, Peter G.

    2000-01-01

    The invention comprises a RE-doped MA.sub.2 X.sub.4 crystalline gain medium, where M includes a divalent ion such as Mg, Ca, Sr, Ba, Pb, Eu, or Yb; A is selected from trivalent ions including Al, Ga, and In; X is one of the chalcogenide ions S, Se, and Te; and RE represents the trivalent rare earth ions. The MA.sub.2 X.sub.4 gain medium can be employed in a laser oscillator or a laser amplifier. Possible pump sources include diode lasers, as well as other laser pump sources. The laser wavelengths generated are greater than 3 microns, as becomes possible because of the low phonon frequency of this host medium. The invention may be used to seed optical devices such as optical parametric oscillators and other lasers.

  18. Excitonic effects in the optical properties of alkaline earth chalcogenides from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Nejatipour, Hajar; Dadsetani, Mehrdad

    2015-08-01

    This paper studies excitonic effects in the optical properties of alkaline earth chalcogenides (AECs) by solving the equation of motion of the two-particle Green function, the Bethe-Salpeter equation (BSE). On the basis of quasi-particle states obtained by the GW approximation, (BSE + GW), the solution of BSE improves agreement with experiments. In these compounds, the main excitonic structures were reproduced appropriately. In the optical absorption spectra of AECs, the main excitonic structures originate in the direct transitions at X and Γ symmetry points, as confirmed by the experiments. In addition to real and imaginary parts of the dielectric functions, excitonic effects were studied in the electron energy loss functions of AECs. Moreover, the G0W0 approximation was used in order to determine the energy band gaps of AECs. This showed that except for MgO and BaO, the other AECs under study have indirect band gaps from Γ to X.

  19. Mid-infrared supercontinuum generation in tapered As2S3 chalcogenide planar waveguide

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Hu, Hongyu; Li, Wenbo; Dutta, Niloy K.

    2016-10-01

    We numerically demonstrate mid-infrared supercontinuum generation in a non-uniformly tapered chalcogenide planar waveguide. This planar rib waveguide of As2S3 glass on MgF2 is 2 cm long with increasing etch depth longitudinally to manage the total dispersion. This waveguide has zero dispersion at two wavelengths. The dispersion profile varies along the propagation distance, leading to continuous modification of the phase-matching condition for dispersive wave emission and enhancement of energy transfer efficiency between solitons and dispersive waves. Numerical simulations are conducted for secant input pulses at a wavelength of 1.55 μm with a width of 50 fs and peak power of 2 kW. Results show this proposed scheme significantly broadens the generated continuum, extending from ~1 to ~7 μm.

  20. Instantaneous microwave frequency measurement using four-wave mixing in a chalcogenide chip

    NASA Astrophysics Data System (ADS)

    Pagani, Mattia; Vu, Khu; Choi, Duk-Yong; Madden, Steve J.; Eggleton, Benjamin J.; Marpaung, David

    2016-08-01

    We present the first instantaneous frequency measurement (IFM) system using four-wave mixing (FWM) in a compact photonic chip. We exploit the high nonlinearity of chalcogenide to achieve efficient FWM in a short 23 mm As2S3 waveguide. This reduces the measurement latency by orders of magnitude, compared to fiber-based approaches. We demonstrate the tuning of the system response to maximize measurement bandwidth (40 GHz, limited by the equipment used), or accuracy (740 MHz rms error). Additionally, we modify the previous FWM-based IFM system structure to allow for ultra-fast reconfiguration of the bandwidth and resolution of the measurement. This has the potential to become the first IFM system capable of ultra-fast accurate frequency measurement, with no compromise of bandwidth.

  1. Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides.

    PubMed

    Tsay, Candice; Mujagić, Elvis; Madsen, Christi K; Gmachl, Claire F; Arnold, Craig B

    2010-07-19

    An etch-free and cost-effective deposition and patterning method to fabricate mid-infrared chalcogenide glass waveguides for chemical sensing applications is introduced. As(2)S(3) raised strip optical waveguides are produced by casting a liquid solution of As(2)S(3) glass in capillary channel molds formed by soft lithography. Mid-IR transmission is characterized by coupling the output of a quantum cascade (QC) laser (lambda = 4.8 microm) into the 40 microm wide by 10 microm thick multi-mode waveguides. Loss as low as 4.5 dB/cm is achieved using suitable substrate materials and post-processing. Optical absorption and surface roughness measurements indicate that the solution-processed films are of sufficient quality for optical devices and are promising for further development of waveguide-based mid-IR elements.

  2. Simulation of an erbium-doped chalcogenide micro-disk mid-infrared laser source.

    PubMed

    Al Tal, Faleh; Dimas, Clara; Hu, Juejun; Agarwal, Anu; Kimerling, Lionel C

    2011-06-20

    The feasibility of mid-infrared (MIR) lasing in erbium-doped gallium lanthanum sulfide (GLS) micro-disks was examined. Lasing condition at 4.5 µm signal using 800 nm pump source was simulated using rate equations, mode propagation and transfer matrix formulation. Cavity quality (Q) factors of 1.48 × 10(4) and 1.53 × 10(6) were assumed at the pump and signal wavelengths, respectively, based on state-of-the-art chalcogenide micro-disk resonator parameters. With an 80 µm disk diameter and an active erbium concentration of 2.8 × 10(20) cm(-3), lasing was shown to be possible with a maximum slope efficiency of 1.26 × 10(-4) and associated pump threshold of 0.5 mW.

  3. Organic phase synthesis of noble metal-zinc chalcogenide core-shell nanostructures.

    PubMed

    Kumar, Prashant; Diab, Mahmud; Flomin, Kobi; Rukenstein, Pazit; Mokari, Taleb

    2016-10-15

    Multi-component nanostructures have been attracting tremendous attention due to their ability to form novel materials with unique chemical, optical and physical properties. Development of hybrid nanostructures that are composed of metal-semiconductor components using a simple approach is of interest. Herein, we report a robust and general organic phase synthesis of metal (Au or Ag)-Zinc chalcogenide (ZnS or ZnSe) core-shell nanostructures. This synthetic protocol also enabled the growth of more compositionally complex nanostructures of Au-ZnSxSe1-x alloys and Au-ZnS-ZnSe core-shell-shell. The optical and structural properties of these hybrid nanostructures are also presented.

  4. Modeling Binary Neutron Stars

    NASA Astrophysics Data System (ADS)

    Park, Conner; Read, Jocelyn; Flynn, Eric; Lockett-Ruiz, Veronica

    2016-03-01

    Gravitational waves, predicted by Einstein's Theory of Relativity, are a new frontier in astronomical observation we can use to observe phenomena in the universe. Laser Interferometer Gravitational wave Observatory (LIGO) is currently searching for gravitational wave signals, and requires accurate predictions in order to best extract astronomical signals from all other sources of fluctuations. The focus of my research is in increasing the accuracy of Post-Newtonian models of binary neutron star coalescence to match the computationally expensive Numerical models. Numerical simulations can take months to compute a couple of milliseconds of signal whereas the Post-Newtonian can generate similar signals in seconds. However the Post-Newtonian model is an approximation, e.g. the Taylor T4 Post-Newtonian model assumes that the two bodies in the binary neutron star system are point charges. To increase the effectiveness of the approximation, I added in tidal effects, resonance frequencies, and a windowing function. Using these observed effects from simulations significantly increases the Post-Newtonian model's similarity to the Numerical signal.

  5. Mimicking high-silica zeolites: highly stable germanium- and tin-rich zeolite-type chalcogenides.

    PubMed

    Lin, Qipu; Bu, Xianhui; Mao, Chengyu; Zhao, Xiang; Sasan, Koroush; Feng, Pingyun

    2015-05-20

    High-silica zeolites, as exemplified by ZSM-5, with excellent chemical and thermal stability, have generated a revolution in industrial catalysis. In contrast, prior to this work, high-silica-zeolite-like chalcogenides based on germanium/tin remained unknown, even after decades of research. Here six crystalline high-germanium or high-tin zeolite-type sulfides and selenides with four different topologies are reported. Their unprecedented framework compositions give these materials much improved thermal and chemical stability with high surface area (Langmuir surface area of 782 m(2)/g(-1)) comparable to or better than zeolites. Among them, highly stable CPM-120-ZnGeS allows for ion exchange with diverse metal or complex cations, resulting in fine-tuning in porosity, fast ion conductivity, and photoelectric response. Being among the most porous crystalline chalcogenides, CPM-120-ZnGeS (exchanged with Cs(+) ions) also shows reversible adsorption with high capacity and affinity for CO2 (98 and 73 cm(3) g(-1) at 273 and 298 K, respectively, isosteric heat of adsorption = 40.05 kJ mol(-1)). Moreover, CPM-120-ZnGeS could also function as a robust photocatalyst for water reduction to generate H2. The overall activity of H2 production from water, in the presence of Na2S-Na2SO3 as a hole scavenger, was 200 μmol h(-1)/(0.10 g). Such catalytic activity remained undiminished under illumination by UV light for as long as measured (200 h), demonstrating excellent resistance to photocorrosion even under intense UV radiation.

  6. Dy{sup 3+}-doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers

    SciTech Connect

    Zhang, Mingjie; Yang, Anping; Peng, Yuefeng; Zhang, Bin; Ren, He; Guo, Wei; Yang, Yan; Zhai, Chengcheng; Wang, Yuwei; Yang, Zhiyong; Tang, Dingyuan

    2015-10-15

    Highlights: • Novel Ga–Sb–S chalcogenide glasses doped with Dy{sup 3+} ions were synthesized. • The glasses show good thermal stability and excellent infrared transparency. • The glasses show low phonon energy and intense mid-infrared emissions. • The mid-infrared emissions have high quantum efficiency. • The mid-infrared emissions have large stimulated emission cross sections. - Abstract: Novel Ga–Sb–S chalcogenide glasses doped with different amount of Dy{sup 3+} ions were prepared. Their thermal stability, optical properties, and mid-infrared (MIR) emission properties were investigated. The glasses show good thermal stability, excellent infrared transparency, very low phonon energy (∼306 cm{sup −1}), and intense emissions centered at 2.95, 3.59, 4.17 and 4.40 μm. Three Judd–Ofelt intensity parameters (Ω{sub 2} = 8.51 × 10{sup −20} cm{sup 2}, Ω{sub 4} = 2.09 × 10{sup −20} cm{sup 2}, and Ω{sub 6} = 1.60 × 10{sup −20} cm{sup 2}) are obtained, and the related radiative transition properties are evaluated. The high quantum efficiencies and large stimulated emission cross sections of the MIR emissions (88.10% and 1.11 × 10{sup −20} cm{sup 2} for 2.95 μm emission, 75.90% and 0.38 × 10{sup −20} cm{sup 2} for 4.40 μm emission, respectively) in the Dy{sup 3+}-doped Ga–Sb–S glasses make them promising gain materials for the MIR lasers.

  7. Hubbard interactions in iron-based pnictides and chalcogenides: Slater parametrization, screening channels, and frequency dependence

    NASA Astrophysics Data System (ADS)

    van Roekeghem, Ambroise; Vaugier, Loïg; Jiang, Hong; Biermann, Silke

    2016-09-01

    We calculate the strength of the frequency-dependent on-site electronic interactions in the iron pnictides LaFeAsO, BaFe2As2 , BaRu2As2 , and LiFeAs and the chalcogenide FeSe from first principles within the constrained random phase approximation. We discuss the accuracy of an atomiclike parametrization of the two-index density-density interaction matrices based on the calculation of an optimal set of three independent Slater integrals, assuming that the angular part of the Fe d localized orbitals can be described within spherical harmonics as for isolated Fe atoms. We show that its quality depends on the ligand-metal bonding character rather than on the dimensionality of the lattice: it is excellent for ionic-like Fe-Se (FeSe) chalcogenides and a more severe approximation for more covalent Fe-As (LaFeAsO, BaFe2As2 ) pnictides. We furthermore analyze the relative importance of different screening channels, with similar conclusions for the different pnictides but a somewhat different picture for the benchmark oxide SrVO3: the ligand channel does not appear to be dominant in the pnictides, while oxygen screening is the most important process in the oxide. Finally, we analyze the frequency dependence of the interaction. In contrast to simple oxides, in iron pnictides its functional form cannot be simply modeled by a single plasmon, and the actual density of modes enters the construction of an effective Hamiltonian determining the low-energy properties.

  8. Characterization of Single-mode Chalcogenide Optical Fiber for Mid-Infrared Applications

    SciTech Connect

    Krishnaswami, Kannan; Qiao, Hong; Bernacki, Bruce E.; Anheier, Norman C.

    2009-04-01

    Chalcogenide fibers display a wide transmission window ranging from 2-10.6 μm, ideally suited to the development of passive and active mid-infrared (MIR) sensors. They are essential building blocks for the integration and miniaturization of laser-based MIR optical systems for terrestrial, airborne and space-based sensing platforms. Single-mode chalcogenide fibers have only recently become commercially available and therefore performance data and standard reproducible processing techniques have not been widely reported. In this paper we present a method for producing high quality facets on commercial single-mode As-Se fibers with core and cladding diameters of 28.1 and 169.9μm respectively. The emitted beam profile from these fibers, using the 9.4μm line of a tunable CO2 laser, showed the presence of leaky cladding modes due to waveguiding conditions created by the protective acrylate jacket. These undesirable cladding modes were easily suppressed by applying a gallium coating on the cladding near both input and output facets. We provide experimental data of efficient mode suppression and the emission of a circular near-perfect Gaussian beam profile from the fiber. A model to determine appropriate placement of gallium coatings to minimize processing while maximizing cladding mode suppression is currently underway. Furthermore, analyses of the beam, acquired by scanning an HgCdTe detector, yielded a 1/e2 numerical aperture of 0.11 with a full width half maximum divergence of 11° for these fibers. The availability of single-mode MIR fibers, in conjunction with recent advances in room temperature quantum cascade lasers (QCL), could provide compact and light-weight transmitter solutions for several critical defense and nuclear non-proliferation needs.

  9. Surface oxidation of tin chalcogenide nanocrystals revealed by 119Sn-Mössbauer spectroscopy.

    PubMed

    de Kergommeaux, Antoine; Faure-Vincent, Jérôme; Pron, Adam; de Bettignies, Rémi; Malaman, Bernard; Reiss, Peter

    2012-07-18

    Narrow band gap tin(II) chalcogenide (SnS, SnSe, SnTe) nanocrystals are of high interest for optoelectronic applications such as thin film solar cells or photodetectors. However, charge transfer and charge transport processes strongly depend on nanocrystals' surface quality. Using (119)Sn-Mössbauer spectroscopy, which is the most sensitive tool for probing the Sn oxidation state, we show that SnS nanocrystals exhibit a Sn((IV))/Sn((II)) ratio of around 20:80 before and 40:60 after five minutes exposure to air. Regardless of the tin or sulfur precursors used, similar results are obtained using six different synthesis protocols. The Sn((IV)) content before air exposure arises from surface related SnS(2) and Sn(2)S(3) species as well as from surface Sn atoms bound to oleic acid ligands. The increase of the Sn((IV)) content upon air exposure results from surface oxidation. Full oxidation of the SnS nanocrystals without size change is achieved by annealing at 500 °C in air. With the goal to prevent surface oxidation, SnS nanocrystals are capped with a cadmium-phosphonate complex. A broad photoluminescence signal centered at 600 nm indicates successful capping, which however does not reduce the air sensitivity. Finally we demonstrate that SnSe nanocrystals exhibit a very similar behavior with a Sn((IV))/Sn((II)) ratio of 43:57 after air exposure. In the case of SnTe nanocrystals, the ratio of 55:45 is evidence of a more pronounced tendency for oxidation. These results demonstrate that prior to their use in optoelectronics further surface engineering of tin chalcogenide nanocrystals is required, which otherwise have to be stored and processed under inert atmosphere.

  10. Multilevel Models for Binary Data

    ERIC Educational Resources Information Center

    Powers, Daniel A.

    2012-01-01

    The methods and models for categorical data analysis cover considerable ground, ranging from regression-type models for binary and binomial data, count data, to ordered and unordered polytomous variables, as well as regression models that mix qualitative and continuous data. This article focuses on methods for binary or binomial data, which are…

  11. Signature Visualization of Software Binaries

    SciTech Connect

    Panas, T

    2008-07-01

    In this paper we present work on the visualization of software binaries. In particular, we utilize ROSE, an open source compiler infrastructure, to pre-process software binaries, and we apply a landscape metaphor to visualize the signature of each binary (malware). We define the signature of a binary as a metric-based layout of the functions contained in the binary. In our initial experiment, we visualize the signatures of a series of computer worms that all originate from the same line. These visualizations are useful for a number of reasons. First, the images reveal how the archetype has evolved over a series of versions of one worm. Second, one can see the distinct changes between version. This allows the viewer to form conclusions about the development cycle of a particular worm.

  12. BINARY ASTROMETRIC MICROLENSING WITH GAIA

    SciTech Connect

    Sajadian, Sedighe

    2015-04-15

    We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth due to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.

  13. Structural and elastic properties of barium chalcogenides (BaX, X=O, Se, Te) under high pressure

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Purvee; Singh, Sadhna; Gaur, Neeraj Kumar

    2008-06-01

    In the present paper we have investigated the high-pressure, structural phase transition of Barium chalcogenides (BaO, BaSe and BaTe) using a three-body interaction potential (MTBIP) approach, modified by incorporating covalency effects. Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses obtained from TBIP show a reasonably good agreement with experimental data. Here, the transition pressure, NaCl-CsCl structure increases with decreasing cation-to-anion radii ratio. In addition, the elastic constants and their combinations with pressure are also reported. It is found that TBP incorporating a covalency effect may predict the phase transition pressure, the elastic constants and the pressure derivatives of other chalcogenides as well.

  14. Pinning down high-performance Cu-chalcogenides as thin-film solar cell absorbers: A successive screening approach

    NASA Astrophysics Data System (ADS)

    Zhang, Yubo; Wang, Youwei; Zhang, Jiawei; Xi, Lili; Zhang, Peihong; Zhang, Wenqing

    2016-05-01

    Photovoltaic performances of Cu-chalcogenides solar cells are strongly correlated with the absorber fundamental properties such as optimal bandgap, desired band alignment with window material, and high photon absorption ability. According to these criteria, we carry out a successive screening for 90 Cu-chalcogenides using efficient theoretical approaches. Besides the well-recognized CuInSe2 and Cu2ZnSnSe4 materials, several novel candidates are identified to have optimal bandgaps of around 1.0-1.5 eV, spike-like band alignments with CdS window layer, sharp photon absorption edges, and high absorption coefficients. These new systems have great potential to be superior absorbers for photovolatic applications if their carrrier transport and defect properties are properly optimized.

  15. Pinning down high-performance Cu-chalcogenides as thin-film solar cell absorbers: A successive screening approach.

    PubMed

    Zhang, Yubo; Wang, Youwei; Zhang, Jiawei; Xi, Lili; Zhang, Peihong; Zhang, Wenqing

    2016-05-21

    Photovoltaic performances of Cu-chalcogenides solar cells are strongly correlated with the absorber fundamental properties such as optimal bandgap, desired band alignment with window material, and high photon absorption ability. According to these criteria, we carry out a successive screening for 90 Cu-chalcogenides using efficient theoretical approaches. Besides the well-recognized CuInSe2 and Cu2ZnSnSe4 materials, several novel candidates are identified to have optimal bandgaps of around 1.0-1.5 eV, spike-like band alignments with CdS window layer, sharp photon absorption edges, and high absorption coefficients. These new systems have great potential to be superior absorbers for photovolatic applications if their carrrier transport and defect properties are properly optimized. PMID:27208964

  16. Infrared imaging spectrometry by the use of bundled chalcogenide glass fibers and a PtSi CCD camera

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Kikuchi, Katsuhiro; Tanaka, Chinari; Sone, Hiroshi; Morimoto, Shozo; Yamashita, Toshiharu T.; Nishii, Junji

    1999-10-01

    A coherent fiber bundle for infrared image transmission was prepared by arranging 8400 chalcogenide (AsS) glass fibers. The fiber bundle, 1 m in length, is transmissive in the infrared spectral region of 1 - 6 micrometer. A remote spectroscopic imaging system was constructed with the fiber bundle and an infrared PtSi CCD camera. The system was used for the real-time observation (frame time: 1/60 s) of gas distribution. Infrared light from a SiC heater was delivered to a gas cell through a chalcogenide fiber, and transmitted light was observed through the fiber bundle. A band-pass filter was used for the selection of gas species. A He-Ne laser of 3.4 micrometer wavelength was also used for the observation of hydrocarbon gases. Gases bursting from a nozzle were observed successfully by a remote imaging system.

  17. Evolution of Small Binary Asteroids with the Binary YORP Effect

    NASA Astrophysics Data System (ADS)

    Frouard, Julien

    2013-05-01

    Abstract (2,250 Maximum Characters): Small, Near-Earth binaries are believed to be created following the fission of an asteroid spun up by the YORP effect. It is then believed that the YORP effect acting on the secondary (Binary YORP) increases or decreases the binary mutual distance on 10^5 yr timescales. How long this mechanism can apply is not yet fully understood. We investigate the binary orbital and rotational dynamics by using non-averaged, direct numerical simulations, taking into account the relative motion of two ellipsoids (primary and secondary) and the solar perturbation. We add the YORP force and torque on the orbital and rotational motion of the secondary. As a check of our code we obtain a ~ 7.2 cm/yr drift in semi-major axis for 1999 KW4 beta, consistent with the values obtained with former analytical studies. The synchronous rotation of the secondary is required for the Binary YORP to be effective. We investigate the synchronous lock of the secondary in function of different parameters ; mutual distance, shape of the secondary, and heliocentric orbit. For example we show that the secondary of 1999 KW4 can be synchronous only up to 7 Rp (primary radius), where the resonance becomes completely chaotic even for very small eccentricities. We use Gaussian Random Spheres to obtain various secondary shapes, and check the evolution of the binaries with the Binary YORP effect.

  18. VLSI binary updown counter

    NASA Technical Reports Server (NTRS)

    Truong, Trieu-Kie (Inventor); Hsu, In-Shek (Inventor); Reed, Irving S. (Inventor)

    1989-01-01

    A pipeline binary updown counter is comprised of simple stages that may be readily replicated. Each stage is defined by the Boolean logic equation: A(sub n)(t) = A(sub n)(t - 1) exclusive OR (U AND P(sub n)) inclusive OR (D AND Q(sub n)), where A(sub n)(t) denotes the value of the nth bit at time t. The input to the counter has three values represented by two binary signals U and D such that if both are zero, the input is zero, if U = 0 and D = 1, the input is -1 and if U = 1 and D = 0, the input is +1. P(sub n) represents a product of A(sub k)'s for 1 is less than or equal to k is less than or equal to -1, while Q(sub n) represents the product of bar A's for 1 is less than or equal to K is less than or equal to n - 1, where bar A(sub k) is the complement of A(sub k) and P(sub n) and Q(sub n) are expressed as the following two equations: P(sub n) = A(sub n - 1) A(sub n - 2)...A(sub 1) and Q(sub n) = bar A(sub n - 1) bar A(sub n - 2)...bar A(sub 1), which can be written in recursive form as P(sub n) = P(sub n - 1) AND bar A(sub n - 1) and Q(sub n) = Q(sub n - 1) AND bar A(sub n - 1) with the initial values P(sub 1) = 1 and Q(sub 1) = 1.

  19. Nanostructured Ge{sub 2}Sb{sub 2}Te{sub 5} chalcogenide films produced by laser electrodispersion

    SciTech Connect

    Yavsin, D. A. Kozhevin, V. M.; Gurevich, S. A.; Yakovlev, S. A.; Melekh, B. T.; Yagovkina, M. A.; Pevtsov, A. B.

    2014-12-15

    Amorphous nanostructured films of a complex chalcogenide (Ge{sub 2}Sb{sub 2}Te{sub 5}) are produced by laser electrodispersion and their structural and electrical properties are studied. It is found that the characteristic size of Ge{sub 2}Sb{sub 2}Te{sub 5} nanoparticles in the structure of the films is 1.5–5 nm.

  20. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors.

    PubMed

    Zheng, Wenshan; Xie, Tian; Zhou, Yu; Chen, Y L; Jiang, Wei; Zhao, Shuli; Wu, Jinxiong; Jing, Yumei; Wu, Yue; Chen, Guanchu; Guo, Yunfan; Yin, Jianbo; Huang, Shaoyun; Xu, H Q; Liu, Zhongfan; Peng, Hailin

    2015-01-01

    Patterning of high-quality two-dimensional chalcogenide crystals with unique planar structures and various fascinating electronic properties offers great potential for batch fabrication and integration of electronic and optoelectronic devices. However, it remains a challenge that requires accurate control of the crystallization, thickness, position, orientation and layout. Here we develop a method that combines microintaglio printing with van der Waals epitaxy to efficiently pattern various single-crystal two-dimensional chalcogenides onto transparent insulating mica substrates. Using this approach, we have patterned large-area arrays of two-dimensional single-crystal Bi2Se3 topological insulator with a record high Hall mobility of ∼1,750 cm(2) V(-1) s(-1) at room temperature. Furthermore, our patterned two-dimensional In2Se3 crystal arrays have been integrated and packaged to flexible photodetectors, yielding an ultrahigh external photoresponsivity of ∼1,650 A W(-1) at 633 nm. The facile patterning, integration and packaging of high-quality two-dimensional chalcogenide crystals hold promise for innovations of next-generation photodetector arrays, wearable electronics and integrated optoelectronic circuits.

  1. Designing mid-wave infrared (MWIR) thermo-optic coefficient (dn/dT) in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Gleason, Benn; Sisken, Laura; Smith, Charmayne; Richardson, Kathleen

    2016-05-01

    Seventeen infrared-transmitting GeAsSe chalcogenide glasses were fabricated to determine the role of chemistry and structure on mid-wave infrared (MWIR) optical properties. The refractive index and thermoptic coefficients of samples were measured at λ = 4.515 μm using an IR-modified Metricon prism coupler, located at University of Central Florida. Thermo-optic coefficient (dn/dT) values were shown to range from approximately -40 ppm/°C to +65 ppm/°C, and refractive index was shown to vary between approximately 2.5000 and 2.8000. Trends in refractive index and dn/dT were found to be related to the atomic structures present within the glassy network, as opposed to the atomic percentage of any individual constituent. A linear correlation was found between the quantity (n-3•dn/dT) and the coefficient of thermal expansion (CTE) of the glass, suggesting the ability to compositionally design chalcogenide glass compositions with zero dn/dT, regardless of refractive index or dispersion performance. The tunability of these novel glasses offer increased thermal and mechanical stability as compared to the current commercial zero dn/dT options such as AMTIR-5 from Amorphous Materials Inc. For IR imaging systems designed to achieve passive athermalization, utilizing chalcogenide glasses with their tunable ranges of dn/dT (including zero) can be key to addressing system size, weight, and power (SWaP) limitations.

  2. Electrospray Deposition of Uniform Thickness Ge23Sb7S70 and As40S60 Chalcogenide Glass Films.

    PubMed

    Novak, Spencer; Lin, Pao-Tai; Li, Cheng; Borodinov, Nikolay; Han, Zhaohong; Monmeyran, Corentin; Patel, Neil; Du, Qingyang; Malinowski, Marcin; Fathpour, Sasan; Lumdee, Chatdanai; Xu, Chi; Kik, Pieter G; Deng, Weiwei; Hu, Juejun; Agarwal, Anuradha; Luzinov, Igor; Richardson, Kathleen

    2016-01-01

    Solution-based electrospray film deposition, which is compatible with continuous, roll-to-roll processing, is applied to chalcogenide glasses. Two chalcogenide compositions are demonstrated: Ge23Sb7S70 and As40S60, which have both been studied extensively for planar mid-infrared (mid-IR) microphotonic devices. In this approach, uniform thickness films are fabricated through the use of computer numerical controlled (CNC) motion. Chalcogenide glass (ChG) is written over the substrate by a single nozzle along a serpentine path. Films were subjected to a series of heat treatments between 100 °C and 200 °C under vacuum to drive off residual solvent and densify the films. Based on transmission Fourier transform infrared (FTIR) spectroscopy and surface roughness measurements, both compositions were found to be suitable for the fabrication of planar devices operating in the mid-IR region. Residual solvent removal was found to be much quicker for the As40S60 film as compared to Ge23Sb7S70. Based on the advantages of electrospray, direct printing of a gradient refractive index (GRIN) mid-IR transparent coating is envisioned, given the difference in refractive index of the two compositions in this study. PMID:27583775

  3. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors

    PubMed Central

    Zheng, Wenshan; Xie, Tian; Zhou, Yu; Chen, Y.L.; Jiang, Wei; Zhao, Shuli; Wu, Jinxiong; Jing, Yumei; Wu, Yue; Chen, Guanchu; Guo, Yunfan; Yin, Jianbo; Huang, Shaoyun; Xu, H.Q.; Liu, Zhongfan; Peng, Hailin

    2015-01-01

    Patterning of high-quality two-dimensional chalcogenide crystals with unique planar structures and various fascinating electronic properties offers great potential for batch fabrication and integration of electronic and optoelectronic devices. However, it remains a challenge that requires accurate control of the crystallization, thickness, position, orientation and layout. Here we develop a method that combines microintaglio printing with van der Waals epitaxy to efficiently pattern various single-crystal two-dimensional chalcogenides onto transparent insulating mica substrates. Using this approach, we have patterned large-area arrays of two-dimensional single-crystal Bi2Se3 topological insulator with a record high Hall mobility of ∼1,750 cm2 V−1 s−1 at room temperature. Furthermore, our patterned two-dimensional In2Se3 crystal arrays have been integrated and packaged to flexible photodetectors, yielding an ultrahigh external photoresponsivity of ∼1,650 A W−1 at 633 nm. The facile patterning, integration and packaging of high-quality two-dimensional chalcogenide crystals hold promise for innovations of next-generation photodetector arrays, wearable electronics and integrated optoelectronic circuits. PMID:25898022

  4. High power broadband mid-infrared supercontinuum fiber laser using a novel chalcogenide AsSe2 photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Diouf, Mbaye; Ben Salem, Amine; Cherif, Rim; Wague, Ahmadou; Zghal, Mourad

    2016-05-01

    A high power supercontinuum (SC) based on a new type of chalcogenide AsSe2 material for broadband mid-infrared light source is numerically reported. Ultra-broadband coherent mid-IR SC generation with more than 3 octave-spanning from 1.7 to 14 μm in a novel design of chalcogenide AsSe2 photonic crystal fiber (PCF) is demonstrated. To the best of our knowledge and aiming to properly model the nonlinear propagation, an accurate fit of the Raman response function and the corresponding Raman gain of the novel AsSe2 chalcogenide glass are proposed numerically for the first time. The obtained SC is generated by pumping at 3.9 μm in the anomalous dispersion regime in only 8 mm long fiber. Our study shows that the initially generated SC from 150 fs pulse duration with 8.8 kW peak power exhibits high power proportion of more than 80% for wavelengths beyond 3 μm which is very promising for designing high power SC fiber laser sources in the mid-IR atmospheric windows and the molecular fingerprint region.

  5. Content identification: binary content fingerprinting versus binary content encoding

    NASA Astrophysics Data System (ADS)

    Ferdowsi, Sohrab; Voloshynovskiy, Svyatoslav; Kostadinov, Dimche

    2014-02-01

    In this work, we address the problem of content identification. We consider content identification as a special case of multiclass classification. The conventional approach towards identification is based on content fingerprinting where a short binary content description known as a fingerprint is extracted from the content. We propose an alternative solution based on elements of machine learning theory and digital communications. Similar to binary content fingerprinting, binary content representation is generated based on a set of trained binary classifiers. We consider several training/encoding strategies and demonstrate that the proposed system can achieve the upper theoretical performance limits of content identification. The experimental results were carried out both on a synthetic dataset with different parameters and the FAMOS dataset of microstructures from consumer packages.

  6. Binary Oscillatory Crossflow Electrophoresis

    NASA Technical Reports Server (NTRS)

    Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.

    1997-01-01

    Electrophoresis has long been recognized as an effective analytic technique for the separation of proteins and other charged species, however attempts at scaling up to accommodate commercial volumes have met with limited success. In this report we describe a novel electrophoretic separation technique - Binary Oscillatory Crossflow Electrophoresis (BOCE). Numerical simulations indicate that the technique has the potential for preparative scale throughputs with high resolution, while simultaneously avoiding many problems common to conventional electrophoresis. The technique utilizes the interaction of an oscillatory electric field and a transverse oscillatory shear flow to create an active binary filter for the separation of charged protein species. An oscillatory electric field is applied across the narrow gap of a rectangular channel inducing a periodic motion of charged protein species. The amplitude of this motion depends on the dimensionless electrophoretic mobility, alpha = E(sub o)mu/(omega)d, where E(sub o) is the amplitude of the electric field oscillations, mu is the dimensional mobility, omega is the angular frequency of oscillation and d is the channel gap width. An oscillatory shear flow is induced along the length of the channel resulting in the separation of species with different mobilities. We present a model that predicts the oscillatory behavior of charged species and allows estimation of both the magnitude of the induced convective velocity and the effective diffusivity as a function of a in infinitely long channels. Numerical results indicate that in addition to the mobility dependence, the steady state behavior of solute species may be strongly affected by oscillating fluid into and out of the active electric field region at the ends of the cell. The effect is most pronounced using time dependent shear flows of the same frequency (cos((omega)t)) flow mode) as the electric field oscillations. Under such conditions, experiments indicate that

  7. Stability of binaries. Part II: Rubble-pile binaries

    NASA Astrophysics Data System (ADS)

    Sharma, Ishan

    2016-10-01

    We consider the stability of the binary asteroids whose members are granular aggregates held together by self-gravity alone. A binary is said to be stable whenever both its members are orbitally and structurally stable to both orbital and structural perturbations. To this end, we extend the stability analysis of Sharma (Sharma [2015] Icarus, 258, 438-453), that is applicable to binaries with rigid members, to the case of binary systems with rubble members. We employ volume averaging (Sharma et al. [2009] Icarus, 200, 304-322), which was inspired by past work on elastic/fluid, rotating and gravitating ellipsoids. This technique has shown promise when applied to rubble-pile ellipsoids, but requires further work to settle some of its underlying assumptions. The stability test is finally applied to some suspected binary systems, viz., 216 Kleopatra, 624 Hektor and 90 Antiope. We also see that equilibrated binaries that are close to mobilizing their maximum friction can sustain only a narrow range of shapes and, generally, congruent shapes are preferred.

  8. From wide to close binaries?

    NASA Astrophysics Data System (ADS)

    Eggleton, Peter P.

    The mechanisms by which the periods of wide binaries (mass 8 solar mass or less and period 10-3000 d) are lengthened or shortened are discussed, synthesizing the results of recent theoretical investigations. A system of nomenclature involving seven evolutionary states, three geometrical states, and 10 types of orbital-period evolution is developed and applied; classifications of 71 binaries are presented in a table along with the basic observational parameters. Evolutionary processes in wide binaries (single-star-type winds, magnetic braking with tidal friction, and companion-reinforced attrition), late case B systems, low-mass X-ray binaries, and triple systems are examined in detail, and possible evolutionary paths are shown in diagrams.

  9. An adaptable binary entropy coder

    NASA Technical Reports Server (NTRS)

    Kiely, A.; Klimesh, M.

    2001-01-01

    We present a novel entropy coding technique which is based on recursive interleaving of variable-to-variable length binary source codes. We discuss code design and performance estimation methods, as well as practical encoding and decoding algorithms.

  10. Cryptography with DNA binary strands.

    PubMed

    Leier, A; Richter, C; Banzhaf, W; Rauhe, H

    2000-06-01

    Biotechnological methods can be used for cryptography. Here two different cryptographic approaches based on DNA binary strands are shown. The first approach shows how DNA binary strands can be used for steganography, a technique of encryption by information hiding, to provide rapid encryption and decryption. It is shown that DNA steganography based on DNA binary strands is secure under the assumption that an interceptor has the same technological capabilities as sender and receiver of encrypted messages. The second approach shown here is based on steganography and a method of graphical subtraction of binary gel-images. It can be used to constitute a molecular checksum and can be combined with the first approach to support encryption. DNA cryptography might become of practical relevance in the context of labelling organic and inorganic materials with DNA 'barcodes'.

  11. CHAOTIC ZONES AROUND GRAVITATING BINARIES

    SciTech Connect

    Shevchenko, Ivan I.

    2015-01-20

    The extent of the continuous zone of chaotic orbits of a small-mass tertiary around a system of two gravitationally bound primaries of comparable masses (a binary star, a binary black hole, a binary asteroid, etc.) is estimated analytically, as a function of the tertiary's orbital eccentricity. The separatrix map theory is used to demonstrate that the central continuous chaos zone emerges (above a threshold in the primaries' mass ratio) due to overlapping of the orbital resonances corresponding to the integer ratios p:1 between the tertiary and the central binary periods. In this zone, the unlimited chaotic orbital diffusion of the tertiary takes place, up to its ejection from the system. The primaries' mass ratio, above which such a chaotic zone is universally present at all initial eccentricities of the tertiary, is estimated. The diversity of the observed orbital configurations of biplanetary and circumbinary exosystems is shown to be in accord with the existence of the primaries' mass parameter threshold.

  12. Separation in 5 Msun Binaries

    NASA Astrophysics Data System (ADS)

    Evans, Nancy R.; Bond, H. E.; Schaefer, G.; Mason, B. D.; Karovska, M.; Tingle, E.

    2013-01-01

    Cepheids (5 Msun stars) provide an excellent sample for determining the binary properties of fairly massive stars. International Ultraviolet Explorer (IUE) observations of Cepheids brighter than 8th magnitude resulted in a list of ALL companions more massive than 2.0 Msun uniformly sensitive to all separations. Hubble Space Telescope Wide Field Camera 3 (WFC3) has resolved three of these binaries (Eta Aql, S Nor, and V659 Cen). Combining these separations with orbital data in the literature, we derive an unbiased distribution of binary separations for a sample of 18 Cepheids, and also a distribution of mass ratios. The distribution of orbital periods shows that the 5 Msun binaries prefer shorter periods than 1 Msun stars, reflecting differences in star formation processes.

  13. Simulating relativistic binaries with Whisky

    NASA Astrophysics Data System (ADS)

    Baiotti, L.

    We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.

  14. Interfacial band bending in Au-tipped Cd-chalcogenides hybrid nanostructures

    NASA Astrophysics Data System (ADS)

    Saad, Mahmoud M.; Abdallah, Tamer; Negm, Sohair; Talaat, Hassan

    2015-12-01

    The interfacial electronic structure of Au-tipped CdX (X = S, Se and Te) hybrid nanostructures (HNSs) have been studied by UHV scanning tunneling spectroscopy (STS) at room temperature. Au-tipped CdX (X = S, Se and Te) HNSs were synthesized by phase transfer chemical methods. The dimensions were determined by the scanning tunneling microscope (STM), the high resolution transmission electron microscope (HRTEM) and the optical absorption. The measured dimensions using these techniques are consistent, giving Au tip average size within the range of [2.5, 3.5] nm and Cd-chalcogenides quantum dots (QDs) nanoparticles (NPs) average size within the range of [3.5, 4] nm. The STS at the interface of Au-tipped CdS and CdSe HNSs detects a downward band bending towards the interface ∼0.25 ± 0.01 eV and 0.18 ± 0.03 eV respectively, indicating an electron accumulation at these interfaces. However, an upward band bending towards the interface of ∼0.78 ± 0.01 eV is measured by the STS at the interface of Au-tipped CdTe HNS, indicating electron depletion at the interface. The band bending values were also confirmed using the corresponding calculated models of the energy band diagrams. These different behaviors were also observed in the UV-vis absorption of Au-tipped CdS and CdSe HNSs, which shows exciton bleaching features, but an exciton increasing feature is observed in the case of Au-tipped CdTe HNS. These later results are explained as a result of the presence of electron accumulation at the interface of Au-tipped CdS and CdSe HNSs, and also an electron depletion at the interface of Au-tipped CdTe HNS. Such determinations of the interfacial band bending in Au-tipped Cd-chalcogenides HNSs have significant consequences on the charge separation efficiency and the photo-response behavior. Furthermore, the presence of these bands has a direct impact in the field of applying plasmonics for improved photovoltaic solarcells.

  15. Structural characterization of germanium-arsenic-sulfur chalcogenide glasses and understanding structural relaxation in oxide glasses

    NASA Astrophysics Data System (ADS)

    Soyer-Uzun, Sezen

    The structures of chalcogenide glasses in the GexAsx S100-2x system with 33.3 ≤ 100-2x ≤ 70.0 are investigated using neutron/x-ray diffraction. Ge and As atoms are primarily heteropolar bonded to S atoms in glasses near stoichiometry (x ≤ 18.2). Large scale three-dimensional structural models obtained from reverse Monte Carlo (RMC) simulations are used to investigate the nature of intermediate-range structural order in these ternary glasses. Heteropolar bonded mixed GeS2 and As2S3 network in glasses with compositions near stoichiometry is transformed into a heterogeneous glass with mixed GeS2 network and As-rich clusters with increasing S-deficiency. The latter structure is largely homogenized with further increase in metal content. Combined neutron/x-ray diffraction, Ge and As K-edge EXAFS and Raman spectroscopy are employed to study the compositional dependence of the short- and intermediate- range structures of As-rich GexAsyS 100-x-y glasses with x:y = 1:17.3. The structures of glasses with compositions near stoichiometry consist mainly of heteropolar-bonded As2S 3 network. However, increasing metal content (x+y = 55) results in a novel glass consisting predominantly of As4S3 molecules with near-zero connectivity and dimensionality. Formation of As-As homopolar bonded structural regions that coexist with As4S3 molecules is observed with further increase in metal content (60 ≤ x+y ≤ 65). Structural mechanisms of densification of a molecular chalcogenide glass of composition Ge2.5As51.25S46.25 are studied in situ in a panoramic cell equipped with Moissanite (SiC) anvils at pressures ranging from 1 atm to 11 GPa at ambient temperature as well as ex situ on a sample quenched from 12 GPa in a multi-anvil cell using high-energy x-ray diffraction. 11B MAS NMR spectroscopy is employed to monitor relaxation kinetics of boron coordination environments in a borosilicate glass in response to temperature jumps. The relaxation timescale of the BO4:BO 3 ratio is

  16. Exoplanets bouncing between binary stars

    NASA Astrophysics Data System (ADS)

    Moeckel, Nickolas; Veras, Dimitri

    2012-05-01

    Exoplanetary systems are found not only among single stars, but also among binaries of widely varying parameters. Binaries with separations of 100-1000 au are prevalent in the solar neighbourhood; at these separations, planet formation around a binary member may largely proceed as if around a single star. During the early dynamical evolution of a planetary system, planet-planet scattering can eject planets from a star's grasp. In a binary, the motion of a planet ejected from one star has effectively entered a restricted three-body system consisting of itself and the two stars, and the equations of motion of the three-body problem will apply as long as the ejected planet remains far from the remaining planets. Depending on its energy, escape from the binary as a whole may be impossible or delayed until the three-body approximation breaks down, and further close interactions with its planetary siblings boost its energy when it passes close to its parent star. Until then, this planet may be able to transition from the space around one star to the other, and chaotically 'bounce' back and forth. In this paper, we directly simulate scattering planetary systems that are around one member of a circular binary, and quantify the frequency of bouncing in scattered planets. We find that a great majority (70-85 per cent) of ejected planets will pass at least once through the space of it's host's binary companion, and depending on the binary parameters about 35-75 per cent will begin bouncing. The time spent bouncing is roughly lognormally distributed with a peak at about 104 yr, with only a small percentage bouncing for more than 1 Myr. This process may perturb and possibly incite instability among existing planets around the companion star. In rare cases, the presence of multiple planets orbiting both stars may cause post-bouncing capture or planetary swapping.

  17. Be/X-ray binaries

    NASA Astrophysics Data System (ADS)

    Reig, Pablo

    2011-03-01

    The interest in X/ γ-ray Astronomy has grown enormously in the last decades thanks to the ability to send X-ray space missions above the Earth’s atmosphere. There are more than half a million X-ray sources detected and over a hundred missions (past and currently operational) devoted to the study of cosmic X/ γ rays. With the improved sensibilities of the currently active missions new detections occur almost on a daily basis. Among these, neutron-star X-ray binaries form an important group because they are among the brightest extra-solar objects in the sky and are characterized by dramatic variability in brightness on timescales ranging from milliseconds to months and years. Their main source of power is the gravitational energy released by matter accreted from a companion star and falling onto the neutron star in a relatively close binary system. Neutron-star X-ray binaries divide into high-mass and low-mass systems according to whether the mass of the donor star is above ˜8 or below ˜2 M⊙, respectively. Massive X-ray binaries divide further into supergiant X-ray binaries and Be/X-ray binaries depending on the evolutionary status of the optical companion. Virtually all Be/X-ray binaries show X-ray pulsations. Therefore, these systems can be used as unique natural laboratories to investigate the properties of matter under extreme conditions of gravity and magnetic field. The purpose of this work is to review the observational properties of Be/X-ray binaries. The open questions in Be/X-ray binaries include those related to the Be star companion, that is, the so-called “Be phenomenon”, such as, timescales associated to the formation and dissipation of the equatorial disc, mass-ejection mechanisms, V/ R variability, and rotation rates; those related to the neutron star, such as, mass determination, accretion physics, and spin period evolution; but also, those that result from the interaction of the two constituents, such as, disc truncation and mass

  18. Unsupervised learning of binary vectors

    NASA Astrophysics Data System (ADS)

    Copelli Lopes da Silva, Mauro

    In this thesis, unsupervised learning of binary vectors from data is studied using methods from Statistical Mechanics of disordered systems. In the model, data vectors are distributed according to a single symmetry-breaking direction. The aim of unsupervised learning is to provide a good approximation to this direction. The difference with respect to previous studies is the knowledge that this preferential direction has binary components. It is shown that sampling from the posterior distribution (Gibbs learning) leads, for general smooth distributions, to an exponentially fast approach to perfect learning in the asymptotic limit of large number of examples. If the distribution is non-smooth, then first order phase transitions to perfect learning are expected. In the limit of poor performance, a second order phase transition ("retarded learning") is predicted to occur if the data distribution is not biased. Using concepts from Bayesian inference, the center of mass of the Gibbs ensemble is shown to have maximal average (Bayes-optimal) performance. This upper bound for continuous vectors is extended to a discrete space, resulting in the clipped center of mass of the Gibbs ensemble having maximal average performance among the binary vectors. To calculate the performance of this best binary vector, the geometric properties of the center of mass of binary vectors are studied. The surprising result is found that the center of mass of infinite binary vectors which obey some simple constraints, is again a binary vector. When disorder is taken into account in the calculation, however, a vector with continuous components is obtained. The performance of the best binary vector is calculated and shown to always lie above that of Gibbs learning and below the Bayes-optimal performance. Making use of a variational approach under the replica symmetric ansatz, an optimal potential is constructed in the limits of zero temperature and mutual overlap 1. Minimization of this potential

  19. Conductivity (ac and dc) in III-V amorphous semiconductors and chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Hauser, J. J.

    1985-02-01

    Variable-range hopping, as evidenced by a resistivity proportional to exp(T-1/4), has been induced in many III-V amorphous semiconductors (InSb, AlSb, and GaAs) and even in chalcogenide glasses (As2Te3, As2Te3-xSex, and GeTe) by depositing films at 77 K. It is therefore remarkable that the same procedure failed to generate variable-range hopping in GaSb, which is one of the less ionic III-V semiconductors. Besides differences in the dc conductivity, there are also different behaviors in the ac conductivity of amorphous semiconductors. The low-temperature ac conductivity of all amorphous semiconductors is proportional to ωsTn with s~=1 and n<1, which is consistent with a model of correlated barrier hopping of electron pairs between paired and random defects. However, in the case of a-SiO2 and a-GeSe2 one finds, in addition, that the capacitance obeys the scaling relation C=A ln(Tω-1), which would suggest a conduction mechanism by tunneling relaxation. Furthermore, this scaling relation cannot be fitted to the data for a-As2Te3, a-InSb, and a-GaSb although the functional dependence of C on T and ω are similar.

  20. Magnetism in parent Fe-chalcogenides: quantum fluctuations select a plaquette order

    NASA Astrophysics Data System (ADS)

    Perkins, Natalia; Ducatman, Samuel; Chubukov, Andrey

    2013-03-01

    The analysis of magnetism in parent compounds of iron-based superconductors (FeSCs) is an integral part of the program to understand the origin of superconductivity in these materials. Here we analyze magnetic order in iron-chalcogenide Fe1+yTe - the parent compound of high-temperature superconductor Fe1+yTe1-xSex. Neutron scattering experiments show that magnetic order in this material contains components with momentum Q1 = (π / 2 , π / 2) and Q2 = (π / 2 , - π / 2) in Fe-only Brillouin zone. The actual spin order depends on the interplay between these two components. Previous works argued that spin order is a single- Q state (either Q1 or Q2). Such an order breaks rotational C4 symmetry and order spins into a double diagonal stripe. We show that quantum fluctuations actually select another order - a double Q plaquette state with equal weight of Q1 and Q2 components, which preserves C4 symmetry but breaks Z4 translational symmetry. We argue that the plaquette state is consistent with recent neutron scattering experiments on Fe1+yTe. supported by the grant NSF-DMR-0844115

  1. First principles study of thermal conductivity cross-over in nanostructured zinc-chalcogenides

    SciTech Connect

    Katre, Ankita; Madsen, Georg K. H.; Togo, Atsushi; Tanaka, Isao

    2015-01-28

    Systematic first principles studies of zinc-chalcogenides have been performed to understand their thermal transport behaviour. We have applied the Boltzmann transport equation in the relaxation time approximation to calculate the thermal conductivity of ZnS, ZnSe, and ZnTe. We find a thermal conductivity cross-over between ZnS and ZnSe at nanostructure sizes around 0.1–0.2 μm and explain this in terms of the different contributions of phonon modes in these materials. We study the effect of nanostructuring using both the diffusive boundary scattering and confined mean free path limit and discuss the variations in the results. Furthermore, we show the strong influence of isotope scattering on the thermal conductivity. The calculated thermal conductivity is found to be strongly dependent on the volume and we explain the observed differences between local density and generalized gradient approximation calculations. We compare further calculated thermal properties, such as the thermal expansion coefficient, to experiment to validate our approach.

  2. Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires.

    PubMed

    Lin, Junhao; Zhang, Yuyang; Zhou, Wu; Pantelides, Sokrates T

    2016-02-23

    Metallic transition-metal chalcogenide (TMC) nanowires are an important building block for 2D electronics that may be fabricated within semiconducting transition-metal dichalcogenide (TMDC) monolayers. Tuning the geometric structure and electronic properties of such nanowires is a promising way to pattern diverse functional channels for wiring multiple units inside a 2D electronic circuit. However, few experimental investigations have been reported exploring the structural and compositional tunability of these nanowires, due to difficulties in manipulating the structure and chemical composition of an individual nanowire. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we report that TMC nanowires have substantial intrinsic structural flexibility and their chemical composition can be manipulated. Rotational twisting, axial kinking, and branching of an individual nanowire is consistently observed and junctions with well-ordered atomic structures can be fabricated. We also show that the density of states of these nanowires can be finely tuned via alloying either the chalcogen or the transition-metal elements, where the chalcogen alloying can be further controlled by the acceleration voltage of the electron beam during the fabrication. The results open up the possibility of tailoring the properties of TMC nanowires, paving the way for robust ultrasmall interconnects in TMDC-based 2D flexible nanoelectronics.

  3. Design and growth of novel compounds for radiation sensors: multinary chalcogenides

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Su, Ching-Hua; Nagaradona, Teja; Arnold, Brad; Choa, Fow-Sen

    2016-05-01

    Increasing threats of radiological weapons have revitalized the researches for low cost large volume γ-ray and neutron ray sensors In the past few years we have designed and grown ternary and quaternary lead and thallium chalcogenides and lead selenoiodides for detectors to meet these challenges. These materials are congruent, can be tailored to enhance the parameters required for radiation sensors. In addition, this class of compounds can be grown by Bridgman method which promises for large volume productions. We have single crystals of several compounds from the melt including Tl3AsSe3, Tl3AsSe3-xSx, TlGaSe2, AgGaGe3Se8, AgxLi1-xAgGaGe3Se8 and PbTlI5-x Sex compounds. Experimental studies indicate that these have very low absorption coefficient, low defect density and can be fabricated in any shape and sizes. These crystals do not require post growth annealing and do not show any second phase precipitates when processed for electrode bonding and other fabrication steps. In this paper we report purification, growth and fabrication of large Tl3AsSe3 (TAS) crystals. We observed that TAS crystals grown by using further purification of as supplied high purity source materials followed by directionally solidified charge showed higher resistivity than previously reported values. TAS also showed constant value as the function of voltage.

  4. Dual topological character of chalcogenides: theory for Bi2Te3.

    PubMed

    Rauch, Tomáš; Flieger, Markus; Henk, Jürgen; Mertig, Ingrid; Ernst, Arthur

    2014-01-10

    A topological insulator is realized via band inversions driven by the spin-orbit interaction. In the case of Z2 topological phases, the number of band inversions is odd and time-reversal invariance is a further unalterable ingredient. For topological crystalline insulators, the number of band inversions may be even but mirror symmetry is required. Here, we prove that the chalcogenide Bi2Te3 is a dual topological insulator: it is simultaneously in a Z2 topological phase with Z2 invariants (ν0;ν1ν2ν3) = (1;0 0 0) and in a topological crystalline phase with mirror Chern number -1. In our theoretical investigation we show in addition that the Z2 phase can be broken by magnetism while keeping the topological crystalline phase. As a consequence, the Dirac state at the (111) surface is shifted off the time-reversal invariant momentum Γ; being protected by mirror symmetry, there is no band gap opening. Our observations provide theoretical groundwork for opening the research on magnetic control of topological phases in quantum devices.

  5. Activity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems

    NASA Astrophysics Data System (ADS)

    Li, Yi; Zhong, Yingpeng; Zhang, Jinjian; Xu, Lei; Wang, Qing; Sun, Huajun; Tong, Hao; Cheng, Xiaoming; Miao, Xiangshui

    2014-05-01

    Nanoscale inorganic electronic synapses or synaptic devices, which are capable of emulating the functions of biological synapses of brain neuronal systems, are regarded as the basic building blocks for beyond-Von Neumann computing architecture, combining information storage and processing. Here, we demonstrate a Ag/AgInSbTe/Ag structure for chalcogenide memristor-based electronic synapses. The memristive characteristics with reproducible gradual resistance tuning are utilised to mimic the activity-dependent synaptic plasticity that serves as the basis of memory and learning. Bidirectional long-term Hebbian plasticity modulation is implemented by the coactivity of pre- and postsynaptic spikes, and the sign and degree are affected by assorted factors including the temporal difference, spike rate and voltage. Moreover, synaptic saturation is observed to be an adjustment of Hebbian rules to stabilise the growth of synaptic weights. Our results may contribute to the development of highly functional plastic electronic synapses and the further construction of next-generation parallel neuromorphic computing architecture.

  6. Polytypic Nanocrystals of Cu-Based Ternary Chalcogenides: Colloidal Synthesis and Photoelectrochemical Properties.

    PubMed

    Wu, Liang; Chen, Shi-You; Fan, Feng-Jia; Zhuang, Tao-Tao; Dai, Chen-Min; Yu, Shu-Hong

    2016-05-01

    Heterocrystalline polytype nanostructured semiconductors have been attracting more and more attention in recent years due to their novel structures and special interfaces. Up to now, controlled polytypic nanostructures are mostly realized in II-VI and III-V semiconductors. Herein, we report the synthesis and photoelectrochemical properties of Cu-based ternary I-III-VI2 chalcogenide polytypic nanocrystals, with a focus on polytypic CuInS2 (CIS), CuInSe2 (CISe), and CuIn(S0.5Se0.5)2 alloy nanocrystals. Each obtained polytypic nanocrystal is constructed with a wurtzite hexagonal column and a zinc blende/chalcopyrite cusp, regardless of the S/Se ratio. The growth mechanisms of polytypic CIS and CISe nanocrystals have been studied by time-dependent experiments. The polytypic nanocrystals are solution-deposited on indium-tin oxide glass substrate and used as a photoelectrode, thus showing stable photoelectrochemical activity in aqueous solution. Density functional theory calculation was used to study the electronic structure and the band gap alignment. This versatile synthetic method provides a new route for synthesis of novel polytypic nanostructured semiconductors with unique properties. PMID:27063512

  7. Thermal behavior in Se-Te chalcogenide system: Interplay of thermodynamics and kinetics

    SciTech Connect

    Svoboda, Roman Málek, Jiří

    2014-12-14

    Heat capacity measurements were performed for Se, Se{sub 90}Te{sub 10}, Se{sub 80}Te{sub 20}, and Se{sub 70}Te{sub 30} materials in the 230–630 K temperature range. Both glassy and crystalline C{sub p} dependences were found to be identical within the experimental error. The compositional dependence of the N-type undercooled liquid C{sub p} evolution was explained on the basis of free-volume theory; vibrational and chemical contributions to heat capacity were found to be roughly similar for all Se-Te compositions. The thermal behavior in the Se-Te chalcogenide system was thoroughly studied: glass transition, cold crystallization, and melting were investigated in dependence on composition and various experimental conditions (heating rate, particle size, and pre-nucleation period). The kinetics of the structural relaxation and crystallization processes are described in terms of the Tool-Narayanaswamy-Moynihan and Johnson-Mehl-Avrami models. The complexity of these processes is thoroughly discussed with regard to the compositionally determined changes of molecular structures. The discussion is conducted in terms of the mutual interplay between the thermodynamics and kinetics in this system.

  8. Direct femtosecond laser writing of buried infrared waveguides in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Le Coq, D.; Bychkov, E.; Masselin, P.

    2016-02-01

    Direct laser writing technique is now widely used in particular in glass, to produce both passive and active photonic devices. This technique offers a real scientific opportunity to generate three-dimensional optical components and since chalcogenide glasses possess transparency properties from the visible up to mid-infrared range, they are of great interest. Moreover, they also have high optical non-linearity and high photo-sensitivity that make easy the inscription of refractive index modification. The understanding of the fundamental and physical processes induced by the laser pulses is the key to well-control the laser writing and consequently to realize integrated photonic devices. In this paper, we will focus on two different ways allowing infrared buried waveguide to be obtained. The first part will be devoted to a very original writing process based on a helical translation of the sample through the laser beam. In the second part, we will report on another original method based on both a filamentation phenomenon and a point by point technique. Finally, we will demonstrate that these two writing techniques are suitable for the design of single mode waveguide for wavelength ranging from the visible up to the infrared but also to fabricate optical components.

  9. Microorganism mediated biosynthesis of metal chalcogenides; a powerful tool to transform toxic effluents into functional nanomaterials.

    PubMed

    Vena, M Paula; Jobbágy, Matías; Bilmes, Sara A

    2016-09-15

    Cadmium contained in soil and water can be taken up by certain crops and aquatic organisms and accumulate in the food-chain, thus removal of Cd from mining or industrial effluents - i.e. Ni-Cd batteries, electroplating, pigments, fertilizers - becomes mandatory for human health. In parallel, there is an increased interest in the production of luminescent Q-dots for applications in bioimaging, sensors and electronic devices, even the present synthesis methods are economic and environmentally costly. An alternative green pathway for producing Metal chalcogenides (MC: CdS, CdSe, CdTe) nanocrystals is based on the metabolic activity of living organisms. Intracellular and extracellular biosynthesis of can be achieved within a biomimetic approach feeding living organisms with Cd precursors providing new routes for combining bioremediation with green routes for producing MC nanoparticles. In this mini-review we present the state-of-the-art of biosynthesis of MC nanoparticles with a critical discussion of parameters involved and protocols. Few existing examples of scaling-up are also discussed. A modular reactor based on microorganisms entrapped in biocompatible mineral matrices - already proven for bioremediation of dissolved dyes - is proposed for combining both Cd-depletion and MC nanoparticle's production.

  10. Intercalation and adsorption of ciprofloxacin by layered chalcogenides and kinetics study.

    PubMed

    Li, Jian-Rong; Wang, Yun-Xia; Wang, Xu; Yuan, Baoling; Fu, Ming-Lai

    2015-09-01

    The hydrothermally synthesized layered chalcogenide, K(2x)Mn(x)Sn(3-x)S6 (x=0.5-0.95) (KMS-1), was applied to remove ciprofloxacin from aqueous solution. Kinetic data showed the removal reaction followed a pseudo-second-order kinetic model and the rate controlling step was both through external film and intraparticle diffusion. The adsorption of CIP by KMS-1 is endothermic and the maximum adsorption capacity of KMS-1 was 199.6, 230.9 and 269.5 mg/g at temperature of 10, 25 and 40°C, respectively. The heavy metal ions had great effect on the removal efficiency of CIP and the degree of inhibition followed the order: Pb(2+)>Zn(2+)>Cd(2+)>Ni(2+). The shift of Bragg peaks from XRD at various pH accompanying CIP removal and FE-SEM images confirmed that cation exchange is the major mechanism for the adsorption of CIP by KMS-1. In the pH range of 4.0-7.0, the intercalation of cationic CIP adopted a titled orientation of di-molecular CIP in KMS-1 with the titling angle of 68° and 42°, respectively. A vertical arrangement of the zwitterionic CIP adsorbed on the surface of KMS-1 was also confirmed. These results suggested that KMS-1 is an effective adsorbent to remove CIP from water. PMID:25965434

  11. Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry

    SciTech Connect

    Wang, Siyuan; Jain, Chhavi; Wondraczek, Katrin; Kobelke, Jens; Wondraczek, Lothar; Troles, Johann; Caillaud, Celine; Schmidt, Markus A.

    2015-05-18

    The flow of high-viscosity liquids inside micrometer-size holes can be substantially different from the flow in the bulk, non-confined state of the same liquid. Such non-Newtonian behavior can be employed to generate structural anisotropy in the frozen-in liquid, i.e., in the glassy state. Here, we report on the observation of non-Newtonian flow of an ultralow melting chalcogenide glass inside a silica microcapillary, leading to a strong deviation of the shear viscosity from its value in the bulk material. In particular, we experimentally show that the viscosity is radius-dependent, which is a clear indication that the microscopic rearrangement of the glass network needs to be considered if the lateral confinement falls below a certain limit. The experiments have been conducted using pressure-assisted melt filling, which provides access to the rheological properties of high-viscosity melt flow under previously inaccessible experimental conditions. The resulting flow-induced structural anisotropy can pave the way towards integration of anisotropic glasses inside hybrid photonic waveguides.

  12. Single-layer cadmium chalcogenides: promising visible-light driven photocatalysts for water splitting.

    PubMed

    Wang, Jiajun; Meng, Jie; Li, Qunxiang; Yang, Jinlong

    2016-06-22

    Recently, various single-layer materials have been explored as desirable photocatalyts for water splitting. In this work, based on extensive density functional theory calculations, we examine the geometric, electronic, optical, and potential photocatalytic properties of single-layer cadmium chalcogenides (CdX sheets, X = S, Se, and Te), which are cleaved from the (001) plane of the bulk wurtzite structure. The predicted formation energies have relatively low values and a suitable substrate (i.e. graphene) that can effectively stabilize CdX sheets, which imply that the fabrication and application of CdX sheets are highly possible in experiments. The calculated band gaps, band edge positions and optical absorptions clearly reveal that CdSe and CdTe sheets are promising photocatalysts for water splitting driven by visible light. Moreover, the band gaps and band edge positions of three CdX sheets can be effectively tuned by applying biaxial strain, which then can enhance their photocatalytic performance. These theoretical findings imply that CdX sheets are promising candidates for photocatalytic water splitting. PMID:27296472

  13. Elucidating the magnetic and superconducting phases in the alkali metal intercalated iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Yi, Ming; Tian, Wei; Bourret-Courchesne, Edith; Birgeneau, Robert J.

    2016-02-01

    The complex interdigitated phases have greatly frustrated attempts to document the basic features of the superconductivity in the alkali metal intercalated iron chalcogenides. Here, using elastic neutron scattering, energy-dispersive x-ray spectroscopy, and resistivity measurements, we elucidate the relations of these phases in RbxFeySe2 -zSz . We find (i) the iron content is crucial in stabilizing the stripe antiferromagnetic (AF) phase with rhombic iron vacancy order (y ≈1.5 ) , the block AF phase with √{5 }×√{5 } iron vacancy order (y ≈1.6 ) , and the iron vacancy-free phase (y ≈2 ) ; and (ii) the iron vacancy-free superconducting phase (z =0 ) evolves into an iron vacancy-free metallic phase with sulfur substitution (z >1.5 ) due to the progressive decrease of the electronic correlation strength. Both the stripe AF phase and the block AF phase are Mott insulators. The iron-rich compounds (y >1.6 ) undergo a first order transition from an iron vacancy disordered phase at high temperatures into the √{5 }×√{5 } iron vacancy ordered phase and the iron vacancy-free phase below Ts. Our data demonstrate that there are miscibility gaps between these three phases. The existence of the miscibility gaps in the iron content is a key to understanding the relationship between these complicated phases.

  14. Fabrication and characterization of a chalcogenide-tellurite composite microstructure fiber with high nonlinearity.

    PubMed

    Liao, Meisong; Chaudhari, Chitrarekha; Qin, Guanshi; Yan, Xin; Kito, Chihiro; Suzuki, Takenobu; Ohishi, Yasutake; Matsumoto, Morio; Misumi, Takashi

    2009-11-23

    A highly nonlinear composite fiber, which has a 1.5 microm chalcogenide glass core surrounded by a tellurite glass microstructure cladding, has been fabricated by the method of stack and draw. A tellurite glass capillary containing a As(2)S(3) rod was sealed with negative pressure inside. Then this capillary and other empty capillaries were stacked into a tellurite glass tube, and elongated into a cane. This cane was then inserted into another tellurite glass jacket tube and drawn into the composite microstructure fiber. The fiber has a flattened chromatic dispersion together with a zero dispersion wavelength located in the near infrared range. The propagation losses at 1.55 microm were 18.3 dB/m. The nonlinear coefficient at 1.55 microm was 9.3 m(-1)W(-1). Such a high nonlinear coefficient counteracts the high propagation losses to a large extent. A supercontinuum spectrum of 20-dB bandwidth covering 800-2400 nm was generated by this composite microstructure fiber. PMID:19997402

  15. The use of castor oil and ricinoleic acid in lead chalcogenide nanocrystal synthesis

    NASA Astrophysics Data System (ADS)

    Kyobe, Joseph W. M.; Mubofu, Egid B.; Makame, Yahya M. M.; Mlowe, Sixberth; Revaprasadu, Neerish

    2016-08-01

    A green solution-based thermolysis method for the synthesis of lead chalcogenide (PbE, E = S, Se, Te) nanocrystals in castor oil (CSTO) and its isolate ricinoleic acid (RA) is described. The blue shift observed from the optical spectra of CSTO and RA-capped PbE nanocrystals (NCs) confirmed the evidence of quantum confinement. The dimensions of PbE NCs obtained from NIR absorption spectra, transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were in good agreement. The particle sizes estimated were in the range of 20, 25, and 130 nm for castor oil-capped PbS, PbSe, and PbTe, respectively. Well-defined close to cubic-shaped particles were observed in the scanning electron microscopy (SEM) images of PbSe and PbTe nanocrystals. The high-resolution TEM and selective area electron diffraction (SAED) micrographs of the as-synthesized crystalline PbE NCs showed distinct lattice fringes with d-spacing distances corroborating with the standard values reported in literature.

  16. Activity-Dependent Synaptic Plasticity of a Chalcogenide Electronic Synapse for Neuromorphic Systems

    PubMed Central

    Li, Yi; Zhong, Yingpeng; Zhang, Jinjian; Xu, Lei; Wang, Qing; Sun, Huajun; Tong, Hao; Cheng, Xiaoming; Miao, Xiangshui

    2014-01-01

    Nanoscale inorganic electronic synapses or synaptic devices, which are capable of emulating the functions of biological synapses of brain neuronal systems, are regarded as the basic building blocks for beyond-Von Neumann computing architecture, combining information storage and processing. Here, we demonstrate a Ag/AgInSbTe/Ag structure for chalcogenide memristor-based electronic synapses. The memristive characteristics with reproducible gradual resistance tuning are utilised to mimic the activity-dependent synaptic plasticity that serves as the basis of memory and learning. Bidirectional long-term Hebbian plasticity modulation is implemented by the coactivity of pre- and postsynaptic spikes, and the sign and degree are affected by assorted factors including the temporal difference, spike rate and voltage. Moreover, synaptic saturation is observed to be an adjustment of Hebbian rules to stabilise the growth of synaptic weights. Our results may contribute to the development of highly functional plastic electronic synapses and the further construction of next-generation parallel neuromorphic computing architecture. PMID:24809396

  17. High-pressure and temperature-induced structural, elastic, and thermodynamical properties of strontium chalcogenides

    NASA Astrophysics Data System (ADS)

    Varshney, Dinesh; Jain, S.; Shriya, S.; Khenata, R.

    2016-09-01

    Pressure- and temperature-dependent mechanical, elastic, and thermodynamical properties of rock salt to CsCl structures in semiconducting Sr X ( X = O, S, Se, and Te) chalcogenides are presented based on model interatomic interaction potential with emphasis on charge transfer interactions, covalency effect, and zero point energy effects apart from long-range Coulomb, short-range overlap repulsion extended and van der Waals interactions. The developed potential with non-central forces validates the Cauchy discrepancy among elastic constants. The volume collapse ( V P/ V 0) in terms of compressions in Sr X at higher pressure indicates the mechanical stiffening of lattice. The expansion of Sr X lattice is inferred from steep increase in V T/ V 0 and is attributed to thermal softening of Sr X lattice. We also present the results for the temperature-dependent behaviors of hardness, heat capacity, and thermal expansion coefficient. From the Pugh's ratio (ϕ = B T /G H), the Poisson's ratio ( ν) and the Cauchy's pressure ( C 12- C 44), we classify SrO as ductile but SrS, SrSe, and SrTe are brittle material. To our knowledge these are the first quantitative theoretical prediction of the pressure and temperature dependence of mechanical stiffening, thermally softening, and brittle nature of Sr X ( X = O, S, Se, and Te) and still await experimental confirmations.

  18. Highly efficient cascaded amplification using Pr(3+)-doped mid-infrared chalcogenide fiber amplifiers.

    PubMed

    Hu, Jonathan; Menyuk, Curtis R; Wei, Chengli; Brandon Shaw, L; Sanghera, Jasbinder S; Aggarwal, Ishwar D

    2015-08-15

    We computationally investigate cascaded amplification in a three-level mid-infrared (IR) Pr(3+)-doped chalcogenide fiber amplifier. The overlap of the cross-sections in the transitions (3)H(6)→(3)H(5) and (3)H(5)→(3)H(4) enable both transitions to simultaneously amplify a single wavelength in the range between 4.25 μm and 4.55 μm. High gain and low noise are achieved simultaneously if the signal is at 4.5 μm. We show that 45% of pump power that is injected at 2 μm can be shifted to 4.5 μm. The efficiency of using a mid-IR fiber amplifier is higher than what can be achieved by using mid-IR supercontinuum generation, which has been estimated at 25%. This mid-IR fiber amplifier can be used in conjunction with quantum cascade lasers to obtain a tunable, high-power mid-IR source.

  19. Pressure induced structural transitions in Lead Chalcogenides and its influence on thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Petersen, John; Spinks, Michael; Borges, Pablo; Scolfaro, Luisa

    2012-03-01

    Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric (TE) properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity, with a possible application being in engine exhaust. Here, we examine the effects of altering the lattice parameter on total ground state energy and the band gap using first principles calculations performed within Density Functional Theory and the Projector Augmented Wave approach and the Vienna Ab-initio Simulation Package (VASP-PAW) code. Both PbTe and PbSe, in NaCl, orthorhombic, and CsCl structures are considered. It is found that altering the lattice parameter, which is analogous to applying external pressure on the material experimentally, has notable effects on both ground state energy and the band gap. The implications of this behavior in the TE properties of these materials are analyzed.

  20. Understanding Electronic, Optical and Thermal Properties of Transition Metal Chalcogenides (TMCs)

    NASA Astrophysics Data System (ADS)

    Ataca, Can; Raghunathan, Rajamani; Tongay, Sefaattin; Wu, Junqiao; Grossman, Jeffrey C.

    2014-03-01

    The fundamental properties of a material depend on their atomic structure, nature of bonding and elemental/chemical composition. Confinement of electrons in 2 dimensional planar structures leads to realization of several intriguing properties that are not seen in the bulk 3-dimendional counterparts. In this work, we explore the properties of single and few layer MX (M:Transition metal, X: chalcogen atom) both theoretically and experimentally. Using state of art density functional theory (DFT) we carried out a stability analysis through phonon and electronic, magnetic and elastic structure calculations where M =Cu, and X =S, Se, Te. The stacking of transition metal chalcogenide (TMC) monolayers is of the type MX-M2X2 instead of the usual X-M-X stacking found in TMDs. The differences in geometric structure result in many different stable monolayer forms with different electronic and magnetic properties. Depending on the number of layers, MX structures can be found in 2, 3, 4 and 6 MX layer stable configurations. These dimensionality effects predicted by DFT such as energy band structures and Raman active modes are confirmed by experiments. Various different monolayers of MX possess a number of properties that make them highly promising materials for future nanoscale applications.

  1. Spin-liquid polymorphism in an underdoped iron-chalcogenide superconductor

    NASA Astrophysics Data System (ADS)

    Zaliznyak, Igor; Savici, Andrei; Lumsden, Mark; Tsvelik, Alexei; Hu, Rongwei; Petrovic, Cedomir

    We report neutron scattering measurements which reveal spin-liquid polymorphism in an ``11'' iron chalcogenide superconductor. It occurs when a poorly metallic magnetic state of FeTe is driven toward superconductivity by substitution of a small amount of tellurium with isoelectronic sulfur. We observe a liquid-like magnetic response, which is described by the coexistence of two disordered magnetic phases with different local structures whose relative abundance depends on temperature. One is the ferromagnetic (FM) plaquette phase observed in undoped, nonsuperconducting FeTe, which preserves the C4 symmetry of the underlying square lattice and is favored at high temperatures, whereas the other is the antiferromagnetic plaquette phase with broken C4 symmetry, which emerges with doping and is predominant at low temperatures. These findings suggest the coexistence of and competition between two distinct liquid states, and a liquid-liquid phase transformation between these states, in the electronic spin system of FeTe1-x(S,Se)x. Our results shed light on many recent experimental data in unconventional superconductors. The phase with lower, C2 local symmetry, whose emergence precedes superconductivity, naturally accounts for a propensity to electronic nematic states. Work at BNL is supported by the Office of Basic Energy Sciences, US DOE, under Contract DE-SC00112704.

  2. Atomistic origin of an ordered superstructure induced superconductivity in layered chalcogenides.

    PubMed

    Ang, R; Wang, Z C; Chen, C L; Tang, J; Liu, N; Liu, Y; Lu, W J; Sun, Y P; Mori, T; Ikuhara, Y

    2015-01-01

    Interplay among various collective electronic states such as charge density wave and superconductivity is of tremendous significance in low-dimensional electron systems. However, the atomistic and physical nature of the electronic structures underlying the interplay of exotic states, which is critical to clarifying its effect on remarkable properties of the electron systems, remains elusive, limiting our understanding of the superconducting mechanism. Here, we show evidence that an ordering of selenium and sulphur atoms surrounding tantalum within star-of-David clusters can boost superconductivity in a layered chalcogenide 1T-TaS2-xSex, which undergoes a superconducting transition in the nearly commensurate charge density wave phase. Advanced electron microscopy investigations reveal that such an ordered superstructure forms only in the x area, where the superconductivity manifests, and is destructible to the occurrence of the Mott metal-insulator transition. The present findings provide a novel dimension in understanding the relationship between lattice and electronic degrees of freedom. PMID:25625438

  3. Crystallization behavior of 80GeS2 ṡ 20Ga2S3 chalcogenide glass

    NASA Astrophysics Data System (ADS)

    Lin, Changgui; Calvez, Laurent; Rozé, Mathieu; Tao, Haizheng; Zhang, Xianghua; Zhao, Xiujian

    2009-11-01

    Glass-ceramics were fabricated from the 80GeS2ṡ20Ga2S3 chalcogenide glass using an appropriate heat-treatment at a fairly low temperature ( T g+30°C) for different durations. Compared with the base glass, they present much-improved thermal shock resistance and fracture toughness, and meanwhile remain an excellent mid-IR transmission in 2-10-μm spectral region. XRD results indicate that the enhanced mechanical properties are mainly due to the appearance of Ga2S3 crystals, and only a very small amount of GeS2 was precipitated on the surface. Bulk and powder samples heat-treated at 458°C for different durations were used to study the evolution of the two crystallization peaks using DSC measurement. It is found that the precipitation of Ga2S3 phase is responsible for the exotherm of first crystallization peak and that of GeS2 phase for the second one. The crystallization mechanism was also examined using the nonisothermal method, and the considerably low activation energy ( E c) and high crystallization rate constant ( K) for the first crystallization peak illustrate a much easier precipitation of Ga2S3 phase than that of GeS2 phase, which is in good accordance with the ceramization process.

  4. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon

    DOE PAGESBeta

    Rao, Ashutosh; Patil, Aniket; Chiles, Jeff; Malinowski, Marcin; Novak, Spencer; Richardson, Kathleen; Rabiei, Payam; Fathpour, Sasan

    2015-08-20

    In this study, thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge23Sb7S70, to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 105 quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scale dense on-chip integration ofmore » high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes.« less

  5. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon

    SciTech Connect

    Rao, Ashutosh; Patil, Aniket; Chiles, Jeff; Malinowski, Marcin; Novak, Spencer; Richardson, Kathleen; Rabiei, Payam; Fathpour, Sasan

    2015-08-20

    In this study, thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge23Sb7S70, to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 105 quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scale dense on-chip integration of high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes.

  6. Optical properties change in laser-induced Te/As2Se3 chalcogenide thin films

    NASA Astrophysics Data System (ADS)

    Behera, Mukta; Naik, Ramakanta

    2016-10-01

    In the present work, we report the change in optical parameters due to the deposition and photo-induced diffusion of Te layer into the chalcogenide As2Se3 film. The photo-diffusion creates a solid solution of As-Se-Te which has potential application in optical devices. The Te/As2Se3 bilayer films prepared by thermal evaporation technique were studied by various experimental techniques. The photo-diffusion of Te into As2Se3 matrix was done by 532-nm laser irradiation. The structure of the As2Se3, as-prepared and irradiated Te/As2Se3 films was studied by X-ray diffraction which were amorphous in nature. The presence of all the elements was checked by energy-dispersive X-ray analysis, and the optical transmission spectra were recorded by Fourier transform infrared spectrometer. The optical band gap is reduced by the deposition and diffusion of Te into As2Se3 film which is due to the increase in density of defect states in the gap region. The transmission is decreased, whereas the absorption efficiency is increased with the increase in disorderness. The X-ray photoelectron spectroscopy carried out on these films gives information about the bonding change due to the photo-diffusion process. Therefore, this is an important result which will open up new directions for the application of this material in semiconducting devices.

  7. Half-metallic ferromagnetism in transition metal pnictides and chalcogenides with wurtzite structure

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Hui; Liu, Bang-Gui; Pettifor, D. G.

    2003-10-01

    Using an accurate full-potential density-functional method we explore systematically all the 3d transition metal pnictides and chalcogenides with wurtzite structure in order to find half-metallic ferromagnets which can be fabricated as thin films with thickness large enough for real spintronic applications. Nine of the wurtzite phases, MnSb, CrAs, CrSb, VAs, VSb, CrSe, CrTe, VSe, and VTe, are found to be robust half-metallic ferromagnets. They have very large half-metallic gaps (0.23 0.97 eV) and quite large bulk moduli (42 71 GPa). Most of them are quite low (down to 0.31 eV per formula unit) in total energy with respect to the corresponding ground-state phases, and therefore at least some of them would be grown epitaxially on appropriate substrates in the form of films thick enough. Since being compatible with the III-V and II-VI semiconductors, these half-metallic ferromagnetic phases, when realized experimentally, would be useful in spintronic and other applications.

  8. Single-layer cadmium chalcogenides: promising visible-light driven photocatalysts for water splitting.

    PubMed

    Wang, Jiajun; Meng, Jie; Li, Qunxiang; Yang, Jinlong

    2016-06-22

    Recently, various single-layer materials have been explored as desirable photocatalyts for water splitting. In this work, based on extensive density functional theory calculations, we examine the geometric, electronic, optical, and potential photocatalytic properties of single-layer cadmium chalcogenides (CdX sheets, X = S, Se, and Te), which are cleaved from the (001) plane of the bulk wurtzite structure. The predicted formation energies have relatively low values and a suitable substrate (i.e. graphene) that can effectively stabilize CdX sheets, which imply that the fabrication and application of CdX sheets are highly possible in experiments. The calculated band gaps, band edge positions and optical absorptions clearly reveal that CdSe and CdTe sheets are promising photocatalysts for water splitting driven by visible light. Moreover, the band gaps and band edge positions of three CdX sheets can be effectively tuned by applying biaxial strain, which then can enhance their photocatalytic performance. These theoretical findings imply that CdX sheets are promising candidates for photocatalytic water splitting.

  9. Photosensitivity study of GeS2 chalcogenide glass under femtosecond laser pulses irradiation

    NASA Astrophysics Data System (ADS)

    Ayiriveetil, Arunbabu; Sabapathy, Tamilarasan; Kar, Ajoy K.; Asokan, Sundarrajan

    2015-07-01

    The present study discusses the photosensitivity of GeS2 chalcogenide glass in response to irradiation with femtosecond pulses at 1047 nm. Bulk GeS2 glasses are prepared by conventional melt quenching technique and the amorphous nature of the glass is confirmed using X-ray diffraction. Ultrafast laser inscription technique is used to fabricate the straight channel waveguides in the glass. Single scan and multi scan waveguides are inscribed in GeS2 glasses of length 0.65 cm using a master oscillator power amplifier Yb doped fiber laser (IMRA μjewel D400) with different pulse energy and translation speed. Diameters of the inscribed waveguides are measured and its dependence on the inscription parameters such as translation speed and pulse energy is studied. Butt coupling method is used to characterize the loss measurement of the inscribed optical waveguides. The mode field image of the waveguides is captured using CCD camera and compared with the mode field image of a standard SMF-28 fibers.

  10. Superior Electrical Conductivity in Hydrogenated Layered Ternary Chalcogenide Nanosheets for Flexible All-Solid-State Supercapacitors.

    PubMed

    Hu, Xin; Shao, Wei; Hang, Xudong; Zhang, Xiaodong; Zhu, Wenguang; Xie, Yi

    2016-05-01

    As the properties of ultrathin two-dimensional (2D) crystals are strongly related to their electronic structures, more and more attempts were carried out to tune their electronic structures to meet the high standards for the construction of next-generation smart electronics. Herein, for the first time, we show that the conductive nature of layered ternary chalcogenide with formula of Cu2 WS4 can be switched from semiconducting to metallic by hydrogen incorporation, accompanied by a high increase in electrical conductivity. In detail, the room-temperature electrical conductivity of hydrogenated-Cu2 WS4 nanosheet film was almost 10(10) times higher than that of pristine bulk sample with a value of about 2.9×10(4)  S m(-1) , which is among the best values for conductive 2D nanosheets. In addition, the metallicity in the hydrogenated-Cu2 WS4 is robust and can be retained under high-temperature treatment. The fabricated all-solid-state flexible supercapacitor based on the hydrogenated-Cu2 WS4 nanosheet film shows promising electrochemical performances with capacitance of 583.3 F cm(-3) at a current density of 0.31 A cm(-3) . This work not only offers a prototype material for the study of electronic structure regulation in 2D crystals, but also paves the way in searching for highly conductive electrodes.

  11. Highly efficient cascaded amplification using Pr(3+)-doped mid-infrared chalcogenide fiber amplifiers.

    PubMed

    Hu, Jonathan; Menyuk, Curtis R; Wei, Chengli; Brandon Shaw, L; Sanghera, Jasbinder S; Aggarwal, Ishwar D

    2015-08-15

    We computationally investigate cascaded amplification in a three-level mid-infrared (IR) Pr(3+)-doped chalcogenide fiber amplifier. The overlap of the cross-sections in the transitions (3)H(6)→(3)H(5) and (3)H(5)→(3)H(4) enable both transitions to simultaneously amplify a single wavelength in the range between 4.25 μm and 4.55 μm. High gain and low noise are achieved simultaneously if the signal is at 4.5 μm. We show that 45% of pump power that is injected at 2 μm can be shifted to 4.5 μm. The efficiency of using a mid-IR fiber amplifier is higher than what can be achieved by using mid-IR supercontinuum generation, which has been estimated at 25%. This mid-IR fiber amplifier can be used in conjunction with quantum cascade lasers to obtain a tunable, high-power mid-IR source. PMID:26274635

  12. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid–base chemistry

    NASA Astrophysics Data System (ADS)

    Lei, Sidong; Wang, Xifan; Li, Bo; Kang, Jiahao; He, Yongmin; George, Antony; Ge, Liehui; Gong, Yongji; Dong, Pei; Jin, Zehua; Brunetto, Gustavo; Chen, Weibing; Lin, Zuan-Tao; Baines, Robert; Galvão, Douglas S.; Lou, Jun; Barrera, Enrique; Banerjee, Kaustav; Vajtai, Robert; Ajayan, Pulickel

    2016-05-01

    Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid–base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti4+ to form planar p-type [Ti4+n(InSe)] coordination complexes. Using this strategy, we fabricate planar p–n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B3+, Al3+ and Sn4+) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid–base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device.

  13. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry.

    PubMed

    Lei, Sidong; Wang, Xifan; Li, Bo; Kang, Jiahao; He, Yongmin; George, Antony; Ge, Liehui; Gong, Yongji; Dong, Pei; Jin, Zehua; Brunetto, Gustavo; Chen, Weibing; Lin, Zuan-Tao; Baines, Robert; Galvão, Douglas S; Lou, Jun; Barrera, Enrique; Banerjee, Kaustav; Vajtai, Robert; Ajayan, Pulickel

    2016-05-01

    Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid-base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti(4+) to form planar p-type [Ti(4+)n(InSe)] coordination complexes. Using this strategy, we fabricate planar p-n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B(3+), Al(3+) and Sn(4+)) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid-base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device.

  14. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films

    NASA Astrophysics Data System (ADS)

    Hassanien, A. S.; Akl, Alaa A.

    2016-01-01

    Compositional dependence of optical and electrical properties of chalcogenide CdSxSe1-x (0.4 ≥ x ≥ 0.0 at. %) thin films was studied. Cadmium sulphoselenide films were deposited by thermal evaporation technique at vacuum (8.2 × 10-4 Pa) onto preheated glass substrates (523 K). The evaporation rate and film thickness were kept constant at 2.50 nm/s and 375 ± 5 nm, respectively. X-ray diffractograms showed that, the deposited films have the low crystalline nature. Energy dispersive analysis by X-ray (EDAX) was used to check the compositional elements of deposited films. The absorption coefficient was determined from transmission and reflection measurements at room temperature in the wavelength range 300-2500 nm. Optical density, skin depth, optical energy gap and Urbach's parameters of CdSSe thin films have also been estimated. The direct optical energy gap decreased from 2.248 eV to 1.749 eV when the ratio of Se-content was increased from 0.60 to 1.00 . Conduction band and valance band positions were evaluated. The temperature dependence of dc-electrical resistivity in the temperature range (293-450 K) has been reported. Three conduction regions due to different conduction mechanisms were detected. Electrical sheet resistance, activation energy and pre-exponential parameters were discussed. The estimated values of optical and electrical parameters were strongly dependent upon the Se-content in CdSSe matrix.

  15. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry

    NASA Astrophysics Data System (ADS)

    Lei, Sidong; Wang, Xifan; Li, Bo; Kang, Jiahao; He, Yongmin; George, Antony; Ge, Liehui; Gong, Yongji; Dong, Pei; Jin, Zehua; Brunetto, Gustavo; Chen, Weibing; Lin, Zuan-Tao; Baines, Robert; Galvão, Douglas S.; Lou, Jun; Barrera, Enrique; Banerjee, Kaustav; Vajtai, Robert; Ajayan, Pulickel

    2016-05-01

    Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid-base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti4+ to form planar p-type [Ti4+n(InSe)] coordination complexes. Using this strategy, we fabricate planar p-n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B3+, Al3+ and Sn4+) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid-base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device.

  16. Two-dimensional topological insulators in group-11 chalcogenide compounds: M2Te (M =Cu ,Ag )

    NASA Astrophysics Data System (ADS)

    Ma, Yandong; Kou, Liangzhi; Dai, Ying; Heine, Thomas

    2016-06-01

    Two-dimensional (2D) topological insulators (TIs) are recently recognized states of quantum matter that are highly interesting for lower-power-consuming electronic devices owing to their nondissipative transport properties protected from backscattering. So far, only few 2D TIs, suffering from small bulk band gap (<10 meV ), have been experimentally confirmed. Here, through first-principles calculations, we propose a family of 2D TIs in group-11 chalcogenide 2D crystals, M2Te (M =Cu ,Ag ) . The nontrivial topological states in C u2Te and A g2Te 2D crystals, identified by topological invariant and edge state calculations, exhibit sizeable bulk gaps of 78 and 150 meV, respectively, suggesting that they are candidates for room-temperature applications. Moreover, strain engineering leads to effective control of the nontrivial gaps of C u2Te and A g2Te , and a topological phase transition can be realized in C u2Te , while the nontrivial phase in A g2Te is stable against strain. Their dynamic and thermal stabilities are further confirmed by employing phonon calculations and ab initio molecular dynamic simulations.

  17. Spin texture and mirror Chern number in Hg-based chalcogenides

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Ze; Wu, Shu-Chun; Felser, Claudia; Yan, Binghai; Liu, Chao-Xing

    2015-04-01

    One important feature of surface states in topological insulators is the so-called "spin-momentum locking," which means that electron spin is oriented along a fixed direction for a given momentum and forms a texture in the momentum space. In this work, we study spin textures of two typical topological insulators in Hg-based chalcogenides, namely, HgTe and HgS, based on both the first-principles calculation and the eight-band Kane model. We find opposite helicities of spin textures between these two materials, originating from the opposite signs of spin-orbit couplings. Based on the effective Kane model, we present a physical picture to understand opposite spin textures in these two materials with the help of the relationship between spin textures and mirror Chern numbers. We also reveal the existence of gapless states at the interface between HgTe and HgS due to the opposite spin textures and opposite mirror Chern numbers.

  18. Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors.

    PubMed

    Li, Song-Lin; Tsukagoshi, Kazuhito; Orgiu, Emanuele; Samorì, Paolo

    2016-01-01

    Two-dimensional (2D) van der Waals semiconductors represent the thinnest, air stable semiconducting materials known. Their unique optical, electronic and mechanical properties hold great potential for harnessing them as key components in novel applications for electronics and optoelectronics. However, the charge transport behavior in 2D semiconductors is more susceptible to external surroundings (e.g. gaseous adsorbates from air and trapped charges in substrates) and their electronic performance is generally lower than corresponding bulk materials due to the fact that the surface and bulk coincide. In this article, we review recent progress on the charge transport properties and carrier mobility engineering of 2D transition metal chalcogenides, with a particular focus on the markedly high dependence of carrier mobility on thickness. We unveil the origin of this unique thickness dependence and elaborate the devised strategies to master it for carrier mobility optimization. Specifically, physical and chemical methods towards the optimization of the major factors influencing the extrinsic transport such as electrode/semiconductor contacts, interfacial Coulomb impurities and atomic defects are discussed. In particular, the use of ad hoc molecules makes it possible to engineer the interface with the dielectric and heal the vacancies in such materials. By casting fresh light on the theoretical and experimental studies, we provide a guide for improving the electronic performance of 2D semiconductors, with the ultimate goal of achieving technologically viable atomically thin (opto)electronics.

  19. Molybdenum-Bismuth Bimetallic Chalcogenide Nanosheets for Highly Efficient Electrocatalytic Reduction of Carbon Dioxide to Methanol.

    PubMed

    Sun, Xiaofu; Zhu, Qinggong; Kang, Xinchen; Liu, Huizhen; Qian, Qingli; Zhang, Zhaofu; Han, Buxing

    2016-06-01

    Methanol is a very useful platform molecule and liquid fuel. Electrocatalytic reduction of CO2 to methanol is a promising route, which currently suffers from low efficiency and poor selectivity. Herein we report the first work to use a Mo-Bi bimetallic chalcogenide (BMC) as an electrocatalyst for CO2 reduction. By using the Mo-Bi BMC on carbon paper as the electrode and 1-butyl-3-methylimidazolium tetrafluoroborate in MeCN as the electrolyte, the Faradaic efficiency of methanol could reach 71.2 % with a current density of 12.1 mA cm(-2) , which is much higher than the best result reported to date. The superior performance of the electrode resulted from the excellent synergistic effect of Mo and Bi for producing methanol. The reaction mechanism was proposed and the reason for the synergistic effect of Mo and Bi was discussed on the basis of some control experiments. This work opens a way to produce methanol efficiently by electrochemical reduction of CO2 . PMID:27098284

  20. Planets in Evolved Binary Systems

    NASA Astrophysics Data System (ADS)

    Perets, Hagai B.

    2011-03-01

    Exo-planets are typically thought to form in protoplanetary disks left over from protostellar disk of their newly formed host star. However, additional planetary formation and evolution routes may exist in old evolved binary systems. Here we discuss the implications of binary stellar evolution on planetary systems in such environments. In these binary systems stellar evolution could lead to the formation of symbiotic stars, where mass is lost from one star and could be transferred to its binary companion, and may form an accretion disk around it. This raises the possibility that such a disk could provide the necessary environment for the formation of a new, second generation of planets in both circumstellar or circumbinary configurations. Pre-existing first generation planets surviving the post-MS evolution of such systems would be dynamically effected by the mass loss in the systems and may also interact with the newly formed disk. Such planets and/or planetesimals may also serve as seeds for the formation of the second generation planets, and/or interact with them, possibly forming atypical planetary systems. Second generation planetary systems should be typically found in white dwarf binary systems, and may show various observational signatures. Most notably, second generation planets could form in environment which are inaccessible, or less favorable, for first generation planets. The orbital phase space available for the second generation planets could be forbidden (in terms of the system stability) to first generation planets in the pre-evolved progenitor binaries. In addition planets could form in metal poor environments such as globular clusters and/or in double compact object binaries. Observations of exo-planets in such forbidden or unfavorable regions could possibly serve to uniquely identify their second generation character. Finally, we point out a few observed candidate second generation planetary systems, including Gl 86, HD 27442 and all of the

  1. The Michigan Binary Star Program

    NASA Astrophysics Data System (ADS)

    Lindner, Rudi P.

    2007-07-01

    At the end of the nineteenth century, William J. Hussey and Robert G. Aitken, both at Lick Observatory, began a systematic search for unrecorded binary stars with the aid of the 12" and 36" refracting telescopes at Lick Observatory. Aitken's work (and book on binary stars) are well known, Hussey's contributions less so. In 1905 Hussey, a Michigan engineering graduate, returned to direct the Ann Arbor astronomy program, and immediately he began to design new instrumentation for the study of binary stars and to train potential observers. For a time, he spent six months a year at the La Plata Observatory, where he discovered a number of new pairs and decided upon a major southern hemisphere campaign. He spent a decade obtaining the lenses for a large refractor, through the vicissitudes of war and depression. Finally, he obtained a site in South Africa, a 26" refractor, and a small corps of observers, but he died in London en route to fulfill his dream. His right hand man, Richard Rossiter, established the observatory and spent the next thirty years discovering and measuring binary stars: his personal total is a record for the field. This talk is an account of the methods, results, and utility of the extraordinary binary star factory in the veldt.

  2. Experience with parametric binary dissection

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1993-01-01

    Parametric Binary Dissection (PBD) is a new algorithm that can be used for partitioning graphs embedded in 2- or 3-dimensional space. It partitions explicitly on the basis of nodes + (lambda)x(edges cut), where lambda is the ratio of time to communicate over an edge to the time to compute at a node. The new algorithm is faster than the original binary dissection algorithm and attempts to obtain better partitions than the older algorithm, which only takes nodes into account. The performance of parametric dissection with plain binary dissection on 3 large unstructured 3-d meshes obtained from computational fluid dynamics and on 2 random graphs were compared. It was showm that the new algorithm can usually yield partitions that are substantially superior, but that its performance is heavily dependent on the input data.

  3. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide.

    PubMed

    Tan, Kang; Marpaung, David; Pant, Ravi; Gao, Feng; Li, Enbang; Wang, Jian; Choi, Duk-Yong; Madden, Steve; Luther-Davies, Barry; Sun, Junqiang; Eggleton, Benjamin J

    2013-01-28

    We report a photonic-chip-based scheme for all-optical ultra-wideband (UWB) pulse generation using a novel all-optical differentiator that exploits cross-phase modulation and birefringence in an As₂S₃ chalcogenide rib waveguide. Polarity-switchable UWB monocycles and doublets were simultaneously obtained with single optical carrier operation. Moreover, transmission over 40-km fiber of the generated UWB doublets is demonstrated with good dispersion tolerance. These results indicate that the proposed approach has potential applications in multi-shape, multi-modulation and long-distance UWB-over-fiber communication systems.

  4. Fabrication and propagation characterization of As2S8 chalcogenide channel waveguide made by UV irradiation annealing

    SciTech Connect

    Lin Erzou; Bao Xuechen; He Sanlin; Hamanaka, Hiromi; Iso, Mamoru

    2009-11-20

    Changes in the refractive index of amorphous chalcogenide A2S8 films upon ultraviolet (UV) exposure and annealing at different temperatures are investigated in detail, indicating an index contrast of the order of 10{sup -2} in the A2S8 channel waveguide. An As2S8 channel waveguide is fabricated using UV well irradiation and then annealing near the glass transition temperature and shows a low propagation loss of 0.76 dB/cm and good propagation characterization at the 1310 nm guided mode.

  5. Experimental demonstration of linearly polarized 2-10  μm supercontinuum generation in a chalcogenide rib waveguide.

    PubMed

    Yu, Yi; Gai, Xin; Ma, Pan; Vu, Khu; Yang, Zhiyong; Wang, Rongping; Choi, Duk-Yong; Madden, Steve; Luther-Davies, Barry

    2016-03-01

    This Letter reports the production of a supercontinuum extending from ≈2  μm to >10  μm generated using a chalcogenide buried rib waveguide pumped with 330 femtosecond pulses at 4.184 μm. This is, to the best of our knowledge, the broadest mid-infrared supercontinuum generated in any planar waveguide platform. Because the waveguide is birefringent, quasi-single-mode, and uses an optimized dispersion design, the supercontinuum is linearly polarized with an extinction ratio >100. Dual beam spectrophotometry is performed easily using this source. PMID:26974090

  6. Highly birefringent chalcogenide optical fiber for polarization-maintaining in the 3-8.5 µm mid-IR window.

    PubMed

    Caillaud, Celine; Gilles, Clement; Provino, Laurent; Brilland, Laurent; Jouan, Thierry; Ferre, Simon; Carras, Mathieu; Brun, Mickael; Mechin, David; Adam, Jean-Luc; Troles, Johann

    2016-04-18

    A highly birefringent polarization-maintaining chalcogenide microstructured optical fiber (MOF) covering the 3-8.5 µm wavelength range has been realized for the first time. The fiber cross-section consists of 3 rings of circular air holes with 2 larger holes adjacent to the core. Birefringence properties are calculated by using the vector finite-element method and are compared to the experimental ones. The group birefringence is 1.5x10-3 and fiber losses are equal to 0.8 dB/m at 7.55 µm. PMID:27137239

  7. Mental Effort in Binary Categorization Aided by Binary Cues

    ERIC Educational Resources Information Center

    Botzer, Assaf; Meyer, Joachim; Parmet, Yisrael

    2013-01-01

    Binary cueing systems assist in many tasks, often alerting people about potential hazards (such as alarms and alerts). We investigate whether cues, besides possibly improving decision accuracy, also affect the effort users invest in tasks and whether the required effort in tasks affects the responses to cues. We developed a novel experimental tool…

  8. Engineering of lead chalcogenide nanostructures for carrier multiplication: Core/shell, 1D, and 2D

    NASA Astrophysics Data System (ADS)

    Lin, Qianglu

    Near infrared emitting semiconductors have been used widely in industry especially in solar-cell fabrications. The efficiency of single junction solar-cell can reach the Shockley-Queisser limit by using optimum band gap material such as silicon and cadmium telluride. The theoretical efficiency can be further enhanced through carrier multiplication, in which a high energy photon is absorbed and more than one electron-hole pair can be generated, reaching more than 100% quantum efficiency in the high energy region of sunlight. The realization of more than unity external quantum efficiency in lead selenide quantum dots solar cell has motivated vast investigation on lowering the carrier multiplication threshold and further improving the efficiency. This dissertation focuses on synthesis of lead chalcogenide nanostructures for their optical spectroscopy studies. PbSe/CdSe core/shell quantum dots were synthesized by cation exchange to obtain thick shells (up to 14 monolayers) for studies of visible and near infrared dual band emissions and carrier multiplication efficiency. By examining the reaction mechanism, a thermodynamic and a kinetic model are introduced to explain the vacancy driven cation exchange. As indicated by the effective mass model, PbSe/CdSe core/shell quantum dots has quasi-type-II band alignment, possessing electron delocalized through the entire quantum dot and hole localized in the core, which breaks down the symmetry of energy levels in the conduction and valence band, leading to hot-hole-assisted efficient multi-exciton generation and a lower carrier multiplication threshold to the theoretical value. For further investigation of carrier multiplication study, PbTe, possessing the highest efficiency among lead chalcogenides due to slow intraband cooling, is synthesized in one-dimensional and two-dimensional nanostructures. By using dodecanethiol as the surfactant, PbTe NRs can be prepared with high uniformity in width and resulted in fine quantum

  9. Ultrafast spectroscopic investigations of cadmium chalcogenides: Nanoscale electronic relaxation and transfer

    NASA Astrophysics Data System (ADS)

    Spann, Bryan Thomas

    Harnessing solar energy more effectively remains one of the most important scientific challenges in recent history. Various strategies have been developed to capture the sun's energy to generate usable electricity. Recently, advances in chemistry have allowed researchers to synthesize semiconducting nanocrystals which show great promise in capturing and converting solar energy in a cheap and efficient way. In this dissertation, aspects of energy conversion processes in semiconducting nanocrystals are explored to elucidate their potential for photovoltaic applications. Various forms of linear and non-linear optical spectroscopy techniques were employed to explore electronic relaxation and transfer phenomena in nanoscale cadmium chalcogenide materials and heterojunctions. Ultrafast transient absorption studies were performed on various sizes of CdSe quantum dots (QDs) and quantum rods (QRs) with similar bandedge energies. These studies reviled that QRs have increased intraband relaxation times when compared with QDs as a result of an ultrafast formation of a 1D exciton along the elongated axis of the QR. The formation of the 1D exciton reduces the electron-to-hole scattering potential, consequently reducing the Auger thermalization mechanism. Furthermore, QD samples made in film form showed increased intraband relaxation times as a result of a hydrazine treatment which removed (in part) the organic ligands attached to the surface. As a result of removing the ligands, the ligand based relaxation pathway for the holes was also reduced, causing longer intraband relaxation. In addition to the studies on CdSe nanocrystals (NCs), ultrafast spectroscopy was used to study aspects of charge transfer in CdS -- TiO2 NC heterojunctions. This study revealed a means of increasing photo-induced ultrafast charge transfer in successive ionic layer adsorption and reaction (SILAR) CdS--TiO2 NC heterojunctions using pulsed laser sintering of TiO2 nanocrystals. The enhanced charge

  10. Electrospray deposition of chalcogenide glass films for gradient refractive index and quantum dot incorporation

    NASA Astrophysics Data System (ADS)

    Novak, Spencer

    Chalcogenide glasses (ChGs) are well-known for their optical properties, making them ideal candidates for emerging applications of mid-infrared microphotonic devices, such as lab-on-a-chip chemical sensing devices, which currently demand additional flexibility in processing and materials available to realize new device designs. Solution-derived processing of ChG films, initially developed in the 1980s by Chern and Lauks, has consisted mainly of spin-coating and offers unique advantages over the more traditional physical vapor deposition techniques. In the present effort, the nanoparticles of interest are luminescent quantum dots (QDs), which can be used as an on-chip source of light for a planar chemical sensing device. Prior efforts of QD incorporation have exposed limitations of spin-coating of ChG solutions, namely QD aggregation and material waste, along with incompatibility with larger scale manufacturing methods such roll-to-roll processing. This dissertation has evaluated electrospray (ES) as an alternative method of solution-derived chalcogenide glass film deposition. While employed in other materials systems, deposition of optical quality ChG films via electrospray has not been previously attempted, nor have parameters until now, been defined. This study has defined pre-cursor solution chemistry, electrospray jet process parameters required for formation of stable films, annealing protocols and resulting film attributes, yielding important correlations needed to realize high optical quality films. Electrosprayed films attributes were compared to those seen for spin coating and trade-offs in processing route and resulting quality, were identified. Optical properties of importance to device applications were defined, including surface roughness, refractive index, and infrared transmission. The use of a serpentine path of the spray over the substrate was demonstrated to obtain uniform thickness, blanket films, and demonstrates process compatibility with roll

  11. From Exploratory Synthesis to Hard Radiation Detection: Crystal Growth and Characterization of Chalcogenide and Chalcohalide Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Sandy Linhsa

    In the first half of this thesis work, exploratory synthesis of materials using mixed polychalcogenide fluxes yielded four quaternary mixed Te/S compounds, with the respective chalcogen atoms residing in different crystallographic sites. Two-dimensional thiotellurite compounds (Ag2TeS3) 2·A2S6 (A = Rb, Cs), containing the trigonal pyramidal [TeS 3]2- unit, were synthesized and characterized. These structures are composed of layers of neutral [Ag2TeS3] alternating with charge-balanced salt layers containing the polysulfide chain [S6]2- and alkali metal ions. Using mixed Te/S polychalcogenide fluxes for compound discovery, we then investigated a new set of layered metal dichalcogenides, Ag2Te(MS2)3 (M = V, Nb) crystallizing in the P-62m space group. Ag2Te(MS2)3 contains layers of [Ag2Te] sandwiched between layers of [MS2] (M = V, Nb). The Ag and, more interestingly, Te atoms are linearly coordinated by S atoms in the [MS2] layers. This linear coordination of the Te atom by S atoms is unprecedented in the literature and stabilized by charge transfer within the [Ag2Te] layers. In the latter half, we report the bulk crystal growth and characterization of Tl-based chalcogenide and chalcohalide materials for hard radiation (X- and gamma-ray) detection, which requires high density, wide band gaps, and high resistivity. Lattice hybridization was applied to identify materials with optimal properties for hard radiation detection, resulting in the chalcohalide compound Tl6SI4. Tl6SI4 exhibits low effective mass of carriers, high resistivity, optimal band gap, and large hardness values. The figure of merit mutau products, (mutau) e = 2.1 x 10-3 cm2V-1 and (mutau)h = 2.3 x 10-5 cm2V -1, are comparable to state-of-the-art commercially used materials. Furthermore, high resolution detection of Ag X-rays by Tl6SI 4 was seen at 22 keV (2.6%). Dimensional reduction was used to identify Tl-based chalcogenide materials Tl2MS3 (M = Ge, Sn). Tl2MS3 show great potential for use as hard

  12. Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties.

    PubMed

    Kershaw, Stephen V; Susha, Andrei S; Rogach, Andrey L

    2013-04-01

    The chemistry, material processing and fundamental understanding of colloidal semiconductor nanocrystals (quantum dots) are advancing at an astounding rate, bringing the prospects of widespread commercialization of these novel and exciting materials ever closer. Interest in narrow bandgap nanocrystals in particular has intensified in recent years, and the results of research worldwide point to the realistic prospects of applications for these materials in solar cells, infrared optoelectronics (e.g. lasers, optical modulators, photodetectors and photoimaging devices), low cost/large format microelectronics, and in biological imaging and biosensor systems to name only some technologies. Improvements in fundamental understanding and material quality are built on a vast body of experience spread over many different methods of colloidal synthetic growth, each with their own strengths and weaknesses for different materials and sometimes with regard to particular applications. The nanocrystal growth expertise is matched by a rapidly expanding, and highly interdisciplinary, understanding of how best to assemble these materials into films or hybrid composites and thereby into useful devices, and again there are many different strategies that can be adopted. In this review we have attempted to survey and compare the recent work on colloidal synthesis, film and nanocrystal composite material fabrication, concentrating on narrow bandgap chalcogenide materials and some of their topical applications in the solar energy and biological fields. Since these applications are attracting rising interest across a wide range of disciplines, from the biological sciences, device engineering, and materials processing fields as well as the physics and synthetic chemistry communities, we have endeavoured to make the review of these narrow bandgap nanomaterials both comprehensive and accessible to newcomers to the area. PMID:23361653

  13. ARPES Study on the Strongly Correlated Iron Chalcogenides Fe1+ySexTe1-x

    NASA Astrophysics Data System (ADS)

    Liu, Zhongkai

    2014-03-01

    The level of electronic correlation has been one of the key questions in understanding the nature of iron-based superconductivity. Using Angle Resolved Photoemission Spectroscopy (ARPES), we systematically investigated the correlation level in the iron chalcogenide family Fe1+ySexTe1-x. For the parent compound Fe1.02Te, we discovered ``peak-dip-hump'' spectra with heavily renormalized quasiparticles in the low temperature antiferromagnetic (AFM) state, characteristic of coherent polarons seen in other correlated materials with complex electronic and lattice interactions. As the temperature (or Se ratio x) increases and Fe1.02SexTe1-x is in the paramagnetic (PM) phase, we observed dissociation behavior of polarons, suggestive of connection between the weakening electron-phonon coupling and AFM. Further increase of x leads to an incoherent to coherent crossover in the electronic structure, indicating a reduction in the electronic correlation as the superconductivity emerges. Furthermore, the reduction of the electronic correlation in Fe1+ySexTe1-x evolves in an orbital-dependent way, where the dxy orbital is influenced most significantly. At the other end of the phase diagram (FeSe) where the single crystal is not stable, we have studied the MBE-grown thin film which also reveals orbital-dependent strong correlation in the electronic structure. Our findings provide a quantitative comprehension on the correlation level and its evolution on the phase diagram of Fe1+ySexTe1-x. We discuss the physical scenarios leading to strong correlations and its connection to superconductivity.

  14. Penternary chalcogenides nanocrystals as catalytic materials for efficient counter electrodes in dye-synthesized solar cells

    NASA Astrophysics Data System (ADS)

    Özel, Faruk; Sarılmaz, Adem; Istanbullu, Bilal; Aljabour, Abdalaziz; Kuş, Mahmut; Sönmezoğlu, Savaş

    2016-07-01

    The penternary chalcogenides Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 were successfully synthesized by hot-injection method, and employed as a catalytic materials for efficient counter electrodes in dye-synthesized solar cells (DSSCs). The structural, compositional, morphological and optical properties of these pentenary semiconductors were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS) and ultraviolet-visible (UV–Vis) spectroscopy. The Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 nanocrystals had a single crystalline, kesterite phase, adequate stoichiometric ratio, 18–25 nm particle sizes which are forming nanospheres, and band gap energy of 1.18 and 1.45 eV, respectively. Furthermore, the electrochemical impedance spectroscopy and cyclic voltammograms indicated that Cu2CoSn(SeS)4 nanocrystals as counter electrodes exhibited better electrocatalytic activity for the reduction of iodine/iodide electrolyte than that of Cu2ZnSn(SeS)4 nanocrystals and conventional platinum (Pt). The photovoltaic results demonstrated that DSSC with a Cu2CoSn(SeS)4 nanocrystals-based counter electrode achieved the best efficiency of 6.47%, which is higher than the same photoanode employing a Cu2ZnSn(SeS)4 nanocrystals (3.18%) and Pt (5.41%) counter electrodes. These promising results highlight the potential application of penternary chalcogen Cu2CoSn(SeS)4 nanocrystals in low-cost, high-efficiency, Pt-free DSSCs.

  15. Fundamental Investigation of Oxygen Reduction Reaction on Rhodium Sulfide-Based Chalcogenides

    SciTech Connect

    Ziegelbauer, J.; Gatewood, D; Gulla, A; Guinel, M; Ernst, F; Ramaker, D; Mukerjee, S

    2009-01-01

    Synchrotron-based X-ray absorption spectroscopy (XAS), including the surface-specific {Delta}XANES technique, is used to investigate the active reaction site for water activation and the oxygen reduction reaction (ORR) on the novel, mixed-phase chalcogenide electrocatalyst RhxSy/C (De Nora). The specific adsorption of water, OH, and O as a function of overpotential is reported. This study builds on a prior communication based solely on interpreting the XAS spectra of RhxSy with respect to the metallic Rh3S4 phase. Here, a more extensive overview of the electrocatalysis is provided on RhxSy/C, the thermally grown Rh2S3/C and Rh3S4/C preferential phases and a standard 30 wt % Rh/C electrocatalyst, including results obtained by X-ray diffraction (XRD), XAS, high-resolution transmission electron imaging, microanalysis, and electrochemical investigations. Heating of the RhxSy catalysts to prepare the two preferential phases causes Rh segregation and the formation of Rh metal particles, and immersion in TFMSA causes S dissolution and the formation of a Rh skin on the RhxSy samples. It is shown that some Rh-Rh interactions are needed to carry out the ORR. This is present on the Rh6 moieties in both the Rh3S4 and RhxSy catalysts, but a partial Rh skin (present from acid dissolution) is also contributing to the ORR observed on RhxSy. This to our knowledge is the first time a reaction site in a multiphase inorganic framework structure has been investigated in terms of electrocatalytic pathway for oxygen reduction.

  16. Penternary chalcogenides nanocrystals as catalytic materials for efficient counter electrodes in dye-synthesized solar cells.

    PubMed

    Özel, Faruk; Sarılmaz, Adem; İstanbullu, Bilal; Aljabour, Abdalaziz; Kuş, Mahmut; Sönmezoğlu, Savaş

    2016-01-01

    The penternary chalcogenides Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 were successfully synthesized by hot-injection method, and employed as a catalytic materials for efficient counter electrodes in dye-synthesized solar cells (DSSCs). The structural, compositional, morphological and optical properties of these pentenary semiconductors were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS) and ultraviolet-visible (UV-Vis) spectroscopy. The Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 nanocrystals had a single crystalline, kesterite phase, adequate stoichiometric ratio, 18-25 nm particle sizes which are forming nanospheres, and band gap energy of 1.18 and 1.45 eV, respectively. Furthermore, the electrochemical impedance spectroscopy and cyclic voltammograms indicated that Cu2CoSn(SeS)4 nanocrystals as counter electrodes exhibited better electrocatalytic activity for the reduction of iodine/iodide electrolyte than that of Cu2ZnSn(SeS)4 nanocrystals and conventional platinum (Pt). The photovoltaic results demonstrated that DSSC with a Cu2CoSn(SeS)4 nanocrystals-based counter electrode achieved the best efficiency of 6.47%, which is higher than the same photoanode employing a Cu2ZnSn(SeS)4 nanocrystals (3.18%) and Pt (5.41%) counter electrodes. These promising results highlight the potential application of penternary chalcogen Cu2CoSn(SeS)4 nanocrystals in low-cost, high-efficiency, Pt-free DSSCs. PMID:27380957

  17. Layered Chalcogenides beyond Graphene: from Electronic Structure Evolution to the Spin Transport

    NASA Astrophysics Data System (ADS)

    Yuan, Hongtao

    2014-03-01

    Recent efforts on graphene-like atomic layer materials, aiming at novel electronic properties and quantum phenomena beyond graphene, have attracted much attention for potential electronics/spintronics applications. Compared to the weak spin-orbit-interaction (SOI) in graphene, metal chalcogenides MX2 have heavy 4d/5d elements with strong atomic SOI, providing a unique way for generating spin polarization based on valleytronics physics. Indeed, such a spin-polarized band structure has been demonstrated theoretically and supported by optical investigations. However, despite these exciting progresses, following two important issues in MX2 community remain elusive: 1. the quantitative band structure of MX2 compounds (where are the valleys -band maxima/minima- locating in the BZ) have not been experimentally confirmed. Especially for those cleaved ultrathin mono- and bi-layer flakes hosting most of recently-reported exotic phenomena at the 2D limit, the direct detection for band dispersion becomes of great importance for valleytronics. 2. Spin transports have seldom been reported even though such a strong SOI system can serve as an ideal platform for the spin polarization and spin transport. In this work, we started from the basic electronic structures of representative MX2, obtained by ARPES, and investigated both the band variation between these compounds and their band evolution from bulk to the monolayer limit. After having a systematic understanding on band structures, we reported a giant Zeeman-type spin-polarization generated and modulated by an external electric field in WSe2 electric-double-layer transistors. The non-magnetic approach for realizing such an intriguing spin splitting not only keeps the system time-reversally invariant but also suggests a new paradigm for manipulating the spin-degrees of freedom of electrons. Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515.

  18. Penternary chalcogenides nanocrystals as catalytic materials for efficient counter electrodes in dye-synthesized solar cells

    PubMed Central

    Özel, Faruk; Sarılmaz, Adem; İstanbullu, Bilal; Aljabour, Abdalaziz; Kuş, Mahmut; Sönmezoğlu, Savaş

    2016-01-01

    The penternary chalcogenides Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 were successfully synthesized by hot-injection method, and employed as a catalytic materials for efficient counter electrodes in dye-synthesized solar cells (DSSCs). The structural, compositional, morphological and optical properties of these pentenary semiconductors were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS) and ultraviolet-visible (UV–Vis) spectroscopy. The Cu2CoSn(SeS)4 and Cu2ZnSn(SeS)4 nanocrystals had a single crystalline, kesterite phase, adequate stoichiometric ratio, 18–25 nm particle sizes which are forming nanospheres, and band gap energy of 1.18 and 1.45 eV, respectively. Furthermore, the electrochemical impedance spectroscopy and cyclic voltammograms indicated that Cu2CoSn(SeS)4 nanocrystals as counter electrodes exhibited better electrocatalytic activity for the reduction of iodine/iodide electrolyte than that of Cu2ZnSn(SeS)4 nanocrystals and conventional platinum (Pt). The photovoltaic results demonstrated that DSSC with a Cu2CoSn(SeS)4 nanocrystals-based counter electrode achieved the best efficiency of 6.47%, which is higher than the same photoanode employing a Cu2ZnSn(SeS)4 nanocrystals (3.18%) and Pt (5.41%) counter electrodes. These promising results highlight the potential application of penternary chalcogen Cu2CoSn(SeS)4 nanocrystals in low-cost, high-efficiency, Pt-free DSSCs. PMID:27380957

  19. Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties.

    PubMed

    Kershaw, Stephen V; Susha, Andrei S; Rogach, Andrey L

    2013-04-01

    The chemistry, material processing and fundamental understanding of colloidal semiconductor nanocrystals (quantum dots) are advancing at an astounding rate, bringing the prospects of widespread commercialization of these novel and exciting materials ever closer. Interest in narrow bandgap nanocrystals in particular has intensified in recent years, and the results of research worldwide point to the realistic prospects of applications for these materials in solar cells, infrared optoelectronics (e.g. lasers, optical modulators, photodetectors and photoimaging devices), low cost/large format microelectronics, and in biological imaging and biosensor systems to name only some technologies. Improvements in fundamental understanding and material quality are built on a vast body of experience spread over many different methods of colloidal synthetic growth, each with their own strengths and weaknesses for different materials and sometimes with regard to particular applications. The nanocrystal growth expertise is matched by a rapidly expanding, and highly interdisciplinary, understanding of how best to assemble these materials into films or hybrid composites and thereby into useful devices, and again there are many different strategies that can be adopted. In this review we have attempted to survey and compare the recent work on colloidal synthesis, film and nanocrystal composite material fabrication, concentrating on narrow bandgap chalcogenide materials and some of their topical applications in the solar energy and biological fields. Since these applications are attracting rising interest across a wide range of disciplines, from the biological sciences, device engineering, and materials processing fields as well as the physics and synthetic chemistry communities, we have endeavoured to make the review of these narrow bandgap nanomaterials both comprehensive and accessible to newcomers to the area.

  20. Ln₃FeGaQ₇: A new series of transition-metal rare-earth chalcogenides

    SciTech Connect

    Yin, Wenlong; Wang, Wendong; Kang, Lei; Lin, Zheshuai; Feng, Kai; Shi, Youguo; and others

    2013-06-01

    A new series of transition-metal rare-earth chalcogenides, Ln₃FeGaQ₇ (Ln=Nd, Sm, Gd, Dy, Q=S; Ln=Nd, Gd, Dy, Q=Se), have been synthesized by solid state reactions. They are isostructural and crystallize in the space group P6₃. They adopt a three-dimensional framework composed of LnQ₇ monocapped trigonal prisms with the interesting 1[FeS₃]⁴⁻ chains and isolated GaQ₄ tetrahedra lying in two sets of channels in the framework. Magnetic susceptibility measurements on Ln₃FeGaQ₇ (Ln=Gd, Dy; Q=S, Se) indicate that they are paramagnetic and obey the Curie–Weiss law. Based on the diffuse reflectance spectra, Ln₃FeGaQ₇ (Ln=Gd, Dy; Q=S, Se) should have band gaps smaller than 0.5 eV. Electronic conductivity measurement on Dy₃FeGaSe₇ demonstrates semiconducting behavior with σ₃₀₀=0.124 S/cm. The first-principles calculations were also performed to study the electronic structures of these compounds. - Graphical abstract: Ln₃FeGaQ₇ adopt a three-dimensional framework composed of LnQ₇ monocapped trigonal prisms with interesting 1[FeS₃]⁴⁻ chains and isolated GaQ₄ tetrahedra lying in two sets of channels in the framework. Highlights: • New compounds, Ln₃FeGaQ₇ (Ln=Nd, Sm, Gd, Dy, Q=S, Se), were synthesized. • They are isostructural and crystallize in the noncentrosymmetric space group P6₃. • They adopt a three-dimensional framework built by LnQ₇ monocapped trigonal prisms. • Ln₃FeGaQ₇ (Ln=Gd, Dy; Q=S, Se) are paramagnetic and obey the Curie–Weiss law. • Electronic conductivity of Dy₃FeGaSe₇ shows semiconducting behavior.

  1. In-situ Tapering of Chalcogenide Fiber for Mid-infrared Supercontinuum Generation

    PubMed Central

    Rudy, Charles W.; Marandi, Alireza; Vodopyanov, Konstantin L.; Byer, Robert L.

    2013-01-01

    Supercontinuum generation (SCG) in a tapered chalcogenide fiber is desirable for broadening mid-infrared (or mid-IR, roughly the 2-20 μm wavelength range) frequency combs1, 2 for applications such as molecular fingerprinting, 3 trace gas detection, 4 laser-driven particle acceleration, 5 and x-ray production via high harmonic generation. 6 Achieving efficient SCG in a tapered optical fiber requires precise control of the group velocity dispersion (GVD) and the temporal properties of the optical pulses at the beginning of the fiber, 7 which depend strongly on the geometry of the taper. 8 Due to variations in the tapering setup and procedure for successive SCG experiments-such as fiber length, tapering environment temperature, or power coupled into the fiber, in-situ spectral monitoring of the SCG is necessary to optimize the output spectrum for a single experiment. In-situ fiber tapering for SCG consists of coupling the pump source through the fiber to be tapered to a spectral measurement device. The fiber is then tapered while the spectral measurement signal is observed in real-time. When the signal reaches its peak, the tapering is stopped. The in-situ tapering procedure allows for generation of a stable, octave-spanning, mid-IR frequency comb from the sub harmonic of a commercially available near-IR frequency comb. 9 This method lowers cost due to the reduction in time and materials required to fabricate an optimal taper with a waist length of only 2 mm. The in-situ tapering technique can be extended to optimizing microstructured optical fiber (MOF) for SCG10 or tuning of the passband of MOFs, 11 optimizing tapered fiber pairs for fused fiber couplers12 and wavelength division multiplexers (WDMs), 13 or modifying dispersion compensation for compression or stretching of optical pulses.14-16 PMID:23748947

  2. BINARY YORP EFFECT AND EVOLUTION OF BINARY ASTEROIDS

    SciTech Connect

    Steinberg, Elad; Sari, Re'em

    2011-02-15

    The rotation states of kilometer-sized near-Earth asteroids are known to be affected by the Yarkevsky O'Keefe-Radzievskii-Paddack (YORP) effect. In a related effect, binary YORP (BYORP), the orbital properties of a binary asteroid evolve under a radiation effect mostly acting on a tidally locked secondary. The BYORP effect can alter the orbital elements over {approx}10{sup 4}-10{sup 5} years for a D{sub p} = 2 km primary with a D{sub s} = 0.4 km secondary at 1 AU. It can either separate the binary components or cause them to collide. In this paper, we devise a simple approach to calculate the YORP effect on asteroids and the BYORP effect on binaries including J{sub 2} effects due to primary oblateness and the Sun. We apply this to asteroids with known shapes as well as a set of randomly generated bodies with various degrees of smoothness. We find a strong correlation between the strengths of an asteroid's YORP and BYORP effects. Therefore, statistical knowledge of one could be used to estimate the effect of the other. We show that the action of BYORP preferentially shrinks rather than expands the binary orbit and that YORP preferentially slows down asteroids. This conclusion holds for the two extremes of thermal conductivities studied in this work and the assumption that the asteroid reaches a stable point, but may break down for moderate thermal conductivity. The YORP and BYORP effects are shown to be smaller than could be naively expected due to near cancellation of the effects at small scales. Taking this near cancellation into account, a simple order-of-magnitude estimate of the YORP and BYORP effects as a function of the sizes and smoothness of the bodies is calculated. Finally, we provide a simple proof showing that there is no secular effect due to absorption of radiation in BYORP.

  3. KEPLER ECLIPSING BINARIES WITH STELLAR COMPANIONS

    SciTech Connect

    Gies, D. R.; Matson, R. A.; Guo, Z.; Lester, K. V.; Orosz, J. A.; Peters, G. J. E-mail: rmatson@chara.gsu.edu E-mail: lester@chara.gsu.edu E-mail: gjpeters@mucen.usc.edu

    2015-12-15

    Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclipsing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars among this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.

  4. Observational Properties of Synthetic Visual Binary Catalog

    NASA Astrophysics Data System (ADS)

    Nurmi, P.

    2004-08-01

    Forthcoming astrometric missions will observe a huge number of new binaries from which a large fraction will be visual binaries. Detailed planning of optimal detection procedures requires pre-launch information about the observational properties of expected visual binaries. Hence, a synthetic binary catalog is created and analyzed for observational properties of visual binary stars. These results help to understand what kind of binaries we expect to find in the final output catalogs of astrometric missions. These results represent `true' binary distributions if all of them would be observed. All real observational projects or astrometric satellites sample only small fractions of these populations depending on the observational capabilities of the missions. In this study we consider only relative numbers with respect to the total number of binary stars assumed to exist in the sky down to the magnitude limit depending on the astrometric mission.

  5. Fragility, network adaptation, rigidity- and stress- transitions in homogenized binary GexS100-x glasses

    NASA Astrophysics Data System (ADS)

    Chakraborty, Shibalik; Boolchand, Punit

    2014-03-01

    Binary GexS100-x glasses reveal elastic and chemical phase transitions driven by network topology. With increasing Ge content x, well defined rigidity (xc(1) =19.3%) and stress(xc(2) =24.85%) transitions and associated optical elasticity power-laws are observed in Raman scattering. Calorimetric measurements reveal a square-well like minimum with window walls that coincide with the two elastic phase transitions. Molar volumes show a trapezoidal-like minimum with edges that nearly coincide with the reversibility window. These results are signatures of the isostatically rigid nature of the elastic phase formed between the rigidity and stress transitions. Complex Cp measurements show melt fragility index, m(x) to also show a global minimum in the reversibility window, underscoring that melt dynamics encode the elastic behavior of the glass formed at Tg. The strong nature of melts formed in the IP has an important practical consequence; they lead to slow homogenization of non-stoichiometric batch compositions reacted at high temperatures. Homogenization of chalcogenides melts/glasses over a scale of a few microns is a pre-requisite to observe the intrinsic physical properties of these materials. Supported by NSF Grant DMR 0853957.

  6. A Galactic Binary Detection Pipeline

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.

    2011-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  7. Spectral Investigation of Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Birlan, Mirel; Nedelcu, D.; Descamps, P.; Berthier, J.; Marchis, F.; Merouane, S.

    2008-09-01

    The number of binary asteroids increased in a significant manner during the last years. Multiple types of observations obtained in adaptive optics, photometry, and radar, allow the rethinking not only the dynamics of the asteroids, but also their physics. The spectroscopy of a binary system can play a key role for establish the mineralogical composition of components, and implicitly the range of their density. By the application of these considerations to the physical and dynamical models, the physical parameters such as the macro-porosity or the "rubble pile” structures could be derived. Observations of binary asteroid (854) Frostia, and binary candidates (1333) Cevenola, and (3632) Chaplin were carried out in the 0.8-2.5 µm spectral range using SpeX/IRTF in LowRes mode. The asteroids present features in both 1 and 2 µm regions, suggesting the presence of silicates in the surface composition. The analysis of slopes, band strengths, and the most probable mineralogical models will be presented.

  8. Discs in misaligned binary systems

    NASA Astrophysics Data System (ADS)

    Rawiraswattana, Krisada; Hubber, David A.; Goodwin, Simon P.

    2016-08-01

    We perform SPH simulations to study precession and changes in alignment between the circumprimary disc and the binary orbit in misaligned binary systems. We find that the precession process can be described by the rigid-disc approximation, where the disc is considered as a rigid body interacting with the binary companion only gravitationally. Precession also causes change in alignment between the rotational axis of the disc and the spin axis of the primary star. This type of alignment is of great important for explaining the origin of spin-orbit misaligned planetary systems. However, we find that the rigid-disc approximation fails to describe changes in alignment between the disc and the binary orbit. This is because the alignment process is a consequence of interactions that involve the fluidity of the disc, such as the tidal interaction and the encounter interaction. Furthermore, simulation results show that there are not only alignment processes, which bring the components towards alignment, but also anti-alignment processes, which tend to misalign the components. The alignment process dominates in systems with misalignment angle near 90°, while the anti-alignment process dominates in systems with the misalignment angle near 0° or 180°. This means that highly misaligned systems will become more aligned but slightly misaligned systems will become more misaligned.

  9. Hydrodynamic Simulations of Contact Binaries

    NASA Astrophysics Data System (ADS)

    Kadam, Kundan; Clayton, Geoffrey C.; Frank, Juhan; Marcello, Dominic; Motl, Patrick M.; Staff, Jan E.

    2015-01-01

    The motivation for our project is the peculiar case of the 'red nova" V1309 Sco which erupted in September 2008. The progenitor was, in fact, a contact binary system. We are developing a simulation of contact binaries, so that their formation, structural, and merger properties could be studied using hydrodynamics codes. The observed transient event was the disruption of the secondary star by the primary, and their subsequent merger into one star; hence to replicate this behavior, we need a core-envelope structure for both the stars. We achieve this using a combination of Self Consistant Field (SCF) technique and composite polytropes, also known as bipolytropes. So far we have been able to generate close binaries with various mass ratios. Another consequence of using bipolytropes is that according to theoretical calculations, the radius of a star should expand when the core mass fraction exceeds a critical value, resulting in interesting consequences in a binary system. We present some initial results of these simulations.

  10. Generating Constant Weight Binary Codes

    ERIC Educational Resources Information Center

    Knight, D.G.

    2008-01-01

    The determination of bounds for A(n, d, w), the maximum possible number of binary vectors of length n, weight w, and pairwise Hamming distance no less than d, is a classic problem in coding theory. Such sets of vectors have many applications. A description is given of how the problem can be used in a first-year undergraduate computational…

  11. First-principles study of the optoelectronic properties and photovoltaic absorber layer efficiency of Cu-based chalcogenides

    NASA Astrophysics Data System (ADS)

    Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.

    2016-08-01

    Cu-based chalcogenides are promising materials for thin-film solar cells with more than 20% measured cell efficiency. Using first-principles calculations based on density functional theory, the optoelectronic properties of a group of Cu-based chalcogenides Cu2-II-IV-VI4 is studied. They are then screened with the aim of identifying potential absorber materials for photovoltaic applications. The spectroscopic limited maximum efficiency (SLME) introduced by Yu and Zunger [Phys. Rev. Lett. 108, 068701 (2012)] is used as a metric for the screening. After constructing the current-voltage curve, the SLME is calculated from the maximum power output. The role of the nature of the band gap, direct or indirect, and also of the absorptivity of the studied materials on the maximum theoretical power conversion efficiency is studied. Our results show that Cu2II-GeSe4 with II = Cd and Hg, and Cu2-II-SnS4 with II = Cd, Hg, and Zn have a higher theoretical efficiency compared with the materials currently used as absorber layer.

  12. Effect of Sn doping on nonlinear optical properties of quaternary Se-Sn-(Bi,Te) chalcogenide thin films

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2015-08-01

    The aim of this work is to report the effect of Sn doping on the third order nonlinear optical properties of chalcogenide Se84-xTe15Bi1.0Snx thin films. Melt quenching technique has been used for the preparation of bulk chalcogenide glasses. Thin films of the studied composition are deposited on cleaned glass substrate by thermal evaporation technique. Optical band gap (Eg) is calculated by using Tauc extrapolation method and is found to increase from 1.27 eV to 1.64 eV with the incorporation of Sn content. Stryland approach is utilized for the calculation of two photon absorption coefficient (β2). The nonlinear refractive index (n2) and third order susceptibility (χ(3) are calculated using Tichy and Ticha approach. The result shows that nonlinear refractive index (n2) follows the same trend as that of linear refractive index (n). The values of n2 of studied composition as compared to pure silica are 1000-5000 times higher.

  13. Experimental observation of incoherent-coherent crossover and orbital-dependent band renormalization in iron chalcogenide superconductors

    NASA Astrophysics Data System (ADS)

    Liu, Z. K.; Yi, M.; Zhang, Y.; Hu, J.; Yu, R.; Zhu, J.-X.; He, R.-H.; Chen, Y. L.; Hashimoto, M.; Moore, R. G.; Mo, S.-K.; Hussain, Z.; Si, Q.; Mao, Z. Q.; Lu, D. H.; Shen, Z.-X.

    2015-12-01

    The level of electronic correlation has been one of the key questions in understanding the nature of superconductivity. Among the iron-based superconductors, the iron chalcogenide family exhibits the strongest electron correlations. To gauge the correlation strength, we performed a systematic angle-resolved photoemission spectroscopy study on the iron chalcogenide series Fe1 +ySexTe1 -x (0

  14. The pressure induced B1-B2 phase transition of alkaline halides and alkaline earth chalcogenides. A first principles investigation

    SciTech Connect

    Potzel, Oliver; Taubmann, Gerhard

    2011-05-15

    In this work, we considered the pressure induced B1-B2 phase transition of AB compounds. The DFT calculations were carried out for 11 alkaline halides, 11 alkaline earth chalcogenides and the lanthanide pnictide CeP. For both the B1 and the B2 structures of each compound, the energy was calculated as a function of the cell volume. The transition pressure, the bulk moduli and their pressure derivatives were obtained from the corresponding equations of state. The transition path of the Buerger mechanism was described using roots of the transition matrix. We correlated the computed enthalpies of activation to some structure defining properties of the compounds. A fair correlation to Pearsons hardness of the ions was observed. -- Graphical abstract: Pressure induced transition from the B1 structure (left) via the transition state (middle) to the B2 structure (right). Display Omitted highlights: > Pressure induced phase transitions in AB compounds were considered. > Alkaline halides and alkaline earth chalcogenides were treated. > DFT calculations with periodic boundary conditions were applied. > The transition path was described by roots of the transition matrix. > The enthalpy of activation was calculated for numerous compounds.

  15. General Self-Template Synthesis of Transition-Metal Oxide and Chalcogenide Mesoporous Nanotubes with Enhanced Electrochemical Performances.

    PubMed

    Wang, Huan; Zhuo, Sifei; Liang, Yu; Han, Xiling; Zhang, Bin

    2016-07-25

    The development of a general strategy for synthesizing hierarchical porous transition-metal oxide and chalcogenide mesoporous nanotubes, is still highly challenging. Herein we present a facile self-template strategy to synthesize Co3 O4 mesoporous nanotubes with outstanding performances in both the electrocatalytic oxygen-evolution reaction (OER) and Li-ion battery via the thermal-oxidation-induced transformation of cheap and easily-prepared Co-Asp(cobalt-aspartic acid) nanowires. The initially formed thin layers on the precursor surfaces, oxygen-induced outward diffusion of interior precursors, the gas release of organic oxidation, and subsequent Kirkendall effect are important for the appearance of the mesoporous nanotubes. This self-template strategy of low-cost precursors is found to be a versatile method to prepare other functional mesoporous nanotubes of transition-metal oxides and chalcogenides, such as NiO, NiCo2 O4 , Mn5 O8 , CoS2 and CoSe2 . PMID:27239778

  16. Hierarchical active factors to band gap and nonlinear optical response in Ag-containing quaternary-chalcogenide compounds

    NASA Astrophysics Data System (ADS)

    Huang, Jun-ben; Mamat, Mamatrishat; Pan, Shilie; Yang, Zhihua

    2016-07-01

    In this research work, Ag-containing quaternary-chalcogenide compounds KAg2TS4 (T=P, Sb) (I-II) and RbAg2SbS4 (III) have been studied by means of Density Functional Theory as potential IR nonlinear optical materials. The origin of wide band gap, different optical anisotropy and large SHG response is explained via a combination of density of states, electronic density difference and bond population analysis. It is indicated that the different covalent interaction behavior of P-S and Sb-S bonds dominates the band gap and birefringence. Specifically, the Ag-containing chalcogenide compound KAg2PS4 possesses wide band gap and SHG response comparable with that of AgGaS2. By exploring the origin of the band gap and NLO response for compounds KAg2TS4 (T=P, Sb), we found the determination factor to the properties is different, especially the roles of Ag-d orbitals and bonding behavior of P-S or Sb-S. Thus, the compounds KAg2TS4 (T=P, Sb) and RbAg2SbS4 can be used in infrared (IR) region.

  17. Surface modification of amorphous substrates by disulfide derivatives: A photo-assisted route to direct functionalization of chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Amalric, Julien; Marchand-Brynaert, Jacqueline

    2011-12-01

    A novel route for chalcogenide glass surface modification is disclosed. The formation of an organic monolayer from disulfide derivatives is studied on two different glasses of formula GexAsySez by water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR). The potential anchoring group is the disulfide functionality. Since thioctic acid derivatives absorb around 335 nm, an irradiation step is included, in order to favor S-S disruption. Three types of disulfide compounds are grafted onto small glass breaks for contact angle and XPS analyses. The results show effective changes of surface state. According to contact angle measurement, the deposited organic layer functionalized by a small polyethylene glycol chain leads to a more hydrophilic surface, long alkyl chain or a perfluorinated carbon chain leads to a more hydrophobic surface. XPS shows the presence at the surface of an organic layer with sulfur and ethylene oxide chains, or augmentation of organic carbons or fluorine and Csbnd F bonds. The photo-assisted grafting of the disulfides onto an ATR prism made of chalcogenide glass shows that this surface modification process does not affect infrared transparency, despite UV treatment, and accurate structural analysis can be performed.

  18. Effect of Sn doping on nonlinear optical properties of quaternary Se-Sn-(Bi,Te) chalcogenide thin films

    SciTech Connect

    Yadav, Preeti Sharma, Ambika

    2015-08-28

    The aim of this work is to report the effect of Sn doping on the third order nonlinear optical properties of chalcogenide Se{sub 84-x}Te{sub 15}Bi{sub 1.0}Sn{sub x} thin films. Melt quenching technique has been used for the preparation of bulk chalcogenide glasses. Thin films of the studied composition are deposited on cleaned glass substrate by thermal evaporation technique. Optical band gap (E{sub g}) is calculated by using Tauc extrapolation method and is found to increase from 1.27 eV to 1.64 eV with the incorporation of Sn content. Stryland approach is utilized for the calculation of two photon absorption coefficient (β{sub 2}). The nonlinear refractive index (n{sub 2}) and third order susceptibility (χ{sup (3}) are calculated using Tichy and Ticha approach. The result shows that nonlinear refractive index (n{sub 2}) follows the same trend as that of linear refractive index (n). The values of n{sub 2} of studied composition as compared to pure silica are 1000-5000 times higher.

  19. Interrupted chalcogenide-based zeolite-analogue semiconductor: atomically precise doping for tunable electro-/photoelectrochemical properties.

    PubMed

    Lin, Jian; Dong, Youzhen; Zhang, Qian; Hu, Dandan; Li, Na; Wang, Le; Liu, Yang; Wu, Tao

    2015-04-20

    Incorporation of semiconductor property into zeolite materials is a plausible approach to graft oxide zeolites with multifunctionality in which both electronic/optoelectronic functions and high porosity are integrated. However, creating such semiconductor zeolites, especially the ones with controllable function regulation still remains as a great synthetic challenge over the years. Hereby, we reported the first case of an interrupted chalcogenide-based zeolite-analog semiconductor with an entirely new boracite-related framework and specific sites at the interrupted section. The semiconducting nature and band structure of this open-framework n-type semiconductor material were characterized with solid-state UV/Vis diffuse reflectance spectroscopy and Mott-Schottky measurements. More importantly, the In-Se chalcogenide zeolite analog was for the first time explored as an effective electrocatalyst for the oxygen reduction reaction (ORR). The specific indium sites served as active centers and proved to be responsible for a superior ORR activity. Meanwhile, these specific sites could be precisely replaced by bismuth(III) ions, leading to facile manipulation in their electro-/photoelectrochemical properties. Such atomically precise doping successfully implemented at the semiconductor zeolite material with specifically interrupted sites presents a very promising route for accurately regulating electronic structure and photoelectrical properties of other open-framework semiconductor materials.

  20. Design and Growth of Novel Compounds for Radiation Sensors: Multinary Chalcogenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Su, Ching-Hua; Nagaradona, Teja; Arnold, Brad; Choa, Fow-Sen

    2016-01-01

    Increasing threats of radiological weapons have revitalized the researches for low cost large volume ?-ray and neutron ray sensors In the past few years we have designed and grown ternary and quaternary lead and thallium chalcogenides and lead selenoiodides for detectors to meet these challenges. These materials are congruent, can be tailored to enhance the parameters required for radiation sensors. In addition, this class of compounds can be grown by Bridgman method which promises for large volume productions. We have single crystals of several compounds from the melt including Tl3AsSe3, Tl3AsSe3-xSx, TlGaSe2, AgGaGe3Se8, AgxLi1-xAgGaGe3Se8 and PbTlI5-x Sex compounds. Experimental studies indicate that these have very low absorption coefficient, low defect density and can be fabricated in any shape and sizes. These crystals do not require post growth annealing and do not show any second phase precipitates when processed for electrode bonding and other fabrication steps. In this paper we report purification, growth and fabrication of large Tl3AsSe3 (TAS) crystals. We observed that TAS crystals grown by using further purification of as supplied high purity source materials followed by directionally solidified charge showed higher resistivity than previously reported values. TAS also showed constant value as the function of voltage. A low thermal gradient and high purity source material were used to reduce thermal stresses in large crystals. By improving the purification of the as supplied source materials very high quality thallium, selenium and arsenic was achieved for preparing stoichiometric Tl3AsSe3 compound. Low gradient (<20K/cm) and slow growth rate (1-2 cm/day) produced crystals with reduced stress. Crystals did not show any micro cracking during fabrication of crystals grown with high purity and at low thermal gradient. Since thallium is a major component and very sensitive to surface oxidation, removal of surface and bulk oxides is very important

  1. Electron-phonon coupling and structural phase transitions in early transition metal oxides and chalcogenides

    NASA Astrophysics Data System (ADS)

    Farley, Katie Elizabeth

    Pronounced nonlinear variation of electrical transport characteristics as a function of applied voltage, temperature, magnetic field, strain, or photo-excitation is usually underpinned by electronic instabilities that originate from the complex interplay of spin, orbital, and lattice degrees of freedom. This dissertation focuses on two canonical materials that show pronounced discontinuities in their temperature-dependent resistivity as a result of electron---phonon and electron---electron correlations: orthorhombic TaS3 and monoclinic VO2. Strong electron-phonon interactions in transition metal oxides and chalcogenides results in interesting structural and electronic phase transitions. The properties of the material can be changed drastically in response to external stimuli such as temperature, voltage, or light. Understanding the influence these interactions have on the electronic structure and ultimately transport characteristics is of utmost importance in order to take these materials from a fundamental aspect to prospective applications such as low-energy interconnects, steep-slope transistors, and synaptic neural networks. This dissertation describes synthetic routes to nanoscale TaS3 and VO2, develops mechanistic understanding of their electronic instabilities, and in the case of the latter system explores modulation of the electronic and structural phase transition via the incorporation of substitutional dopant atoms. We start in chapter 2 with a detailed study of the synthesis and electronic transport properties of TaS3, which undergoes a Peierls' distortion to form a charge density wave. Scaling this material down to the nanometer-sized regime allows for interrogation of single or discrete phase coherent domains. Using electrical transport and broad band noise measurements, the dynamics of pinning/depinning of the charge density wave is investigated. Chapter 3 provides a novel synthetic approach to produce high-edge-density MoS2 nanorods. MoS2 is a

  2. Chalcogenide glass mid-infrared on-chip sensor for chemical sensing

    NASA Astrophysics Data System (ADS)

    Lin, Hongtao

    Chemical sensing in the mid-infrared (mid-IR) has been considered to be significant for molecular detection for decades, but until recently has mostly relied on benchtop spectroscopic instruments like Fourier transform infrared spectrometers, etc. Recent strides in planar photonic integration envision compact, standalone "sensor-on-a-chip" devices for molecular analysis as a potentially disruptive technology as compared to their conventional bulky counterparts. However, the difficulty of achieving adequate sensitivity in integrated optical sensors is still a key barrier towards their practical application, limited by the weak interactions between photons and molecules over the short optical path length accessible on a chip. To solve the sensitivity challenge, a novel mid-IR photothermal spectroscopic sensing technique was proposed and theoretically examined. Through dramatically amplified photothermal effects in an optical nano-cavity doubly resonant at both mid-IR pump and near infrared probe wavelengths, a device design based on nested 1-D nanobeam photonic crystal cavities is numerically analyzed to demonstrate the technique's potential for single small gas molecule detection without the need for cryogenically cooled mid-IR photo-detectors. Furthermore, since silica becomes opaque at wavelengths beyond 3.5 microm, new material platforms and fabrication techniques are needed for mid-IR on-chip chemical sensors. Chalcogenide glasses (ChG), amorphous compounds containing S, Se and Te, are ideal material choices for mid-IR chemical sensors given their broad mid-IR transparency window, large photothermal figure-of-merit, amorphous structure and low processing temperature. A ChG lift-off process and a nano-fabrication technique using focused ion beam milling have been developed to fabricate mid-IR ChG resonators and photonic crystal waveguide cavities. ChG resonators on CaF2 substrate claimed a high quality factor around 4 x 105. Using these devices, we have also

  3. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    SciTech Connect

    Yao, Wenlong

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M2S + (0.1 Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga2S3 + 0.9 GeS2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M2S + (0.1Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na2S + B2S3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction

  4. Spin dynamics of complex oxides, bismuth-antimony alloys, and bismuth chalcogenides

    NASA Astrophysics Data System (ADS)

    Sahin, Cuneyt

    V, suggesting the potential for doping or voltage tuned spin Hall current. We have also calculated intrinsic spin Hall conductivities of bismuth selenide and bismuth telluride topological insulators from an effective tight-binding Hamiltonian including two nearest-neighbor interactions. We showed that both materials exhibit giant spin Hall conductivities calculated from the Kubo formula in linear response theory and the clean static limit. We conclude that bismuth-antimony alloys and bismuth chalcogenides are primary candidates for efficiently generating spin currents through the spin Hall effect.

  5. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.

    PubMed

    Kwon, Soon Gu; Hyeon, Taeghwan

    2008-12-01

    nanoparticles of copper and nickel using metal(II) acetylacetonates. Ni/Pd core/shell nanoparticles were synthesized by simply heating the reaction mixture composed of acetylacetonates of nickel and palladium. Using alternative chalcogen reagents, we synthesized uniform nanocrystals of various metal chalcogenides. Uniform nanocrystals of PbS, ZnS, CdS, and MnS were obtained by heating reaction mixtures composed of metal chlorides and sulfur dissolved in oleylamine. In the future, a detailed understanding of nanocrystal formation kinetics and synthetic chemistry will lead to the synthesis of uniform nanocrystals with controlled size, shape, and composition. In particular, the synthesis of uniform nanocrystals of doped materials, core/shell materials, and multicomponent materials is still a challenge. We expect that these uniformly sized nanocrystals will find important applications in areas including information technology, biomedicine, and energy/environmental technology. PMID:18681462

  6. Binary Stars in SBS Survey

    NASA Astrophysics Data System (ADS)

    Erastova, L. K.

    2016-06-01

    Thirty spectroscopic binary stars were found in the Second Byurakan Survey (SBS). They show composite spectra - WD(DA)+dM or dC (for example Liebert et al. 1994). They may have red color, if the radiation of the red star dominates, and blue one, if the blue star is brighter and have peculiar spectrum in our survey plate. We obtained slit spectra for most of such objects. But we often see the spectrum of one component, because our slit spectra did not cover all optical range. We examine by eye the slit spectra of all SBS stellar objects (˜700) in SDSS DR7, DR8 or DR9 independent on our observations. We confirmed or discovered the duplicity of 30 stars. Usually they are spectroscopic binaries, where one component is WD (DA) and the second one is a red star with or without emission. There also are other components combinations. Sometimes there are emission lines, probably, indicating variable ones.

  7. Desktop setup for binary holograms

    NASA Astrophysics Data System (ADS)

    Ginter, Olaf; Rothe, Hendrik

    1996-08-01

    Binary gratings as holograms itself or as photographic masking tools for further fabrication steps can fulfill a lot of applications. The commonly used semiconductor technologies for direct writing of high resolution structures are often too expensive. On the other hand computer plots at a reasonable price with photographic reduction do not meet the needs of precision e.g. for interferometric inspection. The lack of cheap and reliable instruments for direct writing in an appropriate resolution is still a problem in fabricating synthetic holograms. Using off-the-shelf components a direct writing plotter for binary patterns can be built at moderate costs. Typical design rules as well as experimental results are given and the final setup is introduced.

  8. Binary Inspiral in Quadratic Gravity

    NASA Astrophysics Data System (ADS)

    Yagi, Kent

    2015-01-01

    Quadratic gravity is a general class of quantum-gravity-inspired theories, where the Einstein-Hilbert action is extended through the addition of all terms quadratic in the curvature tensor coupled to a scalar field. In this article, we focus on the scalar Gauss- Bonnet (sGB) theory and consider the black hole binary inspiral in this theory. By applying the post-Newtonian (PN) formalism, we found that there is a scalar dipole radiation which leads to -1PN correction in the energy flux relative to gravitational radiation in general relativity. From the orbital decay rate of a low-mass X-ray binary A0600-20, we obtain the bound that is six orders of magnitude stronger than the current solar system bound. Furthermore, we show that the excess in the orbital decay rate of XTE J1118+480 can be explained by the scalar radiation in sGB theory.

  9. Close supermassive binary black holes.

    PubMed

    Gaskell, C Martin

    2010-01-01

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive black-hole binary (SMBB). The AGN J1536+0441 ( = SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that J1536+0441 is an example of line emission from a disk. If this is correct, the lack of clear optical spectral evidence for close SMBBs is significant, and argues either that the merging of close SMBBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted. PMID:20054358

  10. First Orbits for Five Binaries

    NASA Astrophysics Data System (ADS)

    Cvetković, Z.

    2008-10-01

    In this paper, new orbital elements are given for five binaries. For all of them—Washington Double Star (WDS) 00469+4339 = HDS 102, WDS 02186+4017 = EGG 2Aa, WDS 05542 - 2909 = FIN 382, WDS 06493- 0216 = FIN 322, and WDS 11495 - 4604 = FIN 366—the orbital elements are calculated for the first time. One of the five binaries, HDS 102, was discovered during the Hipparcos mission, whereas the remaining four were discovered between 1952 and 1965. All measured separations are less than 0farcs3 and most of the measures were done using the interferometric techniques. The orbital periods calculated are between 28 and 109 years. In addition to the orbital elements, the (O - C) residuals in θ and ρ, masses, dynamical parallaxes, absolute magnitudes, and ephemerides for the next five years are also given in this paper.

  11. Close supermassive binary black holes

    NASA Astrophysics Data System (ADS)

    Gaskell, C. Martin

    2010-01-01

    It has been proposed that when the peaks of the broad emission lines in active galactic nuclei (AGNs) are significantly blueshifted or redshifted from the systemic velocity of the host galaxy, this could be a consequence of orbital motion of a supermassive blackhole binary (SMB). The AGN J1536+0441 (=SDSS J153636.22+044127.0) has recently been proposed as an example of this phenomenon. It is proposed here instead that 1536+044 is an example of line emission from a disc. If this is correct, the lack of clear optical spectral evidence for close SMBs is significant and argues either that the merging of close SMBs is much faster than has generally been hitherto thought, or if the approach is slow, that when the separation of the binary is comparable to the size of the torus and broad-line region, the feeding of the black holes is disrupted.

  12. Cool Star Binaries with ALEXIS

    NASA Technical Reports Server (NTRS)

    Stern, Robert A.

    1998-01-01

    We proposed to search for high-temperature, flare-produced Fe XXIII line emission from active cool star binary systems using the ALEXIS all-sky survey. Previous X-ray transient searches with ARIEL V and HEAO-1, and subsequent shorter duration monitoring with the GINGA and EXOSAT satellites demonstrated that active binaries can produce large (EM approximately equals 10(exp 55-56/cu cm) X-ray flares lasting several hours or longer. Hot plasma from these flares at temperatures of 10(exp 7)K or more should produce Fe XXIII line emission at lambda = 132.8 A, very near the peak response of ALEXIS telescopes 1A and 2A. Our primary goals were to estimate flare frequency for the largest flares in the active binary systems, and, if the data permitted, to derive a distribution of flare energy vs. frequency for the sample as a whole. After a long delay due to the initial problems with the ALEXIS attitude control, the heroic efforts on the part of the ALEXIS satellite team enabled us to carry out this survey. However, the combination of the higher than expected and variable background in the ALEXIS detectors, and the lower throughput of the ALEXIS telescopes resulted in no convincing detections of large flares from the active binary systems. In addition, vignetting-corrected effective exposure times from the ALEXIS aspect solution were not available prior to the end of this contract; therefore, we were unable to convert upper limits measured in ALEXIS counts to the equivalent L(sub EUV).

  13. The Eclipsing Binary MY Cygni

    NASA Astrophysics Data System (ADS)

    Tucker, Rebecca; Sowell, J. R.; Williamon, R. M.

    2006-12-01

    Differential UBV photoelectric photometry for the eclipsing binary MY Cyg is presented. The Wilson-Devinney program is used to solve simultaneously the three light curves together with previously published radial velocities. We determine absolute dimensions and estimate the age of the system. We compute color indices for the two stars and estimate color excesses. A comparison is made with the previous solution found with the Russell-Merrill method.

  14. Binary stars in loose associations

    NASA Astrophysics Data System (ADS)

    Azulay, R.; Guirado, J. C.; Marcaide, J. M.; Martí-Vidal, I.

    2013-05-01

    Precise determinations of dynamical masses of pre-main-sequence (PMS) stars are necessary to calibrate PMS stellar evolutionary models, whose predictions are in disagreement with measurements for masses below 1.2 M_{⊙}. Binary stars in young, nearby loose associations (moving groups) are particularly good candidates, primarily because all members share a common age. Belonging to the AB Doradus moving group, we have observed the binary AB Dor Ba/Bb, 0.06" separation, with the Australian Long Baseline Array at 8.4 GHz. We have detected the two components Ba/Bb, which facilitates (i) a measurement of the relative orbital motion through subsequent radio maps, and (ii) an estimate of the orbital parameters, once combined the radio information with infrared relative astrometry. Our preliminary analysis shows that best-fit orbit corresponds to that with a period of 1.1 yr and semi major axis of 0.068". The sum of the masses AB Dor Ba/Bb is 0.3±0.1 M_{⊙}. The study of this binary, along with other stars of the same association, will constitute a benchmark for testing PMS models of low-mass stars.

  15. The Long-Period Binary Frequency of the M67 Blue Stragglers and Binary-Binary Collisions

    NASA Astrophysics Data System (ADS)

    Leonard, P. J. T.

    1993-12-01

    The old open cluster M67 contains a dozen blue stragglers (BSs), one of which is a short-period spectroscopic binary, and thus is likely the result of binary mass transfer. A clue to the origin of the other BSs may be the fact that (>_ ~ ) 50% of them appear to be members of long-period (>10(3) days) binary systems (Milone et al. 1991, ASP Conference Series, 13, 424). If the majority of the M67 BSs are due to the slow coalescence of isolated binaries (Mateo et al. 1990, AJ, 100, 469), then there are two possible explanations for their anomalously high long-period binary frequency: 1) the frequency of triple star systems in M67 was initially similar to the binary frequency, and the inner components of some of these triple systems have merged to form BSs, or 2) the typical massive star in the core of M67 has suffered an exchange interaction with a binary star. The former solution requires a triple frequency that is vastly higher than in any other stellar population, and thus appears unlikely. The latter requires a rate of interactions involving binary stars in M67 so high that at least some of the BSs in the cluster must be the result of physical stellar collisions during binary-binary interactions. Consequently, one cannot accept the slow binary coalescence scenario for the M67 BSs without accepting that at least some of the M67 BSs have been produced via physical stellar collisions. Of course, the high long-period binary frequency of the M67 BSs can be naturally accounted for by the collisional hypothesis, since the majority of the merged stars produced by binary-binary collisions are expected to possess such companions (Leonard & Fahlman 1991, AJ, 102, 994; Leonard & Linnell 1992, AJ, 103, 1928). The high binary frequency observed in M67 (e.g., Montgomery et al. 1993, AJ, 106, 181) makes binary-binary interactions inevitable, and thus the collisional hypothesis appears to be quite a realistic possibility.

  16. GALAXY ROTATION AND RAPID SUPERMASSIVE BINARY COALESCENCE

    SciTech Connect

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-09-10

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  17. Pulsed Accretion onto Eccentric and Circular Binaries

    NASA Astrophysics Data System (ADS)

    Muñoz, Diego J.; Lai, Dong

    2016-08-01

    We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ˜ 5 times the binary period P b, accretion onto an eccentric binary is predominantly modulated at the period ˜ 1{P}{{b}}. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10–20 times larger than its companion. This “symmetry breaking” between the stars, however, alternates over timescales of order 200P b and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the net accretion rates onto individual stars are the same, reaching a quasi-steady state with the circumbinary disk. These results have important implications for the accretion behavior of binary T Tauri stars and supermassive binary black holes.

  18. Pulsed Accretion onto Eccentric and Circular Binaries

    NASA Astrophysics Data System (ADS)

    Muñoz, Diego J.; Lai, Dong

    2016-08-01

    We present numerical simulations of circumbinary accretion onto eccentric and circular binaries using the moving-mesh code AREPO. This is the first set of simulations to tackle the problem of binary accretion using a finite-volume scheme on a freely moving mesh, which allows for accurate measurements of accretion onto individual stars for arbitrary binary eccentricity. While accretion onto a circular binary shows bursts with period of ˜ 5 times the binary period P b, accretion onto an eccentric binary is predominantly modulated at the period ˜ 1{P}{{b}}. For an equal-mass circular binary, the accretion rates onto individual stars are quite similar to each other, following the same variable pattern in time. By contrast, for eccentric binaries, one of the stars can accrete at a rate 10-20 times larger than its companion. This “symmetry breaking” between the stars, however, alternates over timescales of order 200P b and can be attributed to a slowly precessing, eccentric circumbinary disk. Over longer timescales, the net accretion rates onto individual stars are the same, reaching a quasi-steady state with the circumbinary disk. These results have important implications for the accretion behavior of binary T Tauri stars and supermassive binary black holes.

  19. Galaxy Rotation and Rapid Supermassive Binary Coalescence

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Khan, Fazeel Mahmood

    2015-09-01

    Galaxy mergers usher the supermassive black hole (SMBH) in each galaxy to the center of the potential, where they form an SMBH binary. The binary orbit shrinks by ejecting stars via three-body scattering, but ample work has shown that in spherical galaxy models, the binary separation stalls after ejecting all the stars in its loss cone—this is the well-known final parsec problem. However, it has been shown that SMBH binaries in non-spherical galactic nuclei harden at a nearly constant rate until reaching the gravitational wave regime. Here we use a suite of direct N-body simulations to follow SMBH binary evolution in both corotating and counterrotating flattened galaxy models. For N > 500 K, we find that the evolution of the SMBH binary is convergent and is independent of the particle number. Rotation in general increases the hardening rate of SMBH binaries even more effectively than galaxy geometry alone. SMBH binary hardening rates are similar for co- and counterrotating galaxies. In the corotating case, the center of mass of the SMBH binary settles into an orbit that is in corotation resonance with the background rotating model, and the coalescence time is roughly a few 100 Myr faster than a non-rotating flattened model. We find that counterrotation drives SMBHs to coalesce on a nearly radial orbit promptly after forming a hard binary. We discuss the implications for gravitational wave astronomy, hypervelocity star production, and the effect on the structure of the host galaxy.

  20. Young and Waltzing Binary Stars

    NASA Astrophysics Data System (ADS)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  1. Optical properties of alloys based on II-S and II-Te chalcogenides

    SciTech Connect

    Kirovskaya, I. A.; Nor, P. E. Nagibina, I. Yu.; Karpova, E. O.

    2015-03-15

    Spectroscopic studies of binary and multicomponent semiconductors of the CdS-CdTe, CdS-ZnTe, and ZnS-CdTe systems are performed. They result in confirmation of the formation of substitutional alloys in these systems (in addition to the results of X-ray diffractometry studies), and the chemical composition of the surface as well as the most important characteristic of semiconductors, theelectron work function, the frequencies of strongest luminescence (impurity and band-to band), the emission maxima, and the possibilities of predicting luminescence properties are determined. Recommendations concerning the use of fabricated materials of definite composition as phosphors are given.

  2. Evolution of binary stars in multiple-population globular clusters - II. Compact binaries

    NASA Astrophysics Data System (ADS)

    Hong, Jongsuk; Vesperini, Enrico; Sollima, Antonio; McMillan, Stephen L. W.; D'Antona, Franca; D'Ercole, Annibale

    2016-04-01

    We present the results of a survey of N-body simulations aimed at exploring the evolution of compact binaries in multiple-population globular clusters. We show that as a consequence of the initial differences in the structural properties of the first-generation (FG) and the second-generation (SG) populations and the effects of dynamical processes on binary stars, the SG binary fraction decreases more rapidly than that of the FG population. The difference between the FG and SG binary fraction is qualitatively similar to but quantitatively smaller than that found for wider binaries in our previous investigations. The evolution of the radial variation of the binary fraction is driven by the interplay between binary segregation, ionization and ejection. Ionization and ejection counteract in part the effects of mass segregation but for compact binaries the effects of segregation dominate and the inner binary fraction increases during the cluster evolution. We explore the variation of the difference between the FG and the SG binary fraction with the distance from the cluster centre and its dependence on the binary binding energy and cluster structural parameters. The difference between the binary fraction in the FG and the SG populations found in our simulations is consistent with the results of observational studies finding a smaller binary fraction in the SG population.

  3. New layered structures of cuprous chalcogenides as thin film solar cell materials: Cu2Te and Cu2Se.

    PubMed

    Nguyen, Manh Cuong; Choi, Jin-Ho; Zhao, Xin; Wang, Cai-Zhuang; Zhang, Zhenyu; Ho, Kai-Ming

    2013-10-18

    The stable crystal structures of two cuprous chalcogenides of Cu2X (X=Te or Se) are predicted using an adaptive genetic algorithm in combination with first-principles density functional theory calculations. Both systems are found to prefer a unique and previously unrecognized layered structure, with the total energies much lower than all structures proposed in the literature so far. The newly discovered structures are further shown to be dynamically and mechanically stable, and possess electronic properties consistent with existing experimental observations. In particular, their layered nature is expected to prevail over other structural forms at the interfaces of thin-film solar cells, and knowledge about the precise atomic structures of the interfaces is a prerequisite for achieving long-term stability and high efficiency of CdTe and Cu(In,Ga)Se2 solar cells.

  4. Influence of the selenium content on thermo-mechanical and optical properties of Ge-Ga-Sb-S chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Ye, Bin; Dai, Shixun; Wang, Rongping; Tao, Guangming; Zhang, Peiqing; Wang, Xunsi; Shen, Xiang

    2016-07-01

    A number of Ge17Ga4Sb10S69-xSex (x = 0, 15, 30, 45, 60, and 69) chalcogenide glasses have been synthesized by a melt-quenching method to investigate the effect of the Se content on thermo-mechanical and optical properties of these glasses. While it was found that the glass transition temperature (Tg) decreases from 261 to 174 °C with increasing Se contents, crystallization temperature (Tc) peak only be observed in glasses with Se content of x = 45. It was evident from the measurements of structural and physical properties that changes of the glass network bring an apparent impact on the glass properties. Also, the substitution of Se for S in Ge-Ga-Sb glasses can significantly improve the thermal stability against crystallization and broaden the infrared transmission region.

  5. Temperature and frequency dependence of AC conductivity of new quaternary Se-Te-Bi-Pb chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2016-05-01

    The aim of the present work is to study the temperature and frequency dependence of ac conductivity of new quaternary Se84-xTe15Bi1.0Pbx chalcogenide glasses. The Se84-xTe15Bi1.0Pbx (x = 2, 6) glassy alloys are prepared by using melt quenching technique. The temperature and frequency dependent behavior of ac conductivity σac(ω) has been carried out in the frequency range 42 Hz to 5 MHz and in the temperature range of 298-323 K below glass transition temperature. The behavior of ac conductivity is described in terms of the power law ωs. The obtained temperature dependence behavior of ac conductivity and frequency component (s) are explained by means of correlated barrier hopping model recommended by Elliot.

  6. Mid-IR supercontinuum generation beyond 7 μm using a silica-fluoride-chalcogenide fiber cascade

    NASA Astrophysics Data System (ADS)

    Petersen, Christian R.; Moselund, Peter M.; Petersen, Christian; Møller, Uffe; Bang, Ole

    2016-03-01

    We report on an experimental demonstration of mid-infrared cascaded supercontinuum generation in commercial silica, fluoride, and chalcogenide fibers as a potentially cheap and practical alternative to direct pumping schemes. A pump continuum up to 4.4 μm was generated in cascaded silica and fluoride fibers by an amplified 1.55 μm nanosecond diode laser. By pumping a commercial Ge10As22Se68 single-material photonic crystal fiber with 135.7 mW of the pump continuum from 3.5- 4.4 μm, we obtained a continuum up to 7.2 μm with a total output power after the collimating lens of 54.5 mW, and 3.7 mW above 4.5 μm.

  7. Surface topographic study of chalcogenide thin films of GexSb(As)₄₀-xS₅₀Te₁₀ glasses.

    PubMed

    Anastasescu, M; Gartner, M; Szekeres, A; Pamukchieva, V

    2014-04-01

    The surface topography and fractal properties of GexSb(As)40-xS50Te10 (x=10, 20, 27 at.%) films, evaporated onto glass substrates, have been studied by atomic force microscopic imaging at different scales. The surface of the chalcogenide films is smooth (<5 nm roughness), isotropic and having some particular differences in texture. All films are self-similar with Mean Fractal Dimension in the range of 2.25-2.63. The films with GexSb40-xS50Te10 composition are more uniform in terms of surface morphology (grains structure) than those with GexAs40-xS50Te10 composition for which the film surface exhibits a superimposed structure of large particles at x=10 and 20 at.%. PMID:24530358

  8. General principles of the synthesis of chalcogenides and pnictides in salt melts using a steady-state temperature gradient

    NASA Astrophysics Data System (ADS)

    Chareev, D. A.

    2016-05-01

    The possibilities of growing crystals of metals, alloys, chalcogenides, and pnictides in halide melts using a steady-state temperature gradient are analyzed. Halides of alkali metals and aluminum can be used as transport media. The choice is determined by the melting temperature of salt mixtures. A conducting contour can also be applied to increase transport efficiency. This technique of crystal growth is similar to the electrochemical method. To eliminate interference during migration, some elements can be isolated and forced to migrate through independent channels to the crystal formation region. The technique considered here makes it possible to grow crystals of necessary quality without special equipment; the small crystal sizes are sufficient for laboratory study.

  9. Magnetic structure of TlFeS{sup 2} and TlFeSe{sup 2} chalcogenides

    SciTech Connect

    Asgerov, E. B.; Dang, N. T.; Beskrovnyy, A. I.; Madadzada, A. I.; Ismayilov, D. I.; Mehdiyeva, R. N.; Jabarov, S. H.; Karimova, E. M.

    2015-07-15

    The crystal and magnetic structures of TlFeS{sup 2} and TlFeSe{sup 2} chalcogenides are studied by neutron diffraction in the temperature range 10–300 K. The investigated compounds feature monoclinic crystal symmetry with the C2/m space group. Antiferromagnetic ordering occurs in TlFeS{sup 2} and TlFeSe{sup 2} at the Néel temperature T{sup N} = 210(5) and 295(5) K, respectively. The temperature dependences of magnetic moments, Fe–Fe bond lengths, and unit-cell volume are established. The coefficients of thermal expansion for the paramagnetic and antiferromagnetic phases are calculated.

  10. Electron irradiation induced reduction of the permittivity in chalcogenide glass (As{sub 2}S{sub 3}) thin film

    SciTech Connect

    San-Roman-Alerigi, Damian P.; Zhang Yaping; Benslimane, Ahmed; Ng, Tien K.; Ooi, Boon S.; Anjum, Dalaver H.; Yang Xiaoming; Hedhili, Mohamed N.; Alsunaidi, Mohammad

    2013-01-28

    In this paper, we investigate the effect of electron beam irradiation on the dielectric properties of As{sub 2}S{sub 3} chalcogenide glass. By means of low-loss electron energy loss spectroscopy, we derive the permittivity function, its dispersive relation, and calculate the refractive index and absorption coefficients under the constant permeability approximation. The measured and calculated results show a heretofore unseen phenomenon: a reduction in the permittivity of {>=}40%. Consequently a reduction of the refractive index of 20%, hence, suggests a conspicuous change in the optical properties of the material under irradiation with a 300 keV electron beam. The plausible physical phenomena leading to these observations are discussed in terms of the homopolar and heteropolar bond dynamics under high energy absorption. The reported phenomena, exhibited by As{sub 2}S{sub 3}-thin film, can be crucial for the development of photonics integrated circuits using electron beam irradiation method.

  11. Fabrication of ultrafast laser written low-loss waveguides in flexible As₂S₃ chalcogenide glass tape.

    PubMed

    Lapointe, Jerome; Ledemi, Yannick; Loranger, Sébastien; Iezzi, Victor Lambin; Soares de Lima Filho, Elton; Parent, Francois; Morency, Steeve; Messaddeq, Younes; Kashyap, Raman

    2016-01-15

    As2S3 glass has a unique combination of optical properties, such as wide transparency in the infrared region and a high nonlinear coefficient. Recently, intense research has been conducted to improve photonic devices using thin materials. In this Letter, highly uniform rectangular single-index and 2 dB/m loss step-index optical tapes have been drawn by the crucible technique. Low-loss (<0.15  dB/cm) single-mode waveguides in chalcogenide glass tapes have been fabricated using femtosecond laser writing. Optical backscatter reflectometry has been used to study the origin of the optical losses. A detailed study of the laser writing process in thin glass is also presented to facilitate a repeatable waveguide inscription recipe. PMID:26766674

  12. Synthesis and properties of new CdSe-AgI-As{sub 2}Se{sub 3} chalcogenide glasses

    SciTech Connect

    Kassem, M.; Le Coq, D.; Fourmentin, M.; Hindle, F.; Bokova, M.; Cuisset, A.; Masselin, P.; Bychkov, E.

    2011-02-15

    Research highlights: {yields} Determination of the glass-forming region in the pseudo-ternary CdSe-AgI-As{sub 2}Se{sub 3} system. {yields} Characterization of macroscopic properties of the new CdSe-AgI-As{sub 2}Se{sub 3} glasses. {yields} Far infrared transmission of chalcogenide glasses. {yields} Characterization of the total conductivity of CdSe-AgI-As{sub 2}Se{sub 3} glasses. -- Abstract: The glass-forming region in the pseudo-ternary CdSe-AgI-As{sub 2}Se{sub 3} system was determined. Measurements including differential scanning calorimetry (DSC), density, and X-ray diffraction were performed. The effect resulting from the addition of CdSe or AgI has been highlighted by examining three series of different base glasses. The characteristic temperatures of the glass samples, including glass transition (T{sub g}), crystallisation (T{sub x}), and melting (T{sub m}) temperatures are reported and used to calculate their {Delta}T = T{sub x} - T{sub g} and their Hruby, H{sub r} = (T{sub x} - T{sub g})/(T{sub m} - T{sub x}), criteria. Evolution of the total electrical conductivity {sigma} and the room temperature conductivity {sigma}{sub 298} was also studied. The terahertz transparency domain in the 50-600 cm{sup -1} region was pointed for different chalcogenide glasses (ChGs) and the potential of the THz spectroscopy was suggested to obtain structural information on ChGs.

  13. High-precision measurements of the compressibility of chalcogenide glasses at a hydrostatic pressure up to 9 GPa

    NASA Astrophysics Data System (ADS)

    Brazhkin, V. V.; Bychkov, E.; Tsiok, O. B.

    2016-08-01

    The volumes of glassy germanium chalcogenides GeSe2, GeS2, Ge17Se83, and Ge8Se92 are precisely measured at a hydrostatic pressure up to 8.5 GPa. The stoichiometric GeSe2 and GeS2 glasses exhibit elastic behavior in the pressure range up to 3 GPa, and their bulk modulus decreases at pressures higher than 2-2.5 GPa. At higher pressures, inelastic relaxation processes begin and their intensity is proportional to the logarithm of time. The relaxation rate for the GeSe2 glasses has a pronounced maximum at 3.5-4.5 GPa, which indicates the existence of several parallel structural transformation mechanisms. The nonstoichiometric glasses exhibit a diffuse transformation and inelastic behavior at pressures above 1-2 GPa. The maximum relaxation rate in these glasses is significantly lower than that in the stoichiometric GeSe2 glasses. All glasses are characterized by the "loss of memory" of history: after relaxation at a fixed pressure, the further increase in the pressure returns the volume to the compression curve obtained without a stop for relaxation. After pressure release, the residual densification in the stoichiometric glasses is about 7% and that in the Ge17Se83 glasses is 1.5%. The volume of the Ge8Se92 glass returns to its initial value within the limits of experimental error. As the pressure decreases, the effective bulk moduli of the Ge17Se83 and Ge8Se92 glasses coincide with the moduli after isobaric relaxation at the stage of increasing pressure, and the bulk modulus of the stoichiometric GeSe2 glass upon decreasing pressure noticeably exceeds the bulk modulus after isobaric relaxation at the stage of increasing pressure. Along with the reported data, our results can be used to draw conclusions regarding the diffuse transformations in glassy germanium chalcogenides during compression.

  14. Aggregation Kinetics of Metal Chalcogenide Nanocrystals: Generation of Transparent CdSe(ZnS) Core(Shell) Gels

    SciTech Connect

    Korala, Lasantha; Brock, Stephanie

    2012-08-16

    Transparent CdSe (ZnS) core (shell) sol–gel materials have potential uses in optoelectronic applications such as light-emitting diodes (LEDs) due to their strong luminescence properties and the potential for charge transport through the prewired nanocrystal (NC) network of the gel. However, typical syntheses of metal chalcogenide gels yield materials with poor transparency. In this work, the mechanism and kinetics of aggregation of two sizes of CdSe (ZnS) core (shell) NCs, initiated by removal of surface thiolate ligands using tetranitromethane (TNM) as an oxidant, were studied by means of time-resolved dynamic light scattering (TRDLS); the characteristics of the resultant gels were probed by optical absorption, transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). At low concentrations of NCs (ca. 4 × 10{sup –7} M), the smaller, green-emitting NCs aggregate faster than the larger, orange-emitting NCs, for a specific oxidant concentration. The kinetics of aggregation have a significant impact on the macroscopic properties (i.e., transparency) of the resultant gels, with the transparency of the gels decreasing with the increase of oxidant concentration due the formation of larger clusters at the gel point and a shift away from a reaction-limited cluster-aggregation (RLCA) mechanism. This is further confirmed by analyses of the gel structures by SAXS and TEM. Likewise, the larger orange-emitting particles also produce larger aggregates at the gel point, leading to lower transparency. The ability to control the transparency of chalcogenide gels will enable their properties to be tuned in order to address application-specific needs in optoelectronics.

  15. A spectrum synthesis program for binary stars

    NASA Technical Reports Server (NTRS)

    Linnell, Albert P.; Hubeny, Ivan

    1994-01-01

    A new program produces synthetic spectra of binary stars at arbitrary values of orbital longitude, including longitudes of partial or complete eclipse. The stellar components may be distorted, either tidally or rotationally, or both. Either or both components may be rotating nonsynchronously. We illustrate the program performance with two cases: EE Peg, an eclipsing binary with small distortion, and SX Aur, an eclipsing binary that is close to contact.

  16. Microlensing Signature of Binary Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Sahu, Kailash; Littenberg, Tyson

    2012-01-01

    We calculate the light curves of galactic bulge stars magnified via microlensing by stellar-mass binary black holes along the line-of-sight. We show the sensitivity to measuring various lens parameters for a range of survey cadences and photometric precision. Using public data from the OGLE collaboration, we identify two candidates for massive binary systems, and discuss implications for theories of star formation and binary evolution.

  17. Close binary stars in globular clusters

    NASA Technical Reports Server (NTRS)

    Margon, Bruce

    1991-01-01

    Although close binary stars are thought theoretically to play a major role in globular cluster dynamics, virtually no non-degenerate close binaries are known in clusters. We review the status of observations in this area, and report on two new programs which are finally yielding candidate systems suitable for further study. One of the objects, a close eclipsing system in omega Cen, is also a big straggler, thus finally proving firm evidence that globular cluster blue stragglers really are binary stars.

  18. Detecting Near-Extremal Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Hemberger, Daniel

    2014-03-01

    There is an ongoing effort in the gravitational wave astronomy community to construct a template bank for Advanced LIGO that includes gravitational waveforms from binary black hole systems with high mass ratios and spins. Using numerical relativity simulations performed with the Spectral Einstein Code, we assess the prospects for detection and parameter estimation of binaries with spins above the expected template bank cutoff spin. This analysis is restricted to equal-mass, non-precessing binaries.

  19. Survival of planets around shrinking stellar binaries

    NASA Astrophysics Data System (ADS)

    Munoz, Diego Jose; Lai, Dong

    2015-12-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 days, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. We present new results (PNAS 112, 30, p 9264) on the orbital evolution of planets around binaries undergoing orbital decay by this "LK+tide" mechanism. From secular and N-body calculations, we show how planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Either outcome can explain these planets' elusiveness to detection. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer specific predictions as to what their orbital configurations should be like.

  20. Survival of planets around shrinking stellar binaries.

    PubMed

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412

  1. Survival of planets around shrinking stellar binaries

    PubMed Central

    Muñoz, Diego J.; Lai, Dong

    2015-01-01

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov–Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like. PMID:26159412

  2. Survival of planets around shrinking stellar binaries.

    PubMed

    Muñoz, Diego J; Lai, Dong

    2015-07-28

    The discovery of transiting circumbinary planets by the Kepler mission suggests that planets can form efficiently around binary stars. None of the stellar binaries currently known to host planets has a period shorter than 7 d, despite the large number of eclipsing binaries found in the Kepler target list with periods shorter than a few days. These compact binaries are believed to have evolved from wider orbits into their current configurations via the so-called Lidov-Kozai migration mechanism, in which gravitational perturbations from a distant tertiary companion induce large-amplitude eccentricity oscillations in the binary, followed by orbital decay and circularization due to tidal dissipation in the stars. Here we explore the orbital evolution of planets around binaries undergoing orbital decay by this mechanism. We show that planets may survive and become misaligned from their host binary, or may develop erratic behavior in eccentricity, resulting in their consumption by the stars or ejection from the system as the binary decays. Our results suggest that circumbinary planets around compact binaries could still exist, and we offer predictions as to what their orbital configurations should be like.

  3. Young and Waltzing Binary Stars

    NASA Astrophysics Data System (ADS)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  4. Tomographic reconstruction of binary fields

    NASA Astrophysics Data System (ADS)

    Roux, Stéphane; Leclerc, Hugo; Hild, François

    2012-09-01

    A novel algorithm is proposed for reconstructing binary images from their projection along a set of different orientations. Based on a nonlinear transformation of the projection data, classical back-projection procedures can be used iteratively to converge to the sought image. A multiscale implementation allows for a faster convergence. The algorithm is tested on images up to 1 Mb definition, and an error free reconstruction is achieved with a very limited number of projection data, saving a factor of about 100 on the number of projections required for classical reconstruction algorithms.

  5. Transport theory beyond binary collisions

    SciTech Connect

    Carrington, Margaret E.; Mrowczynski, Stanislaw

    2005-03-15

    Using the Schwinger-Keldysh technique, we derive the transport equations for a system of quantum scalar fields. We first discuss the general structure of the equations and then their collision terms. Taking into account up to three-loop diagrams in {phi}{sup 3} model and up to four-loop diagrams in {phi}{sup 4} model, we obtain transport equations which include the contributions of multiparticle collisions and particle production processes, in addition to mean-field effects and binary interactions.

  6. Massive Stars in Interactive Binaries

    NASA Astrophysics Data System (ADS)

    St.-Louis, Nicole; Moffat, Anthony F. J.

    Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when

  7. Universal behavior of chalcogenides of rare-earth metals in the transition to a state with intermediate valence at high pressures

    SciTech Connect

    Tsiok, O. B.; Khvostantsev, L. G.; Brazhkin, V. V.

    2015-06-15

    Precision measurements of resistivity, thermopower, and volume are performed for TmS, TmSe, and TmTe under a hydrostatic pressure up to 8 GPa. Comparison of the transport properties and volume of TmTe and SmTe in the valence transition region demonstrates a complete analogy up to quantitative coincidence. It is shown that the thermopower of all thulium and samarium chalcogenides in the lattice collapse region and in subsequent rearrangement of the electron spectrum in a wide range of pressures follow a universal dependence corresponding the passage of the Fermi level through the peak of the density of states (DOS). The results are considered in the context of ideas about the exciton nature of the intermediate valence in chalcogenides of rare-earth metals.

  8. Precursor directed synthesis - ``molecular'' mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures

    NASA Astrophysics Data System (ADS)

    Seisenbaeva, Gulaim A.; Kessler, Vadim G.

    2014-05-01

    This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials. To Professor David Avnir on his 65th birthday.

  9. R144: a very massive binary likely ejected from R136 through a binary-binary encounter

    NASA Astrophysics Data System (ADS)

    Oh, Seungkyung; Kroupa, Pavel; Banerjee, Sambaran

    2014-02-01

    R144 is a recently confirmed very massive, spectroscopic binary which appears isolated from the core of the massive young star cluster R136. The dynamical ejection hypothesis as an origin for its location is claimed improbable by Sana et al. due to its binary nature and high mass. We demonstrate here by means of direct N-body calculations that a very massive binary system can be readily dynamically ejected from an R136-like cluster, through a close encounter with a very massive system. One out of four N-body cluster models produces a dynamically ejected very massive binary system with a mass comparable to R144. The system has a system mass of ≈355 M⊙ and is located at 36.8 pc from the centre of its parent cluster, moving away from the cluster with a velocity of 57 km s-1 at 2 Myr as a result of a binary-binary interaction. This implies that R144 could have been ejected from R136 through a strong encounter with another massive binary or single star. In addition, we discuss all massive binaries and single stars which are ejected dynamically from their parent cluster in the N-body models.

  10. Interacting jets from binary protostars

    NASA Astrophysics Data System (ADS)

    Murphy, G. C.; Lery, T.; O'Sullivan, S.; Spicer, D.; Bacciotti, F.; Rosen, A.

    2008-02-01

    Aims: We investigate potential models that could explain why multiple proto-stellar systems predominantly show single jets. During their formation, stars most frequently produce energetic outflows and jets. However, binary jets have only been observed in a very small number of systems. Methods: We model numerically 3D binary jets for various outflow parameters. We also model the propagation of jets from a specific source, namely L1551 IRS 5, known to have two jets, using recent observations as constraints for simulations with a new MHD code. We examine their morphology and dynamics, and produce synthetic emission maps. Results: We find that the two jets interfere up to the stage where one of them is almost destroyed or engulfed into the second one. We are able to reproduce some of the observational features of L1551 such as the bending of the secondary jet. Conclusions: While the effects of orbital motion are negligible over the jets dynamical timeline, their interaction has significant impact on their morphology. If the jets are not strictly parallel, as in most observed cases, we show that the magnetic field can help the collimation and refocusing of both of the two jets.

  11. Odour suppression in binary mixtures.

    PubMed

    Cashion, Larry; Livermore, Andrew; Hummel, Thomas

    2006-10-01

    It has been suggested that odours causing stronger trigeminal activation suppress weaker trigeminal stimuli and that mixed olfactory-trigeminal stimuli suppress odorants that only activate one of these systems. Volunteer normosmic participants (n=20) were exposed to six odorants with varying trigeminal impact to test the hypothesis that more intense "trigeminal" odorants would suppress weaker trigeminal stimuli in binary odour mixtures. It was also hypothesised that stronger trigeminal odorants would dominate six-odour mixtures. The predicted linear pattern of suppression was not seen, with a quadratic model emerging from the data. Stronger trigeminal stimuli failed to dominate six-odour mixtures. Despite the fact that the major hypothesis was not supported, it can be hypothesised from this experiment that the effect of suppression in binary mixtures is reliant upon two major effects: (1) the association formed between odours and the multiple memory systems that they interact with during the encoding and recognition processes, and (2) the balance between activation of the olfactory and trigeminal systems.

  12. Mutual Orbits of Transneptunian Binaries

    NASA Astrophysics Data System (ADS)

    Grundy, William M.; Noll, K. S.; Roe, H. G.; Porter, S. B.; Trujillo, C. A.; Benecchi, S. D.; Buie, M. W.

    2012-10-01

    We report the latest results from a program of high spatial resolution imaging to resolve the individual components of binary transneptunian objects. These observations use Hubble Space Telescope and also laser guide star adaptive optics systems on Keck and Gemini telescopes on Mauna Kea. From relative astrometry over multiple epochs, we determine the mutual orbits of the components, and thus the total masses of the systems. Accurate masses anchor subsequent detailed investigations into the physical characteristics of these systems. For instance, dynamical masses enable computation of bulk densities for systems where the component sizes can be estimated from other measurements. Additionally, patterns in the ensemble characteristics of binary orbits offer clues to circumstances in the protoplanetary nebula when these systems formed, as well as carrying imprints of various subsequent dynamical evolution processes. The growing ensemble of known orbits shows intriguing patterns that can shed light on the evolution of this population of distant objects. This work has been supported by an NSF Planetary Astronomy grant and by several Hubble Space Telescope and NASA Keck data analysis grants. The research makes use of data from the Gemini Observatory obtained through NOAO survey program 11A-0017, from a large number of Hubble Space Telescope programs, and from several NASA Keck programs.

  13. Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED

    SciTech Connect

    Bose, Ranojoy; Gao, Feng; McMillan, James F.; Williams, Alex D.; Wong, Chee Wei

    2009-01-01

    We present evidence of cavity quantum electrodynamics from a sparse density of strongly quantum-confined Pb-chalcogenide nanocrystals (between 1 and 10) approaching single-dot levels on moderately high-Q mesoscopic silicon optical cavities. Operating at important near-infrared (1500-nm) wavelengths, large enhancements are observed from devices and strong modifications of the QD emission are achieved. Saturation spectroscopy of coupled QDs is observed at 77K, highlighting the modified nanocrystal dynamics for quantum information processing.

  14. Mid-IR gain media based on transition metal-doped II-VI chalcogenides

    NASA Astrophysics Data System (ADS)

    Mirov, S. B.; Fedorov, V. V.; Martyshkin, D. V.; Moskalev, I. S.; Mirov, M. S.; Gafarov, O.; Martinez, A.; Peppers, J.; Smolski, V.; Vasilyev, S.; Gapontsev, V.

    2016-02-01

    Progress in fabrication and mid-IR lasing of Cr and Fe thermal-diffusion and radiation enhanced thermal diffusion doped II-VI binary and ternary polycrystals is reported. We demonstrate novel design of mid-IR Fe:ZnSe and Cr:ZnSe/S solid state lasers with significant improvement of output average power up to 35W@4.1 μm and 57W@2.5 μm and 20W@2.94 μm. We report significantly improved output characteristics of polycrystalline Cr:ZnS/Se lasers in gain-switched regime: 16 mJ at 200 Hz, pulse duration 5 ns with tunability over 2400-3000 nm as well as Kerr-Lens-Mode-Locked regime in terms of average power (up to 2 W), peak power and pulse energy (0.5 MW and 24 nJ, respectively), and pulse duration (less than 29 fs).

  15. Fill-in binary loop pulse-torque quantizer

    NASA Technical Reports Server (NTRS)

    Lory, C. B.

    1975-01-01

    Fill-in binary (FIB) loop provides constant heating of torque generator, an advantage of binary current switching. At the same time, it avoids mode-related dead zone and data delay of binary, an advantage of ternary quantization.

  16. Fabricating binary optics: An overview of binary optics process technology

    NASA Technical Reports Server (NTRS)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  17. Gravitational radiation, inspiraling binaries, and cosmology

    NASA Technical Reports Server (NTRS)

    Chernoff, David F.; Finn, Lee S.

    1993-01-01

    We show how to measure cosmological parameters using observations of inspiraling binary neutron star or black hole systems in one or more gravitational wave detectors. To illustrate, we focus on the case of fixed mass binary systems observed in a single Laser Interferometer Gravitational-wave Observatory (LIGO)-like detector. Using realistic detector noise estimates, we characterize the rate of detections as a function of a threshold SNR Rho(0), H0, and the binary 'chirp' mass. For Rho(0) = 8, H0 = 100 km/s/Mpc, and 1.4 solar mass neutron star binaries, the sample has a median redshift of 0.22. Under the same assumptions but independent of H0, a conservative rate density of coalescing binaries implies LIGO will observe about 50/yr binary inspiral events. The precision with which H0 and the deceleration parameter q0 may be determined depends on the number of observed inspirals. For fixed mass binary systems, about 100 observations with Rho(0) = 10 in the LIGO will give H0 to 10 percent in an Einstein-DeSitter cosmology, and 3000 will give q0 to 20 percent. For the conservative rate density of coalescing binaries, 100 detections with Rho(0) = 10 will require about 4 yrs.

  18. An Acidity Scale for Binary Oxides.

    ERIC Educational Resources Information Center

    Smith, Derek W.

    1987-01-01

    Discusses the classification of binary oxides as acidic, basic, or amphoteric. Demonstrates how a numerical scale for acidity/basicity of binary oxides can be constructed using thermochemical data for oxoacid salts. Presents the calculations derived from the data that provide the numeric scale values. (TW)

  19. ECCENTRIC EVOLUTION OF SUPERMASSIVE BLACK HOLE BINARIES

    SciTech Connect

    Iwasawa, Masaki; An, Sangyong; Matsubayashi, Tatsushi; Funato, Yoko; Makino, Junichiro

    2011-04-10

    In recent numerical simulations, it has been found that the eccentricity of supermassive black hole (SMBH)-intermediate black hole (IMBH) binaries grows toward unity through interactions with the stellar background. This increase of eccentricity reduces the merging timescale of the binary through the gravitational radiation to a value well below the Hubble time. It also gives a theoretical explanation of the existence of eccentric binaries such as that in OJ287. In self-consistent N-body simulations, this increase of eccentricity is always observed. On the other hand, the result of the scattering experiment between SMBH binaries and field stars indicated that the eccentricity dose not change significantly. This discrepancy leaves the high eccentricity of the SMBH binaries in N-body simulations unexplained. Here, we present a stellar-dynamical mechanism that drives the increase of the eccentricity of an SMBH binary with a large mass ratio. There are two key processes involved. The first one is the Kozai mechanism under a non-axisymmetric potential, which effectively randomizes the angular momenta of surrounding stars. The other is the selective ejection of stars with prograde orbits. Through these two mechanisms, field stars extract the orbital angular momentum of the SMBH binary. Our proposed mechanism causes the increase in the eccentricity of most of SMBH binaries, resulting in the rapid merger through gravitational wave radiation. Our result has given a definite solution to the 'last-parsec problem'.

  20. The evolution of close binary stars

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.; Cherepashchuk, A. M.

    2016-05-01

    A review of our current understanding of the physics and evolution of close binary stars with various masses under the influence of the nuclear evolution of their components and their magnetic stellar winds is presented. The role of gravitational-wave radiation by close binaries on their evolution and the loss of their orbital angular momentum is also considered. The final stages in the evolution of close binary systems are described. The review also notes the main remaining tasks related to studies of the physics and evolution of various classes of close binaries, including analyses of collisions of close binaries and supermassive black holes in galactic nuclei. Such a collision could lead to the capture of one of the components by the black hole and the acceleration of the remaining component to relativistic speeds.

  1. Asteroid Systems: Binaries, Triples, and Pairs

    NASA Astrophysics Data System (ADS)

    Margot, J.-L.; Pravec, P.; Taylor, P.; Carry, B.; Jacobson, S.

    In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main-belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main-belt binaries have been identified. The current observational evidence confirms that small (≲20 km) binaries form by rotational fission and establishes that the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect powers the spin-up process. A unifying paradigm based on rotational fission and post-fission dynamics can explain the formation of small binaries, triples, and pairs. Large (>~20 km) binaries with small satellites are most likely created during large collisions.

  2. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, J. J.; Quintana, E. V.; Adams, F. C.; Chambers, J. E.

    2006-01-01

    Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around one or both components of various young close binary star systems. If planets form at the right places within such disks, they can remain dynamically stable for very long times. We have simulated the late stages of growth of terrestrial planets in both circumbinary disks around 'close' binary star systems with stellar separations ($a_B$) in the range 0.05 AU $\\le a_B \\le$ 0.4 AU and binary eccentricities in the range $0 \\le e \\le 0.8$ and circumstellar disks around individual stars with binary separations of tens of AU. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet growth within our Solar System and around individual stars in the Alpha Centauri system (Quintana et al. 2002, A.J., 576, 982); giant planets analogous to Jupiter and Saturn are included if their orbits are stable. The planetary systems formed around close binaries with stellar apastron distances less than or equal to 0.2 AU with small stellar eccentricities are very similar to those formed in the Sun-Jupiter-Saturn, whereas planetary systems formed around binaries with larger maximum separations tend to be sparser, with fewer planets, especially interior to 1 AU. Likewise, when the binary periastron exceeds 10 AU, terrestrial planets can form over essentially the entire range of orbits allowed for single stars with Jupiter-like planets, although fewer terrestrial planets tend to form within high eccentricity binary systems. As the binary periastron decreases, the radial extent of the terrestrial planet systems is reduced accordingly. When the periastron is 5 AU, the formation of Earth-like planets near 1 AU is compromised.

  3. Superior thermoelectric performance in PbTe-PbS pseudo-binary. Extremely low thermal conductivity and modulated carrier concentration

    DOE PAGESBeta

    Wu, D.; Zhao, L. -D.; Tong, X.; Li, W.; Wu, L.; Tan, Q.; Pei, Y.; Huang, L.; Li, J. -F.; Zhu, Y.; et al

    2015-05-19

    Lead chalcogenides have exhibited their irreplaceable role as thermoelectric materials at the medium temperature range, owing to highly degenerate electronic bands and intrinsically low thermal conductivities. PbTe-PbS pseudo-binary has been paid extensive attentions due to the even lower thermal conductivity which originates largely from the coexistence of both alloying and phase-separated precipitations. To investigate the competition between alloying and phase separation and its pronounced effect on the thermoelectric performance in PbTe-PbS, we systematically studied Spark Plasma Sintered (SPSed), 3 at% Na- doped (PbTe)1-x(PbS)x samples with x=10%, 15%, 20%, 25%, 30% and 35% by means of transmission electron microscopy (TEM) observationsmore » and theoretical calculations. Corresponding to the lowest lattice thermal conductivity as a result of the balance between point defect- and precipitates- scattering, the highest figure of merit ZT~2.3 was obtained at 923 K when PbS phase fraction x is at 20%. The consistently lower lattice thermal conductivities in SPSed samples compared with corresponding ingots, resulting from the powdering and follow-up consolidation processes, also contribute to the observed superior ZT. Notably, the onset of carrier concentration modulation ~600 K due to excessive Na’s diffusion and re-dissolution leads to the observed saturations of electrical transport properties, which is believed equally crucial to the outstanding thermoelectric performance of SPSed PbTe-PbS samples.« less

  4. Superior thermoelectric performance in PbTe-PbS pseudo-binary. Extremely low thermal conductivity and modulated carrier concentration

    SciTech Connect

    Wu, D.; Zhao, L. -D.; Tong, X.; Li, W.; Wu, L.; Tan, Q.; Pei, Y.; Huang, L.; Li, J. -F.; Zhu, Y.; Kanatzidis, M. G.; He, J.

    2015-05-19

    Lead chalcogenides have exhibited their irreplaceable role as thermoelectric materials at the medium temperature range, owing to highly degenerate electronic bands and intrinsically low thermal conductivities. PbTe-PbS pseudo-binary has been paid extensive attentions due to the even lower thermal conductivity which originates largely from the coexistence of both alloying and phase-separated precipitations. To investigate the competition between alloying and phase separation and its pronounced effect on the thermoelectric performance in PbTe-PbS, we systematically studied Spark Plasma Sintered (SPSed), 3 at% Na- doped (PbTe)1-x(PbS)x samples with x=10%, 15%, 20%, 25%, 30% and 35% by means of transmission electron microscopy (TEM) observations and theoretical calculations. Corresponding to the lowest lattice thermal conductivity as a result of the balance between point defect- and precipitates- scattering, the highest figure of merit ZT~2.3 was obtained at 923 K when PbS phase fraction x is at 20%. The consistently lower lattice thermal conductivities in SPSed samples compared with corresponding ingots, resulting from the powdering and follow-up consolidation processes, also contribute to the observed superior ZT. Notably, the onset of carrier concentration modulation ~600 K due to excessive Na’s diffusion and re-dissolution leads to the observed saturations of electrical transport properties, which is believed equally crucial to the outstanding thermoelectric performance of SPSed PbTe-PbS samples.

  5. Record-Breaking Eclipsing Binary

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-05-01

    A new record holder exists for the longest-period eclipsing binary star system: TYC-2505-672-1. This intriguing system contains a primary star that is eclipsed by its companion once every 69 years with each eclipse lasting several years!120 Years of ObservationsIn a recent study, a team of scientists led by Joseph Rodriguez (Vanderbilt University) characterizes the components of TYC-2505-672-1. This binary star system consists of an M-type red giant star that undergoes a ~3.45-year-long, near-total eclipse with a period of ~69.1 years. This period is more than double that of the previous longest-period eclipsing binary!Rodriguez and collaborators combined photometric observations of TYC-2505-672-1 by the Kilodegree Extremely Little Telescope (KELT) with a variety of archival data, including observations by the American Association of Variable Star Observers (AAVSO) network and historical data from the Digital Access to a Sky Century @ Harvard (DASCH) program.In the 120 years spanned by these observations, two eclipses are detected: one in 1942-1945 and one in 2011-2015. The authors use the observations to analyze the components of the system and attempt to better understand what causes its unusual light curve.Characterizing an Unusual SystemObservations of TYC-2505-672-1 plotted from 1890 to 2015 reveal two eclipses. (The blue KELT observations during the eclipse show upper limits only.) [Rodriguez et al. 2016]By modeling the systems emission, Rodriguez and collaborators establish that TYC-2505-672-1 consists of a 3600-K primary star thats the M giant orbited by a small, hot, dim companion thats a toasty 8000 K. But if the companion is small, why does the eclipse last several years?The authors argue that the best model of TYC-2505-672-1 is one in which the small companion star is surrounded by a large, opaque circumstellar disk. Rodriguez and collaborators suggest that the companion could be a former red giant whose atmosphere was stripped from it, leaving behind

  6. Binary Systems Within Star Clusters

    NASA Astrophysics Data System (ADS)

    Paunzen, Ernst; Stütz, Christian; Baumann, Bernhard

    2012-04-01

    WEBDA (http://www.univie.ac.at/webda) is a site devoted to observational data of stellar clusters in the Milky Way and the Small Magellanic Cloud. It is intended to provide a reliable presentation of the available data and knowledge about these objects. The success of WEBDA is documented by its worldwide usage and the related acknowledgements in the literature: more than 650 refereed publications within the last twelve years acknowledged its use. It collects all published data for stars in open clusters that may be useful either to determine membership, or to study the stellar content and properties of the clusters. The database content includes astrometric data in the form of coordinates, rectangular positions, and proper motions, photometric data in the major systems in which star clusters have been observed, but also spectroscopic data like spectral classification, radial velocities, and rotational velocities. It also contains miscellaneous types of supplementary data like membership probabilities, orbital elements of spectroscopic binaries, and periods for different kinds of variable stars as well as an extensive bibliography. Several powerful tools help to plot, query and extract the data, which can be directly retrieved via http. At the time of writing, about four million individual measurements have been included in the database. The Star Clusters Young & Old Newsletter (SCYON), a bi-monthly newsletter devoted to star cluster research with about 600 subscribers, is hosted in parallel with the database. We present the current and upcoming new interface and tools, which are needed to visualize and analyze the increasing amount of data from all-sky surveys, and deeper investigations of binary systems, low mass dwarfs, as well as planet-hosting stars.

  7. How metallic is the binding state of indium hosted by excess-metal chalcogenides in ore deposits?

    NASA Astrophysics Data System (ADS)

    Ondina Figueiredo, Maria; Pena Silva, Teresa; Oliveira, Daniel; Rosa, Diogo

    2010-05-01

    Discovered in 1863, indium is nowadays a strategic scarce metal used both in classical technologic fields (like low melting-temperature alloys and solders) and in innovative nano-technologies to produce "high-tech devices" by means of new materials, namely liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and the recently introduced transparent flexible thin-films manufactured with ionic amorphous oxide semiconductors (IAOS). Indium is a typical chalcophile element, seldom forming specific minerals and occurring mainly dispersed within polymetallic sulphides, particularly with excess metal ions [1]. The average content of indium in the Earth's crust is very low but a further increase in its demand is still expected in the next years, thus focusing a special interest in uncovering new exploitation sites through promising polymetallic sulphide ores - e.g., the Iberian Pyrite Belt (IPB) [2] - and in improving recycling technologies. Indium recovery stands mostly on zinc extraction from sphalerite, the natural cubic sulphide which is the prototype of so-called "tetrahedral sulphides" where metal ions fill half of the available tetrahedral sites within the cubic closest packing of sulphur anions where the double of unfilled interstices are available for further in-filling. It is worth remarking that such packing array is particularly suitable for accommodating polymetallic cations by filling closely located interstitial sites [3] as happens in excess-metal tetrahedral sulphides - e.g. bornite, ideally Cu5FeS4, recognized as an In-carrying mineral [4]. Studying the tendency towards In-In interactions able of leading to the formation of polycations would efficiently contribute to understand indium crystal chemistry and the metal binding state in natural chalcogenides. Accordingly, an X-ray absorption near-edge spectroscopy (XANES) study at In L3-edge was undertaken using the instrumental set-up of ID21 beamline at the ESRF (European Synchrotron

  8. Stability of multiplanet systems in binaries

    NASA Astrophysics Data System (ADS)

    Marzari, F.; Gallina, G.

    2016-10-01

    Context. When exploring the stability of multiplanet systems in binaries, two parameters are normally exploited: the critical semimajor axis ac computed by Holman & Wiegert (1999, AJ, 117, 621) within which planets are stable against the binary perturbations, and the Hill stability limit Δ determining the minimum separation beyond which two planets will avoid mutual close encounters. Both these parameters are derived in different contexts, i.e. Δ is usually adopted for computing the stability limit of two planets around a single star while ac is computed for a single planet in a binary system. Aims: Our aim is to test whether these two parameters can be safely applied in multiplanet systems in binaries or if their predictions fail for particular binary orbital configurations. Methods: We have used the frequency map analysis (FMA) to measure the diffusion of orbits in the phase space as an indicator of chaotic behaviour. Results: First we revisited the reliability of the empirical formula computing ac in the case of single planets in binaries and we find that, in some cases, it underestimates by 10-20% the real outer limit of stability and it does not account for planets trapped in resonance with the companion star well beyond ac. For two-planet systems, the value of Δ is close to that computed for planets around single stars, but the level of chaoticity close to it substantially increases for smaller semimajor axes and higher eccentricities of the binary orbit. In these configurations ac also begins to be unreliable and non-linear secular resonances with the stellar companion lead to chaotic behaviour well within ac, even for single planet systems. For two planet systems, the superposition of mean motion resonances, either mutual or with the binary companion, and non-linear secular resonances may lead to chaotic behaviour in all cases. We have developed a parametric semi-empirical formula determining the minimum value of the binary semimajor axis, for a given

  9. BPASS predictions for binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Stanway, E. R.

    2016-11-01

    Using the Binary Population and Spectral Synthesis code, BPASS, we have calculated the rates, time-scales and mass distributions for binary black hole (BH) mergers as a function of metallicity. We consider these in the context of the recently reported first Laser Interferometer Gravitational-Wave Observatory (LIGO) event detection. We find that the event has a very low probability of arising from a stellar population with initial metallicity mass fraction above Z = 0.010 (Z ≳ 0.5 Z⊙). Binary BH merger events with the reported masses are most likely in populations below 0.008 (Z ≲ 0.4 Z⊙). Events of this kind can occur at all stellar population ages from 3 Myr up to the age of the Universe, but constitute only 0.1-0.4 per cent of binary BH mergers between metallicities of Z = 0.001 and 0.008. However at metallicity Z = 10-4, 26 per cent of binary BH mergers would be expected to have the reported masses. At this metallicity, the progenitor merger times can be close to ≈10 Gyr and rotationally mixed stars evolving through quasi-homogeneous evolution, due to mass transfer in a binary, dominate the rate. The masses inferred for the BHs in the binary progenitor of GW 150914 are amongst the most massive expected at anything but the lowest metallicities in our models. We discuss the implications of our analysis for the electromagnetic follow-up of future LIGO event detections.

  10. Terrestrial Planet Formation in Binary Star Systems

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Quintana, Elisa V.; Chambers, John; Duncan, Martin J.; Adams, Fred

    2003-01-01

    Most stars reside in multiple star systems; however, virtually all models of planetary growth have assumed an isolated single star. Numerical simulations of the collapse of molecular cloud cores to form binary stars suggest that disks will form within such systems. Observations indirectly suggest disk material around one or both components within young binary star systems. If planets form at the right places within such circumstellar disks, they can remain in stable orbits within the binary star systems for eons. We are simulating the late stages of growth of terrestrial planets within binary star systems, using a new, ultrafast, symplectic integrator that we have developed for this purpose. We show that the late stages of terrestrial planet formation can indeed take place in a wide variety of binary systems and we have begun to delineate the range of parameter space for which this statement is true. Results of our initial simulations of planetary growth around each star in the alpha Centauri system and other 'wide' binary systems, as well as around both stars in very close binary systems, will be presented.

  11. Encounters between binaries and neutron stars

    NASA Technical Reports Server (NTRS)

    Davies, M. B.; Benz, W.; Hills, J. G.

    1993-01-01

    We simulated encounters between a neutron star and primordial and tidal-capture binaries. In the case of encounters involving a tidal-capture binary, comprising a white dwarf and a main-sequence star, we find that most exchange encounters will produce a single merged object with the white dwarf and neutron star engulfed in a common envelope of gas donated by the main-sequence primary of the original binary. A small fraction of exchanges induce a merger of the white dwarf and main-sequence star, with this object being unbound to the neutron star, and the two objects having a large relative speed at infinity. For encounters involving a primordial binary, fewer encounters require the inclusion of hydrodynamical effects. Those involving collisions or close encounters tend to produce a binary comprised of the two merged stars (now forming one star) and the third star. The binaries produced typically have large enough separations to prevent the formation of a single merged object until subsequent stellar evolution of one of the components causes it to fill its Roche lobe. Clean exchanges produce binaries with large eccentricities; they are typically sufficiently wide to avoid circularization.

  12. Photometric Survey for Asynchronous Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Pravec, P.

    2005-05-01

    Asynchronous binary asteroids have been found to be abundant among fast- spinning near-Earth asteroids (NEAs) smaller than 2 km in diameter; Pravec et al. (2005, Icarus, submitted) derived that 15 +/- 4 % of NEAs in the size range 0.3 to 2 km are binary with the secondary-to-primary mean diameter ratio >=0.18. The early re-sults from the surveys of the Vesta family and the Hungaria group (Ryan et al., 2004, Planet. Space Sci. 42, 1093; 2004, Bull. Amer. Astron. Society 36, 1181; Warner et al., 2005, IAU Circ. 8511) suggest that the popula-tion extends beyond the region of terrestrial planets, but with characteristics shifted to larger sizes and longer periods; the four known binaries in the Vesta family/Hungaria group are 3 to 6 km large and they have primary rotation periods in a range of 3 to ~4 h, i.e., on the tail of the distribution of primary rotation periods of NEAs. The comparison suggests that formation and evolution mechanisms of asynchronous NEA and main-belt binaries may be similar and are related to their fast spins and rubble-pile structure. None of the current theories of their formation of evolution, however, explains the observed properties of both NEA and main- belt asynchronous bina-ries in full. We have established a collaborative observational program, called "Photometric Survey for Asynchro-nous Binary Asteroids" to discover and describe asynchronous binaries over a range of heliocentric distances from NEAs through Mars-crossers to inner main-belt asteroids. One new binary Amor asteroid, 2005 AB has been found during the first few months of the survey operation (Reddy et al., 2005, IAU Circ. 8483), and we have obtained follow-up data for two other binary systems. I outline the motivations, the technique, and the strategy of the Survey.

  13. Radio Detection of Neutron Star Binary Mergers

    NASA Astrophysics Data System (ADS)

    Bear, Brandon; Cardena, Brett; Dispoto, Dana; Papadopoulos, Joanna; Kavic, Michael; Simonetti, John

    2011-10-01

    Neutron star binary systems lose energy through gravitational radiation, and eventually merge. The gravitational radiation from the merger can be detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO). It is expected that a transient radio pulse will also be produced during the merger event. Detection of such radio transients would allow for LIGO to search for signals within constrained time periods. We calculate the LWA-1 detection rate of transient events from neutron star binary mergers. We calculate the detection rate of transient events from neutron star binary mergers for the Long Wavelength Array and the Eight-meter-wavelength Transient Array.

  14. Measuring the Masses of Ophiuchus Binaries

    NASA Astrophysics Data System (ADS)

    Schaefer, Gail

    2014-02-01

    Our goal is to measure dynamical masses of low-mass (<1 Msun) young (<5 Myr) binary components. We propose to continue mapping the orbits of young pairs using AO imaging. Combined with high-resolution spectroscopy, this will yield mass precisions of <5. This is important to validate and distinguish among theoretical calculations of young star evolution, which are most discrepant for low-mass stars. We target 22 binaries in Ophiuchus with unmapped orbits and 1 binary for which additional astrometry will yield precision values for its masses and distance. We request two half-nights, with LGS and NGS AO using NIRC2 on Keck II.

  15. Revised photometric elements of eight eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Mezzetti, M.; Predolin, F.; Giuricin, G.; Mardirossian, F.

    1980-10-01

    Photoelectric lightcurves of eight eclipsing binaries, known as detached systems, have been reanalysed by means of Wood's model in order to obtain homogeneous photometric elements. All binaries are confirmed to be detached. TU Cam, CW CMa, YZ Cas, CW Eri, CO Lac and EE Peg appear to be normal main-sequence (or near main-sequence) detached systems, but only the absolute elements of CO Lac are well-known. The detached binaries EK Cep and IQ Per are shown to be anomalous.

  16. Solidification phenomena of binary organic mixtures

    NASA Technical Reports Server (NTRS)

    Chang, K.

    1982-01-01

    The coalescence rates and motion of liquid bubbles in binary organic mixtures were studied. Several factors such as temperature gradient, composition gradient, interfacial tension, and densities of the two phases play important roles in separation of phases of immiscible liquids. An attempt was made to study the effect of initial compositions on separation rates of well-dispersed organic mixtures at different temperatures and, ultimately, on the homogeneity of solidification of the immiscible binary organic liquids. These organic mixtures serve as models for metallic pseudo binary systems under study. Two specific systems were investigated: ethyl salicylate - diethyl glycol and succinonitrile - water.

  17. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    SciTech Connect

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  18. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    PubMed

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system.

  19. Pulsars in binary systems: probing binary stellar evolution and general relativity.

    PubMed

    Stairs, Ingrid H

    2004-04-23

    Radio pulsars in binary orbits often have short millisecond spin periods as a result of mass transfer from their companion stars. They therefore act as very precise, stable, moving clocks that allow us to investigate a large set of otherwise inaccessible astrophysical problems. The orbital parameters derived from high-precision binary pulsar timing provide constraints on binary evolution, characteristics of the binary pulsar population, and the masses of neutron stars with different mass-transfer histories. These binary systems also test gravitational theories, setting strong limits on deviations from general relativity. Surveys for new pulsars yield new binary systems that increase our understanding of all these fields and may open up whole new areas of physics, as most spectacularly evidenced by the recent discovery of an extremely relativistic double-pulsar system. PMID:15105492

  20. A model for binary-binary close encounters and collisions from a dynamical point of view

    NASA Astrophysics Data System (ADS)

    Alvarez-Ramírez, Martha; Medina, Mario

    2014-01-01

    The goal of this paper is to provide a model for binary-binary interactions in star clusters, which is based on simultaneous binary collision of a special case of the one-dimensional 4-body problem where four masses move symmetrically about the center of mass. From the theoretical point of view, the singularity due to binary collisions between point masses can be handled by means of regularization theory. Our main tool is a change of coordinates due to McGehee by which we blow-up the singular set associated to total collision and replace it with an invariant manifold which includes binary and simultaneous binary collisions, and then gain a complete picture of the local behavior of the solutions near to total collision via the homothetic orbit.

  1. A Versatile Strategy for Shish-Kebab-like Multi-heterostructured Chalcogenides and Enhanced Photocatalytic Hydrogen Evolution.

    PubMed

    Hu, Jianqiang; Liu, Aili; Jin, Huile; Ma, Dekun; Yin, Dewu; Ling, Pengsheng; Wang, Shun; Lin, Zhiqun; Wang, Jichang

    2015-09-01

    A series of multi-heterostructured metal chalcogenides (CdS-Te, NiS/CdS-Te, and MoS2/CdS-Te) with a surprising shish-kebab-like structure have been synthesized via a one-step microwave-assisted pyrolysis of dithiocarbamate precursors in ethylene glycol. Subsequently, CdS-Te composites were exploited as a self-sacrificial template to craft various CdS-Te@(Pt, Pd) multi-heterostructures. Highly uniform dispersion and intimate interactions between CdS and multicomponent cocatalysts, together with improved separation of photogenerated carriers due to the presence of Te nanotubes (NTs) and trace CdTe, enable CdS-based heterostructured photocatalysts to exhibit greatly enhanced efficiency and stability in the photocatalytic production of H2. Thorough morphological characterizations revealed that the growth of metal sulfide/Te heterostructures originates from the growth of Te tubes, which is likely governed by diffusion-limited depletion of the Te precursor and the dissolution-crystallization process of Te seeds followed by the formation of metal sulfide kebabs.

  2. Manifestation of intermediate phase in mechanical properties: Nano-indentation studies on Ge-Te-Si bulk chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Das, Chandasree; Kiran, M. S. R. N.; Ramamurty, U.; Asokan, S.

    2012-12-01

    Nano-indentation studies have been undertaken on bulk Ge15Te85-xSix glasses (0≤x≤9), to estimate hardness, H and elastic modulus, E. It is found that E and H increase initially with the increase in the atomic percent of Si. Further, a plateau is seen in the composition dependence of E and H in the composition range 2≤x≤6. It is also seen that the addition of up to 2 at% Si increases the density ρ of the glass considerably; however, further additions of Si lead to a near linear reduction in ρ, in the range 2≤x≤6. Beyond x=6, ρ increases again with Si content. The variation of molar volume Vm brings out a more fascinating picture. A plateau is seen in the intermediate phase suggesting that the molecular structure of the glasses is adapting to keep the count of constraints fixed in this particular phase. The observed variations in mechanical properties are associated with the Boolchand's intermediate phase in the present glassy system, in the composition range 2≤x≤6, suggested earlier from calorimetric and electrical switching studies. The present results reveal rather directly the existence of the intermediate phase in elastic and plastic properties of chalcogenide glasses.

  3. Structural and Thermal Diffusivity Studies of Polycrystalline (CuSe)1-xSex Metal Chalcogenide Compound

    NASA Astrophysics Data System (ADS)

    Josephine, L. Y. C.; Talib, Z. A.; Yunus, W. M. M.; Zainal, Z.; Moksin, M. M.; Lim, K. P.; Yusoff, W. D. W.

    2007-05-01

    This paper reports the preparation and the characterization of the (CuSe)1-xSex metal chalcogenide semiconductor compounds with different stoichiometric compositions of Se (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) in bulk form. The (CuSe)1-xSex compounds were prepared using the solid state reaction by varying the ratio of CuSe:Se in the reaction mixture. X-ray powder diffraction analysis is used to identify and measure the mass absorption coefficient of the (CuSe)1-xSex compounds to support the thermal diffusivity behaviour. The thermal diffusivity of the polycrystalline (CuSe)1-xSex compounds were measured and analyzed for the first time, using the photoflash technique. The thermal diffusivity values were determined to be in the range of 2.524 × 10-3 cm 2 /s to 1.125 × 10-2 cm 2 /s. It was found that the thermal diffusivity value tends to decrease as the parameter x increases. The relationship between the thermal diffusivity, mass absorption coefficient and density of the (CuSe)1-xSex are discussed in detail.

  4. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.

    PubMed

    Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S

    2015-11-01

    We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers. PMID:26512522

  5. Fermi resonance in the phonon spectra of quaternary chalcogenides of the type Cu2ZnGeS4.

    PubMed

    Valakh, M Ya; Litvinchuk, A P; Dzhagan, V M; Yukhymchuk, V O; Yaremko, A M; Romanyuk, Yu A; Guc, M; Bodnar, I V; Pérez-Rodríguez, A; Zahn, D R T

    2016-02-17

    The experimental resonant and non-resonant Raman scattering spectra of the kesterite structural modification of Cu2ZnGeS4 single crystals are reported. The results are compared with those calculated theoretically within the density functional perturbation theory. For the majority of lines a good agreement (within 2-5 cm(-1)) is established between experimental and calculated mode frequencies. However, several dominant spectral lines, in particular the two intense fully symmetric modes, are found to deviate from the calculated values by as much as 20 cm(-1). A possible reason for this discrepancy is found to be associated with the Fermi resonant interaction between one and two-phonon vibrational excitations. The modelling of spectra, which takes into account the symmetry of interacting states, allows a qualitative description of the observed experimental findings. Due to the similarity of the vibrational spectra of Cu2A (II) B (IV) S4 (A  =  Zn, Mn, Cd; B  =  Sn, Ge, Si) chalcogenides, Fermi resonance is argued to be a general phenomenon for this class of compounds. PMID:26795711

  6. Size-Controlled Intercalation-to-Conversion Transition in Lithiation of Transition-Metal Chalcogenides-NbSe3.

    PubMed

    Luo, Langli; Zhao, Benliang; Xiang, Bin; Wang, Chong-Min

    2016-01-26

    Transition-metal chalcogenides (TMCs) can be used either as intercalation cathodes or as conversion-type anodes for lithium ion batteries, for which two distinctively different lithiation reaction mechanisms govern the electrochemical performance of TMCs. However, the factors that control the transition of lithiation mechanisms remain elusive. In this work, we investigated the lithiation process of NbSe3 ribbons using in situ transmission electron microscopy and observed a size-dependent transition from intercalation to the conversion reaction. Large NbSe3 ribbons can accommodate high concentrations of Li(+) through intercalation by relaxing their internal spacing, while lithiation of small NbSe3 ribbons proceeds readily to full conversion. We found that the size-dependent variation of the lithiation mechanism is associated with both Li(+) diffusion in NbSe3 and the accommodation of newly formed phases. For large NbSe3 ribbons, the intercalation-to-conversion transition is impeded by both long-range Li(+) diffusion and large-scale accommodation of volume expansion induced by the formation of new phases. These results demonstrate the inherent structural instability of NbSe3 as an intercalation cathode and its high lithiation rate as a promising conversion-type anode.

  7. Fabrication and characterization of micro-structures created by direct laser writing in multi-layered chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Schwarz, Casey M.; Grabill, Chris N.; Gleason, Benn; Richardson, Gerald D.; Lewis, Anna M.; Vyas, Aadit; Rivero-Baleine, Clara; Richardson, Kathleen A.; Pogrebnyakov, Alexej; Mayer, Theresa S.; Kuebler, Stephen M.

    2015-03-01

    Arsenic trisulfide (As2S3) is a chalcogenide (ChG) material with excellent infrared (IR) transparency (620 nm to 11 μm), low phonon energies, and large nonlinear refractive indices. These properties directly relate to commercial and industrial applications including sensors, photonic waveguides, and acousto-optics. Multi-photon exposure can be used to photopattern thermally deposited As2S3 ChG glassy films of molecular clusters. Immersing the photo-patterned cross-linked material into a polar-solvent removes the unexposed material leaving behind a structure that is a negative-tone replica of the photo-pattern. Nano-structure arrays that were photo-patterned in single-layered As2S3 films through multi-photon direct laser writing (DLW) resulted in the production of nano-beads as a consequence of a standing wave effect. To overcome this effect, an anti-reflective (AR) layer of arsenic triselenide (As2Se3) was thermally deposited between the silicon substrate and the As2S3 layer, creating a multi-layered film. The chemical composition of the unexposed and photo-exposed multi-layered film was examined through Raman spectroscopy. Nano-structure arrays were photopatterned in the multi-layered film and the resulting structure, morphology, and chemical composition were characterized, compared to results from the single-layered film, and correlated with the conditions of the thermal deposition, patterned irradiation, and etch processing.

  8. Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles

    NASA Astrophysics Data System (ADS)

    Skelton, Jonathan M.; Parker, Stephen C.; Togo, Atsushi; Tanaka, Isao; Walsh, Aron

    2014-05-01

    The lead chalcogenides represent an important family of functional materials, in particular due to the benchmark high-temperature thermoelectric performance of PbTe. A number of recent investigations, experimental and theoretical, have aimed to gather insight into their unique lattice dynamics and electronic structure. However, the majority of first-principles modeling has been performed at fixed temperatures, and there has been no comprehensive and systematic computational study of the effect of temperature on the material properties. We report a comparative lattice-dynamics study of the temperature dependence of the properties of PbS, PbSe, and PbTe, focusing particularly on those relevant to thermoelectric performance, viz. phonon frequencies, lattice thermal conductivity, and electronic band structure. Calculations are performed within the quasiharmonic approximation, with the inclusion of phonon-phonon interactions from many-body perturbation theory, which are used to compute phonon lifetimes and predict the lattice thermal conductivity. The results are critically compared against experimental data and other calculations, and add insight to ongoing research on the PbX compounds in relation to the off-centering of Pb at high temperatures, which is shown to be related to phonon softening. The agreement with experiment suggests that this method could serve as a straightforward, powerful, and generally applicable means of investigating the temperature dependence of material properties from first principles.

  9. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.

    PubMed

    Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S

    2015-11-01

    We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers.

  10. Minima Times of Selected Eclipsing Binaries

    NASA Astrophysics Data System (ADS)

    Parimucha, S.; Dubovsky, P.; Kudak, V.; Perig, V.

    2016-05-01

    We present 221 CCD minima times of the 76 selected eclipsing binaries obtained during 2013-2016 at Observatory at Kolonica Saddle in Slovakia and Observatory of Laboratory of Space Research, Uzhhorod National University in Ukraine

  11. X-ray reprocessing in binaries

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit

    2016-07-01

    We will discuss several aspects of X-ray reprocessing into X-rays or longer wavelength radiation in different kinds of binary systems. In high mass X-ray binaries, reprocessing of hard X-rays into emission lines or lower temperature black body emission is a useful tool to investigate the reprocessing media like the stellar wind, clumpy structures in the wind, accretion disk or accretion stream. In low mass X-ray binaries, reprocessing from the surface of the companion star, the accretion disk, warps and other structures in the accretion disk produce signatures in longer wavelength radiation. X-ray sources with temporal structures like the X-ray pulsars and thermonuclear burst sources are key in such studies. We will discuss results from several new investigations of X-ray reprocessing phenomena in X-ray binaries.

  12. Selection effects and binary galaxy velocity differences

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Salpeter, Edwin E.

    1990-01-01

    Measurements of the velocity differences (delta v's) in pairs of galaxies from large statistical samples have often been used to estimate the average masses of binary galaxies. A basic prediction of these models is that the delta v distribution ought to decline monotonically. However, some peculiar aspects of the kinematics have been uncovered, with an anomalous preference for delta v approx. equal to 72 km s(sup-1) appearing to be present in the data. The authors examine a large sample of binary galaxies with accurate redshift measurements and confirm that the distribution of delta v's appears to be non-monotonic with peaks at 0 and approx. 72 km s (exp -1). The authors suggest that the non-zero peak results from the isolation criteria employed in defining samples of binaries and that it indicates there are two populations of binary orbits contributing to the observed delta v distribution.

  13. ROTATIONAL DOPPLER BEAMING IN ECLIPSING BINARIES

    SciTech Connect

    Groot, Paul J.

    2012-01-20

    In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometric light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.

  14. Recent Minima of 171 Eclipsing Binary Stars

    NASA Astrophysics Data System (ADS)

    Samolyk, G.

    2015-12-01

    This paper continues the publication of times of minima for 171 eclipsing binary stars from observations reported to the AAVSO EB section. Times of minima from observations received by the author from March 2015 thru October 2015 are presented.

  15. Composition formulas of binary eutectics

    PubMed Central

    Ma, Y. P.; Dong, D. D.; Dong, C.; Luo, L. J.; Wang, Q.; Qiang, J. B.; Wang, Y. M.

    2015-01-01

    The present paper addresses the long-standing composition puzzle of eutectic points by introducing a new structural tool for the description of short-range-order structural unit, the cluster-plus-glue-atom model. In this model, any structure is dissociated into a 1st-neighbor cluster and a few glue atoms between the clusters, expressed by a cluster formula [cluster]gluex. This model is applied here to establish the structural model for eutectic liquids, assuming that a eutectic liquid consist of two subunits issued from the relevant eutectic phases, each being expressed by the cluster formula for ideal metallic glasses, i.e., [cluster](glue atom)1 or 3. A structural unit is then composed of two clusters from the relevant eutectic phases plus 2, 4, or 6 glue atoms. Such a dual cluster formulism is well validated in all boron-containing (except those located by the extreme phase diagram ends) and in some commonly-encountered binary eutectics, within accuracies below 1 at.%. The dual cluster formulas vary extensively and are rarely identical even for eutectics of close compositions. They are generally formed with two distinctly different cluster types, with special cluster matching rules such as cuboctahedron plus capped trigonal prism and rhombidodecahedron plus octahedral antiprism. PMID:26658618

  16. Dixie Valley Bottoming Binary Unit

    SciTech Connect

    McDonald, Dale

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  17. The binary fission origin of the moon

    NASA Technical Reports Server (NTRS)

    Binder, Alan B.

    1986-01-01

    The major arguments for and against the binary fission model of lunar origin are reviewed. Unresolved problems include: (1) how the protoearth acquired sufficient angular velocity to fission, and (2) how the earth-moon system lost its excess angular momentum after fission. Despite these uncertainties, the compositional similarities between the earth's mantle and the bulk moon suggest that the fission model is worth considering. The proposed sequence of events in the formation of the moon by binary fission is given.

  18. Late type close binary system CM Dra

    NASA Astrophysics Data System (ADS)

    Kalomeni, Belinda

    2015-08-01

    In this study, we present new observations of the close binary system CM Dra. We analyzed all the available data of the system and estimated the physical parameters of the system stars highly accurately. Using the newly obtained parameters the distance of the system is determined to be 11.6 pc. A possible giant planet orbiting the close binary system has been detected. This orbital period would likely make it one of the longest known orbital period planet.

  19. Spectroscopic Subsystems in Nearby Wide Binaries

    NASA Astrophysics Data System (ADS)

    Tokovinin, Andrei

    2015-12-01

    Radial velocity (RV) monitoring of solar-type visual binaries has been conducted at the CTIO/SMARTS 1.5 m telescope to study short-period systems. The data reduction is described, and mean and individual RVs of 163 observed objects are given. New spectroscopic binaries are discovered or suspected in 17 objects, and for some of them the orbital periods could be determined. Subsystems are efficiently detected even in a single observation by double lines and/or by the RV difference between the components of visual binaries. The potential of this detection technique is quantified by simulation and used for statistical assessment of 96 wide binaries within 67 pc. It is found that 43 binaries contain at least one subsystem, and the occurrence of subsystems is equally probable in either primary or secondary components. The frequency of subsystems and their periods matches the simple prescription proposed by the author. The remaining 53 simple wide binaries with a median projected separation of 1300 AU have an RV difference distribution between their components that is not compatible with the thermal eccentricity distribution f (e) = 2e but rather matches the uniform eccentricity distribution.

  20. Eclipsing Binary B-Star Mass Determinations

    NASA Astrophysics Data System (ADS)

    Townsend, Amanda; Eikenberry, Stephen S.

    2016-01-01

    B-stars in binary pairs provide a laboratory for key astrophysical measurements of massive stars, including key insights for the formation of compact objects (neutron stars and black holes). In their paper, Martayan et al (2004) find 23 Be binary star pairs in NGC2004 in the Large Magellanic Cloud, five of which are both eclipsing and spectroscopic binaries with archival data from VLT-Giraffe and photometric data from MACHO. By using the Wilson eclipsing binary code (e.g., Wilson, 1971), we can determine preliminary stellar masses of the binary components. We present the first results from this analysis. This study also serves as proof-of-concept for future observations with the Photonic Synthesis Telescope Array (Eikenberry et al., in prep) that we are currently building for low-cost, precision spectroscopic observations. With higher resolution and dedicated time for observations, we can follow-up observations of these Be stars as well as Be/X-ray binaries, for improved mass measurements of neutron stars and black holes and better constraints on their origin/formation.